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Introduction

Maximum efficiency asynchronous motor control

0.1 preface

This work aims to evaluate the dynamic performance of state rotor observers applied to

a control system for rotary asynchronous motor.

The huge amount of induction motors installed in industrial field, the continuous im-

provement of the cost or the instruction cycle of modern microcontroller and DSP and the

increasingly reduced dimensions of the IGBT power inverter, has allowed designers to im-

prove the quality of the control system realized, together with a decrease in the cost of im-

plementation.

The evolution of the field oriented control (FOC) and the development of hybrid control

systems have resulted in units reliable and high-performance AC, which have been conve-

niently employed in applications which, previously, were domain DC. It seems natural to

use this technique with modules AC controlled conveniently in automotive.

The type of drives controlled by inverters suffered, over time, constant but radical changes.

The latest developments of the construction technique of induction machines drives led to

the creation of voltage source inverter (VSI) and generation mode of the control variables, re-

alized in PWM mode. The devices of IGBT power (Insulated Gate Bipolar Transistor) achieved

by switching speed comprised between 5 and 10 kV/µsec. In this way today it is possible to

realize a control system with carrier frequency higher than the audible band.

This work deals with the problem of choosing the model of the observer of the rotor state

evaluating the performance of various types, pointing out strengths and weaknesses of each.

1



§0.2 − Object Introduction

These evaluations will be supported by experimental evidence.

0.2 Object

While dealing with the development of this work are going to design a control system

for a drive of asynchronous machines that uses a voltage source inverter and necessary to

generate the currents and voltages which carry the drive by making use of an observer from

the state rotor.

Such observer of the status rotor can be designed according to various theoretical results

that have been made over the years. Each of these studies has solved various problems and

exacerbated some side effects that affect the problem, because the system to control is non-

linear.

In the present work we used reduced, stochastic, sliding and deterministic observer

through the Luenberger and Kalman techniques. The result is the development of control

algorithms, which maximize the performance in the various load conditions.

0.3 Control Mode

Various control algorithms were taken into account, such as field oriented control (FOC)

and direct torque control is with switching table (ST-DTC) that with vector modulation (SVM-

DTC).

All three control techniques are based on a suitable decoupling of the components of

flux and torque, according to a rotating reference system, of the stator current in such a way

that a component acting solely on the flow of the rotor, while the other is proportional to the

torque generated.

This can be achieved by orienting the axes of reference according to the direction of

the field rotor and, in particular, by choosing the direction of the direct axis (d axis) which

coincides with that of the representative vector of the rotor flux and the direction of the axis

in quadrature (axis q) orthogonal to the axis and directed in advance.

By means of the decoupling between the effects of the two components of the stator

current the control of mechanical variables of the drive is simplified and it can, thus, realize

a closed-chain control of the rotor flux.

-2-



Introduction §0.4 − Model of the asynchronous motor

Initially both ST-DTC and DTC-SVM controls were realized.

Both gave he best results with respect to the FOC as regards the dynamics corresponding

to both flow variations and torque, but showed considerable drawbacks in the operation at

low speeds. It was therefore established to use the FOC because the dynamic requirements

are not so as stringent in practical applications.

However, what is important in the field of application is the conversion efficiency from

electrical to mechanical energy. This is obtained by regulating the flow in function of the

required torque, the voltage of DC bus and the actual speed.

This adjustment takes place through the implementation of some algorithms that will be

used in the control system.

0.4 Model of the asynchronous motor

Figure 1: Electric Diagram of a Induction Motor

The three-phase asynchronous electric motor is structurally very simple.

This actuation is realized by a fixed part, the stator, and by a mobile part, the rotor. The

stator is constituted by a stack of laminations in the shape of a circular crown. The con-

ductors (enamelled copper wire) stator winding phase or two-phase stator (in the case of

using single phase alternating current) are collected in the grooves inside the pack of stator

laminations.

The rotor is constructed in order to allow the circulation of induced current. The simplest

and most robust rotor is realized by inserting in the channels as many bars die-cast of copper

or aluminum, each of which fills a channel completely. The heads of the bars protruding

from the lamellar pack are directly connected to each other, on both sides, by means of a

big ring of copper. The rotor thus constructed is indicated with the name of "rotor squirrel

-3-



§0.4 − Model of the asynchronous motor Introduction

cage" or "short circuit rotor" (these engines owe their name to the similarity of the rotor to

the wheels present in the cages for squirrels and where they are used to run).

These engines are widely used in industry because they are reliable and economic.

The three-phase asynchronous electric motor is constituted by two circuits, one fixed to

the stator, and the other, with induced currents, rotating with the rotor. They are electrically

separate, and magnetically coupled (cfr. fig. 1); the rotor is usually a squirrel cage.

In this work, will be taken into account the electromechanical model of the asynchronous

engine.

By means of coordinate transformations it is possible to simplify the discussion, as far as

the study of the induction motor is regarded.

They are the Clark and Park transform.

The Clarke transform modifies a three-phase system (xa, xb, xc) into a two-phase orthog-

onal system (xα, xβ).

Assuming the homopolar component equal to zero:

xa + xb + xc = 0 (0.4.1)

the Clarke transform results to be given by:


xα = xa

xβ =
1√
3

xa +
2√
3

xb

(0.4.2)

With reference to the system of orthogonal axes ( alpha, beta) integral with the stator, the

mathematical model that describes the induction motor is transformed into the following:

d
dt

iα = −a11iα +
1

Le

(
1
Tr

φ̂α + ω φ̂β

)
+

1
Le

vα (0.4.3)

d
dt

iβ = −a11iβ +
1

Le

(
1
Tr

φ̂β −ω φ̂α

)
+

1
Le

vβ (0.4.4)

d
dt

φ̂α = a31iα −
1
Tr

φ̂α −ωφ̂β (0.4.5)

-4-



Introduction §0.4 − Model of the asynchronous motor

d
dt

φ̂β = a31iβ −
1
Tr

φ̂β + ωφ̂α (0.4.6)

d
dt

ω = −awω + Km
(
iβ φ̂α − iα φ̂β

)
− bmcd −

1
Tc

sgn (ω) (0.4.7)

cm = pKm
(
iβ φ̂α − iα φ̂β

)
(0.4.8)

considering the parameters listed in Table 1 and in Table 2.

Rs(Ls) : stator resistance (inductance);

Le : equivalent stator inductance;

Tr : rotor time constant;

J : inertia moment;

p : number of pole pairs;

F : coefficient of viscous friction;

cd : torque disturbance;

cm : torque;

fc : coefficient of coulomb friction;

φ̂β = Lm
Lr

φβ : component of the flow vector scaled along the axis β;

φ̂α = Lm
Lr

φα : component of the flow vector scaled along the axis α;

iα(iβ) : stator current referred to axis α(β);

vα(vβ) : stator tension referred to axis α(β);

Table 1: Electric Parameter of a Induction Motor

a11 = 1
Le

(
Rs +

Ls−Le
Tr

)
aw = F

J Tr =
Lr
Rr

bm = p
J a33 = 1

Tr

a31 = Ls−Le
Tr

Km = 2p2

3J a13 = 1
Tr Le

Table 2: Minimum Parameters Identifiable of a Induction Motor Model

-5-



§0.5 − Steinmetz equivalent electrical circuit Introduction

Considering now a two-phase orthogonal reference system (d, q) that rotates with re-

spect to the system (α, β) previously described with an angular velocity ρ̇, the components

xα and xβ projecting q axis using the following Park transform:

 xd = xα cos ρ + xβ sin ρ

xq = −xα sin ρ + xβ cos ρ
(0.4.9)

The model of the induction motor disclosed above, can then be reported to the system

dq by applying to electrical values expressed in the axes α − β the Park’s transformation

(see. Eq. 0.4.2).

Figure 2: System of axes fixed α− β and rotary d− q.

0.5 Steinmetz equivalent electrical circuit

The relationships between time, current, voltage, speed, power factor and torque can

be obtained from analysis of the Steinmetz equivalent circuit. From this equivalent electrical

circuit (also termed T-equivalent circuit or IEEE recommended equivalent circuit) is possible

to derive a mathematical model used to describe how an induction motor’s electrical input

is transformed into useful mechanical energy output. The equivalent circuit is a single-phase

representation of a multiphase induction motor that is valid in steady-state balanced-load

conditions.

The Steinmetz equivalent circuit is expressed in terms of the Stator Resistance and the

Leakage Reactance (Rs, Xs), the Rotor Resistance, the Leakage Reactance,the slip frequency

(Rr, Xr, Xr′ , and ωs) and the Magnetizing Reactance (Xm).

An induction motor we can compare with an electrical transformer. The magnetic circuit

is separated by an air gap between the stator winding and the moving rotor winding. The

equivalent circuit can accordingly be shown either with equivalent circuit components of

-6-



Introduction §0.6 − State Model of Asynchronous Motor

respective windings separated by an ideal transformer or with rotor components referred to

the stator side.

Figure 3: Steinmetz Equivalent Magnetic - Electric Circuit of a Induction Motor

0.6 State Model of Asynchronous Motor

The formulation of the mathematical model of the induction motor, in the d − q repre-

sentation, may be given, in the form of the state vector, as follows:

x =

[
ids iqs ϕdr ϕqr

]T

(0.6.1)

The system has, as input variables, the projections of the supply voltage vector vs on the

axes d− q. The value of this projection is given by:

u =

[
vds vqs

]
(0.6.2)

and the slip frequency is given by the difference between the synchronous speed and the

angular speed:

u3 = ωs = ωa −ω (0.6.3)

The torque produced by the motor is given by a non-linear relationship between the

projections of the stator current and the rotor flux along the axes d and q. For high power

motors, for which the criterion of minimum energy consumption is important, the variations

of the mechanical speed is sufficiently slow compared to the electrical variations during

transient torque, and therefore it can be considered that the speed of the motor is constant

with respect to the components of the state vector. Assuming ω as constant, the model can

be reformulated in the form of state as follows:
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 ẋ = [A + Gu3]x + Bu

y = h (x) = p (x2x3 − x1x4)
(0.6.4)

where:

A =



− (α + β) ω
β

LS

ω
σLS

−ω − (α + β) −ω
σLS

β
LS

−a31 0 0 ω

0 −a31 −ω 0



B =



1
σLs

0

0 1
σLs

0 0

0 0



G =



0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0



(0.6.5)

having established that:

α =
Rs

σLs
, β =

Rr

σLr
, σ = 1− M2

LsLr

0.7 Matematical Model of the Asynchronous Motor

If we don’t take into consideration (as it usually done) the losses in the iron, the satu-

ration of the electromagnetic circuits and the anisotropy of the geometrical structure. If we

consider the changes in resistance of the rotor and stator, the mathematical model of the elec-

tromagnetic circuit of the induction motor, reported (α, β) axes, fixed the stator, is described

by the following equations (cfr. [38]):
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ẋ = A(ω)x + Bm + Gd (0.7.1)

where:

x =

[
x1 x2

]
T, x1 =

[
ia ib

]
T, x2 =

[
ϕ̂a ϕ̂b

]
T,

m =

[
ma mb

]
T, d =

[
d1 d2 d3 d4

]
T,

d1 = c1δsia, d2 = c1δsib, d3 =
ϕ̂a

δτrLe
, d4 =

ϕ̂ωb

δτrLe

A(ω) =

 A11 A12

A21 A22

 , B =

 c1I

0

 , G =

 −I −I

0 lI



A11 = −a11I, A12 = a13I− c1ωJ, A21 = a31I, A22 = −a33I + ωJ (0.7.2)

l =
1
c1

, c1 =
1
Le

,

a11 =
1
Le

(
Rs +

Ls − Le

τr

)
, a13 =

1
τrLe

, a31 =
Ls − Le

τr
, a33 =

1
τr

I =

 1 0

0 1

 , J =

 0 −1

1 0


where ϕ̂a and ϕ̂b are the components of the vector of rotor flux scaled according to the

equation ϕ̂ = Lm
Lr

ϕ having ϕ the flux vector of the rotor, while δs and δr are, respectively,

the changes of the rotor and stator resistance, δτr = Lr
δr

. It is convenient to note that d is a

perturbation due solely to variations in the rotor and stator resistance.

The problem, now, is to estimate the rotor flux vector of scaled x2 this is effected by means

of a reduced order observer. For this purpose, you can notice that the velocity ω varies
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slowly compared to the electromagnetic variables and consequently it can be considered as

an additional input.

For this reason we do not consider the equation for the mechanical design of the observer.

In this case the mathematical model of the electromagnetic circuit of the motor (0.7.1) can

be considered as a bilinear model. It follows that the bilinear and low order observers of the

components of the rotor flux can be designed according to the methods Hara and Furuta

([38]) or Funahashi ([31]).

With the aim of simplifying the formulation of the model (0.7.1), we can take advantage

of the symmetries of the model. Let us define the following complex state and input vectors:

x = (x1, x2, x3)
T = (is,α + j is,β, ψr,α + j ψr,β, ω)T , (0.7.3)

and

u = us,α + j us,β , (0.7.4)

where j is the imaginary unit. Then, in terms of the new complex state variables, choosing

(0.7.3) as complex state vector and (0.7.4) as complex input vector, the dynamic model (0.7.1)

is:

ẋ1 = −a11 x1 + f1 (a22 − j x3) x2 + f1 u , (0.7.5)

ẋ2 = a21 x1 − (a22 − j x3) x2 , (0.7.6)

ẋ3 = −a33x3 + f3ℑ[x1x̄2]− g5tl , (0.7.7)

0.7.1 Discrete time mathematical model

A discrete-time model corresponding to (0.7.1) can be obtained by using a first order

Euler discretization. By choosing the stator current components as the system output, the

discrete-time model is given by:

xk+1 = Ad xk + fd(xk) + Bd us,k ,

yk = Cdxk ,
(0.7.8)
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where matrices Ad, Bd, Cd and vector field fd(xk) are:

Ad = (I6 + Ts Ac) , fd(xk) = Ts fc(xk) ,

Bd = Ts Bc , Cd = (I2, 02×3).
(0.7.9)

Ts is the sampling time, and matrices Ac, Bc and vector field fc are defined in (0.6.5). An

equivalent complex model is obtained by applying the first-order Euler approximation to

the continuous-time dynamics:

x1(k + 1) = ã11 x1(k) + f̃1 (a22 − j x3(k)) x2(k) + f̃1 u(k) ,

x2(k + 1) = ã21 x1(k) + (1− Ts (a22 − j x3(k))) x2(k) ,

x3(k + 1) = x3(k) ,

(0.7.10)

where:

ã11 = 1− a11 Ts , f̃1 = f1 Ts , ã21 = a21 Ts ,

where ã11 = 1− a11 Ts, f̃1 = f1 Ts, ã21 = a21 Ts, with system output given by:

y(k) = h(x(k)) = x1(k) .

0.8 Complete scheme of the control system

The diagram of the control system is shown in Figure 2.1. The proposed scheme is FOC

(field-oriented control) in which the control variable is the torque. Moreover, the limitation

of the voltage and the references of flux and torque are established in function of the bus-bar

voltage.
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Figure 4: Scheme of the Control System
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Chapter 1
Rotor Flux Observers for Induction

Motors

1.1 Introduction

The implementation of a control law based on the control of the rotor flux for asyn-

chronous motors, requires the estimation of the magnitude and phase of the rotor flux vec-

tor, in a reference system integral with the stator. In order to estimate the components of the

rotor flux in the desired reference can be made observers of integer and reduced order by

taking the speed of rotation of the motor as a free variable.

The reduced order observers are dynamic systems of fourth order. They allow to esti-

mate both the stator current and the rotor flux through measurements of stator voltages and

currents. One of the major benefits brought by the use of these observers is that the stator

currents are estimated without the noise of the measurement. Therefore you don’t have to

filter these quantities to purge them from the noise. The use of filters introduces undesired

phase delays.

Observers are reduced order dynamic systems of the second order. They allow to esti-

mate only the components of the rotor flux through the measurements of voltage and stator

current. In general filters of adequate bandwidth must be employed in order to reproduce

the output signals affected by negligible delays.

There are different structures of the rotor flux observers of reduced order obtained by

13



§1.1 − Introduction 1 − Rotor Flux Observers for Induction Motors

various methods with the hypothesis that the motor parameters assume their nominal val-

ues.

Several scientific articles ([1], [6], [29], [81]) demonstrate that the behavior of the system

is sufficiently approximated during the transient stage, even in the presence of considerable

deviations of the motor parameters from the nominal values.

In these articles, the tests, executed in simulation, have shown that observers of reduced

order may be far less sensitive to variations of the resistance of the rotor and stator and

may have a convergence rate better than those based on the realization of the mathematical

model of the rotor circuit ([32], [65]),

This is due to the existence of a feedback loop around the system that describes the

dynamics of the error of observation of the rotor flux. The use of such observers requires

estimation in line of the constant time of the rotor circuit ([65], [26]).

This paper examines the behavior of the reduced order observer. The ultimate goal is the

implementation of the observer in digital systems. The voltages and currents acquired have

to be filtered by the noise sampling. They are used for this purpose antialiasing filters with

an adequate bandwidth. The observer used must meet the following specifications on the

error of flow calculation:

a) convergence rate;

b) low sensitivity to variations in the stator resistance and rotor;

c) low sensitivity to approximation errors due to the implementation of observers on

microprocessor-based systems.

The requirement c) is necessary because the control system must be necessarily imple-

mented in digital processing systems. Inevitably, the sampling period is finished. According

to the calculation method, in certain time intervals, the voltages that power the motor can

be also very different than those placed in input to the observer. It follows that there may be

additional fluctuations in the error of estimation of the rotor flux.

In order to reduce these additional erroneous oscillations, it is taken in consideration a

further disturbance given by the difference between the voltages that feed the engine and

the ones supplying the observer. This perturbation is present in the mathematical model of

the observer.
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1 − Rotor Flux Observers for Induction Motors §1.2 − Full Order Luenberger Observer

Even the deviations of the resistance values of the rotor and stator resistance are modeled

as a disturbance that appears in the mathematical model of the electromagnetic circuit of the

motor. This is to meet the requirement b).

All of the requirements a) - c) are thus satisfied by the minimization of a suitable cost

function that takes into account explicitly the requirement a).

1.2 Full Order Luenberger Observer

Definition 1. A square matrix is defined Hurwitz matrix if all the eigenvalues have negative real

part. For each eigenvalue λi of the Hurwitz matrix A the differential equation:

ẋ = Ax

is stable.

Assumption 1. Gain L ∈ R2 is such that matrix A− LC is Hurwitz.

Let us consider the linear time-varying (LTV) equations of the electromagnetic part of an

induction motor.

The results given below are based on the following two dimensional LTI dynamics, nat-

urally arising from the four-dimensional model, and satisfying the result given next.

ẋ = Ax + Bu,

y = Cx. (1.2.1)

Lemma 1. For any value of the physical parameters satisfying (0.7.2), matrix A is Hurwitz and the

triple (A, B, C) is controllable and observable.

Exploiting the symmetries in the structure of model representation (1.2.1), in the form

that uses the Kronecker product (1.2.2),

ẋ =

:=A(t)︷ ︸︸ ︷
[A⊗ I + Ω(t)⊗ J] x +

:=B︷ ︸︸ ︷
(B⊗ I) u,

y =

:=C︷ ︸︸ ︷
(C⊗ I) x,
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and the properties of Lemma 1, we can construct a full order dynamic observer having

the same rate of convergence of the error comparable to that induced by a linear Luenberger

gain L̄ designed for the dynamics system (1.2.1), in fact:

Assumption 2. Gain L ∈ R2 is such that matrix A− LC is Hurwitz.

Note that from Lemma 1, there is no restriction in Assumption 2, because pair (C, A) is

observable.

According to any gain L that satisfies the Assumption 2, consider the following LTV

dynamics observers:

˙̂x = [A⊗ I + Ω(t)⊗ J] x̂ + [L⊗ I] (y− ŷ) + (B⊗ I) u. (1.2.2)

The following theorem establishes that the LTV observer (1.2.2) inherit the convergence

properties induced by L on the LTI closed loop A− LC of Assumption 2. It is associated at

the error dynamics essendo il sistema uniformly globally exponentially stable.

First let us state the following lemma:

Lemma 2. Given two square matrices E and F, E⊗F is skew-symmetric if either E is skew-symmetric

and F is symmetric or vice-versa.

Theorem 1. Consider any gain L satisfying Assumption 2 and any pair1 of positive definite matrices

(P, Q) such that:

He (P(A− LC)) = −Q < 0. (1.2.3)

Then, denoting the estimation error as e = x− x̂, the quadratic positive definite Lyapunov function

V(e) = 1
2 eT (P⊗ I) e satisfies:

V̇(e) = ⟨∇V(e), ė⟩ = −eT (Q⊗ I) e, (1.2.4)

along all solutions to (1.2.2), (1.2.2).

The result in Theorem 1 is interesting because it exploits the structure of the 4-dimensional

LTV dynamics (1.2.2) to design an observer inducing error dynamics quadratically stable.

Moreover, this design can be performed by looking at a lower dimensional LTI dynamical

system, joining the useful properties established in Lemma 1.
1Note that an infinite number such pairs exist because A− LC is Hurwitz by design.
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Clearly, the error variables depend on ω and exhibit a peculiar time-varying transient.

Moreover, the upper bound on their norm is a time-invariant function. Note that once a gain

L satisfying the Assumption 2 has been chosen, one can compute αl = −maxi (Re{λi(A− LC)})

and then solve the convex optimization:

min
k,P=PT

k, subject to:

He (P(A− LC)) ≤ −2αlP,

I ≤ P ≤ kI,

to obtain the tight bound:

|e(t)| ≤
√

ke−αl t|e(0)|, (1.2.5)

which follows from straightforward Lyapunov results obtained from Theorem 1 applied

with Q̄ = 2αlP.

An other way to exploit the results of Theorem 1 is to solve a suitable disturbance at-

tenuation problem, for example designing gain L to reduce as much as possible the L2 gain

between an unmeasured disturbance d acting on the current measurement and the estima-

tion error e, subject to a prescribed desired convergence rate αl > 0 for the error dynamics.

Using the well known LMI derivations associated with the bounded real lemma for the case

µ = 1), this is accomplished by solving the following LMI optimization:

min
µ,P̄,X̄

µ, subject to:

P̄ = P̄T > 0,

He


P̄Ā− X̄C̄ −X̄ 0

0 −µI 0

I 0 −µI

 < 0,

He (P̄Ā− X̄C̄) ≤ −2αl P̄,

and then selecting L = P−1X. With this selection, Theorem 1 can be applied to conclude that

the L2 gain from d to e for the error dynamics (see (1.2.2) and (1.2.2)):

ė = ((A− LC)⊗ I + Ω(t)⊗ J) e + (L⊗ I) d, (1.2.6)
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is upper bounded by µ (which is minimized by design).

In addition to the above numerical solutions, a few relevant explicit selections of L ensur-

ing Assumption 2 can also be given. Below we provide three relevant cases corresponding

to different trade-offs between convergence speed and computational complexity.

Proposition 1. Considering model (1.2.2) with parameters satisfying (0.7.2), the following holds:

1 (Open loop observer) Selection:

L̄ =

0

0

 , (1.2.7)

satisfies Assumption 2 and selection P =
[ Lr

f1
0

0 1

]
> 0 and Q = 2

[
a11

Lr
f1
−a21

−a21 a22

]
> 0 satisfies

(1.2.3).

2 (Speed of convergence a22) Selection:

L̄ =

a22 − a11

a21

 , (1.2.8)

satisfies Assumption 2 and assigns both eigenvalues of A− LC in −a22. Moreover selection

P =

[ 1
a22 f1

0

0 f1
a22

]
> 0 and Q̄ =

[
2
f1
−1

−1 2 f1

]
> 0 satisfies (1.2.3).

3 (Arbitrary speed of convergence (a22 + η)). Given any scalar η > 0, selection:

L̄ =

 a22 − a11 + 2η

a21 +
η
f1

(
1 + 2 η

a22

)
 , (1.2.9)

satisfies Assumption 2. Moreover, selection:

P =

 η
a22

(
1 + 2 η

a22

)
− f1

a22
η

− f1
a22

η f 2
1

 , (1.2.10)

is definite positive and satisfies (1.2.3) with Q̄ = 2(a22 + η)P.

1.3 Reduced Order Luenberger Observer

The structure of a reduced order observer, for system A, is given by:
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ṗ = L(ω)p + K(ω)x1 + B(ω)m̃ (1.3.1)

q = p + K0x1 (1.3.2)

q is the estimation of vector of the rotor flux and

m̃ = m + δm, δm =

[
δma δmb

]T

being:

L(ω) = L0 + L1ω

K(ω) = [L(ω)−A11]K0 + A21 − K̇0

B(ω) = −c1K0

(1.3.3)

in which:

L0 = −a33I− a13K0

L1 = (I + c1K0) J

Demonstration: At first, I determine the equation that describes the dynamics of the error

of the survey defined by the equation:

e(t)= x2(t)− q(t)

Deriving the previous expression and taking into account the equations (1.3.1) and (1.3.3),

get:

ė(t) = L(ω)e(t) + c1K0δm + K0d1 + (lI + K0)d2 (1.3.4)

with δm = m̃−m.

The (1.3.4) shows that the dynamics of the error of observation contain the forcing terms

that arise because of the variation in the resistances rotor and stator and of the difference

between the actual supply voltage of the motor and the observer. Such forcing terms prevent

the same error of zero asymptotically. However, in the absence of such terms, the dynamic
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error of observation is expressed by an equation in free mode that converges to zero by

appropriately selecting L(ω)

Assuming as constant the elements of the matrix K0 and the observer (1.3.1) - (1.3.3),

as described in [29], we can use a synthesis method based on the criterion of Popov hyper

stability. Or better, assuming that δm = 0, d1 = 0 e d2 = 0, the dynamic of observation error

(1.3.4) can be described by equations:

ė = L0e + u

u = L1ω
(1.3.5)

which can be interpreted as the interconnection of a linear system and stationary de-

scribed by the first of (1.3.5) and by a non-linear system described by the second equation of

(1.3.5), as shown in fig. (1.1).

Figure 1.1: Interconnection of a linear and nonlinear systems.

Assuming that the non-linear system of the feedback line satisfies Popov’s theb integral

inequality given by:

−
∫ T

0
−eTL1eωdt ≥ −γ2, ∀T > 0 (1.3.6)

The system of fig.(1.1) is asymptotically iperstabile if and only if the transfer function of

the linear and stationary line of direct action is real and strictly positive. As it is known, the

transfer function of the linear system and the stationary line of direct action is real ad strictly

positive if exists a matrix Q symmetric and definite positive, like that:

L0 + LT
0 = −Q (1.3.7)

Note that from (1.3.6) you can design different observers of reduced order.
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a) L1 = 0

From (1.3.3) we have:

K0 = − 1
c1

I, L0 = 0

It follows that there is an observer because the transfer function of the line of direct action

can not be strictly positive real.

b) eTL1e = 0, L1 ̸= 0

As it is easily verified, it can get eTL1e = 0 choosing L1 = γJ, γ ̸= 0. The correspon-

dent matrix K0 is given by:

K0 =
1
c1
(γ− 1)I

from this, it happens that the first member of (1.3.7) becomes:

L0 + LT
0 = −a33γI

The matrix K0 is definite negative for γ ̸= 0. The diagram of fig.(1.1) can be obtained

using the method of Lyapunov choosing eTe as the "Lyapunov function". The eigenvalues

of the dynamics matrix of the observer are given by:

λ1,2 = (−a33 ± jω)γ

and, consequently, the observer in question has the same characteristics of the observer

described in [81]. For l = 1 these observers lead back to the one based on the integration of

the mathematical model of the motor.

b) eTL1e ̸= 0

In this case the (1.3.6) is satisfied if the quadratic form eTL1e is positive definite for ω > 0

and negative definite for ω < 0. According to the criterion of Sylvester it is known that

the above-mentioned quadratic form is defined positive or negative depending on what is

defined positive or negative, the following matrix H:

H =
1
2
(L1 + LT

1 ) (1.3.8)
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Setting Q = 2qI, the matrix K0, obtained starting from (1.3.7) is given by:

K0 =
(q− a33)

a13
I + hJ

corresponding the matrix H = −c1hI. It follows that, in according to the positive definite

matrix H, result for ω > 0 and negative definite for ω < 0 is necessary and just choose h as

follows:

h = rsgn(ω), r > 0 (1.3.9)

The eigenvalues of the dynamic matrix of the observer are given by:

λ1,2 = − (q + c1r |ω|)± j
(

a13rsgn (ω)−
(

q
a33

)
ω

)
which shows that both the real and imaginary part are a function of ω and so it is possible

to obtain a value of the damping coefficient suitable even at high speed.

The dynamic error of observation of the rotor flux (1.3.4) can be written as follows:

ė = L(ω)e + G2d + T2v (1.3.10)

where:

G2 = Gb −K0Ga

T2 = Tb −K0Ta

(1.3.11)

being:

Ga =

[
−I −I

]
, Ga =

[
0 lI

]
, Ta = −I, Tb = 0, v = c1δm

The model (1.3.10), which expresses the dynamic error of observation, can be represented

graphically as shown in fig.(1.2).

An examination of this figure shows that the observer model is considered a feedback

scheme for K0 ̸= 0, subject to interference d e v. The only problem is to determine the matrix

K0 in order to minimize the effects of disturbances d and v on error of the observation. To

do this, consider the following positive-definite function:
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Figure 1.2: Block diagram of the observer.

V(e) =
1
2

eTe (1.3.12)

Taking into consideration the (1.3.10), the derivative related to the time of this function

is:

V̇(e) = Vq + dTGT
2 e + vTTT

2 e (1.3.13)

where Vq is given by:

Vq =
1
2

eT
[
L(ω) + LT(ω)

]
e (1.3.14)

Substituting in (1.3.14) the expression of L(ω) given by (??) is obtained:

Vq = eT(F0 + F1ω)e (1.3.15)

where:

F0 = 1
2

(
L0 + LT

0
)

F1 = 1
2

(
L1 + LT

1

) (1.3.16)

Note now that for d = 0 and v = 0 we have V̇(e) = Vq and therefore the function Vq

must be negative definite. For this to happen it is sufficient that F0 is definite negative and

that F1 is negative definite for ω > 0 and definite positive for ω < 0. Assuming:

F0 = −aI, a > 0 (1.3.17)

and using the expression of L0 shown earlier, we obtain the following expression of the
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matrix K0:

K0 = kiI + kjJ (1.3.18)

where k j is subsequently calculated and:

ki =
a− a33

a13
(1.3.19)

From (1.3.18), from the expression of L1 and from (1.3.16), we obtain the following ex-

pression of F1:

F1 = −c1k jI (1.3.20)

that highlights that the conditions previously set forth in the matrix F1 are satisfied if we

choose k j as follows:

k j = r · sgn(ω), r ≥ 0 (1.3.21)

Now, replacing (1.3.21) in (1.3.20) and taking into consideration the (1.3.17), the (1.3.14)

become:

Vq = − f ∥e∥2 (1.3.22)

where ∥ · ∥ is the Euclidean norm and:

f = a + c1 |ω|

Consequently:

V̇(e) = − f ∥e∥2 + dTGT
2 e + vTTT

2 e

which, taking into account the properties of the operator norm, we obtain:

V̇(e) ≤ − f ∥e∥
[
∥e∥ − 1

f

(
∥d∥ ∥GT

2 e∥
∥e∥ + ∥v∥ ∥TT

2 e∥
∥e∥

)]
≤

− f ∥e∥
[
∥e∥ − 1

f

(
∥d∥x σ

(
GT

2
)
+ ∥v∥x σ(TT

2 )
)] (1.3.23)
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where ∥d∥x and ∥v∥x are the maximum values of norms of d and v respectively, and

σ
(
GT

2
)

and σ
(
TT

2
)

are the maximum singular values of the matrices GT
2 e TT

2 .

The (1.3.23) and the constraints on a and r (cfr. (1.3.17) and (1.3.21)), show that the func-

tion V(e) is a Lyapunov function in the region:

∥e∥ > 1
f

(
∥d∥x σ

(
GT

2

)
+ ∥v∥x σ(TT

2 )
)

(1.3.24)

La (1.3.24) shows that the choice of the candidate Lyapunov function (??) ensures the

convergence of the error of observation to a finite value expressed by (1.3.24).

In order to reduce this lower limit, should determine a and r in order to minimize the

following cost function:

Jc = p1
σ2(GT

2 )

f 2 + p2
σ2(TT

2 )

f 2 (1.3.25)

subject to the constraints:

a ≥ a0 > 0,

r ≥ r0 ≥ 0.
(1.3.26)

Obviously, choosing p1 = 1 and p2 = 0 is only minimize the effects of the disturbance d,

while assuming p1 = 0 and p2 = 1 is only minimize the effects of v.

The solutions of the above mentioned problem of constrained minimum are obtained

using the sufficient conditions of Kuhn-Tucker [84].

Assuming a > a0 > 0 and r > r0 > 0, we obtain the following solution:

a = a33

r = ρ
a13
|ω|

(1.3.27)

where:

ρ =
p1

p2 + 2p1
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1.3.1 Conclusion

The dynamic behavior of the observer Luenberger proved unsatisfactory because the

elements of the matrices G2 e T2 are very high even at low speeds.

Assuming a = a0 e r > r0 > 0, we obtain:

a = a0

r = c1
a0

(
k2

i0 + 2ρki0l + ρl2) |ω| (1.3.28)

where:

ki0 =
a0 − a33

a13

The dynamic behavior expected from the use of such a solution is unsatisfactory for the

reasons outlined in the previous case.

Assuming a > a0 e r = 0, we obtain F1 = 0 and the solution become:

a = a33

r = 0
(1.3.29)

This solution involves K0 = 0 which corresponds to an observer based on the simulation

of the rotor circuit whose benefits have been considered previously.

Finally, assuming a > a0 e r = r0 > 0, we obtain the following solution:

a = a33(1− ρ) a33+c1r0|ω|
a33(1−ρ)+c1r0|ω|

r = r0

(1.3.30)

This solution implies that |ki| increases with ω and assume the values ρ · a33 at high

speed, when k j is independent of ω.

Consequently, the elements of G2 and T2 do not grow at high speeds. This solution seems

to be the best among those obtained.

Remark 1. It is emphasized that although the reduced order observers described in this

section may be desirable due to their lower computational complexity (2 states instead of

4), it is often desirable to adopt a full order strictly proper observer so that high frequency

measurement noise is suitably filtered out in the feedback signal. This is accomplished, for
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example, by designing L̄ according to optimization (??) as illustrated by the simulations of

Figure 2.4.

1.4 Sliding Observer

Various structures of reduced order rotor flux observers were obtained using different

approaches and assuming that the motor parameters assume nominal values. In this context,

there is a trend towards the choice of adjustable observer parameters. This in order to obtain

a satisfactory dynamic behavior and steady state even in the presence of motor parameters

variation.

The use of the observer requires the on-line estimation of the rotor circuit time constant.

In reference to sliding observers exists a method ([27]) based on the minimization of a cost

function, in which both the convergence rate and the sensitivity to rotor and stator resistance

variations of the rotor flux estimation error are considered explicitly. Exist the possibility of

extending these methods to design reduced order observers.

There has as its objective the design of an sliding and reduced order observer for meeting

the following requirements relating the rotor flux observation error:

a) convergence rate;

b) low sensitivity to rotor and stator resistance variations;

c) low sensitivity to errors due to the implementation of the observer on µ-processor-based

systems.

The requirement c) is required in order to take into account the finite processing time

of the µ-processor-based systems, which implies a finite sampling period for the observer

implementation. Regarding the sliding observer, the finite sampling period implies that the

real sliding motion occurs whose amplitude and frequency increase and diminishes, respec-

tively, as the sampling period increases. This causes oscillation in the rotor flux observation

error.

For both the sliding and reduced order observers, the finite sampling period, causes that

the voltages supplying the motor can be very different from those providing the observer in

certain intervals of time, depending on the implementation method employed. This involves

that additional oscillations occur in the rotor flux estimation error.
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To minimize these additional oscillations, the differences between the supply voltages

of the motor and those supplying the observer are modeled as a noise appearing in the

mathematical model of the observer himself.

In order to take into account explicitly the requirement b) the variation of rotor and stator

resistance are modeled as a noise which appears in the mathematical model of the electro-

magnetic circuit of the motor.

All requirements a), b), c) are satisfied, therefore, by minimization of a suitable cost func-

tion to minimize the effects of the two above disturbances on the rotor flux observation error,

in presence of a constraints which takes into account explicitly the requirement a).

The structure of the sliding observer is presumed to have the following form:

ż = A(ω)z + Bm̃−Hu (1.4.1)

where:

H =

∣∣∣∣∣∣∣
Hα

Hβ

∣∣∣∣∣∣∣ z =

∣∣∣∣∣∣∣
z1

z2

∣∣∣∣∣∣∣ z1 = [z11 z12]
′ z2 = [z21 z22]

′ s = [s1 s2]′ = x1 − z1

u = sgn(s) (1.4.2)

The vectors z1 and z2 are, respectively, the estimation of x1 and x2. Bm̃ is the vector

effective voltage supplied to the observer, which, as previously mentioned, is different from

that which feeds the motor.

Establishing that:

m̃ = m + δm; δm = [δmα δmβ]
′ (1.4.3)

v = [v1 v2]
′ = c1δm (1.4.4)

then the equation 1.4.1 becomes:

ż = A(ω)z + Bm−Hu− Tv (1.4.5)
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T =

∣∣∣∣∣∣∣
Tα

Tβ

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
−I

0

∣∣∣∣∣∣∣ (1.4.6)

The vector v is proportional to the difference between the motor supply voltage and

which feeds the observer, and can be regarded as a disturbance agent on the observer.

The observer error dynamics e is represented by the equation:

ė = A(ω)e + Hu + Gd + Tv (1.4.7)

e = x− z =

[
e1
′ e2

′
]

; e1 = x1 − z1 =

[
e11 e12

]′
; e2 = x2 − z2 =

[
e21 e22

]′

Now, suppose there exists an ideal sliding motion on the domain of sliding hyperplanes

s = 0. For example, a motion in which the estimation error of the stator current e1 is forced

to be null. This also implies that ṡ = ė = 0 during the sliding motion.

To design the observer dynamic error e in the domain of which just above, is used a

equivalent method of control ([83],[68]).

Then, from the equation:

ṡ = ė = C
[
A(ω)e + Hueq + Gd + Tv

]
= 0 (1.4.8)

of course:

C =

[
I 0

]
we obtain the following expression of the equivalent control:

ueq = −H−1
α C [A(ω)e + Gd + Tv] (1.4.9)

and substituting the (1.4.9) in (1.4.7), we obtain:

ė = P [A(ω)e + Gd + Tv] (1.4.10)

P is given by:
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P = I4 −HH−1
α C; I4 = diag(1, 1, 1, 1)

P is the desired projection matrix.

From equation (1.4.10), it follows that, during sliding motion, the dynamic of observation

error is divided into two independent parts.

The first one describes the estimation error of the stator current, according to the equa-

tion ė = 0. The second part describes the estimation error of the rotor flux, according to the

equation:

ė2 = A2(ω)e2 + G1d + T1v (1.4.11)

A2(ω) = A22 −HβH−1
α A12 (1.4.12)

G1 = Gβ −HβH−1
α Gα

T1 = Tβ −HβH−1
α Tα

(1.4.13)

1.4.1 Sliding Conclusion

The sliding motion exist if s = 0. This condition depend only on the Hα. And for ease

can choose this matrix with the following structure:

Hα = h1I + h2J (1.4.14)

This matrix is not singular for each h2 and h1 strictly positive (as required).

This condition will be determined using the method of control hierarchy ([83],[68]).

Using this method, so that an sliding motion occurs on the surface s1 = 0, for the equa-

tion (1.4.7), is sufficient that:

lim
s1→0+

ṡ1 < 0; lim
s1→0−

ṡ1 > 0 (1.4.15)

The previous conditions imply:

h1 ≤ hα − |h2| (1.4.16)
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hα = a11 |e11|x − a13 |e21|x |d1|x − |d3|x − |v1|x − c2 |e22|x |ω|

in this condition applies the convention that |·|x denotes the max value of |·|.

The equation (1.4.16) is satisfied for h1 and |h2| belonging to the region on the left side of

the straight line obtained assuming the equal sign in (1.4.16).

Finally, in order that a sliding motion exists on the surface s2 = 0 for the system (1.4.7)

projected on the surface s1 = 0, is sufficient that:

lim
s2→0+

ṡ2 < 0; lim
s2→0−

ṡ2 > 0 (1.4.17)

from which it has:

h2
1 + h2

2 ≥ −hch1 + hb |h2| (1.4.18)

hb = a11 |e11|x + a13 |e21|x + |d1|x + |d3|x + |v1|x + c2 |e22|x |ω|

hc = a13 |e22|x − a11 |e12|x + |d2|x + |d4|x + |v2|x + c2 |e21|x |ω|

admitting that:

|e11|x = |e12|x ; |e21|x = |e22|x ; |d1|x = |d2|x ; |d3|x = |d4|x ; |v1|x = |v2|x

is achieved

hc = −ha

the corresponding sliding domain is in outside of the circumference obtained by assum-

ing the equal sign in (1.4.18).

This implies that the region in which the sliding motion happens for s = 0 is dependent

on ω.

However, the the boundary shape of this region is independent on ω. Moreover if ω

increases it moves on the left in the plane h1 − |h2|.

Choosing h1 and h2 in the sliding dominion and having K0, the matrix Hb can be calcu-
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Figure 1.3: Sliding dominion

lated by the equation:

K0 = HbH−1
a (1.4.19)

1.5 Nonlinear flux observer

If a magnetic circuit is assumed to be linear, the arguments for the design of the Luen-

berger and Sliding observer represent a powerful instrument for create a observer of the

rotor state that ensures excellent performances. However, if we consider the effects of satu-

ration, then we will have to deal with a nonlinear model. Thus, the results derived above

should be modified. In this context, we must consider the model:


ẋ = A(|imr|)x + f (x) + g(x)u

y = Cx
(1.5.1)

where x, u and y are the state, the input and the output vector respectively defined as:

x =

[
is,α is,β imr,α imr,β

]T

, u =

[
us,α us,β ωr

]T

, y =

[
is,α is,β,

]T

(1.5.2)
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and A(|imr|), f (x), g(x) and C are defined as:

A(|imr|) =



−c1 0 c3 0

0 −c1 0 c3

a∗22 0 −a∗22 0

0 a∗22 0 −a∗22


, g(x) =



f1 0 a21Tr f1imr,β

0 f1 −a21Tr f1imr,α

0 0 −imr,β

0 0 imr,α


, C =

1 0 0 0

0 1 0 0

 ,

f (x) =



c2
i2
mr,α+i2

mr,β

(
2i2

s,βimr,α − i2
s,αimr,α − 3is,αis,βimr,β

)
+ c3−a21 f1

i2
mr,α+i2

mr,β

(
is,αi2

mr,β − is,βimr,αimr,β

)
c2

i2
mr,α+i2

mr,β

(
2i2

s,αimr,β − i2
s,βimr,β − 3is,αis,βimr,α

)
+ c3−a21 f1

i2
mr,α+i2

mr,β

(
is,βi2

mr,α − is,αimr,αimr,β
)

c2
i2
mr,α+i2

mr,β

(
is,αi2

mr,β − is,βimr,α

)
c2

i2
mr,α+i2

mr,β

(
is,βi2

mr,α − is,αimr,β
)


It’s a linear time-varying part given by matrix A, and two nonlinear terms given by

vector fields Gu3 and B. If Gu3, then the result given in theorem 1 can be used. Indeed it can

be shown that Theorem 1 continue to be valid if the coefficients in A are positive. Effectively,

this happens. The time-variant coefficients contained in matrix A are positive for any value

of |imr|. Moreover, for Theorem 1, the g(x) terms does not induce any changes with regard

to the convergence of the observer. This considerations are very important for the following

result.

A design mode of an observer is to imitate the methods used in a linear system. That

means that you are designing a model of the original system (1.5.1) and will force with the

residual part.

e = y− ŷ = y− Cx̂, (1.5.3)

in the above equation have been used the convention that the symbol ˆ indicates the

estimated variables. The equation of the observer becomes:

˙̂x = A(|îmr|)x̂ + f (x̂) + g(x̂)u + ke. (1.5.4)

where k is a appropriately chosen gain.

Theorem 2. Exists β > 0, such that the gain k = K =

[
(βa∗22 − c1) a∗22

]T

⊗ I2 ensures the

convergence of the nonlinear observer (1.5.4).
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1.6 Extended Kalman Filter

In this section is presented another approaches to design a rotor flux observers using the

EKF (Extended Kalman Filter).

The the estimation error of the extended Kalman filter is mean square limited. For the

development of the Extended Kalman Filter is used that illustrated in ([72]) whit the conver-

gence conditions derived in ([77]).

Moreover, there is also an upper bound of the estimation error of the discrete time filter

than that of the state of the model in continuous time calculated at the instants of sampling.

An interesting behavior, evidenced in many works, is the loss of the property of observability

of the state at low speed.

The Kalman Filter guarantees the optimal estimate for system models that are corrupted

by uncorrelate additive white noise, both in the transient and the measurement systems. We

will consider the stochastic discrete-time model, arising from (??) where the state and the

output vectors are corrupted by the stochastic processes ζk and ξk:

1.6.1 Discrete-time mathematical model

A discrete time model corresponding to (0.6.4) can be obtained by using a first order

Euler discretization. By choosing the stator current components as the system output, the

discrete time model is given by:

xk+1 = Ad xk + fd(xk) + Bd us,k ,

yk = Cdxk ,
(1.6.1)

where matrices Ad, Bd, Cd and vector field fd(xk) are:

Ad = (I6 + Ts Ac) , fd(xk) = Ts fc(xk) ,

Bd = Ts Bc , Cd = (I2, 02×3).
(1.6.2)

Ts is the sampling time.

xk+1 = A xk + f(xk) + B us,k + ζk ,

yk = Cxk + ξk ,
(1.6.3)
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where ζk and ξk are the process and observation noises which are both assumed to be zero

mean multivariate Gaussian noises with covariance Qk and Rk respectively, which are as-

sumed to be uncorrelated to each other and to other variables.

1.6.2 Structure of the filter

The Extended Kalman Filter designed for estimate the state xk of the discrete time system

(1.6.3), will be:

x̂k+1 = A x̂k + f(̂k) + B us,k + Kk (yk − C x̂k) , (1.6.4)

Kk is a gain matrix that must be appropriately updated in accordance with the following

procedure.

The dynamics of the estimation error, ek = xk − x̂k, are determined by:

ek+1 = A ek + f(xk)− f(x̂k)−Kk C ek + ζk −Kk ξk ,

using the equation:

f(xk)− f(x̂k) = J(x̂k) (xk − x̂k) + h(xk, x̂k) , (1.6.5)

then it follows that:

ek+1 = (Ak −KkC) ek + H(ek) ek + ζk −Kk ξk (1.6.6)

In this, Ak is determined at the state x̂k calculated by the Extended Kalman Filter. As

usual, the covariance matrix of the error ek+1 can be obtained by omitting the nonlinear

term H(ek) ek in(1.6.6), and it is thus given by:

Pk+1 = (Ak −KkC) Pk (Ak −KkC)T + Qk+

+ KkCPk(Ak −KkC)T ,
(1.6.7)

Qk is a positive definite matrix.

i.e. Qk ≥ q I, with q > 0, for all time instants k, s.t.:

E(ζk ζT
k′) = Qk δ(k− k′)

-35-



§1.7 − Extended complex Kalman filter 1 − Rotor Flux Observers for Induction Motors

Minimizing Pk+1 with respect to Kk, the following expression for Kk is obtained:

Kk = AkPkCT(CPkCT + Rk)
−1, (1.6.8)

Rk is a positive definite matrix.

i.e. Rk ≥ r I, with r > 0, for all time instants k, s.t.:

E(ξk ξT
k′) = Rk δ(k− k′)

Can be, therefore, take into account the following proposition:

Proposition 2. The matrix As,k = Ak −KkC is bounded.

i.e.:

||As,k|| ≤ S ,

for all time instants k, where S is a positive real number.

1.7 Extended complex Kalman filter

In (1.6) was presented the Extended Kalman Filter, applied to a discrete time system, for

estimating the state of an induction motor using the full order model.

In this section will be designed an Extended Complex Kalman Filter (ECKF) for esti-

mating the state for a control system of an induction motor. Will be done exploiting the

symmetries of the model and the complex version of the model (0.7.5)–(0.7.7).

For this reason a complex model (0.7.5)–(0.7.7) is taken.

This formulation allows a simpler observability analysis of the system and a more effec-

tive state estimation.

It is also shown that the complex implementation allows a reduction of the computation

time with respect to the standard with real values. That is due at the lower dimensions of

the matrices of the Extended Complex Kalman Filter respect the real-valued implementation.

For the version complex of the extended Kalman filter no matrix inversion is required.
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1.7.1 Filter derivation

To obtain an estimate of the discrete complex–valued state x of the nonlinear model

(0.7.10), an extended complex Kalman filter has to be considered [70]. The filter has the same

structure as a standard real EKF, except for the fact that the covariance matrix of the estima-

tion error is Hermitian. in particular Pk = PH
k , and the dynamical matrix of the underlying

linearized model has complex-valued entries.

At first, a stochastic discrete-time model of the Induction Motor is obtained from (0.7.10),

where the state and the output vectors are corrupted by the stochastic processes wk and vk:

 xk+1 = gk(xk, uk) + wk ,

yk = hk + vk ,
(1.7.1)

where xk = (x1,k, x2,k, x3,k)
T, wk and vk are white Gaussian noise processes with covari-

ance matrices given by Qk and Rk, respectively, and

hk = x1,k ,

gk =


ã11 x1,k + f̃1(a22 − j x3,k) x2,k + f̃1 uk

ã21 x1,k + (1− Ts a22 + j Ts x3,k) x2,k

x3,k

 .

The processes wk and vk are assumed to be uncorrelated with each other and to the

system state variables.

The Extended Complex Kalman Filter is described by the recursive algorithm involving

time and measurement update phases.

x̂k+1|k = gk(x̂k|k, uk) , (1.7.2)

During the k-th time update phase, estimates of the system state and of the error covari-

ance matrix are computed as follows:

Pk+1|k = Fk Pk|k FH
k + Qk , (1.7.3)

where Fk is the dynamic matrix of the linearized model and is obtained by:
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Fk =
∂gk(xk)

∂x

∣∣∣∣∣∣∣
x=x̂k|k

=


ã11 f̃1(a22 − j x3,k|k) −j f̃1 x2,k|k

ã21 1− a22 Ts + j Ts x3,k|k j Ts x2,k|k

0 0 1

 .

During the k-th measurement update phase, a-posteriori estimates are computed as fol-

lows:

x̂k|k = x̂k|k−1 + Lk
(
yk −Hk x̂k|k−1

)
, (1.7.4)

Pk|k = Pk|k−1 − Lk Hk Pk|k−1 , (1.7.5)

where

Lk = Pk|k−1 HT
k

(
Hk Pk|k−1 HT

k + Rk

)−1
, (1.7.6)

and Hk is the output matrix of the linearized model and is given by:

Hk =
∂h(xk)

∂x

∣∣∣∣∣∣∣
x=x̂k|k

=

[
1 0 0

]
.

The filter is initialized, at the instant k = 0, with x̂0|0 = 0 and P0|0 = P0, where P0 ∈3×3

represents the initial estimate error covariance.

Remark 2. It is worth nothing that the following facts are the rational reasons for the pro-

cessing time reduction:

1. The reduction of the order of the filter lead to a reduction of the number of opera-

tions as is shown in [37, Table 7.2], where the formulas presented demonstrate that the

number of operations increase with the order of all the matrices involved.

2. No matrix inversion is required in the proposed Extended Complex Kalman Filter.

Indeed in (1.7.6) the term (HkPk|k−1HT
k + Rk) is a scalar (it is a matrix in the 5th order

Extended Kalman Filter). Moreover this scalar is also real because H and R contain

real elements and it is easy see that P matrix contains only real elements. The operation

of matrix inversion that is necessary in the classic 5th order Extended Kalman Filter is

therefore translated in the inverse of a real number in the proposed Extended Complex

Kalman Filter.
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3. In the standard real-valued implementation the complexity of the model can be re-

duced taking into consideration that many elements of matrix H are zeros and manip-

ulating the relations of the filter [43]. This fact is automatically included in the present

complex formulation.

4. Matrices Q, R, Pk|k, Pk|k−1, Lk also have real elements in the complex form of the Ex-

tended Kalman Filter, while their order is 3 instead of 5, as in the standard real-valued

implementation.

The problem of reducing the time of complexity of the estimation process has been treated

by some authors, [44, 43]. In [43] a more efficient filtering process is proposed, which exploits

the structural form of the Induction Motor model. In [44] an improvement of 25% is obtained

by deriving a two-stage Extended Kalman Filter that is based on the procedure described in

[51, 50] and uses suitable transformation matrices.

1.8 Robust Adaptive Kalman Filter

The Robust Adaptive Kalman Filter (RAKF) incorporates measurement and process noise

covariance adaptation procedures (R and Q adaptation respectively) and utilizes adaptive

factors in order to adjust itself against sensor/actuator faults. Thus the filter stands robust

against the faults and even in case of sensor/actuator failure keeps providing accurate esti-

mation results. In a single algorithm, the RAKF detects the fault, isolates it and applies the

required adaptation process such that the estimation characteristic is not deteriorated. The

performance of the proposed RAKF is investigated by simulations for the state estimation

procedure of Induction Motor Control.

To remedy the inaccuracies of the model the descriptor form will be used [24, 5], because

the terms of the physical parameters of the motor are expressed simply. For this reason we

can take into account the uncertainties of the parameter of the motor. The model (0.6.4), ex-

pressed in terms of the "real" rotor flux, can be manipulated and expressed in the following

descriptor form:
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σLs
is,α

dt
+

Lr

Lm

dψr,α

dt
= −Rsis,α + us,α, (1.8.1)

σLs
is,β

dt
+

Lr

Lm

dψr,β

dt
= −Rsis,β + us,β, (1.8.2)

dψr,α

dt
=

Lm

Tr
is,α −

1
Tr

ψr,α −ωψr,β, (1.8.3)

dψr,β

dt
=

Lm

Tr
is,β −

1
Tr

ψr,β + ωψr,α, (1.8.4)

Jm
dωr

dt
= −brωr + kt

(
ψr,αis,β − ψr,βis,α

)
− tl , (1.8.5)

z =
[
is,α is,β

]T . (1.8.6)

where kt = 2pLm/(3Lr), and z(t) is the output vector.

The coefficients appearing in the model (1.8.1)–(1.8.6), have simple expressions in terms

of the physical parameters of the motor.

For example, looking at model (1.8.1)–(1.8.6), a variation in σLs produces variations in

the first two terms of (1.8.1) and (1.8.2). Considering the usual model of the motor, the same

variation in parameter σLs produces variations in all of the coefficients of the differential

equations expressing the dynamics of the stator currents and in two terms of the equations

expressing the dynamics of the rotor flux components. Moreover all the coefficients are func-

tions of one or two electrical parameters, and for this reason the uncertainties of the model

can easily be taken into consideration. This introduces robustness into the descriptor form

compared to the conventional one.

1.8.1 Description of the model uncertainties

The model (1.8.1)–(1.8.6) is nonlinear, multi variable and affected by parametric uncer-

tainties.

Moreover, the load torque tl is unknown. For estimating speed, two approaches can be

employed.

The first approach is based on the assumption that speed varies slowly in relation to the

electromagnetic variables; this suggests that ω̇ = 0 should substitute equation (1.8.5), thus

obtaining the fifth-order model.

The second approach leads to a sixth-order model in which the load torque is assumed
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as a slow variable and, consequently, the five-order state of the system (1.8.1)–(1.8.6) is aug-

mented by the variable tl whose dynamics are expressed by ṫl = 0.

The resulting model is nonlinear and requires an Extended Kalman Filter.

These two approaches are the ones followed in Sections 1.5 and 1.6 for designing the

EKF (ṫl = 0) and the ECKF (ω̇ = 0).

In this context we use an alternative approach for estimating the speed. This approach is

based on the assumption that speed is a parameter in equations (1.8.3)–(1.8.4) of the model.

For this reason we consider only the model consisting of the linear equations (1.8.1)–

(1.8.4) and (1.8.6) for designing the Robust Adaptive Kalman Filter.

The mathematical model (1.8.1)–(1.8.4) and (1.8.6) in the compact matricial form and

including stochastic uncertainties, can be written in the following descriptor form:

Ẽẋ(t) = F̃(t)x(t) + B̃u(t) + Q̃w(t), (1.8.7)

z(t) = Hx(t) + Rv(t) (1.8.8)

where x(t) and u(t) are the state and input vectors, which are the same as with the other

conventional models used up to now; w(t) and v(t) are the system and measurement noises

assumed zero-mean white noises uncorrelated with each other and with the other variables,

having covariance matrices equal to I4 and I2, respectively, Q̃ and R are diagonal square

matrices of suitable dimensions, and the matrices Ẽ, B̃, F̃(t) and H are given by:

Ẽ =



σLs 0 Lr
Lm

0

0 σLs 0 Lr
Lm

0 0 1 0

0 0 0 1


, B̃ =



1 0

0 1

0 0

0 0


,

F̃(t) =



−Rs 0 0 0

0 −Rs 0 0

Lm
Tr

0 − 1
Tr
−ω(t)

0 Lm
Tr

ω(t) − 1
Tr


, H =

1 0 0 0

0 1 0 0

 .

Remark 3. The coefficients appearing in the model (1.8.1)–(1.8.4), and consequently in (1.8.7)–

(1.8.8), have simple expressions in terms of the physical parameters of the motor. referring to
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the model (1.8.1)–(1.8.4), a variation in σLs produces variations in the first two terms of (1.8.1)

and (1.8.2). Whereas when considering the usual model of the motor, the same variation in

parameter σLs produces variations in all of the the coefficients of the differential equations

expressing the dynamics of the stator currents and in two terms of the equations expressing

the dynamics of the rotor flux components. Although this introduces more robustness into

the descriptor form of Kalman Filter compared to the conventional one. A robust descriptor

of the Kalman Filter is designed for estimating the stator currents and the rotor flux.

Remark 4. The matrices B̃ and H are not affected by uncertainties.

Remark 5. Matrix F̃(t) is time-varying because it depends on the speed ω(t). Matrix Ẽ is

always non singular.

The following discrete-time stochastic model is obtained by using the Euler method,

from the model (1.8.7)–(1.8.8):

Exk+1 = Fkxk + Buk + Qwk, (1.8.9)

zk = Hxk + Rvk. (1.8.10)

where k := kTs (k ∈ Z) is the current discrete time. Ts is the sampling time, and E = Ẽ,

Fk = Ẽ + Ts F̃k, F̃k = F̃(kTs), B = TsB̃, Q = TsQ̃.

The values of the electromagnetic parameters are different from the respective nominal

values. Denoting the corresponding variations of matrices E and Fk with δEk and δFk, the

equation (1.8.9) becomes:

(E + δEk) xk+1 = (Fk + δFk) xk + Buk + Qwk. (1.8.11)

The equation (1.8.10) remains unchanged because H and R are constant. The matrices δEk

and δFk are given by:

δEk =



δ(σLs) 0 δ( Lr
Lm
) 0

0 δ(σLs) 0 δ( Lr
Lm
)

0 0 0 0

0 0 0 0


,
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δFk = δEk + TsδF̃k,

where:

δF̃k =



δ(Rs) 0 0 0

0 δ(Rs) 0 0

δ( Lm
Tr
) 0 δ( 1

Tr
) 0

0 δ( Lm
Tr
) 0 δ( 1

Tr
)


.

Usually, uncertainties for descriptor type models are represented in the following standard

form: −δFk δEk+1

0 δHk

 =

M f ,k 0

0 Mh,k

 ∆k

−N f ,k Ne,k+1

0 Nh,k

 , (1.8.12)

where ∆k is a bounded arbitrary contraction with ||∆k||∞ ≤ 1, and M f ,k, Mh,k, N f ,k, Ne,k+1

and Nh,k are known matrices. In our case, since δHk = 0 ∀k ∈ Z, we have:

M f ,k = I4, Mh,k = I2, N f ,k = max
k
||δFk||,

Ne,k+1 = max
k
||δEk||, Nh,k = 0.

The dynamic model of the magnetizing current in a rotating reference frame (rotating at

speed ω0) can be derived from [80, Equations 6.1-17]:

dimr,d

dt
=

1
T∗r

is,d −
1

T∗r
imr,d +

Tr

T∗r
(ω0 −ω)imr,q, (1.8.13)

dimr,q

dt
=

1
T∗r

is,q −
1

T∗r
imr,q −

Tr

T∗r
(ω0 −ω)imr,d, (1.8.14)

where the modified rotor time constant T∗r is:

T∗r = Tr
L

Lm
, (1.8.15)

while L is called dynamic magnetizing inductance and is equal to:

L = Lm + |imr|
dLm

d|imr|
. (1.8.16)

If the parameters a11, a12, a21 and a22 in (0.7.2) are rewritten replacing the rotor time constant
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Tr with the modified rotor time constant T∗r as follows:

a∗11 =
Rs

σLs
+

1− σ

σT∗r
, a∗12 =

1
σLsT∗r

, a∗21 = Ls
1− σ

T∗r
, a∗22 =

1
T∗r

, (1.8.17)

then equations [80, Equations 6.1-11, 6.1-12] can be manipulated as follows, in order to ob-

tain the two scalar equations of the two stator current components in the state-space form.

In particular the two stator current equations can be written in a generic rotating reference

frame (rotating at speed ω0) as:

dis,d

dt
=− c1is,d + (ω0 + c2Tr(ω0 −ω)) is,q + c3imr,d − ((c3Tr − a∗21 f1T∗r )ω0 − c3Trω) imr,q

− c2
i2
s,d

imr,d
+ f1us,d, (1.8.18)

dis,q

dt
=− c1is,q − (ω0 + c2Tr(ω0 −ω)) is,d + c3imr,q + ((c3Tr − a∗21 f1T∗r )ω0 − c3Trω) imr,d

− c2
i2
s,q

imr,d
+ f1us,q, (1.8.19)

with:

c1 =a∗11 + a∗12(∆L− 2∆L∗), (1.8.20)

c2 =a∗12∆L∗, (1.8.21)

c3 =a∗21 f1 + a∗12(∆L− ∆L∗), (1.8.22)

where ∆L = L− Lm and ∆L∗ = L2
σr

L2
r

∆L.

To avoid the formulation of problems that are too complex, it is convenient to analyze

the parameter variations due to the increase in temperature and magnetic saturation. The

changement of the temperature produces variation in rotor and stator resistances. How-

ever, rotor resistance also varies with the slip and consequently with load. For consider the

magnetic saturation effects with accuracy, must be constructed more complex mathematical

models (1.8.13)-(1.8.14) and (1.8.18)-(1.8.19). But these models generally lead to complex con-

trollers. In usual cases, the saturation is considered assuming that it leads to a reduction of

the mutual inductance Lm. Consequently, the saturation affects the values of the rotor and

stator inductances given by:

Lr = Lσr + Lm, (1.8.23)
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Ls = Lσs + Lm. (1.8.24)

where Lσr = σrLm and Lσs = σsLm are the rotor and stator leakage inductances, respectively,

assumed to be constant because we are interested in the saturation of the flux main path. The

values of the leakage inductances are small in relation to Lm, then we have δ(σLs) ≪ σLs,

δ
(

Lm
Lr

)
≪ Lm

Lr
and δ

(
Lm
Tr

)
∼= Lm

Lr
δ(Rr).

It follows that:

E + δEk
∼= E, Fk + δFk

∼= E + Ts(F̃k + δF̃k).

In order to set magnetic parameter variations, after the computation of Lσr and Lσs from

the nominal values of the parameters, for a given percentage variation of Lm, the values of

Lr and Ls are obtained using (1.8.23) and (1.8.24).

1.8.2 Problem formulation

For estimate the rotor flux components and the speed of an induction motor-load system,

need to solving two linear least-squares subproblems. More precisely, assuming knowledge

of the speed, denoted by ω̂k, at instant k, the first subproblem is that of estimating the state

of the model (1.8.9)–(1.8.10) by means of a descriptor Kalman filter, by solving the following

minimization problem:

min
x0

[
||x0||2P−1

0
+ ||z0 − Hx0||2R−1

]
for k = 0 (1.8.25)

min
xk ,xk+1

[
||xk − x̂k|k||2P−1

k|k
+ ||Exk+1 − (Fkxk + Buk) ||2Q−1

+ ||zk+1 − Hxk||2R−1

]
for k > 0 (1.8.26)

For the second subproblem, using the Eulero method, the last two equations of (1.8.9),

expressing the dynamics of the rotor flux components, can be rewritten in the matrix form:

−Tsψr,β(k)

Tsψr,α(k)

 ωk =

ψr,α(k + 1)− w1ψr,α(k)− w2is,α(k)

ψr,β(k + 1)− w1ψr,β(k)− w2is,β(k)

 , (1.8.27)

where w1 = 1− 1
Tr

Ts and w2 = Lm
Tr

Ts, and the values of the rotor flux components are given

from the solution of the first subproblem (see next Section). From (1.8.27), the formulation
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of the second subproblem is as follows:

min
ω̂k
∥Φ̂kω̂k − ŷk∥2 for k ≥ 0, (1.8.28)

where:

Φ̂k =

−Tsψ̂r,β(k)

Tsψ̂r,α(k)

 ,

ŷk =

ψ̂r,α(k + 1)− w1ψ̂r,α(k)− w2is,α(k)

ψ̂r,β(k + 1)− w1ψ̂r,β(k)− w2is,β(k)

 .

Since the objective is to take into consideration the model uncertainties (cf. model (1.8.11)),

we need to modify the formulation (1.8.25)–(1.8.26) into the following robust version:

min
x0

[
||x0||2P−1

0
+ ||z0 − Hx0||2R−1

]
for k = 0, (1.8.29)

min
xk,xk+1

max
δFk ,δEk

[
||xk − x̂k|k||2P−1

k|k
+ ||(E + δEk)xk+1−

(
(Fk + δFk)xk + Buk

)
||2Q−1 + ||zk+1 −Hxk||2R−1

]
for k > 0. (1.8.30)

Equation (1.8.28) can be solved using least-squares methods (cfr. the following section).

1.8.3 Descriptor Kalman filter

Let us suppose ωk is known and in (1.8.9)-(1.8.10) the matrix
[
ET HT]T is full column

rank, the recursive filtered estimate x̂k|k of the state xk, solution of the problem (1.8.25)–

(1.8.26), is given by the following algorithm [55].

At the instant k = 0 the algorithm is initialized with

P0|0 =
[
P−1

0 + HTR−1H
]−1

, x̂0|0 = P0|0 + HTR−1z0.

Then, at step k, update
{

x̂k|k, Pk|k
}

to
{

x̂k+1|k+1, Pk+1|k+1
}

as follows:

Pk+1|k+1 =

[
ET

(
Q + FkPk|kFT

k

)−1
E + HTR−1H

]−1

, (1.8.31)
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x̂k+1|k+1 = Pk+1|k+1

[
ET

(
Q + FkPk|kFT

k

)−1 (
Fk x̂k|k + Buk

)
+ HTR−1zk+1

]
. (1.8.32)

The algorithm (1.8.31)–(1.8.32) can be obtained as a solution of the following regularized

least-squares problem:

min
x

=
[

xTQx + (Ax− b)TW(Ax− b)
]

, (1.8.33)

where xTQx is a regularization term, and Q = QT > 0 and W = WT ≥ 0 are weight

matrices; x ∈ Rn is the unknown vector, A ∈ Rn×n is the data matrix and b ∈ Rn×1 is the

observation vector. The solution of (1.8.33), is:

x̂ =
[
Q + ATWA

]−1
ATWb. (1.8.34)

The problem (1.8.26) can be rewritten in the regularized least-squares form (1.8.33) with

the following identifications:

A←

−Fk E

0 H

 , b←

Fk x̂k|k + Buk

zk+1

 ,

W←

−Q−1 0

0 R−1

 , Q←

−P−1
k|k 0

0 0

 , (1.8.35)

x ←

−xk − x̂k|k

xk+1

 .

Consequently, (1.8.34) with the identification (1.8.35) leads to the time and measurement-

update of the Kalman filter (1.8.31)-(1.8.32).

1.8.4 Robust Descriptor Kalman filter

Consider the following robust version of the optimization problem (1.8.33):

min
x

max
δA,δb

=
[
∥x∥2

Q + ∥(A + δA)x− (b + δb)∥2
W
]

, (1.8.36)
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where {δA, δb} are uncertainties modeled by:

[
δA δb

]
= M∆

[
δNa δNb

]
, (1.8.37)

where ||∆||∞ ≤ 1. The solution of (1.8.36) is given by:

x̂ =
[
Q̂ + ATŴA

]−1 [
ATŴb + λ̂NT

a NT
b

]
, (1.8.38)

where {Q̂, Ŵ} are defined as follows:

Q̂ = Q− λ̂−1NT
a Na, (1.8.39)

Ŵ = W + WM
(

λ̂I−MTWM
)

MTW, (1.8.40)

λ̂ is a non negative scalar parameter obtained by solving the following optimization problem

[55]:

λ̂ = arg min
λ≥∥MTWM∥

G(λ), (1.8.41)

where:

G(λ) = ∥x(λ)∥Q2 − λ∥Nax(λ)−Nb∥2 + ∥Ax(λ)− b∥2
W(λ),

x(λ) :=
[
Q(λ) + ATW(λ)A

]−1 [
ATW(λ)b + λNT

a Nb

]
,

Q(λ) := Q− λ−1NT
a Na,

W(λ) := W + WM
(

λI−MTWM
)

MTW,

Now, the min-max problem (1.8.30) can be rewritten as problem (1.8.36) by means of the

following identifications:

A←

−Fk E

0 H

 , b←

Fk x̂k|k + Buk

zk+1

 ,

W←

−Q−1 0

0 R−1

 , Q←

−P−1
k|k 0

0 0

 ,
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δA←

−δFk δE

0 0

 , δb←

δFk x̂k|k

0

 , (1.8.42)

Na ←

−N f ,k Ne

0 0

 , Nb ←

N f ,k x̂k|k

0

 ,

M←

−M f 0

0 N f

 , x←

−xk − x̂k|k

xk+1

 .

and the initial conditions are:

A← H, b← z0, δA← 0, δb← 0, Q← P−1
0 ,

M← Mh, Na ← 0, Nb ← 0.

From (1.8.38) and the identifications (1.8.42), the filtered robust optimum estimate x̂k|k is

obtained from the following recursive algorithm:

At instant k = 0 the algorithm is initialized with:

P0|0 =
[
P−1

0 + HTR̂−1H
]−1

,

x̂0|0 = P0|0 + HTR̂−1z0,

R̂ = R− λ̂−1
−1I2,

where λ̂−1 is obtained by minimizing the function G(λ) (cf. (1.8.41)) with the identification

(1.8.42) over the interval λ̂−1 > λl = ∥R−1∥.

Then, at step k, update
{

x̂k|k, Pk|k
}

to
{

x̂k+1|k+1, Pk+1|k+1
}

as follows:

Pk+1|k+1 =

[
ÊT

k+1

(
Q̂k + F̂kPk|kF̂T

k

)−1
Êk+1 + ĤTR̂−1

k+1Ĥ
]−1

, (1.8.43)

x̂k+1|k+1 = Pk+1|k+1

[
ÊT

k+1

(
Q̂k + F̂kPk|kF̂T

k

)−1 (
F̂k x̂k|k + B̂uk

)
+ ĤTR̂−1

k+1zk+1

]
, (1.8.44)

where:

Q̂k = Q− λ̂−1
k I4, Q̂k =

Q̂k 0

0 I4

 , Êk+1 =

 E√
λ̂−1

k Ne

 ,
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F̂k =

 Fk√
λ̂−1

k N f ,k

 , Ĥ =

 H

02×4

 , B̂ =

 B

04×2

 ,

R̂k+1 = R− λ̂−1
k I2, R̂k+1 =

R̂k+1 0

0 I2

 . (1.8.45)

and λ̂k is obtained by minimizing the function G(λ) (cf. (1.8.41)) with the identification

(1.8.42) over the interval λ̂k > λl =
∥∥diag{Q−1, R−1}

∥∥.

Computation of λ̂k can be carried out by means of the above described optimization

procedure. However, in [75] the choice of λ̂k as follows is proposed:

λ̂k = λ̂ =


(1 + 0, 5)λl , for λl ̸= 0

0, for λl = 0
(1.8.46)

which allows the off-line computation of several of the above matrices, increasing the effi-

ciency of the algorithm in terms of time consumption.

Remark 6. From (1.8.43) and (1.8.44), it is easy to verify that for descriptor systems without

uncertainties ( M f ,k = 0, Mh,k = 0, N f ,k = 0, Ne,k+1 = 0, Nh,k = 0) this algorithm collapses

to DKF (1.8.31)–(1.8.32).

Remark 7. The main difference between the robust filter and the standard one is that in

the robust algorithm, the new recursion operates on system and noise covariance matrices,

modified in relation to the given nominal values. More precisely, the algorithm updates

these matrices to the values necessary for obtaining robust estimation.

1.8.5 Speed estimation

The problem (1.8.28) could be solved by means of the OLS (ordinary least-squares) method

as follows:

P−1
ω,k+1 = τP−1

ω,k + Φ̂T
k Φ̂k, (1.8.47)

ω̂k+1 = ω̂k + Pω,k+1Φ̂T
k
(
Φ̂kω̂k − ŷk

)
, (1.8.48)

where τ < 1 is the forgetting factor, and the algorithm is initialized with Pω,0 = P0 for some

P0 > 0 and ω̂0 = 0.
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Remark 8. The forgetting factor τ is introduced in (1.8.47), in order to avoid that for τ = 1,

P−1
ω,k increases linearly, which implies that Pω,k converges to zero for k → ∞; this in turn

implies that, during speed transients, the estimated speed tracks the actual one very slowly.

As is well known, the OLS algorithm assumes that Φ̂k is not affected by errors, and

errors are confined to ŷk. However, this hypothesis does not correspond to our case, because

estimation and modelling errors also cause errors in Φ̂k. Therefore, in this application the

use of TLS (Total Least-Squares) is better because it also takes into account errors in the data

matrix. In fact, estimated rotor flux present in Φ̂k is affected both by modeling errors and

noise, in a similar way to the observation vector. Consequently, instead of (1.8.28), a TLS

problem is solved by minimizing the following modified cost function:

min
ω̂k

∥Φ̂kω̂k − ŷk∥2

1 + ω̂2
k

. (1.8.49)

The adaptation law that minimizes (1.8.49) is [18]:

ω̂k+1 = ω̂k − αkΓT
k Φ̂k + αkΦ̂T

k Φ̂kω̂k, (1.8.50)

where αk is a positive constant and Γk is given by:

Γk =
∆k

1 + ω̂2
k

, ∆k = Φ̂kω̂k − ŷk.

In [18] it is proved that the origin ω̂ = 0 always belongs to the convergence domain of

TLS. Hence, the use of null initial condition is the best choice if no prior information is given.
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Chapter 2
Experimental Results

2.1 Introduction

This section shows the experimental results conducted by applying at the system to con-

trol the various types of observers of the rotor state analyzed in Chapter 1. Of them will be

evaluated its strengths and weaknesses in the various operating conditions.

The complete diagram of the control system is shown in Figure 2.1. The control system is

a field-oriented control (FOC). The control variable is the torque. The limitation of the volt-

age and the references of flux and torque are established in function of the bus-bar voltage.

Figure 2.1: Complete Scheme of the Control System
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2.2 Full Order and Reduced Order Luenberger Observer - Simula-

tion and Experimental Results

The performances of the Full Order Luenberger Observer () have been evaluated us-

ing simulation implemented in MatLab®- Simulink®. The linear matrix inequality of the

optimization problems have been solved using the free MatLab®toolbox YALMIP®. The

Simulink®model includes observer (1.2.2) and the IM model (1.2.2), coupled with the me-

chanical equation. For the Induction Motor model and the observer, the parameters in Table

1 have been used. The Induction Motor used has a power of 0.75kW.
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Figure 2.2: Test with observer gains computed from (??) without L2 optimization.

Figure 2.2 shows flux and current errors during a test where the current measurement,

the input voltage and the speed measurement are corrupted by zero mean white noise with

power spectral density equal to 10−4 for current and 10−3 for speed and voltage. The ob-

server gains have been tuned fixing a convergence rate equal to 2a22 by means of selection

(1.2.9) with η = a22. These figures confirm the main result. In fact, the error variables, repre-

sented by the solid curves, depend by ω, and thus exhibit a peculiar time-varying transient.

instead the upper bound of their norm, represented by the dashed curves, is a time-invariant

function. In particular these dashed curves represent bounds (1.2.5) with
√

k = 38.2 which

has been computed by solving (1.2.5) with αl = 2a22.

The same test has been carried out through the tuning of the parameters of the observer

with the L2 gain optimization (1.2.6) (with αl = 2a22) in order to reduce the noise effects, ob-

taining the gain L̄ =
[

9.5
5.3

]
. The results shown in Figure 2.3 highlight a significantly improved
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Figure 2.3: Test with observer gains computed by means of L2 optimization (1.2.6).

0 0.2 0.4 0.6 0.8 1−1

0

1

Time – (s)

 

 
Ψrd(t) − Ψ̂rd(t)

Ψrq(t) − Ψ̂rq(t)

0.5 0.6 0.7 0.8 0.9 1−0.1

0

0.1

Time – (s)

F
lu

x
an

d
cu

rr
en

t
es

ti
m

at
io

n
er

ro
r

0.5 0.6 0.7 0.8 0.9 1−2

0

2

Time – (s)

 

 isd(t) = îsd(t)
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disturbance rejection at the steady state (see the lower curves). Once again, the bound (1.2.5)

is represented by the dashed curves, where
√

k = 10.1 has been computed by solving (1.2.5)

with αl = 2a22.

Finally Figure 2.4 shows the behavior of the reduced order observer arising from the

full order one in Figure 2.2. A comparison between Figure 2.2 and 2.4 clearly reveals the

advantages of a full order solution, as commented on Remark 1. Indeed, the lower plots of

Figure 2.2, respectively, compared to the two lowermost plots of Figure 2.4, show that the

noise is more effectively filtered out by the full order solution.

2.2.1 literature notes

This chapter develops the problem of the estimation of the rotor flux in induction motors

using a full order Luenberger observer. The literature presents several works regarding the

design of observers for this purpose [81], [63], [80], [66]. The main problem to solve is that

the Induction Motor dynamics are linear time-varying. Thus, becouse they depend linearly

on the speed of rotation, so standard Linear Time Invariant techniques cannot be used. A

typical approach is therefore apply a robust control, fixing a possible range of speed and

set the observer gain for ensure stability when the speed is constant in this fixed set. i.e.

the eigenvalues of the dynamic matrix are always with real part negative for all physical

acceptable values of the rotor speed. In any case a empirical rule is to fix the speed of the

error dynamics greater than the fastest state variable of the Induction Motor model [80], [63]

to obtain time scale separation.

A different solution to overcome this problem is a time-varying gain in order to eliminate

the effect of speed in the error dynamics. One important work that uses time-varying gain

for flux estimation in Induction Motor is [81]. A other example is [48], which deals with the

full-order flux observer design in encoderless Induction Motor drives and the gain chosen

is time-varying as a function of the rotor speed. Moreover, for the same observer, [45] shows

how to choose the gain using the linearized model, but it is also shown that the linearized

model reveals potential instability problems. A reduced order version is also presented in

[46]. In [39] it is shown that the observer gain selection is critical for the good behavior of

the system, and a framework is developed, in which the properties of any gain selection can

be easily assessed. Four candidate gain selections are considered, two of which do not use
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the rotor speed in their equations (inherently encoderless schemes). The stability of these

schemes are analyzed in [40] for different working conditions. A Lyapunov-based analysis

of the stability of rotor flux observers for Induction Motor is proposed in [35] and [62], where

it is shown how the observer gain is chosen such that the time derivative of the Lyapunov

function, developed for the proposed observer, is negative and independent of the speed.

Moreover, [62] carries out an analysis of the behavior when the speed signal is not correct. It

is useful to underline that all these implementations, which use time-varying gains, have the

problem that the speed signal, together with the model parameters, are not perfectly known,

and the measured speed is also noisy and this leads to a further noise superimposed on the

estimated variables.

Regarding the sensitivity to parameter variations, two main approaches can be found.

In the first one, assuming nominal values for the motor parameters, the observer gain is

designed in order to obtain satisfactory error dynamics and steady-state behaviour, even in

the presence of motor parameter variations [1], [35], [61]. In [47] the equations of the param-

eter sensitivity of the rotor flux estimation are derived for a full-order flux observer, and

based on the parameter sensitivity analysis, practical methods of designing robust observer

gains are proposed. The same holds for [35], where the sensitivity analysis makes it possible

to establish design criteria for a rotor flux reduced-order observer for the Induction Motor.

The second approach considers online adaptation of the model parameters [63], [42], [67].

In particular the parameters adapted are those that vary during normal operation, i.e. sta-

tor and rotor resistances. For example in [63] a flux observer for an induction motor with

an adaptive scheme is proposed. The parameters identified adaptively are stator and rotor

resistance, which vary with motor temperature, and the stability is proved by Lyapunov’s

theorem. Furthermore, robustness of the induction motor drive system with the proposed

flux observer is shown.

Recently, in [67] a novel local adaptive flux observer for induction motors is presented.

Under persistence of excitation it estimates the motor fluxes and identifies the rotor resis-

tance on-line.

Other works consider a more complex model, i.e. saturation effects, in order to have

a more accurate estimate. For example [12] considers a nonlinear dynamic model of the

Induction Motor that includes the effects of magnetic saturation and designs an observer–
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Figure 2.5: State Variable Filter

controller strategy that achieves semi-global exponential rotor position tracking. The flux

estimate in this case is embedded in the control strategy.

2.3 Sliding Observer - Simulation and Experimental Results

The simulation experiments were carried out tacking into account both the ideal voltage

waveforms given by the inverter, and the time delays connected to the implementation on

microcomputer systems of the controller and the observer. Regarding to the sliding observer,

this delay is equal to its sampling interval assumed equal to 25 ms. This observer has been

tested in numerical simulation and, also, experimentally. The machine under test is a 7.5 kW

induction motor, and has been considered having the following nominal parameters:

Rr = .19Ω Lr = .025H Lm = .04107H Rs = .45Ω

Ls = .07712H J = .2123Nms2 F = .015Nms P = 2

With reference to the sliding observer, we have chosen:

h2 = 0; h1 = ha

in order to compute ha we have chosen |v1|x and |v2|x equal to the maximum value of the

norm of v which is equal to c1Ed, where Ed is the DC voltage supplying the inverter, assumed

equal to 513 V. The other quantities have been estimated using the rated values of the motor

and the operating conditions of the closed loop system. We have obtained:

ha = −(51639 + 119 |w|)

The variables of interest shown later in the Figs. XXXXXXX are the speed error en, the

per cent error em of the modulus of the rotor flux vector and the phase error e f of the same
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vector, defined as follows:

em = 100
[(

ϕ2
a + ϕ2

b
) 1

2 −
(
z2

21 + z2
22
) 1

2

]
/
(
ϕ2

a + ϕ2
b
) 1

2

e f = tan−1
(

ϕb

ϕb

)
− tan− 1

(
z22

z21

)
Some experimental tests have shown that considering the solution expressed by equa-

tions 1.3.27 and 1.3.28, the rotor flux estimation error increases indefinitely. Consequently,

the tests discussed later have been carried out employing the solution given by equation

1.3.30. Moreover, these tests have been carried out assuming rotor and stator resistance vari-

ations equal to +50% of their nominal values.

Several tests have shown that the best results are obtained choosing ρ = .23 (p1 = .3 and

p2 = .7) and r = .002 for w ̸= 0 and r = 0 at zero speed. The value of r at zero speed allows

to obtain a good behaviour of the observer also at zero speed. These tests have shown that

for a certain value of ρ, if r diminishes starting from the above value corresponding to w ̸= 0

the sliding observer is not able to track the actual rotor flux and the rotor flux estimation

error increases. Moreover, the ripple present in the waveforms of em and e f diminishes. If

the value of r increases the mean value of both em and e f diminishes but the above ripple

increases. Now, for a fixed value of r, if ρ increases (p1 increases and p2 diminishes) the ripple

present in em and e f increases, the mean value of e f diminishes and that of em increases. If

ρ diminishes, the above ripple diminishes, the mean value of e f increases and that of em

diminishes. Finally, for fixed values of ρ and r, a reduction of the ripple present in em and e f

is obtained by diminishing the gains of the matrix Ha with respect to those computed using

the sliding conditions.

The figure 2.9-2.11 show the waveform of en, em and e f versus t corresponding to the

values of ρ and r previously considered and to h1 = .1ha.

Regarding the reduced order observer we have carried out the same tests as for the

sliding observer. These tests have shown that the same behavior previously described is

obtained by varying ρ and r, except for the ripple which is negligible.

Other tests have shown that the behavior of the reduced order observer is not sensitive

to possible commutation delays which cause equal variations of the instants T1, T2 and T3.
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Figure 2.6: Waveform of en vs t: cr = 0 and nr = 0 for t ∈ [0, 1), cr = 40 and nr = 200 for t ∈ [1, 1.5),
cr = 0 and nr = 200 for t ∈ [1.5, 2), cr = 0 and nr = 2000 for t ∈ [2, 3.5), cr = 20 and
nr = 2000 for t ∈ [3.5, 4), cr = 0 and nr = 2000− 10000 (t− 4) for t ∈ [4, 4.5), cr = 0 and
nr = 1500 for t ∈ [4.5, 5).

Figure 2.7: Waveform of em vs t in the same dynamic situations as in fig 2.6.
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These variations have a negligible effect on the quantities up1 and up2 because the natural

modes of the matrix L(w) at constant speed, choosing a value of r not very little, have a

poor damping and a large period compared to the sampling period of the observer. Tests

carried out assuming a commutation delay equal to 50 ms gave the same results obtained in

absence of any delay. This justifies the choice of ρ = .5 corresponding to p1 = 1 and p2 = 0,

because the disturbance due to the difference of m and m̃ have not effect on the behavior of

the discrete time observer.

Figure 2.8: Waveform of e f vs t in the same dynamic situations as in fig 2.6.

Figure 2.9: Waveform of en vs t in the same dynamic situations as in fig 2.6.

The Figures 2.9-2.11 show the waveforms of en, em and e f in the same dynamic situations

as in Figs. 2.6-2.8 assuming ρ = .5, for r the same values for the sliding observer and c f =

.001 (cf. Fig. 2.5).
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Figure 2.10: Waveform of em vs t in the same dynamic situations as in fig 2.6.

Figure 2.11: Waveform of e f vs t in the same dynamic situations as in fig 2.6.
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Figure 2.12: Amplitude and angle of the rotor flux in a simulation test during a contemporary speed,
flux and torque step reference, ωrre f = 20 → 100 rad/s, |ψrre f | = 0.2 → 0.7 Wb tL =
2→ 10.

2.4 Nonlinear Flux Observer - Simulation and Experimental Re-

sults

This non-linear flux observer has been tested in numerical simulation and, also, tested ex-

perimentally. The machine under test is a 2.2 kW IM SEIMEC model HF 100LA 4 B5. The test

system is equipped also with a torque controlled PMSM (Permanent Magnets Synchronous

Motor) model Emerson Unimotor mechanically coupled to the Induction Motor, to imple-

ment an active load. The electromagnetic torque is measured on the shaft by a torque meter

The system has numerically simulated in Matlab®-Simulink®. In simulation stage, the

Induction Motor it’s been represented through his dynamic model of the Induction Motor,

taking into consideration the magnetic saturation. It is the same dynamic model adopted

for implementing the non-linear observer, but expressed in the rotor flux oriented reference

frame. The simulated test has been performed twice, adopting the proposed non-linear ob-

server taking into consideration the magnetic saturation, and adopting the classic Full Order

Luenberger Observer. The classic Full Order Luenberger Observer has been tuned assuming

constant electrical parameters of the Induction Motor. This electrical parameters are corre-

sponding to the knee of the magnetization curve. As regard to the simulation test, a contem-
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Figure 2.13: Simulation results during a contemporary speed, flux and torque step reference, ωrre f =
20 → 100 rad/s, |ψrre f | = 0.2 → 0.7 Wb tL = 2 → 10: (a) estimated and real is,α, is,β
stator current components with nonlinear observer, (b) estimated and real is,α, is,β stator
current components with FOLO.

porary step variation of the Induction Motor reference speed, rotor flux amplitude and load

torque has been given the drive, of the type: ωrre f = 20 → 100 rad/s, |Ψrre f | = 0.2 → 0.7

Wb tL = 2 → 10 Nm. In this context, the drive works at different speeds with different

load torques and rotor flux levels: such a working condition emulates the behavior of the

drive in optimal efficiency conditions. To display the behaviour of the observers, indepen-

dently from the control action, both the non-linear observer and the Full Order Luenberger

Observer have been tested in parallel with respect to the control system. To close the flux

control loop has been feedback the real flux. Fig. 2.13. (a) shows the real rotor flux ampli-

tude and the estimated one as well as its phase position, obtained with both the observers,

as well as the corresponding estimation errors. It can be seen that, approaching the rated

flux of the Induction Motor, in correspondence to which the parameters of the Full Order

Luenberger Observer have been tuned, both observers work correctly with the estimated

fluxes correctly tracking the real ones. Otherwise, at rotor flux equal to 0.2Wb, while the

proposed non-linear observer is able to correctly estimate the real flux, the classic Full Order

Luenberger Observer presents a very high estimation error, equal to about the 7% of the real

flux. Even the rotor flux angle error, at 0.2Wb, is quite high with the Full Order Luenberger

Observer around 7 degrees (0.13 rad), while it is negligible with the proposed non-linear

observer. This is quite an important point, since the correct rotor flux angle estimation is

responsible for the correct field orientation conditions and, thus, for the performance of the
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entire control system. Fig.s 2.13.(b)-(c) show respectively the is,α, is,β real and estimated sta-

tor current components in the stator reference frame, as well as the instantaneous estimation

error of both the observers. These figures clearly show that, while at the rated flux of the IM,

in correspondence to which the parameters of the FOLO have been tuned, the observers

tracking errors are very close to each other (as expected), for the lower value of the reference

flux, the non-linear observer significantly overcomes the Full Order Luenberger Observer in

terms of estimation accuracy. In particular it can be observed that the stator current estima-

tion error is of the order 10−3 for the non-linear observer, while it is of the order unity for

the Full Order Luenberger Observer, confirming the goodness of the proposed approach.

This is to be expected, since the non-linear observer has embedded the knowledge of the

magnetic working condition of the Induction Motor. With regard to the experimental test, a

set of contemporary step variation of the Induction Motor reference speed, rotor flux ampli-

tude and load torque has been given the drive, of the type: ωrre f = 20 → 40 → 60 → 80

rad/s, |ψrre f | = 0.2 → 0.4 → 0.6 → 0.8 Wb tL = 2 → 4 → 6 → 8 Nm. Fig. 2.14.(a) shows

the reference and measured speed under the above described test. Fig.s 2.14.(b)-(c) show

respectively the is,α, is,β measured and estimated stator current components in the stator ref-

erence frame, as well as the instantaneous estimation error of both the observers. Like in

the numerical simulation case, the test has been performed twice, adopting the proposed

non-linear observer, and the Full Order Luenberger Observer. These figures confirm the

simulation results and clearly show that, while approaching the rated flux of the Induction

Motor, in correspondence to which the parameters of the Full Order Luenberger Observer

have been tuned, the observers tracking errors are very close to each other (as expected), for

low values of the reference flux (particularly 0.2 and 0.4 Wb), the non-linear observer sig-

nificantly overcomes the Full Order Luenberger Observer in terms of estimation accuracy.

The peak estimation error with the non-linear observer is about 0.5 A, while it overcomes

2 A (4 times) with the Full Order Luenberger Observer. As result, Fig. 2.14.(d) shows the

waveform of the rotor magnetizing current amplitude, as obtained with both the observers,

which is proportional to the rotor flux amplitude by Lm(|imr|). It can be observed that, while

approaching the rated flux of the Induction Motor, the |imr| estimated by the two observers

are very close to each other (as expected), for low values of the reference flux (particularly

0.2 and 0.4 Wb) they become quite different. In particular, at 0.2 Wb the |imr| estimated by
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Figure 2.14: Experimental results during a contemporary speed, torque and flux step reference,
ωrre f = 20 → 40 → 60 → 80 rad/s, |ψrre f | = 0.2 → 0.4 → 0.6 → 0.8 Wb
tL = 2 → 4 → 6 → 8 Nm: (a) rotor speed, (b) estimated and measured is,α, is,β sta-
tor current components with nonlinear observer, (c) estimated and measured is,α, is,β
stator current components with FOLO, (d) rotor magnetizing current (e), estimated and
measured electromagnetic torque with nonlinear observer, (f) estimated and measured
electromagnetic torque with Full Order Luenberger Observer.
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the non-linear observer is much lower than that estimated with the Full Order Luenberger

Observer, in fact in the linear region of the magnetizing curve the static magnetizing induc-

tance is much higher. Since there are no flux sensors embedded in the Induction Motor, no

direct comparison could be made between the estimated and the measured value of the ro-

tor flux. However, an indirect confirmation of the accuracy of the flux estimation has been

performed here comparing, with both the observers, the measured torque on the Induction

Motor shaft (with the above described torque meter) with the estimated torque. The torque

has been estimated, with both observers, on the basis of the torque equation. Since it de-

pends on the estimated rotor flux and the measured stator current, the verification of the

accuracy of the torque estimation is an indirect verification of the accuracy of the flux esti-

mation. It should be remembered that, coherently with the adopted modelization of the two

observers, the torque estimation based on the non-linear observer takes into consideration

the variable parameters, while that based on the FOLO assumes constant parameters. Fig.s

2.14.(e)-(f) show the electromagnetic and load torques, respectively estimated with both the

observers and measured. It can be observed that, while approaching the rated flux of the

IM, the torque errors are very close to each other (as expected), for low values of the refer-

ence flux (particularly 0.2 and 0.4 Wb), the non-linear observer significantly overcomes the

Full Order Luenberger Observer in terms of estimation accuracy. In particular, at 0.2 Wb the

torque error becomes even about 25% with the Full Order Luenberger Observer, while it

is almost null with the proposed non-linear observer. This is an indirect experimental con-

firmation of the better accuracy achievable in the rotor flux estimation with the proposed

observer.

In conclusion the non-linear observer is based on the dynamic model of the Induction

Motor considering the magnetic saturation, appropriately written in a state space form and

expressed in the stationary reference frame. It belongs to the category of the non-linear ob-

server characterized by a Lyapunov based convergence analysis. The proposed non-linear

observer has been tested in numerical simulation and experimentally on a properly devel-

oped test. Its behaviour has been compared to that of a classic full-order Luenberger ob-

server in variable flux working conditions, as well as the stator current components. Results

clearly show the capability of such a non-linear observer to correctly estimate the rotor flux

linkage amplitude and phase under flux varying conditions including strong variation of
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the saturation of the iron path.

2.5 Extended Kalman Filter - Experimental results

The experiments have been performed with the aim of testing the control system with

a observer of the rotor state designed with the use of the Extended Kalman Filter. The pro-

totype constructed for this purpose consists of a induction motor with a power of 0,750kW

and a powder brake system. The induction motor is driven by a source voltage inverter. A

micro-controller DSpace 1103 is used to implement both the observer with the Extended

Kalman Filter and the control law. In particular, the control law is designed according to a

field-oriented approach, and consists in a cascade controller with four PI control loops, two

inner current loops and two outer rotor flux and speed loops. A classic anti-wind-up scheme

is designed for the speed control loop. The module of stator current and voltage vectors are

constrained to Is,MAX = 7A in order to avoid damage to the machine, Vs,MAX = 0, 866VBUS.

The measured variables are the two stator currents given by two Hall-effect transducers. All

the above mentioned four control loops are closed through the proposed Extended Kalman

Filter. In order to compare the estimated speed with the measured one, it must provide the

system with a mechanical incremental encoder sensor with 1024 ppr. The whole controller,

including the proposed estimator, is processed at 12 kHz.

Rated power 750W Rated speed 1410rpm

Rated voltage 380V Rated torque 5Nm

Rated frequency 50Hz Pole pairs 2
Table 2.1: The rated data of the motor

Ls 0.5236H Jm 0.0056Nms2

Le 0.043H br 1.68Nm

Rs 15.68Ω cr 0.0023Nms

Tr 0.0669s p 2
Table 2.2: The parameters of the motor.

The matrices Q and R, necessary for processing the Extended Kalman Filter, have been
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obtained by means of a suitable preliminary experiment, so that the estimated stator currents

produced by EKF correspond to those measured. The matrix R has been chosen equal to the

identity matrix I2×2, and Q has been parametrized as Q = diag (q11I2×2, q22I2×2, q33, q44),

with q11 = 8.149× 10−2, q22 = 4.68× 10−5, q33 = 2.619× 10−2 and q44 = 11.363× 10−5.

The results of some experiments are shown in Figures 2.15-2.19. Figure 2.15 shows the

waveforms of angular speed, stator currents, rotor flux and torque during a suitable test at

a maximum speed of 100rad/s and rated load, while Figure 2.16 shows the waveforms of

angular speed, stator currents, rotor flux and torque during a test at very low speed speed

3rad/s and rated load. In particular, Figure 2.15 shows the closed loop responses correspond-

ing to a trapezoidal reference speed when the motor is fluxed at 0.8 Wb at t = 0, starts at

t = 0.5s with a step reference speed of ωr = 100rad/s, then at t = 10s there is a speed

reversal and finally the speed is put to zero by means of a ramp. A load torque of 4Nm is

applied at 2s and removed at 8s. Figure 2.16 shows the closed loop responses correspond-

ing to a very low speed test, which is a classic critical condition in all the model based ob-

servers/estimators for sensorless control of induction machines, when the motor is fluxed

at 0.8Wb at t = 0, and then starts at t = 0.5s with a step reference speed of ωr = 3rad/s. The

load torque of 4Nm is applied at 2s and removed at 8s.

The Figure 2.17 is shown with the aim of verifying the observability conditions during

the above two tests.

When the rotor flux vector is fixed in the reference stator frame, the rank condition is

not satisfied and, consequently, nothing can be deduced about observability. However, it is

useful to analyze the behavior of the system in the set of states in which the rank condition

fails. This set contains the states corresponding to the operating situations in which the rotor

flux vector is fixed in the reference stator frame, i.e. at zero stator frequency. This frequency

ρ̇, is given by:

ρ̇ = ω + a21
is,q

|ψr|
,

where is,q is the in-quadrature stator current in the frame rotating with the rotor flux, and its

discrete-time version is:

ρ+ − ρ = Ts

(
ω + a21

is,q

|ψr|

)
, (2.5.1)

in which ω, is,q and |ψr| are evaluated at the discrete-time instant k. The above set is then
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Fig. 2.15: Experimental waveform during a test at nominal speed and load, and with speed reversal.
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obtained by putting ρ+ = ρ, and is given by:

ω + a21
is,q

|ψr|
= 0. (2.5.2)

During transients, it is more difficult to verify whether the rank condition is satisfied or not.

From (2.5.1), if x+5 ̸= x5, the rank condition is not satisfied provided that:

tan
(
ρ+ − ρ

)
= f̂1 â12

x5 − x+5
â2

12 + f̂1 x5 x+5
. (2.5.3)

Both members of (2.5.3) are computed on-line using the estimated variables instead of

the actual ones. This corresponds to evaluating the observability property of the couple

(Ak, C). In particular, in Figure 2.17.a and 2.17.b, the waveforms of the first and second mem-

bers of (2.5.3) are shown corresponding to the tests of Figures 2.15 and 2.16, respectively.

From Figure 2.15-2.16 a good behavior of the estimator is shown, in all operating condi-

tions. In fact, the observer is capable of tracking all state variables, and the controller with

feedback from estimated variables is capable of coping with the disturbance very well.

The Figure 2.17.a shows that (2.5.3) is satisfied near to zero speed, before the starting with

the machine fluxed (t < 0.5s), when the speed passes through zero during speed reversal

(about t = 10s), and then when speed is forced again to zero (t > 18s). When the rank

condition is lost, either in isolated instants or in a few instants of time, estimates given by

EKF are correct, but when the rank condition is lost in several instants, the behavior of teh

observer based on Extended Kalman Filter deteriorates. This is also shown in Figures 2.15.a-

d, where the closed loop system, after a few instants in which it remains at rest, displays a

speed oscillating from about −0.5rad/s to about 2.5rad/s, and there is also an error in the

estimated load torque. For isolated instants, for example during speed reversal, the loss of

rank does not represent a big problem. The Figure 2.17.b shows that even for very low speed,

after a time interval before and at the beginning of the starting, in which (2.5.3) is satisfied,

the system is capable of tracking the reference speed even in presence of the torque load.

From the above analysis, it is useful to note, that (2.5.3) represents a useful instrument to

analyze when the observer, and therefore the whole control system, are working correctly.

In Figure 2.18, the set of values of |Ak| are displayed, computed at the sampling instants,

in the above discussed low and high speed experiments. The shape of the corresponding
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Fig. 2.16: Experimental waveform during a test at low speed and with nominal load.
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Fig. 2.18: Set of values of |Ak| computed at the sampling instants, for the test at Figure 2.15 (a) and
for the test at Figure 2.16 (a).
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waveforms shows that the matrix Ak is always non singular. In particular, it appears that the

computed minimum value is greater than the term −â33 µ1. This fact has been confirmed in

many other experiments carried out in various operating conditions.

In Figure 2.19, the set of values of the maximum singular value of Ak, σmax(Ak), are

displayed, computed at the sampling instants, in low and high speed experiments. As is

well known ||Ak|| = σmax(Ak) and, consequently, if σmax(Ak) is bounded, it is possible to

verify the first requirement of Assumption 2. From Figure 2.19, it appears that matrix Ak is

bounded in norm, and the bound diminishes with the operative speed range.

2.6 Extended Complex Kalman Filter - Simulation results

The proposed ECKF estimator has been evaluated by means of simulations carried out in

a MATLAB®/Simulink®environment. The Simulink®model includes the real–valued Induc-

tion Motor model (0.6.4), the ECKF estimator (1.7.2)-(1.7.6), and the controller. The nominal

parameter for the Induction Motor model, are shown in tab. 2.2.

A field oriented vector controller has been realized, which involves four PI sub–controllers.

The flux and speed loops have been closed by means of the proposed ECKF providing a full

estimation of the Induction Motor’s state. A frequency of 10kHz has been adopted for the

execution of both the controller and the ECKF.

With regard to the tuning of the values of the covariance matrices Q and R, in the major-

ity of the papers in the literature, are preassigned or computed based on a "trial–and–error"

procedure. This is the reason why different papers propose different values for the two ma-

trices although they are determined for the same prototype. In [43, 44], a rule based on the

minimization of the mean square error between the estimated variables and the actual ones

is provided. Our approach was that of fixing the covariance matrix R = 1 and then deter-

mining the covariance matrix Q by optimization based on genetic algorithm. This approach

is theoretically justified by the known fact that only the ratios between the elements of Q and

R affect the system behavior [14]. By doing this we have determined Q = diag(1, 10−3, 10).

2.6.1 Robustness Analysis

The robustness analysis for the proposed Extended Complex Kalman Filter is carried out

by evaluating its ability to produce accurate state estimates even when the model parame-
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ters are varied. A similar study is carried out in [35] for a reduced–order rotor flux optimal

observer. The ECKF has been implemented with detuned parameters, while the Induction

Motor model contains nominal parameters.

An initial study is carried out by analyzing the behavior of the Extended Complex Kalman

Filter when the Induction Motor is operated at rated rotor speed and rated load. Figure 2.20

shows the steady–state estimation errors when the mutual inductance Lm, the rotor resis-

tance Rr, and the rotor resistance Rs are varied. More precisely, Figures 2.20–a,b,c show the

flux estimation error as mutual inductance is increased to up to 50% of its nominal value,

the rotor resistance up to 300%, and stator resistance up to 50%, respectively (in the figures

the modified values are indicated by the subscript m. Figures 2.20–d,e,f show results of the

same analysis for the rotor speed estimation error. As can be seen, the influence of these

parameters’ variations is small, which shows a good robustness of the ECKF. Different be-

havior can be observed when the machine operates at low speed (Figure 2.21), when a small

variation of the stator resistance produces a high error in the flux and speed estimates (cf.

Figure 2.21–c and Figure 2.21–f). Moreover, it is worth noting that Figure 2.20–a also reveals

that a variation of Lm up to 50% of its nominal value can produce a high flux estimation

error of 40%, even at rated, low rotor speed.

From this analysis it is clear that the most critical condition is a variation of the stator

resistance when the machine is operated at low speed. Therefore, an accurate Rs estimation

is particularly important, which is not normally a problem, because it can be measured di-

rectly. Obviously the main source of variation is temperature, so in practical application Rs

can be scheduled depending on motor temperature, but this is not trivial.

As for the sensitivity of the ECKF to noise measurement, Table 2.3 shows the mean and

the standard deviations of the rotor speed and of the flux estimation errors, in the absence

of noise and when a white noise is superimposed to the measured signal. As can be seen the

ECKF is robust to noise, since both the means and the standard deviations of the estimation

errors remain limited and small even in the presence of noise.

2.6.2 Experimental Results

In this section experimental results are presented validating the proposed 5–th order of

the Extended Complex Kalman Filter. A closed loop control system has been made, which
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Figure 2.20: Simulation results at rated rotor speed (150 rad/s) and rated load, showing robustness
performance of the ECKF: (a) flux error vs. Lm variation, (b) flux error vs. Rr variation,
(c) flux error vs. Rs variation, (d) speed error vs. Lm variation, (e) speed error vs. Rr
variation, (f) speed error vs. Rs variation.
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Figure 2.21: Simulation results at low rotor speed (5 rad/s) and rated load, showing robustness per-
formance of the ECKF: (a) flux error vs. Lm variation, (b) flux error vs. Rr variation, (c)
flux error vs. Rs variation, (d) speed error vs. Lm variation, (e) speed error vs. Rr varia-
tion, (f) speed error vs. Rs variation.
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Table 2.3: Noise sensitivity of ECKF

NO NOISY NOISY
MEASURES MEASURES

TEST AT 150 rad/s
- standard deviation of the speed (rad/s) 0.05 0.7
- standard deviation of the flux estimate (Wb) 0.04 0.05
- mean error of the speed estimate (%) 0% 0%
- mean error of the flux estimate (%) 0% 0%

TEST AT 5 rad/s
- standard deviation of the speed (rad/s) 0.06 0.5
- standard deviation of the flux estimate (Wb) 0.02 0.04
- mean error of the speed estimate (%) 0% 0%
- mean error of the flux estimate (%) 0% 0%

is composed of an Induction Motor, supplied by a voltage source inverter, a brake which

applies the load tl to the motor, a four–loop PI-type controller, and the proposed Extended

Complex Kalman Filter which computes online state estimates that are used by the con-

troller. The Induction Motor has been operated with a rotor flux of 1 Wb. Both the controller

and the estimator Extended Complex Kalman Filter have been implemented on a platform

involving dSPACE®dS1103®micro–controller, operating under a MATLAB®/Simulink®environment.

The use of the dSPACE®platform is particularly important since it allows rapid prototyping

of the control system and a real–time execution of it. The covariance matrices Qk and Rk

have been assumed to be constant and equal to Q = diag(1, 10−3, 10) and R = 1 (as in

simulation tests). The Induction Motor has been fluxed during the first 0.5 s, and the stator

currents have been measured by using two Hall–effect transducers.

Two experiments have been performed. the first experiment run at high rotor speed and

with load (see Figure 2.22), and the other run at low rotor speed (Fig 2.23). The behavior of

the system at high speed is satisfactory as discussed later. The rotor speed correctly tracks

the reference speed, with relatively high error only during a first transient (cf. Figure 2.22–e

and Figure 2.22–f), and reaches the steady–state operations without final error. In the pres-

ence of the load torque signal shown in Figure 2.22–d, whose value is 3 N.m, the speed

tracking error is negligible. By applying a descended ramp reference speed, when the speed

approaches zero, the tracking error initially increases to 4 rad/s, but then rapidly converges

to zero. During steady–state operation at −150 rad/s, the load torque is removed (at t = 13

s) without speed error, whereas a speed error of about 9 rad/s occurs when the reference

speed increases to lead the motor at the standstill. The rotor flux reaches a value of 1 Wb

and remains almost constant during the entire duration of the experiment, except for op-
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Figure 2.22: Experimental results at high rotor speed: (a) stator current along α–axis in fixed frame,
(b) stator current along β–axis in fixed frame, (c) amplitude of the rotor flux vector, (d)
applied load torque, (e) reference, estimated and actual speed, (f) speed estimation error
eω = ωr,k − ω̂r,k.

erations at zero reference speed, when the rotor flux varies from 0.92 to 1.08. The stator

currents are under the maximum allowed values under all the operating conditions. At low

rotor speed the behavior of the system is also satisfactory up to a reference speed of 5 rad/s

(see Figure 2.23–e). At 2 rad/s rotor speed a transient oscillation of the tracking error oc-

curs, where a slow convergence to the steady state can be observed. The estimation of the

rotor flux appears accurate during all the operating conditions. This fact can also be veri-

fied indirectly, by observing that the closed–loop system behaves nicely under all the above

operating conditions.

A second experiment has been performed with the aim of analyzing the behavior of the

real system respect to the observability conditions of Theorem ??. The experiment starts by

giving zero reference signal for the rotor speed and 1–Wb signal for the rotor flux reference in

order to flux the Induction Motor. At the instant t = 1 s a 15–rad/s reference signal is applied

for the rotor speed, and at the instant t = 2 s a load torque command of 2 Nm is applied

to the motor by using the powder brake. Figure 2.24 gives the result of this experiment

and shows that an accurate estimation of the rotor speed is obtained, even when the IM

operates at low speed and with load torque. Furthermore, Figures 2.23–d and 2.23–e) show
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Figure 2.23: Experimental results at low rotor speed: (a) stator current along α–axis in fixed frame,
(b) stator current along β–axis in fixed frame, (c) amplitude of the rotor flux vector, (d)
reference, estimated and actual speed, (e) speed estimation error eω = ωr,k − ω̂r,k.

0 1 2 3 4
−5

0

5

10

15

20

time [s]

sp
ee

d 
[rp

m
]

 

 reference
measured
estimated

0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

time [s]

lo
ad

 to
rq

ue
 [N

m
]

 

 reference
measured

(a) (b)

Figure 2.24: Experimental results at low rotor speed and load: (a) reference, estimated and measured
speed, (b) applied load torque.
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that when the rotor speed decreases down to 2 rad/s, the speed estimate degrades, as can

be expected, because the Induction Motor is operating in the near of the region where the

observability conditions are not satisfied. Similar behavior can be observed when the rotor

speed reference signal is reversed from a positive to a negative value. As the real rotor speed

approaches zero, the speed estimation error increases, but then it converges to zero again

when the Induction Motor leaves the region where the observability conditions are not met

(Figure 2.22–e and Figure 2.22–f). Finally, at zero reference speed, the filter only gives the

correct speed only at zero load torque (see last time interval in Figure 2.22–e).

It should be said that the complex–valued model of the Induction Motor describes ex-

actly the same behavior as the more traditional 5–th order model. Therefore, the proposed

Extended Complex Kalman Filter produces exactly the same results as the corresponding

more traditional Extended Kalman Filter, generated based on the 5–th order Induction Mo-

tor model under the hypothesis of constant speed (for example at ω̇ = 0). While it is already

apparent that the complex–valued model allows an easier and more compact observability

analysis, its advantage is also related to the fact that the Extended Complex Kalman Filter re-

quires lower computational effort. Processing both the proposed Extended Complex Kalman

Filter and the conventional 5–th order Extended Kalman Filter , this being shaped by using

Simulink®blocks and an ad–hoc 2× 2 inversion algorithm, shows that a 35% reduction time

is obtained with the Extended Complex Kalman Filter.

2.6.3 Literature notes

The estimation of the Induction Motor rotor speed can be performed by means of two

types of method, both exploiting the information from stator current measurement. The for-

mer type of method is based on the recognition of the characteristics [49, 52] of the measured

currents, whereas the latter is a model–based approach [80, 71]. The first type of method can

be invasive if based on the superimposition of suitable signals on the standard ones [49],

but also not invasive if based on spectral analysis of the stator currents [52]. They are also

subject to interpretation errors of the above characteristics. The second type of method uses

a–priori knowledge of the actual system and is not invasive since it involves only measured

variables. Moreover, its sensitivity to variations of the model’s parameters or poor knowl-

edge of its values can be countered by using robust estimation techniques. Among these
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model–based methods, MRAS–type [21, 76], Luenberger–type [19, 71], and sliding mode ob-

servers [87, 73, 34] are good examples of deterministic observers, whereas Kalman Filter [5]

and extended Kalman Filter [3, 60, 80] are good examples of stochastic estimators.

Recently, variants of the Extended Kalman Filter have been proposed, as in [56], where

the design and implementation of Unscented KFs (UKFs) for induction–motor sensorless

drives is investigated. In [10], there is a description of the real-time implementation of a

bi-input Extended Kalman Filter estimator, which deals with the estimation of the whole

state of the Induction Motor together with stator and rotor resistances. To cope with the

higher computational efforts required by these filters, alternative configurations based on

Kalman filtering have been proposed [5, 24], where the complexity of the filter is reduced

solving two linear least squares subproblems instead of a nonlinear one. Finally, different

approaches that are not based on Kalman filtering [49, 82] could be followed.

Moreover the use of the Extended Kalman Filter, considered as a means to estimate the

state of a sixth–order Induction Motor–load system model, has a double objective: firstly,

to obtain filtered stator current components, which is essential for controlling the IM–load

system; secondly, to estimate stator flux components and the speed for implementing sen-

sorless state feedback control laws [25, 8]. The estimation of the load torque indirectly allows

a better estimation of the speed, but it can also be used to implement control laws based on

disturbance compensation.

2.7 Reduced Adaptive Kalman Filter - Experimental results

To validate the reduced Adaptive kalman Filter, a closed loop experiments are shown,

which were carried out on a system consisting of the usual 0.750kW induction motor. The

whole controller, including the proposed estimator, is implemented on a dSpace®DS1103®microcontroller

that processes the control system at 12 kHz, and allows data acquisition of the measured

variables and their visualization on the cockpit provided by dSPACE®software.

The measured variables are the speed computed starting from data acquired by means of

a 1024 ppr incremental encoder that is useful for comparing estimated and measured speeds,

which are filtered using a PLL scheme, and the two stator currents given by two Hall-effect

transducers.

The rated data of the motor is shown in Table 2.1 and is the same used in the other
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experimental tests presented (see the last chapter of this thesis for the details).

In order to analyze robustness, both Adaptive Kalman Filter and Reduced Adaptive

Kalman Filter estimators are designed assuming the following uncertainties: 50% for Rr

and Rs, and 30% for Lm. Note that neither cause nor rate of variation are needed for de-

signing the estimator. Both estimators were initialized assuming P0 = 50I4, x0 = 0, R = I2,

Q = diag{2× 10−2, 2× 10−2, 2× 10−3, 2× 10−3}.

Figures 2.25–2.28 show the responses of the closed loop system in the presence of ei-

ther robust or standard estimators, corresponding to a trapezoidal reference speed with a

maximum speed of 150 rad/s, at no load and with speed reversal.

An examination of Figures 2.25 and 2.27 shows that both the estimators give good re-

sults. In fact, in both cases the speed tracks the reference one, the mean error is zero, and

the maximum difference between measured and estimated speeds is less than ±1rad/s. The

spikes are due to the resolution of the encoder. Figures 2.26 and 2.28 show that both estima-

tors are able to reproduce measured currents. Obviously, acting on the elements of matrix

Q, it is possible to conveniently filter these currents.

Figures 2.29–2.32 show the closed loop responses corresponding to a trapezoidal refer-

ence speed in the presence of a load torque of 5 Nm applied at 2 s and removed at 13 s. A

comparison of Figures 2.29 and 2.31 shows that Reduced Adaptive Kalman Filter works bet-

ter than Adaptive Kalman Filter at load; in fact, the maximum difference between measured

and estimated speeds is in the interval [−2.5, 0] rad/s, with a mean displacement of about

−1rad/s for Reduced Adaptive Kalman Filter, whereas it is in the interval [−5,−3]rad/s,

with a mean displacement of about −4rad/s for Adaptive Kalman Filter. Looking at Figures

2.30–2.32, it appears that both estimators reproduce the measured currents very well. Fig-

ures 2.33–2.36 show the responses of the closed loop system at no load, during low speed

tests (3rad/s). Both estimators are able to track the reference speed with a mean speed equal

to zero, but Reduced Adaptive Kalman Filter displays better dynamic properties and is

slightly noisier than Adaptive Kalman Filter. Figures 2.37–2.40 show the responses at 3rad/s,

with a 4Nm step load torque applied at 2s and removed at 13s. A comparison of Figures

2.37–2.39 shows that Reduced Adaptive Kalman Filter behaves well, both at load and not at

load, with a maximum difference between measured and estimated speeds in the interval

-82-



2 − Experimental Results §2.7 − Reduced Adaptive Kalman Filter - Experimental results

[−2, 2]rad/s, with a mean displacement of about −1rad/s. Also, in these difficult operat-

ing conditions, Reduced Adaptive Kalman Filter appears better from the dynamic point of

view, but is also nosier than Adaptive Kalman Filter. Figures 2.41–2.42 show the speed re-

sponses of the system with feedback from Reduced Adaptive Kalman Filter and Adaptive

Kalman Filter at step reference speed and no load. In this experiment only, both estimators

are designed assuming the nominal resistances increased by 30%, and the mutual induc-

tance decreased by 20%, compared to the values obtained with the previously described

identification process. Examination of these figures shows that Reduced Adaptive Kalman

Filter works better then Adaptive Kalman Filter for step reference speed variations, espe-

cially during transients.

Once again, we would like to point out that our experiments are carried out on an in-

duction motor drive in which estimated variables are used for closing the control loops. In

this study we show results at 3rad/s at no load and load, even though we also reach lower

speeds (1− 2rad/s), but with a worse speed waveform. In our opinion, this is due to the

non linear behavior of the brake, especially at low speed.

Figure 2.25: Speed response of the system with feedback from Reduced Adaptive Kalman Filter at
high reference speed and no load. The machine is fluxed at zero reference speed up to
0.5 s , and then it is started with a trapezoidal reference speed of 150 rad/s.

2.7.1 Literature notes

Performance in the control of induction motor electrical drives are greatly affected by

parameter uncertainty. Indeed the behavior of both controller and estimator, designed using

a model-based approach, rapidly deteriorates in the presence of these uncertainties. Obvi-

ously, the behavior of the whole control system is particularly sensitive to that of the state
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Figure 2.26: Current estimation error of the system with feedback from Reduced Adaptive Kalman
Filter at high reference speed. Same conditions as Figure 2.25.

Figure 2.27: Speed response of the system with feedback from Adaptive Kalman Filter at high refer-
ence speed. Same conditions as Figure 2.25.

Figure 2.28: Current estimation error of the system with feedback from Adaptive Kalman Filter at
high reference speed. Same conditions as Figure 2.25.

-84-



2 − Experimental Results §2.7 − Reduced Adaptive Kalman Filter - Experimental results

Figure 2.29: Speed response of the system with feedback from Reduced Adaptive Kalman Filter at
high reference speed. A 5 Nm load torque is applied at 2 s and removed at 13 s.

Figure 2.30: Current estimation error of the system with feedback from Reduced Adaptive Kalman
Filter at high reference speed. Same conditions as Figure 2.29.

Figure 2.31: Speed response of the system with feedback from Adaptive Kalman Filter at high refer-
ence speed. Same conditions as Figure 2.29.
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Figure 2.32: Current estimation error of the system with feedback from Adaptive Kalman Filter at
high reference speed. Same conditions as Figure 2.29.

Figure 2.33: Speed response of the system with feedback from Reduced Adaptive Kalman Filter at
no load and low reference speed. The machine is fluxed at zero reference speed. At 1 s,
it is started with a step of 3 rad/s; and a further step of -3 rad/s, applied at 15 s, brings
the reference speed to zero.

Figure 2.34: Current estimation error of the system with feedback from Reduced Adaptive Kalman
Filter at low speed reference. Same operating conditions as Figure 2.33.
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Figure 2.35: Speed response of the system with feedback from Adaptive Kalman Filter at low refer-
ence speed. Same operating conditions as Figure 2.33.

Figure 2.36: Current estimation error of the system with feedback from Adaptive Kalman Filter at
low speed reference. Same operating conditions as Figure 2.33.

Figure 2.37: Speed response of the system with feedback from Reduced Adaptive Kalman Filter at
low reference speed. The machine is fluxed at zero reference speed. At 1s, it is started
with a step of 3rad/s; a load torque of 4Nm is applied at 2s, and removed at 13s.
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Figure 2.38: Current estimation error of the system with feedback from Reduced Adaptive Kalman
Filter at low reference speed. Same operating conditions as Figure 2.37.

Figure 2.39: Speed response of the system with feedback from Adaptive Kalman Filter at low speed
reference. Same operating conditions as Figure 2.37.

Figure 2.40: Current estimation error of the system with feedback from Adaptive Kalman Filter at
low reference speed. Same operating conditions as Figure 2.37.
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Figure 2.41: Speed response of the system with feedback from Reduced Adaptive Kalman Filter at
step reference speed and no load. The machine is fluxed at zero reference speed. At 0.5
s, it is started with a step of 70 rad/s.

Figure 2.42: Speed response of the system with feedback from Adaptive Kalman Filter at step ref-
erence speed and no load. The machine is fluxed at zero reference speed. At 0.5s, it is
started with a step of 70rad/s.
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estimator. To cope with these uncertainties, on-line parameter identification and adaptive

or robust design techniques can be employed for designing either the estimator or the con-

troller, or both.

In [59] and [9] both rotor and stator resistances are estimated on-line using Neural Net-

works (NN) or two Extended Kalman Filters, respectively, whereas in [8] only stator resis-

tance is estimated using an EKF; all of these works assume that stator, rotor and mutual

inductances are well known. In [59] rotor and stator resistances are estimated by two dif-

ferent schemes involving two different NN that are constructed starting from a model of

the induction motor, and speed is estimated using the same approach described in [64], in

which the authors state that estimated speed is sensitive to noise, thereby requiring filtering.

Experimental results obtained by processing data acquired from a closed loop drive show

that in the presence of load torque, the speed does not track the measured one. In [9] ro-

tor and stator resistances are estimated by two different seventh order Extended Kalman

Filters that estimate the augmented state of the induction motor-load system, consisting of

stator current and rotor flux components, speed, load torque and, alternatively, stator re-

sistance and rotor resistance. However, the braided Extended Kalman Filter, consisting of

two seventh order Kalman Filters, is too complex. Furthermore, in practical applications it

is not possible to know the existence of the persistent excitation condition a priori, which is

a mandatory condition for an exact parameter estimation. This appears clearly in the results

shown in [9], aimed at proving the need to identify both rotor and stator resistances. [11]

presents the real-time implementation of a bi input-extended Kalman filter (BI-EKF)-based

estimator in order to overcome the simultaneous estimation problem of the variations in sta-

tor resistance and rotor resistance aside from the load torque and all states required for the

speed-sensorless control of induction motors in the wide speed range. In [8] a conventional

Extended Kalman Filter is studied and the corresponding results are given in the presence of

various scenarios, but a sensitivity analysis in the presence of parameter variations is not car-

ried out, whereas in [4] it is shown that EKF is sensitive to parameter variations, especially

at low speeds. Moreover, the experimental results shown in works [9] and [8] are obtained

by processing data acquired from V/f-controlled drives. Note that EKF is also applied for

sensorless control of Synchronous AC drives [54].

An alternative solution to Extended Kalman Filter is presented in [57] where the de-
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sign and implementation of unscented Kalman filters (UKFs) for induction motor sensorless

drives is investigated. UKFs use nonlinear unscented transformations in the prediction step

in order to preserve the stochastic characteristics of a nonlinear system. The advantage of us-

ing UTs is their ability to capture the nonlinear behavior of the system, unlike the Extended

Kalman Filters that use linearized models. But in this work no reference was made to the

parameter variation during operation.

In [64] rotor flux and stator currents are estimated by means of a Sliding Mode Observer

(SMO), processed by the difference of the measured and observed stator currents. For those

systems affine with respect to the input, the Sliding Mode observer is robust against all dis-

turbances including parameter uncertainties that belong to the space generated by the col-

umn of the forcing matrix, but the estimates produced are affected by chattering, as shown

in [64].

In [53], [21] and [20] model reference adaptive control techniques are proposed for de-

signing observers, whereas in [78] the same techniques are employed for designing a con-

troller. Other MRAS observers are described in the literature, and some of them are com-

pared in [69].

From the control engineering point of view, the approach proposed in this study explic-

itly assumes the objective of the robustness of the estimator against variations of all the

parameters of the motor, without the need to estimate some of them. A first step for reach-

ing this objective is that of formulating the state estimation problem in two steps. In the

first step, for a given speed, the rotor flux and stator currents are estimated by means of a

linear fourth order Robust Descriptor Kalman Filter (RDKF), starting from measured stator

currents and the supplied voltages computed by the controller; in the second step, the speed

is estimated by solving a total least-squares problem starting from the dynamic equations of

the rotor flux components (cf. also [21] and [20]). The descriptor form of the KF is used here

because the coefficients of the model are functions of the physical electromagnetic parame-

ters that are simpler than those appearing in the conventional form. Consequently, physical

parameter variations can be directly translated into variations of the coefficients appearing

in the model, and this intrinsically leads to a certain degree of robustness of the Descriptor

Kalman Filter (DKF). Moreover, in order to explicitly take into account parameter uncertain-

ties, a RDKF is designed according to [55] and [75].
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The advantage of the procedure described is that the mechanical equation is not included

in the state estimation procedure, thus avoiding the use of nonlinear estimation methods

such as, for example, EKF, and the connected lack of observability properties of the model

in certain operating conditions [15]; instead, only two linear least-squares problems must be

solved for estimating the state of the system. Moreover, neither load torque estimation nor

parameter estimation is required, guaranteeing, in any case, the robustness of the estimation.

Finally, all of the parameter variations are simultaneously taken into account, and this occurs

independently of the causes of their variation.
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Conclusions

In this thesis the problem of designing observers and controllers for induction motors

has been studied and thoroughly discussed using tools from the nonlinear system theory,

both for analysis and control purposes. Useful techniques have been used to identify the

machine parameters off-line.

In the Introduction was dealt the design a control system for a drive of asynchronous

machines that uses a voltage source inverter to generate the currents and voltages which

carry the drive by making use of an observer of the state rotor variables.

The used control algorithms is the field oriented control (FOC). The model of the asyn-

chronous induction motor is described starting from the mechanical model, the electrical

model through the Steinmetz equivalent electrical circuit that is the IEEE recommended

equivalent circuit, the State Model of Asynchronous Motor and the mathematical model,

completing with the discretization of the last model, realizing the Discrete time mathemati-

cal model.

In Chapter 1 several observer are taken in account in order to be able to compare their

strengths and weaknesses. At first it’s developed a (FOLO) Full Order Luemberger Observer

and its Reduced Order version. Other observer that was considered it’s the Sliding one. Then

a version of Non linear Flux observer was synthesized in order to consider the effects of

saturation which introduce a nonlinear effects. At last the (EKF) Extended Kalman Filter

was considered, both in complex (ECKF) and the (RAKF) Robust Adaptive Kalman Filter

version.

In Chapter 2 have been presented experimental and simulation results obtained by test-

ing each of the previous algorithms. Excellent results were obtained by use of observer based
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on Kalman Filter, and in particular, the Extended Complex Kalman Filter, because no matrix

inversion is required. In fact the operation of matrix inversion that is necessary in the clas-

sic Extended Kalman Filter is therefore translated in the inverse of a real number in the

proposed Extended Complex Kalman Filter.

In conclusion, a set of tools present in control theory have been applied successfully

in motion control systems with induction motors. This work is certainly not a complete

treatment, since many basic parts are omitted (only the references are given), and for this

reasons is to be understood as completion of studies related to the subject matter.
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