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Extracellular vesicles are involved in a great variety of physiological events occurring in the nervous system, such as cross talk among
neurons and glial cells in synapse development and function, integrated neuronal plasticity, neuronal-glial metabolic exchanges, and
synthesis and dynamic renewal of myelin. Many of these EV-mediated processes depend on the exchange of proteins, mRNAs, and
noncoding RNAs, including miRNAs, which occurs among glial and neuronal cells. In addition, production and exchange of EV's
can be modified under pathological conditions, such as brain cancer and neurodegeneration. Like other cancer cells, brain tumours
can use EVs to secrete factors, which allow escaping from immune surveillance, and to transfer molecules into the surrounding
cells, thus transforming their phenotype. Moreover, EVs can function as a way to discard material dangerous to cancer cells, such
as differentiation-inducing proteins, and even drugs. Intriguingly, EVs seem to be also involved in spreading through the brain of
aggregated proteins, such as prions and aggregated tau protein. Finally, EVs can carry useful biomarkers for the early diagnosis of
diseases. Herein we summarize possible roles of EVs in brain physiological functions and discuss their involvement in the horizontal

spreading, from cell to cell, of both cancer and neurodegenerative pathologies.

1. Introduction

Extracellular vesicles (EVs) are membrane structures that
can be divided into two subgroups: membrane vesicles
(MVs), also named ectosomes [1], that derive from plasma
membrane exocytosis and have dimensions in the range of
100 nm-1m and exosomes that are smaller vesicles of 50—
100 nm in diameter, generated by exocytosis of multivesicular
bodies (MVBs) [2]. The two classes of EVs share membrane
components, but each of them also contains peculiar pro-
teins, some of which are cell-specific [1]. Lipid composition
is also peculiar; MVBs are enriched with specific lipids,
probably involved in membrane budding, such as cholesterol,
the unconventional phospholipid lysobisphosphatidic acid,
sphingomyelins, and ceramide [1, 3-6]. Similarly, cholesterol,

sphingomyelin, and ceramide also segregate during ecto-
somes formation at the plasma membrane [7]. It has been
suggested that sorting of proteins to ectosomes is largely
based on their interaction with the membrane through their
lipid anchors which concentrate them to specific plasma
membrane microdomains [8, 9].

Specific enrichment of both proteins and lipids in EVs
not only suggests the existence of underlying regulatory
mechanisms, which allow selection of cargos, but also points
to an important role of EVs in the normal tissue physiology.
As a confirmation of such a central role, it is now clear
that vesicle release is a universal phenomenon, representing
a novel and significant way to shuttle different molecules,
such as protein, DNA, and RNA among cells, not only in
eukaryotic organisms, but also in prokaryotes [10, 11].


http://dx.doi.org/10.1155/2015/152926

Moreover, although vesicle release was initially discov-
ered in tumor cells [12-16], vesicles are clearly produced by
several nontumor cells [17-21] and can reach most biological
fluids, such as blood plasma [22], synovial fluids [23, 24],
breast milk [25], and saliva [26, 27], where, in addition, their
concentration can dramatically change under pathological
conditions.

Although EVs have been finally accepted as significant
vehicles for cell-to-cell communication and they have been
identified in a variety of organisms and conditions, two main
problems remain, however, unsolved:

(1) the actual role of these vesicles in the integrated
behavior of tissues and organs;

(2) the reason why production of EVs and specific sorting
of cargos to them are altered in pathological condi-
tions as different as cancer and neurodegeneration.

Moreover, since most studies have been performed on EV
mixtures, it is still unclear whether these different classes of
vesicles are equally involved in physiological and pathological
processes.

Here we summarize the possible physiological roles of
EVs in the nervous system and discuss their involvement in
the horizontal transfer of brain pathologies.

2. Vesicles in Brain Normal Cells

Cell-to-cell communication is determinant for the right
mammalian brain maturation to regulate differentiation of
neurons, endothelial and glial cells, as well as allow formation
and stabilization of synapses. Cross talk among different
classes of brain cells is also essential to generate the blood-
brain barrier (BBB), which then maintains brain internal
milieu, by controlling trafficking of molecules and ions
between the brain and the blood [28]. For example, in a tran-
swell coculture system, containing both rat cortical astrocytes
and neurons, brain capillary endothelial cells (BCECs) were
found to form over time a functional barrier layer, even in
the absence of cell-to-cell contacts [29, 30]. Further analyses
demonstrated that both neurons [19] and astrocytes [20]
release into the medium, at least in part by EVs, Vascular
Endothelial Growth Factor (VEGF) and Fibroblast Growth
Factor 2 (FGF-2; also known as basic FGF), two growth
factors which promote vascularization of developing brain.
Both factors are also involved in abnormal neovascularization
processes which accompany several pathological conditions
[31, 32]. Interestingly, FGF-2 has been known since a long
time ago to be secreted in spite of lacking a conventional
secretion sequence and independently of the classical cell
secretion pathway [33].

One of the main problems in studying metabolism of
EVs has been to understand how their content reaches target
cells. There is now evidence that their cargos can be at
least partially transferred into the recipient cells, through
fusion of EVs to the target plasma membranes. For example,
after being released via EVs from metabolically labeled
astrocytes/neurons, radioactive proteins have been found in
unlabeled endothelial cells (Figure 1).
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FIGURE 1: Fluorography of total cell lysates from astrocytes (A), neu-
rons (N), and endothelial cells (EC), metabolically labeled with 3.
methionine, as well as from unlabeled endothelial cells, incubated
for 24 hours with microvesicles shed from labeled astrocytes (EC +
Av) or neurons (EC + Nv). The brackets indicate bands present in
both labeled neurons and endothelial cells incubated with vesicles
shed from neurons.

As mentioned, extracellular vesicles also contain mRNAs
and different species of noncoding RNA. Given the impor-
tance of RNA-binding proteins (RBPs) in posttranscriptional
regulation, mRNAs in vesicles are probably bound to proteins
in the form of ribonucleoprotein particles. In agreement
with this hypothesis, a microarray analysis, performed on
vesicles purified from the cerebrospinal fluid (CSF), recently
demonstrated the presence of RNAs containing the recogni-
tion sequence for hnRNPA2/BI, an RBP present in the same
vesicles, probably in sumoylated form. Moreover, sumoy-
lation has been shown to control hnRNPA2/B1 binding to
miRNAs and sorting of these RNAs to exosomes [34]. Both
the amount of vesicles and the number of mRNA molecules
which bear the hnRNPA2/B1 recognition sequence decrease
with development [35].

When we consider the complexity of vesicle cargos, it is
not surprising that EVs also contain molecular chaperones
and other factors which can regulate protein folding as well
as protein-protein and protein-nucleic acid interactions. MV's
and exosomes released from astrocytes not only contain, for
example, Hsc70/Hsp70 [36, 37] and synapsin I [38], but also
matrix metalloproteinases [39], which could be involved in
extracellular matrix remodeling. This latter ability is fun-
damental for tumor cells invasion and migration; however,
which function could it have in normal astrocytes or neurons?
To answer the question, it could be useful to consider that
most brain cells are able to grow branched cellular processes,
which can explore the environment, migrate, and contact
other cells; thus, an intrinsically high ability to modify the
surrounding environment is critical for these cells.

Interestingly, in vitro studies demonstrated that release
of exosomes from neurons can be modulated by synaptic
activity [40]; by functioning as vehicles for both anterograde
and retrograde information transfer, exosomes could be then
involved in synaptic plasticity and long-term memory [41].
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FIGURE 2: Extracellular membrane vesicles as vehicles for brain cell-to-cell interactions. As shown, all kinds of brain cells can both produce
EVs and receive those produced by surrounding cells; this continuous exchange could be a fundamental source of metabolic coupling among
neurons and glial cells. Vesicle trafficking from glial cells to neurons has been also suggested to be regulated by neurotransmission, as indicated
by the red arrow in the figure. A few examples of molecules present in EVs released from the various brain cell types are given in the boxes.

More details and related references are given in the text.

Vesicles are also released from oligodendrocytes, the glial
cells responsible in the CNS for producing the myelin sheath
which coats the axons, allowing fast impulse conduction;
in addition, like astrocytes, oligodendrocytes have a trophic
function and provide neurons with energetic substrates, such
as lactate [42-44]. The continuous axon-oligodendrocyte
cross talk seems to be mostly based on transfer of vesicles
[42] which contain myelin proteins, such as proteolipid
protein (PLP), 2'3'-cyclic-nucleotide 3'-phosphodiesterase
(CNP), myelin-associated glycoprotein (MAG), myelin oligo-
dendrocyte glycoprotein (MOG), NAD-dependent deacety-
lase sirtuin-2, glycolytic enzymes, heat-shock proteins, and
tetraspanins [45]. It has been also reported that proximal
segments of transected sciatic nerves accumulate newly
synthesized RNA in axons and that these mRNAs are actually
synthesized in Schwann cells and then transferred to neurons
through a mechanism that requires actin cytoskeleton and
myosin-Va [46].

Most important, vesicle trafficking from glial cells to
neurons has been suggested to be regulated by neuro-
transmission (Figure 2): an increase of cytosolic Ca** lev-
els in oligodendrocytes, due to activation of glutamate
receptors, present on glial cell membrane, induces exosome

release [47]. Actually, active neurons should ask oligodendro-
cytes for metabolites, regulatory proteins, glycolytic enzymes,
mRNAs, and miRNAs [48].

Transfer of mRNAs from glial cells to neurons might be
of special interest when we consider that localized axonal
synthesis may allow remodeling of growing (or regenerating)
axons during progression through their extracellular envi-
ronment. Although translation of localized mRNAs in axons
has been debated for a long time [49], periaxoplasmic ribo-
somal plaques (PARPs) have been only recently described,
which contain ribosomes attached to a plaque-like structure,
also enriched with B-actin mRNA, molecular motors, and
RNA-binding proteins [50]. Moreover, multiple translation
components, including ribosomal subunits and initiation
factors, interact with the transmembrane receptor (DCC) for
netrin-1, suggesting that their activity can be regulated by
extracellular signals [51].

The exciting possibility that ribosomes and mRNAs could
be horizontally delivered from surrounding glial cells to
axons has been also proposed [52, 53]. For example, Court
and colleagues showed that GFP-tagged polyribosomes pro-
duced by glial cells can be transferred to axons both in vitro
[52] and in vivo [54].



These findings support the idea that glial cells may
contribute to local axonal protein synthesis by supplying
protein synthetic machinery and specific mnRNAs [55].

Another important class of brain cells is constituted by
microglia, the resident macrophages of the brain, which
provide the defense during infection and brain injury, and
are implicated also in tissue repair. During disease, microglia
acquire an activated phenotype, and release soluble medi-
ators, to induce and maintain the inflammatory response.
There is also evidence indicating that reactive microglia have
the capability to release vesicles of irregular shape and size,
characterized by high levels of externalized phosphatidylser-
ine (PS) [56]. These vesicles contain IL-1f3 that may induce
and propagate inflammatory reactions in the brain [56, 57].
In addition, microglial MVs, like other glial cell types (see
above), are able to modulate synaptic activity and neurotrans-
mission [58]. For example, EVs secreted by microglia have
been recently shown to expose on their plasma membrane
the active endocannabinoid N-arachidonoylethanolamine
(AEA), which binds to and stimulates the type 1 cannabinoid
receptors (CB1), thus inhibiting presynaptic transmission in
GABAergic neurons [59]. Exosomes released by microglia
also contain glycolytic enzymes and the monocarboxylate
transporter 1 (MCT1); one role of these exosomes could be
delivering to not only target cells energy substrates, but also
special enzymes such as the insulin degrading enzyme (IDE),
which can degrade the A peptide [60].

Finally, it has been found that BCECs, the endothelial
cells which constitute the wall of the brain capillaries and
give rise to the blood-brain barrier, are also able to release
vesicles. Interestingly, the endothelial cell-derived EVs are
able to cross the BBB and are responsible, at least in part,
for the brain-specific biomarkers found in blood; accordingly,
these vesicles can be useful to analyze the time course of brain
diseases. Since their membranes contain many BBB receptors,
such as the transferrin and the insulin receptors, these MV's
might be also used to deliver drugs across the BBB [61].

Now, if all the brain cell populations are able to release
vesicles, an intriguing point is whether EVs produced by
a given cell type have promiscuous activities or, on the
contrary, have a specific target. Recent analyses suggested
that physiological brain vesicles delivery is actually highly
specific: exosomes secreted from stimulated glutamatergic
cortical neurons were indeed captured only by other neurons;
on the other hand, vesicles released from neuroblastoma cells
lost this capability and were shown to bind both neurons and
glial cells, with an apparent preference for glial cells [62].

Before concluding this brief summary concerning normal
brain cells, it should be underlined that, beside their role as
carriers of regulatory molecules, EVs can also function as
scavengers. Some authors indeed found that exosomes/MV's
are necessary for normal cells to eliminate proteins, for
example, to discard an excess of glutamate receptor 2 [40].

3. Brain Cancer Cells

Variety and complexity of primary tumours of the Central
Nervous System (CNS) are probably the highest among
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human cancers. Their classification is based on both the cell
type and/or the brain structure from which they arise and on
their grade, from I to IV, according to increasing malignancy
of the cancer cells [63, 64].

Most brain primary tumours in the adult originate
from glial cells/glial cell precursors and are collectively
called gliomas, further divided into astrocytomas, oligoden-
drogliomas, ependymomas, and mixed oligoastrocytomas
[63, 64]. According to the grade of malignancy, oligoden-
drocytomas and mixed gliomas are grades II and III, while
astrocytomas are grouped into low-grade (LGA: pilocytic,
grade [; diffuse, grade II) and high-grade astrocytomas
(HGA: anaplastic, grade III; glioblastoma multiforme, GBM,
grade IV) [65].

The treatment of HGA is mainly done by surgery, also
required for definitive histopathologic diagnosis [65, 66],
followed by radiation and chemotherapy [67].

Unfortunately, these therapeutic protocols, in spite of
undisputed advancements, are not actually effective, and high
grade gliomas still remain almost always fatal. In addition,
gliomas are difficult to diagnose at an early stage because,
at the beginning, the patients may suffer from unspecific
symptoms, such as headache and seizures [65]. Difficulties
in diagnosing as well as in treating gliomas also depend on
the particular location of these tumours, which are protected
by the BBB. Many efforts have been, indeed, recently devoted
to find out strategies which might improve permeability of
BBB to CNS-directed drugs (for review see [68]), although,
paradoxically, BBB leakage and the concomitant vasogenic
edema (see below) are the main clinical problems in patients
suffering from glioblastoma (for review see [69]). For all these
reasons, new approaches are urgently needed for an early
diagnosis of brain cancer and improvement of therapy.

As shown for many other tumours, brain cancers release
much higher amounts of extracellular vesicles than normal
cells. EVs are continuously released by cancer cells, but their
concentration in the body fluids is somehow proportional to
disease grade [70]. Concerning their content, beside proteins
more or less present in all the EV's studied up to now, such as
different classes of chaperones, they contain tumour-specific
antigens, MHC I and II complexes for antigen presentation,
apoptosis-inducing (such as FasL and TRAIL) and immune
suppressive (such as TGFf) factors (see below), as well as
oncogenic growth factor receptors, such as a truncated form
of the epidermal growth factor receptor EGFRVIII [71, 72]. In
line with these contents, it has been shown that EV's shed from
tumours can facilitate cancer development by suppressing
immune responses, stimulating tumour growth, invasion,
angiogenesis, and metastasis.

For many decades CNS was considered somehow “invisi-
ble” to the immune system because of its protected condition,
ensured by BBB. It is now clear, however, that it can be
better described as an immune “specialized” site, in which the
bidirectional exchange of immune cells with the circulation is
fundamental for the maintenance of integrity and functions
[73, 74]. In addition, resident microglia can adopt active
phagocytic behaviour and release proinflammatory factors
upon brain injury [75, 76]. In the context of gliomas, however,
glioma-associated microglia and macrophages (GAMs) seem
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to loss the ability to induce antitumour immune response
and to switch instead to a tumour-promoting, immunosup-
pressive phenotype. The inducers of this behavioural tran-
sition are glioma-derived factors, among which are TGEFJ,
interleukin- (IL-) 4, IL-6, IL-10, and prostaglandin PGE-2
[76, 77]. At the same time, glioma cells seem to be also able
to recruit from the circulation other immature myeloid cells,
which also adopt an immune suppressive behaviour, as soon
as they start interacting with the cancer site [76]. The cellular
and molecular bases for these phenotypic modifications of
immune cells, which infiltrate the tumour, are not completely
understood but certainly depend on an intense cross talk
among glioma and surrounding cells, forced to conform to
the signals received and involve at least in part EVs [78].

Among the proteins released not only from glioma cells,
but also from GAMs, an important class is represented by the
matrix metalloproteases (MMPs) [79-81], especially MMP-
2 and MMP-9 [76, 82, 83]. These enzymes can mediate
degradation of the extracellular matrix, thus promoting
invasion of the surrounding healthy tissues. In line with this
idea, microvesicles shed in culture by oligodendroglioma
cells were, for instance, shown to contain a TIMP3-sensitive
“aggrecanase” activity, which could allow cellular invasion of
aggrecan-rich extracellular matrices [23].

Importantly, migration of glioma cells throughout the
brain is also guided by the brain vessels, and cancer growth
is associated with angiogenesis [69]. Proliferation of BCECs,
to produce the new vessels, causes disruption of the tight
junctions and generalized fragility of the BBB, which becomes
leaky, thus creating the conditions for the vasogenic brain
edema, the most serious clinical complication of glioblas-
toma [69]. Edema and glioma progression have been also
correlated with altered expression of different isoforms of
aquaporins (AQPs), a family of water channels of the plasma
membrane [84], which are upregulated in brain cancer
[85-89]. Since in other systems both proteins of the tight
junctions [90] and AQPs [91, 92] have been reported to enter
exosomes, a new approach to the study of glioma-linked
edema could be the search for these proteins in EVs released
from brain cancers, with the additional aim of identifying
further diagnostic tools. Actually, variations in the number,
and possibly in the function, of EVs circulating in peripheral
blood have been reported in brain tumors [93].

Importantly, aggressiveness of gliomas has been cor-
related with hypoxia, which should be the main inducer
of both necrosis and BBB alteration. Hypoxia-dependent
intercellular signalling, induced by growth factors, such as
VEGE at least in part secreted via EVs [94], stimulates
not only BCECs proliferation and angiogenesis, but also
activation of the coagulation system, responsible for vascular
thrombosis [95]. Microvesicles have been known to be
associated with coagulation since the 1940s because they
expose PS, a negatively charged phospholipid, which can
allow recruitment of calcium ions and active coagulation
factors. Actually, tumour-derived vesicles have an even higher
coagulation potential because they carry TF (tissue factor), an
initiating coagulation factor [78].

An additional serious problem, posed by brain
tumours, is the cancer-induced neuronal cell death and

neurodegeneration. These events are associated with
cytotoxic edema [69, 96]. Again, extracellular vesicles are
probably involved. For example, G26/24 oligodendroglioma
cells release EVs that, when added to primary cultures of
rat cortical neurons, inhibit neurite outgrowth and induce
apoptosis in about 75% of the cells [16]. The same amount of
EVs induces apoptosis in only 40% of astrocytes [97]. In line
with these observations, vesicles released by G26/24 cells were
found to contain extracellular proapoptotic ligands, such as
FasL and TRAIL, which could cooperate in inducing brain
cell death. As already mentioned, these effects depend, at
least in part, on the horizontal transfer of proteins, mediated
by the vesicles, from tumour to normal brain cells [16, 97].

EVs are probably also involved in expelling from cancer
cells regulatory proteins. G26/24 release, for example, vesicles
which carry on the differentiation-specific HI" histone vari-
ant, thus eliminating a protein otherwise able to counteract
proliferation [37].

Perhaps the most intriguing property of EVs is that they
contain various classes of nucleic acids and are therefore able
to exert an effect on the translational profile of normal cells
present in their environment [78, 98, 99]. Transfer of DNA
among cells is an evolutionary conserved process: bacterial
vesicles contain DNA encoding virulence genes, which can
be transferred into other bacteria and then expressed [72].
EVsreleased from eukaryotic cells carry both DNA and RNA.
For example, brain tumours release EVs which contain c-
Myc as well as high levels of retrotransposon RNA transcripts,
such as those for LINE-1and Alu elements; these transposable
elements are then transferred to normal cells [100]. The
presence of noncoding RNAs (ncRNAs) in EVs is actually
one of the more fascinating topics in the field, since at least
some of these RNAs have been suggested to be involved in
epigenetic regulation of gene expression [101] and have thus
the potential to induce profound modifications of recipient
cells attitudes.

Intriguingly, exosomes released from astrocytes and
glioma cells also contain mitochondrial DNA [102].

The collection of glioma-derived mRNAs, transferred
into recipient cells via EVs, is actually highly complex and
includes a variety of transcripts associated with prolifera-
tion, immune repression, and tissue invasion [103]; these
transcripts are representative of almost all the transcrip-
tomes of the producing cells; however, some transcripts are
clearly enriched in EVs [98], thus suggesting existence of
mechanisms, such as the presence of specific “zip code-
like” sequences in the untranslated regions of the target
passenger mRNAs [104], which allow selective sorting and/or
stabilization of given mRNAs in EVs. Interestingly, many
transcripts are common among EVs released from different
cancer cell types [98].

Among EV-carried RNAs, a special class, which is
attracting much attention, is represented by microRNAs
[98]. Ten years ago, a microarray analysis allowed, for the
first time, identification in glioblastoma, by two different
laboratories, of aberrant miRNAs; one of which (miR21) was
in particular shown to act as an antiapoptotic factor (for
a review see [105]). More recently, a genome-wide miRNA
expression profile allowed identification of 55 upregulated



and 29 downregulated miRNAs in malignant gliomas, at
the same time suggesting that a group of 23 miRNAs could
represent a sort of signature for GBM able to distinguish
it even from anaplastic astrocytoma [106]. Although more
studies are requested to univocally combine all the results
described in the last ten years, a few miRNAs have indeed the
potential to contribute to GBM [105, 107].

By performing microRNA PCR array, Camacho et al.
also found a difference among brain metastatic (BM) and
nonbrain metastatic tumor-derived exosomes; in particular,
one upregulated (miR-210) and two downregulated (miR-19a
and miR-29¢) miRNAs were identified in BM versus non-BM
exosomes [108].

The presence of both the proteins and RNAs discussed
above in glioma-derived EVs, combined with the fact that
these EVs are also present in the circulation of patients with
glioma, while they almost disappear after tumor removal
[103], suggests that these vesicles could be used as a liquid
biopsy of cancer and reflect the disease grade [109-111].
A specific biomarker for glioblastoma is, for example, the
already mentioned EGFRVIII, a mutated EGF receptor which
lacks the extracellular domain, and triggers a “constitutively
on” signal transduction pathway. This protein is found both
in tumor cells and in shed vesicles [71, 112].

Recently, the ability of tumor cells to cause damage not
only by acting directly on normal cells but also by altering
their extracellular environment has been also emerging [113].

Finally, it should be mentioned that exosomes may pro-
tect tumor cells from accumulating drugs, thus accounting,
at least in part, for drug/multidrug resistance [78, 114].
For example, P-glycoprotein, member of the ATP binding
cassette superfamily, and one of the most important drug
transporters, has been shown to be exchanged among cells
via EVs [115].

4. Neurodegenerative Diseases

As in the case of brain tumors, variations in the amount of
EVs circulating in peripheral blood have been also reported
in several nervous system diseases, such as Alzheimer’s
disease [116], dementia [117], epilepsy [118], stroke [119], and
traumatic brain injury [120]. The association between EV
increase and multiple sclerosis is also well documented (as
reviewed in [121,122]), although the exact role of shed vesicles
in disease progression is still unclear: it seems that they con-
tain metalloproteinases damaging the blood-brain barrier, as
well as factors involved in propagation of neuroinflammation;
on the other hand, they seem to promote maturation and
migration of oligodendrocyte precursor cells, necessary for
repair of the damaged axons [121].

EVs can be implicated in neurodegenerative diseases also
because they can deliver toxic proteins such as prions (PrPsc)
[123-125], alpha-synuclein [126, 127], amyloid precursor pro-
tein (APP) or B-amyloid peptides [128-133], phosphorylated
Tau [134], and SODI [135].

Accumulation of aggregates of abnormal proteins has
indeed emerged as a common mechanism for most human
neurodegenerative diseases, including Alzheimer’s disease,
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Parkinson’s disease, frontotemporal dementias, and amy-
otrophic lateral sclerosis. All these diseases should prop-
agate through the brain via prion-like intercellular induc-
tion of protein misfolding [136, 137]. Neurons are pecu-
liar cells in that they are postmitotic and cannot self-
renew to clear abnormally folded/accumulated proteins;
thus they accumulate protein folding errors, especially
into aggregation-prone proteins, throughout their life-span
[138]. Defects in protein degradation by the proteasome-
depending pathway, because of abnormal activity of ubiquiti-
nating/deubiquitinating enzymes, molecular chaperones, and
protein hydrolases, can severely affect cell health and survival.

One of the most studied examples of the damaging effects
of protein aggregation in neurons is given by the microtubule-
associated protein Tau. An increase in Tau concentration,
hyperphosphorylation, and aggregation seems to be the prin-
cipal agent in the transmission and spreading of tauopathies,
among which is Alzheimer’s disease. Intracellular accumu-
lation of aggregated Tau has been considered over time the
main source of its toxicity. However, Tau added from the
extracellular side is still toxic to neuronal cells [139]. For
a long time, extracellular tau was believed to come out
from lysed dead neurons. More recently, however, growing
evidence suggested that extracellular Tau in AD brain (and
CSF) is very likely due to active secretion [140-143].

A nontransgenic lower vertebrate tauopathy model (the
lamprey ABC model) has been used to express full-length
wild type and mutant human Tau isoforms in identified neu-
rons, thus allowing localization of toxic Tau sources. Thanks
to this model system, Tau was found to be secreted before the
onset of neuronal degeneration and to be transferred among
neurons, thus spreading in a disease-specific pattern to the
brain and playing a major role in pathogenesis [144, 145].
Association of Tau with exosomes suggests that extracellular
vesicles is at least one of the routes for active interneuronal
transfer of toxic protein [140]. Interestingly, it has been
also found that Tau can interact with signaling components
localized to the plasma membrane, such as the Src-family
of nonreceptor tyrosine kinases [141, 145, 146]. This finding
suggests that extracellular signaling might have an effect on
Tau sorting to extracellular vesicles and spreading throughout
the brain.

Similar to Tau protein, in synucleinopathies, such as
Parkinson’s disease, SNCA/a-synuclein can be released by
neural cells into the extracellular space by EV shedding [125,
126]. It has been reported that SNCA/a-synuclein is released
in two main forms: through exosomes, which contain low-
aggregated proteins, and through MVs, which contain high-
aggregated proteins. It seems that, while intracellular SNCA
aggregation has probably a protective role, released SNCA is
toxic, most probably spreading the disease throughout the
brain; the toxic effect is highly enhanced when autophagy-
lysosomal pathway is inhibited [147].

Involvement of EV's in the pathological spreading of toxic
proteins has been confirmed by the presence of vesicles in
the CSE. MVs derived from all the major types of neural
cells are already detectable in both rodent and human CSE,
under normal conditions. In the inflamed brain, in cases of
multiple sclerosis in humans and experimental autoimmune
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encephalomyelitis (EAE) in mice, however, the amount of
MVs increases dramatically depending on disease severity
and the extent of microglia activation [148]. Exosomes
enriched in prion proteins have been isolated from both ovine
CSF [149] and human CSF [150].

In the late 1990s, human Tau was already evidenced in
CSF of early stage patients with Alzheimer’s disease [151,
152]. More recently, phosphorylated Tau has been found in
exosomes, and this is a peculiar feature of AD with respect
to both normal aging and other neurodegenerative diseases
[141]. The early presence of exosome-associated Tau in CSF is
of interest for at least two reasons: (1) it is a further indication
of an active secretion of Tau from neurons (discussed in
the previous section); (2) it could offer a powerful and
noninvasive instrument for early AD diagnosis [138].

Given their potential interest in both diagnosis and basic
research, EVs from the CSF have been the subjects of several
studies. In particular, many efforts have been devoted to pro-
teomic profiling of CSF exosomes [150, 153]. These analyses
demonstrated the presence in CSF vesicles, among other pro-
teins, of Alix, syntenin-1, tetraspanins, heat shock proteins,
Rab proteins, transcription factors, MHC antigens, integrin
alpha-M, the receptor-type tyrosine-protein phosphatase C,
enolase 2, the dihydropyrimidinase-related protein 2, and the
vesicle-associated membrane protein 2 (VAMP2) [150].

From all the discussed studies, it is evident that EVs, if
taken up from cells different from the producer ones, have
the potential to promote deep modifications of properties and
behavior of the recipient cells.

5. Concluding Remarks

In conclusion, extracellular vesicles seem to play an impor-
tant role in coordinating intercellular communication in
brain. Production of EVs is probably a dynamic process
which can undergo both quantitative and qualitative mod-
ifications depending on neuronal activity, metabolic state,
and perhaps membrane trafficking rate. In pathological
conditions, such as cancer as well as neurodegeneration, EV
production and release seem to be potentiated and allow
secretion into the extracellular environment of proteins,
RNAs, and lipids, which can horizontally transfer patho-
logical features to the surrounding cells. The presence of
disease-specific proteins and RNAs in EVs, which can also
reach the patient CSE could offer a powerful way for early
detection of pathology and is certainly worth of further
analyses. Finally, EVs also deserve attention as potential drug
carriers, theoretically able to cross the blood-brain barrier.
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