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Abstract

Complex networked systems are a modern reference framework through which very differ-

ent systems from far disciplines, such as biology, computer science, physics, social science,

and engineering, can be described. They arise in the great majority of modern tech-

nological applications. Examples of real complex networked systems include embedded

systems, biological networks, large-scale systems such as power generation grids, trans-

portation networks, water distribution systems, and social network. In the recent years,

scientists and engineers have developed a variety of techniques, approaches, and models

to better understand and predict the behaviour of these systems, even though several

research and industrial challenges are still open.

This thesis addresses the study of different properties of complex networked systems

and their applications. The main contribution of the work can be considered as three-

fold: the study of interaction among agents and the relative data clustering in small

groups, the analysis of convergence conditions towards a common or multiple agreements,

and the investigation of security aspects concerning the detection of perturbations that

can propagate across network components and subnetworks. Firstly, a novel approach

to solve data clustering problems within wireless sensor networks is proposed, including

additional constraints on the distance among cluster centroids. A key feature of the pre-

sented algorithm is its ability to partition the original raw dataset into a suboptimal set

of clusters, without the requirement of a priori specification of the desired cluster number.

Secondly, after introducing a mathematical framework describing the dynamic model of a

vii



complex network, a set of centralised and distributed conditions are determined, allowing

the detection of the connectedness of the network’s underlying topological structure, its

convergence to a steady state, and even to an agreement. To this purpose, the so-called

Hegselmann-Krause opinion dynamics model is adopted, which describes the way agents

of a community dynamically influence with each other. Thirdly, the problem of optimal

sensor location within a class of networked systems, which requires the detection of un-

known input disturbance, is addressed. To this aim, a measure simultaneously based on

the properties of controllability and observability of the network is used, which allows

different sensor locations to be evaluated with respect to the location of the signal to

be detected. These results inform the design of robust networks, and they suggest that

sensor location methods based on the network topology alone may lead to poor detection

performance.
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Chapter 1

Introduction

Nowadays, the world where we live and operate is networked. We drive to work on a

network of roads and fly across a web of cities connected by commercial airlines. We com-

municate using an increasingly elaborate set of devices ranging from phones, to computers

or tablets, all of which are connected through Internet [1]. Our personal choices are often

influenced by the opinions of other members belonging to our social community. We shop

at stores and dine at restaurants connected through food and goods delivery networks.

Our governments are networked as are our financial and societal infrastructures. Every-

thing around us may be considered as a networked system whose complexity increases

with the number of components as well as the interactions among them. Complex net-

worked systems can be interpreted as large collections of entities that are interconnected

by links, whose structure is irregular, complex and dynamically evolving in time [7]. Such

networks arise in many applications involving, e.g., wireless sensor networks, swarms of

robots, advanced communication systems, power distribution networks, social and eco-

nomic networks, smart grids. They have been studied for the purpose of modelling,

analysing, and controlling different kinds of real world systems. In this respect, to achieve

a correct description of their behaviour, the specification of the dynamics of the individual

entities, or agents, acting within the system, must be accompanied by a characterisation
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Chapter 1. Introduction

of their interaction, indicating, e.g., how they communicate with each others, namely the

graph of their interaction topology.

1.1 Current Research and Challenges

The main goal of modern research on modelling, simulation and analysis of complex net-

worked systems is to develop capabilities for understanding, designing and control of those

networked systems [10]. To carry out this, it needs to better understand the structure

and the dynamics of the network, predictive modelling and simulation of dynamic net-

works, and situational awareness and control. Despite the use of different analysis tools,

network properties such as connectivity, efficiency, and robustness are critical to both

control design and complex-network modelling [13,19,96].

Network theory provides tools that characterise the growth and topology of distributed

networks in relation to their navigability, congestion, clustering, and robustness to fail-

ure [17, 27, 79]. Nevertheless, the need for new paradigms for control design is particu-

larly evident in large-scale interconnected multi-agent systems, where signals need to how

quickly and efficiently, but interconnected components may not be able to store and ma-

nipulate the complete state of the system. Although complexity barriers render the task

of designing controllers for high-dimensional systems impractical, the ability to reason

about global network properties based on locally available information enables the design

of decentralised control laws.

To this regard, distributed systems and networks have received much attention in

the last years because of their flexibility and computational performance. Frequently,

the tasks that must be accomplished by a group of autonomous agents requires that

they agree on the value of suitable parameters, which can be effectively achieved within

the framework of so-called consensus algorithms. Several kinds of these algorithms have

been proposed in the literature [55, 80, 102]. A large research effort in this direction is

2



Chapter 1. Introduction

witnessed by pioneer researchers such as French [32] and DeGroot [38], who proposed first

frameworks to model such problems with respect to groups of experts making decisions

together. The study of agreement has been further fostered by the work of Olfati-Saber

and Murray [71] were distributed procedures are devised to let a set of agents reach

a common standpoint by means of only local interaction, without a central authority.

Among the proposed approaches, the simplest ones are those based on linear consensus

iterations [33, 99] where each node updates its state, at each time instant, according to

a weighted combination of its own value and those received from its neighbours. As it

is known, the combination weights determine the convergence velocity towards a steady

state value.

A further important research direction is the study of opinion dynamics within inter-

acting agent networks, whether consisting of humans, robots or sensors, which has always

attracted large part of the scientific community, also for the challenge of capturing the

major features of such complex processes. To this respect, the Hegselmann-Krause (HK)

opinion dynamics model was first proposed and studied in [41]. Many works have later

established properties of the HK model and showed their application [5,6]. This model is

based on the assumption that agents having far different opinions do not communicate,

while agents with close enough opinions that is, the difference in opinions is less than

an influence parameter ε will influence each other [43]. In spite of its simplicity, the HK

model displays nontrivial characteristics, since the graph topology underlying the com-

munication among the agents is timevarying and depends on the state in a nonlinear and

discontinuous way [4, 14, 16]. There is, however, no guarantee to obtain an agreement,

and several clusters of opinions can be obtained, based on the choice of ε [40, 85, 101].

Notwithstanding the large research effort focused on taming the complexity of such a

model [18, 51,60,68], all the inherent features has not been fully understood yet.

Another crucial issue to be addressed for complex networked systems is linked to their

security. Networked systems are prone to malicious attacks and faults against individual

3
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nodes and interconnection dynamics [15, 65, 86]. Perturbations propagate across compo-

nents and subnetworks and may cascade into the failure of all interconnected parts [12].

Reliable operation of network systems relies on the prompt detection and remedy of mal-

functions. The ability to detect perturbation in network systems depends on the intrinsic

structure of the system, as well as on the location of sensors and monitors [77, 94]. New

security approaches for complex networks, improve the design of networks to be more ro-

bust against failures or attacks, detecting, i.e., potential catastrophic failure on the power

grid and preventing or mitigating its effects, understanding how populations will respond

to the availability of new energy sources or changes in energy policy, and detecting subtle

vulnerabilities in large software systems to intentional attacks [20,30,64].

1.2 Thesis Contributions

The main contribution of each chapter are as follows.

Chapter 2 introduces the general notation that will be adopted in the document. We first

recall definitions from algebraic graph theory and notions from network science analysis.

We provide mathematical models that are used in the literature, describing the dynami-

cal behaviour of network agents, and the mechanism by which opinions evolve and lead

to an agreement or multiple local consensus. We finally present structural properties of

networked systems, such as controllability and observability, which will be used to detect

external input attacks.

Chapter 3 gives centralised and distributed conditions for the HK model aimed at detect-

ing at time instant t the convergence to a steady state, the connectedness of the underlying

topological structure, and the convergence to an agreement at time instant t + 1. This

is obtained by using an alternative formulation of the HK model, which provides some

insights on the complexity of the model. According to these distributed conditions, each

agent i is assumed to known, at each time step, not only the opinion of its neighbours j,
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but also the size of the neighbourhood of the agents j, i.e., the number of agents they are

connected to.

Chapter 4 provides a distributed method to partition a large set of data into clusters,

characterised by small in-group and large out-group distances. We assume a wireless sen-

sor network where each sensor is given a set of data, and the objective is to provide a way

to group the sensor values in homogeneous clusters based on the type of information. In

the previous literature, the desired number of clusters must be specified a priori by the

user. In our approach, the clusters are constrained to have centroids with a distance at

least ε among them, and the number of desired clusters can be unspecified. The inclusion

of this type of constraint within the problem formulation allows better clustering perfor-

mance. However, existing and available algorithms fail to cope with such a constraint.

We show how a solution based on the HK model is able to find a sub-optimal admissible

solution. Even though the HK model is a centralised algorithm, we provide in this work a

distributed implementation, based on a combination of distributed consensus algorithms.

Chapter 5 discusses the general problem of network security and proposes an optimal

sensor placement method to detect an external attack. We consider both the cases of

Toeplitz line networks, where edge weights are specified by three parameters, and line

networks with general weights. As a counterintuitive result we prove that, depending

on the edge weights, the sensor should be placed as far as possible in the network from

the origin of the signal. On the other hand, in certain regions of the parameters space,

the sensor should be co–located with the signal to be detected. Our results suggest that

sensor location methods based on the network topology alone may lead to poor detection

performance in complex cyber-physical systems, due to the intricate relation between the

system dynamics and the underlying network structure. The findings are illustrated on a

class of electronic circuits.
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Chapter 2

General Notions in Algebraic Graph

Theory, Dynamic Models and

Properties of Networked Systems

In this chapter we review some basic notions in graph theory and present some dynamical

models describing the behaviour of networked systems. We also recall the known struc-

tural properties of networked control systems, such as controllability and observability,

which are used within the attack detection framework as metrics to solve optimisation

problems.

2.1 Preliminaries in Graph Theory

Let G = {V , E} be a graph, where V = {v1, . . . , vn} is the set of n vertices and E ⊆ V ×V

is the set of links (vi, vj), also called edges. A link (vi, vj) is called a self-loop if i = j. Let

us refer to a graph such that all the nodes have a self-loop as a self-loop graph. A graph

is said to be undirected if (vi, vj) ∈ E whenever (vj, vi) ∈ E , and directed otherwise. The

in-degree of a node is the number of incoming edges, while the out-degree is the number
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of out-going edges; for undirected graphs the in-degree coincides with the out-degree and

is referred to as the degree of the node. An undirected graph G is connected if for any

vi, vj ∈ V with vi 6= vj there is a path that connects vi and vj. A graph G is complete if

for any vi, vj ∈ V s.t. vi 6= vj the link (vi, vj) ∈ E . A self-loop undirected graph G has

an m-path if there is a path connecting m consecutive nodes, each with exactly degree

m, and such path contains a node that is connected to each others node in the path (see

Fig. 2.1). Let a unit segment graph be a graph embedded in R s.t. a couple of nodes

are connected whenever their distance is smaller than a given threshold ρ. Note that unit

segment graphs are the mono-dimensional analogue of unit disk graphs [3].

Figure 2.1: Example of two self-loop undirected graphs with m-paths: A) graph with
a 4-path where each node in grey colour (V2,V3,V4,V5) has got four links with the other
nodes, B) graph with five nodes and a 3-path.

As reported in [8], let us give some other graph definitions. A cycle is a closed path in

which all nodes and all edges are distinct. With the term neighbours it is indicated the

nearest of a node i, and they are the nodes to which it is connected directly by an edge, so

the number of nearest neighbours of the node is equal to the node degree. A node is said

to be reachable from another node if there exists a path connecting the two nodes, even

if it goes through multiple nodes in between. The shortest path length is defined as the

length of the shortest path going from nodes i to j. The diameter of network is defined

as the maximum shortest path length in the network. That is, the diameter is the longest
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of all shortest paths among all possible node pairs in a graph. The size of a network is

the average shortest path length defined as the average value over all the possible pairs

of nodes in the network. The density of a graph is defined as the ratio of the number of

edges in the graph to the square of the total number of nodes.

In the following, matrices are represented by uppercase literals (e.g., Γ) while their

coefficients are represented by lower case literals (e.g., γij). A n×n matrix Γ and a graph

G(V , E) with n nodes are associated if the coefficient γij > 0 whenever (vi, vj) ∈ E , and

γij = 0 otherwise. A matrix Γ whose rows sum all to one is said to be row stochastic,

while it is said to be column stochastic when all the columns sum to one. If Γ is both row

stochastic and column stochastic then it is called double stochastic.

2.2 Network Graph Topologies

In this section we report the main network topologies arising in many context of real appli-

cations. Generally, in communication networks and computer science [50, 81], a physical

topology is a schematic description of the network layout, which includes nodes (vertices)

and edges lines (links). With reference to Fig. 2.2, the most widespread topologies are

the following:

Figure 2.2: Different topologies of communication networks
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• In the line network topology, the nodes are arranged in series each of which is linked

to the predecessor and the followers, except for the first and the last node of the

line.

• In the ring network topology, the nodes are connected in a closed loop configuration.

Adjacent pairs of nodes are directly connected, the data flow passing through one

or more intermediate nodes.

• In the star network topology, there is a central node to which all nodes are directly

connected. Every node is indirectly connected to every other through the central

node.

• In the bus network topology, every node is connected to a main cable called the

bus. Therefore, in effect, each node is directly connected to every other node in the

network.

• The tree network topology uses two or more star networks connected together. The

central node of the star networks are connected to a main bus. Thus, a tree network

is a bus network of star networks.

• In the mesh network topology the nodes are connected among them according to

an undefined rule. In this case, different paths of graph can be determined.

• In the fully connected network topology each node is connected directly to each of

the others.

2.3 Consensus in Multi-Agent Systems

Consensus issues in multi-agent systems have attracted a lot of interest in the last years

[54, 80]. In such multi-agent systems, starting from some initial value, the agents com-

municate with each other, and tend to modify their values so that the difference with
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their neighbours decrease. These communications often take the form of agents averaging

other agents values to update theirs. Such a system may reach or converge to consensus,

that is, a situation where all agents hold the same value. The nature of the values on

which consensus is sought, the way averages are performed and the communications that

take place are part of each particular system definition. Many properties of these systems

depend on their communication topology, which is usually represented by a sequence of

graphs. The term consensus is usually indicated to describe the diffusion process taking

place on the network that leads to the harmonization of the node initial conditions with

their asymptotic evolutions converging onto a common equilibrium [22].

2.3.1 Consensus model for continuous-time systems

The interaction topology of a network of agents is represented using a directed graph

G = (V , E) with the set of nodes V = {1, 2, . . . , n} and edges E ⊆ V × V . G is a graph

with a non negative adjacency matrix A = [aij] that specifies the interconnection topology

of a network of dynamic systems, sensors, or agents [72]. The neighbours of agent i are

denoted by the set Ni = {j ∈ V : (i, j) ∈ E}. A simple consensus algorithm to reach an

agreement can be expressed in the form of a linear system:

ẋi(t) =
∑
j∈Ni

aij(xj(t)− xi(t)), x(0) = c ∈ Rn. (2.1)

Given a connected network G, all the solutions of system (2.1) converge to an aligned

state x∗ = (µ, µ, ..., µ)T with identical elements equal to µ = x(0) = 1
n

∑
i ci. In a more

compact form, system (1) can be expressed as

ẋ = −Lx (2.2)

11
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where L is the Laplacian Matrix of graph G, defined as follows

L = ∆− A, (2.3)

where ∆ = diag(A· 1) is the degree matrix of G with diagonal elements di =
∑

j aij. The

vector 1 = (1, 1, ..., 1)T ∈ Rn denotes the vector of ones that is always a right eigenvector

of L corresponding to λ1 = 0. Instead, the second smallest eigenvalue λ2 of L determines

the speed of convergence of the algorithm.

2.3.2 Consensus algorithm for discrete-time systems

In this section we review the consensus algorithm for discrete-time systems, with a briefly

focus on the: χ-consensus, max-consensus, and average-consensus problem .

In multi–agent systems each agent updates his current state based upon the informa-

tion received from other agents. In the study of this system, the communication topology

of information flow can be well represented by a weighted directed graph G(A) [98]. If

agent i can receive information from agent j, then there exists an edge from vertex i to

vertex j. Therefore, the neighbours of agent i just correspond to the set of neighbours

N (vi). Let xi(0) ∈ R denote the value of vertex vi (of agent i). Suppose every node i of

G(A) at each iteration t, updates its own state as

xi(t+ 1) = Ax(t) (2.4)

where A ∈ Rn×n and x = (x1, x2, . . . , xn)T , which is a discrete-time system. We say

that the vertices vi and vj agree if and only if xi = xj, thus the vertices of G(A) have

reach a consensus if and only if xi = xj for all i, j ∈ n.

12
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Eq.(2.4) can be expressed also as:

xi(t+ 1) = Ui({xj(t) : vj ∈ N in
i ∪ {i}}) (2.5)

where Ui is a function of the current state of the node vi and its in-neighbourhood. Let

χ(x1(0), . . . , xn(0)) ∈ R be any function of the initial conditions of all the nodes the

χ-consensus problem consists in finding a function Ui(·), such that:

lim
t→∞

xi(t) = χ(x1(0), . . . , xn(0)) ∀i = 1, . . . , n.

Let us now discuss the max-consensus problem, where the nodes are required to con-

verge to the maximum of the initial conditions, i.e., χ(·) is the maximum of its arguments.

2.3.3 Max-consensus

Assuming the graph is connected and undirected, the problem is known to have a solution

in finite time [71] (and specifically in no more than n steps) by choosing

Ui(·) = max
h∈N in

i ∪{i}
xh(t). (2.6)

In the following we will denote by

xi = max-consensusi(xi(0), xj(0)| j 6= i,G, tmax),

the execution of tmax iterations of the max-consensus procedure by the i-th agent

in a network G, starting from its own initial condition xi(0) and the “unknown” initial

conditions of the other agents, while xi is the state of the i-th agent at iteration tmax.

Such a formalism just represents the execution of the max-consensus or min-consensus by

the i-th agent, and we assume that all other agents are executing the same algorithm in

13
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a synchronous manner, each with its own initial condition.

2.3.4 Average-consensus

In the average-consensus problem the nodes are required to converge to the average of

their initial conditions, i.e.,

χ(·) = cT
[
x1(0) . . . xn(0)

]T

where cT = 1
n
1Tn and 1n is a vector with n components all equal to 1. Let each node

choose

Ui(·) = wiixi(t) +
n∑
j=1

wijxj(t) (2.7)

where wij = 0 if (vi, vj) /∈ E . The update strategy for the entire system can be represented

as

x(t+ 1) = Wx(t),

where the n× n matrix W contains the terms wij.

According to [99], this choice of Ui(·) yields an asymptotical solution if and only if :

(I) W has a simple eigenvalue at 1 and all other eigenvalues have magnitude strictly less

than 1; (II) the left and right eigenvectors of W corresponding to eigenvalue 1 are 1n and

cT , respectively. The above condition implies that, if the underlying graph is undirected,

it needs to be connected. A possible choice for W , assuming that each node knows n (or

an upper bound for n), is that each node i chooses independently the terms wij as

wij =



1
n
, if vj ∈ N in

i

0, if vj /∈ N in
i

1−
∑

l∈N in
l
wil, if i = j

14
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resulting in a matrix W that satisfies the conditions in [99]. Several other choices that

yield to asymptotic consensus are possible (e.g., see [80]). As for the complexity, note

that at each time step t each agent i calculates the contribution of each neighbour to the

next state, hence we have O(d n tmax). Notice that, however, the algorithm in its basic

setting has asymptotic convergence, hence typically tmax � 1 in order to obtain a good

approximation of the asymptotic result. An alternative is to resort to finite-time average

consensus algorithms like the one in [89] but we choose to omit the discussion for the sake

of clarity. In the following we will denote by

xi = average-consensusi(xi(0), xj(0)| j 6= i,G, tmax),

the execution of tmax iterations of the average-consensus procedure by the i-th agent in a

network G, starting from its own initial condition xi(0) and the “unknown” initial condi-

tions of the other agents, while xi is the state of the i-th agent at iteration tmax. Again,

such a formalism just represents the execution of the max-consensus or min-consensus by

the i-th agent, and we assume that all other agents are executing the same algorithm in

a synchronous manner, each with its own initial condition.

2.3.5 Network size calculation

Combining the max-consensus and the average consensus algorithms, it is possible to

calculate the number of agents n in the network in a distributed way [84].

Specifically, suppose a leader is elected via max-consensus over G (e.g., the nodes

each have a unique identifier and the node with maximum identifier is elected as leader

via max-consensus). Now, let the nodes execute an average consensus algorithm with

x̄i(0) = 1 if node vi is the leader and x̄i(0) = 0 otherwise: the average-consensus yields

lim
t→∞

x̄i(t) =
1

n
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hence n can be calculated in a distributed way.

2.4 The Hegselmann-Krause Opinion Dynamics Model

The Hegselmann and Krause opinion dynamic model was designed to analyse the evolution

and diffusion of opinions in a population of human beings [41]. The model represents social

influence mechanisms in several contexts, such as political voting, commercial preferences,

and social networks [61]. The main feature of this model is that agents with different

opinions do not influence each others, while agents interact, influencing each other, if

the opinions are close enough [42]. Let us consider a system composed of n agents, each

characterized by an initial opinion xi(0) expressed by a real number. It is assumed that

the process of opinion formation is discrete time T = {0, 1, 2 . . .}. Let xi(t) ∈ R be

the opinion of i–th agent at time instant t, the vector x(t) = [x1(t), . . . , xn(t)]T in n

dimensional space represents the opinion profile at the fixed time instant t. The i–th

agent is influenced by opinions that differ from its own one no more than an influence

parameter ε ≥ 0. Fixing an agent i at generic time t, it can be define the set of neighbours

of i, depending on x(t) and ε, as:

Ni(x(t), ε) = {j ∈ {1, . . . , n} : |xi(t)− xj(t)| ≤ ε} (2.8)

The set Ni(x(t), ε) is always non-empty since it always contains the i-th agent itself.

Indeed, in the HK model each agent takes into account also its current opinion to form

a new one. The opinion of the i-th agent at time instant t+ 1 is given by the average of

the opinions of its neighbours, according to the iterative rule:

xi(t+ 1) =
1

#(Ni(x(t), ε))

∑
j∈Ni(x(t),ε)

xj(t) (2.9)
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where #(Ni(x(t), ε)) is the cardinality of Ni(x(t), ε). The model (2) can be rewritten in

compact form, as:

x(t+ 1) = A(x(t), ε)x(t), x(0) = x0 (2.10)

where A(x(t), ε) is a state-dependent n×n dynamic matrix whose entries are in the form:

aij(x(t), ε) =


1

#(Ni(x(t),ε))
if j ∈ Ni(x(t), ε)

0 otherwise

(2.11)

A(x(t), ε) is a row stochastic matrix, that is, all elements of each rows sum to one. The

entries of A(x(t), ε) are either zero or are in the form 1/m (for m = 1, . . . , n), and all the

nonzero elements of a row are equal.

For every time instant t an undirected self-loop graph G(x(t), ε) can be associated to

the matrix A(x(t), ε).

In the following, where it is understood, we will refer to A(x(t), ε), G(x(t), ε) and

Ni(x(t), ε) as A(t), G(t) and Ni(t), respectively.

Notice that the discrete model (2.10) has a high degree of discontinuity. As an example,

Fig. 2.3 shows how a small variation in the magnitude of ε, of a quantity equal to 10−5,

leads to quite different evolutions for the state of the agents, due to different evolutions

of the coefficient a56(·).

Several works can be found in the literature attempting to characterise the properties of

the HK model. Given the complexity of the HK model, most of the recently studies assume

simple initial opinion profiles, i.e., the initial condition x(0) and symmetric or asymmetric

confidence intervals. Mainly, within the interval [0, 1] two different classes are considered

in the literature [41,68]: the deterministic equidistant profile, where xi(0) = i−1
n−1

, and the

random profile where opinions are uniformly distributed.

Fig. 2.4 shows an example of result of the HK model with n = 100 agents and initial
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Figure 2.3: Example of completely different evolutions of the HK model for two extremely
close values of ε (for n = 10 agents with deterministic equidistant initial opinion profile
in [0, 1] and ε in the two examples that differs of a factor 10−5).
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Figure 2.4: Simulation of HK model for n = 100 agents with deterministic equidistant
initial opinion profile in [0, 1] and for different values of ε.

18



Chapter 2. General Notions in Algebraic Graph Theory, Dynamic Models and
Properties of Networked Systems

opinions equidistantly distributed within [0, 1], plotted for several choices of the parameter

ε. It is noteworthy that the number of clusters decreases when ε grows; for sufficiently

large ε, the opinion of all the agents reach an agreement (i.e., a unique shared opinion

for all the agents). In [41] it is conjectured that for every ε there must be a number

of agents n s.t. the equidistant profile leads to an agreement, while in [68] it is shown

that for any initial opinion profile, there exists a finite time t̄ after which the graph G(t)

underlying the matrix A(t) remains fixed, i.e., G(t̄) = G(t) for all t ≥ t̄. In [4] it is proven

that, during the evolution of the system, the order of the opinions is preserved, that is

xi(0) ≤ xj(0)⇒ xi(t) ≤ xj(t) for all t. It is also proved that, if the initial opinion profile

is sorted in ascending order, then the evolutions of the smallest opinion x1(t) and of the

largest opinion xn(t) are non-decreasing and non-increasing, respectively. Moreover, if at

any step t̄ it holds |xi(t̄) − xi+1(t̄)| > ε, this remains true for any t ≥ t̄, and the system

splits into at least two independent subsystems and the graph G(x(t), ε) has become

disconnected. As a consequence, for any time instant t, an agreement is possible if and

only if

min
i=1,...,n−1

{|xi(t)− xi+1(t)|} ≤ ε

In [4, 26, 59] the convergence of the HK model is investigated. In [4], it is proved that

the system convergences in finite time to a steady state. More precisely, a steady state is

reached if there is a time instant t∗ s.t. for all t ≥ t∗ it holds x(t) = x(t∗). However, the

convergence to a single or different clusters is still under investigation. Recently, in [101]

for a smoothed HK model, a sufficient condition on the initial states (opinions) s.t. the

system will converge to exactly one cluster is presented.
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2.5 Structural Properties of Networked Systems

2.5.1 Network model

The control problem of complex networks consists of the selection of a set of control

nodes, and the design of a control law to steer the network to a target state [75]. Con-

sider a network represented by a directed graph G = (V , E) in which the set of nodes

V = {1, 2, . . . , n} while the edges set is E ⊆ V × V . Let A = [aij] be the weighted adja-

cency matrix associated to the graph G. Assume that A is diagonalizable, i.e., A admits a

basis of eigenvectors. We associate a real value (state) with each node, collect the nodes

states into a vector (network state), and define the map x : R→ Rn to describe the evo-

lution (network dynamics) of the network state over time. We consider the discrete-time,

linear, and time invariant network dynamics described by ẋ(t) = Ax(t). Controllability

of the network G refers to the possibility of steering the network state to an arbitrary con-

figuration by means of external controls. We assume that a set K := {k1, k2, . . . , kn} ⊆ V

of nodes can be independently controlled and we let Bk := {ek1 , ek2 , . . . , ekn} be the input

matrix, where denotes the i–th canonical vector of dimension n. The network with control

nodes k reads as

ẋ(t) = Ax(t) +Bk uk(t) (2.12)

where is uk : R→ Rn the control signal injected into the network via nodes k.

2.5.2 Controllability of networked systems

A network is controllable by the set of control nodes K if and only if for every state

xf (t) ∈ Rn there exists an input uk such that xf (t) = x(t) with initial condition x(0) = 0.

Controllability of dynamical systems is a well understood property, and it can be ensured

by different structural conditions [57]. For instance, let Ck be the controllability matrix
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defined as:

Ck := [Bk ABk . . . An−1Bk] (2.13)

The network system(2.12) is controllable by the nodes k, if and only if, rank (Ck) = n.

The above notion of controllability is qualitative, and it does not quantify the difficulty of

the control task as measured, for instance, by the control energy needed to reach a desired

state. As a matter of fact, many controllable networks require very large control energy

to reach certain states. To formalize this discussion, define the controllability Gramian

Wc =

∫ ∞
0

eAtBBT eAt dt (2.14)

and it is the solution of Lyapunov equation

−BBT = ATWc +WcA (2.15)

The controllability Gramian defines an ellipsoid in the state space

Ec(t) = {x ∈ Rn|xTWc(t)
−1x ≤ 1} (2.16)

that contains the set of states reachable in t seconds with one unit or less of input en-

ergy. The eigenvectors and corresponding eigenvalues of Wc define the semi-axes and

corresponding semi-axis lengths of the ellipsoid. Eigenvectors of Wc associated small

eigenvalues (large eigenvalues of W−1
c define directions in the state space that are less

controllable (require large input energy to reach), and eigenvectors of Wc associated with

large eigenvalues (small eigenvalues of W−1
c define directions in the state space that are

more controllable (require small input energy to reach).

An analysis of the eigenvalues and corresponding eigenvectors of the controllability

Gramian reveals which directions the system can be easily steered to, and which are more
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energy–demanding. In particular, the direction of the eigenvector corresponding to an

eigenvector zero cannot be reached. In other words a controllable system has a positive

definiteWc [87]. It can be verified that the controllability GramianWc is positive definite if

and only if the network is controllable at the time t by the nodes k. Different quantitative

measures of controllability of dynamical systems have been considered in the last years

[23]. In addition to the smallest eigenvalue of the controllability Gramian λmin(Wc), the

trace of the inverse of the controllability Gramian trace(W−1
c ), and the determinant of

the controllability Gramian det(Wc), have been proposed. It can be shown that, while

trace(W−1
c ) measures the average control energy over random target states, det(Wc) is

proportional to the volume of the ellipsoid containing the states that can be reached with

a unit energy control input. Unlike the controllability metrics λmin(Wc), trace(Wc
−1),

det(Wc) the selection of the control nodes to maximize the trace(Wc) admits a closed-

form solution. Unfortunately, the maximization of trace(Wc) does not automatically

ensure controllability and, it often leads to a poor selection of the control nodes with

respect to the worst-case control energy to reach a target state.

2.5.3 Observability of networked systems

A quantitative description of a complex networked systems is inherently limited by our

ability to estimate the systems internal state from experimentally accessible outputs. A

system is called observable if we can reconstruct the systems complete internal state from

its outputs [58]. More precisely, the network system (2.12) is observable if the observability

matrix Ok := [CT
k CT

k A . . . CT
k An−1]T is full column rank. The observability problem of

complex networks consists of selecting a set of sensor nodes, and designing an estimation

strategy to reconstruct the network state from measurements collected by the sensor

nodes. Equivalently to the controllability case, observability can be analysed by using the
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observability Gramian Wo which is defined as

Wo =

∫ ∞
0

eAtCT C eAt dt (2.17)

The observability Gramian is symmetric and positive semi–definite and it is also the

solution of Lyapunov equation:

−CTC = ATWo +WoA (2.18)

The observability Gramian is a measure of the energy visible in the output signal when

letting the system freely evolve from the initial state at time zero towards the steady state

0. Similarly to the controllability Gramian, the observability Gramian defines an ellipsoid

in the state space

Eo(t) = {x ∈ Rn|xTWo(t)
−1x ≤ 1} (2.19)

The eigenvectors and eigenvalues of the observability ellipsoid provide information about

the relative degree of observability of different directions in state space.

2.6 Attack Detection and Optimal Sensor Placement

in Networked Systems

Controllability and observability have long been recognized as fundamental structural

properties of dynamical systems [69], but have recently seen renewed interest in the con-

text of large, complex networks of dynamical systems [88]. A basic problem is the sensor

and actuator placement, namely, selecting a subset from a finite set of possible placements

to optimize some real-valued controllability and observability metrics of the network [88].

In this section we model complex networked systems under attack as a time-invariant dy-

namical network models, in which the dynamics are given by subject to unknown inputs.
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This modelling framework is very general, it includes many of the existing networked

systems and describes various attack scenarios of interest [76]. The network’s dynamics

is thus described by the the following linear time–invariant dynamical system:

ẋ(t) = Ax(t) +B u(t),

y(t) = C x(t) +Du(t),

(2.20)

where x : R → Rn, y : R → Rp, A ∈ Rn×n, B ∈ Rn×m,C ∈ Rp×n and D ∈ Rp×m.

We assume that the vector u models the attacks on the state x, and the vector y models

sensor measurements. As discussed before in Section 2.5.1, A is the network matrix, and

without affecting generality, a crucial assumption leading to a correct analysis for the

system (2.20) is that A is Hurwitz stable [92], i.e., all its eigenvalues are contained in

the open left half of the complex plane (Re[λi] < 0). In this description, the states are

subjected to attacks through the input matrix B, while the system output is reconstructed

by the sensors matrix C, describing where it is best to place available sensors in order

to detect possible attacks to the network. Moreover, y can be influenced by unknown

signals Du, modelling disturbances affecting the plant. Besides, reflecting the genuine

failure of systems components, these disturbances model the effect of an attack against

the networked system. For systems with sensors and measurements, the impact of an

attack can be marginalized if one can detect the attack. Sensor and actuator placement

problems can be formulated as set function optimization problems.

For a given finite set V = {1, . . . , n} a set function f : 2V → R assigns a real number

to each subset of V . In our setting, the elements of V represent potential locations for the

placement of sensors or actuators in a dynamical system, and the function f is a metric

for how controllable or observable the system is for a given set of placements, which is to
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be maximized. We consider set function optimization problems of the form:

max f(S)

subject to |S| = k, S ⊆ V .

The problem is to select a k-element subset of V that maximizes f . This is a finite

combinatorial optimization problem, so one way to solve it is by brute force: simply

enumerate all possible subsets of size k, evaluate f , and pick the best subset. However,

we are interested in cases arising from complex networks in which the number of possible

subsets is very large. The number of possible subsets grows extremely fast as V increases,

so the brute force approach quickly becomes infeasible as V becomes large.
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Chapter 3

Distributed Steady-State,

Connectedness and Agreement

Detection Criteria for the

Hegselmann-Krause Model

3.1 Alternative Formulation of the Hegselmann-Krause

Model

Let us start this section with an alternative formulation of the HK model presented in

Section 2.4, by providing insights on the complexity underlying the model. The update

rule of the HK model (2.9) can be rewritten as follows:

xi(t+ 1) =

∑n
j=1 βij(xi(t), xj(t), ε)xj(t)∑n

j=1 βij(xi(t), xj(t), ε)
, i = 1, . . . , n , (3.1)
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where βij(xi(t), xj(t), ε) : R+ × R+ × R+ → R+ is a non–negative weighting function,

describing the belief of the i–th agent about the opinion of the j–th agent, depending also

on the parameter ε. Such a weighting function depends on the distance between its two

input variables, i.e.,

βij(xi(t), xj(t), ε) = βij(|xj(t)− xi(t)|, ε).

The stack equation (2.10) of the HK model is obtained for

βij(|xi(t)− xj(t)|, ε) = sign(sign(ε− |xi(t)− xj(t)|) + 1)

setting:

aij(x(t), ε) =
βij(|xi(t)− xj(t)|, ε)∑n
h=1 βih(|xi(t)− xh(t)|, ε)

(3.2)
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Figure 3.1: Weighting function βij(|xi − xj|, ε) of the HK model for ε = 0.4.

The above formalization provides some insights on the challenging complexity of the

HK model. Indeed, the model is intrinsically discontinuous: the agents cease abruptly to

influence each other when the distance among the agent’s opinion becomes larger than ε,

as shown in Fig. 3.1. Notice that, while the term βij(|xi(t) − xj(t)|, ε) only depends on

the state of agent i and agent j, aij(x(t), ε) depends on the state of all the agents. In the

following, where understood, we will refer to βij(|xi(t)− xj(t)|, ε) as βij(t).
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3.2 Criteria for Steady State Detection

It has been established in [4] that the HK model converges to a steady state from any

initial opinion profile x(0). In this section, we provide conditions, which can be verified in

a distributed way, on the state x(t̄) of the system at the time t̄ ensuring that the system

has reached a steady state at time instant t+ 1; such conditions can be used to determine

when the HK algorithm can stop.

Let us present the following preliminary result, which it will use as mathematical tool

to prove the convergence of the HK model in one step.

Lemma 3.2.1. (Unit segment graph) Let the opinion profile x(t̄) of an HK model for

a given time instant t̄. The graph G(t̄) associated to matrix A(t̄) is a unit segment graph

with ρ = ε.

Proof. Each agent in the HK model has a scalar opinion xi(t̄) hence the graph G(t̄) is

embedded in a mono-dimensional space. The definition of the neighboured (2.8) implies

that G(t̄) is a unit segment graph with ρ = ε.

Instead, the following theorem gives a necessary and sufficient condition to establish

the convergence of the HK model.

Theorem 3.2.1. (Convergence of the HK model) Given the opinion profile x(t̄) of

a HK dynamic model at a time instant t̄, the dynamic model will converge in one step,

i.e., x(t̄ + 1) is an equilibrium point, if, and only if, the dynamic matrix A(t̄) is doubly

stochastic.

Proof. Let us first prove that A(t̄) is doubly stochastic if, and only if, A(t̄) is similar to a

block diagonal matrix, with κ ≥ 1 full blocks, i.e., there exists a permutation matrix P

s.t.

P−1A(t̄)P = diag(D1(t̄), . . . , Dκ(t̄)) , (3.3)

29



Chapter 3. Distributed Steady-State, Connectedness and Agreement Detection Criteria
for the Hegselmann-Krause Model

where each sub–matrix Di(t̄) is full.

Suppose matrix A(t̄) is symmetric and let P be the permutation matrix that sorts the

components of x(t̄) in ascending order, i.e., Px(t̄) = z s.t. zi ≤ zi+1, for all i = 1, . . . , n−1.

Let ζ1 = #(N1(z(t̄), ε)) be the size of the neighboured of the agent represented by the

variable z1. Since by Lemma 3.2.1, G(t̄) is a unit segment graph, the neighbours of

the agent represented by z1 are also neighbours of each other, the subgraph underlying

the agent represented by z1 and its neighbours is complete. Matrix A(t̄) is symmetric,

therefore the first row row1(D(t̄)) and the first column col1(D(t̄)) of matrix D(t̄) are given

by:

row1(D(t̄)) = col1(D(t̄))T =

[
1
ζ1
. . . 1

ζ1
0 . . . 0

]
.

Since the first ζ1 elements in col1(D(t̄)) are equal to 1
ζ1

, the first ζ1 agents have exactly ζ1

neighbours, and thus

rowi(D(t̄)) = row1(D(t̄)), ∀i = 1, . . . , ζ1

hence

D(t̄) = diag(D1(t̄), D∗1(t̄))

where D1(t̄) is a full matrix and D∗1(t̄) is a (n−ζ1)×(n−ζ1) matrix. The proof that D∗1(t̄)

is a block diagonal matrix with complete blocks can be obtained by applying the above

argument to the agent represented by zζ1+1, and so on. Let us now prove that if A(t̄) is

composed of full block diagonals then A(t̄) is column stochastic. Since A(t̄) is similar to

a full block diagonal matrix, all agents associated with the state variables in the same

block have the same number of neighbours. Therefore the elements of each block take the

same values and, since the rows sum to one, also the columns sum to one. To complete

the proof, let us prove that if A(t̄) is column stochastic then it is also symmetric. We can

equivalently show that, if A(t̄) is asymmetric, there is a j for which
n∑
i=1

ai,j(t̄) 6= 1. Let P
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be the permutation matrix that sorts the state variables in ascending order and let ζ1 be

the number of neighbours of agent with smaller opinion. The first row row1(D(t̄)) and

the first column col1(D(t̄)) of matrix D(t̄) are:

row1(D(t̄)) =

[
1
ζ1
. . . 1

ζ1
0 . . . 0

]
,

col1(D(t̄))T =

[
1
ζ1

q1 . . . qζ1−1 0 . . . 0

]
.

(3.4)

Since A(t̄) is asymmetric, D(t̄) is not a block diagonal matrix with full blocks, hence one

of the following holds:

i) D(t̄) = diag(D1(t̄), D∗1(t̄)), where D1(t̄) is a complete block and D∗1(t̄) is not a

diagonal block matrix composed of full blocks;

ii) there is an index i s.t. qi−1 is different from the value of the i–th element in the first

row. Moreover, since it must hold that 1
n
≤ qi ≤ 1

ζ1
, for i = 1, . . . , ζ1 − 1, it must

also hold that qi <
1
ζ1

.

Suppose case ii) is verified; the sum of the first column is s.t.

1

ζ1

+

ζ1−1∑
i=1

qi ≤
1

ζ1

+
ζ1 − 2

ζ1

+ q∗i <
1

ζ1

+
ζ1 − 2

ζ1

+
1

ζ1

= 1

hence the statement is proved.

If conversely, case i) is verified, the argument used for case ii) can be applied to the

first column of D∗1(t̄) and so on, until a non complete block is found s.t. the sum of the

first row is less than 1. We are guaranteed to find at least one of such incomplete blocks

because A(t̄) is asymmetric.

The above result shows that, when A(t̄) is column stochastic, G(t̄) is either a complete

graph or is decomposed in complete subgraphs, hence x(t̄+ 1) is the steady state.
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Finally, we need to show that, once the matrix A(t̄) has reached the diagonal form in

Eq. (3.3), the state of the system will converge to an equilibrium in one step. To prove this,

note that, once A(t̄) has assumed such a structure, according the HK model, no further

links can appear and no existing ones can disappear. Thus it must hold xi(t̄
∗) = xi(t̄),

for all i = 1, . . . , n, and for all t̄∗ > t.

According to the above result, checking for column stochasticity is a stop criterion

that can be verified in a centralized way. We now focus on understanding whether the

above criterion can be translated into a local criterion, i.e., if the following claim holds

true.

Criterion 3.2.1. (Distributed steady state achievement criterion) Let the opin-

ion profile x(t̄) of a HK model (2.10) for a given time instant t̄ ≥ 0. If the i-th column

of A(t̄) sums to one, then the state xi(t̄+ 1) coincides with the steady state of agent i.

Such a criterion is easily checkable in a distributed fashion if each node i provides to

his neighbours at each time step t the value of #(Ni(t)); knowing such values, each node

i is able to calculate sum of the entries of the corresponding column of A(t).

There is, unfortunately, a counterexample to the above claim.
!

!

X3 X4 X2 X1 X5 

Figure 3.2: Graph topology relatives of the Counterexample 3.2.1 with five-agents system.

Counterexample 3.2.1. Let us consider a five–agent system, represented by the HK

model (2.10) for a fixed time instant t̄, ε = 0.2 and x(t̄) = [0.1, 0.3, 0.5, 0.7, 0.9]T . The

graph G(t̄) underlying the HK model at time instant t̄ is given in Fig. 3.2, while the

corresponding matrix A(t̄) is:
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A(t̄) =



1/2 1/2 0 0 0

1/3 1/3 1/3 0 0

0 1/3 1/3 1/3 0

0 0 1/3 1/3 1/3

0 0 0 1/2 1/2


In this case G(t̄) has only non complete components, but there is a column (in boldface)

whose sum is 1.

As it will be shown in the following, a case similar to the above counterexample can

be obtained if several contiguous agents have the same number of neighbours. Let us

characterize the above class of counterexamples, and let us show under which hypotheses

Criterion 3.2.1 holds.

Lemma 3.2.2. (Equal column elements value) suppose the opinion profile x(t̄) of a

HK dynamic model is given at a time instant t̄. A column of A(t̄) sums to 1 if, and only

if, all the nonzero entries of that column have all the same value.

Proof. The sufficiency trivially follows by observing that, if all entries of the i–th column

are equal, say, to the value of the entry ai,i(t̄), they are also equal to the values of the

i–th row, which, by the hypothesis of stochasticity of A(t̄), also implies that the sum of

the entries in the column is one.

To prove the necessity, let us suppose that A(t̄) is in the form of Eq. (3.3). By absurd

assume that the i–th column of A(t̄) sums to one, i.e.,
∑n

j=1 aj,i(t̄) = 1, while its nonzero

entries are not equal. We need to show that in this case the number of nonzero entries of

column i is different from the number of nonzero entries of row i, which is absurd because

G(t̄) is symmetric.

Let the i-th column of A(t̄) and suppose that it sums to one and that the nonzero

entries are not all equal; the i-th row has exactly 1
ai,i(t̄)

nonzero elements, all equal to
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ai,i(t̄). The i-th column does not have all nonzero entries equal to ai,i(t̄) for hypothesis,

hence there is at least a nonzero element which is not equal to ai,i(t̄). Without loss of

generality, suppose that the indices of the nonzero elements of column i are 1, . . . , 1/ai,i(t̄).

The sum of the element of the column is such that

1/ai,i(t̄)∑
j=1,j 6=i

aj,i(t̄) = 1− ai,i(t̄)

with the constraint that each aj,i(t̄) is positive and rational in the form 1/m with at least

one m 6= 1/ai,i(t̄). It is easy to see that no choice of aj,i(t̄) satisfies the above constraints.

We can therefore conclude that either the coefficients are all equal or the number of

nonzero entries of the i-th row and column are different; both cases are absurd.

Let us provide an example explaining Lemma 3.2.2.

Example 3.2.1. The following matrix A(t̄) has the first column that sums to one, but

the nonzero elements are not all equal.

A(t̄) =



1/3 1/3 1/3 0 0 0 . . .

1/3 1/3 1/3 0 0 0 . . .

1/6 1/6 1/6 1/6 1/6 1/6 . . .

1/6 1/6 1/6 1/6 1/6 1/6 . . .

0 0 0
...

...
... . . .

...
...

...
...

...
... . . .

0 0 0
...

...
... . . .


It is easy to show that matrix A(t̄) does not represent a valid HK model: in fact, the first

two elements of the 4-th row (in boldface) are positive, while the first two elements of the

4-th column (in boldface) are equal to zero, hence the graph topology underlying the system

is not undirected, as required for valid HK models.
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Let us state the following Theorem.

Theorem 3.2.2. (Convergence to a steady state) Let the opinion profile x(t̄) of an

HK model for a given time instant t̄. Suppose graph G(t̄) associated to matrix A(t̄) is

decomposed in κ ≥ 1 subgraphs, and that an agent i belongs to a subgraph Gj(t̄) of G(t̄)

with κj nodes. The i-th column of matrix A(t) sums to one if and only if either one of

the following propositions holds true:

1. Gj(t̄) is complete;

2. Gj(t̄) contains a m-path with 2 < m < κj.

Proof. The proof of necessity is trivial hence we will only prove sufficiency.

Without loss of generality, let us suppose that A(t̄) is in the form of eq. (3.3). Suppose

the i-th column of matrix A(t) sums to one but Gj(x(t̄), ε) does not contains a m-path

nor Gj(x(t̄), ε) is complete. By Lemma 3.2.2, the only way to obtain a column whose

elements sum to one is that all the nonzero elements of the column take on the same

value 1/α, with α ∈ N. Now suppose that the number of such elements is m. The sum of

the column is thus m
α

which must equal 1 by hypothesis. Hence, it must be m = α. If the

m entries are consecutive then there exists a path of length m, whose nodes have exactly

α = m neighbours, and such a path has a node connected to each node in the path, that

is Gj(x(t̄), ε) has a m-path or is complete.

According to the above result, therefore, there is an intrinsic ambiguity while attempt-

ing to evaluate locally the convergence to a steady state by inspecting the column sums,

because the criterion provided in Claim 3.2.1 does not hold in the presence of m-paths.

It is however possible to provide a distributed procedure to detect the convergence to

a steady state, which is a corollary of Theorem 3.2.1 and Theorem 3.2.2.
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Corollary 3.2.1. (Steady state criterion) Let the opinion profile x(t̄) of an HK model

for a given time instant t̄. The state xi(t̄+ 1) of an agent i coincides with its steady state

if and only if
∑n

h=1 ajh(t̄) = 1 for all j ∈ Ni(t̄).

The above corollary can be used to define a distributed check for the convergence

to the steady state: as a first step each node i provides to his neighbours the value of

#(Ni(t)) of its neighbourhood; then, each node i calculates the sum of the corresponding

column, and provides such value to the neighbours, hence the nodes are able to check

whether the column associated to all their neighbours (including themselves) sums to

one. Such a two-step procedure can be alternated with the execution of the HK model.

Notice that the previous results provide information on the convergence to a steady

state but do not imply the convergence to an agreement or the fact the graph is connected;

to this end we provide some conditions in the next Section.

3.3 Connectedness of Graph Network

In this section we provide some centralized and distributed conditions to detect whether

the system has reached an agreement, and whether the graph network G at time instant

t+ 1 is connected, given the state x(t) and ε. Let us state the following Theorem.

Theorem 3.3.1. (Connectedness of graph) Let the HK model given in eq. (2.10) and

let an (n− 1)× (n− 1) matrix L̂∗(t) s.t.

l̂∗ij(t) =
n∑
h=1

β̂i+1,h(t)− β̂1j(t), i, j = 1, . . . , n− 1 (3.5)

where

β̂ij(t) = β(|
n∑
h=1

(aih(t)− ajh(t))xh(t)|, ε). (3.6)
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The graph G(t+ 1) is connected if, and only if, the matrix L∗(t) is invertible.

Proof. Let us consider matrix L(t) = N(t)(I−A(t)), where N(t) = diag(N1(t) . . . ,Nn(t)).

It is easy to verify that it holds

lij(t) =



∑n
h=1 βih(t) if i = j

−βij(t) if i 6= j

(3.7)

therefore L(t) is a Laplacian matrix. Such a matrix has only nonnegative eigenvalues and

the multiplicity of the eigenvalue λ1 = 0 coincides with the number of connected compo-

nents of the graph G(t) (see, for instance, [97]). To prove that graph G(t) is connected,

we need to show that L(t) has a simple eigenvalue λ1 = 0.

To this end, let us consider the following transformation matrix:

T =

 1 1Tn−1

1n−1 −In−1


where 1n−1 is a vector with n − 1 components, all equal to one and In−1 is the (n −

1)× (n− 1) identity matrix.

It holds that L(t) has a simple eigenvalue λ1 = 0 if and only if TL(t)T−1 has a simple

eigenvalue λ1 = 0.

Since

T−1 =

 1
n

1
n
1Tn−1

1
n
1n−1

1
n
1n−11Tn−1 − In−1


it is possible to show, by some algebra, that matrix TL(t)T−1 has the following structure
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TL(t)T−1 =

 0 0Tn−1

0n−1 L∗(t)


where, by some algebra

L∗(t) =


l22(t)− l12(t) · · · l2n(t)− l1n(t)

...
. . .

...

ln2(t)− l12(t) · · · lnn(t)− l1n(t)

 .

Matrix TL(t)T−1 is block diagonal with a scalar block equal to 0, hence G(t) is con-

nected if and only if L∗(t) has no eigenvalue equal to 0.

Since the elements l∗ij(t) are given by

l∗ij(t) =
n∑
h=1

βi+1,h(t)− β1j(t), i, j = 1, . . . , n− 1.

we can conclude that G(t+ 1) is connected if and only if L̂∗(t) is invertible, and the proof

is complete.
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3.4 Agreement Detection Conditions

According to Theorem 3.3.1, we can provide the following agreement condition.

Corollary 3.4.1. (Agreement condition achievement) Let the HK model given in

eq. (2.10) and suppose G(0) is connected. The HK model reaches an agreement if and only

if for each time step t (until the steady state is reached) matrix L∗(t) is invertible.

Let us first provide a sufficient condition for the convergence to an agreement point:

Proposition 3.4.1. (Convergence to an agreement point) Let the HK model given

in eq. (2.10) and let

ψi(x(t), ε) =
∑n

j=1 β̂i+1,i+1(t) + β̂1,i+1(t)+

−
∑n

j=2,j 6=i+1 |β̂1j(t)− β̂i+1,j(t)|+

−|β̂1,i+1(t)−
∑n

j=1 β̂i+1,i+1(t)|.

(3.8)

where i = 1, . . . , n− 1.

If the state x(t) and ε satisfy

Ψ(x(t), ε) = min
i=1,...,n−1

{ψi(x(t), ε)} > 0 (3.9)

then G(t+ 1) is connected.

Proof. By Gershgorin Circle’s Theorem [37] the matrix L∗(t) is invertible if ci − ri > 0

for all i = 1, . . . , n− 1, where

ci := l∗ii(t) = li+1,i+1(t)− l1,i+1(t)
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and

ri :=
n−1∑
j=1

|l∗ij| =
n∑
j=2

|li+1,j(t)− l1j(t)|.

In other words, L̂∗(t) is invertible if

li+1,i+1(t)− l1,i+1(t)−
n∑
j=2

|li+1,j(t)− l1j(t)| > 0 ,

and thus G(t+ 1) is connected if it holds

l̂i+1,i+1(t)− l̂1,i+1(t)−
n∑
j=2

|l̂i+1,j(t)− l̂1j(t)| > 0

or, by some algebra, if condition (3.9) is verified.

By means of Proposition 3.4.1, we are provided with a function Ψ(x(t), ε) that, if

positive for a given time instant t, guarantees the graph topology of the HK model to be

connected at time instant t+ 1.

Let us conclude the section providing a distributed way to detect at time instant t the

convergence to an agreement at time instant t+ 1.

Proposition 3.4.2. (Distributed convergence criterion) Let the HK model given in

eq. (2.10). An agreement is reached if and only if there is a time instant t̄ s.t. a coefficient

aij(t) = 1/n and
∑n

h=1 ahi(t) = 1. Such an agreement is reached at time instant t+ 1.

Proof. If there is a coefficient aij(t) = 1/n we can conclude that all the coefficients on

the i-th row of A(t) are equal to 1/n and that all the coefficients on the j-th column are

nonzero, because the graph G(t) is undirected. Notice that this does not imply G(t) is

complete, because the fact an agent is connected to each other agent does not imply each

agent is connected with each other. If the i-th column sums to one, then for Theorem

3.2.2 the agent i belongs either to a connected component or to an m-path, but since
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aij(t) = 1/n we must conclude G(t) is complete, and from Corollary 3.2.1 a steady state

is reached in time instant t+1. Such a steady state is the same for all the agents, because

the graph G(t) is complete.

Proposition 3.4.2 provides a distributed criterion for the verification of the convergence

to an agreement. By knowing the value of n, each agent i is able to verify the convergence

to an agreement by calculating the column sums of each node shares #(Ni) with its

neighbours and checking, for instance, if aii = 1/n. If, conversely, the value of n is not

known, it is possible to resort to distributed algorithms such as the approach in [84] to

calculate n based on distributed consensus algorithms. It can be noted that, although

distributed, in the case an agreement is reached all agents will detect it at the same time

instant t.

3.5 Illustrative Examples

In this section we provide an example of application of the proposed centralized criteria

to detect at time instant t the convergence to a steady state in t + 1 and to check the

connectedness of the graph. Furthermore, we propose an example of application of the

distributed criteria to detect the convergence to a steady state (Corollary 3.2.1) and an

agreement (Proposition 3.4.2).

3.5.1 Numeric applications of centralized criteria

In Fig. 3.3, we report a simulation of the HK model for n = 100 agents with deterministic

equidistant initial opinion profile. Column (a) and (b) and (c) show the results for ε = 0.6,

ε = 0.25 and ε = 0.15, respectively. The upper plots show the evolution for the agents;

the lower plots show the application of the criterion defined in Theorem 3.2.1 to detect the

convergence to a steady state (red triangles facing downwards), of the criterion introduced

41



Chapter 3. Distributed Steady-State, Connectedness and Agreement Detection Criteria
for the Hegselmann-Krause Model

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Steps

O
pi

ni
on

(a)

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Steps

In
di

ca
to

rs

 

 

Steady State: Theorem 1
Connected: Theorem 3
Connected: Proposition 1
Has m−path

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Steps

O
pi

ni
on

(b)

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Steps

In
di

ca
to

rs

 

 

Steady State: Theorem 1
Connected: Theorem 3
Connected: Proposition 1
Has m−path

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Steps

O
pi

ni
on

(c)

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Steps

In
di

ca
to

rs

 

 

Steady State: Theorem 1
Connected: Theorem 3
Connected: Proposition 1
Has m−path

Figure 3.3: Example of application of the proposed centralized criteria for the convergence
to a steady state and for the convergence to an agreement to a case with n = 100 agents
with deterministic equidistant initial opinion profile. Column (a) and (b) and (c) show the
results for ε = 0.6, ε = 0.25 and ε = 0.15, respectively. The first row of plots shows the
evolution for the agents; the second row shows the metric for the convergence to a steady
state (red triangles facing downwards), the connectedness metric of Theorem 3.3.1 (green
diamonds), the connectedness metric of Proposition 3.4.1 and the presence or absence of
an m-path (black empty boxes).
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in Theorem 3.3.1 for the connectedness of the graph (green diamonds), the connectedness

criterion of Proposition 3.4.1 (blue triangles facing upwards) and the presence or absence

of an m-path (black empty boxes). Figures show that the indicator for the detection of

the convergence to a steady state is indeed able to identify the time instant for which a

steady state is reached; for instance in case (a) the indicator reaches one in t = 2, implying

a steady state is obtained in t = 3, while for case (b) and (c) the detection instants are

t = 8 and t = 6, respectively. As for the connectedness indicators, note that the one from

Theorem 3.3.1 is equal to one for all time steps in the cases (a) and (b) where the HK

model reaches an agreement, while in case (c) it goes to zero at t = 6, hence the graph gets

disconnected at t = 7 and no agreement is reached. The indicator of Proposition 3.4.1,

instead, is not always able to predict that the graph will be connected in the following

time instant, because it is only a sufficient condition. Note further that in case (b) graph

G(t) contains an m-path for t = 0, while for case b it contains an m-path for t = {0, 1, 2},

hence Criterion 3.2.1 cannot be applied.

3.5.2 Numeric examples of distributed criteria

In Fig. 3.4 numerical implementations of the distributed criteria are reported. The first

and the second column of plots shows the results for n = 150 agents, and for ε equal to

0.3, and 0.11, respectively. In case (a) the agents reach an agreement in t = 4, hence all

the agents detect at the same time in t = 3 that the agreement and the steady state will

be reached in t = 4. In case (b) a steady state is reached in t = 5, but the network splits

in 4 clusters of opinion, and such clusters converge in different time instants. Specifically

the upper and lower cluster both reach a steady state at time instant t = 4, while the

two central clusters reach both a steady state at time instant t = 5 and the four groups

of agents detect the convergence to a steady state in two different time instants (t = 3

and t = 4, respectively); as for the agreement, since the network is split into clusters,
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Figure 3.4: Example of application of the proposed distributed criteria for the convergence
to a steady state and for the convergence to an agreement relating to the case with n = 150
agents with deterministic equidistant initial opinion profile. Column (a) and (b) show the
results for ε = 0.3 and ε = 0.11, respectively. The upper row of plots shows the evolution
for the agents; the central row shows the distributed metric for the convergence to a steady
state defined in Corollary 3.2.1; the lower row of plots, finally, show the distributed metric
for the convergence to an agreement, introduced in Proposition 3.4.2.

the criterion of Proposition 3.4.2 is never met, and none of the curves in the lower plot

of column (b) reaches one. Note that, although the agents in the same cluster reach the

same conclusions at the same time instant, the algorithms adopted are fully distributed.
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Distributed Data Clustering via

Opinion Dynamics

In this section we present a distributed method to partition a large set of data in clusters,

characterized by small in–group and large out–group distances. We take into account

a wireless sensors network scenario where each sensor acquires a large set of data. The

main goal is to provide a way to group the sensors in homogeneous clusters by information

type. In previous literature, the desired number of clusters must be specified a priori by

the user. In our approach, the clusters are constrained to have centroids with a distance

at least ε between them and the number of desired clusters is not specified. We exploit

the peculiarity of HK model to generate several clusters, with the aim to abstract from a

large set of measurement data into few values (i.e, the opinion clusters). In this view, the

HK model can be seen as a powerful methodology to determine the number of clusters

while respecting the constraints on the distance among cluster centroids. Even though

the HK model in its original setting arise as centralized algorithm [41], in this chapter

we provide a distributed implementation based on a combination of distributed consensus

algorithms for discrete-time systems. A comparison with k-means algorithm concludes

the discussion.
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4.1 Introduction to the Data Clustering Problem

Automatically determining the number of clusters has been one of the most difficult

problems in data clustering [47]. Most methods for automatically determining the number

of clusters cast it into the problem of model selection. Usually, clustering algorithms are

run with different values of k; the best value of k is then chosen based on a predefined

criterion. The problem of grouping large amounts of data into a small number of subsets

with some common features among the elements (often referred to as the data clustering

problem), has attracted the work of several researchers in different fields, ranging from

statistics, to imagine analysis and bioinformatics [25,34,70].

Data clustering techniques are developed to partition an initial set of observation data

into collections with small in–group distances and big out–group distances. Among the

existing techniques, one of the most used is the k–means algorithm, or its successive

extensions (e.g., fuzzy c–means [28], mixture of Gaussians algorithms [23], etc.). Given a

set of initial observation data and a number k of desired clusters, the k-means algorithm

computes a sub–optimal placement of k cluster centroids and assigns the observations to

such centroids, alternating between an assignment phase, where each observation point is

assigned with its nearest centroid, and refinement phase, where each centroid position is

updated as the center of mass of all observations belonging to that centroid.

A well-known limitation of data clustering algorithms, such as the k–means algorithm,

is that the number of clusters has to be specified beforehand, based, e.g., on subjective

evaluations or a priori analysis. Since this assumption is typically not feasible in practice,

a typical solution consists of running several times the algorithm with a different number of

clusters, and then deciding on the best obtained solution based on a–posteriori evaluation

[48]. Another issue of traditional algorithms is that there is no guarantee that the clusters

are sufficiently far from each other. To this respect, distance constrained data clustering

approaches have been devised in the literature: in [9, 95] the considered constraints are
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the so-called must–links (i.e., an observation i must belong to a cluster j) and cannot–

link (i.e., an observation i can not belong to a cluster j); in [21] the feasibility of a

constrained problem involving the so–called δ-constraints (i.e., any two observations must

have a distance greater than δ) and the ε-constraints (i.e., for any observation i in cluster

j there must be at least another observation h in cluster j such that the distance between

i and j is less than ε) is given. To the best of our knowledge, nowadays there is no

methodology to specify a constraint on the distance between cluster centroids, while this

class of constraints might help finding a choice for the number k when such value is a–

priori unknown. This problem has a particular relevance in a distributed setting, where

a network of sensors has to classify information provided by several sensors without a

central authority, but using only local data exchange among neighbours in the network.

In this section, based on the preliminary results in [73] a novel approach to solve the data

clustering problem with a distance constraint among cluster centroids is provided, that

does not require the specification of the initial number k of clusters and that is based

on a extension of the HK model [35, 41],which handles scalar data, in order to to handle

data in Rd. Such a model, similarly to consensus [29, 71] represents how a set of agents

interact in order to reach a local agreement, but the agents may split in several clusters

depending on their “opinions”.

4.2 Data Clustering in Complex Networks

One of the modern challenge in complex networks and algebraic graph theory research

is to partition a large graph (i.e., network) into cohesive subgraphs based on their link

structure and node attributes [47]. The problem becomes even more complicated when

the links, (which represent relations between objects) are allowed to have diverse types.

One of the key issues is to define an appropriate clustering criterion for relational data,

as shown in Fig. 4.1.

47



Chapter 4. Distributed Data Clustering via Opinion Dynamics

Figure 4.1: Example of data clustering in a complex network composed by 31 nodes. To
the left side the network with grey nodes before the clustering operation is reported, while
in the right side it is highlighted the network split up in three different clusters (green,
blue and red colors).

The goal of data clustering is to discover the natural grouping(s) of a set of patterns,

points, or objects. Clusters can differ in terms of their shape, size, and density, farther

the presence of noise in the data makes the detection of the clusters even more difficult.

An ideal cluster can be defined as a set of points that is compact and isolated, actually, a

cluster is a subjective entity that is in the eye of the beholder and whose significance and

interpretation requires domain knowledge. Generally, humans are excellent cluster seekers

in two and three dimensions, while it needs automatic algorithms for high-dimensional

data when complex systems are considered. It is this challenge along with the unknown

number of clusters for the given data that has resulted in thousands of clustering algo-

rithms that have been published and that continue to appear. An operational definition

of clustering can be stated as follows: given a representation of n objects, find k groups

based on a measure of similarity such that the similarities between objects in the same

group are high while the similarities between objects in different groups are low. More

precisely, let us formalize the following problem.
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Problem 4.2.1. (Standard data clustering problem) Given k ≤ n, the data clus-

tering problem consists in finding rij ∈ B, cj ∈ Rd for i = 1, . . . , n and j = 1, . . . , k that

minimize

D =
∑n

i=1

∑k
j=1 rij||xi − cj||2

Subject to

(I)

(II)


∑n

j=1 rij = 1 ∀i = 1, . . . , n

rij ∈ {0, 1} ∀i = 1, . . . , n;∀j = 1, . . . , k

(4.1)

The problem (4.1) is hard to solve, and in the literature several iterative algorithms

have been devised.

4.2.1 The k-means Algorithm

Among the data clustering algorithms, the well-known k-means algorithm [62] is the most

popular and the simplest partitional algorithm. Specifically, starting with a random set

of k centroids {c1(0), . . . , ck(0)}, the algorithm alternates for each step an assignment and

a refinement phase.

During the assignment phase, each observation xi is assigned to the set characterized

by the nearest centroid, i.e.,

rih(t) =


1 if h = argminj||xi − cj(t)||

0 else

(4.2)

Within the refinement phase each centroid cj is updated as the centroid of the obser-

vations associated to the cluster Cj(t), according the following rule:

cj(t+ 1) =

∑n
i=1 rij(t)xi∑n
i=1 rij(t)

(4.3)
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The two steps are iterated until convergence or up to a maximum of M iterations.

(a) (b) (c) (d)

Figure 4.2: Example of execution of k-means algorithm (source; Wikimedia Commons
available under GNU Free Documentation License v. 1.2).

Fig. 4.2 reports a simulation run of the algorithm for a set of n = 12 observations

in R2 and for k = 3. To this regard, Fig. 4.2.(a) shows with circles the initial centroids,

Fig. 4.2.(b) and Fig. 4.2.(c) report the assignment and refinement phases for the first

step, while Fig. 4.2.(d) depicts the assignment phase for the second step. The k-means

algorithm is granted to converge to a local optimum value, while there is no guarantee

to converge to the global optimum [11, 62]. Since there is a strong dependency on the

initial choice of the centroids, a common practice is to execute the algorithm several times

and select the best solution. The algorithm, moreover, is extremely sensitive to outliers,

which can significantly alter the results; to cope with this issue, the outliers have to be

identified and excluded prior to the execution of the algorithm. Note that for each step,

each of the n observations and for each of the d components of the observations, the

algorithm calculates the difference with each of the k centers; hence the computational

complexity is O(d k nM), where M are the total number of iterations [11]. Notice that

in [74] a distributed implementation of the k-means algorithm has been provided, with a

computational complexity of O(d k n2M) for each agent. Note further that, unfortunately,

the k-means algorithm is not able to solve Problem 4.4, hence we need to seek for other

solutions.
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4.3 Problem Setup

Consider a collection of n sensors, each equipped with a d-dimensional measurement or

piece of information {x1, . . . , xn}, with xi ∈ Rd. We want to select a number k of groups

or clusters {C1, . . . , Ck}, k ≤ n. Every cluster Cj is assigned with a cluster centroid

cj ∈ Rd, which represents the centroid of the observations allocated to that cluster. A

data point xi ∈ Rd is said to belong to cluster Cj if its distance from the centroid ch, with

h 6= j, of every other cluster Ch is larger than its distance from cj. If xi belongs to Cj

we can set a binary assignment variable ri,j ∈ B to 1, and to 0 otherwise. The solution

of a data clustering problem with distance constraints involves the computation of the

optimal choice of cluster centroids cj, (for j = 1, . . . , k) that minimizes the distance of

every measurement data point xi from the cluster it belongs to. More formally, we need

to solve the following:

Problem 4.3.1. (Data clustering with distance-constrains) We want to find the

number of clusters k, the cluster centroids, cj ∈ Rd, and measurement data assignments,

ri,j ∈ B that minimize the index

D =
n∑
i=1

k∑
j=1

ri,j ||xi − cj||2 , (4.4)

subject to the constraints

(I)

(II)

(III)



∑k
j=1 rij = 1 ∀i = 1, . . . , n

||ch − cj||2 ≥ ε ∀i, j = 1, . . . , k; h 6= j

rij ∈ B ∀i = 1, . . . , n; ∀j = 1, . . . , k

The first set of constraints (I) along with the third one implies that each observation

is assigned exactly with one cluster; the constraints (II) imply that ε is a lower bound
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for the distance between any pair of centroids; finally constraints (III) imply that rij are

binary decision variables.

This problem is novel, since in the literature the set of constraints (II) are typically

not considered. Including such constraints, however, is quite useful, since it may improve

the algorithm’s ability to detect homogeneous clusters. The problem is very hard to solve

exactly and traditional methods as the k-means algorithm [62] may fail even at finding

an admissible solution, as it will be shown in the next section.

On the other side, the proposed algorithm uses an algorithm based on the HK model

to choose an admissible, although sub-optimal solution, and it has a modest increase in

computational complexity with respect to the k-means algorithm, while allowing several

advantages:

• the algorithm proposed always finds an admissible, although sub-optimal solution

to the problem by means of the HK model, while the k-means algorithm may fail;

• the proposed approach does not require the user to define a priori the number

of clusters, but it finds automatically a suitable number of clusters based on the

parameter ε;

• outliers can be automatically isolated, without any a priori data processing; this fea-

ture can be obtained by dropping out the clusters whose cardinality is significantly

less than the others;

• the solution provided is deterministic, i.e., for fixed ε and fixed observations the re-

sult is always the same, while the k–means algorithm depends on the initial random

choice of the centroids;

• while traditional approaches are very computationally expensive when applied in a

decentralized and distributed setting [74] (i.e., for a sensors network), this method

can be distributed with a modest increase in computational complexity [66].
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4.4 Data Clustering with Distance Constraints via

Opinion Dynamics Model and k–means Algorithm

In this section we propose an algorithm for data clustering with distance constraints, based

on a generalization of the HK model which consists of a two–phase process (Fig. 4.3).

Figure 4.3: Representation of the two phases of the proposed approach: in the first phase,
the number k of clusters is obtained by the processing with HK model, in the second one,
post–processing of clusters is carried out by the k–means algorithm.

Specifically, measurement data is processed by an HK-like opinion dynamics “filter”,

which eventually segment the data into κ clusters. Moreover, based on the weight of each

cluster (namely represented by the number of measurement data that has converged to

that cluster), data outliers can be filtered out from the original set. More precisely, we

assume that each agent i is provided with an initial measurement represented by a vector

xi ∈ Rd. Every agent has an initial state xi(0) ∈ Rd, which is updated according to the

following set of iterative rules:


x1,i(t+ 1)

...

xn,i(t+ 1)

 = A(x(t), ε)


x1,i(t)

...

xn,i(t)

 ,

for i = 1, . . . , d, where the adjacency matrix A(x(t), ε) is computed based on the following
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definition of neighbourhood:

N ∗i (t) = {j ∈ {1, . . . , n} s.t. ||xi(t)− xj(t)|| ≤ ε} ,

where ||·|| is the Euclidean norm. Note that for d = 1 the standard HK model is obtained.

Let us state the following conjecture.

Conjecture 4.4.1. (HK multi-dimensional extension) The extension of the HK

model to opinions in Rd using the Euclidean metric converges to a steady state in finite

time.

In order to provide evidence that supports this conjecture, we provide the simulation

results of Fig. 4.4, where the average instant in which a steady state is reached and the

number of clusters obtained are reported for several choices of n = 50, 100, 200 agents and

ε ∈ [0.1, 0.5]; for each choice of n, ε, the average of 100 runs with random initial opinions

in [0, 1] are reported. Notice that all the executions reached an exact agreement in finite

time. The proposed approach, therefore, does not require the user to specify a value

for the parameter k, but it finds a suitable number of clusters based on the parameter

ε. A high value of ε means very large and sparse clusters (eventually also very few of

them) while a small value of ε means very compact and small clusters (eventually, many

of them). One of the biggest problems of the k-means-like algorithms, is that the outliers

have to be preprocessed and excluded, otherwise they would influence considerably the

quality of the clustering. In the proposed approach, depending on the choice of ε, very far

observation are not influenced by the others, and are assigned to a singleton (or more in

general to a cluster composed of very few elements). It should be noted that it is always

possible to execute a k-means algorithm with κ clusters in order to attempt to refine

the solution found, but this can be done only if the solution of the k-means algorithm

does not violate the constraints on the distance among cluster centroids. Therefore,
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Figure 4.4: Average instant at which a steady state is reached (left) and average number
of obtained clusters (right). Simulation runs are obtained with n = 50, 100, 200 agents,
and ε ∈ [0.1, 0.5]. In particular, for each pair (n, ε), the average values are computed over
100 runs with random initial opinions in the interval [0, 1].

the proposed algorithm appears as a good candidate to allow the clustering of a set of

sensors or mobile robots, based on perceived information such as position or other sensorial

information (temperature, humidity, etc.). As for the computational complexity of the

extension of the HK model to opinions in Rd, it can be noted that such complexity is

the same of executing d scalar HK models, hence it is O(d n2M); since the complexity of

the centralized k-means algorithm is O(d k nM) [62], the proposed approach determines

an increase in computational complexity with respect to the k-means algorithm of a

factor n
k
≥ 1.
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4.5 Distributed Implementation of the Hegselamann-

Krause Model

As shown in the previous sections, the HK opinion dynamics model can be used to

provide an admissible, although sub-optimal solution to the distance–constrained data

clustering problem. However, since the topology underlying the HK model is indeed a

state-dependent topology, theoretically each agent may exchange information with each

other agent, depending just on the difference in their opinions.

In order to adopt the HK model in a distributed perspective, therefore, we need to

provide a different implementation, as provided in the following Algorithm.

Algorithm 1: Distributed HK Opinion Dynamics Algorithm

for t = 1, . . . ,M do
for h = 1, . . . , n do

/*Transmit the state of agent h to each other*/

δih =

{
xh(t) if i = h

0 else
;

δh = max-consensusi(δ
i
h, δ

j
h| j 6= i,Gc, n);

/*Calculate xi(t+ 1)*/

eih =

{
|xi(t)− δh| if |xi(t)− δh| ≤ ε

0 else
;

xih(t+ 1) = n · average-consensusi(e
i
h, e

j
h| j 6= i,Gc, tmax);

if i == h then
xi(t+ 1) = xih(t+ 1);

end if
end for

end for

Since the agents have a unique identifier h = 1, . . . , n, for each time step and for each

agent h a distributed procedure is executed by all agents in order to calculate xh(t + 1).

More specific, for an agent h, each agent i selects δik = xh(t) if i = j and δik = 0 otherwise.

Then the agents execute a max–consensus procedure using δik as initial condition; as a

result of such an operation, each agent i knows xh(t) and is able to determine whether
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||xh(t)− xi(t)|| ≤ ε or not. Such knowledge is stored in a variable ei for each agent, and

using ei as initial condition for an average-consensus algorithm, the agents obtain

e =

∑n
h=1 ||xh(t)− xi(t)||

n

which, multiplied by n calculated according to [84], yields the value xh(t). As for the

computational complexity of the distributed version, note that for each step t = 1, . . . ,M ,

and for each agent h = 1, . . . , n, the agents execute a max-consensus (O(d n) steps)

and an average–consensus (O(d tmax) steps), both with initial conditions in Rd, and the

complexity is O(d nM max{tmax, n}) where tmax is the number of iterations of the average

consensus algorithm. Since, typically, tmax > n, the distributed setting has tmax

n
times the

complexity of the centralized algorithm. Moreover, since the computational complexity of

the distributed k-means algorithm is O(d k nM) the proposed distributed algorithm has

tmax

k n
times the complexity of the distributed k-means algorithm, therefore the complexity

is reduced for tmax < k n.

4.6 Simulation Results

As discussed above, the k–means algorithm is generally unable to solve the data clustering

problem with distance constraints. In this section, in order to show the effectiveness of

the proposed approach some examples are reported. A comparative simulation between

the HK model and k–means algorithm is first addressed. Afterwards the potentiality of

the proposed mixed approach is showed, then the distributed implementation is discussed.

Fig. 4.5 shows an example in R2 with ε = 0.6 and n = 200 observations. The ap-

plication of the HK opinion dynamics model yields k = 63 clusters and D ≈ 0.35. Un-

fortunately, the k-means algorithm finds a solution for k = 63 which, although having

D ≈ 0.29, is not feasible for Problem 4.4 (violations of the constraints are shown with red
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Figure 4.5: Clustering for n = 200 observations that are uniformly distributed in the
interval [0, 1] and ε = 0.06: the HK opinion dynamics model finds k = 63 clusters and
D ≈ 0.35. The solution of the k-means algorithm for k = 63 is better in terms of the
objective function (D ≈ 0.29), but it does not respect the distance constraints (red thick
lines represent violations).

lines). However, this is not always verified, and the k-means algorithm may represent a

quite good post processing algorithm to be applied, after that the HK opinion dynamics

algorithm has selected a number k of clusters.

Fig. 4.6 shows a case where n = 200, ε = 0.18 and the HK opinion dynamics model

gives k = 5 clusters. Using the k-means algorithm for k = 5 a better solution is obtained,

and the constraints are not violated, hence in this case post-processing the result of the

HK model via k-means algorithm yields a better result.

Fig. 4.7, shows the ability of the proposed methodology to isolate the outliers. For

n = 200 and ε = 0.1 the HK model finds k = 7 clusters, two of which are singletone.

Executing a k-means algorithm for k = 7 gives a worse results in terms of the objective

function with respect to the HK approach. If, conversely, the two outliers are removed

(k becomes equal to 5), then the k-means algorithm has better results in terms of the

objective function.
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Figure 4.6: Clustering for n = 200 observations that are uniformly distributed in the
interval [0, 1] and ε = 0.18: the HK opinion dynamics model finds k = 5 clusters. The
solution of the k-means algorithm for k = 5 is better in terms of the objective function
D without violating the distance constraints.

Fig. 4.8, shows an example of application of the distributed HK model provided in

Algorithm 1, in a case where n = 40 agents, each with a random position in [0, 1]2, have to

be clustered depending on their positions in a way that the centroids are not closer than

ε = 0.1. The simulation was executed for M = 15 iterations, and the average-consensus

algorithms were executed each tmax = 100 steps. The topology of the network of agents is

given in the upper left plot, while the lower left plots show the results of the distributed HK

model for the x and y coordinates. The consensus steps performed by each agent during

one iteration of the distribute HK algorithm are reported in the upper central plot, where
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Figure 4.7: Clustering for n = 200 observations with ε = 0.1. The HK opinion dynamics
model finds k = 7 clusters, of which 2 are singleton clusters containing one outlier each.
The solution of the k-means algorithm for k = 7 is worse than the one found by HK
model. If, however, the 2 outliers are removed (thus k = 5), the k-means algorithm has
better results in terms of the objective function.

“AVG” stands for average consensus and “MAX” stands for max-consensus, while the

distribution of max-consensus and average-consensus steps over the entire execution of

the algorithm are reported in the upper rightmost plot. The lower right plots, eventually,

show the results of the distributed HK model in terms of the clustering in [0, 1]2: the

agents are divided in k = 20 groups, and the objective function has a value D ≈ 0.06.

Notice that, in this case, the k-means algorithm with k = 20 yields both a worst solution

in terms of the objective function D ≈ 0.12, and in terms of violation of the constraints

(5 constraints are violated, and are highlighted with red thick segments).

60



Chapter 4. Distributed Data Clustering via Opinion Dynamics

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Iterations of HK model

x

x coordinate

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Iterations of HK model

y

y coordinate

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

HK Clustering (D = 0.064314)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

k-means Clustering(D = 0.11718)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

Graph topology

1000 2000 3000 4000 5000 6000 7000

MAX

AVG

Steps of consensus algor ithms

Iteration of Distributed HK

MAX AVG
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

%

Step distribution

Figure 4.8: Distributed clustering on the positions of n = 40 agents with ε = 0.1: the
distributed HK opinion dynamics model finds k = 21 clusters. The distributed imple-
mentation of the algorithm requires to alternate between max-consensus algorithms and
average-consensus algorithms, as shown by the upper rightmost figure.The solution of the
k-means algorithm for k = 21 is both worse in terms of the objective function D and does
not respect the distance constraints (red thick lines in the lower rightmost figure represent
violations).
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Chapter 5

Attack and Defense Location in Line

Network Systems

In this chapter we focus on identify an optimal network location for the detection of an

unknown perturbation signal. In particular, we define detection metrics based on the

static gain of the dynamical network system [49]. Among the different communication

topologies (as showed in previous Section 2.2), we consider a class of network systems

with line interconnection structure and we identify optimal sensor locations based on the

network weights and the origin of the perturbation signal. Surprisingly we find that, in

some cases, sensors should be located as far as possible from the origin of the perturbation

while, in other cases, the location between the sensors and the origin of the perturbation

should be minimized. Although our results pertain a specific, and simple, interconnection

structure, we conjecture that a similar behaviour may appear in more complex intercon-

nection structures, and that novel techniques are necessary to relate the structure with

the dynamical properties of the associated network system.
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5.1 Motivation

The problem of selecting sensors and actuators in dynamical systems has received consid-

erable attention in the controls community. Typically, sensors and actuators are selected

to maximize, respectively, certain observability and controllability metrics, often quan-

tified by Gramian matrices [2, 36, 63]. For small-scale problems, the maximization of

observability and controllability metrics often relies on combinatorial optimization pro-

cedures, which do not offer any particular insight into the structure of the problem, and

become computationally infeasible for large problems.

Motivated by a renewed interest in network systems, and particularly by the need for a

deepened understanding of the relation between network structure and network dynamics,

recent studies have focused on determining suitable optimization metrics for sensor and

actuator placement in large-scale systems [88], as well as on highlighting tradeoffs and

relations between network structure and the associated Gramians [75,93,100]. In a related

fashion, the controllability Gramian has been analysed for security and synchronization

problems in network systems [24, 90]. In this thesis, we continue the work along these

directions by considering the trace of the cross-Gramian [49] as a metric for joint sensor

and actuator location in network systems, and by providing explicit results for a class of

network systems.

5.2 Problem Statement

In this section we detail our setup and introduce preliminary concepts that will be used

throughout the technical treatment. Consider a network represented by an interconnection

graph G = (V , E), where V = {1, . . . , n} and E ⊆ V × V denote the vertex and edge sets,

respectively, and a weighted adjacency matrix A ∈ Rn×n containing the weights of the

network interconnection edges. That is, A = [aij], where aij = 0 if (i, j) 6∈ E , and aij
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equals the weight of the edge (i, j) otherwise. Assume that a subset of vertices U ⊆ V , with

|U| = m, is affected by an external and unknown signal representing genuine disturbances

or malicious attacks, and that a subset of nodes Y ⊆ V , with |Y| = p, is equipped with

sensors capable of measuring the nodes activity. Let B ∈ Rn×m be the submatrix of

the n-dimensional identity matrix with columns indexed by U , and let C ∈ Rp×n the

submatrix of the n-dimensional identity matrix with rows indexed by Y . Let xi ∈ R be

the state associated with node i. As previously introduced in Section 2.6, we assume that

the network systems evolves according to linear, continuous-time dynamics described by

its weighted adjacency matrix, that is,

ẋ(t) = Ax(t) +B u(t),

y(t) = C x(t),

(5.1)

where x = (x1, . . . , xn)T , u = (u1, . . . , um)T , and y = (y1, . . . , yp)
T are the network state

vector, the unknown disturbance input, and the measured output vector, respectively.

For simplicity of analysis, the output disturbance affecting the plant has been neglected.

Two dual problems are of interest. On the one hand, based on the knowledge of the

network dynamics A and sensor locations Y , an attacker aims to find optimal input ver-

tices U to maximally disrupt the network system while preventing observability from the

sensor nodes. Conversely, based on the knowledge of the network dynamics A and input

locations U , the objective of a security system is to determine the sensor nodes Y ensuring

optimal detectability of an unknown disturbance. The two problems can be addressed

independently by defining quantitative notions of controllability and observability for the

network system [36]. Yet, an approach combining both structural measures may lead to

more robust results [69]. To this aim, we adopt the notion of cross-Gramian that was

first introduced for single-input single-output linear systems in [31], and then extended

for the multi-input multi-output case in [46]:
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Definition 5.2.1. (Cross-Gramian) For a stable network system described by the triple

(A,B,C), the cross-Gramian is defined as

Wco =

∫ ∞
0

eAtB C eAt dt ,

or, equivalently, as the solution to the Sylvester’s equation

AWco +WcoA = −B C .

As shown in [31], the cross-Gramian matrix Wco carries information about both con-

trollability and observability of the network. For symmetric systems, the cross-Gramian

is indeed related to the controllability and observability Gramians, Wc and Wo, by the

relation Wco =
√
WcWo [49, 52]. Moreover, for single–input single–output systems, the

trace of the cross–Gramian is related to the network steady-state gain g = −C A−1B by

the equation [46]

Trace (Wco) = 1/2 g . (5.2)

Eq. (5.2) suggests that Trace(Wco) can in fact be used to evaluate the amplification

or attenuation of a network signal that is slowly varying with respect to the network

dynamics. Motivated by the above discussion, we focus our attention on the following:

Problem 5.2.1. (Optimal sensor placement) Given a network G with adjacency

matrix A, input nodes U , and dynamics as in (5.1), determine the sensor locations Y,

with |Y| = p, that maximize the trace of the associated cross-Gramian, that is,

maxY Trace(Wco),

subject to |Y| = p.
(5.3)
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Addressing the above problem for generic networks, with possibly multiple input nodes

and with several sensors, is a daunting task. In this treatment we focus on a single–attack,

single–sensor scenario, where |U| = 1 and |Y| = 1. Under this hypothesis, it can be shown

that the trace of the cross-Gramian becomes

Trace (Wco) = −1

2
A−1
ij ,

where A−1
ij is (i, j)-th entry of the inverse of the adjacency matrix A. Thus, for the single-

input single-sensor case, Problem 5.2.1 can be addressed by characterizing the inverse of

the network adjacency matrix, so as to select the node i that maximizes the element A−1
ij .

This solution strategy is used in the next section to determine optimal sensor location

in line networks, and to show that the network structure and dynamics may enforce

counterintuitive relations regarding the location of sensors and actuators in a complex

system.

5.3 Optimal Sensor Placement for Line Networks

5.3.1 Toeplitz line networks

Consider a Toeplitz line network with a tridiagonal adjacency matrix:

A =



a b 0 · · · 0 0

c a b · · · 0 0

0 c a · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · a b

0 0 0 · · · c a


, (5.4)

67



Chapter 5. Attack and Defense Location in Line Network Systems

where the coefficients a, b, c ∈ R6=0. It is known that the inverse A−1 = [A−1
ij ] of a

tridiagonal Toeplitz matrix A is given by [53]:

A−1
ij =

1

θn


(−1)i+jbj−i θi−1 φj+1, for i ≤ j ,

(−1)i+jci−j φi+1 θj−1, for i > j ,

(5.5)

where the coefficients θk are obtained through the forward iteration

θk = a θk−1 − bc θk−2 for k = 2, . . . , n , (5.6)

with initial conditions θ0 = 1 and θ1 = a, while the coefficients φk are computed through

the backward iteration

φk = a φk+1 − bc φk+2 for k = n− 1, . . . , 1 , (5.7)

with final conditions φn+1 = 1 and φn = a. It can be shown that θn = det(A).

In this framework we are interested in characterizing the behaviour of the sequences (5.6)

and (5.7) for large networks. For this reason, even though the network cardinality is finite,

we adopt the following asymptotic definitions:

Definition 5.3.1. (Decreasing sequence) A sequence m(j), with j = 1, 2, . . . , is

decreasing if there exist j∗, γ ∈ R>0 and ρ ∈ (0, 1) satisfying |m(j)| ≤ γρj for j ≥ j∗.

Definition 5.3.2. (Increasing sequence) A sequence m(j), with j = 1, 2, . . . , is in-

creasing if there exist j∗, γ ∈ R>0 and ρ ∈ R>1 satisfying |m(j)| ≥ γρj for j ≥ j∗.

The following theorem characterizes the behaviour of the entries A−1
ij of the inverse of

a tridiagonal Toeplitz matrix A.
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Theorem 5.3.1. (Inverse of Toeplitz matrix) Let A ∈ Rn×n be a tridiagonal Toeplitz

matrix with parameters a, b, c ∈ R 6=0. Let

µ+ = −a+
√
a2 − 4bc, and µ− = −a−

√
a2 − 4bc.

As the dimension n grows, the entries A−1
ij satisfy the following conditions:

1. For all rows i,

(a) if |µ+| < 2|b| and |µ−| < 2|b|, then the sequence A−1
ij , with j ≥ i, is increasing;

(b) if |µ+| > 2|b| or |µ−| > 2|b|, then the sequence A−1
ij , with j ≥ i, is decreasing;

2. For all rows i,

(a) if |µ+| < 2|c| and |µ−| < 2|c|, then the sequence A−1
ij , with j < i, is decreasing;

(b) if |µ+| > 2|c| or |µ−| > 2|c|, then the sequence A−1
ij , with j < i, is increasing.

Proof. To analyse the behaviour of the entries of A−1, based on (5.5), one can conveniently

fix a row index i and study the behaviour of all column entries j by distinguishing the

cases with i ≤ j and i > j.

If i ≤ j, the entry A−1
ij can be factorized as

yi(j) := A−1
ij = α(i) (−1)j bjφ(j + 1) ,

where α(i) = (−1)i b−i θ−1
n θi−1. Starting from the last two column entries, which are

given by

yi(n+ 1) = α(i) (−1)n+1 bn+1 ,

yi(n) = α(i) (−1)n bna ,

one can recursively obtain all other entries of the i-th row through a backward recurrence

relation that is derived below. Consider expanding the expression of the entry yi(j − 1)
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as follows: for j = n, . . . , i+ 1,

yi(j − 1) = α(i) (−1)j−1 bj−1 φ(j)

= α(i) (−1)j−1 bj−1 (a φ(j + 1)− bc φ(j + 2))

= −
a

b
α(i) (−1)j bj φ(j + 1)

−
c

b
α(i) (−1)j+1 bj+1 φ(j + 2)

= −
a

b
yi(j)−

c

b
yi(j + 1) .

Translating of a step backward the above relation yields:

yi(j − 2) = −
c

b
yi(j)−

a

b
yi(j − 1), for j = n+ 1, . . . , i+ 2 .

To analyse the behaviour of the above difference equation, one can define the vector state

x(j) = (yi(j), yi(j − 1))
T

, whose backward evolution is described by the state form

x(j − 1) = Hφ x(j) , for j = n, . . . , i+ 2 , (5.8)

with

Hφ =

 0 1

−c/b −a/b

 ,

and initial condition x(n) = α(i) (−1)n(−bn+1, bna)T . Based on the expression of Hφ’s

eigenvalues,

µ+

2 b
,

µ−

2 b
,

one can conclude the following. 1-a) If |µ+| < 2 |b| and |µ−| < 2 |b|, both eigenvalues lay
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inside the unit circle, the backward evolution of the system in (5.8) is decreasing, while the

sequence {yi(j)}, for j = i, i+ 1, . . . , n, is increasing. 1-b) If |µ+| > 2 |b| and |µ−| > 2 |b|,

at least one eigenvalue lays outside the unit circle, the backward evolution of the system

in (5.8) is increasing, and the sequence {yi(j)} is decreasing. If i > j, the entry of A−1
ij

can be factorized as

yi(j) := A−1
ij = β(i) (−1)j c−j θ(j − 1) ,

where β(i) = (−1)i ci θ−1
n φi+1. Starting from the first two column entries, yi(1) = 1 and

yi(2) = a, one can recursively obtain all other entries of the i-th row through a forward

recurrence relation that is derived below. Consider expanding the expression of the entry

yi(j + 1) as follows: for j = 2, . . . , n,

yi(j + 1) = β(i) (−1)j+1 c−j−1 θ(j)

= β(i) (−1)j+1 c−j−1 (a θ(j − 1)− bc θ(j − 2))

= −
a

c
β(i) (−1)j c−j θ(j − 1)

−
b

c
β(i) (−1)j−1 c−j+1 θ(j − 2)

= −
a

c
yi(j)−

b

c
yi(j − 1) .

Translating of a step forward the above relation yields:

yi(j + 2) = −
b

c
yi(j)−

a

c
yi(j + 1), for j = 1, . . . , n− 1 .

One can define the vector state x(j) = (θ(j), θ(j + 1))T and study the evolution of the

state form

x(j + 1) = Hθ x(j) , for j = 1, . . . , i− 1 , (5.9)
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with

Hθ =

 0 1

−b/c −a/c

 ,

and initial condition x(1) = β(i) (1, a)T . Based on the expression of Hθ’s eigenvalues,

µ+

2 c
,

µ−

2 c
.

one can conclude the following. 2-a) If |µ+| < 2 |c| and |µ−| < 2 |c|, both eigenvalues lay

inside the unit circle and the sequence {yi(j)}, for j = i, i + 1, . . . , n, is decreasing. 2-b)

If |µ+| > 2 |c| and |µ−| > 2 |c|, at least one eigenvalue lays outside the unit circle and the

sequence {yi(j)} is increasing.

Theorem (5.3.1) characterises the behaviour of the sequences defined by the entries of

the rows of A−1. Fig. 5.1 contains graphical illustrations of the possible trends that may

occur depending on the network parameters a, b, c. While Fig. 5.2 shows, for the same

value of coefficients, a complete characterisation of the elements of A−1 through heat

maps. Theorem (5.3.1) can be used to describe an optimal sensor location, and indeed to

solve Problem (5.2.1), for tridiagonal Toeplitz networks. The following corollary can be

established under the hypothesis that the designer has a priori knowledge of the location

of the input node (see for example [78]).
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Figure 5.1: Trends of the first, middle, and last rows of the inverse of stable tridiagonal
Toeplitz matrices A of dimension n = 30. The different behaviour are described in the
following: (1) with the coefficients a = −2, b = 0.5, c = 2, the quantities |µ−| and |µ+|
are less than 2|c| and greater than 2|b|, thus ensuring the convergent behaviour of both
the entries below the diagonal and of those above it; (2) with the coefficients a = −2,
b = 0.6, c = −3, similar conditions of the previous case, but two eigenvalues are complex
numbers; (3) with the coefficients a = −2, b = 2, c = 0.5, the quantities |µ−| and |µ+|
are greater than 2|c| and less than 2|b|, thus ensuring the divergent behaviour of both the
entries below the diagonal and of those above it; (4) with the coefficients a = −3, b = 1.1,
c = 1, the quantities |µ−| and |µ+| are greater than both 2|c| and 2|b|, thus ensuring the
divergence of the entries below the diagonal and the convergence of those above it.
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Figure 5.2: This figure shows the heat map of the matrix log(|A−1|) for different pa-
rameters of the tridiagonal Toeplitz matrix A ∈ R30×30. Notice that brighter colours
corresponds to entries with larger absolute values. The figure shows different behaviours
of the entries of A−1 as described in Theorem 5.3.1. In particular, the parameters in
Fig. 5.2a and Fig. 5.2b satisfy conditions 1-b and 2-a in Theorem 5.3.1 so that, for each
row, the sequence of entries is decreasing. The parameters in Fig. 4.7 satisfy conditions
1-a and 2-b in Theorem 5.3.1 so that, for each row, the sequence of entries is increasing.
Finally, the parameters in Fig. 5.2d satisfy conditions 1-b and 2-b in Theorem 5.3.1 so
that, for j ≥ i, the sequence of entries is decreasing and, for j < i, the sequence of entries
is increasing. Notice that, in all four cases, the network matrices are Hurwitz stable.
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Corollary 5.3.1. (Optimal sensor placement for Toeplitz networks) Consider a

Toeplitz line network as in (5.1). If the input is located at node i, then the sensor node j

such that A−1
ij is largest is determined as follows:

1. If 1-a and 2-a hold, then j = i, that is, the sensor is co–located with the input node;

2. if 1-b and 2-a hold, then j = 1, that is, the sensor is located at the first node;

3. if 1-a and 2-b hold, then j = n, that is, the sensor is located at the last node of the

line;

4. if 1-b and 2-b hold, then j = h, where h is the nearest between 1 and n to vertex i,

i.e., if n is even

h =


1 if i ≤ n

2
,

n if i > n
2
,

and if n is odd,

h =


1 if i ≤

⌊
n
2

⌋
,

n if i >
⌈
n
2

⌉
,

1 or n if i =
⌈
n
2

⌉
.

Proof. The proof trivially follows from Theorem 5.3.1.

Remark 5.3.1. (Stability of the network matrix) It should be observed that the

stability of a tridiagonal Toeplitz matrix A does not imply the convergence or divergence

of the entries of its inverse A−1. In fact, Theorem 5.3.1 shows that, even for stable ma-

trices, the rows of the inverse of the network matrix may contain convergent or divergent

sequences of entries. See Section 5.4 for an example.
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5.3.2 General line networks

Let us now focus on the case of general line networks described by tridiagonal adjacency

matrices of the form:

A =



a1 b1 0 · · · 0 0

c1 a2 b2 · · · 0 0

0 c2 a3 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · an−1 bn−1

0 0 0 · · · cn−1 an


, (5.10)

with coefficients ak, bk, ck ∈ R6=0 for all k. The formula for the entries of the inverse

A−1 = [A−1
i,j ] is generalized as follows [53]:

A−1
ij =

1

θn


(−1)i+j bi · · · bj−1 θi−1 φj+1, for i ≤ j ,

(−1)i+j cj · · · ci−1 φi+1 θj−1, for i > j ,

(5.11)

where the coefficients θk and φk are obtained respectively through the forward and back-

ward iterations:

θk = ak θk−1 − bk−1ck−1 θk−2 , for k = 2, . . . , n ,

φk = ak φk+1 − bkck φk+2 , for k = n− 1, . . . , 1 ,

with initial conditions respectively given by θ0 = 1, θ1 = an, and φn+1 = 1, φn = an.

A complete characterization of the behaviour of the inverse A−1 of a general tridiagonal

matrix A is not immediate, and in fact involves conditions that cannot be easily verified.

However, a conservative yet useful analysis test can be derived, based on lower and upper

approximations of A by suitable tridiagonal Toeplitz matrices. This fact is shown in the
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following result:

Theorem 5.3.2. (Inverse of tridiagonal matrix) Let A ∈ Rn×n be a tridiagonal

matrix with parameters ai, bi, ci ∈ R6=0. Let a, b, c, ā, b̄, c̄ ∈ R>0. Assume that

(ā2 − 4 b c) (ā2 − 4 b c̄) > 0 ,

(a2 − 4 b̄ c̄) (a2 − 4 b̄ c) > 0 ,
(5.12)

and, for all indices i,

a ≤ |ai| ≤ ā, b ≤ |bi| ≤ b̄, c ≤ |ci| ≤ c̄.

Let ν1 = ā+
√
ā2 − 4 b c, and ν2 = a−

√
a2 − 4 b̄ c̄.

As the dimension n grows, the entries A−1
ij satisfy the following conditions:

1. For all rows i,

(a) if |ν2| > 2 b̄, then the sequence A−1
ij , with j ≥ i, is decreasing;

(b) if |ν1| < 2 b, then the sequence A−1
ij , with j ≥ i, is increasing.

2. For all rows i,

(a) if |ν1| < 2 c, then the sequence A−1
ij , with j < i, is decreasing;

(b) if |ν2| > 2 c̄, then the sequence A−1
ij , with j < i, is increasing.

Proof. As in Theorem 5.3.1 one can conveniently fix a row index i and study the behaviour

of all column entries j for i ≤ j and i > j.

If i ≤ j, the entry A−1
ij can be factorized as

yi(j) := A−1
ij = α′(i) (−1)j bi · · · bj−1 φ(j + 1),
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where α′(i) = (−1)i θ−1
n θi−1. The entry A−1

i,j−1 can be rewritten as follows:

yi(j − 1) = −α′(i) (−1)j bi · · · bj−2 φ(j)

= −
aj

bj−1

α′(i) (−1)j bi · · · bj−2 bj−1 φ(j + 1)︸ ︷︷ ︸
yi(j)

−
cj

bj−1

α′(i) (−1)j+1 bi · · · bj−2 bj−1 bj φ(j + 2)︸ ︷︷ ︸
yi(j+1)

,

and thus, after translating of a step backward, the following difference equation is ob-

tained:

yi(j − 2) = −
cj

bj−1

yi(j)−
aj

bj−1

yi(j − 1) ,

for j = n+ 1, . . . , i+ 2. One can obtain the following column-dependent, backward state

form that generalizes (5.8):

 yi(j − 1)

yi(j − 2)

 =


0 1

−
cj

bj−1

−
aj

bj−1


 yi(j)

yi(j − 1)

 , (5.13)

for j = n − 1, . . . , 2, and whose dynamic matrix has the following column–dependent

eigenvalues

λ
(j)
1,2 =

− aj ±
√
a2
j − 4 bj−1 cj

2 bj−1

.

If i > j, the entry A−1
ij can be factorized as

yi(j) := A−1
ij = β′(i) (−1)j cj · · · ci−1 θ(j − 1) ,

where β′(i) = (−1)i θ−1
n φi+1, and one can obtain the following column-dependent state
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form that generalizes (5.9):

 yi(j + 1)

yi(j + 2)

 =


0 1

−
bj−1

cj
−
aj

cj


 yi(j)

yi(j + 1)

 , (5.14)

for j = 1, . . . , i − 1, and whose dynamic matrix has the following column-dependent

eigenvalues

µ
(j)
1,2 =

− aj ±
√
a2
j − 4 bj−1 cj

2 cj
.

Under the conditions in (5.12), it is possible to find the following upper and lower

bounds for the modules of the eigenvalues λ
(j)
1,2 and µ

(j)
1,2:

|ν2|

2 b̄
≤ |λ(j)

1,2| ≤
|ν1|
2 b

,
|ν2|
2 c̄
≤ |µ(j)

1,2| ≤
|ν1|
2 c

.

As in Theorem 5.3.1, when both eigenvalues λ
(j)
1,2 lay inside the unit circle, for all j, the

backward dynamics in (5.13) is decreasing and the forward sequence {yi(j)} is increasing,

while, when both eigenvalues µ
(j)
1,2 lay inside the unit circle, for all j, the dynamics in (5.14)

is decreasing and the same holds for the sequence {yi(j)}. This reasoning explains the

conditions in the statement of the theorem.

As for the case of Toeplitz line networks discussed in Theorem 5.3.1, Theorem 5.3.2

provides guidelines for the selection of sensor nodes with respect to the input location and

the network parameters.
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5.4 Applications

In this section we validate our findings with three different areas of application. In par-

ticular, in Section 5.4.1 through numerical examples we show that by fixing the diagonal

entries of network matrix and plotting the regions of the parameters space, one can yield

decreasing and increasing behaviours of the entries of the network inverse matrix. In-

stead, in Section 5.4.2 we present an electronic network whose dynamics are described

by a tridiagonal matrix, and we analyse its steady state behaviour as a function of the

network elements and the locations of the input and sensor nodes. Finally, in Section

5.4.3 we exploit the theoretical results obtained before in Section 5.3 to solve the problem

of detect the disturbance propagation in a vehicular platoon.

a1

1 c1

b1 ni

u(t) y(t)

j

ai

bi
ci

anan�1

bn�1

cn�1

b2
c2

a2 aj

bj

cj

Figure 5.3: Line network with n nodes. The i–th node is affected by an attack, and the
j–th node represents the optimal sensor placement.

5.4.1 Map of decreasing and increasing parameters

In this subsection we present numerical examples of line networks with n vertex nodes

(Fig. 5.3), where a node i is affected by a disturbing signal u(t), and it is required to find,

by means of Theorems 5.3.1 and 5.3.2, the sensor location j maximizing the ability of an

observer to detect such disturbance. Consider the case of a stable Toeplitz line network

with n = 30, ak = a = −0.3, for all k, while the other two coefficients bk = b and ck = c,

for all k, are still to be chosen. Suppose that a white noise signal u(t), with zero mean

and unit variance, is injected through the first node, i.e. i = 1. Based on Theorem 5.3.1,
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−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

b

c

Figure 5.4: Map of convergence and divergence for fixed value a = −0.3 and for
−2 ≤ b, c ≤ 2. Blue and red indicate regions where the entries A−1

ij of the inverse A−1

have convergent and divergent behaviours, respectively. White indicate regions where the
network is unstable. The axes b = 0 and c = 0 are excluded since they make A not
invertible.

one can build a map telling for different values of b and c whether the behaviour of the

first row of the inverse A−1 is convergent or divergent (Fig. 5.4).

Assume first the numerical values b = 1 and c = −0.25. The map reveals that

the behaviour of the entries of the first row of A−1 is divergent, and thus the optimal

sensor location is at the furthest vertex from the attack, i.e. j = 30. This result is

counterintuitive as one can think that the optimal choice to detect an attack is to place

the sensor at the same node where the attack is performed.

In fact, the adopted metric, the trace of the cross–Gramian Wco, reaches its maximum

at the last node, which implies that the corresponding output signal is more detectable

when measured at that location. As a second example, assume the numerical values

b = 0.57 and c = −1.37; based on the map the optimal placement is obtained by co-

locating the sensor at the vertex where the disturbance is originated, that is j = i = 1.

Fig. 5.5 shows the amplification of the signal u(t) for the two cases above, and it validates
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Figure 5.5: Simulation runs with two Toeplitz line networks belonging to case (3) and (1)
of Fig. 5.2, respectively. In the top figure the maximum amplification of the input u(t) is
achieved at furthest nodes, while in the bottom figure it is obtained at same node where
u(t) is applied.

the results expected from the theorems.

5.4.2 An electronic network yielding tridiagonal dynamics

Consider the electric circuit in Fig. 5.6, which represents a multistage amplifier [82],

and consists of a chain of RC elements connected by voltage–feedback transconductance

amplifiers. The i-th part of the system, for i = 1, . . . , n, includes a resistor Ri, a capacitor

Figure 5.6: RC–chain network with n voltage–feedback transconductance amplifiers Ai,
which are depicted in the gray boxes.
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Ci, and the elements of the local amplifier’s equivalent circuit. Each amplifier Ai comprises

an input resistance, ρi, an output resistance, δi, and a controlled generator Gi injecting

a current linearly depending on the capacitor Ci’s voltage through a gain coefficient ki.

Let xi(t) be the voltage at time t of the capacitor Ci. Then, the current injected by Gi

is ki xi(t), where ki > 0 if the amplifier works in non-inverting configuration, and ki < 0

if the amplifier is in inverting configuration. The electric circuit is controlled through an

input signal v(t) that is applied at the first RC-branch, while a short circuit is imposed

at the last branch. We aim to characterise the propagative properties of a disturbance

signal u(t) that is applied at the i-th node. To this aim, we first determine a dynamical

model of the system. By applying Kirchhoff’s current law, we obtain the following balance

equations:

iRi
(t)− iCi

(t)− iρi − iGi
(t)− iδi − iRi+1

(t) = 0 ,

for i = 1, 2, . . . , n, which can be written in terms of the system’s state by exploiting

Kirchhoff’s voltage law:

xi−1(t)− xi(t)
Ri

− Ci ẋi(t)−
xi(t)

ρi
− ki xi(t)−

xi(t)

δi
−
xi(t)− xi−1(t)

Ri+1

= 0 .

The network dynamical model is thus given by

ẋi(t) = ci xi−1(t) + ai xi(t) + bi xi+1(t) , (5.15)

where

ci =
1

RiCi
> 0 bi =

1

Ri+1Ci
> 0 ,

ai = −
1

Ci

 1

ρi
+

1

δi
+

1

Ri

+
1

Ri+1

− ki

 = −bi − ci −
1

ρiCi
−

1

δiCi
+
ki

Ci
,

(5.16)
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for i = 1, . . . , n, x0(t) = u(t) and xn+1(t) = 0. Thus, the electric circuit in Fig. 5.6 can be

modelled as the line network system in Fig. 5.3 with dynamics of the form (5.1), where

the parameters ai, bi, and ci are given in (5.16). We now study two numerical instances

of the above electric circuit with n = 10.

For simplicity, we let all input and output resistances of the amplifiers have equal value,

that is, ρi = ρ = 1 · 106 Ω and δi = δ = 3 · 106 Ω. By choosing the other circuit parameters

as in Table 5.1-a), the network parameters are such that the network matrix A is Toeplitz

and satisfies the conditions 1-b and 2-b in Theorem 5.3.1. Thus, the sequences A−1
ij , for

j ≥ i (respectively j < i), show a decreasing (respectively increasing) behaviour. Instead,

if the circuit parameters are chosen as in Table 5.1-b), the network matrix A satisfies

the conditions 1-a and 2-b in Theorem 5.3.1, so that the sequences A−1
ij are increasing for

all rows i. A graphical illustration of the behaviours of the entries of the inverse of the

network matrix is reported in Fig. 5.7. As a consequence of this analysis, for the first set

of parameters, a disturbance is mostly visible close to the signal source. Instead, for the

latter set of parameters, the effect of a disturbance is greatest at the right extreme of the

circuit.
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(b) Parameters: a = −1, b = 1.2, c = 0.1.

Figure 5.7: This figure shows the heat map of the matrix log(|A−1|) for different param-
eters of the tridiagonal Toeplitz matrix A ∈ R10×10 as obtained in Section 5.4.2 from the
network parameters in Table 5.1. The parameters in Fig. 5.7a satisfy conditions 1-b and
2-b in Theorem 5.3.1 so that, for j ≥ i, the sequence of entries is decreasing and, for
j < i, the sequence of entries is increasing. The parameters in Fig. 5.7b satisfy conditions
1-a and 2-b in Theorem 5.3.1 so that, for all rows, the sequence of entries is increasing.
Notice that, in both cases, the network matrices are Hurwitz stable.

Table 5.1: Network parameters yielding decreasing (left) and increasing (right) behaviours
of A−1.

i Ri [Ω] Ci [F] ki
1 1 · 100 1.33 · 100 −6.67 · 10−2

2 3.75 · 100 3.56 · 10−1 −1.78 · 10−2

3 1.41 · 101 9.48 · 10−2 −4.74 · 10−3

4 5.27 · 101 2.53 · 10−2 −1.26 · 10−3

5 1.98 · 102 6.74 · 10−3 −3.36 · 10−4

6 7.42 · 102 1.8 · 10−3 −8.86 · 10−5

7 2.78 · 103 4.79 · 10−4 −2.26 · 10−5

8 1.04 · 104 1.28 · 10−4 −5.06 · 10−6

9 3.91 · 104 3.41 · 10−5 −3.71 · 10−7

10 1.47 · 105 9.09 · 10−6 8.79 · 10−7

10 5.5 · 105

a = −1 b = 0.2 c = 0.75

i Ri [Ω] Ci [F] ki
1 1 · 1010 1 · 10−9 1.33 · 10−6

2 8.33 · 108 1.2 · 10−8 1.34 · 10−6

3 6.94 · 107 1.44 · 10−7 1.38 · 10−6

4 5.79 · 106 1.73 · 10−6 1.85 · 10−6

5 4.82 · 105 2.07 · 10−5 7.55 · 10−6

6 4.02 · 104 2.49 · 10−4 7.6 · 10−5

7 3.35 · 103 2.99 · 10−3 8.97 · 10−4

8 2.79 · 102 3.58 · 10−2 1.08 · 10−2

9 2.33 · 101 4.3 · 10−1 1.29 · 10−1

10 1.94 · 100 5.16 · 100 1.55 · 100

10 1.62 · 10−1

a = −1 b = 1.2 c = 0.1

(a) (b)
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5.4.3 Asymmetric bidirectional control of vehicle platoons

Distributed policies for vehicle platooning can potentially increase the safety and capacity

of highways and, at the same time, can allow drivers to relax during a travel [45] or the

daily commute. In the context of automated vehicular control, various motion control

mechanisms and stability properties of the formation have been studied and described in

the literature [91]. The problem in its most basic form is to steer a collection of vehicles

from an initial point to another one with certain desired speed and such that each vehicle

should keep some preset distance respect to the predecessor vehicle and the following [83].

The simplest approach to be implemented, among the ones based on fixed-distance, is

the predecessor-following approach, according to which every vehicle is equipped with

two sets of sensors, measuring the relative distances from the preceding vehicle and the

following vehicle. Therefore, bidirectional symmetric-control or asymmetric-control can

be implemented. In all such strategies, scalability in terms of disturbance propagation is

a phenomenon known as string instability could be avoided [67]. String instability occurs

when a disturbance or measurement error acting at a given vehicle is amplified as it is

propagated along the platoon of vehicles.

While symmetric control has been well studied and symmetric systems can be made

string stable, though at the expense of tolerating long transients, asymmetric control is

only recently receiving a wide attention from many authors [44, 91]), for its interesting

properties in terms of convergence speed and controllability [39, 72]. However, the asym-

metric control leads to an undesired behaviour of the entire system, which is referred to as

harmonic instability, namely the phenomenon occurring when the peak of the magnitude

frequency response exponentially grows with the number of vehicles. In [91] authors has

shown how the asymmetric systems are even harmonically unstable.

The theoretical results obtained in Section 5.3 find also application in the aforemen-

tioned context of harmonic instability for homogeneous vehicles platoon. To this re-
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Figure 5.8: Example of platoon composed by 5 vehicles. Each car #i with position
xi is moving in one dimension with velocity vi. Every vehicle in the platoon should
automatically keep the distances di respect to the predecessor #i−1 and the following
vehicle #i+1.

gard, [56] in this framework authors want to show an interesting scenario where a distur-

bance propagation along finite string vehicles can be detect. Indeed, given as metric the

cross-Gramian, it will be shown how the disturbance injected i.e by the tail string could

be detected by an optimal design of network parameters. In this way the leading vehicle

informations will not be affected by the error.

Consider a generic system of N vehicles such as represented in Fig. 5.8 (for the par-

ticular case of 5 vehicles) described by the second-order dynamic model

ẋi = vi ,

v̇i = ui ,

where ui, for i = 1, . . . , N , are the normalised inputs of each vehicle, xi and vi are their

position and velocity. In general, centralised control is impractical for medium to large

sized platoons; thus a decentralised controller approach should be used. Therefore, we

want to find a decentralised law u = (u1, . . . , uN)T s.t. all vehicles asymptotically move
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at a desired speed v̄, i.e.

vi → v̄ ,

and according to the asymmetric bidirectional control policy [67], it maintain a relative

distance d̄, i.e .

di = xi−1 − xi → d̄ , for i = 2, . . . , N .

Decentralized means that each vehicle’s input ui must depend only on the information

of its own position and velocity and that of its preceding and following vehicle. Let

d̃i = d̄− di and ṽi = v̄ − vi. A possible solution is the following

ui = −(k1 + k2) ṽi + k1 ṽi−1 + k2 ṽi+1 + λ d̃i ,

for i = 2, . . . , N − 1, and

u1 = −k2 ṽ1 + k2 ṽ2 ,

uN = −k1 ṽN + k1 ṽN−1 + λ d̃N .

The system model for N = 3 is the following:

˙̃v1 = −k2 ṽ1 + k2 ṽ2 ,

˙̃v2 = −(k1 + k2) ṽ2 + k1 ṽ1 + k2 ṽ3 + λ d̃2 ,

˙̃v3 = −k1 ṽ3 + k1 ṽ2 + λ d̃3 ,

˙̃d2 = v1 − v2 ,

˙̃d3 = v2 − v3 ,
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It is linear and it thus can be represented as



˙̃v1

˙̃v2

˙̃v3

˙̃d2

˙̃d3


= A



ṽ1

ṽ2

ṽ3

d̃2

d̃3


+B



0

0

0

d̄

d̄


where

A =

 A11 A12

A21 A22

 =



−k2 k2 0 0 0

k1 −(k1 + k2) k2 λ 0

0 k1 −k1 0 λ

1 −1 0 0 0

0 1 −1 0 0


and B equals the identity matrix I.

Without considering the contribute of the leading and the tail vehicle (namely, if we

neglect the first and last row of A), the sub–network matrix A11 can be considered as

a Tridiagonal Toeplitz with coefficients: a = −(k1 + k2), b = k2 and c = k1. That

makes sense when the number of vehicles grows-up enough; thus the behaviour of the

platoon can be described by a line network (as shown before in Fig. 5.3), where each

node corresponds to a single vehicle. Consider a platoon composed of 20 vehicles and

supposing an external disturbance (i.e. deceleration signal caused by internal vehicle fault

or non-uniform road surface) acts into vehicle 2; we want to find the optimal placement to

detect the attack. Given the results obtained in Theorem 3.1, by appropriately selecting

k1 = 0.1 and k2 = 0.2, we have that the first eigenvalue σ1 > 1, while the other eigenvalue

σ2 lays inside on the unit circle. Therefore, the entry A−1
i,j have decreasing behaviour

as illustrated in Fig. 5.9, than according to the case 1-a) of Corollary 5.3.1, the optimal
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Figure 5.9: Decreasing behaviour of the second row of A−1
i,j . According to Corollary 5.3.1,

the optimal sensor placement will be for j = 2, where the metric value is the biggest.

sensor placement will be for j = i (sensor co-located with the attacker). In this way,

one can establish exactly which vehicle of the platoon has decelerated, in order to decide

which control law must be chosen to achieve the desired speed v̄.
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Conclusion and Future Work

This thesis work has mainly focused on (i) analysing the convergence of multi-agent sys-

tems by considering their complex dynamic behaviour through the consensus model and

the HK model, (ii) addressing the well-known data clustering problem with additional dis-

tance centroid constraints for a wireless network application, (iii) and dealing the problem

of attack detection through optimal sensor placement in line network systems.

In Chapter 3 we have given centralised and distributed conditions to determine, at

the generic instant t, if a system described by the HK opinion dynamic model can even-

tually reach an agreement state or, more in general, a steady state (based on the doubly

stochasticity of the dynamic matrix A(t)). Furthermore, we have also given conditions

about the connectedness of the graph at time instant t + 1 and have investigated on the

feasibility of a local convergence criterion, which is valid except under the cases when the

graph contains m-paths. Through an alternative formulation of the HK model insights

on its complexity are found, which suggests a way to study the detection of the agree-

ment condition. The proposed criteria represent a method to determine whether the a

set of agents, interacting via the HK model, can stop. To show the effectiveness of the

proposed criteria, simulation results have been shown which successfully confirm their va-

lidity. Future works in this topic will be along two main directions. First, we will inspect

a generalisation of the HK model to a n-dimensional vector opinion problems and study

the finite-time convergence to a steady state, in order to characterise an upper bound for

the time instant when a steady state is reached. Secondly, we will use the alternative
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formalisation of the model provided in Section 3.1 to inspect the possibility of finding

a closed-form solution to the HK model and determine conditions for reaching a steady

state and agreement, depending only on the initial state x(0) and the confidence interval

length ε.

Chapter 4 described a distributed algorithm to solve a data clustering for a sensors

network, with the constraint that cluster centroids must be minor than ε. The proposed

approach is two steps: first, an admissible, although sub-optimal, solution of the problem

is found by using an HK model “filter”, which requires no a-priori specification by the

user of the number of clusters, and then the found solution is optimised by exploiting the

k–means algorithm. In spite of the HK model in its original application is a centralised

algorithm, we proposed a new distributed implementation based on a combination of

consensus algorithms. Future research will focus on proving the convergence of HK model

in finite time by considering vectorial opinions and testing the algorithm in a real world

scenario, including noise and packet loss.

In Chapter 5 we studied the problem of selecting sensor nodes for optimal signal

detection in network systems. We adopted the trace of the cross–Gramian or, equivalently,

for single-input single-output systems, the static gain of the network system, to evaluate

different sensor positions with respect to the origin of a signal to be detected. For the

class of line networks characterised by Toeplitz dynamic matrices or, more in general,

by tridiagonal dynamic matrices, we have shown that the entries of the inverse of the

network matrix can exhibit drastically different behaviours. Consequently, to maximise

the detection performance, the sensor should either be co-located with the origin of the

signal, or as far as possible from it, depending on the network parameters. We illustrated

our findings through a synthetic example and a class of electrical circuits. Several problems

are left as the subject of future research, including the extension to multi-input multi-

sensor scenarios and the study of different network topologies.

92



Bibliography

[1] Chaouki T Abdallah and Herbert G Tanner. Complex networked control systems.

2007.

[2] R. Anguluri, R. Dhal, S. Roy, and F. Pasqualetti. Network invariants for optimal

input detection. Boston, MA, USA, 2015. Submitted.

[3] Jon L Bentley, Donald F Stanat, and E Hollins Williams Jr. The complexity of

finding fixed-radius near neighbors. Information processing letters, 6(6):209–212,

1977.

[4] V.D. Blondel, J.M. Hendrickx, and J.N. Tsitsiklis. On Krause’s multi-agent con-

sensus model with state-dependent connectivity. IEEE Transactions on Automatic

Control, 54(11):2586–2597, 2009.

[5] Vincent Blondel, Julien M Hendrickx, Alex Olshevsky, J Tsitsiklis, et al. Conver-

gence in multiagent coordination, consensus, and flocking. IEEE Conference on

Decision and Control (CDC), volume 44, page 2996, 2005.

[6] Vincent D Blondel, Julien M Hendrickx, and John N Tsitsiklis. Opinion dynamics

for agents with opinion-dependent connections. 49th IEEE Conference on Decision

and Control (CDC), pages 6626–6632, 2010.

[7] Stefano Boccaletti, Vito Latora, Yamir Moreno, Martin Chavez, and D-U Hwang.

Complex networks: Structure and dynamics. Physics reports, 424(4):175–308, 2006.

93



Bibliography

[8] Katy Börner, Soma Sanyal, and Alessandro Vespignani. Network science. Annual

review of information science and technology, 41(1):537–607, 2007.

[9] PS Bradley, KP Bennett, and Ayhan Demiriz. Constrained k-means clustering.

Microsoft Research, Redmond, pages 1–8, 2000.

[10] James M Brase and David L Brown. Modeling, simulation and analysis of complex

networked systems. Lawrence Livermore National Laboratory, Tech. Rep, 2009.

[11] Peter Brucker. On the complexity of clustering problems. Optimization and opera-

tions research, pages 45–54. Springer, 1978.

[12] Sergey V Buldyrev, Roni Parshani, Gerald Paul, H Eugene Stanley, and Shlomo

Havlin. Catastrophic cascade of failures in interdependent networks. Nature,

464(7291):1025–1028, 2010.

[13] Duncan S Callaway, Mark EJ Newman, Steven H Strogatz, and Duncan J Watts.

Network robustness and fragility: Percolation on random graphs. Physical review

letters, 85(25):5468, 2000.

[14] Claudio Canuto, Fabio Fagnani, and Paolo Tilli. An eulerian approach to the anal-

ysis of krause’s consensus models. SIAM Journal on Control and Optimization,

50(1):243–265, 2012.

[15] Alvaro A Cárdenas, Saurabh Amin, and Shankar Sastry. Research challenges for

the security of control systems. HotSec, 2008.

[16] Francesca Ceragioli and Paolo Frasca. Continuous and discontinuous opinion dy-

namics with bounded confidence. Nonlinear Analysis: Real World Applications,

13(3):1239–1251, 2012.

94



Bibliography

[17] Dah-Ming Chiu and Raj Jain. Analysis of the increase and decrease algorithms for

congestion avoidance in computer networks. Computer Networks and ISDN systems,

17(1):1–14, 1989.

[18] I. Constantin Morarescu and A. Girard. Opinion Dynamics with Decaying Con-

fidence: Application to Community Detection in Graphs. IEEE Transactions on

Automatic Control, 2010.

[19] Paolo Crucitti, Vito Latora, Massimo Marchiori, and Andrea Rapisarda. Efficiency

of scale-free networks: error and attack tolerance. Physica A: Statistical Mechanics

and its Applications, 320:622–642, 2003.

[20] György Dán and Henrik Sandberg. Stealth attacks and protection schemes for state

estimators in power systems. IEEE First International Conference on Smart Grid

Communications, pages 214–219, 2010.

[21] Ian Davidson and SS Ravi. Clustering with constraints: Feasibility issues and the

k-means algorithm. SDM, volume 5, pages 201–211. SIAM, 2005.

[22] Pietro DeLellis, Franco Garofalo, Davide Liuzza, et al. Analysis and stability of

consensus in networked control systems. Applied Mathematics and Computation,

217(3):988–1000, 2010.

[23] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from

incomplete data via the em algorithm. Journal of the royal statistical society. Series

B (methodological), pages 1–38, 1977.

[24] Rahul Dhal and Sandip Roy. Vulnerability of continuous-time network synchroniza-

tion processes: A minimum energy perspective. pages 823–828, 2013.

95



Bibliography

[25] L Di Paola, M De Ruvo, P Paci, D Santoni, and A Giuliani. Protein contact

networks: an emerging paradigm in chemistry. Chemical reviews, 113(3):1598–1613,

2012.

[26] Jan Christian Dittmer. Consensus formation under bounded confidence. Nonlinear

Analysis-Theory Methods and Applications, 47(7):4615–4622, 2001.

[27] Daniel M Dunlavy, Bruce Hendrickson, and Tamara G Kolda. Mathematical chal-

lenges in cybersecurity. Sandia Report SAND, 805, 2009.

[28] Joseph C Dunn. A fuzzy relative of the isodata process and its use in detecting

compact well-separated clusters, 1973.

[29] Adriano Fagiolini and Antonio Bicchi. On the robust synthesis of logical consensus

algorithms for distributed intrusion detection. Automatica, 49(8):2339–2350, 2013.

[30] Hamza Fawzi, Paulo Tabuada, and Suhas Diggavi. Secure state-estimation for

dynamical systems under active adversaries. 49th IEEE Annual Allerton Conference

on Communication, Control, and Computing, pages 337–344, 2011.

[31] K.V. Fernando and H. Nicholson. On the structure of balanced and other prin-

cipal representations of siso systems. IEEE Transactions on Automatic Control,

28(2):228–231, 1983.

[32] J. R. P. French. A formal theory of social power. Psychological Review, 63:181–194,

1956.

[33] Federica Garin and Luca Schenato. A survey on distributed estimation and control

applications using linear consensus algorithms. Networked Control Systems, pages

75–107. Springer, 2010.

96



Bibliography

[34] Audrey P Gasch and Michael B Eisen. Exploring the conditional coregulation of

yeast gene expression through fuzzy k-means clustering. Genome Biol, 3(11):1–22,

2002.

[35] Andrea Gasparri and Gabriele Oliva. Fuzzy opinion dynamics. IEEE American

Control Conference (ACC), pages 5640–5645, 2012.

[36] D. Georges. The use of observability and controllability Gramians or functions

for optimal sensor and actuator location in finite-dimensional systems. 34th IEEE

Conference on Decision and Control (CDC). New Orleans, LA, USA, 1995.

[37] Semyon Aranovich Gershgorin. Uber die abgrenzung der eigenwerte einer matrix.

Izvestija Rossijskoj akademii nauk. Serija matematiceskaja, (6):749–754, 1931.

[38] M. H. De Groot. Reaching a consensus, volume 69. Wiley, 1974.

[39] He Hao, Huibing Yin, and Zhen Kan. On the robustness of large 1-d network of

double integrator agents. IEEE American Control Conference (ACC), pages 6059–

6064, 2012.

[40] Peter Hegarty and Edvin Wedin. The Hegselmann-Krause dynamics for the

continuous-agent model and a regular opinion function do not always lead to con-

sensus. 2014.

[41] Rainer Hegselmann and Ulrich Krause. Opinion dynamics and bounded confidence

models, analysis, and simulation. Journal of Artifical Societies and Social Simulation

(JASSS) vol, 5(3), 2002.

[42] Rainer Hegselmann and Ulrich Krause. Opinion dynamics driven by various ways

of averaging. Computational Economics, 25(4):381–405, 2005.

97



Bibliography

[43] Rainer Hegselmann and Ulrich Krause. Opinion dynamics under the influence of

radical groups, charismatic leaders, and other constant signals: A simple unifying

model. Networks and Heterogeneous Media, 10(3):477–509, 2015.

[44] Ivo Herman, Dan Martinec, Zdenek Hurák, and Michael Sebek. Harmonic instability

of asymmetric bidirectional control of a vehicular platoon. IEEE American Control

Conference (ACC), pages 5396–5401, 2014.
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complex networks. Nature, 473(7346):167–173, 2011.

[58] Yang-Yu Liu, Jean-Jacques Slotine, and Albert-László Barabási. Observability of
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[66] Estefańıa Etchevés Miciolino, Gabriele Oliva, and Roberto Setola. Distributed opin-

ion dynamics with heterogeneous reputation. International Journal of System of

Systems Engineering, 4(3):277–290, 2013.

[67] Richard H Middleton and Julio H Braslavsky. String instability in classes of linear

time invariant formation control with limited communication range. IEEE Trans-

actions on Automatic Control, 55(7):1519–1530, 2010.

[68] Anahita Mirtabatabaei and Francesco Bullo. Opinion dynamics in heterogeneous

networks: convergence conjectures and theorems. SIAM Journal on Control and

Optimization, 50(5):2763–2785, 2012.

[69] B. Moore. Principal component analysis in linear systems: Controllability, observ-

ability, and model reduction. IEEE Transactions on Automatic Control, 26(1):17–

32, 1981.

100



Bibliography

[70] HP Ng, SH Ong, KWC Foong, PS Goh, and WL Nowinski. Medical image segmen-

tation using k-means clustering and improved watershed algorithm. IEEE Southwest

Symposium on Image Analysis and Interpretation, pages 61–65, 2006.

[71] R. Olfati-Saber and R. M. Murray. Consensus problems in networks of agents with

switching topology and time-delays. IEEE Transactions on Automatic Control,

49(9):1520–1533, 2004.

[72] Reza Olfati-Saber, Alex Fax, and Richard M Murray. Consensus and cooperation

in networked multi-agent systems. Proceedings of the IEEE, 95(1):215–233, 2007.

[73] Gabriele Oliva, Damiano La Manna, Adriano Fagiolini, and Roberto Setola.

Distance-constrained data clustering by combined k-means algorithms and opinion

dynamics filters. 22nd IEEE Mediterranean Conference on Control and Automation

(MED), pages 612–619, 2014.

[74] Gabriele Oliva, Roberto Setola, and Christoforos N Hadjicostis. Distributed k-means

algorithm. arXiv preprint arXiv:1312.4176, 2013.

[75] F. Pasqualetti, S. Zampieri, and F. Bullo. Controllability metrics, limitations and

algorithms for complex networks. 1(1):40–52, 2014.

[76] Fabio Pasqualetti. Secure control systems: A control-theoretic approach to cyber-

physical security. PhD thesis, University of California, Santa Barbara, 2012.

[77] Fabio Pasqualetti, Florian Dorfler, and Francesco Bullo. Attack detection and iden-

tification in cyber-physical systems. IEEE Transactions on Automatic Control,

58(11):2715–2729, 2013.

[78] Charles P Pfleeger and Shari Lawrence Pfleeger. Security in computing. Prentice

Hall Professional Technical Reference, 2002.

101



Bibliography

[79] Marieke Quant, Peter Borm, and Hans Reijnierse. Congestion network problems and

related games. European Journal of Operational Research, 172(3):919–930, 2006.

[80] Wei Ren, Randal W Beard, and Ella M Atkins. A survey of consensus problems

in multi-agent coordination. IEEE American Control Conference (ACC), pages

1859–1864, 2005.

[81] Jerome H Saltzer and Kenneth T Pogran. A star-shaped ring network with high

maintainability. Computer Networks (1976), 4(5):239–244, 1980.

[82] Adel S Sedra and Kenneth Carless Smith. Microelectronic circuits, volume 1. Oxford

university press, 1998.

[83] Pete Seiler, Aniruddha Pant, and Karl Hedrick. Disturbance propagation in vehicle

strings. IEEE Transactions on Automatic Control, 49(10):1835–1842, 2004.

[84] Iman Shames, Themistoklis Charalambous, Christoforos N Hadjicostis, and Mikael

Johansson. Distributed network size estimation and average degree estimation and

control in networks isomorphic to directed graphs. 50th IEEE Annual Allerton

Conference on Communication, Control, and Computing, pages 1885–1892, 2012.

[85] Frantisek Slanina. Dynamical phase transitions in Hegselmann-Krause model of

opinion dynamics and consensus. The European Physical Journal B, 79(1):99–106,

2011.

[86] Siddharth Sridhar, Adam Hahn, and Manimaran Govindarasu. Cyber-physical sys-

tem security for the electric power grid. Proceedings of the IEEE, 100(1):210–224,

2012.

[87] Stefan Streif, Rolf Findeisen, and Eric Bullinger. Relating cross gramians and

sensitivity analysis in systems biology. International Symposium on Mathematical

Theory of Networks and Systems, 2006.

102



Bibliography

[88] T. H. Summers and J. Lygeros. Optimal sensor and actuator placement in complex

dynamical networks, arXiv preprint arXiv:1306.2491, 2013.

[89] Shreyas Sundaram and Christoforos N Hadjicostis. Finite-time distributed consen-

sus in graphs with time-invariant topologies. IEEE American Control Conference

(ACC), pages 711–716, 2007.

[90] Yang Tang, Feng Qian, Huijun Gao, and Jürgen Kurths. Synchronization in complex

networks and its application-a survey of recent advances and challenges. Annual

Reviews in Control, 38(2):184–198, 2014.

[91] Folkert M Tangerman, JJP Veerman, and Borko D Stošic. Asymmetric decentralized
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