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Abstract Data having spatio-temporal structure are often observed in environmen-
tal sciences. They may be considered as discrete observations from curves along
time and/or space and treated as functional. Generalized Additive Models (GAMs)
represent a useful tool for modelling, for example, as pollutant concentrations de-
scribing their spatial and/or temporal trends.Usually, the prediction of a curve at an
unmonitored site is necessary and, with this aim, we extend kriging for functional
data to a multivariate context. Moreover, even if we are interested only in predicting
a single pollutant, such as PM10, the estimation can be improved exploiting its cor-
relation with the other pollutants. Cross validation is used to test the performance of
the proposed procedure.
Abstract Nell’analisi di dati ambientali si osservano spesso dati con struttura
spazio-temporale. Questi possono essere considerati realizzazioni discrete da curve
nel tempo e/o nello spazio e trattati come funzionali. I modelli Additivi Generaliz-
zati (GAM) rappresentano uno strumento utile per modellare la concentrazione di
inquinanti e descrivere il loro trend spaziale e/o temporale. Spesso, é necessaria la
stima di un’intera curva in un sito non osservato. A questo scopo estendiamo il krig-
ing per dati funzionali al contesto multivariato. Infatti, anche se possiamo essere in-
teressati alla previsione di un singolo inquinante, per esempio il PM10, sfruttando
la sua correlazione con gli altri inquinanti possiamo migliorarne la stima. Per ver-
ificare la validitá della metodologia proposta, utilizziamo una procedura di cross
validation.
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1 Introduction

Multivariate spatio-temporal data consist of a three way array with two dimension
domains (both structured), time and space. In our case, a set of different pollutant
levels, recorded for a month/year at different sites, is considered. In this kind of
data we may recognize time series along one of the dimensions, spatial series along
another and multivariate data along the third dimension.

Over the last few years, there has been an increasing interest within the statistical
community for Functional Data Analysis (FDA) [10]. Such a methodology provides
a suitable framework, especially in environmental studies, in which large amount of
data are recorded over space and/or time. Recently, attention has focused on Spatial
Functional Statistics considering spatially dependent functional data [2]. In this con-
text, one of the main issues is the spatial prediction. The Functional kriging [4, 8]
extends the ordinary kriging to the functional context, which allows predicting a
curve at an unmonitored site by exploiting the curves related to other monitored
sites. Suitable methodologies have also been developed in the more realistic cases
of absence of stationarity [1], that is, for processes with non-constant mean function
(non-stationary functional data). In order to take into account exogenous variables,
such as meteorological information, Kriging with External Drift (KED), or regres-
sion kriging, is extended to the functional data, involving functional modelling for
the trend (drift) and spatial interpolation of functional residuals [7].

In this paper, we want to consider a recurrent case, that is, when more than a
single variable (pollutants) is recorded, two situations can be considered: a pollutant
has to be predicted in a monitoring site where a) no other pollutants are recorded;
b) other pollutants are recorded. Actually, even if we are interested in predicting
a single pollutant, such as PM10, in an unmonitored site, exploiting its correlation
with the other pollutants can improve the estimation. In this paper, only case a) will
be analyzed. We integrate the Multivariate Spatial FDA with Ordinary Kriging for
Functional Data (OKFD) in order to obtain the prediction. GAMs [6] are considered
to convert data into functional as detailed in [3].

The paper is organized as follows: in Section 2 the methodology is described,
Section 3 presents the data, and the performance of the spatial prediction is assessed,
Section 4 reports the conclusions and further developments.

2 Methods

In order to predict a curve at an unmonitored site, we consider different steps.
First, we convert into functional the data, considering multivariate functional data

as functions of space; for each of the P variables (pollutants in our case), with p =
1, ...,P, and for each time t, t = 1, ...,T , we model the spatial effects as:

yp
st︸︷︷︸

data

= xp
t (s)︸ ︷︷ ︸

signal

+ε
p
t (s)︸ ︷︷ ︸
noise

(1)
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where y is the response (pollutant concentration), s is the (S× 2) matrix of the
geographic coordinates, s = (longitude, latitude), and ε is the random error that
may follow any exponential family distribution [6]. We assume a smooth function
to model spatial effects (for further details about models for smoothing data in space
see [3]).

After modelling the spatial effect and obtaining an estimate x̃p
t (s) of xp

t (s), the
residuals are obtained by difference: ep

st = yp
st − x̃p

t (s). They account for a residual
spatial component, but also for the whole temporal variability not yet exploited.

ep
st , like yp

st , is the generic element of a three way array, and as such, can be
considered as function of time ep

s (t). In fact, if we want to predict y in an unobserved
site, we have to account for the temporal variability in the residuals. The residual
curve prediction at the unmonitored site s0 can be obtained by linear combination
of data residual curves:

êp
s0
(t) = ∑

S
i=1λiep

si
(t), (2)

where si (i = 1,2, ...,S) are the observed monitoring sites.
As a last step, the predicted residual êp

s0(t) and x̃p
t at s0 are added to obtain the

estimate ŷp(t) at s0.
To implement our proposal, all computations are coded in R (R Development

Core 2015). The conversion to functional data is realized by using the fda package
[11] and mgcv package [13], while the geoR package [5] is also used to implement
the proposed kriging procedure.

3 Spatial prediction of pollutant curves

A spatio-temporal multivariate dataset related to air quality is here considered. In
particular, our case study considers PM10 and the main daily gaseous pollutant
concentrations (CO, SO2, NO2 and O3) aggregated by month and recorded dur-
ing a year (2011) at 59 monitoring stations dislocated along the State of California
(raw data are available at: http://www.epa.gov). The dimension of the array, initially
12× 59× 5, is reduced to 12× 56× 5, because three of the monitoring sites are
excluded from the analysis and used for assessing the performance of the proposed
modelling. A map of the monitored area, with the observed monitoring sites, is re-
ported in Figure 1; the three sites chosen as the validation set are highlighted in
red.

The concentrations of the pollutants are opportunely standardized and scaled in
[0, 100] before performing any analysis. As detailed in [12], the linear interpola-
tion introduced by [9] and used by US EPA (Environmental Protection Agency) is
to be preferred. The standardization by segmented linear function, with respect to
the standardization by threshold value, allows accounting for different effects of a
pollutant on human health, as well as for short and long-term effects, as shown in
[12].
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Fig. 1 Map of California with the considered sites.

3.1 Spatial prediction assessment

In order to assess the spatial prediction capability of the proposed procedure, we
compare, graphically, observed and predicted data at the three validation sites.

Referring to data of two different sites (chosen from the validation set), and two
different pollutants, Figure 2 shows the observed concentrations (black), their con-
version into functional (blue) and our predicted curve ŷ(t) (red). In both cases, the
predicted curve is very close to the smoothed and observed data.

4 Conclusions and further developments

In this paper we propose an integration of Multivariate Spatial FDA with OKFD,
in order to exploit correlations among variables to predict one of them. In order to
assess the spatial prediction capability of the proposed procedure, we have consid-
ered a three way array (time×space×variables) containing the concentrations of 5
main pollutants recorded in 59 monitoring sites in California (USA) over a year. We
focus on predicting a single pollutant in an unmonitored site. The performance of
the proposed procedure has been evaluated, as yet, only graphically, comparing ob-
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Fig. 2 Observed concentrations (black), their conversion into functional (blue) and predicted curve
(red) for the site 15 (left) and the site 19 (right).

served and predicted data at the three validation sites. A more detailed performance
evaluation will be carried out considering some performance indexes. In particular,
recorded and estimated data in these monitoring sites will be compared by comput-
ing the correlation coefficient ρ (the higher the better) and the root mean square
deviation RMSD (the lower the better). Moreover, as a further step, the situation b)
described in Section 1 will be explored in a future work.
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