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Abstract: Pierre Robin sequence (PRS) is a pathological condition responsible 
for a sequence of clinical events, such as breathing and feeding difficulties, that 
must be addressed to give the patient at least a chance to survive. By using 
medical imaging techniques, in a non-intrusive way, the surgeon has the 
opportunity to obtain 3D views, reconstruction of the regions of interest 
(ROIs), useful to increase understanding of the PRS patient’s condition. In this 
paper, a semi-automatic approach for segmentation of the upper airways is 
proposed. The implemented approach uses an edge-driven 3D region-growing 
algorithm to segment ROIs and 3D volume-rendering technique to reconstruct 
the 3D model of the upper airways. This method can be used to integrate 
information inside a medical decision support system, making it possible to 
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enhance medical evaluation. The effectiveness of the proposed segmentation 
approach was evaluated using Jaccard (92.1733%) and dice (94.6441%) 
similarity indices and specificity (96.8895%) and sensitivity (97.6682%) rates. 
The proposed method achieved an average computation time reduced by a 16x 
factor with respect to manual segmentation. 

Keywords: 3D region growing; edge-driven segmentation; airway 
segmentation; Pierre Robin sequence; PRS; 3D modelling; medical decision 
support system; MDSS. 
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1 Introduction 

Pierre Robin malformation was first described in 1923 by the French surgeon  
Pierre Robin (1994).The exact cause of Pierre Robin malformation is not known, but it is 
thought to depend on something that, during the first gestational weeks, would interfere 
with the posterior-inferior sliding of the tongue that normally allows the sides of the 
palate to shift to the midline and close. The main investigated factor is the 
underdevelopment of the mandible that could be the result of an inherent (genetic or 
syndromic) or a secondary growth problem (high intrauterine pressure, oligohydramnios) 
(Carroll et al., 1971; Cohen, 1990; Jakobsen et al., 2006).Today this condition is 
recognised as a ‘sequence’ (Pierre Robin Sequence, PRS) because the underdeveloped 
mandible is responsible for a sequence of clinical events. The small or displaced 
mandible may also cause the tongue to be positioned at the back of the mouth, causing 
breathing and feeding difficulties (Schreiner et al., 1973). 

There is no absolute indication to surgery for PRS patients. However, depending on 
the severity of respiratory impairment, surgery may be indicated to repair the cleft palate 
and correct the airway duct, to aid feeding and to improve breathing (Lidsky et al., 2008; 
Leboulanger et al., 2010). Controversies about the diagnosis and management of PRS are 
summarised in Mackay (2011). The possibility of measuring the volume of the upper 
airways to select patients eligible for surgery may be decisive for patient outcome: the 
proposed approach may help by giving an answer to this question. 

In this scenario, medical imaging is useful to develop algorithms generating 3D 
volumetric reconstruction of the airways. Such reconstruction can provide an intuitive 
view of the upper airway structure, useful to integrate medical information during 
diagnosis and surgery evaluation processes. 

 
 
 
 



   

 

   

   
 

   

   

 

   

    An edge-driven 3D region-growing approach 235    
 

    
 
 

   

   
 

   

   

 

   

       
 

This paper is organised as follows: Section 2 describes similar works in the literature; 
Section 3 illustrates the proposed 3D Region-Growing approach for upper airway 
segmentation and reconstruction; Section 4 shows and discusses the obtained 
experimental results; finally, Section 5 provides some discussions and conclusions about 
this work. 

2 Related works 

In literature there are several works dealing with the airway segmentation problem. 
However, almost always segmentation approaches are applied to healthy patients, in 
which ROIs have a morphology dominated by anatomical symmetries/similarities that, 
allowing the use of templates, simplify the identification and segmentation of the 
structures of interest. 

Tan et al. (2012) propose an approach to segment the airway tree from multi-slice 
computed tomography (MSCT). In this approach, it is possible to locate three processing 
steps: in the first one, using an adaptive threshold algorithm, the seed-point for region-
growing is extracted; in the second one, starting from the extracted seed-point, the 
segmentation of the main bronchi is performed using a 3D region-growing algorithm and, 
simultaneously, leakage points into the lung parenchyma are detected; finally, in the third 
one, the probable leakage points are selected using a simulation of 3D region-growing 
based on parallel computing. 

Lin et al. (2006) try to reconstruct a 3D model of the nasal cavity, pharynx, larynx 
and trachea. The purpose of this study was to search for the effect of inhaled aerosols on 
the human upper airway. The obtained geometric reconstruction is an anatomically 
realistic model that derives from a computed tomography (CT) dataset of the whole 
respiratory tract of normal adults. Starting from the provided CT dataset, an accurate 3D 
model of the human upper airway is reconstructed. 

Yousefi Rizi et al. (2008b) propose a fuzzy-based algorithm for 3D segmentation of 
the human airway. To overcome leakage problems outside the ROI during the 
segmentation process, a multi-seeded fuzzy-based region-growing approach in 
conjunction with the spatial information of voxels is proposed. In Yousefi Rizi et al. 
(2008a), the same authors propose an optimisation of their previous segmentation 
method, where a mathematical shape optimisation approach is used (based on a fuzzy 
connectivity algorithm) to preserve shape features of the object. The novelty of this 
proposed scheme is to prevent leakage rather than taking leak detection and leak 
reduction approaches. 

Seo et al. (2010) implement a software tool for semi-automatic segmentation of the 
nasal airway. A 3D region-growing algorithm is used to perform the segmentation that 
provides, as a result, a 3D model. This approach is applied because the nasal airway can 
be recognised by grouping similar pixel values of respiratory paths from CT images. To 
visualise the 3D model of the nasal airway a volume rendering method is used. 
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Aykac et al. (2003) describe a fully automatic technique for segmenting the airway 
tree starting from 3D CT images of the thorax. Grey-scale morphological reconstruction 
is used to identify pixel candidates belonging to airways. After segmentation, 3D 
reconstruction of the airway tree and estimation of airway branch-points in the 
reconstructed tree are performed. 

Bresch and Narayanan (2009) propose a method for unsupervised region 
segmentation of an image using its spatial frequency domain representation. The 
algorithm is designed to process large sequences of real-time magnetic resonance (MR) 
datasets containing the 2D mid-sagittal view of a human vocal tract airway. The 
segmentation algorithm uses an anatomical object model, whose fit to the observed image 
data is hierarchically optimised using a gradient descent procedure. 

The segmentation of the upper airway in PRS patients may not be an easy task, 
because there are difficulties due to the almost total absence of symmetries and 
anatomical similarities with healthy patients that do not give the possibility to use models 
for segmentation. Moreover, restrictions on the radiation amount, given to patients with 
only a few months of life, limit the CT image resolution. This problem is particularly 
evident in PRS patients where the airways, presenting very small sections (caused by 
stenosis or by breathing movement), can become difficult or impossible to detect. 

In this scenario, segmentation can be a complicated process with respect to healthy 
patients, making it impossible to identify correctly the airways. For this reason, a 
completely automated process is not always useable. This brings us to the need for a 
semi-automatic approach where a supervisor evaluates the particular situation and 
proceeds with the correct segmentation. 

The use of medical imaging techniques is motivated by the need to provide a tool that 
assists the surgeon in the evaluation process of the PRS disease. Segmentation 
approaches fall into one of the following classes: thresholding, edge-detection, clustering, 
active contour, and region-growing. Techniques based on (global or dynamic) 
thresholding have the advantage of greater computational simplicity, but the results are 
not always so good. This leads to the need for further post-processing steps. Techniques 
based on edge-detection operators (such as Sobel or Canny) extract the contours 
associated with high gradient areas, sometimes obtaining opened boundaries, which are 
difficult to use for 3D reconstructions. More sophisticated edge-detection operators (such 
as Marr-Hilldreth) obtain closed boundaries, with the ROI over-segmentation drawback. 
Even techniques based on clustering are not always usable, because some parameters are 
not always available. For example, clustering based on k-means needs to know a-priori 
the number of clusters and such information is not always available. Another parameter 
to evaluate is the computational cost of the algorithm and its processing time. Active 
contour techniques [such as level-set function (LSF)] obtain good results in the 
segmentation process, and, however, may require more time for tuning of the various 
parameters and high processing time, related to not fast convergence. 

Unlike previous techniques, approaches based on region-growing obtain well-defined 
ROIs with good processing time and rapid applicability because of the few parameters to 
be set. A problem of techniques based on region-growing is ‘leakage’, which is related to 
the growth of the region outside the ROI boundaries. 
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The approach described in this article is based on a 3D region-growing used to 
segment the ROIs on the entire dataset. The operator should only select the initial seed-
point and the algorithm will proceed automatically with the growing process in all dataset 
slices. To prevent leakage, the region-growing process is aided by information provided 
by the difference in strength (DIS) map, which provides a measurement of the distance of 
the pixels from the ROI edge. Successively, with the segmented ROIs, the 3D anatomical 
model of the airways is reconstructed and visualised. 

3 The proposed edge-driven 3D region-growing approach 

This paper proposes an approach using a 3D region-growing (3D-RG) algorithm to 
segment ROIs and 3D volume-rendering (3D-VR) techniques to reconstruct and display 
the corresponding three-dimensional model of the upper airways. In order to help the 
pathological scenario assessment of the PRS patient and to correctly address possible 
corrective surgery (Kirschner et al., 2003), extracted information could be used in a 
medical decision support system (MDSS) to integrate medical data about the patient and 
to assist the surgeon in the disease evaluation phase. 

Figure 1 The implemented GUI based on the proposed airway segmentation approach (see online 
version for colours) 

 

Notes: On the left side is the list and the dataset characteristics. In the centre is the 
selected slice. In the top-right corner is the mask with the segmented ROI and the 
corresponding surface and volume. In the lower-right corner is the reconstructed 
3D model obtained after region-growing segmentation. 
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In particular, to work correctly the proposed 3D-RG approach needs 

1 a threshold to locate the pixel range belonging to the ROI 

2 an edge map, provided using DIS, to avoid growth beyond the airway boundaries. 

After the region-growing phase, a 3D reconstruction is performed using the extracted 
ROIs. The computed 3D model is visualised with information about volume and surface. 
Making it possible to automatically calculate the upper airway volume and to easily 
obtain a 3D-VR model, the proposed approach can be used to provide the surgeon a 
means of support in the therapeutic path of the PRS patient. 

As illustrated in Figure 1, the realised graphical user interface (GUI) provides all the 
necessary controls 

1 to select a CT scan 

2 to choose the slice of interest 

3 to visualise the segmented area of each slice and to display the slice surface and the 
total volume of the airways. 

The possibility to zoom/move the 3D model allows the operator to interact with the GUI 
and display details of the 3D-VR model from different points of view. 

3.1 Approach description 

Figure 2 shows the flow diagram of the processing steps realised with the proposed 
approach. It is possible to recognise the following steps: 

• region of treatment (ROT) identification: the step where the operator selects the 
region from which the region-growing algorithm starts 

• region-growing threshold selection: this step determines a threshold (using the Otsu 
method) used by the region-growing algorithm to establish whether to add the pixel 
to the ROI 

• DIS map calculation: edge information is used to help the region-growing algorithm 
to process correct boundary pixels, avoiding leaking 

• edge-driven 3D region-growing: starting from the seed-point, detected automatically 
inside the ROT, this step begins the growth including only the pixels that satisfy the 
region-growing conditions 

• surface and volume computation: after the region-growing segmentation, this step 
determines the surfaces of each extracted ROI and the overall upper airway volume 

• 3D airway model reconstruction: starting from ROIs, a 3D model is build and 
visualised in the GUI to the operator. 
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Figure 2 Flow diagram of the processing steps performed in the implemented segmentation 
approach (see online version for colours) 
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Figure 3 ROT identification, (a) initial CT slice (b) selection of initial ROT (c) starting from this 
ROT, the software locates the seed-point (see online version for colours) 

   
 

(a) (b) (c) 

Note: The absolute minimum point is indicated with a blue cross. 
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3.1.1 ROT identification 

As shown in Figure 3, before the region-growing algorithm starts, the operator must 
select the ROT, used for the segmentation and the extraction of ROIs [Figure 3(b)]. 
Within this ROT, the initial seed-point is identified, given by the absolute minimum point 
[Figure 3(c)]. It is possible to use this approach because in the CT images the air presents 
the lowest intensity pixel values. Depending on the particular morphology of the 
anatomical section considered, the realised GUI provides the possibility of various shapes 
for the selection of the ROT (e.g., elliptical, rectangular). 

3.1.2 Region-growing threshold selection 

In literature, there are some approaches where an absolute threshold of the pixel values is 
considered (Zhu et al., 2010). This approach is not always usable, in fact, images coming 
from different CT scanners may have not perfectly aligned pixel ranges, due to 
differences in the calibration process. Because of this, the same anatomical structures, 
from different datasets, may have different pixel values. The situation becomes more 
complex when the scanners are from different manufacturers. In this case, there may be 
present, as well as shifts in the pixel range, even different standardisation/normalisation 
procedures of the output pixel, due to different values of some DICOM parameters 
(rescaleSlope and rescaleIntercept). In particular, equation (1) shows the relationship 
existing between the stored values (storedValue) and the output value (outputValue) as a 
linear function of these two parameters. As can be seen in Table 2, the different  
datasets have different values of these parameters which would require (before the  
region-growing segmentation) different normalisation procedures of images in the  
pre-processing phase. 

outputValue rescaleSlope storedValue rescaleIntercept= × +  (1) 

For this reason it was decided to follow a different approach: from the ROT highlighted 
in the previous step, a threshold using the Otsu algorithm (1979) was selected. It is 
possible to use this approach because the histogram has a bimodal distribution of ROT 
divisible into two areas (ROI and background). The choice of a dynamic threshold allows 
the handling of datasets from different CT scanners without particular problems, since the 
algorithm will adapt to the various conditions of the processed dataset. 

3.1.3 Edge-driven 3D region-growing 

Starting from the seed-point located inside the ROT, the 3D Region-Growing algorithm 
analyses the 26 neighbours of the current pixel (in blue in Figure 4). For each of these 26 
neighbours we verified if the condition expressed by the equation (2) is satisfied. This 
relation is composed of 4 sub-conditions [equations (3), (4), (5), (6)], checking if: 

a the pixel is inside the image 

b the pixel has not already been added to the ROI 

c the value of the pixel satisfies the condition on the threshold 

d the pixel is not an edge pixel. 
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If all these sub-conditions are satisfied, then the pixel will be added to the ROI. In the 
following there is the pseudo-code of the region-growing algorithm: 

1 start; 

2 set the minimum point in the ROT as initial seed-point; 

3 put the seed-point in the candidatesList; 

4 let P be the first point in the candidatesList; 

5 if P satisfies the conditionRG; 
a add P to the ROI; 
b remove P from the candidatesList; 
c add the 26 neighbours of P to the candidatesList; 

6 if P does not satisfy the conditionRG; 
a remove P from the candidatesList; 

7 if the candidatesList contains other points then return to step 4; 

8 end; 

Figure 4 The 3D region-growing approach (see online version for colours) 

9 neighbours 

8 neighbours 

9 neighbours 

Previous slice (k – 1) 

Next slice (k + 1) 

Current slice (k) 

Current pixel 

Neighbours 

3 × 3 × 3 block around 
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Notes: For each processed pixel (in blue in the centre) its 26-neighbourhood (in grey) is 
considered. These 26 neighbours are added to the candidateList and, 
subsequently, are added to the ROI only if all 4 sub-conditions [expressed by 
equations (3), (4), (5), (6)] are satisfied. 

( ( , )) ( , ) & ( ( , ))
& ( ( , ))
& ( ( ( , )))

conditionRG pixel i j isInside i j not isInROI i j
isInRange pixel i j
not isEdgePixel pixel i j

=
 (2) 

with: 

( , ) (0 ) & (0 )isInside i j i rows j columns= ≤ ≤ ≤ ≤  (3) 
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( ( , )) ( , )isInROI pixel i j pixel i j ROI= ∈  (4) 

( ( , )) ( , )isInRange pixel i j pixel i j thOtsu= ≤  (5) 

( ( , )) [ ( ( , )) (4 ( ( , )))]
&[ ( ( , )) ]

isEdgePixel pixel i j DIS pixel i j DIS neighbors pixel i j
DIS pixel i j thDIS

= >
>

 (6) 

In most cases the value of thOtsu is sufficient to properly segment the ROI, but when the 
edge is not well defined, the region-growing does not stop properly because of a not 
perfectly tuned thOtsu value. For this reason, ROI growth is also controlled by the DIS 
value associated with the pixels (Yu and Wang, 1999). The presence of condition (6) is 
justified by the need to avoid that the region-growing exceeds the ROI boundaries. The 
DIS map is calculated according to the equation (7), and highlights how the pixels are 
close to the boundary of the ROI (Figure 5). High values of DIS identify pixels near the 
edge of the ROI [Figures 6(a) and 6(b)]. Before a pixel P(i,j) is added to the ROI it is 
verified if 

a the DIS exceeds the thDIS threshold [Figure 6(c)] 

b the DIS is greater than the DIS values of its 4 neighbours: in this case the pixel will 
not be added to the ROI. 

The use of the DIS map avoids leakage occurring in correspondence to the boundary with 
a low gradient. The most common edge-detection operators (e.g., Roberts, Prewitt, Sobel, 
etc.) are not always able to provide closed edges to manage the leaking phenomenon. The 
use of the map DIS improves the situation, practically without increasing the 
computational cost of the algorithm. 

1 3 1 5 1 6 1 7 1 8 2 4

2 5 2 6 2 7 2 8 3 4

3 6 3 7 3 8 4 5 4 7

4 8 5 6 5 7 6 8

(( ), )

...

DIS P P P P P P P P P P P P
P P P P P P P P P P
P P P P P P P P

P i

P P
P P P P P P P

j

P

= − + − + − + − + − + −

+ − + − + − + − + −

+ − + − + − + − + −

+ − + − + − + −

 (7) 

Figure 5 Neighbour schemes used to calculate the DIS value associated with the P(i,j) pixel  
(see online version for colours) 
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Notes: The DIS value is calculated considering the difference between the blue pixel and 
the corresponding grey pixels. 
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With more details, the method used to determine if a pixel is an edge-pixel is to compare 
its DIS with those of its 4-neighbouring inside a 3 × 3 window: if the DIS value of the 
pixel is the largest in both horizontal and vertical directions, then the pixel can be 
considered an edge-pixel. To avoid detecting false edge pixels, a thDIS threshold is used, 
to determine which pixels are truly located at the edges and which are not. The value of 
thDIS is set experimentally to 40% of the maximum value in the DIS map. 

Figure 6 (a) example of a CT slice (b) the correspondent DIS map (c) 40% of max of the  
DIS map 

 

    
(a) (b) (c) 

3.2 Airway volume computation 

The volume of the segmented upper airways is calculated automatically considering the 
number of pixels belonging to the ROI extracted within each slice. The upper airway 
volume is evaluated using the following equations (8), (9) and (10). 

( )
1

1
1

,
n

k k
k

airwayVolume volume S S
−

+

=

=∑  (8) 

with: 

( )1, k kk pixelCounter vvolu oxelme S S Volume+ = ×  (9) 

)(voxelVolume ixelSpacingX pip sliceThicknessxelSpacingY× ×=  (10) 

where 

• volume(Sk, Sk+1) is the volume between two consecutive slices Sk and Sk+1 

• pixelCounterk is the number of pixels segmented in the slice Sk 

• sliceThickness is the thickness between slices 

• pixelSpacingX and pixelSpacingY are the spacing values between pixels along x and 
y axes. 

3.3 Distinctive features 

The proposed approach makes it possible to implement a semi-automatic method capable 
of segmenting the upper airways using a 3D region-growing approach. With the semi-
automatic approach realised, the only human intervention is the ROT selection. 
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Errors in the segmentation process, due to leakage outside ROI boundaries, are 
avoided using DIS map information to enhance region-growing process. This 
segmentation modality may be used with some PRS patients where laryngo-pharyngeal 
channel morphology is not well defined and where basic region-growing might have 
some problems. 

In the diagnosis phase, the obtained 3D-VR model, reconstructed with segmented 
ROIs, provides a view of laryngo-pharyngeal duct morphology giving additional 
information to improve understanding of the disease severity. This method, integrated 
with an MDSS, can help to support medical decision in clinical evaluation of PRS 
patients. The contribution of 3D models may also aid in the planning phase of any 
corrective surgery. 

4 Experimental results 

In this section the obtained experimental results, in terms of segmentation accuracy and 
3D model reconstruction, are described. The proposed segmentation approach is 
evaluated using Jaccard (1901) and Dice (1945) similarity indices and sensitivity and 
specificity rates. Before the CT datasets used are described, showing some examples of 
images from datasets of patients with and without PRS. 

4.1 Materials 

The implemented approach was tested on 3 patients with isolated PRS with severe 
respiratory impairment, confirmed on clinical evaluation by laboratories tests and 2 
controls not affected by craniofacial anomalies but with similar age, sex and weight, 
underwent a craniofacial and neck multi detector computed tomography (MDCT) 2D 
study (Table 1). Fortunately, PRS is a very rare disease (Bush and Williams, 1983; 
Printzlau and Andersen, 2004) and, consequently, also the availability of datasets on 
which to test the approach was very limited. During MDCT dataset acquisition, to avoid 
general anaesthesia and related tracheal intubation, young patients were subjected only to 
a mild sedation and thus CT studies were not acquired with a respiratory synchronised 
protocol and, of course, it was not possible to acquire breath-hold datasets. Our 
segmentation results were obtained considering the slices between palatine bone and 
vocal cords as anatomical landmarks. 
Table 1 Information about the 2 controls and the 3 PRS patients 

Dataset Gender Age (days) Weight (g) 

Healthy 1 Male 100 2,710 
Healthy 2 Female 35 2,170 
Pathological 1 Male 84 2,500 
Pathological 2 Female 40 2,430 
Pathological 3 Male 80 2,370 

The 3 patients with PRS underwent an MDCT examination for a preliminary evaluation 
of upper airway calibre, in association with other cranial malformation and for the 
eventual surgical indication, whereas the 2 controls underwent an MDCT examination for 
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different clinical indications. MDCT scans where performed with the specifications 
shown in Tables 2 and 3. 
Table 2 Characteristics and parameters of the MDCT datasets used 

Dataset CT scanner RescaleSlope 
values 

RescaleIntercept 
values 

Background 
value padding 

Pixel range 
values 

GE Healthy 1 
Hi Speed 

NX/i 

1 0 –1,500 –1,122 ÷ 2,981 

Philips Healthy 2 
Brilliance 

1 –1,024 no padding –1,024 ÷ 2,329 

GE Pathological 1 
Hi Speed 

NX/i 

1 0 –1,500 –1,190 ÷ 1,844 

GE Pathological 2 
Hi Speed 

NX/i 

1 0 –1,500 –1,253 ÷ 4,000 

Pathological 3 GE 
BrightSpeed 

16 

1 –1,024 –3,024 –1,024 ÷ 3,071 

Note: It is possible to note different values obtained from the different CT scanners. 

Table 3 Some characteristics of the CT dataset images used to test the proposed segmentation 
approach 

Dataset Matrix size (pixel) Pixel spacing (mm) Slice thickness (mm) 

Healthy 1 512 × 512 0.4844 2 
Healthy 2 512 × 512 0.2793 0.9 
Pathological 1 512 × 512 0.3516 2 
Pathological 2 512 × 512 0.3476 2 
Pathological 3 512 × 512 0.2930 1.25 

Figure 7 Example of CT slices of a patient without PRS 

    
(a) (b) (c) 

Notes: The course of laryngo-pharyngeal sections of the channel is very regular, the 
symmetries are respected and the edges are evident and well defined. 
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In patients without PRS, sections of the laryngo-pharyngeal tract had a regular pattern 
with an appreciable size (Figure 7), whereas in patients with PRS it was easy to see that 
the upper airway tract sections had a very irregular pattern and a reduced cross section 
[some clinical cases show a severe stenosis, as shown in Figure 8(c)]. 

Figure 8 Example of CT slices of a PRS patient 

    
 

(a) (b) (c) (d) 

Notes: The section of the laryngo-pharyngeal channel has a very irregular morphology. 
As can be seen in the c) images, the airway section even disappears, due to a 
severe stenosis. 

Figure 9 Outcome of region-growing segmentation performed on healthy datasets, (a, d) the 
original CT slice (b, e) detail of upper airways and (c, f) detail of the segmented upper 
airway ROI 

    
(a) (b) (c) 

   
(d) (e) (f) 
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Figure 10 Outcome of region-growing segmentation performed on pathological datasets, (a,d) the 
original CT slice (b,e) detail of upper airways and (c,f) detail of the segmented upper 
airway ROI 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 11 Slice of a PRS patient (pathological 1), (a) very small section of the  
Laryngo-pharyngeal tract (b) segmented ROI (c) zoomed segmented ROI (see online 
version for colours) 

  

 

 
(a) (b) (c) 

4.2 Segmentation evaluation 

For the segmentation and extraction of the ROIs a 3D-RG algorithm was used, starting 
from a seed-point located inside a ROI selected by the operator. The region-growing 



   

 

   

   
 

   

   

 

   

   248 C. Militello et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

selects pixels that have an ‘affinity’ with the seed-point inside the selected ROI. The 
following figures show some examples of segmented ROIs from healthy (Figure 9) and 
pathological (Figures 10 and 11) datasets. Figure 11 shows a pathological dataset with 
particularly evident stenosis, correctly segmented using DIS map information, but that 
the basic region-growing could not segment. 

The evaluation of the proposed segmentation approach was performed by calculating 
the Jaccard (1901) and Dice (1945) similarity indices, according to the equations (11) and 
(12). Sensitivity and specificity rates were also evaluated, according to equations (13) and 
(14). In order to calculate the above indices/rates, the results obtained with the proposed 
region-growing approach were compared with a manual segmentation performed by an 
experienced radiologist. 

( ), M A
M A

M A

N NJaccardIndex N N
N N

∩
=

∪
 (11) 

( ) 2, M A
M A

M A

N NDiceIndex N N
N N

∩
=

+
 (12) 

pT

M

N
Sensitivity

N
=  (13) 

1 pF

A

N
Specificity

N
= −  (14) 

where 

• NM is the area manually segmented by the radiologist 

• NA is the segmented area with the proposed approach 

• pTN  is the number of true positive voxels 

• pFN  is the number of false positive voxels. 

Table 4 shows the mean values of the Jaccard/Dice indices and the sensitivity/specificity 
rates. As already mentioned above, all these indices/rates were evaluated considering 
manual segmentation (performed by a radiologist) vs. the proposed semi-automatic 
segmentation approach. 

In this imaging scenario, sensitivity (also called true positive rate) measures the 
proportion of positive pixels (belonging to the airways) which are correctly identified as 
such. Similarly, specificity (also called true negative rate) measures the proportion of 
negatives pixels (not belonging to the airways) which are correctly identified as such. 
Mean values of the Jaccard and Dice indices were 92.1733% and 94.6441%, while mean 
values of specificity and sensitivity rates were 96.8895% and 97.6682%. These results 
show good performance of the proposed segmentation approach based on the 3D  
region-growing. 
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Table 4 Jaccard/dice similarity indices and sensitivity/specificity rates obtained in the 
segmentation tests performed on 5 MDCT datasets 

Dataset Jaccard index (%)
(mean value ± SD)

Dice index (%) 
(mean value ± SD)

Specificity (%) 
(mean value ± SD)

Sensitivity (%) 
(mean value ± SD) 

Healthy 1 92.8255 ± 0.042 96.2314 ± 0.024 94.3931 ± 0.061 97.8028 ± 0.017 
Healthy 2 92.7722 ± 0.025 96.2339 ± 0.014 95.8666 ± 0.030 96.5683 ± 0.025 
Pathological 1 84.5148 ± 0.026 85.5632 ± 0.013 98.6336 ± 0.020 99.1434 ± 0.013 
Pathological 2 97.6948 ± 0.034 98.8055 ± 0.018 99.0383 ± 0.026 98.5644 ± 0.018 
Pathological 3 93.0590 ± 0.027 96.3861 ± 0.014 96.5161 ± 0.026 96.2617 ± 0.023 

Table 5 shows the comparison of airway volumes obtained considering manual 
segmentation and the proposed 3D region-growing segmentation. It also shows the 
percentage difference between the two volumes. 

Table 6 shows the processing times obtained by the proposed 3D-RG approach 
compared with the manual segmentation. These times, calculated using the MATLAB 
Profiler tool, refer to the complete execution of the implemented airway segmentation 
approach, running on a general-purpose Intel P4@3.2GHz (equipped with 2GB-DDR333 
RAM). In the evaluation of these times the whole process was considered: from the 
selection of the ROT to the visualisation of the 3D model obtained from the segmented 
ROIs. For times related to manual segmentation, ‘tic’ and ‘toc’ MATLAB functions were 
used to measure elapsed time. From the comparison of the processing times it is possible 
to see an average reduction of the processing time by a 16x factor with respect to manual 
segmentation times. 
Table 5 Airway volume comparison between manual segmentation and the 3D region-growing 

approach 

Dataset Segmented volume with 
manual approach (mm3)

Segmented volume with 
RG approach (mm3) 

Difference between manual 
and RG approaches (%) 

Healthy 1 332.82 343.21 +3.12 
Healthy 2 276.05 268.44 –2.76 
Pathological 1 261.28 271.12 +3.77 
Pathological 2 193.14 198.65 +2.85 
Pathological 3 135.77 133.47 –1.69 

Table 6 Processing time required for ROI segmentation and the 3D airways model 
reconstruction 

Dataset Number of processed 
slices 

Reconstruction time of 
manual approach (s) 

Reconstruction time of 
RG approach (s) 

Healthy 1 30 391.74 23.59 
Healthy 2 27 327.56 28.16 
Pathological 1 18 345.21 16.92 
Pathological 2 20 296.04 17.39 
Pathological 3 23 315.63 20.03 
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Figure 12 Three different views of the 3D model reconstruction obtained after segmentation  
of a control dataset, (a) panoramic view (b) sagittal view (c) coronal view (see online 
version for colours) 

 
(a) 

      
(b) (c) 

Figure 13 Three different views of 3D model reconstruction of a PRS patient, (a) panoramic 
view (b) sagittal view (c) coronal view (see online version for colours) 

 
(a) 



   

 

   

   
 

   

   

 

   

    An edge-driven 3D region-growing approach 251    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 13 Three different views of 3D model reconstruction of a PRS patient, (a) panoramic 
view (b) sagittal view (c) coronal view (continued) (see online version for colours) 

      
(b)  (c) 

4.3 3D volume reconstruction results 

Segmented ROIs were used to reconstruct a three-dimensional model of airways channel 
using 3D-VR techniques. The obtained model gave a panoramic view of the  
Laryngo-pharyngeal tract morphology and provided useful information about the disease 
severity, useful in helping the assessment of surgical planning. After ROI segmentation, 
there are three processing steps to obtain the 3D model: 

• isosurface extraction: isosurfaces are constructed from the ROIs extracted in the 
region-growing operation. 

• isosurface approximation with polygons: a set of polygons (triangles) approximating 
the previously built isosurface is generated. In this phase specific colour 
characteristics can be assigned to the generated polygons. 

• normal surface to the isosurface computation: this step, starting with the isosurface, 
determines the normal surface at the top of the isosurface. The aim is to achieve a 
more soft surface, thus avoiding the ‘edginess’ of the polygon surface. 

The last step is to display the three-dimensional model generated by the insertion of some 
virtual illumination sources, in order to better visualise the effects. Figure 12 shows the 
3D reconstruction of a control patient, while Figure13 shows an example of a PRS patient 
3D reconstruction. 

5 Discussion and conclusions 

Morphological evaluation of upper airways is a key point in PRS patients. The risk of 
spontaneous desaturation episodes or asphyxiation during feeding or sleeping requires a 
careful monitoring of these young patients. Even if medical consensus exists for treating 
mild cases (with prone positioning alone) or for treating severe cases with tracheotomy 
(with subglottic obstructions), there is still a wide-open controversy about whether and 
how many of the remaining mild cases will have a catch-up growth of the 
underdeveloped mandible. 

In this study an approach for semi-automatic segmentation of the upper airways has 
been proposed. The method uses an edge-driven 3D-RG algorithm to segment ROIs and 
3D-VR techniques to reconstruct and display the corresponding 3D model of the upper 
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airways. This method, providing anatomical three-dimensional views and information 
about surface/volume, can be used to integrate information of an MDSS, making it 
possible to enhance and to help the effectiveness of the medical evaluation of the PRS 
disease. 

MDCT studies, used in our segmentation tests, are not acquired with a synchronised 
respiratory protocol, since young patients are subject only to a mild sedation during 
acquisition and, of course, it is not possible to acquire breath-hold datasets. Because of 
this, datasets can have artefacts mainly caused by patient movement, such as accentuated 
stenosis caused by breathing. This can result in variability of upper airway calibre that is 
reflected in inaccurate data of the actual airway calibre and volume: this represents a 
limitation of our study. The second limitation of our study is the small population used, 
because of the low incidence of PRS (Bush and Williams, 1983; Printzlau and Andersen, 
2004). Considering this, our study should be considered a concept proof. The only way to 
avoid this limitation is to include our approach in a multicentre study, in order to have a 
greater number of datasets and to obtain more robust statistical results. Even with these 
limitations, our approach represents a very easy way to make an initial quantitative 
evaluation of airway volume and to provide 3D reconstructions for surgeons who, 
usually, prefer to have a panoramic view of the anatomical site that they are going to 
treat. 

Similarity indices and sensitivity/specificity rates were used to evaluate the accuracy 
of the proposed segmentation approach. In particular, mean values of the Jaccard and 
Dice indices were 92.1733% and 94.6441%, while mean values of specificity and 
sensitivity rates were 96.8895% and 97.6682% respectively. These measures show good 
performance of the proposed edge-driven region-growing approach. Moreover, our 
method obtained a processing time reduced by a 16x factor with respect to manual 
segmentation times. 
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