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ABSTRACT. Clifford Algebra or Geometric Algebra (GA) is a simple and intuitive way 
to model geometric objects and their transformations. Operating in high-dimensional 
vector spaces with significant computational costs, the practical use of GA requires, 
however, dedicated software and/or hardware architectures to directly support Clifford 
data types and operators. In this paper, a family of embedded coprocessors for the 
native execution of GA operations is presented. The paper shows the evolution of the 
coprocessor family focusing on the latest two architectures that offer direct hardware 
support to up to five-dimensional Clifford operations. The proposed coprocessors 
exploit hardware-oriented representations of GA elements and operators properly 
conceived to obtain fast performing implementations. The coprocessor prototypes, 
implemented on Field Programmable Gate Arrays (FPGA) development boards, show 
significant speedups of about one order of magnitude with respect to the baseline 
software library Gaigen running on a general-purpose processor. The paper also 
presents an execution analysis of different GA-based applications, namely inverse 
kinematics of a robot, optical motion capture, raytracing, and medical image 
processing, showing good speedups with respect to the baseline general-purpose 
implementation. 

 
1. INTRODUCTION 

 
Geometric Algebra (GA), also known as Clifford Algebra, is a powerful mathematical 
tool that allows for a simple and intuitive representation of geometric objects and their 
transformations [1]-[6]. The coordinate-free representation of GA is made possible by 
using extended objects in high-dimensional vector spaces to represent three-dimensional 
(3D) geometry. Four-dimensional (4D) and five-dimensional (5D) Clifford Algebras are 
used to implement the most powerful models of 3D geometry, namely the homogeneous 
model and the conformal model, respectively. Since the generic element of an n-
dimensional GA has 2n coordinates, the computational complexity increases quickly 
when the algebra dimension increases, growing rapidly from 16 to 32 coefficients when 
moving from 4D to 5D, and requiring more than a thousand multiply-adds between 
coefficient combinations. These significant computational costs demand in turn 
dedicated software and/or hardware architectures to directly support Clifford data types 
and operators [7]-[19]. Software implementations of GA are conceived to execute 
Clifford operations on general-purpose processors using dedicated software libraries, 
such as Gaigen [7] and GluCat [8], packages for symbolic and numerical environments, 
such as the Clifford [9] and GA [10] packages for Maple, the Gable [11] and Clifford 
Multivector Toolbox [12] packages for Matlab, and the Grassmann algebra package 
[13] for Mathematica, or stand-alone programs, such as CluCalc [14]. Since faster 
performing solutions are needed, recently the attention has turned toward fully hardware 



implementations or hardware-software codesigns. A combined software-hardware 
approach is proposed in [15]-[17] to accelerate GA-based algorithms. A pre-compiler, 
named Gaalop (Geometric Algebra Algorithm Optimizer), compiles GA algorithms to 
an intermediate representation converting GA operations in basic arithmetic operations 
[15]. This intermediate representation can be further compiled to run on different 
hardware platforms, such as Field Programmable Gate Arrays (FPGAs) or Graphics 
Processing Units (GPUs) [16]-[17]. A specialized coprocessor implemented on an 
Application Specific Integrated Circuit (ASIC) is presented in [18]. The coprocessor is 
specifically designed for color edge detection applications and supports only the 3D GA 
operations required in the target applications. The FPGA-based coprocessor prototype 
presented in [19] executes product operations for algebras of dimension up to 8 and uses 
24-bit integer numbers to represent scalar coefficients of Clifford operands. 
In this paper, a family of embedded coprocessors for the native execution of GA 
operations is presented, which we have been designing and implementing in the last few 
years [22]-[27]. The paper shows the evolution of the coprocessor family based on 
several factors, namely algebra dimension, supported operations, Clifford number 
representation, execution flow (sequential or parallel, scalar or pipeline), datapath 
width, data precision. First, the design space of computing architectures to natively 
execute GA operations has been explored taking into account different architectural 
parameters, such as number of multiply-add units and coefficient precision. Several 
alternative architectures, as resulted from the design space exploration, have been 
implemented and compared in terms of area cost, relative error, latencies, and speedup 
[25]. The resulting family of coprocessors offers direct hardware support to up to 5D 
GA operations. Different hardware-oriented representations of GA elements and 
operations have been properly conceived to obtain fast performing implementations. 
The representation based on the variable-length homogeneous elements, used for the 
first two architectures of the family [22]-[23], has been then replaced with a fixed-size 
representation based on quadruples in the latest coprocessors [24],[26],[27]. This novel 
representation of algebra elements allows for important simplifications of algebraic 
operations that in turn lead to a faster and more compact hardware architecture. The 
latest presented coprocessing architecture exploits a simplified formulation of the 
Conformal Geometric Algebra (CGA) operations, namely reflections, rotations, 
translations, and dilations, which results in faster execution of such operations [27]. The 
coprocessors have all been prototyped using development boards based on FPGA 
devices. The latest two coprocessors have been implemented as complete embedded 
Systems-on-Chip (SoCs) [26]-[27]. Experimental tests performed on the prototypes 
have shown significant speedups with respect to the baseline software library Gaigen 
running on a general-purpose processor [7]. The latest two coprocessors, named 
CliffordALU5 and ConformalALU, respectively, show native support of all GA 
operations in both 4D and 5D spaces with average speedups of about one order of 
magnitude over the baseline software implementation. To evaluate the coprocessor 
effectiveness in specific application domains, an application suite composed of different 
GA-based algorithms, namely inverse kinematics of a robot, optical motion capture, 
raytracing, and medical image processing, has been used as testbench, showing good 
speedups with respect to the baseline general-purpose implementation. 
The rest of the paper is organized as follows: Section 2 outlines the design space 
exploration of GA-based computing architectures, while the resulting coprocessor 
family is presented in Section 3. Section 4 presents experimental results, while 
conclusions are contained in Section 5. A comprehensive introduction to the 
fundamental concepts of GA can be found in [1]-[6]. 



2. DESIGN SPACE EXPLORATION 
 

The design space of hardware implementations that natively support GA operations has 
been analyzed along several axes, namely, Clifford number representation 
(homogeneous elements versus quadruples), execution flow (sequential versus parallel, 
scalar versus pipeline), number of multiply-add units, coefficient precision, datapath 
width, instruction word length. As described in Table 1, several alternative architectures 
based on different sets of architectural parameters have been explored and different 
design points have been implemented and prototyped. The resulting family of 
coprocessing architectures is detailed in the following section. One of the design 
parameters is related to the representation to be used for algebra elements. The standard 
variable-length representation, based on homogeneous elements, used for the first two 
architectures, has been replaced, in the latest coprocessors, with the fixed-size 
representation based on quadruples. A description of this representation is provided in 
Sections 3.3 and 3.4. 

Table 1. Design space exploration 

Coprocessor GA 
operations 

Clifford 
number 

representation 

Execution 
flow 

Parallelism 
techniques 

N. of 
multipliers Precision 

Instruction 
word 
length 

S-CliffoSor 
[22] 

4D products, 
sums, 

differences 

Homogeneous 
elements Sequential - - 32-bit 

integers 

15x32-bit 
words = 
480 bits 

CliffoSor [23] 

4D products, 
sums, 

differences 
3D rotations 
(Operations 
on bivectors 

not 
implemented) 

Homogeneous 
elements Parallel - 24 32-bit 

integers 

15x32-bit 
words = 
480 bits 

Quad-CliffoSor 
[24] 

4D products, 
sums, 

differences, 
unary 

operations 

Quadruples Parallel Pipeline 16 
16-bit 

floating 
point 

9x16-bit 
words = 
144 bits 

CliffordALU5 
[26] 

4D/5D 
products, 

sums, 
differences, 

unary 
operations 

Quadruples Parallel Pipeline 16 
32-bit 

floating 
point 

9x32-bit 
words = 
288 bits 

ConformalALU 
[27] 

5D 
conformal 
geometric 
operations 

(reflections, 
rotations, 

translations, 
dilations) 

5D vectors Parallel Pipeline 5 
32-bit 

floating 
point 

16x32-bit 
words = 
512 bits 

 
3. COPROCESSOR FAMILY 

 
In this section, the family of embedded coprocessors for the native support of GA 
operations is presented. A brief description of the implemented architectures, whose 
main features are listed in Table 1, is provided in the following subsections. 



3.1 S-CliffoSor 
The first coprocessor to be implemented was S-CliffoSor (Sliced Clifford coprocesSor), 
which offers direct hardware support to 4D Clifford operations between homogeneous 
elements using 32-bit integers numbers to represent scalar coefficients of basis blades. 
A homogeneous element or homogeneous multivector contains only blades of the same 
grade. Each 4D Clifford multivector is an ordered tuple of 5 homogeneous elements m 
= (s, v, b, t, p), as listed in Table 2. Each homogeneous element is composed of a 
different number of blades, where each blade is a coefficient-basis blade pair. A 4-bit 
mask is associated with each basis blade, where each bit is associated with a basis 
vector ei, i=1,2,3,4, with e1 the least significant bit. S-CliffoSor is based on a 32-bit 
sequential ALU that executes addiction, subtraction, multiplication and logical 
operations. Each 4D Clifford operation is decomposed into the proper sequence of these 
basic operations whose execution is supervised step-by-step by a microprogrammed 
control unit. The sequential architecture of the coprocessor leads to long per-operation 
latencies, which can be however hid by replicating the single S-CliffoSor slice to 
execute in parallel multiple independent Clifford operations. 
 

Table 2. 4D GA homogeneous elements 
Homogeneous element Blades 

Scalar (s) a0      
Vector (v) a1e1 a2e2 a3e3 a4e4   

Bivector (b) a12e1e2 a13e1e3 a14e1e4 a23e2e3 a24e2e4 a34e3e4 
Trivector (t) a123e1e2e3 a124e1e2e4 a134e1e3e4 a234e2e3e4   

Pseudoscalar (p) a1234e1e2e3e4      

3.2 CliffoSor 
As S-CliffoSor, the second developed architecture, namely CliffoSor (Clifford 
coprocesSor), executes 4D Clifford operations between homogeneous elements using 
32-bit integer numbers to represent scalar coefficients. While S-CliffoSor is based on a 
sequential execution flow, CliffoSor uses parallel structures for the fastest execution of 
Clifford operations. Three different functional units directly support 4D Clifford 
products, 4D Clifford sums/differences and 3D Clifford rotations, respectively. To save 
resources, the most complex operations on bivectors are not directly supported in 
hardware, but they are handled in a higher-level Application Programming Interface 
(API) with multiple calls to the coprocessor. This design choice allowed us to use 24 
parallel multipliers for Clifford products execution, rather than 36 parallel multipliers, 
as needed to directly support in hardware bivector-bivector products. 

3.3 Quad-CliffoSor 
As CliffoSor, Quad-CliffoSor (Quadruple-based Clifford coprocesSor) is a parallel 
architecture composed of three dedicated units for the execution of 4D Clifford 
products, 4D Clifford sums/differences, and 4D Clifford unary operations, respectively. 
While the previous architectures use the natural representation of GA elements based on 
homogeneous elements, Quad-CliffoSor first introduces a novel representation based on 
fixed-size elements, called quadruples. The variable size of homogeneous elements, as 
described in Table 2, leads to some storage inefficiencies since a six-element vector is 
used to implement each homogeneous multivector, but only the bivector uses all six 
elements. Defining the four-size elements, or quadruples, listed in Table 3, the generic 
4D multivector can be written as a tuple of 4 quadruples, m = (V, T, S, P). Each 
quadruple is composed of four blades. Using quadruples, rather than homogeneous 
elements, has two important advantages: first, fixed-size operands are better suited to a 



hardware implementation; second, using the 4 quadruples listed in Table 3 allows for 
significant simplifications of product operations leading in turn to a faster and more 
compact hardware architecture. As demonstrated in [24], the product of two quadruples 
always gives as result the sum of two quadruples so that a single fixed format can be 
used for both input data and output result. Furthermore, a simplified algorithm can be 
used to execute product operations on quadruples. Any quadruple can be reduced to a 
quadruple of type V by simple sign changing operations on its coefficients. The product 
between any couple of quadruples can be therefore reduced to the product between two 
quadruples of type V by simple sign changing and/or swapping operations. The latter 
operation is the only operation to be implemented. The Quad-CliffoSor multiplier unit 
was properly designed to permit the fastest execution of this operation. 16 parallel 
multipliers are used to calculate the 16 products between the input quadruple 
coefficients, while a three-stage pipeline allows a product operation result to be 
provided on every clock cycle. Quad-CliffoSor is the first coprocessor of the family that 
uses 16-bit floating point numbers to represent scalar coefficients of the basis blades.  
 

Table 3. 4D GA quadruples 
Quadruple Blades 

V a1e1 a2e2 a3e3 a4e4 
T a234e2e3e4 a134e1e3e4 a124e1e2e4 a123e1e2e3 
S a14e1e4 a24e2e4 a34e3e4 a0 
P a23e2e3 a13e1e3 a12e1e2 a1234e1e2e3e4 

3.4 CliffordALU5 
CliffordALU5 is the first coprocessor that natively supports GA operations in the 5D 
space. The fixed-size representation based on quadruples, introduced in Quad-CliffoSor 
for 4D Clifford elements, is extended in CliffordALU5 to 5D Clifford elements. The 
eight quadruples of 5D GA are listed in Table 4. 
 

Table 4. 5D GA quadruples 
Quadruple Blades 

V a1e1 a2e2 a3e3 a4e4 
T a234e2e3e4 a134e1e3e4 a124e1e2e4 a123e1e2e3 
S a14e1e4 a24e2e4 a34e3e4 a0 
P a23e2e3 a13e1e3 a12e1e2 a1234e1e2e3e4 

V’ a15e1e5 a25e2e5 a35e3e5 a45e4e5 
T’ a2345e2e3e4e5 a1345e1e3e4e5 a1245e1e2e4e5 a1235e1e2e3e5 
S’ a145e1e4e5 a245e2e4e5 a345e3e4e5 a5e5 
P’ a235e2e3e5 a135e1e3e5 a125e1e2e5 a12345e1e2e3e4e5 

 
As demonstrated in [26], the simplified algorithm used in Quad-CliffoSor for product 
operations execution can be extended to 5D operations. Since 4D quadruples are a 
subset of 5D quadruples, CliffordALU5 is a universal coprocessor that can directly 
execute all 4D and 5D GA operations (geometric products, outer products, left and right 
contractions, sums, differences, and unary operations) using quadruples as basic 
elements of computation. The block diagram of the CliffordALU5 coprocessor (Figure 
1(a)) shows three dedicated functional units for the execution of 4D/5D Clifford 
products, 4D/5D Clifford sums/differences, and 4D/5D Clifford unary operations, 
respectively. The simplified algorithm used for product operations, described in Section 
3.3 for the 4D case, allows for a compact architecture of the Clifford multiplier unit, as 
shown in Figure 1(b). This pipelined unit contains a 16x multiplier bank for the parallel 
execution of the 16 multiplications required by a product operation between quadruples. 



CliffordALU5 is the first coprocessor of the family that uses 32-bit floating point 
numbers to represent scalar coefficients of Clifford operands. 
 

  
(a) (b) 

Figure 1. (a) CliffordALU5 block diagram; (b) Clifford multiplier unit block diagram 

3.5 ConformalALU 
The latest architecture, named ConformalALU, has been designed for the direct 
hardware support of Conformal Geometric Algebra (CGA) or 5D Geometric Algebra 
geometric operations, namely reflections, rotations, translations, and dilations. The 
coprocessor exploits a simplified formulation of these operations aimed at a parallel 
hardware implementation, which derives from two considerations. First, a conformal 
geometric operation on a generic k-blade Ak, represented in CGA by the “sandwich” 
geometric product, can be decomposed in operations on vectors according to the 
following formula: 
 

 XAk X
~
= X (a1∧a2 ∧...∧ak ) X

~
= Xa1 X

~
∧ Xa2 X

~
∧...∧ Xak X

~
 (1) 

 
where X is the versor (rotor, translator, or dilator) that represents the conformal 
transformation. Second, rather than using the standard “sandwich” geometric product of 
CGA, each conformal geometric operation can be obtained by two non-commuting 
successive reflections. The basic operation becomes therefore the reflection of a 5D 
vector. In our implementation, each vector reflection is executed in turn using the 
following simplified formula based on the classical dot product, rather than the standard 
“sandwich” geometric product of CGA: 
 
 a ' = a

⊥
− a|| = a− 2a|| = a− 2 a|| m = a− 2(a ⋅m)m  (2) 

 
where a is the vector to be reflected in a plane with unit-normal m, while a’ is the 
reflected vector, as depicted in Figure 2.  
 

 
Figure 2. Reflection of a vector a 



Requiring only one dot product and two subtractions between vectors, this new 
formulation leads to a computational advantage and therefore a more compact and faster 
hardware architecture [27]. The block diagram of the ConformalALU coprocessor is 
depicted in Figure 3(a), while Figure 3(b) shows the block diagram of the Reflector unit. 
Two cascade Reflector units are used to execute a whole instruction stream in a pipeline 
fashion. As CliffordALU5, ConformalALU uses 32-bit floating point numbers to 
represent scalar coefficients. 
 

  
(a) (b) 

Figure 3. (a) ConformalALU block diagram; (b) Reflector unit block diagram 
 

4. EXPERIMENTAL RESULTS 

4.1 Coprocessor performance analysis 
The designed coprocessors have all been prototyped using development boards based on 
FPGA devices. Several experimental tests have been performed to evaluate the 
coprocessor performance and compare it with the fast Gaigen software chosen as 
baseline general-purpose implementation. Table 5 shows the performance analysis of 
the coprocessor family in terms of clock frequency, area cost, latency per operation, and 
speedup. CliffoSor shows a higher area cost as well as reduced latencies per operation 
with respect to S-CliffoSor. These results depend on the different execution flow of the 
two architectures, namely, sequential for S-CliffoSor and parallel for CliffoSor. The 
reduced area cost, as well as the increased speedup, of Quad-CliffoSor in comparison 
with CliffoSor, is an effect of the computational and architectural simplifications of the 
quadruple-based representation. The higher area cost of CliffordALU5 when compared 
with Quad-CliffoSor, is due to the higher precision (32-bit rather than 16-bit) of the 
scalar coefficients. A scalar version and a pipelined version of the ConformalALU 
coprocessor have been designed. As reported in Table 5, the pipelined ConformalALU 
consumes more resources, but allows for reduced latency and, consequently, increased 
throughput. As a result of the design space exploration, Figure 4 presents a performance 
analysis, in terms of area cost, relative error, and latency, of different alternative 
architectures based on different sets of design parameters, such as the number of 
multiply-add units and the coefficient precision. Figure 4(a) shows average relative 
errors (with respect to the full-precision Gaigen implementation) and area costs of the 
multiplier units of Quad-CliffoSor and CliffordALU5, which use 16-bit and 32-bit 
precision, respectively. The higher-precision architecture consumes over two times 
more resources than the lower one, but a significant reduction of relative errors is 
observed. Three different versions of the CliffordALU5 coprocessor, which use 4, 8, 
and 16 parallel multipliers, respectively, for product operations execution are compared 



in Figure 4(b) in terms of area costs and latencies per operation. Increasing the number 
of multipliers, the area cost increases, as well; however, a reduced latency in the product 
operation execution between quadruples can be observed. 
 

Table 5. Performance analysis of the coprocessor family  

Coprocessor Clock 
frequency 

Area (n. of FPGA 
slices) 

Latency (clock 
cycles) 

Speedup over Gaigen 
software 

S-CliffoSor 45 MHz 2,295 (single slice) 
(average) 

Products: 91 
Sums/Diff.: 78 

(potential) 
Products: 4x 

Sums/Diff.: 3x 

CliffoSor 50 MHz 8,444 Products: 7 
Sums/Diff.: 5 

(potential) 
Products: 4x 

Sums/Diff.: 12x 

Quad-CliffoSor 50 MHz 3,201 Products: 3 
Sums/Diff.: 1 

(potential) 
Products: 23x 

Sums/Diff.: 33x 

CliffordALU5 100 MHz 6,011 Products: 3 
Sums/Diff.: 1 

(real) 
4D Products: 5x 
5D Products: 4x 
Sums/Diff.: 2x 

ConformalALU 125 MHz 5,876 (scalar) 
9,640 (pipelined) 

(average) 
315 (scalar) 

88 (pipelined) 

(real) 
Reflections: 56x 
Rotations: 15x 

Translations: 46x 
Dilations: 41x 

 

  
(a) (b) 

Figure 4. (a) Average relative error and area cost (number of FPGA slices) versus precision for Quad-
CliffoSor and CliffordALU5; (b) Area cost and latency per operation (clock cycles) versus number of 

multipliers for CliffordALU5. 
 
To evaluate the speedups over the reference Gaigen software, the same test operations 
were executed using both the Gaigen library and the coprocessor. The first three 
coprocessors were prototyped on FPGA boards connected via the PCI bus or the 
Ethernet to the host computer. Only potential speedups in terms of clock cycles were 
estimated since the coprocessor ran on the FPGA using a clock frequency slower than 
the software running on the conventional host PC. Conversely, the latest two 
coprocessors were implemented as complete Systems on Chip (SoCs) using FPGA 
boards that integrate both a PowerPC general-purpose processor and the specialized 
coprocessor on the same chip. A real speedup, in terms of wall-clock times, has been 
therefore measured over the software library running on the PowerPC processor at the 
same operating frequency as the coprocessor. Gaigen/CliffordALU5 and 
Gaigen/ConformalALU comparisons are summarized in Figures 5(a) and 5(b), 
respectively. As reported in Table 5, CliffordALU5 achieves effective average speedups 



of 5x for 4D Clifford products, 4x for 5D Clifford products, and 2x for 4D/5D Clifford 
sums, while effective speedups achieved by ConformalALU are 56x for reflection 
operations, 15x for rotations, 46x for translations, and 41x for dilations, respectively. 
 

  
(a) (b) 

Figure 5. (a) Gaigen/CliffordALU5 comparison; (b) Gaigen/ConformalALU comparison 

4.2 Application suite 
A suite of GA-based applications, including inverse kinematics of a robot, optical 
motion capture, raytracing, and medical image processing, has been used as testbench to 
evaluate the effectiveness of the coprocessor family in specific application domains. A 
description of these applications can be found in [26], [27]. The testbench algorithms 
have been executed using the latest two coprocessors, namely CliffordALU5 and 
ConformalALU, and their performance has been compared with the baseline general-
purpose implementation based on the Gaigen software. Table 6 lists the observed 
speedups for each application. Taking into account the mix of Clifford operations 
required by each algorithm, the first three applications have been executed on the 
CliffordALU5 coprocessor, while the ConformalALU coprocessor has been used to 
accelerate medical image processing algorithms [20],[21]. The medical imaging 
applications, accelerated by the ConformalALU, massively use CGA operations 
(translations and rotations). The higher speedups of these applications are an effect of 
the simplified formulation of CGA operations that allows for faster execution of these 
operations. 

Table 6. Observed speedups for the test applications 

Application Inverse 
kinematics 

Motion 
capture Raytracing Medical image 

segmentation 
Medical image 

registration 
Observed 
speedup 3.4x 3.8x 4.8x 46x 43x 

 
5. CONCLUSIONS 

 
A family of embedded coprocessors that offer direct hardware support to GA operations 
has been presented in this paper. As overall result, the latest two coprocessors, namely 
CliffordALU5 and ConformalALU, natively execute all 4D and 5D GA operations 
showing speedups of about one order of magnitude relative to the baseline software 
implementation Gaigen. It has been observed that the novel simplified formulation of 
5D CGA operations, used in ConformalALU, allows for a further speedup of about 10x 
with respect to the execution on the CliffordALU5 coprocessor. Future work will be 
aimed therefore to integrate the two coprocessors CliffordALU5 and ConformalALU in 
a single architecture to obtain a complete System-on-Chip that supports all basic 
operations of up to 5D GA (products, sums, unary operations) and accelerates geometric 
operations (reflections, rotations, translations, uniform scaling) of the 5D conformal 
model using the fast dedicated unit ConformalALU.  
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