ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

Geoderma 142 (2007) 294-307

GEODERMA

www.elsevier.com/locate/geoderma

Mapping of penetrometer resistance in relation to tractor traffic
using multivariate geostatistics

. \ b,1 s a,k
M. Carrara®, A. Castrignano **°, A. Comparetti *, P. Febo ®, S. Orlando *
# Dipartimento 1.T.A.F, Universita di Palermo, Viale delle Scienze, Building 4, 90128, Palermo, Italy
® CRA — Istituto Sperimentale Agronomico, Via Celso Ulpiani, 5, 70125, Bari, Italy

Received 9 June 2006; received in revised form 30 March 2007; accepted 22 August 2007
Available online 1 October 2007

Abstract

The traffic of agricultural machines can cause soil compaction and high variability of soil structure, both along normal lines and along those
parallel to the field plane. The aim of this work was to investigate the potential of an electronic penetrometer, a GPS, a GIS and geostatistical
techniques for mapping soil compaction.

In July 2003 soil cone penetrometer resistance was measured using a semi-automatic electronic penetrometer in a sandy-silt soil (Vertic
Xerochrept) of inland Sicily where a three-year rotation wheat (7riticum durum Desf.)—wheat—tomato (Solanum lycopersicum L.) was practiced.
The measurements were carried out along three parallel 3-m long transects, from the soil surface to a depth of 0.70 m.

A multivariate geostatistical approach, including exploratory analysis, variography, stochastic simulation and post-processing of simulations,
was applied to produce thematic maps of penetrometer resistance and probability exceeding a critical value, in correspondence of a different
number of tractor passes. Penetrometer resistance variation resulted erratic at the surface but showed high spatial correlation between data
measured at different depths. The probabilistic maps of compaction risk showed that the soil volume, exceeding the penetrometer resistance of

2.5 MPa, critical for root growth, at the probability level of p>0.40 increased from 20% to 40% after five tractor passes.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The implementation of intensive agricultural production
systems has led to the use of heavy machines with high working
capacity requiring high traction forces. The traffic of these
machines can cause soil compaction and general structural
degradation, reducing porosity and creating obstacles to air,
water, nutrient movements and root penetration (Carrara et al.,
2003; Febo and Pessina, 2002). Soil compaction can result in an
increase of natural soil density even at shallow depth (at 0—
0.50 m), where the elongated pores distributed along lines
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parallel to the field plane are prevalent on those distributed
normally to the field plane itself, which are relevant for water
drainage (Febo et al., 1998). Repeated passes on the field can
then cause pans, having a low permeability to water and
nutrients and a high resistance to root penetration. Plant root
characteristics, such as diameter, elongation and morphology,
are negatively affected by high values of soil cone penetrometer
resistance caused by soil compaction (Atwell, 1990) and there
are several examples of the negative effect of soil compaction
on crop production (Taylor et al., 1966; Heinonen et al., 2002).
When erroneous field management causes soil compaction, a
reduction of crop yield is observed during both the current crop
season and the subsequent ones (Oussible et al., 1992).

To understand whether a field is subjected or not to soil
compaction, the farmer should reply to questions about
intensity, extension, spatial and temporal variation, depth,
thickness and time of compaction, which require a site-specific
investigation across the field itself. Only a proper local survey
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and an adequate mapping of the compacted areas enable
successful soil tillage, because the tillage depth can be
optimised according to the compaction depth. Variable depth
tillage could be applied by working just beneath the compacted
layer and only where it is necessary (Basso et al., 2003).
Therefore, fuel, labour, equipment wear and tear could be saved
by farmers.

The measurement of cone penetrometer resistance is an easy,
quick and cheap empirical method, widely used for monitoring
and assessing soil compaction (Pagliai et al., 2000; Castrignano
et al., 2002a). Bengough and Mullins (1990) assumed that the
soil strength measured by a penetrometer is equal to the pressure
encountered by roots during growth. Other authors (Bennie,
1991; Bathke et al., 1992) verified that root elongation stopped
where cone penetrometer resistance values range from 0.8 to
5 MPa. Therefore, readings up to 5 MPa can be assumed as an
indication of compacted soils, which impede root growth and
negatively affect crop yield. In the past hand held penetrometers
have been primarily used for trouble shooting. The accuracy of
the measurement is highly related to the ability to push the
penetrometer probe into the surveyed soil layer at a constant
speed, even if it is almost impossible. Moreover, collecting
enough data across a whole field, so that geo-referenced maps
of soil compaction can be produced, takes a long time, is
expensive and often not convenient. Nowadays it is possible to
map the within-field soil compaction by using an electronic
penetrometer. It is constituted by a rod, ending with a cone,
pushed into the soil by a hydraulic cylinder, a load cell
measuring the applied force and a displacement detector
measuring the penetration depth. The collected data, together
with the related positions, sensed by a GPS, can be transferred
to a PC, where a Geographic Information System (GIS)
processes them, in order to produce soil compaction maps.
Thus the farmer can observe how soil compaction is variable at
different depths and across the field. The soil compaction maps
can provide two types of information: the values of soil cone
penetrometer resistance; the field areas and the depth where
eventually soil compaction occurs.

The intensity and distribution of the traffic of agricultural
machines may actually cause a high 3D variability of soil
structure, even in soils characterised by spatial homogeneity of
physical properties (Castrignano et al., 2001; Mouazen et al.,
2001). Spatial variability of soil cone penetrometer resistance is
significantly affected by machine traffic, which generates
compacted soil volumes located under the wheel tracks
(Richard et al., 1999) and, therefore, generally causes hetero-
geneity of soil physical properties (Castrignano et al., 2002a,
2003). As the traffic effect is spatially variable, it is necessary to
carry out geo-referenced soil cone penetrometer resistance
measurements, in order to describe the spatial variation of soil
compaction and its evolution over time as a consequence of
successive machine passes. One approach is that of producing
interpolated maps of cone penetrometer resistance values
measured at different times, using the geostatistical technique
of (co)kriging and then comparing the maps to each other, in
order to detect the persistence or changes in spatial patterns over
time (Goovaerts and Chiang, 1993; Castrignano et al., 2002a).

Theoretically, (co)kriging provides the best estimates in the
least square sense, because local error variance is minimal.
However, this method usually overestimates low values and
underestimates high values (Goovaerts, 1997) and provides
estimation variance depending only on data configuration
(homoskedasticity of variance) but not on the actual values
of data. On the contrary, stochastic simulation allows the
production of maps showing the spatial variability without
smoothing (Deutsch and Journel, 1998; Castrignano et al.,
2002b). In each location the simulation algorithms calculate
many values, which can then be used to obtain expected
predictions and variances. Moreover, the variances very often
change over space, depending not only on data configuration
but also on data values (heteroskedasticity of variance) and,
therefore, (co)kriging variance cannot be used to adequately
assess local uncertainty. This last estimation is quite critical in
decision making aimed at site-specific field management:
defining a soil as a compacted one and, therefore, carrying
out the appropriate action of recovery implies a set of problems,
because any estimate of soil properties is affected by uncertainty
(Goovaerts, 2001). Geostatistical simulation is an advanced
methodology for quantifying spatial distribution of soil cone
penetrometer resistance and the related uncertainty in assessing
soil compaction. From the set of alternative equally probable
outcomes at each node of the simulation grid the local
distribution function of soil cone penetrometer resistance can
be obtained and then the probability of exceeding a certain
critical threshold for rooting can be computed. The latter can be
considered as a probabilistic measurement of compaction risk
at any location. The measurements carried out by using the

Fig. 1. The system for the geo-referenced measurement of soil cone
penetrometer resistance used during the tests.
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Fig. 2. Map showing the three parallel 3-m long transects of soil cone
penetrometer resistance measurements and the tractor wheel tracks. Measure-
ments were taken after zero (P0), one (P1) and five (P5) passes of the tractor.

electronic penetrometer, combined with advanced geostatistical
methods, may then provide farmers with information about both
the compacted areas and the soil compaction depth, in order to
apply recovery measures only in those areas and, therefore,
minimise their cost.

The aim of this research was to investigate the potential of an
electronic penetrometer, a GPS, a GIS and the application of
geostatistical techniques, in order to map and assess the spatial
variability of soil compaction caused by repeated passes of
agricultural machines.

2. Materials and methods
2.1. Measurement equipment

During the tests a system for the geo-referenced measure-
ment of soil cone penetrometer resistance mounted on a tracked
minitransporter, Rotair Rampicar R-600, was used (Carrara
et al., 2005). It consisted of the following instruments (Fig. 1):

— an electronic penetrometer, Eijkelkamp Penetrologger 06.15,
consisting of a load cell, an ultrasonic depth sensor, a data
logger and a probing rod, ending with a cone of 200-mm?
base area (according to the ASAE standard 313.1); this
instrument can measure a penetration force ranging from 0 to
1000 N (with a resolution of 1 N) up to a maximum depth of
0.80 m (with a resolution of 10 mm) and display cone
penetrometer resistance data;

— an L1/L2 DGPS mobile receiver, Scorpio 6502 MK from
DSNP (now Thales Navigation), connected to a data logger,
Husky MP2500, with a built-in UHF radio receiver, for
receiving in real time the differential correction signals from
a UHF radio transmitter, connected to a base station, DSNP
Scorpio 6502 SK.

In order to lower or lift the penetrometer at a constant speed,
it was mounted onto a hydraulic cylinder, which was fitted to a
specifically built metal frame, joined to the minitransporter. It
was possible to adjust the inclination of this frame by means of
another hydraulic cylinder, so that the force applied by the
penetrometer to the soil and the penetration direction were
normal to the field plane.

This system, requiring only one operator and able to climb
over sloping ground, has a total mass of 400 kg, a total contact
surface of 0.288 m?, a soil ground pressure of 0.013 MPa, a
length of 1.5 m and a width of 0.80 m and, therefore, a small
turning space. With respect to manual penetrometers, this sys-
tem provides the following advantages: it highly decreases
measurement time, keeps a constant penetration speed, applies a
force normal to the field plane and allows the measurement and
recording of geo-referenced cone penetrometer resistance data.

2.2. Area description

In July 2003 the measurement tests were carried out in a field
located at Alia (Palermo, Italy, latitude 37°46'18" N, longitude
13°42'29>’ E, altitude 860 m above s.l. ca., annual mean tem-
perature 14.5 °C and annual mean precipitation 450 mm), where
a three-year rotation wheat (7riticum durum Dest.)—wheat—
tomato (Solanum lycopersicum L.) was practiced (2003 was the
third year). The soil is a Vertic Xerochrept (USDA, 1998), with
a sandy-silt texture (clay 8%, silt 33.7% and sand 58.3%) and a
moisture of 4.9% (constant during the whole testing day).

Before the tests the soil was ploughed at a depth of 0.35-m
(in August 2002) and harrowed at 0.10-m depth (in October
2002, February and April 2003).

2.3. Methods for measuring geo-referenced soil cone pen-
etrometer resistance

As the testing field was mostly flat, the field plane was
perpendicular to the vertical line, so that only a toric level was
needed to ensure that the penetrometer was vertical and, there-
fore, normal to the field plane. Thus, the relative positioning
was maintained along the whole penetration. Geo-referenced
soil cone penetrometer resistance was measured from the soil

Table 1

Basic statistics of soil cone penetrometer resistance (MPa) measured after zero (P0), one (P1) and five (P5) passes of the tractor

Variable Count Minimum Maximum Mean Median Standard deviation Variance Skewness Kurtosis
PO 2378 0.090 5.00 1.93 1.61 1.57 245 0.95 3.05

Pl 2098 0.10 5.00 1.88 1.50 1.52 2.31 1.11 3.37

P5 2238 0.15 3.96 2.40 1.95 1.69 2.86 0.64 2.30
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Table 2
Fitted linear model of co-regionalization of the normal scores (G0, G1, G5) of the corresponding soil penetrometer resistance variables (MPa)
Model Variable GO Gl G5 Eigen.1 Eigen.2 Eigen.3

a Horizontal spherical (range = 0.50 m) GO 0.5729 0.0972 —0.0155 0.6256 0.4344 0.3566
Gl 0.0972 0.4463 0.0358 (44.16%) (30.67%) (25.17%)
G5 —0.0155 0.0358 0.03974

b Vertical cubic (range = 0.20 m) GO 0.4556 0.13267 0.1318 0.5465 0.1443 0.0452
Gl 0.1326 0.0947 0.0170 (74.26%) (19.60%) (6.14%)
G5 0.1318 0.0170 0.1856

c Vertical Bessel-K (range = 1 m) GO 2.3105 4.1764 3.7675 16.3079 0.4171 0.00
Gl 4.1764 7.5499 6.8333 (97.51%) (2.49%) (0%)
G5 3.7675 6.8333 6.8646

The co-regionalization matrices, related to the three basic structures, and the corresponding Eigen values and the variance percentages (within parenthesis) are shown.
The Eigen vectors are computed from the variance—covariance matrix of three variables (GO, G1 and GS5) and define the main directions of the 3D cloud made by the
values of the variables. These directions are orthogonal and successively explain a decreasing part of the total variability of the cloud, from the first direction,
explaining the largest part of the variability, to the last direction, explaining the lowest part of the variability. Each Eigen vector is defined as a linear combination of the
variables and is associated with an Eigen value, equal to its variance and to the part of the total variability that this Eigen vector explains.

surface to a depth of 0.70 m, with a depth resolution of 10 mm.
Preliminary random tests were carried out, in order to determine
the minimum distance at which there was no interaction
between adjacent measurements, so that the eventual differ-
ences of cone penetrometer resistance were due only to spatial
variability. This distance was found to be 70 mm.

In order to study and evaluate the effects of the traffic of
agricultural machines on soil compaction, a 58-kW four wheel
drive tractor FIAT 766 DT, with a mass of 3340 kg, was used on
the testing field. The tractor front axle was fitted with 13.6 R24
tyres and its rear axle with 16.9 R34 tyres; all tyres were inflated
at the pressure recommended by the manufacturer of 120 kPa.

The soil cone penetrometer resistance data were measured
along three parallel 3-m long transects, 200 mm apart from each
other, containing the tractor wheel tracks, in three testing
conditions: after zero (P0), one (P1) and five (P5) passes of the
tractor (Fig. 2). These conditions simulated the undisturbed soil,
the soil compacted by minimum traffic and the soil compacted
by heavy traffic (Pagliai et al., 2000; Carrara et al., 2003). The
measurement tests were carried out within one day, so that the
soil water content was assumed approximately constant during
the considered time interval.

During the tests the DGPS mobile receiver logged real time
differentially corrected positions, 80 mm between each other,
with an RMS accuracy of £0.010 m+0.5% 10" m.

The positions were processed using the Kinematic Interface
Survey Software (KISS), while the cone penetrometer resis-
tance data measured in each point were processed and displayed
using Eijkelkamp PenViewer software.

2.4. Multivariate geostatistical techniques

In order to assess soil cone penetrometer resistance data on a
localised basis, a multivariate geostatistical approach was
applied. According to this method, the set of 7' sampled times
(PO, P1, P5) is viewed as a realisation of 7 inter-correlated
random functions. The simulation of the penetrometer resis-
tance involves fitting a Linear Model of Co-regionalization or
LMC (Goovaerts, 1997) to the T (T+1)/2 simple and cross-
variograms, decomposing the T co-regionalized variables into

orthogonal components associated with different spatial scales
(Castrignano et al., 2002a,b). In this model each variable is
expressed as linear combination of the same elementary spatial
components and all simple and cross-variograms are then
modelled as linear combinations of the same basic structures.
The complete covariance model is expressed by the list of the
nested normalised basic structures (sill = 1) and the matrices
(square, symmetrical and having dimension equal to the number
of variables) of the sills corresponding to each basic structure.
Each of these matrices, called a co-regionalization matrix, is a
positive semi-definite matrix, each element of which expresses
the relative importance of the corresponding basic structure in
modelling simple or cross-variogram. The multivariate ap-
proach was applied to the above soil cone penetrometer
resistance data set, measured at three times, after none (P0),
one (P1) and five (P5) passes of the tractor, which then con-
stitute the set of the inter-correlated random functions.

Stochastic sequential simulation sequentially draws the value
at each new simulated location from the conditional cumulative
distribution function (ccdf), given the neighbouring sample data
and the neighbouring values previously simulated (Chiles and
Delfiner, 1999). A joint sequential simulation means simulta-
neous prediction of several variables; whereas cokriging allows
to generate only one estimate for each variable in any location,
the Monte-Carlo simulation allows to generate a set of L joint
realisations (or prediction maps) of P variables. A realisation
implies that each cell of the interpolation grid is provided with a
vector of estimated variables. The ccdfs can be estimated in the
simplest way by cokriging if a multi-Gaussian model is assumed
for the multivariate distribution. If the data of the variables are
not normally distributed, a normal score transformation must be
performed, so that transformed data have normal distribution
with zero means and unit variances. The simulation results must
then be back-transformed to the raw distribution.

In this work each joint simulation was generated using a
conditional sequential Gaussian simulation algorithm which
simultaneously estimates all variables by cokriging (Chiles and
Delfiner, 1999) at each node of a regularly spaced grid, covering
the region of interest. This could be alternatively achieved by
cokriging each variable from all the others at a time, but in this
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way a lot of CPU time would have been needed. A more
efficient algorithm, used in this work, performed all calculations
at a once and solved one linear system with P right-hand sides
rather than P linear systems with one right-hand side (Chilés
and Delfiner, 1999).

A random path through the grid was defined so that each
node was visited only once (Deutsch and Journel, 1998;
Castrignano et al., 2002b). At each grid node to be visited,
normal score transformed data values were used to determine
the mean and variance of the conditional distribution function of
each variable, given the neighbouring sample data and previous
estimates, using cokriging. A value was drawn randomly from
that distribution as a possible simulation in that location for each
variable and this value was added to the conditioning data set;
the calculation proceeded for the remaining variables and then
shifted to the next node along the whole random path through
the grid. Several simulations, virtually identical in their sta-
tistical character and differing only in the random-number seed
used for initiating the simulation process, can be produced.
However, the number of simulations needs to be determined. In
this study 500 simulation runs were used, because this number
made the global variance estimation stable. Joint sequential
simulation was performed, using as co-variables the cone
penetrometer resistance data measured after zero, one and five
tractor passes.

Different types of statistical information were extracted from
the set of back-transformed simulated images for each variable:

1) averaging the values for each pixel and producing the map of
the “expected” value at any considered location (E-type or
Expected-value estimate) (Journel, 1983), which, for a large
enough number of realisations, can become similar to
cokriging estimates;

2) calculating the standard deviation of the realizations for each
pixel and producing the corresponding map, which was used
as a measurement of uncertainty. Differently from the point
one, this determination can sensibly differ from the cokriging
standard deviation;

3) counting the number of times that each pixel exceeded a
critical threshold value and converting the sum to a pro-
portion, in order to produce a probability map of compaction
risk; in our research the threshold value of 2.5 MPa was
selected, because this value was considered critical for root
growth (Taylor et al., 1966).

3. Results and discussion

A preliminary explorative analysis of the soil cone
penetrometer resistance measurements, based on the calcula-
tions of the traditional descriptive statistics, is presented in
Table 1. The soil cone penetrometer resistance spatially varied
from a minimum of 0.09 MPa to a maximum of 5 MPa, which is
the maximum pressure measurable by the used penetrometer
mounting the cone of 200-mm? base area. The maximum values

were measured after five passes of the tractor. Also the spatial
variance followed the same temporal pattern, even if it was less
sensitive to the traffic effect. The x> test for normality was
rejected for all testing conditions at a probability level lower
than 0.05 and it was also confirmed by the highly positive
values of the skewness parameter and the median values lower
than the means. The kurtosis parameter showed a shift from
normality (value of 3) only for the P5 distribution.

In order to highlight some significant persistence in soil
compaction after successive tractor passes, the correlation
coefficient between the measurements corresponding to the
different testing conditions was used. The correlations (PO—
P1=0.560; PO-P5=0.632; P1-P5=0.64) were always signif-
icant at probability level p<0.01 and tended to slightly increase
as the number of the tractor passes increased. This might
suggest that the soil tended to maintain its structure within at
least five tractor passes, even if this assumption should be
verified by more direct measurements on pore and aggregate
distributions.

The above statistical parameters were calculated assuming
that all soil cone penetrometer resistance measurements are
mutually independent. However, measurements of soil cone
penetrometer resistance which are made close to each other are
frequently more similar than those made further apart (Burgess
and Webster, 1980) and, therefore, provide expected values of
soil cone penetrometer resistance which are spatially dependent
(O’Sullivan et al., 1987). Spatial dependence was then taken
into account by calculating the experimental simple and cross-
variograms of the normal scores (GO, Gl, G5) of the data
recorded by the penetrometer at the same points in the three
testing conditions (PO, P1, P5). Since in each testing condition
all measurements lie on the surface within a narrow band
including the three parallel transects, the directional variograms
were calculated only along two main directions: 1) the transect
direction on the field plane (X axis); 2) the direction orthogonal
to the field plane (Z axis). The number of lags used to calculate
the variograms was ten for both directions but the lag length
was different: 0.15 m for X axis and 0.03 m for Z axis, due to
the different resolution of the measurements along the two
axes. A tolerance on direction of 15° along both axes, due to
the small support volume of penetrometer measurements, was
selected.

A Linear Model of Co-regionalization (LMC) was then fitted
to both simple and cross-variograms in a semi-automatic way:
only the final tuning of the corresponding sills was automat-
ically performed. The number, type, range and anisotropy of the
basic spatial structures were previously chosen relying on the
shape of the experimental variograms. The automatic sill fitting
procedures aimed at minimising the distance between the ex-
perimental value of a variogram and the corresponding value of
the model. Such a minimisation was performed giving different
weights to different lags, so that the weight of each lag is
directly proportional to the number of observation pairs and
inversely proportional to the average distance of the lag, under

Fig. 3. Linear Model of Co-regionalization (LMC), related to zero (GO), one (G1) and five passes (G5) of the tractor: a) component along the direction parallel to the

field plane; b) component along the direction orthogonal to the field plane.
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Fig. 4. 3D mean maps of the three back-transformed variables, related to zero (a), one (b) and five passes (c) of the tractor.
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Fig. 5. 3D standard deviation maps of the three back-transformed variables, related to zero (a), one (b) and five passes (c) of the tractor.
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Fig. 6. 3D maps showing the probability of exceeding the threshold of soil cone penetrometer resistance, related to zero (a), one (b) and five passes (c) of the tractor.
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the constraints that each co-regionalization matrix is definite
positive (Lajaunie and Béhaxétéguy, 1989).
The following three basic structures were used:

1. a directional spherical model, with a range of 0.50 m along
the transect direction;

2. a directional cubic model, with a range of 0.20 m along the
direction orthogonal to the field plane;

3. a bounded Bessel-k model (Chiles and Delfiner, 1999, pp.
638-639), with a range of 1.00 m and a parameter equal to 1
along the direction orthogonal to the field plane.

The multivariate model is presented in Table 2a, b, ¢, where
the co-regionalization matrix is shown for each of the three
basic structures, together with the corresponding Eigen values.
These values show that most of spatial variability is related to
the higher range variation along the direction orthogonal to the
field plane (Bessel-k model). Moreover, using this spatial scale
the three soil cone penetrometer resistance data sets resulted
highly correlated, because the first Eigen value accounted for
more than 97% of the total variance. This result means that the
spatial structure tends to be conservative at higher depths.

If the diagonal values (variances) of the three co-regional-
ization matrices are considered, it is possible to observe that, as
regards the short range variation, GO shows the highest
variance, both along the transect direction and the direction
orthogonal to the field plane (Table 2 a, b); on the contrary, as
regards the high range variation, Gl and G5 show the highest
variances along the direction orthogonal to the field plane
(Table 2c). These results may suggest a progressive soil strati-
fication, caused by the successive passes of the tractor.

The above results (Table 2c¢) show that the sills of the
variogram models along the direction orthogonal to the field
plane, having the higher range, do not reach the unit value; this
fact seems to contradict the assumption that the transformed
data have a standard Gaussian distribution with a unit variance.
These results might be due, firstly, to stationarity defects, even if
stationarity is a concept that depends on scale: the data can be
stationary at a large scale, whereas at a small scale they look like
non-stationary (Wackernagel, 2003, page 285). The variogram
values show a spatial “trend” along the direction orthogonal to
the field plane, owing to the limited surveyed soil depth. In this
case the empirical distribution of the data set may differ from its
theoretical distribution, related to its marginal distribution in an
infinite domain. Since the depth of the sampled domain
(0.70 m) is lower than the range of the variogram model
(1 m), the dispersion or empirical variance is smaller than the
variogram sill (“a priori” variance). Such an inequality is a
consequence of Krige’s relationship, according to which the
dispersion or variance is lower than the theoretical one when the
sampled field is not infinite (Chilés and Delfiner, 1999).
Applying Gaussian anamorphosis, the empirical variance of the
transformed data was set to one, whereas the “a priori” variance
of the component along the direction orthogonal to the field
plane with the longer range is greater. The spatial correlations
between the samples located in a small surveyed domain may
produce an apparent “trend”, although they stem from a

stochastic stationary process, involving a much higher volume
(Chiles and Delfiner, 1999). In assessing the theoretical LMC
variogram a first solution was tried by providing all sills with
unit value. Yet, this solution contradicted the positive semi-
definite condition of the co-regionalization matrices. Therefore,
the adopted solution was to consider the variogram model up to
a unit sill, since all the experimental values lie below this
threshold (Fig. 3). Thus, all the stochastic images were
constructed up to the maximum surveyed depth of 0.70 m and
no extrapolation was tried.

The directional variogram models are shown in Fig. 3a, b
(continuous lines): the simple variograms along the transect
(Fig. 3a) generally show an erratic behaviour; the random
character of the component of the spatial variance along the
transect also explains the missing or light cross-correlation
between the horizontal components corresponding to the dif-
ferent testing conditions (cross-variograms). On the contrary,
the computed cross-variograms of the vertical components of
the spatial variance (Fig. 3b) are quite close to the upper dashed
lines, which represent the maximum positive correlation. The
simple variograms of the component plane of GO and G1 along
the direction orthogonal to the field look like unbounded, even
if, for the above considerations, all the simple variograms were
assumed bounded in the Linear Model of Co-regionalization,
although at a range higher than the maximum depth surveyed.
The apparent different behaviour of the G5 variogram, which
looks like bounded, might suggest some ongoing change in soil
structure. Successive passes of tractor might have disrupted
most soil aggregates, causing spatial correlation length to
decrease. In some cases the Linear Model of Co-regionalization
is a raw approximation, because it assumes that the same basic
structures can be fitted to the whole set of simple and cross-
variograms. However, the assumption that for the considered
soil no irreversible modification of structure occurred within
five passes of tractor seems reasonable.

The above results suggest that the soil cone penetrometer
resistance variation on layers parallel to the field plane is erratic
and spatially correlated within very short distances (less than
0.50 m). Therefore, measurements made more than 1 m apart
from each other can be actually considered independent from
each other. On the contrary, the soil cone penetrometer resis-
tance data measured at different depths are spatially well
structured and dependent on each other up to the highest
surveyed depth (0.70 m).

Fig. 4a, b, c shows a way of treating the set of the simulated
images of the three back-transformed variables, by calculating
the mean of the 500 simulations produced at each grid node and,
then, mapping the results for each variable. Because of the
geometry of the surveyed soil volume, the Y axis was distorted
on the horizontal plane by a factor of 10, in order to allow a
better readability. The simulated 3D mean maps show that most
variations were of an erratic type, with a slight stratification
along the direction orthogonal to the field plane. The above
results also reveal some differences between the eastern half of
the surveyed soil volume and the western one, generally
characterised by higher cone penetrometer resistance values,
probably due to the intrinsic soil variation. The persistence of a
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compacted zone at a depth equal or lower than 0.40 m is visible,
probably also due to the traditional tillage made every year at
the same depth (ploughing pan). The three maps do not show
clear differences in the spatial dependence structures; yet, a
larger extension of the areas characterised by the highest values
of soil cone penetrometer resistance can be detected in the last
map. These maps give high density information of soil cone
penetrometer resistance which, if combined with more sparsely
data of other soil properties, could be efficiently used to assess
soil compaction. However, the only mean maps are not
sufficient to evaluate the soil compaction risk in site-specific
management, because any estimate is inevitably affected by
local uncertainty. Actually, the higher is the variation of local
estimates of soil cone penetrometer resistance values the higher
is the risk of planning soil tillage management relying only on
soil compaction estimates. If the soil cone penetrometer
resistance measurements were repeated on a grid, including a
set of both longitudinal and transverse transects, the risk of soil
compaction could be assessed in the whole field.

In Fig. 5a, b, ¢ the standard deviation maps of soil cone
penetrometer resistance corresponding to the different testing
conditions are shown. These maps show a proportional effect
between means and variances of the local distributions of simu-
lated values, symptomatic of heteroskedastic soil cone penetrom-
eter resistance variance, which confirms the uselessness, in this
case, of cokriging variance as a measure of uncertainty.

Alternatively, the soil compaction risk can be expressed in
probabilistic terms, calculating the probability of exceeding the
critical value of soil cone penetrometer resistance (2.5 MPa).
The probability maps, corresponding to the different testing
conditions (Fig. 6), were obtained by post-processing the 500
joint-simulated images of soil cone penetrometer resistance
data and look like consistent with the mean maps (Fig. 4).
Given a probability level, for example 0.40, it is possible from
the previous probability maps to identify the areas where the
probability of exceeding the soil cone penetrometer resistance
of 2.5 MPa is higher than this critical level. Fig. 7a, b shows
these areas, respectively, after zero and one pass of the tractor:
they are similar to each other and soil compaction distribution
is characterised by some randomly distributed hot spots. The
spatial pattern slightly changes after five tractor passes
(Fig. 7c), due to an intensification and localisation of soil
compaction, preferably along the western side of the transect.
Since the 3D maps were produced in a GIS environment, it
was also possible to calculate the portion of the surveyed soil
at compaction risk after successive tractor passes, in order to
produce a global indicator of soil compaction. The amount of
soil at compaction risk was about 20% of the total soil volume
at the beginning, remained approximately constant after one
pass, but increased up to about 40% of the total after five
passes.

The above results show that the traffic intensity may affect
soil compaction and cause soil deformations, which worsen
with an increasing number of tractor passes, as confirmed by

several other authors (Bakker and Davis, 1995; Jorajuria and
Draghi, 2000; Balbuena et al., 2000; Seker and Isildar, 2000).
The main difficulty of the proposed approach for identifying
compacted soil areas is to choose an appropriate probability
threshold above which remedial action must be undertaken.
Decision making is straightforward for the areas with a very
high or very low probability, while it is much more difficult for
the areas with intermediate probabilities, in the range [0.30—
0.70] (Goovaerts, 1999). Therefore, the choice of a probability
threshold remains mainly subjective, mostly affected by land
use and available financial resources. A more practical way of
facing the problem is to assess the financial costs which might
result from a wrong decision in tillage management and analyse
different cost-effective solutions, also using simulation models.

4. Conclusions

This research has demonstrated the usefulness of an
electronic penetrometer, used with a GPS, for sensing the
depth and degree of the soil cone penetrometer resistance, as
index of soil compaction, in the various surveyed positions of a
field, and, then, producing 3D maps, by using a GIS software.
These maps, showing the within-field spatial variability of soil
compaction, can allow the managers and users of agricultural,
forestry, environmental and ecological systems to assess the soil
compaction itself and identify areas where site-specific soil
management should be implemented. In fact, within these areas,
the soil management practices could be varied, implementing,
for example, no tillage or minimum tillage (subsoiling, etc.) or
traditional tillage (ploughing and harrowing) with a variable
working depth. Moreover, this research has proved that the
decision process aimed at selecting the tillage system in any
field area should be based not only on smooth interpolated
maps, which might lead to a severe underestimation of soil
compaction uncertainty and, therefore, of its economical and
environmental impacts, but also on stochastic simulation. In
fact, this geostatistical method allows to produce several maps
showing the spatial variability of soil compaction, which can be
used in order to assess the uncertainty in estimating soil com-
paction itself and its evolution as affected by the traffic of
agricultural machines. The effect of such an uncertainty on the
prediction of tillage costs could be evaluated using simulation
models.

Another geostatistical method for assessing spatial uncer-
tainty is to calculate the probability of exceeding some critical
threshold of soil cone penetrometer resistance. The resulting
probability maps can be used for assessing the soil compaction
risk.

Indeed all the statistical and geostatistical methods used in
this work are promising in the fields where the soil spatial
variability suggests a soil management system on a localised
basis, according to the principles of precision agriculture and,
however, in all the fields, aiming at the soil conservation,
according to the principles of sustainable agriculture.

Fig. 7. 3D maps showing the areas where the probability of exceeding the threshold of soil cone penetrometer resistance is higher than the critical level, related to zero

(a), one (b) and five passes (c) of the tractor.
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Recently new electronic penetrometers have been designed,
in order to map also other soil characteristics such as soil
texture, moisture, bulk electric conductivity and even real time
subsurface imagery (Rooney and Lowery, 2000; Rooney et al.,
2000; Drummond et al., 2000). These advanced electronic
penetrometers with a built-in GPS, used together with a GIS and
geostatistical methods, could allow an easy and efficient real
time mapping of soil characteristics. Moreover, these instru-
ments could allow the measurement of soil characteristics
affected by an error estimated by using previous calibration
functions, in order to correctly map these characteristics.

The successful combination of an electronic penetrometer, a
GPS, a GIS and geostatistical methods allows to rapidly “map”
the soil compaction and associate it with other spatially fun-
damental information such as those deriving from yield maps or
remote sensing images.
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