
A FAMILY OF EMBEDDED COPROCESSORS WITH NATIVE GEOMETRIC
ALGEBRA SUPPORT

S. Franchini a, A. Gentile a, F. Sorbello a, G. Vassallo a, and S. Vitabile b
a Computer Science and Artificial Intelligence Lab, DICGIM Department,

University of Palermo, Palermo, Italy
silvia.franchini@unipa.it [presenter, corresponding], antonio.gentile@unipa.it,

filippo.sorbello@unipa.it, giorgio.vassallo@unipa.it

b Department of Biopathology and Medical Biotechnologies
University of Palermo, Palermo, Italy

salvatore.vitabile@unipa.it

ABSTRACT. Clifford Algebra or Geometric Algebra (GA) is a simple and intuitive way
to model geometric objects and their transformations. Operating in high-dimensional
vector spaces with significant computational costs, the practical use of GA requires,
however, dedicated software and/or hardware architectures to directly support Clifford
data types and operators. In this paper, a family of embedded coprocessors for the
native execution of GA operations is presented. The paper shows the evolution of the
coprocessor family focusing on the latest two architectures that offer direct hardware
support to up to five-dimensional Clifford operations. The proposed coprocessors
exploit hardware-oriented representations of GA elements and operators properly
conceived to obtain fast performing implementations. The coprocessor prototypes,
implemented on Field Programmable Gate Arrays (FPGA) development boards, show
significant speedups of about one order of magnitude with respect to the baseline
software library Gaigen running on a general-purpose processor. The paper also
presents an execution analysis of different GA-based applications, namely inverse
kinematics of a robot, optical motion capture, raytracing, and medical image
processing, showing good speedups with respect to the baseline general-purpose
implementation.

1. INTRODUCTION

Geometric Algebra (GA), also known as Clifford Algebra, is a powerful mathematical
tool that allows for a simple and intuitive representation of geometric objects and their
transformations [1]-[6]. The coordinate-free representation of GA is made possible by
using extended objects in high-dimensional vector spaces to represent three-dimensional
(3D) geometry. Four-dimensional (4D) and five-dimensional (5D) Clifford Algebras are
used to implement the most powerful models of 3D geometry, namely the homogeneous
model and the conformal model, respectively. Since the generic element of an n-
dimensional GA has 2n coordinates, the computational complexity increases quickly
when the algebra dimension increases, growing rapidly from 16 to 32 coefficients when
moving from 4D to 5D, and requiring more than a thousand multiply-adds between
coefficient combinations. These significant computational costs demand in turn
dedicated software and/or hardware architectures to directly support Clifford data types
and operators [7]-[19]. Software implementations of GA are conceived to execute
Clifford operations on general-purpose processors using dedicated software libraries,
such as Gaigen [7] and GluCat [8], packages for symbolic and numerical environments,
such as the Clifford [9] and GA [10] packages for Maple, the Gable [11] and Clifford
Multivector Toolbox [12] packages for Matlab, and the Grassmann algebra package
[13] for Mathematica, or stand-alone programs, such as CluCalc [14]. Since faster
performing solutions are needed, recently the attention has turned toward fully hardware

implementations or hardware-software codesigns. A combined software-hardware
approach is proposed in [15]-[17] to accelerate GA-based algorithms. A pre-compiler,
named Gaalop (Geometric Algebra Algorithm Optimizer), compiles GA algorithms to
an intermediate representation converting GA operations in basic arithmetic operations
[15]. This intermediate representation can be further compiled to run on different
hardware platforms, such as Field Programmable Gate Arrays (FPGAs) or Graphics
Processing Units (GPUs) [16]-[17]. A specialized coprocessor implemented on an
Application Specific Integrated Circuit (ASIC) is presented in [18]. The coprocessor is
specifically designed for color edge detection applications and supports only the 3D GA
operations required in the target applications. The FPGA-based coprocessor prototype
presented in [19] executes product operations for algebras of dimension up to 8 and uses
24-bit integer numbers to represent scalar coefficients of Clifford operands.
In this paper, a family of embedded coprocessors for the native execution of GA
operations is presented, which we have been designing and implementing in the last few
years [22]-[27]. The paper shows the evolution of the coprocessor family based on
several factors, namely algebra dimension, supported operations, Clifford number
representation, execution flow (sequential or parallel, scalar or pipeline), datapath
width, data precision. First, the design space of computing architectures to natively
execute GA operations has been explored taking into account different architectural
parameters, such as number of multiply-add units and coefficient precision. Several
alternative architectures, as resulted from the design space exploration, have been
implemented and compared in terms of area cost, relative error, latencies, and speedup
[25]. The resulting family of coprocessors offers direct hardware support to up to 5D
GA operations. Different hardware-oriented representations of GA elements and
operations have been properly conceived to obtain fast performing implementations.
The representation based on the variable-length homogeneous elements, used for the
first two architectures of the family [22]-[23], has been then replaced with a fixed-size
representation based on quadruples in the latest coprocessors [24],[26],[27]. This novel
representation of algebra elements allows for important simplifications of algebraic
operations that in turn lead to a faster and more compact hardware architecture. The
latest presented coprocessing architecture exploits a simplified formulation of the
Conformal Geometric Algebra (CGA) operations, namely reflections, rotations,
translations, and dilations, which results in faster execution of such operations [27]. The
coprocessors have all been prototyped using development boards based on FPGA
devices. The latest two coprocessors have been implemented as complete embedded
Systems-on-Chip (SoCs) [26]-[27]. Experimental tests performed on the prototypes
have shown significant speedups with respect to the baseline software library Gaigen
running on a general-purpose processor [7]. The latest two coprocessors, named
CliffordALU5 and ConformalALU, respectively, show native support of all GA
operations in both 4D and 5D spaces with average speedups of about one order of
magnitude over the baseline software implementation. To evaluate the coprocessor
effectiveness in specific application domains, an application suite composed of different
GA-based algorithms, namely inverse kinematics of a robot, optical motion capture,
raytracing, and medical image processing, has been used as testbench, showing good
speedups with respect to the baseline general-purpose implementation.
The rest of the paper is organized as follows: Section 2 outlines the design space
exploration of GA-based computing architectures, while the resulting coprocessor
family is presented in Section 3. Section 4 presents experimental results, while
conclusions are contained in Section 5. A comprehensive introduction to the
fundamental concepts of GA can be found in [1]-[6].

2. DESIGN SPACE EXPLORATION

The design space of hardware implementations that natively support GA operations has
been analyzed along several axes, namely, Clifford number representation
(homogeneous elements versus quadruples), execution flow (sequential versus parallel,
scalar versus pipeline), number of multiply-add units, coefficient precision, datapath
width, instruction word length. As described in Table 1, several alternative architectures
based on different sets of architectural parameters have been explored and different
design points have been implemented and prototyped. The resulting family of
coprocessing architectures is detailed in the following section. One of the design
parameters is related to the representation to be used for algebra elements. The standard
variable-length representation, based on homogeneous elements, used for the first two
architectures, has been replaced, in the latest coprocessors, with the fixed-size
representation based on quadruples. A description of this representation is provided in
Sections 3.3 and 3.4.

Table 1. Design space exploration

Coprocessor GA
operations

Clifford
number

representation

Execution
flow

Parallelism
techniques

N. of
multipliers Precision

Instruction
word
length

S-CliffoSor
[22]

4D products,
sums,

differences

Homogeneous
elements Sequential - - 32-bit

integers

15x32-bit
words =
480 bits

CliffoSor [23]

4D products,
sums,

differences
3D rotations
(Operations
on bivectors

not
implemented)

Homogeneous
elements Parallel - 24 32-bit

integers

15x32-bit
words =
480 bits

Quad-CliffoSor
[24]

4D products,
sums,

differences,
unary

operations

Quadruples Parallel Pipeline 16
16-bit

floating
point

9x16-bit
words =
144 bits

CliffordALU5
[26]

4D/5D
products,

sums,
differences,

unary
operations

Quadruples Parallel Pipeline 16
32-bit

floating
point

9x32-bit
words =
288 bits

ConformalALU
[27]

5D
conformal
geometric
operations

(reflections,
rotations,

translations,
dilations)

5D vectors Parallel Pipeline 5
32-bit

floating
point

16x32-bit
words =
512 bits

3. COPROCESSOR FAMILY

In this section, the family of embedded coprocessors for the native support of GA
operations is presented. A brief description of the implemented architectures, whose
main features are listed in Table 1, is provided in the following subsections.

3.1 S-CliffoSor
The first coprocessor to be implemented was S-CliffoSor (Sliced Clifford coprocesSor),
which offers direct hardware support to 4D Clifford operations between homogeneous
elements using 32-bit integers numbers to represent scalar coefficients of basis blades.
A homogeneous element or homogeneous multivector contains only blades of the same
grade. Each 4D Clifford multivector is an ordered tuple of 5 homogeneous elements m
= (s, v, b, t, p), as listed in Table 2. Each homogeneous element is composed of a
different number of blades, where each blade is a coefficient-basis blade pair. A 4-bit
mask is associated with each basis blade, where each bit is associated with a basis
vector ei, i=1,2,3,4, with e1 the least significant bit. S-CliffoSor is based on a 32-bit
sequential ALU that executes addiction, subtraction, multiplication and logical
operations. Each 4D Clifford operation is decomposed into the proper sequence of these
basic operations whose execution is supervised step-by-step by a microprogrammed
control unit. The sequential architecture of the coprocessor leads to long per-operation
latencies, which can be however hid by replicating the single S-CliffoSor slice to
execute in parallel multiple independent Clifford operations.

Table 2. 4D GA homogeneous elements
Homogeneous element Blades

Scalar (s) a0
Vector (v) a1e1 a2e2 a3e3 a4e4

Bivector (b) a12e1e2 a13e1e3 a14e1e4 a23e2e3 a24e2e4 a34e3e4
Trivector (t) a123e1e2e3 a124e1e2e4 a134e1e3e4 a234e2e3e4

Pseudoscalar (p) a1234e1e2e3e4

3.2 CliffoSor
As S-CliffoSor, the second developed architecture, namely CliffoSor (Clifford
coprocesSor), executes 4D Clifford operations between homogeneous elements using
32-bit integer numbers to represent scalar coefficients. While S-CliffoSor is based on a
sequential execution flow, CliffoSor uses parallel structures for the fastest execution of
Clifford operations. Three different functional units directly support 4D Clifford
products, 4D Clifford sums/differences and 3D Clifford rotations, respectively. To save
resources, the most complex operations on bivectors are not directly supported in
hardware, but they are handled in a higher-level Application Programming Interface
(API) with multiple calls to the coprocessor. This design choice allowed us to use 24
parallel multipliers for Clifford products execution, rather than 36 parallel multipliers,
as needed to directly support in hardware bivector-bivector products.

3.3 Quad-CliffoSor
As CliffoSor, Quad-CliffoSor (Quadruple-based Clifford coprocesSor) is a parallel
architecture composed of three dedicated units for the execution of 4D Clifford
products, 4D Clifford sums/differences, and 4D Clifford unary operations, respectively.
While the previous architectures use the natural representation of GA elements based on
homogeneous elements, Quad-CliffoSor first introduces a novel representation based on
fixed-size elements, called quadruples. The variable size of homogeneous elements, as
described in Table 2, leads to some storage inefficiencies since a six-element vector is
used to implement each homogeneous multivector, but only the bivector uses all six
elements. Defining the four-size elements, or quadruples, listed in Table 3, the generic
4D multivector can be written as a tuple of 4 quadruples, m = (V, T, S, P). Each
quadruple is composed of four blades. Using quadruples, rather than homogeneous
elements, has two important advantages: first, fixed-size operands are better suited to a

hardware implementation; second, using the 4 quadruples listed in Table 3 allows for
significant simplifications of product operations leading in turn to a faster and more
compact hardware architecture. As demonstrated in [24], the product of two quadruples
always gives as result the sum of two quadruples so that a single fixed format can be
used for both input data and output result. Furthermore, a simplified algorithm can be
used to execute product operations on quadruples. Any quadruple can be reduced to a
quadruple of type V by simple sign changing operations on its coefficients. The product
between any couple of quadruples can be therefore reduced to the product between two
quadruples of type V by simple sign changing and/or swapping operations. The latter
operation is the only operation to be implemented. The Quad-CliffoSor multiplier unit
was properly designed to permit the fastest execution of this operation. 16 parallel
multipliers are used to calculate the 16 products between the input quadruple
coefficients, while a three-stage pipeline allows a product operation result to be
provided on every clock cycle. Quad-CliffoSor is the first coprocessor of the family that
uses 16-bit floating point numbers to represent scalar coefficients of the basis blades.

Table 3. 4D GA quadruples
Quadruple Blades

V a1e1 a2e2 a3e3 a4e4
T a234e2e3e4 a134e1e3e4 a124e1e2e4 a123e1e2e3
S a14e1e4 a24e2e4 a34e3e4 a0
P a23e2e3 a13e1e3 a12e1e2 a1234e1e2e3e4

3.4 CliffordALU5
CliffordALU5 is the first coprocessor that natively supports GA operations in the 5D
space. The fixed-size representation based on quadruples, introduced in Quad-CliffoSor
for 4D Clifford elements, is extended in CliffordALU5 to 5D Clifford elements. The
eight quadruples of 5D GA are listed in Table 4.

Table 4. 5D GA quadruples
Quadruple Blades

V a1e1 a2e2 a3e3 a4e4
T a234e2e3e4 a134e1e3e4 a124e1e2e4 a123e1e2e3
S a14e1e4 a24e2e4 a34e3e4 a0
P a23e2e3 a13e1e3 a12e1e2 a1234e1e2e3e4

V’ a15e1e5 a25e2e5 a35e3e5 a45e4e5
T’ a2345e2e3e4e5 a1345e1e3e4e5 a1245e1e2e4e5 a1235e1e2e3e5
S’ a145e1e4e5 a245e2e4e5 a345e3e4e5 a5e5
P’ a235e2e3e5 a135e1e3e5 a125e1e2e5 a12345e1e2e3e4e5

As demonstrated in [26], the simplified algorithm used in Quad-CliffoSor for product
operations execution can be extended to 5D operations. Since 4D quadruples are a
subset of 5D quadruples, CliffordALU5 is a universal coprocessor that can directly
execute all 4D and 5D GA operations (geometric products, outer products, left and right
contractions, sums, differences, and unary operations) using quadruples as basic
elements of computation. The block diagram of the CliffordALU5 coprocessor (Figure
1(a)) shows three dedicated functional units for the execution of 4D/5D Clifford
products, 4D/5D Clifford sums/differences, and 4D/5D Clifford unary operations,
respectively. The simplified algorithm used for product operations, described in Section
3.3 for the 4D case, allows for a compact architecture of the Clifford multiplier unit, as
shown in Figure 1(b). This pipelined unit contains a 16x multiplier bank for the parallel
execution of the 16 multiplications required by a product operation between quadruples.

CliffordALU5 is the first coprocessor of the family that uses 32-bit floating point
numbers to represent scalar coefficients of Clifford operands.

(a) (b)

Figure 1. (a) CliffordALU5 block diagram; (b) Clifford multiplier unit block diagram

3.5 ConformalALU
The latest architecture, named ConformalALU, has been designed for the direct
hardware support of Conformal Geometric Algebra (CGA) or 5D Geometric Algebra
geometric operations, namely reflections, rotations, translations, and dilations. The
coprocessor exploits a simplified formulation of these operations aimed at a parallel
hardware implementation, which derives from two considerations. First, a conformal
geometric operation on a generic k-blade Ak, represented in CGA by the “sandwich”
geometric product, can be decomposed in operations on vectors according to the
following formula:

 XAk X
~
= X (a1∧a2 ∧...∧ak) X

~
= Xa1 X

~
∧ Xa2 X

~
∧...∧ Xak X

~
 (1)

where X is the versor (rotor, translator, or dilator) that represents the conformal
transformation. Second, rather than using the standard “sandwich” geometric product of
CGA, each conformal geometric operation can be obtained by two non-commuting
successive reflections. The basic operation becomes therefore the reflection of a 5D
vector. In our implementation, each vector reflection is executed in turn using the
following simplified formula based on the classical dot product, rather than the standard
“sandwich” geometric product of CGA:

 a ' = a

⊥
− a|| = a− 2a|| = a− 2 a|| m = a− 2(a ⋅m)m (2)

where a is the vector to be reflected in a plane with unit-normal m, while a’ is the
reflected vector, as depicted in Figure 2.

Figure 2. Reflection of a vector a

Requiring only one dot product and two subtractions between vectors, this new
formulation leads to a computational advantage and therefore a more compact and faster
hardware architecture [27]. The block diagram of the ConformalALU coprocessor is
depicted in Figure 3(a), while Figure 3(b) shows the block diagram of the Reflector unit.
Two cascade Reflector units are used to execute a whole instruction stream in a pipeline
fashion. As CliffordALU5, ConformalALU uses 32-bit floating point numbers to
represent scalar coefficients.

(a) (b)

Figure 3. (a) ConformalALU block diagram; (b) Reflector unit block diagram

4. EXPERIMENTAL RESULTS

4.1 Coprocessor performance analysis
The designed coprocessors have all been prototyped using development boards based on
FPGA devices. Several experimental tests have been performed to evaluate the
coprocessor performance and compare it with the fast Gaigen software chosen as
baseline general-purpose implementation. Table 5 shows the performance analysis of
the coprocessor family in terms of clock frequency, area cost, latency per operation, and
speedup. CliffoSor shows a higher area cost as well as reduced latencies per operation
with respect to S-CliffoSor. These results depend on the different execution flow of the
two architectures, namely, sequential for S-CliffoSor and parallel for CliffoSor. The
reduced area cost, as well as the increased speedup, of Quad-CliffoSor in comparison
with CliffoSor, is an effect of the computational and architectural simplifications of the
quadruple-based representation. The higher area cost of CliffordALU5 when compared
with Quad-CliffoSor, is due to the higher precision (32-bit rather than 16-bit) of the
scalar coefficients. A scalar version and a pipelined version of the ConformalALU
coprocessor have been designed. As reported in Table 5, the pipelined ConformalALU
consumes more resources, but allows for reduced latency and, consequently, increased
throughput. As a result of the design space exploration, Figure 4 presents a performance
analysis, in terms of area cost, relative error, and latency, of different alternative
architectures based on different sets of design parameters, such as the number of
multiply-add units and the coefficient precision. Figure 4(a) shows average relative
errors (with respect to the full-precision Gaigen implementation) and area costs of the
multiplier units of Quad-CliffoSor and CliffordALU5, which use 16-bit and 32-bit
precision, respectively. The higher-precision architecture consumes over two times
more resources than the lower one, but a significant reduction of relative errors is
observed. Three different versions of the CliffordALU5 coprocessor, which use 4, 8,
and 16 parallel multipliers, respectively, for product operations execution are compared

in Figure 4(b) in terms of area costs and latencies per operation. Increasing the number
of multipliers, the area cost increases, as well; however, a reduced latency in the product
operation execution between quadruples can be observed.

Table 5. Performance analysis of the coprocessor family

Coprocessor Clock
frequency

Area (n. of FPGA
slices)

Latency (clock
cycles)

Speedup over Gaigen
software

S-CliffoSor 45 MHz 2,295 (single slice)
(average)

Products: 91
Sums/Diff.: 78

(potential)
Products: 4x

Sums/Diff.: 3x

CliffoSor 50 MHz 8,444 Products: 7
Sums/Diff.: 5

(potential)
Products: 4x

Sums/Diff.: 12x

Quad-CliffoSor 50 MHz 3,201 Products: 3
Sums/Diff.: 1

(potential)
Products: 23x

Sums/Diff.: 33x

CliffordALU5 100 MHz 6,011 Products: 3
Sums/Diff.: 1

(real)
4D Products: 5x
5D Products: 4x
Sums/Diff.: 2x

ConformalALU 125 MHz 5,876 (scalar)
9,640 (pipelined)

(average)
315 (scalar)

88 (pipelined)

(real)
Reflections: 56x
Rotations: 15x

Translations: 46x
Dilations: 41x

(a) (b)

Figure 4. (a) Average relative error and area cost (number of FPGA slices) versus precision for Quad-
CliffoSor and CliffordALU5; (b) Area cost and latency per operation (clock cycles) versus number of

multipliers for CliffordALU5.

To evaluate the speedups over the reference Gaigen software, the same test operations
were executed using both the Gaigen library and the coprocessor. The first three
coprocessors were prototyped on FPGA boards connected via the PCI bus or the
Ethernet to the host computer. Only potential speedups in terms of clock cycles were
estimated since the coprocessor ran on the FPGA using a clock frequency slower than
the software running on the conventional host PC. Conversely, the latest two
coprocessors were implemented as complete Systems on Chip (SoCs) using FPGA
boards that integrate both a PowerPC general-purpose processor and the specialized
coprocessor on the same chip. A real speedup, in terms of wall-clock times, has been
therefore measured over the software library running on the PowerPC processor at the
same operating frequency as the coprocessor. Gaigen/CliffordALU5 and
Gaigen/ConformalALU comparisons are summarized in Figures 5(a) and 5(b),
respectively. As reported in Table 5, CliffordALU5 achieves effective average speedups

of 5x for 4D Clifford products, 4x for 5D Clifford products, and 2x for 4D/5D Clifford
sums, while effective speedups achieved by ConformalALU are 56x for reflection
operations, 15x for rotations, 46x for translations, and 41x for dilations, respectively.

(a) (b)

Figure 5. (a) Gaigen/CliffordALU5 comparison; (b) Gaigen/ConformalALU comparison

4.2 Application suite
A suite of GA-based applications, including inverse kinematics of a robot, optical
motion capture, raytracing, and medical image processing, has been used as testbench to
evaluate the effectiveness of the coprocessor family in specific application domains. A
description of these applications can be found in [26], [27]. The testbench algorithms
have been executed using the latest two coprocessors, namely CliffordALU5 and
ConformalALU, and their performance has been compared with the baseline general-
purpose implementation based on the Gaigen software. Table 6 lists the observed
speedups for each application. Taking into account the mix of Clifford operations
required by each algorithm, the first three applications have been executed on the
CliffordALU5 coprocessor, while the ConformalALU coprocessor has been used to
accelerate medical image processing algorithms [20],[21]. The medical imaging
applications, accelerated by the ConformalALU, massively use CGA operations
(translations and rotations). The higher speedups of these applications are an effect of
the simplified formulation of CGA operations that allows for faster execution of these
operations.

Table 6. Observed speedups for the test applications

Application Inverse
kinematics

Motion
capture Raytracing Medical image

segmentation
Medical image

registration
Observed
speedup 3.4x 3.8x 4.8x 46x 43x

5. CONCLUSIONS

A family of embedded coprocessors that offer direct hardware support to GA operations
has been presented in this paper. As overall result, the latest two coprocessors, namely
CliffordALU5 and ConformalALU, natively execute all 4D and 5D GA operations
showing speedups of about one order of magnitude relative to the baseline software
implementation Gaigen. It has been observed that the novel simplified formulation of
5D CGA operations, used in ConformalALU, allows for a further speedup of about 10x
with respect to the execution on the CliffordALU5 coprocessor. Future work will be
aimed therefore to integrate the two coprocessors CliffordALU5 and ConformalALU in
a single architecture to obtain a complete System-on-Chip that supports all basic
operations of up to 5D GA (products, sums, unary operations) and accelerates geometric
operations (reflections, rotations, translations, uniform scaling) of the 5D conformal
model using the fast dedicated unit ConformalALU.

REFERENCES
[1] D. Hestenes, New Foundations for Classical Mechanics, Kluwer Academic, 1986.
[2] D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus: A Unified Language for

Mathematics and Physics, Kluwer Academic, 1987.
[3] L. Dorst and S. Mann, Geometric algebra: A computational framework for geometrical applications

(part 1: Algebra), in IEEE Comput. Graph. Appl., vol. 22, no. 3, pp. 24–31, May/Jun. 2002.
[4] L. Dorst and S. Mann, Geometric algebra: A computational framework for geometrical applications

(part 2: Applications), in IEEE Comput. Graph. Appl., vol. 22, no. 4, pp. 58–67, Jul./Aug. 2002.
[5] J. Lasenby, W. J. Fitzgerald, C. J. L. Doran and A. N. Lasenby, New Geometric Methods for

Computer Vision, in Int. J. Comp. Vision, vol. 36, no. 3, pp. 191-213, 1998.
[6] D. Hestenes, Hongbo Li, A. Rockwood, New Algebraic Tools for Classical Geometry, in Geometric

Computing with Clifford Algebras, G. Sommer (ed.), Springer Heidelberg, pp. 3-26, 2000.
[7] D. Fontijne, Gaigen 2: A geometric algebra implementation generator, in Proc. 5th Int. Conf.

Generative Programming and Component Eng., 2006, pp. 141–150.
[8] P. Leopardi, The GluCat Home Page. [Online]. Available: http://glucat.sourceforge.net/.
[9] R. Ablamowicz and B. Fauser, CLIFFORD - A Maple package for Clifford algebra computations.

[Online]. Available: http://math.tntech.edu/rafal/.
[10] M. Ashdown, GA package for Maple. Available: http://www.mrao.cam.ac.uk/~maja1/software/GA/.
[11] S. Mann, L. Dorst, and T. Bouma, The making of GABLE: A geometric algebra learning

environment in Matlab, in Geometric Algebra with Applications in Science and Engineering, E.
Bayro-Corrochano and G. Sobczyk, Eds., New York, NY, USA, Springer, 2001, pp. 491–511.

[12] E. Hitzer, S. Sangwine, Clifford Multivector Toolbox, A toolbox for computing with Clifford
algebras in Matlab. [Online]. Available: http://sourceforge.net/projects/clifford-multivector-toolbox/.

[13] J. Browne, The Grassmann Algebra Book Home Page. [Online]. Available:
http://www.grassmannalgebra.info/grassmannalgebra/.

[14] C. Perwass, The CLUCalc Home Page. [Online]. Available: http://www.CluCalc.info.
[15] D. Hildenbrand, J. Pitt, and A. Koch, Gaalop-high performance parallel computing based on

conformal geometric algebra, in Geometric Algebra Computing, Springer, 2010, pp. 477–494.
[16] P. Charrier and D. Hildenbrand, Geometric algebra computing technology for accelerated

processing units, presented at the Embedded World Conf., Nürnberg, Germany, 2013.
[17] D. Hildenbrand, Geometric algebra computers, in Foundations of Geometric Algebra Computing,

New York, NY, USA, Springer, 2013, pp. 179–188.
[18] B. Mishra, P. Wilson, and R. Wilcock, A Geometric Algebra Co-Processor for Color Edge

Detection, in Electronics 2015, 4(1), pp. 94-117.
[19] C. Perwass, C. Gebken, G. Sommer, Implementation of a Clifford algebra co-processor design on a

field-programmable gate array, in Clifford Algebras: Applications to Mathematics, Physics, and
Engineering, Series: Progress in Mathematical Physics, vol. 34, R. Ablamowicz, Ed., Springer, 2004.

[20] J. Rivera-Rovelo and E. Bayro-Corrochano, Surface approximation using growing self-organizing
nets and gradient information, Appl. Bionics Biomech., vol. 4, no. 3, pp. 125–136, 2007.

[21] E. Bayro-Corrochano and J. Rivera-Rovelo, The use of geometric algebra for 3d modeling and
registration of medical data, J. Math. Imaging Vis., vol. 34, no. 1, pp. 48–60, May 2009.

[22] S. Franchini, A. Gentile, M. Grimaudo, C.A. Hung, S. Impastato, F. Sorbello, G. Vassallo, and S.
Vitabile, A Sliced Coprocessor for Native Clifford Algebra Operations, in Proceedings of the 10th
IEEE Euromicro Conference on Digital System Design - Architectures, Methods and Tools (DSD
2007), Lübeck, Germany, August 29-31, 2007, pp. 436-439, IEEE Computer Society Press.

[23] Silvia Franchini, Antonio Gentile, Filippo Sorbello, Giorgio Vassallo, and Salvatore Vitabile, An
Embedded, FPGA-based Computer Graphics Coprocessor with Native Geometric Algebra Support,
in Integration, The VLSI Journal, Volume 42, Issue 3, pp. 346-355, June 2009.

[24] Silvia Franchini, Antonio Gentile, Filippo Sorbello, Giorgio Vassallo, and Salvatore Vitabile, Fixed-
size Quadruples for a New, Hardware-Oriented Representation of the 4D Clifford Algebra, in
Advances in Applied Clifford Algebras, Volume 21, Issue 2, pp. 315-340, June 2011.

[25] Silvia Franchini, Antonio Gentile, Filippo Sorbello, Giorgio Vassallo, and Salvatore Vitabile, Design
Space Exploration of Parallel Embedded Architectures for Native Clifford Algebra Operations, in
IEEE Design and Test of Computers, Volume 29, Issue 3, pp. 60-69, May-June 2012.

[26] Silvia Franchini, Antonio Gentile, Filippo Sorbello, Giorgio Vassallo, and Salvatore Vitabile, Design
and Implementation of an Embedded Coprocessor with Native Support for 5D, Quadruple-based
Clifford Algebra, in IEEE Transactions on Computers, Vol. 62, No. 12, pp. 2366-2381, Dec. 2013.

[27] Silvia Franchini, Antonio Gentile, Filippo Sorbello, Giorgio Vassallo, and Salvatore Vitabile,
ConformalALU: a Conformal Geometric Algebra Coprocessor for Medical Image Processing, in
IEEE Transactions on Computers, Vol. 64, No. 4, pp. 955-970, April 2015.

