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INTEGRATION BY PARTS FOR THE Lr

HENSTOCK-KURZWEIL INTEGRAL

PAUL MUSIAL, FRANCESCO TULONE

Abstract. Musial and Sagher [4] described a Henstock-Kurzweil type integral

that integrates Lr-derivatives. In this article, we develop a product rule for

the Lr-derivative and then an integration by parts formula.

1. Introduction

Definition 1.1 ([4]). A real-valued function f defined on [a, b] is said to be Lr

Henstock-Kurzweil integrable (f ∈ HKr[a, b]) if there exists a function F ∈ Lr[a, b]
so that for any ε > 0 there exists a gauge function δ(x) > 0 so that whenever
{(xi, [ci, di])} is a δ-fine tagged partition of [a, b] we have

n∑
i=1

( 1
di − ci

(L)
∫ di

ci

|F (y)− F (xi)− f(xi)(y − xi)|rdy
)1/r

< ε.

In the sequel, if an integral is not specified, it is a Lebesgue integral. It is shown
in [4] that if f is HKr-integrable on [a, b], the following function is well-defined for
all x ∈ [a, b]:

F (x) = (HKr)
∫ x

a

f(t) dt (1.1)

Here the function F is called the indefinite HKr integral of f . Our aim is to
establish an integration by parts formula for the HKr integral. In a manner similar
to L. Gordon [2] we state the following

Theorem 1.2. Suppose that f is HKr-integrable on [a, b], and G is absolutely
continuous on [a, b] with G′ ∈ Lr′([a, b]), where 1 ≤ r <∞, r′ = r/(r − 1) if r > 1,
and r′ =∞ if r = 1. Then fG is HKr-integrable on [a, b] and if F is the indefinite
HKr integral of f , then

(HKr)
∫ b

a

f(t)G(t) dt = F (b)G(b)−
∫ b

a

F (t)G′(t) dt.

We note that if r = 1 so that r′ =∞, the condition on G is that it is a Lipschitz
function of order 1 on [a, b].
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In the classical case where f is Henstock-Kurzweil integrable (r = ∞, r′ = 1),
Theorem 1.2 holds, but it is enough to assume that G is of bounded variation on
[a, b]. In that case the integral on the right is the Riemann-Stieltjes integral

∫ b
a
FdG.

See [3] for a proof of this statement.
To prove Theorem 1.2 we will need a product rule for the Lr-derivative. We

will also utilize a characterization of the space of HKr-integrable functions that
involves generalized absolute continuity in Lr sense (ACGr([a, b])).

2. Product rule for the Lr-derivative

Definition 2.1 ([1]). For 1 ≤ r < ∞, a function F ∈ Lr([a, b]) is said to be
Lr-differentiable at x ∈ [a, b] if there exists a ∈ R such that∫ h

−h
|F (x+ t)− F (x)− at|rdt = o(hr+1).

It is clear that if such a number a exists, then it is unique. We say that a is the
Lr-derivative of F at x, and denote the value a by F ′r(x).

Theorem 2.2. For 1 ≤ r < ∞, let x ∈ R and suppose F ∈ Lr(I) where I
is an interval having x in its interior, and suppose F is Lr-differentiable at x.
Suppose also that G ∈ L∞(I) and that G is Lr-differentiable at x. Then FG is
Lr-differentiable at x and (FG)′r(x) = F ′r(x)G(x) + F (x)G′r(x).

Proof. Let ε > 0. We need to choose γ so that for 0 < h < γ∫ h

−h
|F (x+ t)G(x+ t)− F (x)G(x)−H(x)t|rdt < εhr+1 (2.1)

whereH(x) = F ′r(x)G(x)+F (x)G′r(x). We add and subtract the terms F (x)G(x+t)
and F ′r(x)G(x+ t)t to the part of the integrand inside the absolute value signs. We
also note that if a, b and c are non-negative numbers then

(a+ b+ c)r ≤ C(ar + br + cr)

where C is a positive constant that depends on r.
Choose γ0 > 0 and N > 0 so that F ∈ Lr([x− γ0, x+ γ0]) and that

esssup[x−γ0,x+γ0]G < N.

We then have that if 0 < h < γ0 then the integral in (2.1) is less than or equal to

C

∫ h

−h
|G(x+ t)|r|F (x+ t)− F (x)− F ′r(x)t|rdt (2.2)

+ C

∫ h

−h
|F (x)|r|G(x+ t)−G(x)−G′r(x)t|rdt (2.3)

+ C

∫ h

−h
|F ′r(x)|r|(G(x+ t)−G(x))t|rdt. (2.4)

For (2.2), choose γ1 < γ0 so that if 0 < h < γ1 we have∫ h

−h
|F (x+ t)− F (x)− F ′r(x)t|rdt < εhr+1

4CNr

so that

C

∫ h

−h
|G(x+ t)|r|F (x+ t)− F (x)− F ′r(x)t|rdt < εhr+1

4
.
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For (2.3), choose γ2 < γ1 so that if 0 < h < γ2 we have∫ h

−h
|G(x+ t)−G(x)−G′r(x)t|rdt < εhr+1

4C(|F (x)|r + 1)

so that

C

∫ h

−h
|F (x)|r|G(x+ t)−G(x)−G′r(x)t|rdt < εhr+1

4
For (2.4), we note that

C

∫ h

−h
|F ′r(x)|r|(G(x+ t)−G(x))t|rdt

= C|F ′r(x)|r
∫ h

−h
|(G(x+ t)−G(x)−G′r(x)t+G′r(x)t)t|rdt

≤ C2|F ′r(x)|rhr
(∫ h

−h
|(G(x+ t)−G(x)−G′r(x)t)|rdt

+
∫ h

−h
|G′r(x)t|rdt

)
≤ C2|F ′r(x)|rhr

(∫ h

−h
|(G(x+ t)−G(x)−G′r(x)t)|rdt

)
+ 2C2|F ′r(x)|rh2r+1|G′r(x)|r.

Now we note that we can choose

0 < γ < min
(

1, γ2,
(
ε/
(
8C2(|G′r(x)|+ 1)(|F ′r(x)|+ 1)

))1/r)
so that if 0 < h < γ we have(∫ h

−h
|(G(x+ t)−G(x)−G′r(x)t)|rdt

)
<

εhr+1

4C2(|F ′r(x)|r + 1)

We then have that if 0 < h < γ, then

C2|F ′r(x)|rhr
(∫ h

−h
|(G(x+ t)−G(x)−G′r(x)t)|rdt

)
< (C2|F ′r(x)|rhr)

( εhr+1

4C2(|F ′r(x)|r + 1)

)
≤ εh2r+1

4
<
εhr+1

4
and that

2C2|F ′r(x)|rh2r+1|G′r(x)|r

≤ 2C2|F ′r(x)|rhr+1|G′r(x)|r
( ε

8C2(|F ′r(x)|+ 1)(|G′r(x)|+ 1)

)
≤ εhr+1

4
.

We can then conclude that (2.1) holds and the theorem is therefore proved. �

In [4] we find sufficient conditions for HKr-integrability. We will need the fol-
lowing definitions.
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Definition 2.3 ([4]). We say that F ∈ ACr(E) if for all ε > 0 there exist η > 0
and a gauge function δ(x) defined on E so that if P = {(xi, [ci, di])} is a finite
collection of non-overlapping δ-fine tagged intervals having tags in E and satisfying

q∑
i=1

(di − ci) < η

then
q∑
i=1

( 1
di − ci

∫ di

ci

|F (y)− F (xi)|rdy
)1/r

< ε.

Definition 2.4 ([4]). We say that F ∈ ACGr(E) if E can be written

E = ∪∞i=1Ei

and F ∈ ACr(Ei) for all i.

Lemma 2.5. Suppose that F and G are in ACGr([a, b]), and that G ∈ L∞([a, b]).
Then FG ∈ ACGr([a, b]).

Proof. The function F ∈ ACGr([a, b]) and so we can find a sequence of sets
{An}∞n=1 so that [a, b] = ∪∞n=1An and F ∈ ACr(An) for all n. Since G belongs to
ACGr([a, b]), we can also find a sequence of sets {Bm}∞m=1 so that [a, b] = ∪∞m=1Bm
and G ∈ ACr(Bm) for all m. We can then write

[a, b] = ∪∞n=1 ∪∞m=1 (An ∩Bm).

We will rewrite the sequence {An ∩ Bm}n,m≥1 as {Ek}k≥1. We then have that
both F and G are in ACr(Ek) for all k ≥ 1. We will show that FG ∈ ACGr(Ek)
for all k.

Let N = 1 + ‖G‖∞ and fix k. For j ≥ 1 let

Uj = {x ∈ Ek : j − 1 ≤ |F (x)| < j}
We then have

Ek = ∪∞j=1Uj .

We will show that FG ∈ ACr(Uj) for all j.
Let ε > 0. There exist η > 0 and a gauge function δ(x) defined on Uj so that

if P = {xi, [ci, di]} is a finite collection of non-overlapping δ-fine tagged intervals
having tags in Uj and satisfying

q∑
i=1

(di − ci) < η

then
q∑
i=1

( 1
di − ci

∫ di

ci

|F (y)− F (xi)|rdy
)1/r

<
ε

2N
,

q∑
i=1

( 1
di − ci

∫ di

ci

|G(y)−G(xi)|rdy
)1/r

<
ε

2j
.

Then for such P,
q∑
i=1

( 1
di − ci

∫ di

ci

|F (y)G(y)− F (xi)G(xi)|rdy
)1/r
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≤
q∑
i=1

( 1
di − ci

∫ di

ci

|F (y)G(y)− F (xi)G(y)|rdy
)1/r

+
q∑
i=1

( 1
di − ci

∫ di

ci

|F (xi)G(y)− F (xi)G(xi)|rdy
)1/r

.

≤ N
( q∑
i=1

( 1
di − ci

∫ di

ci

|F (y)− F (xi)|rdy
)1/r)

+ |F (xi)|
( q∑
i=1

(
1

di − ci

∫ di

ci

|G(y)−G(xi)|rdy)1/r
)

≤ N
( ε

2N
)

+ j(
ε

2j
) = ε.

Now we can conclude that for P,
q∑
i=1

( 1
di − ci

∫ di

ci

|F (y)G(y)− F (xi)G(xi)|rdy
)1/r

< ε

and so that FG ∈ ACGr([a, b]). �

3. Linearity of ACGr(E)

We now show that ACGr(E) is a linear space.

Theorem 3.1. Suppose F and G are in ACGr(E). Then for any constants a and
b we have that aF + bG ∈ ACGr(E).

Proof. Write E as ∪∞n=1En. We will show that aF + bG ∈ ACr(En) for every n.
First we show that aF ∈ ACr(En). Let ε > 0 and choose η > 0 and a gauge

function δ(x) defined on En so that if P = {xi, [ci, di]} is a finite collection of
non-overlapping δ-fine tagged intervals having tags in E and satisfying

q∑
i=1

(di − ci) < η

then
q∑
i=1

( 1
di − ci

∫ di

ci

|F (y)− F (xi)|rdy
)1/r

<
ε

|a|+ 1
.

Then
q∑
i=1

( 1
di − ci

∫ di

ci

|aF (y)− aF (xi)|rdy
)1/r

= |a|
( q∑
i=1

( 1
di − ci

∫ di

ci

|F (y)− F (xi)|rdy
)1/r)

< |a|
( ε

|a|+ 1
)
< ε.

Now we show that F + G ∈ ACGr(E). Let ε > 0 and choose η > 0 and a
gauge function δ(x) defined on En so that if P = {xi, [ci, di]} is a finite collection
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of non-overlapping δ-fine tagged intervals having tags in E and satisfying
q∑
i=1

(di − ci) < η ,

then
q∑
i=1

( 1
di − ci

∫ di

ci

|F (y)− F (xi)|rdy
)1/r

<
ε

2
,

q∑
i=1

( 1
di − ci

∫ di

ci

|G(y)−G(xi)|rdy
)1/r

<
ε

2
.

Then we have for this P, using Minkowski’s inequality,
q∑
i=1

( 1
di − ci

∫ di

ci

|F (y) +G(y)− (F (xi) +G(xi))|rdy
)1/r

≤
q∑
i=1

( 1
di − ci

∫ di

ci

|F (y) + F (xi)|rdy
)1/r

+
q∑
i=1

( 1
di − ci

∫ di

ci

|G(y)−G(xi)|rdy
)1/r

<
ε

2
+
ε

2
= ε.

�

We will use the following characterization of HKr-integrable functions.

Theorem 3.2 ([4]). Let 1 ≤ r < ∞. A function f is HKr-integrable on [a, b] if
and only if there exists a function F ∈ ACGr([a, b]) so that F

′

r = f a.e.

4. Integration by Parts

We are now ready to give the proof of Theorem 1.2.

Proof. Define

V (x) = f(x)G(x),

J(x) = F (x)G(x)−
∫ x

a

F (t)G′(t) dt.

We note that FG′ is integrable by Hölder’s inequality [5]. Our task is to show
that J is the HKr-integral of V . By Theorem 3.2, we see that it is sufficient to
demonstrate that J ∈ ACGr([a, b]) and that J

′

r = V a.e.
We note that the function ∫ x

a

F (t)G′(t) dt

is absolutely continuous on [a, b] and therefore is in ACGr([a, b]) [4]. Its derivative,
and therefore its Lr-derivative, is equal to F (x)G′(x) a.e. in [a, b].

Using Theorem 2.2 we can see that FG has an Lr-derivative equal to F ′rG+FG′

a.e. in [a, b]. Using the linearity of the Lr-derivative, we have that J
′

r = V a.e.
Thus all that remains is to show that J ∈ ACGr([a, b]). By Theorem 3.1 it is
sufficient to show that FG ∈ ACGr([a, b]).
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The function F ∈ ACGr([a, b]). Since G ∈ AC([a, b]), it is also in ACGr([a, b])
and G is also in L∞ so by Lemma 2.5, FG ∈ ACGr([a, b]) and Theorem 1.2 is
proved. �
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