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Chapter 1

Introduction

The study of liver fibrosis involved several times, over the last years, the

Department of Scienze Economiche, Aziendali e Statistiche of the Univer-

sity of Palermo thanks to the great amount of data collected in collaboration

with the Ultrasuoni Srl company. A lot of studies were carried out focusing

attention on the development of newer tools to detect liver fibrosis and a

grant has been assigned to a research project involving ”New applications

in biomedical industry”.

These previous works represent a good starting point for study because we

have a lot of information about how to manage these particular kind of

data. We already know that ARFI (Acoustic Radio Force Impulse) is a not-

invasive tool to detect and classifies liver fibrosis measuring the stiffness of

the liver tissue. This disease has a clear feature, it affects the liver tissue

patchly, that is it can damage just some liver segments. For this reason, the

easiest diagnoses are related to extreme cases in which all parts of liver are

affected or healthy. Unfortunately, most of cases are intermediate provid-

ing different ARFI measures at different liver parts making more difficult



2 Introduction

to derive a right diagnosis. From a statistical point of view this could be

translated in asking more than one measurements and using some location

measures, like for example the mean or the median.

We could overcome this problem by analyzing variability of the stiffness

in terms of variance or other statistical parameters. In order to achieve this

goal, we need a statistical tool, in particular a class of statistical models able

to estimate a relationship between the stiffness and some predictors taking

heterogeneity of the data into account. Besides, this class of models should

be able to implement model with random effects since measurements are

repeated during exam for the same subject.

We identified in GAMLSS (Generalized Additive Models for Location Scale

and Shape) the best candidate among several class of statistical models to

manage our data. Indeed, they are able to estimate jointly mean, variance

skewness and kurtosis for a response variable as sum of linear and non-

linear functions of some explanatory variables.

Starting from their standard definition two further extensions will be pro-

posed in this work. Firstly, the use of a mixture model approach will follow

from the analysis of residuals. Using this method a direct relationship be-

tween the components of the mixture and the health condition of the patient

will be identified. Secondly, we will implement ROC (Receiver Operating

Characteristic) curve in GAMLSS in order to show how ARFI can be also

considered as a good tool for predicting liver fibrosis or cirrhosis.

The thesis is organized as follows. In Chapter 2 liver fibrosis will be intro-

duced and a brief review of the tools used until now to detect liver diseases

will be described. In Chapter 3 Generalized Additive Models for Location

Scale and Shape will be presented. In Chapter 4 the framework of the full

dataset and some preliminary descriptive statistics will be shown. Chap-
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ter 5 will contain a deeper analysis on the relationship between response

variable and predictors applying a GAMLSS to a reduced dataset. Chap-

ter 6 will propose the use of a mixture model approach in GAMLSS to

deal with the problem of bimodality in the response distribution. In Chap-

ter 7 the proposal to implement the ROC Curve in GAMLSS will be intro-

duced in order to make predictions for liver fibrosis, while Chapter 8 will

be devoted to discussion and future work. All the analysis in this thesis are

implemented using the R statistical environment.





Chapter 2

Liver fibrosis detection

2.1 Background

Fibrosis is a disease which can affect the liver and culminates in cirrhosis,

representing one of the ten most frequent causes of death in the world. It

consists in the massive presence of connective tissue around portal areas

and central veins causing non-functioning of the liver. Liver fibrosis is

an asymptomatic and degenerative disease, it can be classified in 5 stages

through the Metavir scoring system from F0 (normal liver) to F4 (cirrhosis)

as in figure 2.1.

Scoring system Metavir is obtained as follows:

• F0→ Normal liver→ No fibrosis surrounds the portal triads

• F1 → Portal fibrosis → Fibrous connective tissue is present but in

limited areas

• F2→Moderate fibrosis→ Fibers begin to extend without connecting

portal areas
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• F3→ Severe fibrosis→ Fibrous connective tissue links neighboring

portal triads

• F4→ Cirrhosis→ Most portal areas are connected by fibrous tissue

also linking portal areas and central veins.

Figure 2.1: From fibrosis to cirrhosis

In medicine, biopsy is the most used exam to detect presence of liver dis-

eases but it has both positive and negative aspects. Liver biopsy represents

the gold standard test for staging liver disease. It is very useful in situa-

tions of uncertainty in diagnosis and it represents the best way to assess the

possibility of rejection after liver transplant. Despite these positive aspects,

biopsy has also some negative aspects, infact it is an invasive test which

rarely presents possibility of complications for patients; in many situations

it could be not predictive because fibrosis is a disease which affects the

liver patchly and since only a very small part of the liver is involved in the

biopsy, it could not able to find the sick part. Besides, it does not provide

stable results in patients with nonalcholic fatty liver disease (Ratziu et al.,
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2005). For these reasons biopsy was described as a tool ”far from an ideal

test and liver diseases can be diagnosed precisely with laboratory tests and

imaging studies” (Carey and Carey, 2010).

In order to overcome these problems it is necessary to take into account

some alternative ways to detect liver fibrosis. During last years a lot of

tools were proposed to substitute liver biopsy, but not satisfactory results

were produced.

Even if liver fibrosis is an asymptomatic disease, most of the times in late

stages it displays some clinical manifestations such as ascites and spleno-

megaly. Ascites consists in an accumulation of fluid in the peritoneal cavity

leading to abdominal distension and in severe cases removed by paracente-

sis. Splenomegaly is an enlargement of the spleen caused by the reduction

in the number of circulating blood cells affecting granulocytes or platelets.

Since these symptoms are very related to cirrhosis, they appear only in the

late stages of fibrosis and so they have high positive predictive value but

low negative predictive value, making them not useful to diagnose or stage

liver fibrosis.

Laboratory tests can help in detecting liver diseases, in fact anomalous val-

ues of ALT, AST, GGT and platelets are potential markers of hepatitis. Be-

sides, construction of newer serologic markers have been proposed as aids

in determining the degree of fibrosis in the liver. Most common indexes

are build up as ratio index i.e. AST:ALT ratio or APRI (AST Platelets Ra-

tio Index). As previously seen for clinical manifestations, laboratory tests

are not sufficient to classify liver fibrosis, since anomalous values of these

indexes could be symptoms related to other liver diseases.

Imaging studies as ultrasonography, tomography or magnetic resonance

could be useful but only in late stages of liver fibrosis. They are actually
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used as more accurate exams for cirrhotic subjects. Other negative aspects

of imaging studies are the high cost and the exposure of patients to radia-

tions.

2.2 New biomedical technology

Ultrasound techniques named as hepatic elastography represent the future

for detecting and staging liver disease, in fact contrary to biopsy they are

not invasive or dangerous for the patient and consequently they could be re-

peated more times. Besides, these techniques are very rapid even in patients

at the bedside and results are immediately displayed.

The two most famous ultrasound techniques are Fibroscan (produced by

EchoSens) and ARFI (produced by Siemens). Both tools use a basic prin-

ciple of physics: a wave is propagated more quickly in a stiffer tissue, where

the wave is produced by a probe and the tissue is the liver. During recent

years, a lot of studies have been considered a comparison between ARFI

and Fibroscan (Friedrich-Rust et al., 2009; Attanasio et al., 2010). In par-

ticular, in Rizzo et al. (2011), ARFI imaging has been found to be a more

accurate tool than Fibroscan for the non-invasive staging of both significant

and severe classes of liver fibrosis. For this reason the attention will be

focused on ARFI.

ARFI (Acoustic Radation Force Impulse) measures the liver stiffness through

mechanical excitation of tissue using acoustic pulses producing shear waves

propagation. The shear wave speed is measured in m/s on a Region of Inter-

est (RoI), a small box 1 x 0.5 (cm). The stiffer the liver, the faster the shear

waves propagate. This speed could range from 0 m/s for patients with a nor-

mal liver to 5 m/s for cirrhotic patients. Since ARFI is a non-invasive test,
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it is possible to obtain measurements also in different segments or depths.

This is a very important feature because in this way data are more reliable

and it is possible to solve the problem of sparseness of fibrosis affecting the

liver patchly. Moreover, ARFI is not only able to detect hepatic fibrosis but

it is also important in staging the disease. In fact, it provides a correspond-

ing scale compared with the Metavir scoring system for some thresholds of

speed (Attanasio et al., 2010). This correspondence is shown in Table 2.1.

Stage ARFI (m/s)
F0-F1 < 1.3

F2 1.31 − 1.7
F3 1.71 − 1.99
F4 ≥ 2

Table 2.1: ARFI vs METAVIR





Chapter 3

GAMLSS

3.1 Definition

Generalized Additive Models for Location Scale and Shape (GAMLSS)

were introduced by Rigby and Stasinopoulos (2001). GAMLSS are de-

fined as semi-parametric models. Actually, besides requiring definition

of a parametric distribution for the response variable, it is possible to add

non-parametric smoothing functions for each parameter considered in the

model specification. The authors presented GAMLSS as a way to overcome

some limitations of GLM (Generalized Linear Models) and GAM (Gener-

alized Additive Models). GLM were introduced by Nelder and Wedder-

burn (1972) and represent a generalization of the linear regression model

in which it is possible to use as response variable probability distribution

different from the normal. A further generalization is represented by GAM

introduced by Hastie and Tibshirani (1990) as an extension of GLM where

a non-parametric smoothing component is considered. In comparison with

GLM and GAM, the basic features of GAMLSS are two. Firstly, the Expo-
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nential Family distribution assumption for the response variable is replaced

by a more general distributions family. Moreover, GAMLSS allow to ex-

pand the modelling to scale and shape parameters as skewness and kurtosis

too. For these reasons they are particularly flexible and suitable to model

data in which the response variable shows some of these features.

GAMLSS assume independent observations yi for i = 1, 2, . . . , n with prob-

ability density function f (yi|θ
i) conditional on θi = (θ1i, θ2i, θ3i, θ4i) = (µi, σi,

νi, τi) a vector of four distribution parameters. Each parameter can be a

function of the explanatory variables. The first two parameters µi and σi

represent location and scale parameters, while the remaining νi and τi refer

to the shape parameters (skewness and kurtosis).

• µi = Location parameter or mean

• σi = Scale parameter or variance

• νi = Shape parameter 1 or skewness

• τi = Shape parameter 2 or kurtosis

The original formulation of GAMLSS is given by

gk(θk) = ηk = Xkβk +

Jk∑
j=1

Z jkγ jk

where for k = 1, 2, 3, 4, gk(.) are monotonic link functions relating the dis-

tribution parameters to explanatory variables, Xk is a known design matrix

of order n × J′k, β′k = (β1, . . . , βJ′k
) is a parametric vector of length J′k and

Z jkγ jk the non-parametric additive terms.
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Expanded formulation of GAMLSS is:



g1(µ) = η1 = X1β1 +
∑J1

j=1 Z j1γ j1

g2(σ) = η2 = X2β2 +
∑J2

j=1 Z j2γ j2

g3(ν) = η3 = X3β3 +
∑J3

j=1 Z j3γ j3

g4(τ) = η4 = X4β4 +
∑J4

j=1 Z j4γ j4

In this way each distribution parameter can be modelled as a linear function

of explanatory variables and/or as linear functions of random variables.

Other alternative formulations of GAMLSS could be considered.

The population probability (density) function f (y|θ) is left general with no

explicit conditional distribution form for y. The only restriction that the R

implementation of GAMLSS has for specifying the distribution of y is that

function f (y|θ) and its first derivatives with respect to each of the parameters

of θ must be computable. We shall use the notation:

y ∼ D{g1(θ1) = t1, g2(θ2) = t2, . . . , gp(θp) = tp

to identify uniquely a GAMLSS, where D is the response variable distribu-

tion, (g1, . . . , gp) the link functions, (t1, . . . , tp) the model formulae for the

explanatory terms in the predictors (η1, . . . , ηp).

3.2 Inference in GAMLSS

There are two basic algorithms used for maximizing the penalized like-

lihood in GAMLSS. The first, the CG algorithm, is a generalization of

the Cole and Green algorithm (Cole and Green, 1992) and it uses the first

derivatives and the expected values of the second and cross derivatives of
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the likelihood function with respect to θ = (µ, σ, ν, τ) for a four parameter

distribution. However, for many probability distribution functions f (y|θ)

the parameters θ are orthogonal. In this case the second, the RS algo-

rithm is more suited. The RS is a generalization of the algorithm for fitting

MADAM (Mean and Dispersion Additive Models). Essentially the RS al-

gorithm has an outer cycle which maximizes the penalized likelihood with

respect to the fixed and random effects in the model for each θk. At each

iteration the current updated values of all the quantities are used. This al-

gorithm is not a special case of the CG algorithm because in the RS the

diagonal weight matrix Wkk is computed within the fitting of each parame-

ter θk, whereas in the CG all weight matrices Wks are evaluated after fitting

all θk.

The aim of both algorithms is maximizing a penalized likelihood function

lp given by

lp = l −
1
2

p∑
k=1

Jk∑
j=1

λkγ
′
jkG jkγ jk

where l =
∑n

i=1 log f (yi|θ
i).

This is achieved in two steps: firstly, the first and second derivatives of

the aforementioned equation are obtained to give a Newton-Raphson step

for maximizing it with respect to βk and γ jk; moreover each step of the

Newton-Raphson algorithm is implemented by using a backfitting proce-

dure cycling through the parameters and through the additive terms of the

k linear predictors.

Each GAMLSS parametric model can be assessed by using its fitted global

deviance GD given by GD = −2l(θ̂) where l(θ̂) =
∑n

i=1 l(θ̂i). Two nested

models M0 and M1 may be compared by using the test statistic Λ = GD0 −

GD1 which has an asymptotic χ2-distribution under M0 with degrees of
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freedom d = d fM0 − d fM1 . For comparing non-nested GAMLSS the GAIC

(Generalized Akaike Information Criterion) (Akaike, 1974) can be used.

GAIC is obtained by adding a fixed penalty term for each effective degree

of freedom used in the model. Model with the smallest value of GAIC will

be selected.

For each model M the normalized randomized quantile residuals of Dunn

and Smith (Dunn and Smyth, 1996) are used to check its global adequacy

of M and the distribution component D. These residuals are given by

r̂i = Φ−1(ui) where Φ−1 is the inverse CDF of a standard normal vari-

ate with ui = F(yi|θ̂i) if yi is an observation from a continuous response,

whereas ui is a random value from the uniform distribution on the interval

[F(yi−1|θ̂i), F(yi|θ̂
i)] if yi is an observation from a discrete integer response

variable, where F(y|θ) is the CDF. The true residuals ri have a standard

normal distribution if the model is correct.

3.3 Worm plot

Diagnostics in GAMLSS is carried out through the use of worm plots.

These graphs were introduced by Van Buuren and Fredriks (2001) for the

LMS model (Cole and Green, 1992). Worm plots are widely used as diag-

nostic tool in growth curves studies and they are very similar to Q-Q plots.

Quantile-quantile plots can be applied to compare the quantiles of a theo-

retical distribution of residuals scores (on the horizontal axis) against those

of the empirical one (on the vertical axis). A worm plot consists in a de-

trended Q-Q plot where on the vertical axis the difference between location

in the theoretical and empirical distribution is represented. The worm plot

contains the 95 % confidence interval of the unit normal quantiles. For a
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given quantile z with associated probability p and a sample size n, the con-

fidence interval is computed as ±1.96×ϕ(z)−1
√

(p(1 − p)/n), where ϕ(z) is

the Normal density function. The interval becomes larger towards the ex-

tremes, so in the tails broader differences between theoretical and empirical

quantiles are allowed.

This plot is called ”worm plot” because data points form a worm-like string.

If the worm is flat, then the data follow the assumed distribution. Differ-

ent patterns of the worm lead to underline some problems in the global fit.

Worm plots are also useful to check assumptions on some particular inter-

vals of the explanatory variables. For instance, in Van Buuren and Fredriks

(2001), worm plots are displayed for models conditioning on specific class

intervals in age.

●

●
●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●●
●

●●

●●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●
●

●

●
●

●

●

●
●●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●●
●

●

●

●

●●
●

●●

●

●

●

−3 −2 −1 0 1 2 3

−
2

0
2

4
6

Theoretical quantiles

S
am

pl
e 

qu
an

til
es

Normal

●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●●
●

●●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●
●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●●
●

●
●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

4

Theoretical quantiles

S
am

pl
e 

qu
an

til
es

Gamma

Figure 3.1: Example of Q-Q plots

In order to show the difference between standard Q-Q plot and worm plot

we simulated n = 1000 observations from a Gamma distribution with shape

parameter α = 5 and we show Q-Q plot and worm plot for the null model
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considering Normal and Gamma distributions. As we expect, in Figure

3.1 Q-Q plot on the left (Normal distribution) is not aligned with the main

diagonal while, of course, on the right (Gamma distribution) the fitting is

definitely better. For same data Figure 3.2 represents the two worm plots

for the same models. On the left representation of z−scores for worm plot is

failing. The pattern is not a worm but a U-shape framework, moreover most

of the points are out of the confidence bands. The graph on the right shows

a worm-like string and all the points are in the confidence interval. This

justifies the use of the Gamma distribution. This trivial example shows as

the worm plot could be used to verify the correct specification of the model

and, in particular, the choice of the response distribution.
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Figure 3.2: Example of worm plots
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3.4 Open problems in GAMLSS

A lot of problems are still open in studying GAMLSS. So far, more than 80

distributions are implemented in GAMLSS, but every month new distribu-

tions are added by GAMLSS developers.

In particular, they are interested in looking for some developments in an-

alyzing particular datasets exploiting the flexibility of GAMLSS method.

Extension of the GAMLSS family of distributions it is possible not only

through the definition of new theoretical distributions but also by adapting

the existing one in a context of censored or truncated data.

Another developing issue is the implementation in GAMLSS of the additive

terms. Up to now a lot of non-parametric functions could be applied using

GAMLSS: splines, varying coefficients, fractional polynomials, and so on.

There are other extra additive terms that, at the moment, do not lead to

stable results and very often they return problem in convergence. So, some

developments could concern the introduction of functions to fit break points

within GAMLSS, GAM (General Additive Models) outside the exponential

family, neural networks, penalized lag regression functions and regression

trees.



Chapter 4

Dataset description

4.1 Introduction

Originally, ARFI measurements were collected by Ultrasuoni Srl from 2010

to 2013 and they were only available in DICOM (Digital Imaging and

COmmunications in Medicine) format. To obtain our dataset it was nec-

essary a pre-processing phase in which DICOM files were transformed into

alpha-numeric strings by R-package oro.dicom. Strings of interest were

extracted and the raw dataset was obtained. Three steps of data scrubbing

were applied for the final dataset: some spelling errors were corrected, a

control about coherence of values was applied and finally few duplicate

rows were deleted.

In the final dataset each elastography includes also the total number of mea-

surements; only a small number of patients repeated the exam more times

in the four years. For this reason the dataset has a three-levels hierarchical

structure: i) a macro-level patient; ii) exams by patient; iii) a final-level

measurements in the exams. The hierarchy framework will be examined in
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depth in next section.

Response variable is liver stiffness stated as speed of the wave produced

by ARFI measurements (measured in m/s). Explanatory variables are di-

vided into two groups: risk factors concerning the patient and predictors

about the exam. The first group is composed by sex, age, size and weight

and they are obviously equal when different exams or measurements on

the same patient are considered. Variables observed at the exam level in-

clude information about depth (in cm), liver segment and patient position

during measurement. In Figure 4.1 below a subset of the whole dataset is

displayed.

id patient variables exam variables response

|| || || ||

name exam measure |sex age size weight|depth seg posit| speed

Subject1 10.01 1 | M 73 1.65 75 | 5.4 7 ant | 2.64

Subject1 10.01 2 | M 73 1.65 75 | 5.5 7 ant | 2.58

. . .

. . .

Subject2 10.02 1 | F 62 1.60 55 | 5.4 6 ant | 1.68

Subject2 10.02 2 | F 62 1.60 55 | 4.0 6 pos | 1.88

. . .

. . .

Subject1 13.24 1 | M 75 1.65 75 | 4.3 8 lat | 2.12

Subject1 13.24 2 | M 75 1.65 75 | 5.5 7 ant | 1.31

Figure 4.1: Example of a subset from full dataset

4.1.1 Exam variables

In many studies about liver diseases antropometric data about subjects are

available and the issue of these works is to investigate the relationship be-

tween these features and the presence of the disease. The possibility to

observe exam variables represents an innovation. This is the reason why
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one of the aims of this study will be to analyze how the disease could be

related to both antropometric data and exam variables. In particular, exam

variables concern different ways of measuring elastography: depth in cm,

liver segment and position of patient.

Since hepatic fibrosis affects the liver patchly, the advantage to obtain re-

peated measurements in different parts of liver becomes fundamental. The

possibility to have data about depth represents the most important inno-

vation of this dataset since for the first time data on depths are available.

ARFI allows to measure the liver stiffness at different depths starting from

1.5 cm to a maximum of 8 cm. Understanding how speed changes its value

when stiffness is measured at different values of depths represents a very

important purpose for this study.

Liver is divided in 8 segments, in our dataset only 4 of 8 segments are con-

sidered. These segments are commonly numbered 5, 6, 7, 8 and positioned

in left part of the liver. Segments 1, 2, 3, 4 are not considered because of

their complexity in obtaining measurements.

Other studies show how position of patient during the examination affects

the value of speed measured by ARFI (Attanasio et al., 2010; Goertz et al.,

2012). This is why information about three kinds of assumed positions are

added in the dataset. The three positions are: supine (ant), lateral (lat) and

prone (pos) and they are displayed in Figure 4.2.
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Figure 4.2: Three positions during elastography

4.2 Data hierarchical structure

The dataset presents a peculiar framework, as data show a three-levels

structure. Liver fibrosis can be measured for three different kinds of sta-

tistical units. It is expected that observation is represented by speed for a

patient, but as previously said, ARFI is not an invasive test, so having re-

peated measurements does not represent a problem. A lot of measurements

are repeated at a single exam since it is possible to use ARFI for detecting

liver fibrosis in different liver segments and at different depths. For this

reason patient could be considered the statistical unit only at higher level.

An intermediate level is represented by the exam; since our dataset includes

data observed over 4 years (from 2010 to 2013), it is possible that a patient

had more than one exam in this period. The lower level is the single mea-

surement of the exam for a patient. This hierarchical structure is shown in

the frame below.
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Level 1 Level 2 Level 3

↓ ↓ ↓

Subject 1 −−−−−−→ Exam 1, . . ., k1 −−→Measurement j1,1, . . ., jk1,q1

Subject 2 −−−−−−→ Exam 1, . . ., k2 −−→Measurement j1,1, . . ., jk2,q2

Subject n −−−−−−→ Exam 1, . . ., kn −−→Measurement j1,1, . . ., jkn,qn

↓ ↓ ↓

681 967 37.659

Data were collected by Ultrasuoni from 2010 to 2013 and the Tables in 4.1

present on the left the subjects grouped by number of exams and on the

right the exams grouped by number of measurements.

The total number of the patients is 681 for 967 exams and 37.659 mea-

surements. Most of patients (74%) did not repeat the exam during the four

years, more than one hundred of subjects repeated twice the exam and only

9% did the exam 3 or more times. The distribution of exams grouped by

number of measurements has a big variability, average for measurements

Level 2→ Level 1

Exams Subjects
1 501
2 116
3 37
4 16
5 8
6 2
7 1

Total 681

Level 3→ Level 2

Measurements Exams
0-10 92

11-20 170
21-30 293
31-40 141
41-50 106

51-100 73
101-200 92

Total 967

Table 4.1: Hierarchical structure of the dataset
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is 39, but 30% of the exams contains between 21 and 30 measures. More

than 250 exams include a number of measures less than 20 and more than

150 exams contains more than 50 measurements, this means that there is

not a general rule about an optimal number of measurements done during a

single elastography.

4.3 Some descriptive statistics

Some descriptive analysis were first conducted on the response variable.

Speed is measured in m/s and it is ranged in (0.5, 9). The faster the value

for speed is, the stiffer the liver. Distribution for speed is highly positively

skewed, with a value for skewness equal to 1.7. Kurtosis is also present,

value for kurtosis is 6.8, so distribution is leptokurtic. The graph on the

right shows histogram and density for speed variable for our dataset.

Speed
Min. :0.500

1st Qu.:0.940
Median :1.190

Mean :1.484
3rd Qu.:1.780

Max. :9.390
Variance:0.666

Skewness:1.762
Kurtosis:6.894

Speed

D
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Table 4.2: Descriptive statistics and distribution for speed
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In Table 4.3 descriptive statistics are shown for variables at patient level,

differently from Table 4.4, where statistical units are measurements and not

patients. Subjects are equally balanced between males and females (338

vs 343). Age of patients ranges from 17 to 88 years, subjects under 17

years old have been deleted because their liver could be not completely

developed. Size ranges from 1.345 to 1.90 cm, while weight from 39 to

120 Kg. The average age of subjects is 54 years old, the average height is

1.63 cm tall and the average weight is 72 Kg.

Sex Age Size Weight
M:343 (50,4%) Min. :17.00 Min. :1.345 Min. : 39.00
F:338 (49,6%) 1st Qu.:44.00 1st Qu.:1.555 1st Qu.: 60.00

Median :55.00 Median :1.630 Median : 69.50
Mean :54.00 Mean :1.631 Mean : 70.50

3rd Qu.:64.00 3rd Qu.:1.710 3rd Qu.: 79.00
Max. :88.00 Max. :1.900 Max. :160.00

Table 4.3: Summary statistics for patient variables

In Table 4.4 some descriptive statistics of exam variables are presented.

Measurements are collected in a range of depth from 1.5 to 8 cm; changes

in depths will be shown later. The distribution of liver segments shows

how all parts have a similar number of measurements. About position, the

anterior one, the supine position, is the most frequent with more than 60%

of the cases.

In Chapter 2 we explained that one of the advantages of using ARFI is the

existence of a scale correspondence between speed and the METAVIR scor-

ing system of liver biopsy. Hence, it is possible to derive a classification of

statistical units a priori just on the basis of an average value of speed. Ac-

tually, a double classification is obtained considering differently statistical
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Depth Segment Position
Min. :1.500 5:10526 (28%) ant:23185 (61%)

1st Qu.:4.000 6: 8921 (24%) lat: 8505 (23%)
Median :5.200 7: 9769 (26%) pos: 5969 (16%)

Mean :5.194 8: 8443 (22%)
3rd Qu.:6.200

Max. :8.000

Table 4.4: Descripitve statistics for exam variables

units at level 1 (Subject) or 2 (Exam). For each classification mean or me-

dian have been evaluated. About level 1 (Table 4.5), most of patients are

classified in F0-F1 stages, so their liver presents no fibrosis and only 8% are

cirrhotic. In terms of the median, the number of healthy patients increases.

Stage ARFI Cutoff Mean Median
F0-F1 ≤ 1.3 418 557

F2 1.3 − 1.7 186 55
F3 1.7 − 2 21 13
F4 ≥ 2 56 56

Total 681 681

Table 4.5: ARFI vs METAVIR at level 1

Similar results are obtained at intermediate level, most of the patients are

again in F0-F1 and 15% (13% using median) of exams belongs to cirrhotic

patients. This percentage increased, in comparison with level 1, probably

because cirrhotic patients repeated more times the exam during four years.

4.4 Changes in measuring from 2010 to 2013

Having a dataset about data observed in several years, it is possible to

take into account some possible changes occurring during the period. First
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Stage ARFI Cutoff Mean Median
F0-F1 ≤ 1.3 557 674

F2 1.3 − 1.7 201 114
F3 1.7 − 2 65 57
F4 ≥ 2 144 122

Total 967 967

Table 4.6: ARFI vs METAVIR at level 2

change is in the average of measurements for exam during years. Until

2012 there is an increase to a maximum of 60 measures for exam, but this

average decreases down to 29 in 2013 (see Table 4.7).

Year 2010 2011 2012 2013 Total
Exams 344 200 280 143 967

Measurements 9029 7772 16729 4129 37659
Average 26 39 60 29 39

Table 4.7: Number of exams and measurements for year

Secondly, during the exams it was preferable to obtain measures in deeper

parts but an important update of the software used in ARFI was released in

Febraury 2011 allowing measures until 8 cm, while the previous limit was

5.5 cm. As we can see in Table 4.8, for this reason the most frequent depth

analyzed is 8 cm from 2011 to 2013.

Thirdly, other changes concern the liver segment analysed and the position

of patient during the exam. Figure 4.3 shows on the left panel, the number

of measurements grouped by liver segment per years. Most observed liver

segment changed from the seventh segment in 2010 to the fifth one in 2013.
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2010 2011 2012 2013
1 5.5cm: 2461 8cm: 455 8cm: 1202 8cm: 283
2 5.4cm: 508 5.5cm: 307 4.6cm: 382 7.9cm: 129
3 3.8cm: 281 4.8cm: 203 5cm: 382 5.1cm: 106
4 3.9cm: 278 4.6cm: 200 5.4cm: 369 5.3cm: 101
5 4.7cm: 277 4.3cm: 197 4.7cm: 363 5.7cm: 97
6 5.1cm: 274 5.4cm: 182 5.8cm: 354 6.1cm: 97

Others 4950 6228 13677 3316
Total 9029 7772 16729 4129

Table 4.8: Number of annual measurements for depth

On the right panel, measures are grouped by patient position; the anterior

one or supine is the most frequent for all the years but there is a significant

increasing interest for lateral position in 2013.
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Figure 4.3: Number of annual measurements for segment (a) and position
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Chapter 5

Analysis

5.1 Statistical models for high variability data

In the previous chapter descriptive statistics have emphasized the large vari-

ability of ARFI observations in measuring liver stiffness.

When data show a very large variability or overdispersion, a possible solu-

tion to data modelling could be represented by the inclusion of parameters,

not only for the mean effect.

In literature three extensions of classical linear model have been proposed

as possible solution to this problem:

• ARCH (AutoRegressive Conditional Heteroskedasticity) (Engle, 1982);

• DGLM (Double Generalized Linear Models) (Smyth, 1989);

• GAMLSS (Generalized Additive Models for Location Scale and Shape)

(Rigby and Stasinopoulos, 2005).

ARCH regression models were introduced in 1982 by Robert Engle. In his

definition, two model equations are considered: a first one to estimate mean
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as a linear combination of lagged variables and a second variance equation

that can include current and lagged explanatory variables. These models

are mostly used for time series analysis and they are particularly useful to

model financial volatility.

The class of DGLMs was proposed by Smyth (1989) derived some case

deletion diagnostics for linear heteroscedastic models under maximum like-

lihood (ML) and restricted maximum likelihood (REML) estimation. In his

paper, Smyth (1989) provides MLE for all the parameters when the popu-

lation distribution is Normal Inverse Gaussian or Gamma. The method can

be generalized using quasi-likelihoods. DGLMs are mainly used in pres-

ence of data with heteroscedasticity because they allow to estimate jointly

mean and dispersion.

As we said in Chapter 3, the possibility to model also skewness and kurtosis

with a distribution not necessarily belonging to the exponential family led

us to choose the GAMLSS family.

Once GAMLSS family has been chosen, some fundamental issues will have

to be decided to fit the best model to detect liver fibrosis. First of all, the

choice of distribution for the response variable will be carried out among

more than 80 distributions implemented in GAMLSS. Secondly, the choice

about which distribution parameters (µ, σ, ν, τ) have to be included in the

model. Thirdly, parameter model selection has to be considered on the ba-

sis of the GAIC (Generalized Akaike Information Criterion). Finally, since

a hierarchical structure is present in dataset with repeated measurements

for each subject, the possibility of including random effects has to be con-

sidered.
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5.2 Focusing the attention on 2013

Data were collected for 4 years from 2010 to 2013 for a total of 37.659 mea-

surements. When the number of observations is so big, applying GAMLSS

requires a strong computational cost. To reduce this stress and get simpler

structure for the dataset, we decided to reduce the total number of obser-

vations by focusing the attention on a specific year. The year 2013 has

been selected, since it can be considered a stable year in terms of measure-

ments. Indeed, during other years some changes occurred or the number of

measures for patients was too variable. Moreover, the choice to take into

account just a single year represents also a solution to the double hierarchy

problem of the dataset structure. Actually, it is very uncommon that a sub-

ject repeated the exam during the year, so the exam effect is negligible and

random effects have to be included only for subjects. Number of measure-

ments is now reduced from 37659 to 4129. Some descriptive statistics for

the 2013 dataset are presented in Tables 5.1 and 5.2.

Speed
Min. : 0.500

1st Qu.: 0.890
Median : 1.170

Mean : 1.511
3rd Qu.: 1.900

Max. : 4.900
Variance: 0.786

Skewness: 1.432
Kurtosis: 4.529

Table 5.1: Descriptive statistics for 2013 speed
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Sex Age Size Weight
M:75 (50,4%) Min. :19.00 Min. :1.370 Min. : 41.00
F:66 (49,6%) 1st Qu.:44.00 1st Qu.:1.540 1st Qu.: 59.00

Median :55.00 Median :1.630 Median : 68.00
Mean :54.00 Mean :1.617 Mean : 70.25

3rd Qu.:64.00 3rd Qu.:1.700 3rd Qu.: 76.00
Max. :88.00 Max. :1.855 Max. :160.00

Table 5.2: Descriptive statistics for 2013 subjects

5.3 Selection of family distribution in GAMLSS

Focusing on 2013, the density of speed is displayed in figure 5.1. Also

in this case, the distribution for response variable is positively skewed and

lepotkurtic. This means that, among the more than 80 distributions im-

plemented in GAMLSS, we have to search for a continuous and positive

skewed distribution in R+ taking kurtosis also into account. We have se-

lected 6 probability distributions and we fit a null model for the reduced

dataset. The criterion used for the distributions comparison was the GAIC

(Generalized Akaike Information Criterion). In particular we fitted the

following probability distributions: IG (Inverse Gaussian) (Johnson et al.,

1994); BCCG (Box-Cox Cole and Green) (Cole and Green, 1992); BCPE

(Box-Cox Power Exponential) (Rigby and Stasinopoulos, 2004); BCT (Box-

Cox generalized t) (Rigby and Stasinopoulos, 2006); GB2 (Generalized

Beta 2) (McDonald and Xu, 1995); ex-GAUS (exponentially modified Gaus-

sian (EMG) distribution) (Grushka, 1972). The number of parameters in-

volved (p) and AIC are presented in Table 5.3. Null model with Box-Cox

Power Exponential distribution has the smaller AIC, hence BCPE distribu-

tion has been selected in order to model speed in our dataset.
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Figure 5.1: Distribution for speed in reduced dataset

Distr. p AIC
IG 2 8402.869

BCCG 3 8215.707
ex-GAUS 3 7980.840

BCPE 4 7968.587
BCT 4 8261.270
GB2 4 8219.455

Table 5.3: AIC for 6 distributions in GAMLSS (Null model)

5.4 The BCPE Distribution

The BCPE (Box-Cox Power Exponential) distribution was introduced by

Rigby and Stasinopoulos (2004) to estimate smooth centile curves for skewed

and kurtotic data. This distribution was developed to model both skewness

and kurtosis in the distribution of a continuous response variable Y . The
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BCPE could be considered as a generalization of Box-Cox Normal distri-

bution. The standard Power Exponential family includes Normal, Uniform,

Laplace but it does not consider skewness. On the other hand, the Box-Cox

Normal distribution is able to model skewness but not kurtosis. Match-

ing Box-Cox Normal with Power Exponential the result is a continue four

parameters distribution denoted BCPE (µ, σ, ν, τ). This distribution pro-

vides a flexible model for a positive Y in presence of skewness and kur-

tosis. Unlike the BCT (Box-Cox t) distribution (Rigby and Stasinopoulos,

2006), this distribution fits well also platykurtic data and not just leptokur-

tic. The parameters of the model may be interpreted as related to location,

scale, skewness and kurtosis and since we are using GAMLSS each can be

modelled as a linear parametric or smooth nonparametric function of ex-

planatory variables. A positive random variable having a Box-Cox Power

Exponential distribution, denoted by BCPE (µ, σ, ν, τ), is defined through

the transformed random variable Z given by:

Z =


1
σν

[(
Y
µ

)τ
− 1

]
if ν , 0

1
σ log

(
Y
µ

)
if ν = 0

for 0 < Y < ∞ where µ, σ > 0 and where the random variable Z is assumed

to follow a standard Power Exponential distribution with power parameter,

τ > 0, treated as a continuous parameter.

The probability density function of Y is given by:

fy(y) = fz(z)
∣∣∣∣ dz
dy

∣∣∣∣ =
yν−1

µνσ
fz(z)

with standard link functions
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g1(µ) = 1; g2(σ) = log; g3(ν) = 1; g4(τ) = log

5.5 Model selection procedure

For a given distribution for the response variable (BCPE), the selection of

the terms for all the parameters of the distribution uses a stepwise GAIC

procedure. We now describe the steps of the procedure employed in our

analysis.

1. From the null model build a model for µ using a forward approach.

2. given the model for µ build a model for σ (forward)

3. given the models for µ and σ build a model for ν (forward)

4. given the models for µ, σ and ν build a model for τ (forward)

5. given the models for µ, σ, ν and τ check whether the terms for ν are

needed using backward elimination.

6. given the models for µ, σ, ν and τ check whether the terms for σ are

needed (backward).

7. given the models for µ, σ, ν and τ check whether the terms for µ are

needed (backward).

At each step we are conditioning further steps to the previous choices. Ap-

plication of the default stepwise procedure leads to an unfeasible GAMLSS

model. Indeed, several problems occur in the interpretation of a so complex

statistical model. The biggest problem is represented by the high number

of variables involved in a linear system of 4 equations. Our aim is to find a
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Figure 5.2: Diagnostic tools for model A

specific set of predictors for single equations; in this way we could detect

variables having an effect on each specific parameter of the speed distribu-

tion.

Besides, we discussed in previous chapter the hierarchical structure of the

dataset with repeated measurements. A proper specified GAMLSS model

should include a random effect for this framework. It seems clear that

adding a patient effect gives back a more complicated model. For this rea-

son fixed effects have to be reduced substantially.

Finally, a consideration about diagnostics of the model, plot of the residuals

is not so bad, no evidence in pattern of residuals against fitted values and

indexes and some typical problems in the tails for the Q-Q plot. But this

is not enough, indeed the worm of the plot of the quantile residuals is not

so flat, but it has a very strange M-shape with a lot of points out of the

boundaries representing confidence bands as shown in Figure 5.2.

These are several reasons to consider the model not appropriate and we

need some enhancements to make it simpler and easier to interpret from a

medical point of view.
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5.6 Use of other criteria for model selection

During stepwise procedure for model selection, different criteria could be

used to select variables to include in the linear predictor of the final model.

So far, a penalty k = 2 was applied obtaining AIC. Increasing the penalty

is a way to simplify the model structure. A grid of values from 2 (AIC)

(Akaike, 1974) to log n (SBC) (Schwarz et al., 1978) was given to k and

the relative number of explanatory variables included in the model for each

parameter (µ, σ, ν, τ) is displayed in Table 5.4. Choice of best k has to be

based on a satisfactory trade off between simplicity of the model and loss

of information.

k µ σ ν τ

2 (AIC) 7 6 4 5
3 - 4 4 6 2 3
5 - 6 3 5 2 2

7 3 5 1 2
log(n) = 8.32 3 4 1 1

Table 5.4: Number of selected explanatory variables for different k

Worm plots for k = 4 and k = log(n) = 8.32 are displayed in Figure

5.3. M-shape pattern is maintained in the graph but now models have a

reasonable number of parameters. So problems of complexity of the model

and difficulty in the interpretation of the estimate from a clinical point of

view were reduced.

Once the value k for the penalty has been selected, another possibility to

improve the model fit consists in choosing proper link functions. We try

to use a modified version of BCPE distribution with log link for µ, this

version is called BCPE-original (BCPEo). The structure of the model does

not change, the only difference is in the use of the logarithm as link function
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Figure 5.3: Worm plots for model selected with different penalty k

for µ. As it is possible to see from Table 5.5, the BCPEo models have a

smaller Global Deviance. This means that whatever value of penalty k we

choose models with log link for µ are preferable.

k Dev.BCPE Dev.BCPEo d f
2 (AIC) 7221.774 7199.201 33

3 - 4 7263.652 7241.626 26
5 - 6 7278.113 7257.81 21

7 7300.611 7285.142 18
log(n) = 8.32 7316.697 7300.487 16

Table 5.5: Comparison in terms of Global Deviance between GAMLSS
with BCPE and BCPEo

5.7 Inclusion of a random effect component

Finally, in order to take into account correlation between observations from

the same patient, a random effect component for the patient variable has

to be considered. The previous model was estimated without taking into

account hierarchical structure of data. Focusing on 2013, patient effect

cannot be evaluated but we have to consider an exam effect. There are two
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functions for fitting random effects in GAMLSS, random() and re().

The function random() is based on the original function of Trevor Hastie

in the package gam. Following this approach it is possible to find a ”lo-

cal” maximum likelihood estimation of the smoothing parameter λ. This

method is equivalent to the PQL method of Breslow and Clayton (1993)

applied at the local iterations of the algorithm. Venables and Ripley (2002)

claimed that this iterative method was first introduced by Schall (1991).

The function re() is similar to the lme() function of the package lme (Laird

and Ware, 1982). Using this function it is possible to fit complex random

effect models where the assumption of the normal distribution for the re-

sponse variable is relaxed. The theoretical justification comes again from

the fact that this is a PQL method (Breslow and Clayton, 1993). So we

add a random effect for exam using alternatively the function random() and

re() in gamlss. The two models are compared using AIC and worm plot as

diagnostic tool for goodness of fit. Worm plot for two alternative models

are shown in Figure 5.4. On the basis of these criteria the model using re

was chosen.
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Figure 5.4: Worm plots for model selected with different random effects



40 Analysis

Final specification of the model and table of coefficients are displayed in

Table 5.6.

speed =



log µ = α1 + age + depth + segment + r.e.(sub ject)

logσ = α2 + age + weight + size + position

ν = α3 + age

log τ = α4 + age

log µ Estimate P-value
α1 0.049 0.0491 *

depth -0.048 < 2e-16 ***
age 0.008 < 2e-16 ***

seg6 -0.017 0.3677
seg7 -0.128 1.25e-11 ***
seg8 0.076 0.0566 .

logσ Estimate P-value
α2 -0.460 0.0672 .

age 0.007 1.26e-09 ***
weight 0.008 5.24e-16 ***

size -0.913 1.22e-09 ***
positlat -0.021 0.4395

positpos 0.109 0.0004 ***
ν Estimate P-value
α3 -2.539 < 2e-16 ***

age 0.032 < 2e-16 ***
log τ Estimate P-value
α4 -0.736 3.35e-07 ***

age 0.024 < 2e-16 ***

Table 5.6: Coefficients for selected GAMLSS model



5.7 Inclusion of a random effect component 41

Some considerations can be derived from this output. In order to make the

interpretation of the model coefficients simpler, a graphical representation

of the regression terms against predictors is plotted for each parameter of

the model.

• Age seems to be the most important predictor for speed since it has

to be included in each equation of the selected model. Age effect is

always significant and its coefficient is positive for all the equations

• Depth has a negative effect on speed, since log µ = −0.048 then µ =

exp(−0.048) = 0.953
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Figure 5.5: Term coeffcients for µ

• Segment is significant for µwith baseline Segment 5 not significantly

different from Segment 6 and Segment 8. Coefficient for Segment 7

is negative log µ = −0.128 then µ = exp(−0.128) = 0.880.
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• For logσ we have 4 explanatory variables with size with a negative

coefficient and lateral position not significant different from the base-

line position (anterior) logσ = 0.109 then σ = exp(0.109) = 1.115.

(see Figure 5.6)
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Figure 5.6: Term coeffcients for σ

• For skewness and kurtosis the only significant terms are just negative

intercept and a positive coefficient for age. (see Figure 5.7)
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Figure 5.7: Term coeffcients for ν and τ

Residuals plot are shown in Figure 5.8. On the left, a four panels plot shows

representation of residuals against fitted values and index variable, density

estimate and Q-Q plot comparing theoretical and empirical distribution of

the residuals. The density estimate seems to be not so far from a Normal

distribution while the Q-Q plot shows a not good fitting in the tails. On

the right the worm plot (see Chapter 3) of the model, most of the points

are within confidence interval bands but they form a M-shape pattern more

than a worm-like string. In the next section some solutions will be explored

to fix this issue.
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Figure 5.8: Diagnostic plots of the final model
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5.8 First solutions for M-shape worm plots

The M-shape pattern in the worm plot could suggest the presence of bi-

modality in the data. A first solution could consist in the introduction of

some significant interaction terms in the model. After choosing SBC as

criterion to select the model, interaction terms were only introduced for µ

with addterm() function. Using this function we try to fit all models that

differ from the starting model by adding a single term from those supplied,

maintaining marginality. The choice to include or not the interaction term is

made on the basis of the AIC. The only significant interaction is the one in-

volving Depth and Segment variables. In Figure 5.9 the worm plot from the

model with interaction has been compared with that of the final model. As

we can see from the two graphs there is no substantial difference between

the plots, hence the model without interaction terms is chosen.
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Figure 5.9: Simple model vs Interaction model

Since the idea to add interaction terms does not fix our M-shape pattern

problem, we try to detect presence of two different groups of observations
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related to some features of the predictors to justify this bimodality in worm

plots. For this reason we split up the dataset in two subsets for each pre-

dictor. The split has been obtained both conditioning on one of the factors

of the qualitative explanatory variables and choosing an appropriate cut-off

for quantitative predictors. Even using this solution the worm plots show

again the same pattern. Just for example in Figure 5.10, conditioned worm

plots for Sex are shown.

● ●

●

●
●

●●

●

●

●

● ●● ●

●

●

●●

● ●
●

●
●

●
●

●
●

● ●
●● ●

●
●

●
●

●

●● ●
●●

●

●● ●●
● ●●

●
●●

●
●

● ●●● ●●●

●

●

●● ●
●

●

●

●

● ● ●●

● ●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

● ●

●●

●

●

● ●

●

●

●

●●
●

●

●

● ●

●

●
●

●

●

●●

●

●
●

●
●●●

●

●● ●
●

●●●●
●●

●●
●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●
●

● ●
● ●

●

●●

●●●
●

●

●

●
●

●●

●

●

●
●

●

●● ● ●
●

●
●●●● ●

●

●

●

●●

●

●

●
●

●

●

●
●●

● ●●

●●
●

●
●

●

●
● ●

●

●
●●●

●

●
●

●
●

●

●

●

●●

●
● ●

●
● ●

●●

●

●
●

●

● ●
●

●

●

●●

●
●

●
●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●●

●

●

●
●●●●

●

●●
●

●

●

●

●

●
● ●●

●

●

●

●

●
●

●
●

●
●

● ● ●●●

●●
●

●
●●

●

●

●●
● ●

●

●

●

●

●● ●
●

● ●

●
●

●●●
●●

●●
●

●

●
●

●
●

●
●

●
● ●●●

●

●

● ●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●● ●

● ●

●
●

●
●●●●●

●

●
●

●● ●
●● ●

● ● ● ●

●

●
●

●

●
● ●●

●

●●

●

●
●

●
●

●●

●

●
●

●

●

●
●● ●

● ●

●
●

● ●●

●

●

●●

●

●

●

●
● ●

●

●

●
●●

●●

●

●● ●
●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●

●●

●
●●

●

● ●

● ●●
●

●

●

●

●

●●
●

●
●●

●

●

●

●
●

●

●

●

●●

●
●

●

● ●

●

● ●
● ●●

●
●

●

●

●

●●

● ●
● ●●

●●

●

●●

●

● ●
●● ●

●

●

● ●●●
●

●
●

●

●
●

●
●

● ● ●
●

●

●
●●

●
● ●● ●

●

●●

●
●

● ●●
●

●

●

●

● ●

●

●

●

●

●
● ●●

●
●

●

●
●

●●●

●
●●

●

●
●●

●●●●
●

●
●

●●

●●

●

●● ●

●

●

●●

●

●

● ●
●

●●

●

●●

●
●

●
●

●

●
● ●●

●
●

●

●●
●

●

●

●

● ●

●

●● ●●

●

●

●
●

●●

●●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●● ● ● ●●●

●

● ●●●

●

●
●

●●●●

●●●

●

●●

●

●●

●●

●●
●

●
●

●

● ●●
●●

●

●●

●●

●

●

● ●
●

●

●●
●●●

●

●●

●

●

●

●

●

●● ●
●

●
●

●
● ●

●

●

●

●
● ●●

●
● ●● ●● ●●

●●

●● ●
●●

●

●
●

●
● ●

●

●
● ●

●

●

●
●

●
●● ●

●

●

●

●

●

●

●
●●

●

●

●

●
●●●

●

●

●

●

● ●●

●

●●

● ●●

●

●●

●●
●

●
●

●●

●●

● ● ●
●

●
●

●
●

●
●

●

●

●●
●

●

●●

●
●

●

●

●
●

●●
●● ●

●
●

●
●●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

● ● ● ●

●
●●

●
●

●

●● ●

● ●● ●

●
●

●
●

●
●

●
●● ●

●● ●

●

●●

● ●● ●

●

●●
● ●

●
●

●

●●
●

●
●

●

●
●

● ●

●

●
● ●

●

● ●

●

●

● ●

●●
●

●

● ●●
●

●
●

●

●
● ●

●●

●

●●

●

● ●●
● ●●

●●
● ●

●

●

●
●

●

●

● ●
●

●

●

● ●

●

●●

●

●
●

●

●

●

●
●

● ●

●
●

● ●

●

●

●●

●

●●

●
●

●

●
●

● ● ●

●●

●

●●
●

●● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●●

●
●●

●
●

● ●

●

●

●

●

●

●

●

●
●●●●●

●

●

●
● ●●

●

●●

●

● ● ●
●●

●
● ●

●
●

● ●

●
●

●

●

●

●

●

●

●

●
●

●●●●
●

●

●●●
●

●
●

●●

●●

●

●

●

●
●

●

●

●
●

●●
●

●●

●

●

● ●
●

●

●
●

●

● ●

●

●

●
●

● ●●●●

●
●

●

● ●

●

●

●● ●

●

● ●●● ●
●●

●●

●

● ●

●
●

●

●●

● ●

●

● ●

● ●●
● ●

●

● ●●

●●●●
●

●

●●●● ●

●

●

●

●
●

●
● ●

●
●

●

●

●●● ●●

●

●
●

●●

●

●
●●

● ●●
●

●

●
●

●
●
●

●

●

●

●
●●

●

● ●●
●

●

●
●

●
●

●

●

●

●

● ● ●
●

●
●

●

●

●
●

●
●●

●

●
● ●

●●
●

●

●
●

●

● ●

●

●
●

●

●

●

● ●
●●

●
●

●●
● ● ●

●
●●

●

●●
●

●
●●

●● ●
●

●●●

●

●

●

●

●
●

●

●●●

●

●●

●

●
●

●

●
●

● ●

●

●

●

●●
●

●
● ●

●●●

●

●

●
●

●

●

●
●

●

●

●

● ●●
●

●

●

●
●

●

●

●

●

●
●●● ●
●

● ●

●
●

●
●

●
●●

●●

●
●

●●● ●● ●
●

●●
●

●

●

●●●● ●
●

●

●
●

●

●

●
●

●

●

●

●
●●

●
●

● ●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●
● ●

●

● ●●
●●●

●

●
●

●

●

●

●
●●

●●
●

●
●●

●

●

●

● ●

●

●

● ●
●

●

●
●

●●
●

●

●

●

●

●

●●

●
●

●

●●

●
●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●

●

● ●

●

●●● ●●

●●

●

●

●
●

●● ●
●

●●
●● ●●

●

●●
●

●

●
●

●

●●●●●● ●●

●

●

●

●
●●

●
●● ●

●

●

●
●●

●
●

●
●

● ●●

●
●

● ●

●

●
●

●●
●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●●

●

●

●

●

● ●
●

●

●

●●●
●●

●
● ●● ●●

●

●

●

●

●●
●

●

●

● ●

●

●

●
● ●

●
●

●

●
●●

●

●

●

●

●

● ●
●

●● ●●● ●

●●
●

●
●

●

●

●
●

●
●●

●

●●

●

● ●●
●● ●

●

●
● ●●

●
●

●
● ●●●

●●
●●●

●

●

●

●
●

● ●

●

●
●

●●●
●●

● ●●

●

● ●●●
●

●● ●

●●

●
●

● ●
●●●

●
●

●
●

●●●● ● ●

● ●

●
●●

●
●●

●

●

●
● ●

●

●

●●

●●

−4 −2 0 2 4

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

Unit normal quantile

D
ev

ia
tio

n

Male

●

●

●
●

●
●

●

●●
●

● ●

●

● ●
●

●

●

●

●●

●

●

●
●

●●

●

●
●

● ●

●

● ●
●

●

●

●

●

●
●

● ●●●●●●●
●●

●●
●

●
●● ●

●

●
●

●●
●

●

●

●

●
●

●● ●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

● ●
●

●

●
●●

●●

●

●

●

●

● ●
●

●

●
●

●●

● ●

●

●
●

●
●

●● ●●
●

●

●●

●●
●

●

●
●●

●●
●●

●

●

●● ●●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●●● ●

● ●

●
●

●
●

●●

●

●

●●
●

●
●

●
●

●
●

● ●●● ●
●

●
●

●

●
● ●

●

●
●

●

●●●●

●

●

●●●●●

●

●
●

●

●
● ●●● ●

●
●

●

●

●

●

●●
● ●●● ●

●

●

●
●

●
●

●
● ●

●
●

●● ●

●

●
●●●

●●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●●
●

●
●

● ●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●
● ●

●

●

●
●

●

●

●

●

●

●

●● ●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●●

●

●

●●●
●

● ●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●● ●● ●

●
●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●
●

●

●●

●●
●

●
●●

●●
●

●
●

●
●●

●
●

●

●

●
●

●

●

●

●
●

●●

●●
●

●

●

●

●
●
●

●
●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●● ●
●

●
●●●●

●
●

● ●
●

●

●
●

●

●●

●
●

●

● ●

●

●● ●
●

●
●●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●
●●

● ●
●

●●
●
●

●

●

●

● ●● ●
● ●

●
●

●●

●● ●●

●
●

●●

●

●

●
●

●

●

●

●●

●● ●

●

●

●

●

●●●
●●
●

●

●●
●

●
●

●
●

●
●

●

●

●

●
●

●● ●
●●

●

●
●

● ●

● ●
●

●

●●
●

●●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●●

●
●●

●●●
●

●

●

●

●
●

●

●●

●●

●

●
●

●
●

●

● ●

●
●

●●●
●●● ●●●

●● ●●
●

●

●
●

●
●

● ●

●

●● ●●

●

●
●

●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●
●

●

●
●

●

●

●●
●● ●

●●●
● ● ●

●

●

●

●●
●

●●
●

●●●
●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●

● ●
●

●

●●

●● ●

●

●

●
●

●●
●

●

●●

●● ●

●
●

●

●
●

●

●
●

●

●

●

●●

●

● ●

●
●

●

●

●

● ●
●

●● ●●

●

●
● ●

●

●

●●
●●

●
●●

●

●

● ●
●

●
●

●

●●

●

●

●

● ● ●●
●●●●

●
●●

● ●
●

●

●
●

●
●

●

● ●●

●
●

●
●

●●

●●
●

●

●

●
●

●
● ●●●●

●

●

●

●

●
● ●
●●

●
●

●●

●

●

●

●
●

●●

● ●●

● ●

●

●
●

●
● ●●●●
●

●

●

●

●
●

●
●●

●●

● ●

●

●

● ●

●

●
●

●

● ●●
●

●

●

●
●

● ●

● ●
●

●

●

●●
●●●

●●●

●

●
●

●

●

●

●
●

●●
●●

●

●
●

●●●

●●

●
●

●

●

●
●

●
●

●

●
●

● ●

●

●

●
●●●

●

●
●●

●

●

●

●
●

●

●
●

●●

●

●●

●●●

●● ●●

●

●

●

●

●

●
● ●

●

●

● ●

●
●

●●
● ●●

●

● ●

●

●● ● ●
●●

●

● ●●●

●● ●

●

●●
●●●●

●

●

●

●
●

●●

●

●

●
●●

●

●
● ●

● ●

●

●

●

●

●

●
●

●
●● ●●

●
●

● ●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●●
●●

●
●

●

●

●

●
● ●

●

●

●
●

●

●

● ●●
●●

●

●

●
●

●● ●●●

●

●
●●●

●●

● ●

●

●
●

●

●●

●
●

● ● ●
●

●

●
●

●
●

●●

●
●●

●

● ●●

●

●

●
●

●
●

● ●
●

●

●

●

●
●
●●

●

● ●

●
●

●

●

● ●●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●●●

●
●

●

●

●

● ● ●●

●

●
●

●

●●●●

● ●

●

●●

●
●●

●

●
●

●●

●

●

●

●
●

●

●●
●

●● ●

●

●

●
●

● ●

●

●●

●

●

●
● ●

●

●
●

●
● ●

●

●

●
●

●
● ●

●

●

●
●

●
●●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

● ●● ●

●
●●●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●● ●
●● ●

●

●

●
●●

●

●
●

●●●

●

●

●

●

●

●

●
●

●●

●

●

●●

●
●

●
●●

●
●

●

●

●
●●

●●
●

●●●
●

●

●

●

●

●●
● ●

●

●

●
●

●
●

●

● ●

●

●

●
●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●
● ●

●
●●

●

●

●● ●

●

●●●
●

●

●

●

●

●

●

● ●●

●● ● ●

●
●

●

●

●

●

●

●
●

● ●

●●
●

●

●●

●

● ●

●

●

●
●●

●●
●

●●

●

●

●

●
●

●
●

●● ●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●● ●

●●
●

●

●

●

●
●●●●●●●●

●

●

●

●

●
●

●
●●

●
● ●●●

●
● ●

● ●

●

●

●

●●

●
●● ●

●

●●

●

●

● ●

●
● ●●

●
●

●

●
●

●

●

●●

●●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

● ●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●● ●

●

●● ●

●

●

●

●
● ●

●

●
●

●

●
●

●

●

●●●

●●
●

●

●

●

●●●
●●

●

●

●●

●

●

●
●

●●●

●
●

●

●●●●

●●●

●●
●

●●●
●

●

●

●
●

●●

●

●●●

●

●

●

●●

●

●
● ●

●●

●
●

●●

●
●●

●

●

●
●

●

●●

●
●

●

●

●

●●
●

●●

●

●

● ●

●

●

●

●

●●

●

●
● ● ●

● ●●
●

●●

●
●

●

●●
●

●● ●
●

●
●

●●

●

●

●

●

●

●

●
● ●●●

●

●●●

●

●
●●

●●
●

●

●

●

●

●

●

●

●

●
●

● ●
●●●

●

● ●●

●
●

●

●●
●

●
●●●●

●
●

●
●

●

●● ●●
●

●

●

●

●●
●

● ●●
●

●

●
●

●

●

●

●●●●

●
●

●
●

●
●●

●
●

●

●

●
●●

●●●

●
●

●

●
●

●
●●

●●
●● ●

●
●●

●
●

●

●

●
●

●●
● ●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●●

●

●● ●
●●

●

●

●

● ●●
●

●

●
●

●

●

●

●

●

●

●

●●●
●

●

●

●

●●
●●

● ●
●

●●

●
●●

●●
●

●

●

●
●●● ●

●●
●●●

●

●

●
●●●●

●
●

●

●

●●●●
●

● ●
●

●

● ●● ●●●

●

●●

●
●

●

● ●●
●

●
●

●

●
●

●

●

●

●

● ●●● ●
●

●

●

●

●●

●

●●

●

●

●

●

●

●●
●● ●

●
● ●

●

●
●

●
● ●

●
●

●

●

● ●
●

● ● ●

●

●

●
●

● ●●●

●

●
●● ●

●●

●
●

●●

●
●

●●●

●●●

●●

●

●● ●

●
●

●●
●

●

●●

●

●

●
●●

●

●

●

●

●

●
● ●

●

●

● ●
●

●

●●
●

●

●

●

●●

●
●

●●

●

●

●

● ●

●

●

●
●

●●
●

●

●
●●

● ●● ●●

●

●
●

●
●

●
●

●

●●
●

●

●
●

●

●

●

●

●
●

●
●

●
●

●● ●
●

●●●
●

●

●
●

●

●

●

●●

●
●

● ●
●

●
● ●●

●

● ●
●●

● ●●
●

●●●

●

●●●●

●
●

●
●●

●

●

●

−4 −2 0 2 4

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

Unit normal quantile

D
ev

ia
tio

n
Female

Figure 5.10: Males vs Females

Usually, an explanation of this pattern could be represented by skewness in

residuals. Fitting a curve to the model residuals, the suggested distribution

is plotted in Figure 5.11. This distribution does not seem to be so different

from a Normal one. In next chapter we try to implement a mixture model

approach for GAMLSS to deal with this M-shape in worm plots.
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Figure 5.11: Histogram of residuals for final GAMLSS

5.9 Comparisons with other models

After the final model has been selected, a posterior comparison between

the distribution in Table 5.3 is done. Using AIC as selection criterion in

Table 5.3, BCPE was chosen as distribution function for stiffness response

variable. A comparison using same probability distributions is shown in

Table 5.7 where AIC is now computed on the final model. BCPE is again

the best probability distribution since AIC for BCPE model is the lowest.

Distr. p AIC
IG 2 6916.590

BCCG 3 6676.640
ex-GAUS 3 6983.527

BCPE 4 6616.631
BCT 4 6673.272
GB2 4 6658.703

Table 5.7: AIC for 6 distributions in GAMLSS (Final model)



Chapter 6

Mixture models in GAMLSS

6.1 Overdispersion and mixture models

Overdispersion is the most common form of unexpected variation. Data

are overdispersed when there is too much variation in comparison with the

variation expected by the assumed distribution. There is much literature

about overdispersion, since it is a frequently recurring situation when real

data are analyzed. In this study we try to manage the problem of overdis-

persed data following the solution treated by Aitkin (1996). He proposed to

use an EM algorithm (Dempster et al., 1977) for maximum likelihood es-

timation in GLM with overdispersion. The algorithm is initially derived as

a form of Gaussian quadrature assuming a normal mixing distribution. The

approach we are going to use can be seen as an extension of this approach

to probability distributions not belonging to the exponential family.

As we can see from Figure 6.1, our data are characterized by overdiper-

sion. Taking into consideration the hierarchical structure of the data the

two plots show the relationship among mean and variance (a) or mean and
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Figure 6.1: Overdispersed data

log variance (b) for each exam in the full dataset. On the left it is shown

how variance increases when mean is increasing, on the right a quadratic

curve (red) and a non parametric local polynomial curve (green) are plotted

to describe this relationship. So probably we could use some technique for

overdispersed data to avoid problems emphasized in the previous chapters.

In particular, the mixture approach in GAMLSS could represent one of the

possible solutions to fix the M-shape worm plots.

There is an extensive literature on mixture distributions and their use in

modelling data. Everitt and Hand (1981), Titterington et al. (1985), and

McLachlan and Peel (2000) are some of the books dedicated exclusively to

mixture distributions.

As for other statistical models, using mixtures we suppose that our random

variable Y comes from k component.

Suppose that the random variable Y comes from component k represented

GAMLSS models, having density function fk(y), with probability πk for
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k = 1, 2, . . . ,K then the marginal density of Y is given by

fY (y) =

K∑
k=1

πk fk(y)

where 0 ≤ πk ≤ 1 is the prior probability of each k component.

In GAMLSS two ways to apply mixtures are defined. According to the

first method, each k component has a proper structure and there is no need

to have parameters in common. According to this approach, it is possible

that the conditional distributions fk(y), k = 1, 2, . . . ,K could have different

GAMLSS family distributions. Using the second approach, the k compo-

nents of the mixture may have parameters in common, i.e. the parameter

sets (θ1, θ2, . . . , θk) are not disjoint. The prior (or mixing) probabilities are

either assumed to be constant or may depend on predictors x0 and param-

eters α through a multinomial logistic model. Note that, since some of

the parameters may be common to the k components, the distribution used

must be the same for all components. Similarly the link functions of the

distribution parameters must be the same for all the components. In both

cases likelihood function is maximized iteratively using the EM algorithm,

with respect to ψ, i.e. with respect to θ and π.

We model the mixing probabilities πik using a multinomial logistic model

where δi is a single draw from a multinomial distribution with probability

vector π, i.e. δi ∼ M(1, π). Consequently the complete log likelihood is

given by:

lc = lc(ψ, y, δ) =

n∑
i=1

K∑
k=1

δiklog fk(yi) +

n∑
i=1

K∑
k=1

δik log πik
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Summary of the (r + 1)-th iteration of the EM algorithm

• E-step

Replace δik in previous equation by ŵ(r+1)
ik , for k = 1, 2, . . . ,K

i = 1, 2, . . . , n to give:

Q =

a∑
Kk=1

n∑
i=1

ŵ(r+1)
ik log fk(yi) +

k=1∑
K

i=1∑
n

ŵ(r+1)
ik log πik

where ŵ(r+1)
ik =

π̂(r)
ik fk(yi|θ̂k

(r))∑K
k=1 π̂

(r)
ik fk(yi|θ̂k

(r))

• M-step

1. Since components fk(y) for k = 1, 2, . . . ,K have pa-

rameters in common, Q cannot be maximized separately

with respect to each θk. Obtain θ(r+1) by fitting a sin-

gle GAMLSS model to an expanded response variable ye,

with expanded explanatory variable design matrix Xe, us-

ing weights ŵ(r+1).

2. Obtain α̂(r+1) by fitting a multinomial logistic model.

3. ψ̂(r+1) = [θ̂(r+1), α̂(r+1)]

Note that the M-step (1) is achieved by expanding the data set K times.

Using R software and package gamlss.mx, a mixture model has been fit-

ted for liver fibrosis data with parameters in common through the function

gamlssNP(). In R output, the column headed as MASS identifies the k mix-
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ture components. If this coefficient is significant then the use of a mixture

with parameters in common is justified. This column is declared as a fac-

tor in the R implementation of the EM algorithm. If this factor MASS is

included in the predictor for a distribution parameter µ, σ, ν, or τ, then the

predictor intercepts differs between the k components. We choose k = 2

so the two components of mixture have a probability distribution BCPEo.

No further actions were applied to perform model selection. The model in

Chapter 5 was used as reference model to define parameters that has to be

included in the model.

Some considerations are important on the results from this method. Firstly,

it is possible to compare the coefficients tables of the two models: the one in

Table 5.6 and the mixture model one in Table 6.1. Most of the conclusions

derived from the first output are confirmed here. Among predictors, Age

is again the most important since it is present in all the equations of the

model. Depth has a significant negative effect on Speed. The only liver

segment that differs from the baseline (segment 5) is segment 7. As for

as logσ is concerned, even in this case there is no significant difference

between anterior or lateral position, while the posterior one has a positive

effect on the variance. All other coefficients are equally signed and similar

in terms of absolute value. Moreover, the new coefficient named MASS is

positive and statistically significant. The use of a mixture model is justified

and the difference between the 2 components is positive.

Besides, comparisons between linear GAMLSS and GAMLSS mixture ex-

tension are carried out in two ways. Firstly, a comparison in terms of good-

ness of fit is achieved using Global Deviances GD. Secondly, the worm plot

is used as diagnostic tool and since, according to our hypotheses, the use

of a mixture model gets a more flat worm, the h number of points outside
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the confidence interval bands, is used as criterion for comparison. We wish

for a lower GD and a lower h for the mixture model. Mixture model has

a lower Global Deviance with ∆GD = 34.30. As we can see from Figure

6.2, there is a difference between the two worm plots: compared to the one

on the left (original model), the second one with the mixture approach is

more flat and on the right tail more points are now within the boundaries

with ∆h = 1355.

log µ Estimate P-value
α1 -0.105 1.32e-06 ***

depth -0.046 < 2e-16 ***
age 0.007 < 2e-16 ***

seg6 0.012 0.2818
seg7 -0.044 4.29e-07 ***
seg8 0.058 0.0529 .

MASS 0.276 < 2e-16 ***
logσ Estimate P-value
α2 -1.444 < 2e-16 ***

age 0.012 < 2e-16 ***
weight 0.005 < 2e-16 ***

size -0.262 0.0002 ***
positlat -0.016 0.2114

positpos 0.083 9.14e-09 ***
ν Estimate P-value
α3 -2.246 < 2e-16 ***

age 0.026 < 2e-16 ***
log τ Estimate P-value
α4 -0.435 0.00345 ***

age 0.040 < 2e-16 ***

Table 6.1: Coefficients for mixture models in GAMLSS

Now, each statistical unit will have a posterior probability to belong to each

of the two components. Let us consider these probabilities derived from the
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Figure 6.2: Final model vs mixture approach

estimated mixture model and let us connect them with the Metavir stage

classification of liver fibrosis. As we have said in previous chapters, ac-

cording to this classification a liver is divided into five stages from F0 to F4

on the basis of the presence of connective tissue in the liver. For simplic-

ity, here we use a stage classification in three groups: F0-F1 (normal liver),

F2-F3 (mild fibrosis) and F4 (cirrhosis). The probability to belong to one

of the two identified components is divided in three groups too.

In Figure 6.3 we have on the x-axis the speed and on the y-axis the posterior

probability to belong to component 1. We are surprised to see that there is a

well-defined pattern in this plot. In fact, partitioning the two variables in 3

sectors, we obtain a grid of 9 sectors and measurements cluster only in some

specific sectors. This situation could let us suppose the existence of a di-

rect relationship between the posterior probability and the Metavir staging

system. In particular, F0-F1 values of the speed are related to a percentage

to belong to component 1 between 0% and 69%. Moreover, measurements

belonging to cirrhotic patients seem to be linked to percentages over 90%.
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Figure 6.3: Partition of posterior probabilities related to speed

A 3-by-3 table could be derived from the graph to summarize the results

of this method (see Table 6.2). Taking into account all n = 4129 measure-

ments and using this approach, the direct relationship between Metavir and

the three different groups involves 531 units in the first group and 121 in

the third group. Actually, we know that these units represent just 15% of

the entire number of observations and most of measurements are grouped

in the middle classes, but it is however important to underline the presence

of 4 zero-cells in the association table. For these reasons, the hypothesis

that the two identified components of the mixture approach in GAMLSS

could coincide with healthy and cirrhotic patients can not be rejected.

P \ D F0-F1 F2-F3 F4
0-69% 531 0 0

69-91% 1730 807 827
91-100% 0 0 121

Table 6.2: Association matrix
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6.2 Simulation studies

Some simulations have been run in order to evaluate the goodness of a

mixture approach in GAMLSS when the response variable seems to be bi-

modal. The starting scenario is very similar to the one in liver fibrosis data.

M = 50 datasets are simulated with n = 1000 observations. Each dataset

includes a response variable Y and explanatory variables X1, X2, X3. The Y

variable is obtained as mixture of 2 BCPEo distributions and the weights

for the mixture components are π1 = 0.75 (in liver fibrosis data the propor-

tion of observations belonging to non-cirrhotic patients is about this value)

and π2 = 0.25. Plot of densities for Y = Y1,Y2 for a simulated dataset is

displayed in Figure 6.4.
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Figure 6.4: Plot of density for Y (Scenario 1)
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Three predictors X1, X2, X3 are simulated from a Normal distribution. A

GAMLSS involving 4 parameters (µ, σ, ν, τ) has been estimated for these

simulated data. The framework of the estimated GAMLSS is similar to the

final model presented in Chapter 5 and it is shown below.

Y = Y1,Y2 =



log µ = α1 + X1 + X2 + X3

logσ = α2 + X1 + X2

ν = α3 + X1

log τ = α4 + X1

where Y1 ∼ BCPEo(5, 0.1, 1, 2),Y2 ∼ BCPEo(7, 0.1, 1, 2) and X1, X2, X3 ∼

N(5, 1). Using the same dataset, a GAMLSS mixture model approach is

estimated. As seen for liver fibrosis data, linear GAMLSS and GAMLSS

mixture extension can be compared using Global Deviances GD and the

number of points outside the confidence interval bands h .

Besides the already described scenario, different scenarios have been im-

plemented here, changing starting values for µ2, in order to obtain differ-

ent mixtures (scenario 2-5). Other scenarios have been obtained assuming

different default values of random generalization of BCPEo distribution,

values of σ = 0.25, 0.5 (scenario 6-7), ν = −1, 0 (scenario 8-9), τ = 1, 3

(scenario 10-11). Finally in scenario 12-13 different weights π1 for the

mixture components are considered: π1 = 0.5, 0.9.

As we can see from Table 6.3, good results are obtained with the starting

scenario. Indeed, average difference Global Deviance among linear model

and the mixture approach is ∆GD = 19.4 and the difference in terms of

number of points outside the confidence interval bands is ∆h = 52. Look-

ing at different scenarios, when distance between µ1 and µ2 decreases the
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µ1 µ2 π1 σ1 = σ2 ν1 = ν2 τ1 = τ2 ∆GD ∆h
1 5 7 0.75 0.1 1 2 19.4 52
2 5 6 0.75 0.1 1 2 -0.2 -2
3 5 8 0.75 0.1 1 2 62.9 47
4 5 9 0.75 0.1 1 2 90.4 63
5 5 10 0.75 0.1 1 2 107.9 43
6 5 7 0.75 0.25 1 2 2.4 1
7 5 7 0.75 0.5 1 2 0.2 -1
8 5 7 0.75 0.1 -1 2 25.3 111
9 5 7 0.75 0.1 0 2 27.5 104

10 5 7 0.75 0.1 1 1 0 0
11 5 7 0.75 0.1 1 3 15.4 49
12 5 7 0.5 0.1 1 2 0.1 -4
13 5 7 0.9 0.1 1 2 2.64 2

Table 6.3: Simulation scenarios for n = 1000

two approaches appear very similar. When this distance increases, the two

comparing indicators increase too, except for some convergence problems.

Fixing µ1 and µ2 and increasing σ, mixture components are more flat and

similar results to scenario 2 are obtained. Negatively skewed or symmet-

rical scenarios give better results than the first one. Different values for

kurtosis τ = 1, 3 show that, when low values are selected, results for two

models are similar, instead using higher values results are similar to sce-

nario 1. Finally, to choose different weights for the π mixing components

leads to slight differences between the two methods.

Similar results are obtained increasing number of observations n = 2000

for simulated datasets (Table 6.4).

In conclusion, we could state that the use of a mixture approach in GAMLSS

leads to good results for dataset similar to the liver fibrosis data. Firstly,

since our scenarios are similar to the applied one in liver fibrosis data, sim-
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µ1 µ2 π1 σ1 = σ2 ν1 = ν2 τ1 = τ2 ∆GD ∆h
1 5 7 0.75 0.1 1 2 41.5 152
2 5 6 0.75 0.1 1 2 -0.7 -19
3 5 8 0.75 0.1 1 2 125.2 172
4 5 9 0.75 0.1 1 2 176 97
5 5 10 0.75 0.1 1 2 217.9 97
6 5 7 0.75 0.25 1 2 1 0
7 5 7 0.75 0.5 1 2 0.1 -2
8 5 7 0.75 0.1 -1 2 47 251
9 5 7 0.75 0.1 0 2 51.3 232

10 5 7 0.75 0.1 1 1 -0.5 10
11 5 7 0.75 0.1 1 3 35.5 117
12 5 7 0.5 0.1 1 2 -0.4 -23
13 5 7 0.9 0.1 1 2 2 50

Table 6.4: Simulation scenarios for n = 2000

ulations are limited to the use of a BCPEo distribution. Moreover, the dif-

ference in terms of ∆GD and ∆h is related to the framework of the mixture

components. When they are well defined and not overlapped there is a clear

gain in the global goodness of fit. Finally, the choice of weights π influences

the results.



Chapter 7

ROC curve in GAMLSS

7.1 The ROC Curve

Receiver operating characteristic (ROC) curve is one of the most used tool

to measure the accuracy of a binary medical test. Let D be the dummy

variable to indicate the presence of disease and Y the result of the diagnostic

test (Y = 1 positive test for disease and Y = 0 negative test for disease). A

binary medical test is informative if it is able to predict the disease better

than randomly. For this reason, in the presence of a dichotomous outcome

and a binary prediction, four different situations can appear:

• True Positive (TP) when you have disease and your prediction test is

positive;

• True Negative (TN) when you have not disease and your prediction

test is negative;

• False Positive (FP) when you have not disease and your prediction

test is positive;
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• False Negative (FN) when you have disease and your prediction test

is negative.

Arranging the outcomes in a 2-by-2 table, if D is used for the disease and

Y for the test result we will have the following table:

D=0 D=1
Y=0 TN FN
Y=1 FP TP
Total TN + FP FN + TP

Table 7.1: Definition of 2-by-2 table for ROC Curve

The accuracy of a test could be computed as the sum of the main diago-

nal (T P + T N) over the n total number of subjects. Two important factors

that characterize a binary test are sensitivity and specificity. Sensitivity

measures the proportion of subjects that are correctly predicted when dis-

ease is present, so it is defined as T P / (T P + FN). On the other hand,

specificity measures the proportion of subjects that are correctly predicted

when the outcome is negative, defined as T N / (T N + FP). Sensitivity is

also called True Positive Rate (TPR) or True Positive Fraction (TPF), while

specificity is also named True Negative Rate (TNR) or True Negative Frac-

tion (TNF). Most of the times TNF is expressed as the difference between

1 and the False Positive Fraction (1 − FPF). An ideal test supposes all pa-

tients correctly predicted with T PF = 1 and T NF = 1 and all observation

in 2-by-table will be on the main diagonal.

For a binary test, ROC curve is a graphical plot of sensitivity vs (1 - speci-

ficity), i.e (TPF) vs (FPF), where each point of the curve represents a dif-

ferent value for the cutoff to classify a subject as diseased or non-diseased.

Since specificity and sensitivity are ranged between 0 and 1, this curve is
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always included in a square of dimensions (0,1) x (0,1). The point (0,0)

represents T PF = 0 and FPF = 0 which predicts all subjects to be nega-

tive, while the point (1,1) represents T PF = 1 and FPF = 1 which predicts

all subjects to be positive. When all subjects are correctly classified for

all cutoff points then ROC curve is just a broken line following the points

(0,0), (0,1) and (1,1), where the first value is on the horizontal axis and the

second value is on the vertical axis. On the contrary, a completely random

test would give a diagonal line from the left bottom to the top right corner.

So every test whose curve is above the diagonal line is an informative test.

Consequently the closer to the upper left corner is the curve, the better is

the test (see Figure 7.1).
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Figure 7.1: ROC Curve examples
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Another way to check if a medical test is informative is to compute the

Area Under a ROC Curve (AUC). This index is the most commonly used

method for summarizing a diagnostic test’s overall accuracy. It ranges from

0 to 1 (perfect classification) and takes value 0.5 for a random test. Hence

the higher above 0.5 the AUC is, the more informative is the test.

ROC curves are also present in a binary regression framework (Pepe, 2003;

Alonzo and Pepe, 2002), in fact it is possible to draw a ROC curve starting

from a 2-by-2 table generated from the fitted model p̂ and the true binary

classification D. A cutoff or threshold value 0 < t < 1 is chosen and set

Y = 1 if p̂ ≥ t, while Y = 0 if p̂ < t. The 2-by-2 table is a frequency

cross tabulation of Y = 0, 1 against D = 0, 1. All the points of the curve are

obtained as FPF and T PF corresponding to different values of t. For each

t a 2-by-2 table is generated with resulting values for sensitivity and speci-

ficity of prediction. All these values are plotted in a square of dimensions

(0,1) x (0,1) creating a binary regression ROC curve.

7.2 ROC Curve in GAMLSS

In the previous section ROC Curve has been shown as a tool used for binary

test in prediction. Using our dataset the first issue is that our response vari-

able is not binary but continuous, and hence the distribution to fit the data is

continuous too. Actually, we could dichotomize the speed variable, as we

have seen in Chapter 2, by using some established cutoffs to classify liver

fibrosis in stages from F0 to F4. Since it needs just a binary classification,

one solution could be to focus attention not on liver fibrosis but on liver

cirrhosis. Moving to cirrhosis, it could be possible to split up observations

in cirrhotic and non-cirrohtic choosing 2 m/s as a binary threshold (Table
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7.2). Hence set D = 0 if Y < 2 and D = 1 if Y ≥ 2.

Stage ARFI (m/s) Dataset 2013
F0-F1-F2-F3 0 − 2 30112 (80%) 3181 (77%)

F4 ≥ 2 7547 (20%) 948 (23%)

Table 7.2: Dichotomization of ARFI values

In this way the response variable will be dichotomized, of course it will lead

to a great loss of information. This categorization will led to a ROC curve

for our dataset but following this approach it is necessary to fit statistical

models just using a binary distribution for the response, coming back to a

logistic regression model.

For this reason a new approach is proposed, in which it is possible to use

the ROC curve starting from a model with continuous response variables.

ROC curves are suitable to binary data because in logistic regression FPF

and T PF are computed starting by fitted values of p̂ = P(Y = 1) in a range

(0,1). The difference between logistic regression and GAMLSS is that,

fitted values for data is not ranged in (0,1) but in (0,∞), so it is necessary to

calculate p̂ = P(Y > 2), where 2 is the threshold for diagnosing cirrhosis.

It is made possible by considering the density function of the chosen dis-

tribution for GAMLSS. As seen in the previous chapters, this distribution

is BCPEo, the original Box-Cox Power Exponential with log link for µ

function (Rigby and Stasinopoulos, 2004).

In the proposed approach, for values in the estimates (0,1), p̂ = P(Y > 2) =

1 − P(Y ≤ 2) = 1 − F(2|µ = µ̂, σ = σ̂, ν = ν̂, τ = τ̂) are obtained using

the difference between 1 and the density function of BCPEo distribution

at an established cut-off (2 m/s), where parameters are the fitted values

computed for GAMLSS model. Using this approach there exists a direct

correspondence between each observation y and a probability p̂ that lies in
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(0,1). Then we can use these n probabilities to derive the ROC curve. Using

a ROC curve in GAMLSS has a double aim: first, to justify the use of this

approach compared with the standard logistic regression and secondly, to

compare distributions by using the same method with other distributions

for the response variable.

In order to obtain the ROC curve as a prediction tool using these data, it

is necessary to split up the dataset in two subsets: the training and the

validation set.

Definition of training and validation sets has to take into account that mea-

surements belong to different subjects, therefore observations on the same

subject have to fall in the same subset. This constrain can be easily reached

by sampling not for measurements but for subjects. Considering the 2013

dataset, 141 subjects were analyzed. We decide to sample 100 individuals

for training set and the remaining 41 for the validation. This is equivalent

to split up the whole dataset in 70% and 30%.

The selected GAMLSS in Chapter 5 represents the starting point for esti-

mating the ROC curve. This model was fitted on the complete dataset with

different weights for training (w = 1) and validation (w = 0) individuals.

Predicted values µ̂, σ̂, ν̂, τ̂ were extracted for this weighted model. Predic-

tor values for each parameter are included in 1 − F(cuto f f ) where F is the

density function for BCPEo and the selected cutoff is 2.

Ŷ → p̂ p̂ = 1 − F(2|µ = µ̂, σ = σ̂, ν = ν̂, τ = τ̂)

This is shown in detail in Figure 7.2 where an approximation of the den-

sity function for the speed variable is plotted and the coloured area is the

probability p̂ derived from the model.
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Step procedure to implement ROC curve predictions in GAMLSS

• Sampling for individuals

• Fit a GAMLSS weighted model

• Extract predicted values µ̂, σ̂, ν̂, τ̂ for each y and evaluate ŷ

• Transform ŷ to p̂ only for observations in the validation set

• Compute specificity and sensitivity and draw ROC curve using

the true indicator of cirrhosis D and the fitted probabilities p̂ for

each observation y in the validation set

A vector of probabilities p̂ has been obtained and now it is possible to use

the same procedure used in binary logistic regression to compute accuracy,

sensitivity and specificity of the prediction for the validation set. To do this,

it is enough to compare these p̂ with the binary classification in Table 7.2.

Now that classification is useful because, for validation set that represents

the true value D = 0 (healthy) or D = 1 (cirrhotic), while p̂ represents

prediction probabilities to have or not cirrhosis.

Since for prediction training and validation sets are used, the sampling

could affect results; for this reason, the sampling procedure has been re-

peated 50 times to make more accurate predictions and to obtain more ro-

bust results.

As seen in the previous Section, the use of this approach needs to be vali-

dated comparing it with standard ROC curve of binary logistic regression

(LR). Secondly, it is possible to compare GAMLSS also with other statis-
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Figure 7.2: From GAMLSS fitted values to predicted probabilities

tical models. For the comparison we select LMM (Linear Mixed Model)

and a Gamma response GLMM (Generalized Linear Mixed Model) since

the response variable distribution is positive skewed.

Two possible ways of comparing different statistical models are possible

using ROC curves. The first one is a graphical comparison, where different

ROC curves are drawn in order to identify the higher curve. The higher the

curve, the better the prediction. Secondly, the AUC index can be computed

for all models; the model with a higher AUC index will be better.

In Figure 7.3 for a single training and validation sample, ROC curves are

shown for different statistical models. As it is possible to observe, the

blue one representing GAMLSS with BCPEo is slightly above all the other

curves, even if for small values of FPF some ROC curves cross. However
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all the curves are above the diagonal line, this means that our prediction

test is informative and better than a random guess. Graphical comparison is

not enough because it could depend on the chosen sample. Using the AUC

index it is possible to compute an average measure for each model for all

samples.
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Figure 7.3: ROC curves for different statistical models

In Table 7.3, average values for AUC over 50 test and validation samples are

presented. The average AUC for GAMLSS is the best among the statistical

models and it is the only one above 0.70. Match pairs t-tests were conducted

to test the hypothesis that GAMLSS average AUC is greater than others and

all p-value are less than 0.01.

In Figure 7.4, on the left the AUC indices for 50 training and validation

samples are shown on the same graph. On the x-axis we have the sampling

index and each point represents a resulting value of AUC. It is possible to
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LR LMM GLMM GAMLSS
0.674 0.669 0.678 0.701

Table 7.3: Mean of AUC

note that blue points denoting GAMLSS are the highest point in most of the

cases (44 over 50). On the right, boxplot for 50 AUC indexes are displayed.

The yellow box-plot related to GAMLSS is the higher as we could expect

from previous considerations. In terms of variance all statistical models

have similar interquartile ranges for AUC so no problems of stability are

detected.
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Chapter 8

Conclusions

8.1 Summary and conclusions

When the research project has been submitted, the aim was to find a way

to estimate and evaluate liver stiffness using a new biomedical technology

detecting hepatic diseases.

The main problem in dealing with liver fibrosis is the heterogeneity of

observations on the disease; so we need some tools to manage it. ARFI

(Acoustic Radio Force Impulse) is proposed as a way to catch the hetero-

geneity replicating a substantial number of measurements in different part

of the liver. GAMLSS have been proposed as a way to estimate the hetero-

geneity derived by ARFI measurements.

The main aim of the thesis is to use diagnostic tools in a double way. Firstly,

from a medical point of view, ARFI is used as diagnostic tool to detect

and classify liver fibrosis and cirrhosis. Secondly, from a statistical point

of view, the worm plot is used as a diagnostic tool in GAMLSS for liver

fibrosis data.
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Some difficulties arose since it was the first time that such a large and com-

plex dataset was collected using ARFI. The particular framework of the full

dataset led us to consider a subset taking into consideration only the year

2013. This reduction was also suggested by the need to limit the computa-

tional cost.

A first simple linear GAMLSS was applied to the 2013 dataset considering

as predictors both patient level and exam level variables. Since this model

presents a too complicated structure, some enhancements have been intro-

duced in order to get an easier model. After the inclusion of a random effect

component due to the presence of repeated measurements for patient, the

final model has been obtained. The most important predictors are age of

the subject, depth of the measurements and the liver segment. In particular,

depth has a negative effect and the segment numbered 7 is significantly dif-

ferent from others. Besides, the position of the patient during the exam has

resulted as an important predictor of the variability of the liver stiffness. Fi-

nally the age variable has also a positive effect on the skewness and kurtosis

of the speed response variable.

Two statistical extensions are provided to develop the use of GAMLSS in

analyzing liver fibrosis data. The first extension concerns about the use of

a mixture approach in GAMLSS, for the first time this method is used in

GAMLSS to deal with bimodality in the response variable. Furthermore,

we try to find a relationship between the identified mixture components

and the state of a normal or cirrhotic liver. Some simulation studies have

been carried out considering several scenarios; the use of mixture model in

GAMLSS has been shown to produce good results in terms of goodness of

fit and diagnostics.

The second extension refers to the implementation of ROC (Receiver Op-
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erating Characteristic) curve in GAMLSS as prediction tool. The idea is

to dichotomize the response variable in two categories: cirrhotic and non-

cirrhotic measurements. In the proposed approach, (0,1) ranged values p̂

are obtained using the density function of BCPEo distribution at an es-

tablished cut-off (2 m/s), where parameters µ̂, σ̂, ν̂, τ̂ are the fitted values

computed for GAMLSS model. Splitting up the dataset in training and val-

idation set, 50 samples have been extracted and ROC curve and AUC (Area

Under the Curve) indexes have been computed. In order to make a compar-

ison with other classes of statical models, AUC has been computed for LR,

LMM and GLMM. In most of the cases AUC for GAMLSS assumed the

higher value.

8.2 Future work

Several problems are still open in studying liver fibrosis. First of all, a com-

parison with datasets related to other years have to be conducted in order to

have more stable results and to confirm interpretation of the estimated pa-

rameters. The possibility to collect data about laboratory tests (ALT, AST,

GGT and platelets) and their inclusion in a GAMLSS could enhance the

knowledge of the different stages of liver fibrosis and the relationships of

these markers with the used predictors.

From a methodological point of view, the use of an approach for censored

data is suggested since the liver stiffness seems apparently ranged only for

positive values. Actually, since the speed has been measured as shear wave

propagation on a tissue, for physical reasons the minimum possible value

is around 0.5 m/s. Then, a possible development could concern the use of

a GAMLSS for left-censored data.
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About the mixture approach, the possibility to solve bimodality problems

using this method should be verified through similar datasets and more sim-

ulation studies; this might cover, for example, simulated data from other

probability distributions, different from the BCPE.

Finally, the implementation of ROC curve in GAMLSS should be improved

since for high values of specificity the curves of the compared models cross

each other and some constrains about crossing should are requested.
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Calvaruso, V., Cammà, C., Di Marco, V., Maimone, S., Bronte, F., Enea,

M., Dardanoni, V., Manousou, P., Pleguezuelo, M., Xirouchakis, E. et al.

(2010). Fibrosis staging in chronic hepatitis C: analysis of discordance

between transient elastography and liver biopsy. Journal of viral hepati-

tis, 17(7), 469–474.

Carey, E. and Carey, W. D. (2010). Noninvasive tests for liver disease,

fibrosis, and cirrhosis: Is liver biopsy obsolete? Cleveland Clinic journal

of medicine, 77(8), 519–527.

Cole, T. J. and Green, P. J. (1992). Smoothing reference centile curves: the

LMS method and penalized likelihood. Statistics in medicine, 11(10),

1305–1319.

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likeli-

hood from incomplete data via the EM algorithm. Journal of the royal

statistical society. Series B (methodological), pages 1–38.

Dunn, P. K. and Smyth, G. K. (1996). Randomized quantile residuals.

Journal of Computational and Graphical Statistics, 5(3), 236–244.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with

estimates of the variance of United Kingdom inflation. Econometrica:

Journal of the Econometric Society, pages 987–1007.

Everitt, B. S. and David, J. (1981). Finite mixture distributions. Mono-

graphs on Applied Probability and Statistics. Chapman and Hall, Lon-

don, New York.

Friedrich-Rust, M., Wunder, K., Kriener, S., Sotoudeh, F., Richter, S., Bo-

junga, J., Herrmann, E., Poynard, T., Dietrich, C. F., Vermehren, J. et al.



Bibliography 75

(2009). Liver fibrosis in viral hepatitis: Noninvasive assessment with

Acoustic Radiation Force Impulse imaging versus Transient Elastogra-

phy 1. Radiology, 252(2), 595–604.

Goertz, R., Egger, C., Neurath, M. and Strobel, D. (2012). Impact of food

intake, ultrasound transducer, breathing maneuvers and body position on

acoustic radiation force impulse (ARFI) elastometry of the liver. Ultra-

schall in der Medizin (Stuttgart, Germany: 1980), 33(4), 380–385.

Grushka, E. (1972). Characterization of exponentially modified gaussian

peaks in chromatography. Analytical Chemistry, 44(11), 1733–1738.

Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models,

volume 43. CRC Press.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1994). Continuous univari-

ate distributions, vol. 1-2.

Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudi-

nal data. Biometrics, pages 963–974.

Lee, Y. and Nelder, J. A. (1996). Hierarchical Generalized Linear Models.

Journal of the Royal Statistical Society. Series B (Methodological), pages

619–678.

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, vol-

ume 37. CRC press.

McDonald, J. B. and Xu, Y. J. (1995). A generalization of the Beta distri-

bution with applications. Journal of Econometrics, 66(1), 133–152.

McLachlan, G. and Peel, D. (2004). Finite mixture models. John Wiley &

Sons.



76 Bibliography

Nelder, J. A. and Wedderburn, R. W. M. (1972). Generalized Linear Mod-

els. Journal of the Royal Statistical Society. Series A (General), 135(3),

370–384.

Pepe, M. S. (2003). The statistical evaluation of medical tests for classifi-

cation and prediction. Oxford University Press.

Ratziu, V., Charlotte, F., Heurtier, A., Gombert, S., Giral, P., Bruckert,

E., Grimaldi, A., Capron, F., Poynard, T., Group, L. S. et al. (2005).

Sampling variability of liver biopsy in nonalcoholic fatty liver disease.

Gastroenterology, 128(7), 1898–1906.

Rigby, R. and Stasinopoulos, D. (2001). The GAMLSS project: a flexible

approach to statistical modelling. In New trends in statistical modelling:

Proceedings of the 16th international workshop on statistical modelling,

pages 337–345.

Rigby, R. A. and Stasinopoulos, D. M. (2004). Smooth centile curves for

skew and kurtotic data modelled using the box–cox power exponential

distribution. Statistics in medicine, 23(19), 3053–3076.

Rigby, R. A. and Stasinopoulos, D. M. (2005). Generalized Additive Mod-

els for Location, Scale and Shape. Journal of the Royal Statistical Soci-

ety: Series C (Applied Statistics), 54(3), 507–554.

Rigby, R. A. and Stasinopoulos, D. M. (2006). Using the box-cox t distribu-

tion in GAMLSS to model skewness and kurtosis. Statistical Modelling,

6(3), 209–229.

Rizzo, L., Calvaruso, V., Cacopardo, B., Alessi, N., Attanasio, M., Petta, S.,

Fatuzzo, F., Montineri, A., Mazzola, A., L’abbate, L. et al. (2011). Com-



Bibliography 77

parison of transient elastography and Acoustic Radiation Force Impulse

for non-invasive staging of liver fibrosis in patients with chronic hepatitis

C. The American journal of gastroenterology, 106(12), 2112–2120.

Schall, R. (1991). Estimation in Generalized Linear Models with random

effects. Biometrika, 78(4), 719–727.

Schwarz, G. et al. (1978). Estimating the dimension of a model. The annals

of statistics, 6(2), 461–464.

Smyth, G. K. (1989). Generalized linear models with varying dispersion.

Journal of the Royal Statistical Society. Series B (Methodological), pages

47–60.

Stasinopoulos, D. M. and Rigby, R. A. (2007). Generalized additive mod-

els for location scale and shape GAMLSS in r. Journal of Statistical

Software, 23(7), 1–46.

Titterington, D. and Smith, A. (1985). Statistical analysis of finite mixture

distributions.

Van Buuren, S. and Fredriks, M. (2001). Worm plot: a simple diagnostic

device for modelling growth reference curves. Statistics in medicine,

20(8), 1259–1277.

Venables, W. and Ripley, B. (2002). Modern applied statistics with S. 4th

edition.

Voudouris, V., Gilchrist, R., Rigby, R., Sedgwick, J. and Stasinopoulos,

D. (2012). Modelling skewness and kurtosis with the BCPE density in

GAMLSS. Journal of Applied Statistics, 39(6), 1279–1293.


