Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 44, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

INTEGRATION BY PARTS FOR THE L^{r} HENSTOCK-KURZWEIL INTEGRAL

PAUL MUSIAL, FRANCESCO TULONE

Abstract

Musial and Sagher (4) described a Henstock-Kurzweil type integral that integrates L^{r}-derivatives. In this article, we develop a product rule for the L^{r}-derivative and then an integration by parts formula.

1. Introduction

Definition 1.1 ([4]). A real-valued function f defined on $[a, b]$ is said to be L^{r} Henstock-Kurzweil integrable $\left(f \in H K_{r}[a, b]\right)$ if there exists a function $F \in L^{r}[a, b]$ so that for any $\varepsilon>0$ there exists a gauge function $\delta(x)>0$ so that whenever $\left\{\left(x_{i},\left[c_{i}, d_{i}\right]\right)\right\}$ is a δ-fine tagged partition of $[a, b]$ we have

$$
\sum_{i=1}^{n}\left(\frac{1}{d_{i}-c_{i}}(L) \int_{c_{i}}^{d_{i}}\left|F(y)-F\left(x_{i}\right)-f\left(x_{i}\right)\left(y-x_{i}\right)\right|^{r} d y\right)^{1 / r}<\varepsilon
$$

In the sequel, if an integral is not specified, it is a Lebesgue integral. It is shown in [4] that if f is $H K_{r}$-integrable on $[a, b]$, the following function is well-defined for all $x \in[a, b]$:

$$
\begin{equation*}
F(x)=\left(H K_{r}\right) \int_{a}^{x} f(t) d t \tag{1.1}
\end{equation*}
$$

Here the function F is called the indefinite $H K_{r}$ integral of f. Our aim is to establish an integration by parts formula for the $H K_{r}$ integral. In a manner similar to L. Gordon [2] we state the following

Theorem 1.2. Suppose that f is $H K_{r}$-integrable on $[a, b]$, and G is absolutely continuous on $[a, b]$ with $G^{\prime} \in L^{r^{\prime}}([a, b])$, where $1 \leq r<\infty, r^{\prime}=r /(r-1)$ if $r>1$, and $r^{\prime}=\infty$ if $r=1$. Then $f G$ is $H K_{r}$-integrable on $[a, b]$ and if F is the indefinite $H K_{r}$ integral of f, then

$$
\left(H K_{r}\right) \int_{a}^{b} f(t) G(t) d t=F(b) G(b)-\int_{a}^{b} F(t) G^{\prime}(t) d t
$$

We note that if $r=1$ so that $r^{\prime}=\infty$, the condition on G is that it is a Lipschitz function of order 1 on $[a, b]$.

2000 Mathematics Subject Classification. 26A39.
Key words and phrases. Henstock-Kurzweil; integration by parts.
(C) 2015 Texas State University - San Marcos.

Submitted December 8, 2014. Published February 16, 2015.

In the classical case where f is Henstock-Kurzweil integrable $\left(r=\infty, r^{\prime}=1\right)$, Theorem 1.2 holds, but it is enough to assume that G is of bounded variation on $[a, b]$. In that case the integral on the right is the Riemann-Stieltjes integral $\int_{a}^{b} F d G$. See [3] for a proof of this statement.

To prove Theorem 1.2 we will need a product rule for the L^{r}-derivative. We will also utilize a characterization of the space of $H K_{r}$-integrable functions that involves generalized absolute continuity in L^{r} sense $\left(A C G_{r}([a, b])\right)$.

2. Product rule for the L^{r}-derivative

Definition 2.1 ([1]). For $1 \leq r<\infty$, a function $F \in L^{r}([a, b])$ is said to be L^{r}-differentiable at $x \in[a, b]$ if there exists $a \in \mathbb{R}$ such that

$$
\int_{-h}^{h}|F(x+t)-F(x)-a t|^{r} d t=o\left(h^{r+1}\right)
$$

It is clear that if such a number a exists, then it is unique. We say that a is the L^{r}-derivative of F at x, and denote the value a by $F_{r}^{\prime}(x)$.
Theorem 2.2. For $1 \leq r<\infty$, let $x \in \mathbb{R}$ and suppose $F \in L^{r}(I)$ where I is an interval having x in its interior, and suppose F is L^{r}-differentiable at x. Suppose also that $G \in L^{\infty}(I)$ and that G is L^{r}-differentiable at x. Then $F G$ is L^{r}-differentiable at x and $(F G)_{r}^{\prime}(x)=F_{r}^{\prime}(x) G(x)+F(x) G_{r}^{\prime}(x)$.
Proof. Let $\varepsilon>0$. We need to choose γ so that for $0<h<\gamma$

$$
\begin{equation*}
\int_{-h}^{h}|F(x+t) G(x+t)-F(x) G(x)-H(x) t|^{r} d t<\varepsilon h^{r+1} \tag{2.1}
\end{equation*}
$$

where $H(x)=F_{r}^{\prime}(x) G(x)+F(x) G_{r}^{\prime}(x)$. We add and subtract the terms $F(x) G(x+t)$ and $F_{r}^{\prime}(x) G(x+t) t$ to the part of the integrand inside the absolute value signs. We also note that if a, b and c are non-negative numbers then

$$
(a+b+c)^{r} \leq C\left(a^{r}+b^{r}+c^{r}\right)
$$

where C is a positive constant that depends on r.
Choose $\gamma_{0}>0$ and $N>0$ so that $F \in L^{r}\left(\left[x-\gamma_{0}, x+\gamma_{0}\right]\right)$ and that

$$
\operatorname{esssup}_{\left[x-\gamma_{0}, x+\gamma_{0}\right]} G<N
$$

We then have that if $0<h<\gamma_{0}$ then the integral in 2.1 is less than or equal to

$$
\begin{align*}
& C \int_{-h}^{h}|G(x+t)|^{r}\left|F(x+t)-F(x)-F_{r}^{\prime}(x) t\right|^{r} d t \tag{2.2}\\
& +C \int_{-h}^{h}|F(x)|^{r}\left|G(x+t)-G(x)-G_{r}^{\prime}(x) t\right|^{r} d t \tag{2.3}\\
& +C \int_{-h}^{h}\left|F_{r}^{\prime}(x)\right|^{r}|(G(x+t)-G(x)) t|^{r} d t \tag{2.4}
\end{align*}
$$

For (2.2), choose $\gamma_{1}<\gamma_{0}$ so that if $0<h<\gamma_{1}$ we have

$$
\int_{-h}^{h}\left|F(x+t)-F(x)-F_{r}^{\prime}(x) t\right|^{r} d t<\frac{\varepsilon h^{r+1}}{4 C N^{r}}
$$

so that

$$
C \int_{-h}^{h}|G(x+t)|^{r}\left|F(x+t)-F(x)-F_{r}^{\prime}(x) t\right|^{r} d t<\frac{\varepsilon h^{r+1}}{4}
$$

For (2.3), choose $\gamma_{2}<\gamma_{1}$ so that if $0<h<\gamma_{2}$ we have

$$
\int_{-h}^{h}\left|G(x+t)-G(x)-G_{r}^{\prime}(x) t\right|^{r} d t<\frac{\varepsilon h^{r+1}}{4 C\left(|F(x)|^{r}+1\right)}
$$

so that

$$
C \int_{-h}^{h}|F(x)|^{r}\left|G(x+t)-G(x)-G_{r}^{\prime}(x) t\right|^{r} d t<\frac{\varepsilon h^{r+1}}{4}
$$

For (2.4), we note that

$$
\begin{aligned}
C & \int_{-h}^{h}\left|F_{r}^{\prime}(x)\right|^{r}|(G(x+t)-G(x)) t|^{r} d t \\
= & C\left|F_{r}^{\prime}(x)\right|^{r} \int_{-h}^{h}\left|\left(G(x+t)-G(x)-G_{r}^{\prime}(x) t+G_{r}^{\prime}(x) t\right) t\right|^{r} d t \\
\leq & C^{2}\left|F_{r}^{\prime}(x)\right|^{r} h^{r}\left(\int_{-h}^{h}\left|\left(G(x+t)-G(x)-G_{r}^{\prime}(x) t\right)\right|^{r} d t\right. \\
& \left.+\int_{-h}^{h}\left|G_{r}^{\prime}(x) t\right|^{r} d t\right) \\
\leq & C^{2}\left|F_{r}^{\prime}(x)\right|^{r} h^{r}\left(\int_{-h}^{h}\left|\left(G(x+t)-G(x)-G_{r}^{\prime}(x) t\right)\right|^{r} d t\right) \\
& +2 C^{2}\left|F_{r}^{\prime}(x)\right|^{r} h^{2 r+1}\left|G_{r}^{\prime}(x)\right|^{r} .
\end{aligned}
$$

Now we note that we can choose

$$
0<\gamma<\min \left(1, \gamma_{2},\left(\varepsilon /\left(8 C^{2}\left(\left|G_{r}^{\prime}(x)\right|+1\right)\left(\left|F_{r}^{\prime}(x)\right|+1\right)\right)\right)^{1 / r}\right)
$$

so that if $0<h<\gamma$ we have

$$
\left(\int_{-h}^{h}\left|\left(G(x+t)-G(x)-G_{r}^{\prime}(x) t\right)\right|^{r} d t\right)<\frac{\varepsilon h^{r+1}}{4 C^{2}\left(\left|F_{r}^{\prime}(x)\right|^{r}+1\right)}
$$

We then have that if $0<h<\gamma$, then

$$
\begin{aligned}
& C^{2}\left|F_{r}^{\prime}(x)\right|^{r} h^{r}\left(\int_{-h}^{h}\left|\left(G(x+t)-G(x)-G_{r}^{\prime}(x) t\right)\right|^{r} d t\right) \\
& <\left(C^{2}\left|F_{r}^{\prime}(x)\right|^{r} h^{r}\right)\left(\frac{\varepsilon h^{r+1}}{4 C^{2}\left(\left|F_{r}^{\prime}(x)\right|^{r}+1\right)}\right) \\
& \leq \frac{\varepsilon h^{2 r+1}}{4}<\frac{\varepsilon h^{r+1}}{4}
\end{aligned}
$$

and that

$$
\begin{aligned}
& 2 C^{2}\left|F_{r}^{\prime}(x)\right|^{r} h^{2 r+1}\left|G_{r}^{\prime}(x)\right|^{r} \\
& \leq 2 C^{2}\left|F_{r}^{\prime}(x)\right|^{r} h^{r+1}\left|G_{r}^{\prime}(x)\right|^{r}\left(\frac{\varepsilon}{8 C^{2}\left(\left|F_{r}^{\prime}(x)\right|+1\right)\left(\left|G_{r}^{\prime}(x)\right|+1\right)}\right) \\
& \leq \frac{\varepsilon h^{r+1}}{4}
\end{aligned}
$$

We can then conclude that (2.1) holds and the theorem is therefore proved.
In (4) we find sufficient conditions for $H K_{r}$-integrability. We will need the following definitions.

Definition 2.3 (4). We say that $F \in A C_{r}(E)$ if for all $\varepsilon>0$ there exist $\eta>0$ and a gauge function $\delta(x)$ defined on E so that if $\mathcal{P}=\left\{\left(x_{i},\left[c_{i}, d_{i}\right]\right)\right\}$ is a finite collection of non-overlapping δ-fine tagged intervals having tags in E and satisfying

$$
\sum_{i=1}^{q}\left(d_{i}-c_{i}\right)<\eta
$$

then

$$
\sum_{i=1}^{q}\left(\frac{1}{d_{i}-c_{i}} \int_{c_{i}}^{d_{i}}\left|F(y)-F\left(x_{i}\right)\right|^{r} d y\right)^{1 / r}<\varepsilon
$$

Definition 2.4 (4). We say that $F \in A C G_{r}(E)$ if E can be written

$$
E=\cup_{i=1}^{\infty} E_{i}
$$

and $F \in A C_{r}\left(E_{i}\right)$ for all i.
Lemma 2.5. Suppose that F and G are in $A C G_{r}([a, b])$, and that $G \in L^{\infty}([a, b])$. Then $F G \in A C G_{r}([a, b])$.

Proof. The function $F \in A C G_{r}([a, b])$ and so we can find a sequence of sets $\left\{A_{n}\right\}_{n=1}^{\infty}$ so that $[a, b]=\cup_{n=1}^{\infty} A_{n}$ and $F \in A C_{r}\left(A_{n}\right)$ for all n. Since G belongs to $A C G_{r}([a, b])$, we can also find a sequence of sets $\left\{B_{m}\right\}_{m=1}^{\infty}$ so that $[a, b]=\cup_{m=1}^{\infty} B_{m}$ and $G \in A C_{r}\left(B_{m}\right)$ for all m. We can then write

$$
[a, b]=\cup_{n=1}^{\infty} \cup_{m=1}^{\infty}\left(A_{n} \cap B_{m}\right)
$$

We will rewrite the sequence $\left\{A_{n} \cap B_{m}\right\}_{n, m \geq 1}$ as $\left\{E_{k}\right\}_{k \geq 1}$. We then have that both F and G are in $A C_{r}\left(E_{k}\right)$ for all $k \geq 1$. We will show that $F G \in A C G_{r}\left(E_{k}\right)$ for all k.

Let $N=1+\|G\|_{\infty}$ and fix k. For $j \geq 1$ let

$$
U_{j}=\left\{x \in E_{k}: j-1 \leq|F(x)|<j\right\}
$$

We then have

$$
E_{k}=\cup_{j=1}^{\infty} U_{j} .
$$

We will show that $F G \in A C_{r}\left(U_{j}\right)$ for all j.
Let $\varepsilon>0$. There exist $\eta>0$ and a gauge function $\delta(x)$ defined on U_{j} so that if $\mathcal{P}=\left\{x_{i},\left[c_{i}, d_{i}\right]\right\}$ is a finite collection of non-overlapping δ-fine tagged intervals having tags in U_{j} and satisfying

$$
\sum_{i=1}^{q}\left(d_{i}-c_{i}\right)<\eta
$$

then

$$
\begin{aligned}
& \sum_{i=1}^{q}\left(\frac{1}{d_{i}-c_{i}} \int_{c_{i}}^{d_{i}}\left|F(y)-F\left(x_{i}\right)\right|^{r} d y\right)^{1 / r}<\frac{\varepsilon}{2 N} \\
& \sum_{i=1}^{q}\left(\frac{1}{d_{i}-c_{i}} \int_{c_{i}}^{d_{i}}\left|G(y)-G\left(x_{i}\right)\right|^{r} d y\right)^{1 / r}<\frac{\varepsilon}{2 j}
\end{aligned}
$$

Then for such \mathcal{P},

$$
\sum_{i=1}^{q}\left(\frac{1}{d_{i}-c_{i}} \int_{c_{i}}^{d_{i}}\left|F(y) G(y)-F\left(x_{i}\right) G\left(x_{i}\right)\right|^{r} d y\right)^{1 / r}
$$

$$
\begin{aligned}
\leq & \sum_{i=1}^{q}\left(\frac{1}{d_{i}-c_{i}} \int_{c_{i}}^{d_{i}}\left|F(y) G(y)-F\left(x_{i}\right) G(y)\right|^{r} d y\right)^{1 / r} \\
& +\sum_{i=1}^{q}\left(\frac{1}{d_{i}-c_{i}} \int_{c_{i}}^{d_{i}}\left|F\left(x_{i}\right) G(y)-F\left(x_{i}\right) G\left(x_{i}\right)\right|^{r} d y\right)^{1 / r} \\
\leq & N\left(\sum_{i=1}^{q}\left(\frac{1}{d_{i}-c_{i}} \int_{c_{i}}^{d_{i}}\left|F(y)-F\left(x_{i}\right)\right|^{r} d y\right)^{1 / r}\right) \\
& +\left|F\left(x_{i}\right)\right|\left(\sum_{i=1}^{q}\left(\frac{1}{d_{i}-c_{i}} \int_{c_{i}}^{d_{i}}\left|G(y)-G\left(x_{i}\right)\right|^{r} d y\right)^{1 / r}\right) \\
\leq & N\left(\frac{\varepsilon}{2 N}\right)+j\left(\frac{\varepsilon}{2 j}\right)=\varepsilon
\end{aligned}
$$

Now we can conclude that for \mathcal{P},

$$
\sum_{i=1}^{q}\left(\frac{1}{d_{i}-c_{i}} \int_{c_{i}}^{d_{i}}\left|F(y) G(y)-F\left(x_{i}\right) G\left(x_{i}\right)\right|^{r} d y\right)^{1 / r}<\varepsilon
$$

and so that $F G \in A C G_{r}([a, b])$.

3. Linearity of $A C G_{r}(E)$

We now show that $A C G_{r}(E)$ is a linear space.
Theorem 3.1. Suppose F and G are in $A C G_{r}(E)$. Then for any constants a and b we have that $a F+b G \in A C G_{r}(E)$.

Proof. Write E as $\cup_{n=1}^{\infty} E_{n}$. We will show that $a F+b G \in A C_{r}\left(E_{n}\right)$ for every n.
First we show that $a F \in A C_{r}\left(E_{n}\right)$. Let $\varepsilon>0$ and choose $\eta>0$ and a gauge function $\delta(x)$ defined on E_{n} so that if $\mathcal{P}=\left\{x_{i},\left[c_{i}, d_{i}\right]\right\}$ is a finite collection of non-overlapping δ-fine tagged intervals having tags in E and satisfying

$$
\sum_{i=1}^{q}\left(d_{i}-c_{i}\right)<\eta
$$

then

$$
\sum_{i=1}^{q}\left(\frac{1}{d_{i}-c_{i}} \int_{c_{i}}^{d_{i}}\left|F(y)-F\left(x_{i}\right)\right|^{r} d y\right)^{1 / r}<\frac{\varepsilon}{|a|+1}
$$

Then

$$
\begin{aligned}
& \sum_{i=1}^{q}\left(\frac{1}{d_{i}-c_{i}} \int_{c_{i}}^{d_{i}}\left|a F(y)-a F\left(x_{i}\right)\right|^{r} d y\right)^{1 / r} \\
& =|a|\left(\sum_{i=1}^{q}\left(\frac{1}{d_{i}-c_{i}} \int_{c_{i}}^{d_{i}}\left|F(y)-F\left(x_{i}\right)\right|^{r} d y\right)^{1 / r}\right) \\
& <|a|\left(\frac{\varepsilon}{|a|+1}\right)<\varepsilon
\end{aligned}
$$

Now we show that $F+G \in A C G_{r}(E)$. Let $\varepsilon>0$ and choose $\eta>0$ and a gauge function $\delta(x)$ defined on E_{n} so that if $\mathcal{P}=\left\{x_{i},\left[c_{i}, d_{i}\right]\right\}$ is a finite collection
of non-overlapping δ-fine tagged intervals having tags in E and satisfying

$$
\sum_{i=1}^{q}\left(d_{i}-c_{i}\right)<\eta
$$

then

$$
\begin{aligned}
& \sum_{i=1}^{q}\left(\frac{1}{d_{i}-c_{i}} \int_{c_{i}}^{d_{i}}\left|F(y)-F\left(x_{i}\right)\right|^{r} d y\right)^{1 / r}<\frac{\varepsilon}{2} \\
& \sum_{i=1}^{q}\left(\frac{1}{d_{i}-c_{i}} \int_{c_{i}}^{d_{i}}\left|G(y)-G\left(x_{i}\right)\right|^{r} d y\right)^{1 / r}<\frac{\varepsilon}{2}
\end{aligned}
$$

Then we have for this \mathcal{P}, using Minkowski's inequality,

$$
\begin{aligned}
& \sum_{i=1}^{q}\left(\frac{1}{d_{i}-c_{i}} \int_{c_{i}}^{d_{i}}\left|F(y)+G(y)-\left(F\left(x_{i}\right)+G\left(x_{i}\right)\right)\right|^{r} d y\right)^{1 / r} \\
& \leq \sum_{i=1}^{q}\left(\frac{1}{d_{i}-c_{i}} \int_{c_{i}}^{d_{i}}\left|F(y)+F\left(x_{i}\right)\right|^{r} d y\right)^{1 / r} \\
& \quad+\sum_{i=1}^{q}\left(\frac{1}{d_{i}-c_{i}} \int_{c_{i}}^{d_{i}}\left|G(y)-G\left(x_{i}\right)\right|^{r} d y\right)^{1 / r} \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

We will use the following characterization of $H K_{r}$-integrable functions.
Theorem 3.2 ([4]). Let $1 \leq r<\infty$. A function f is $H K_{r}$-integrable on $[a, b]$ if and only if there exists a function $F \in A C G_{r}([a, b])$ so that $F_{r}^{\prime}=f$ a.e.

4. Integration by Parts

We are now ready to give the proof of Theorem 1.2 .
Proof. Define

$$
\begin{gathered}
V(x)=f(x) G(x) \\
J(x)=F(x) G(x)-\int_{a}^{x} F(t) G^{\prime}(t) d t
\end{gathered}
$$

We note that $F G^{\prime}$ is integrable by Hölder's inequality [5]. Our task is to show that J is the $H K_{r}$-integral of V. By Theorem 3.2, we see that it is sufficient to demonstrate that $J \in A C G_{r}([a, b])$ and that $J_{r}^{\prime}=V$ a.e.

We note that the function

$$
\int_{a}^{x} F(t) G^{\prime}(t) d t
$$

is absolutely continuous on $[a, b]$ and therefore is in $A C G_{r}([a, b])$ [4]. Its derivative, and therefore its L^{r}-derivative, is equal to $F(x) G^{\prime}(x)$ a.e. in $[a, b]$.

Using Theorem 2.2 we can see that $F G$ has an L^{r}-derivative equal to $F_{r}^{\prime} G+F G^{\prime}$ a.e. in $[a, b]$. Using the linearity of the L^{r}-derivative, we have that $J_{r}^{\prime}=V$ a.e. Thus all that remains is to show that $J \in A C G_{r}([a, b])$. By Theorem 3.1 it is sufficient to show that $F G \in A C G_{r}([a, b])$.

The function $F \in A C G_{r}([a, b])$. Since $G \in A C([a, b])$, it is also in $A C G_{r}([a, b])$ and G is also in L^{∞} so by Lemma 2.5, $F G \in A C G_{r}([a, b])$ and Theorem 1.2 is proved.

References

[1] Calderon, A. P.; Zygmund, A.; Local properties of solutions of elliptic partial differential equations, Studia. Math. 20 (1961), pp. 171-225.
[2] Gordon, L.; Perron's integral for derivatives in L^{r}, Studia Math. 28 (1966/1967), pp. 295-316.
[3] Gordon, R. A.; The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Grad. Stud. Math. 4, Amer. Math. Soc., 1994.
[4] Musial, P.; Sagher, Y.; The L^{r} Henstock-Kurzweil integral, Stud. Math. 160 (1) (2004), pp. 53-81.
[5] Wheedan, R.; Zygmund, A.; Measure and Integral, Marcel Dekker, Inc., New York, 1977.
Paul Musial
Department of Mathematics and Computer Science, Chicago State University
9501 South King Drive, Chicago, Illinois 60628, USA
E-mail address: pmusial@csu.edu
Francesco Tulone
Department of Mathematics and Computer Science
University of Palermo, Via Archirafi, 34, 90132 Palermo, Italy
E-mail address: francesco.tulone@unipa.it

