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Preface 

 

 

In recent years passive structural vibration control has been a flourishing 

research area in civil and mechanical engineering. In fact, passive control 

systems can be used to prevent structural elements from damage or 

increase human comfort due to reduced accelerations. 

In this regard, several types of devices have been proposed in order to 

mitigate the dynamic response of different kind of structural systems. 

Among them, Tuned Mass Dampers are undoubtedly the most widely 

used vibration control devices for buildings exposed to earthquake and 

wind loads. 

Nevertheless, Tuned Liquid Column Dampers (TLCDs) represent now 

an interesting alternative for some of their particular characteristics as 

low cost, easy installation, lack of required maintenance, and no need to 

add mass to the main structure. The TLCD simply consists of a U-shaped 

container partially filled with water. It dissipates structural vibrations by 

means of a combined action which involves the motion of the liquid mass 

within the container. Specifically, the restoring force is produced by the 

force of gravity acting on the liquid while the damping effect is generated 

by the hydrodynamic head losses which arise during the motion of the 

liquid inside the TLCD. For analytical investigations, this device is 

generally modeled as a nonlinear single-degree-of-freedom system 

rigidly attached to the main structure to be controlled. Its control 

performance principally depends on an appropriate choice of the tuning 
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and dissipation parameters. However since TLCD response is generally 

nonlinear, the determination of its optimal design parameters may be 

demanding. 

On this base, in this work the behavior and main characteristics of this 

device will be investigated and its effect on the response of vibration 

sensitive systems will be studied, both from a theoretical and an 

experimental perspective. 

Three main aspects will be dealt with. Firstly, an investigation on the 

optimal choice of TLCD parameters will be presented, with the intent of 

a more reliable and efficient design procedure of these devices for real 

damped structures. Secondly, aiming at more carefully matching 

experimentally obtained data, an innovative mathematical formulation 

for the liquid motion within the TLCD will be proposed, as well as its 

extension to TLCD controlled structures. Finally, the stochastic response 

of these devices will be developed in details resorting to a recently 

proposed novel technique. Specifically, results obtained from the 

research undertaken at the Department of Civil and Environmental 

Engineering at Rice University (Houston, USA) will be discussed. 

In order to validate all the proposed theoretical results, numerous 

experimental tests have been performed in the Laboratory of 

Experimental Dynamics at University of Palermo, and experimental vis-

à-vis numerical results will be presented for each proposed development 

throughout the dissertation. 

 

 



 

 

Introduction 

 

 

The trend towards the use of materials with higher mechanical 

characteristics, together with the application of modern computer 

methods for the design of civil engineering systems, leads to the 

realization of increasingly slender and vibration prone structures. For 

these systems, even when the level of vibration does not exceed safety 

criteria or causes structural failure, resulting occupant discomfort needs 

to be avoided. 

As a consequence, a major challenge for researchers and designers in 

structural engineering is the study and realization of innovative devices 

able to mitigate and control vibrations induced by strong natural events 

such as earthquakes and wind excitations. 

A possible method for reducing these undesired effects relates to the 

inclusion of passive vibration control. In this regard, the Tuned Mass 

Damper (TMD) undoubtedly represents one of the most widely used 

devices for reducing structural vibrations. 

On the other hand, a novel type of passive vibration control system, 

namely the Tuned Liquid Column Damper (TLCD), has been recently 

proposed as an interesting alternative to the more common TMD. This 

device simply consists of a rigid U-shaped container, partially filled with 

water, in such a way to be tuned with the main system to which it is 

rigidly connected. Compared to most passive vibration control systems, 

including TMDs, TLCDs possess desirable characteristics, such as lower 
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costs, easy installation, low maintenance requirements and no need to 

add mass to the main structure to be controlled, which make them an 

ideal solution for reducing structural vibrations. 

On this base, the main objective of this dissertation is to investigate 

the behavior and main features of these devices and their influence on the 

response of vibration prone systems, both from a theoretical and an 

experimental point of view. 

To this aim, in Chapter 1 a brief introduction of some basic concepts 

on vibration control systems, and different types of vibration control 

mechanism, is outlined. Specifically, common passive control devices 

and seismic isolation systems will be presented in details. Further, the 

main aspects of TMDs are highlighted, with special emphasis to the 

current optimal design strategy of these systems. 

In Chapter 2 the main features of TLCDs are discussed in detail. 

Specifically, a brief literature review in the area of TLCD is presented, 

and some of the existing applications of these dampers are discussed. 

Further, the nonlinear governing equations for the motion of the liquid 

inside the device, as well as of TLCD controlled structures, are derived 

and existing approaches in literature for the optimal design of these 

dampers are introduced. Finally, the chapter ends with an investigation 

on the control performances of TLCDs, both numerically and 

experimentally, and comparison with TMD device is also considered to 

further assess the efficiency of these systems. 

Since most of the studies dealing with the optimal choice of TLCD 

parameters resort to an iterative procedure for the design of these 

systems, and direct approaches exist only for the case of undamped main 
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structures, in Chapter 3 an approximate direct formulation is derived to 

more simply evaluate TLCD parameters in case of damped main system 

under random loads. Even though the proposed direct approach is 

approximate, since based on the Statistical Linearization Technique and 

on some assumptions pertaining the control system, in the second part of 

the chapter the reliability of the proposed formulation is assessed by 

comparison with Monte Carlo Simulation (MCS) results based on the 

original nonlinear governing equations. Moreover, a parametric 

numerical analysis is carried out in order to investigate the effectiveness 

of the proposed formulation when the underlying assumptions are not 

fulfilled. The proposed direct approach is also used to derive the optimal 

TLCD design parameters, and comparison with previous methods in 

literature is shown. Finally, numerical results obtained with the 

straightforward formulation are validated through an extensive 

experimental campaign on a small scale SDOF shear-type model 

equipped with a TLCD device built in the Laboratory of Experimental 

Dynamics at the University of Palermo. 

Although the increasing use of TLCDs for structural vibration control, 

recent studies have shown that currently used classical mathematical 

model does not always lead to an accurate description of their behavior. 

Specifically, for some TLCD geometrical configurations of engineering 

interest, the classical equation of motion may not accurately describe the 

real liquid motion within the device. Since several experimental results 

have shown an apparent sloshing effect during liquid motion in the 

TLCD device, in Chapter 4 the equation of motion for the TLCD liquid 

displacements is derived taking into account the first linear liquid 
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sloshing mode, through the equivalent mechanical analogy well 

established in literature. Further, a different mathematical formulation of 

the equation of motion is proposed, taking advantage of fractional 

operators and their properties. Specifically, since the apparent effect of 

sloshing is the deviation of the natural frequency from the theoretical 

one, a fractional differential equation of motion is proposed to model the 

liquid vertical displacements within the TLCD device. The latter choice 

is supported by the fact that the introduction a fractional derivative of 

order   alters simultaneously both the resonant frequency and the 

damping of the system. In the second part of the chapter this proposed 

formulation is extended to deal with structures equipped with TLCD 

devices. Finally it is shown, through an extensive experimental analysis, 

how the proposed model can accurately describe both liquid surface and 

structural displacements. Specifically, experimental validation of the 

predicted behavior is fully developed both in frequency and time domain. 

In this regard, it is noted that since the resulting proposed equations of 

motion are linear, albeit of fractional order, identification of the involved 

parameters is extremely simpler than the classical nonlinear formulation. 

In the final Chapter 5 the stochastic analysis of TLCD systems, and 

TLCD controlled structures, under Gaussian white noise excitation is 

addressed through the promising recent technique of the Wiener Path 

Integral (WPI). Specifically, once the basic concepts of the WPI are 

introduced and its application for nonlinear SDOF and MDOF systems 

under Gaussian white noise is discussed, a novel formulation for an 

efficient evaluation of the nonstationary response PDF of such systems is 

proposed. Further, the utility of such an advanced tool is stressed in the 
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last part of the Chapter, where the case of the 2 degree-of-freedom TLCD 

controlled structure is considered, assessing the accuracy of the outlined 

procedure also with the corresponding experimentally obtained PDFs. 

Finally, considering the proposed fractional formulation for the motion of 

TLCD systems, in the last part of the chapter the WPI technique is 

extended to the case of linear and nonlinear systems endowed with 

fractional derivatives elements. Several numerical examples are 

presented to show the reliability of the proposed procedure, including the 

case of the TLCD device and the nonlinear Duffing oscillator, and 

comparisons with pertinent MCS data demonstrate the satisfactory 

degree of accuracy. 

 

 

 





 

 

Chapter 1 

Vibration control systems

 

1.1    Introduction 

 

The current trend toward the use of lightweight, high strength materials, 

together with advanced construction techniques, have allowed the 

realization of buildings with increasing heights, possessing greater 

flexibility and lighter damping. Consequently, these structures are very 

sensitive to environmental excitations, such as wind and earthquakes, 

which cause unwanted vibrations inducing possible structural failure, 

occupant discomfort, and equipments malfunction. Hence the insistent 

demand for practical and effective devices able to reduce these 

vibrations. 

Devices used for mitigating structural vibrations can be generally 

divided into separate categories based on their working principles. 

Passive control devices (Fig. 1.1) are systems which do not require 

any external power source, imparting forces that are developed in 

response to the motion of the structure (Housner et al., 1997, Soong and 

Spencer, 2002, Soong and Dargush, 1997, Saaed et al. 2015). It follows 

that the total energy in the passively controlled structural system cannot 

be increased by the devices. 
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Fig. 1.1 – Scheme of structure with added Passive Energy Dissipation (PED) system 

(Soong and Spencer, 2002). 
 

Active control devices (Fig. 1.2) are systems requiring external power 

source to drive actuators applying forces which tend to oppose the 

unwanted vibrations. The control force is generated depending on the 

feedback of the structural response. Due to the uncertainty of the power 

supply during extreme conditions, such systems are vulnerable to power 

failure, thus making passive systems generally favored over active ones. 

 

 
Fig. 1.2 – Scheme of structure with added Active Control system (Soong and Spencer, 

2002). 
 

Semi-active control systems (Fig. 1.3) are active control devices with 

energy requirements orders of magnitude less than typical active control 
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systems. These devices do not impart energy into the system, thus 

maintaining stability at all times (Symans and Constantinou, 1999). 

 

 
Fig. 1.3 – Scheme of structure with added Semi-active Control system (Soong and 

Spencer, 2002). 
 

Finally, hybrid control devices (Fig. 1.4) employ a combination of 

active and passive systems or passive and semi-active systems. 

 

 
Fig. 1.4 – Scheme of structure with added Hybrid Control system (Soong and Spencer, 

2002). 
 



Chapter 1                                                                                    Vibration control systems 

 

4 

Due to their features, including low costs and low maintenance 

requirements, passive control devices are generally preferred and more 

commonly used to mitigate vibrations in civil structures. 

In this regard, in this Chapter usual structural passive control 

techniques and their applications will be reviewed. Specifically, in 

Section 1.2 main passive control devices will be presented in details. 

Particular attention will be paid on seismic isolation systems, which will 

be described in Section 1.3. Finally the Chapter ends with a detailed 

analysis of a particular class of passive control systems, namely the 

Tuned Mass Dampers (TMDs), whose working principle is the basis for 

the study of Tuned Liquid Column Dampers (TLCDs), the control 

devices object of this dissertation. 
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1.2    Passive vibration control systems 

 

Passive energy dissipation systems encompass a range of materials and 

devices for reducing vibrations and enhancing damping, in new as well 

as already existing structures. 

These devices can operate on diverse principles such as frictional 

sliding, yielding and phase transformations in metals, deformations of 

viscoelastic solids or viscous fluids and the use of external mechanical 

systems connected to the primary structure to be controlled. 

A large number of passive control systems have been developed and 

installed in structures for performance enhancement under wind and 

earthquake loads. In this regard, discussion in the remainder of this 

section is centered on some of the most commonly applied devices. 

Readers are also referenced to the many books and review papers on this 

topic (see e.g. Housner et al., 1997; Soong and Dargush, 1997; 

Constantinou et al., 1998; Kareem et al., 1999), for a thorough analysis. 

 

 

1.2.1    Metallic yield dampers 

 

One of the most effective mechanisms available for the dissipation of 

energy in a structure is through inelastic deformation of metals. In 

traditional steel structures the aseismic design relied on the plastic 

deformation (and post yield ductility) of structural members. 
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The introduction of metallic yield dampers started with the concept of 

utilizing separate metallic hysteretic dampers to absorb part of the 

external energy input to the structure. During the years a variety of such 

devices has been proposed, many of them using mild steel plates with 

triangular or hourglass shape, so that yielding spreads throughout the 

material. 

The dissipating effect is based on the nonlinear force-displacement 

behavior, which typically shows hysteresis loops for energy dissipation. 

Many different designs and materials, such as lead and shape memory 

alloys, have been developed and used. 

The ongoing research has resulted in the realization of several 

commercial products for both new and retrofit construction projects. 

For instance a typical X-shaped metallic yield damper, known as 

ADAS (added damping and stiffness) device, is shown in Fig. 1.5. 

 

 
Fig. 1.5 – Example of ADAS device (Soong and Spencer, 2002). 
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A variation of the above mentioned device, but operating on the same 

principle, is the tension/compression yielding brace, also called the 

unbonded brace (Soong and Spencer, 2002). As shown in Fig. 1.6, it 

consists of a core steel plate encased in a concrete-filled steel tube, with a 

special coating between the core plate and concrete in order to reduce 

friction. The core steel plate provides stable energy dissipation by 

yielding under reversed axial loading, while the surrounding concrete-

filled steel tube resists compression buckling. 

 

 
Fig. 1.5 – Example of ADAS device (Soong and Spencer, 2002). 

 

Since their first application in New Zealand in 1980 (Skinner et al., 

1980), metallic yield dampers have been employed in various countries, 

including a 29-storey building in Italy (Chiampi, 1991), seismic retrofit 

installations in USA and Mexico (Perry et al., 1993, Martinez-Romero, 

1993) and a number of installations in Japan. 
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1.2.2    Friction dampers 

 

Dry friction provides another excellent mechanism for energy 

dissipation, playing for instance an important role in automotive brakes. 

On this base, friction dampers use the mechanism of solid friction which 

develops between two sliding surfaces, to provide the desired energy 

dissipation. 

A critical component of these systems is the sliding interface, since an 

improper composition of the interface layers may cause corrosion and 

thus an alteration of slipping properties with time. As a consequence, 

compatible materials must be found to ensure a constant coefficient of 

friction independent of environmental factors. 

An example of these devices is the X-braced friction damper, shown 

in Fig. 1.6. 

 

 
Fig. 1.6 – Example of X-braced friction damper (Soong and Spencer, 2002). 
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Those devices are not designed to operate during wind storms or 

moderate earthquakes, since maximum energy dissipation is guaranteed 

once slipping occurs at a predetermined optimum load before yielding 

occurs in primary structural members. 

Test data have shown that macroscopic hysteretic models for friction 

dampers are usually rectangular hysteretic loop, thus similar to Coulomb 

friction with a constant coefficient of friction. 

Friction dampers have been installed in several buildings, some as 

retrofits and some as new facilities, including structures in Canada and 

USA (Pall and Pall, 1996). 

 

1.2.3    Viscoelastic dampers 

 

The metallic and frictional devices described so far, are mainly 

intended for seismic applications. On the other hand, viscoelastic 

dampers can be applied in both wind and seismic protection. 

Since the 50s, viscoelastic dampers have been applied as vibration 

absorbing materials, gaining high civil engineering relevance with the 

installation of about 10000 devices to reduce wind induced vibrations, in 

each of the Twin Towers of the World Trade Center in New York in 

1969 (Samali and Kwock, 1995). 

Viscoelastic materials used in these dampers are generally copolymers 

or glossy substances that dissipate energy through shear deformation. A 

typical viscoelastic damper, consisting of viscoelastic layers bonded with 

steel plates, is illustrated in Fig. 1.7. 
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Fig. 1.7 – Typical viscoelastic damper configuration (Soong and Spencer, 2002). 

 

When mounted in a structure, shear deformation and hence energy 

dissipation takes place when structural vibration induces relative motion 

between the steel plates. 

Although originally designed for wind loading, further analytical and 

experimental studies have shown that viscoelastic damped structures can 

be very resistant against a large range of earthquake ground motion 

intensity levels. 

Other than the World Trade Center, several buildings in USA and 

Taiwan (Samali and Kwock, 1995) are equipped with viscoelastic 

dampers to reduce wind induced vibrations, and also seismic retrofit 

projects have been undertaken. 
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1.2.4    Viscous fluid dampers 

 

In previous sections the described passive dampers dissipated energy by 

inelastic deformation of solids. However, fluids can also be used 

effectively to achieve a desired level of passive control. One prominent 

example is the automotive shock absorber, where the damping effect 

results from the movement of a piston head with small orifices in a high 

viscous fluid. 

On this base, many of these devices have been adapted for structural 

applications in civil engineering. Typical example is shown in Fig. 1.8, 

where the dissipation occurs by forcing a fluid, usually a compound of 

silicone or oil, to pass through small orifices in the piston. 

 

 
 

Fig. 1.8 – Scheme of viscous fluid damper (Soong and Spencer, 2002). 
 

These damping devices are small and local components which must be 

integrated within the hosting structures, typically in form of braces or 

vertical elements connecting adjacent floor. 
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If the fluid is purely viscous (e.g. Newtonian), and the flow is laminar, 

then the output force of the damper is directly proportional to the velocity 

of the piston. 

As far as the structural application of these devices is concerned, 

Housner et al. (1997) report the seismic protection of a 1000m long 

bridge in Italy, while in several applications they were used in 

combination with seismic isolation systems. For example, in 1995, 

viscous fluid dampers were incorporated into base isolation systems for 

five buildings of the San Bernardino County Medical Center (Soong and 

Spencer, 2002). 

 

1.2.5    Tuned liquid dampers 

 

Tuned liquid dampers (TLDs) are passive control devices which 

dissipate energy through the sloshing of liquids in a container. These 

devices belong to the more general class of tuned liquid vibration 

absorbers, which includes also the TLCDs that will be described in detail 

in the following Chapter. 

The basic working principle relates to the application of a secondary 

mass in the form of a body of liquid connected to the structural system to 

be controlled (Fig. 1.9), and properly tuned to act as a dynamic vibration 

absorber. Therefore, unlike previously described passive devices, 

vibration energy is not immediately dissipated, but transferred to the 

secondary system represented by the liquid mass. 
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Fig. 1.9 – Tuned Liquid Damper connected to a SDOF system. 

 

TLDs response is highly nonlinear, due to the liquid sloshing 

phenomenon which takes place during the motion. However the system 

has characteristic frequencies which can be tuned for most favorable 

performance, but for large oscillation amplitudes the system is rather 

insensitive to detuning between host and secondary structure. 

Circular containers can be used for symmetric structures with the 

same fundamental frequencies in the principal directions, while 

rectangular tank are preferred for unsymmetrical structures with different 

fundamental frequencies along the principal axis. 

One of the first structural implementation of this device was a steel 

frame airport tower in Nagasaki, Japan (Tamura et al., 1995), consisting 

of 25 cylindrical TLDs, each one being a stacked arrangement of 7 layers 

of water. Other relevant applications can be found in the book by Ibrahim 

(2005). 
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1.3    Seismic Isolation 

 

The concept of seismic isolation was developed to mitigate all kinds of 

ground excitation but, on the other hand, this damping method does not 

work for other type of loads such as strong wind excitations. Clearly, this 

is only a minor restriction for the success of seismic isolation in 

earthquake prone countries, where seismic isolation is a highly 

appreciated concept to protect important structures. Since the isolation 

system is typically installed at the foundation of a structure (Fig. 1.10(a)), 

it is often called base isolation system. 

 

 
(a) 

 
(b) 

Fig. 1.10 – Movement of Building with Base Isolation vs. No Base Isolation 
 

Base isolation uncouples the building or structure from the horizontal 

components of the ground motion (Fig. 1.10(b)) and allows the 

simultaneous reduction of interstorey drifts and floor acceleration by 

providing the necessary flexibility. The underlying idea is to cut down 

the fundamental structural frequency to be much lower than both its fixed 
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base frequency and the predominant frequencies of the earthquake. 

Therefore, the isolation system deflects the seismic energy through the 

modified structural dynamics, rather than dissipating it. Nevertheless, a 

certain level of damping at the isolation level is beneficial to increase the 

first mode damping ratio of the structure, thus suppressing resonance at 

the isolation frequency. 

The first ideas of base isolation date back to the beginning of the 20th 

century (Naeim and Kelly, 1999), but only since the development of 

proper high strength bearings, the concept of seismic isolation has 

become a practical reality. Basically, modern seismic isolation systems 

can be divided into two groups: cylindrical multiple-layer hard rubber (or 

elastomeric) bearings and rollers or sliders. 

 

 
(a) 

 
(b) 

Fig. 1.11 – Base isolation devices: (a) Lead Rubber Bearings; (b) Friction Isolation 

Pendulum. 
 

The first one represents the most common type of base isolation 

systems, and it is made by vulcanization bonding of sheets of rubber to 
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thin steel reinforced plates (Fig. 1.11(a)). These bearings are very stiff in 

the vertical direction and can carry the weight of the building while 

remaining very flexible horizontally. Commonly lead plugs are included 

within the bearing, dissipating energy by yielding (Pirrotta, 1996; Pirrotta 

and Ibrahim, 1997). 

The second type of isolation systems employs rollers or slider between 

the foundation and the base of the structure (Fig. 1.11(b)). The shear 

force transmitted to the structure across the isolation interface is limited 

by keeping the friction coefficient as low as possible, but at the same 

time sufficiently high to sustain strong winds or small earthquakes 

without sliding. Further, to limit displacements, high tension springs or a 

concave dish for the rollers are used to provide the restoring force to 

return the structure to its equilibrium position (Chopra, 1995; Muscolino 

et al., 1997). 

Clearly, whichever type is used, one has to ensure that there is enough 

space around the structure to allow for the necessary large base 

displacements. 

Actual implementations are numerous (Naeim and Kelly, 1999), 

including prestigious buildings like the San Francisco City Hall or the 

Los Angeles City Hall. 
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1.4    Tuned Mass Damper (TMD) 

 

The purpose of incorporating a Tuned Mass Damper (TMD) in a 

structure is mainly the same as that discussed for all other vibration 

control systems: reducing the demand for energy dissipation on the 

primary structure under the action of external forces. 

In the case of TMD this reduction is achieved by transferring the 

energy produced by the vibrations to the TMD itself which, in its 

simplest form, consists of a mass-spring-dashpot system connected to the 

main structure to be controlled, as shown in Fig. 1.12. 

 

 
 

Fig. 1.12 – Tuned Mass Damper connected to a SDOF system under external excitation. 

f (t) 
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In the simple case of harmonic excitation    0 sinf t f t   and no 

damping in the main system, it can be demonstrated (Den Hartog, 1956) 

that the main mass M does not vibrate if the natural frequency of the 

absorber k m  is chosen to be equal to the frequency   of the external 

force  f t . 

It is worth noting that a number of practical considerations should be 

observed in the design of a TMD systems, such as the amount of added 

mass that can be practically placed on the top of a building. Also TMDs 

displacement relative to the building represents another important design 

parameter, since large movements are often needed for a reasonable 

response reduction of the building. Finally, low friction bearing surfaces 

are needed in sliding mass TMDs, so that the device can respond to the 

building movements also at low levels of excitation. 

 

 

1.4.1    Literature review on TMD systems 

 

The concept of using TMDs for structural control has its roots in the 

dynamic vibration absorbers invented by Frahm in 1909 (Frahm, 1909, 

Den Hartog, 1956). 

The system devised by Frahm had however no damping, so it was 

only effective when the natural frequency of the absorber was very close 

to that of the external excitation. 

In the early 50s Den Hartog (Den Hartog, 1956) considered the case 

of a linear undamped single-degree-of-freedom (SDOF) system, 
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connected to a TMD with damping, and subjected to a harmonic force. In 

this way he demonstrated how, if a certain level of damping was 

introduced into the TMD device, system response could be significantly 

reduced also at frequencies different from the resonance one (Fig. 1.13). 

The same author then derived some closed form expressions in order to 

determine optimal TMDs design parameters. 

 

 
 

Fig. 1.13 – Displacement amplitude of the main structure for various values of the 

damping in the TMD (Den Hartog, 1956). 
 

This first study was then followed by many others, among which those 

of Ioi and Ikeda and that those of Warburton in 1980. 

Ioi and Ikeda (Ioi and Ikeda, 1978) found some correction factors for 

the optimal TMDs parameters assuming a modest value of viscous 

damping in the main structure. 

Warburton and Ayorinde (Warburton and Ayorinde, 1980) 

analytically determined the optimal values of TMDs parameters, for 

various values of the ratio between the mass of the TMD and the main 

system, and for certain values of the damping coefficient of the structure. 
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Subsequently, the same author (Warburton, 1982) analyzed also the 

response of a SDOF structure with a TMD and subjected to either 

harmonic type or to a white noise base excitation. In this way he derived 

closed-form expressions for the optimal TMD parameters in case of 

undamped SDOF system. 

The efficiency of this system in reducing the vibrations of structures 

forced by wind, as well as for the case of seismic excitation, is now well 

established (for example, Villaverde, 1994). 

In the study of Villaverde three different structures were analyzed: a 

2D 10-storey building, a 3D single-storey frame and a cable-stayed 

bridge (Fig. 1.14), using nine different records of seismic accelerations. 

 

 

 
 

 
 

Fig. 1.14 – The three analyzed models (Villaverde, 1994). 
 

The obtained theoretical and experimental results showed that the 

efficiency of the TMD in reducing the response of the same structure 
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during different earthquakes, or of different structures during the same 

earthquake, is significantly different. In fact, in some cases good 

performance can be achieved, while in some cases no appreciable effect 

can be obtained. Specifically, the damping effect was higher for base 

excitation frequencies close to the resonance and decreased as soon as the 

frequency departed from the natural frequency of the system to which the 

TMD was tuned. 

Much of the initial research on TMDs has been focused on the 

restrictive assumption that a single operating frequency is in resonance 

with the fundamental frequency of the machine. Civil engineering 

structures however, are subjected to different types of environmental 

loads, which contain many frequency components. Thus the performance 

of TMD is complex, and for multi-degree-of-freedom (MDOF) systems 

less efficient than expected. In this regard, the response of the first mode 

of a structure with TMD tuned to the fundamental frequency can be 

greatly reduced but, in general, the higher modal response may only be 

marginally reduced or even amplified. To overcome this problem more 

than one TMD, each tuned to a different dominant frequency, can be 

employed. 

The concept of multiple TMDs (Multiple Tuned Mass Damper, 

MTMD), together with the development of its optimization procedure 

has been proposed by Clark (1988). Since then, numerous studies have 

been conducted on the behavior of MTMDs connected in parallel to the 

main system (Xu and Igusa, 1992; Yamaguchi and Harnporchai 1993). 

Having observed that the prevailing response of isolated structures is 

related to the contribution of the first mode only, and since TMDs can 
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significantly reduce the response of this mode, Palazzolo and Petti (1999) 

proposed to combine in a single system these two properties (Fig. 1.14). 

Analytical results showed that the use of TMD in a structure with base 

isolation has the advantage of absorbing the energy produced by the 

earthquake without affecting the isolation effect, greatly reducing the 

displacements at the base of the main system. 

 

 
 

Fig. 1.15 – Base isolated structure, with TMD (Palazzolo and Petti, 1999). 
 

Since then, numerous other studies have been conducted for the 

development of this vibration control system, especially as regards both 

different possible procedures of optimization, and for the use of such a 

device in combination with other modern control systems, such as active, 

semi-active or hybrid control (Housner et al., 1997; Spencer and 

Nagarajaiah, 2003. Soong and Spencer, 2002). 

 



Structural vibration control through Tuned Liquid Column Dampers: theoretical and 

experimental analysis 

23 

 

1.4.2    Applications of TMDs for structural control 

 

A large number of passive vibration control systems has now been 

developed and installed in numerous facilities around the world. Only in 

North America, these devices have been applied in hundreds of new and 

existing buildings, and many more in bridges. Figure 1.16 shows the 

distribution of these buildings on the basis of the year in which the 

system was installed up to 2000. 

 

 
 

Fig. 1.16 – Application of passive control systems in North America (Soong and 

Spencer, 2002). 
 

TMDs, and their variants, represent the majority of the passive control 

devices currently in use. These devices are not only applied to buildings, 

but also to chimneys, bridges and other industrial equipment in Saudi 
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Arabia, Pakistan, Japan, Australia, Britain, Germany, Belgium and 

Canada. 

One of the first applications of TMDs in a building dates back to 

1977, when in a 277m high skyscraper, the Hancock Tower in Boston 

(Fig. 1.17(a)), two TMDs were installed at the 58th floor of tower 

 

 
(a) 

 
(b) 

Fig. 1.17 – (a) Hancock Tower (Boston, USA); (b) Citicorp Center (New York, USA). 
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Each unit measures approximately 5.2 5.2 1m   and consists of a 

steel container filled with lead, with a weight of 300t, connected to the 

structure with shock absorbers; with this system structural response 

reductions up to the 50% have been obtained. 

Another of the first applications, dating back to 1978, is the Citicorp 

Center, a tower of 278m in New York (Fig. 1.17(b)). The system consists 

of a concrete block of 410t connected to the structure through a set of 

two spring mechanisms, installed at the 63rd floor and allowing for a 

reduction of the wind induced displacements up to the 40%. 

Finally, a very recent and world famous TMD can be found in the 

Taipei Financial Center, known as Taipei 101 (Fig. 1.18), Taipei in 

Taiwan. The building with its 508m is the fourth highest in the world and 

includes an internal TMD pendulum weighing 660t (Fig. 1.19(a)), and 

two other, later installed, TMDs, of 4.5t each (Fig. 1.19(b)). 

Many other applications of TMDs can be found around the world, 

some of them are listed in Fig. 1.20. 
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Fig. 1.18 – The Taipei 101 (Taipei, Taiwan). 
 

 
(a) 

 
(b) 

Fig. 1.19 – (a) Pendulum TMD; (b) pinnacle type TMDs. 
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Fig. 1.20 – List of buildings with TMDs (Chaiviriyawong e Prachaseree, 2009). 
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1.4.3    The equations of motion 

 

Consider a shear-type single-degree-of-freedom structure (main system) 

subjected to a base excitation  g
x t  (Fig. 1.21(a)), whose equation of 

motion can be written as 

       gM x t Cx t Kx t Mx t     (1.1) 

where  x t  is the relative displacement of the main system and ,M C  

and K  are the mass, damping and stiffness parameters of the main 

structure respectively. 

 

 
(a) 

 
(b) 

Fig. 1.21 – (a) Main system; (b) System connected to the TMD device. 
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Let the motion of the main system be controlled through a TMD 

device (Fig. 1.21(b)) possessing mass 
dm , stiffness 

dk  and damping 
dc . 

Clearly, because of the base acceleration, the mass M of the main system 

will be subjected to a displacement in the horizontal direction  x t , and 

the TMD mass displacement in the horizontal direction will be  d
x t . 

Natural frequency and damping ratio of the main system can be 

defined respectively as 

1

K

M
   (1.2) 

1

12

C

M



  (1.3) 

Analogous relations can be obtained for the TMD parameters 

d
d

d

k

m
   (1.4) 

2

d
d

d d

c

m



  (1.5) 

Finally the following parameters, useful for the optimal design of the 

TMD device, can be introduced 

1

d
d





  (1.6) 

d
d

m

M
   (1.7) 

where 
d

  is the so-called tuning frequency ratio and 
d

  is the mass ratio. 
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Since the structure in Fig. 1.21(b) is a two degrees-of-freedom linear 

system, its equations of motion can be directly written as 

   d d d d d g

d dd d d d d d g

Mx C c x cx K k x k x Mx

m x c x c x x k x m xK

        


     

 (1.8) 

Substituting Eqs. (1.4)-(1.7) into Eq. (1.8) yields the equations of 

motion in canonical form as 

   1 1
2 2 2
1 1

2 2

2 2 2

2 2

d d dd d d d d d d

d d d d d d d

d g

d gd

x x x x x x

x x x x x x

           

     

       


     

 (1.9) 

If the case of a generic forcing function  f t  acting directly on the 

main structure is considered, Eq. (1.9) can be modified as 

   
 2 2 2

1 1

2 2

1 12 2 2

2 2 0

d d d d

d

d d d d d d d

d d d d d d d d

f t
x x x x x

M

x x x xx

           

     


    


   





 (1.10) 

 

1.4.4    Optimization of the design parameters 

 

The aim of the design of any control system for the reduction of 

unwanted vibrations, is to optimize the damper parameters to maximize 

its effectiveness. In this regard, the main TMDs parameters are certainly 

the frequency d  (Eq. (1.4)) or equivalently the frequency ratio d  in 

Eq.(1.6), and the damping ratio d  in Eq. (1.5). Other parameters, such 

as the mass ratio 
d

 , are generally obtained by practical considerations 

and geometrical constraints, thus their optimization is not generally 

considered. 
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One of the first studies in this direction is due to Den Hartog (1956). 

In his paper, the author analyzed the behavior of SDOF oscillator 

connected to a TMD and subjected to an external harmonic excitation 

  0

i tf t P e  , assuming no damping in the main system  1 0  . Then 

he studied the influence of damping ratio d  on the dynamic 

magnification factor (DMF), defined as 

max

st

x
DMF

x
  (1.11) 

where maxx  is the maximum response of the main system in steady state 

conditions, while  0stx P K  is the static displacement produced by the 

maximum force   0
f t P  when applied statically to the structure. 

Figure 1.22 shows a typical plot of the DMF in Eq. (1.11) as a 

function of the nondimesional excitation frequency  1   for 

1d   (tuned case), 0.01d  , and several values of the damping ratio 

d . As shown in this figure, without absorber damping  0d   the 

response amplitude of the combined system is infinite at two new 

resonant frequencies, while, exactly for 1  , the response amplitude 

vanishes. On the hand, if the TMD damping is infinite the two masses are 

virtually fixed together, forming a new SDOF system with an increased 

mass  dM m  and a slightly decreased resonant frequency. Therefore 

somewhere between these extremes there must be an optimal value of d  

for which the response reaches a minimum for broad band excitation. 
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Fig. 1.22 – DMFs for various values of damping ratio d   0.01; 1d d   . 

 

Figure 1.22 shows also another important phenomenon which occurs 

in case of an undamped main system. Specifically, for a certain value of 

d  and independently of the absorber damping ratio d , there exist two 

invariant points P and Q where all response curves possess the same 

value of the DMF. Once the mass ratio d  has been set, the location of 

such fixed points depends only on the frequency ratio d , that can be 

varied until it reaches a value for which the minimum possible DMF is 

obtained for both P and Q. Therefore the objective of minimal structural 

response is accomplished by demanding that the invariant points have 

equal heights, i.e. equal DMF. This can be achieved by the correct choice 

of d  and subsequently d  can be employed to adjust the response 

curves to pass with horizontal tangent through P and Q (Fig. 1.23). 

 

ζd=0 

ζd=1 

0<ζd<1 

1    

DMF  
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Fig. 1.23 – DMFs for optimal value of d   , ,0.01; 0.987; 0.061d d opt d opt     . 

 

Following this procedure, Den Hartog (1956) obtained the optimum 

frequency ratio and damping ratio for the undamped main system under 

harmonic external excitation as 

,

1

1
d opt

d







 (1.12) 

,

3

8(1 )
pt

d

d

d o





  (1.13) 

After Den Hartog's study, many other procedures have been proposed 

in order to find the optimal tuning ratio and damping ratio, for undamped 

primary structures under different kind of loading conditions (Warburton, 

ζd,opt=0.061 

ζd=0 

ζd=0.03 

ζd=0.061 (optimal) 

ζd=0.1 

1    

DMF  
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1982; Rana and Soong, 1998; Hoang et al., 2008; Adam et al., 2003). 

Table 1.1 reports some of the optimal TMD parameters for various 

excitations. 

 

Table 1.1 - Optimal TMD parameters for loading conditions of a SDOF system. 
Type of excitation Point of application νd,opt ζd,opt 

0
i tP e   Structure 

1

1 d
 

 

3

8 1

d

d




 

 2 singx t   Base 
1

1 d
 

 

3

8 1

d

d




 

Stationary random 

noise 
Structure 

 
2

1 2

1

d

d








  

  

1 3 4

4 1 1 2

d d

d d

 

 



 
 

Stationary random 

noise 
Base 

 
2

1 2

1

d

d








  

  

1 4

4 1 1 2

d d

d d

 

 



 
 

 

It is worth noting that when the damping ratio of the main system 1  

is not negligible, the fixed points P and Q are no longer uniquely 

determined. Therefore, numerical procedures are required to derive 

optimal values of TMD parameters. For instance Warburton (1982) 

applied a optimization criterion based on the minimization of the transfer 

function amplitude of the main system  R H  . In this manner, 

optimal values of d  and d  can be obtained solving the following set of 

equations 

0

0

d

d

R

R









 



 (1.14) 
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These equations are generally nonlinear, therefore numerical solutions 

are often required. In this regard, optimal values have been reported in 

table form by Warburton (1982), for various values of the mass ratio and 

main system damping ratio 1 , as shown in Fig. 1.24. 

 

 
 

Fig. 1.24 – Optimal TMD parameters for a damped SDOF main system  

(Warburton, 1982). 
 

From this figure it is apparent that for fixed mass ratio d , 1  has 

little effects on the optimal TMD parameters. Specifically for increasing 

values of the structural damping ratio, the optimal tuning ratio decreases 

while the optimal damping ratio experiences small variations. 

 

 

νd,opt ζd,opt ζ1 μd 





 

 

Chapter 2 

The Tuned Liquid Column Damper 

 

2.1    Introduction 

 

Vibration control by means of liquid motion was proposed for the first 

time by Frahm, a German shipbuilder, at the end of the 19th century, 

when a device realized connecting two tanks filled with water (Fig. 2.1) 

was successfully used to reduce ship rolling motion (Den Hartog, 1956). 

In this regard, first studies on these devices for structural control 

applications are due to Kareem and Sun (1987), Modi and Welt (1987) 

and Fujino et al. (1988). 

 

 
Fig. 2.1 – Frahm's anti-rolling tank (Den Hartog, 1956). 
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Based on these works, Sakai et al. (1989, 1991) proposed a novel type 

of vibration control device for the pylons of cable-stayed bridges, the so-

called Tuned Liquid Column Damper (TLCD).  

Unlike classical TLDs (see Section 1.2.5), which depend on the 

movement of the liquid (namely the sloshing) in rectangular or circular 

vessels to reduce structural vibrations, TLCDs dissipate vibrations 

through a combined action that involves the movement of mass of liquid 

inside a U-shaped container. Specifically, when the structure experiences 

vibration, its energy is transferred to the TLCD liquid. The motion of the 

main structure is then reduced by the TLCD through the gravitational 

restoring force acting on the displaced liquid, and energy dissipated by 

viscous interaction between the liquid and TLCD rigid wall. Clearly, if 

higher dissipation is needed, orifices can be included inside the TLCD 

container. Figure 2.2 depicts a schematic drawing of a TLCD device. 

 

 
Fig. 2.2 – Tuned Liquid Column Damper. 
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It is worth noting that TLCDs offer some interesting advantages over 

other commonly used passive control devices, such as TMDs, as well as 

over other systems based on liquid motion, including TLDs (Ziegler, 

2007). Specifically: 

 Easy implementation; 

 Low cost and almost no maintenance needed, because no mechanical 

systems are required; 

 No need to add external mass to the primary structure to be 

controlled, since the container can be used for building water supply, 

unlike a TMD where the dead weight of the mass has no other 

functional use; 

 TLCDs can take almost any shape, so that they can also be easily 

installed in existing structure; 

 Unlike their counterpart, the TLDs, the working mechanism of 

TLCDs is more simple, so that a mathematical model that accurately 

describes the dynamic of TLCD controlled systems can be 

formulated; 

 Damping in TLCDs can be controlled by changing orifices openings, 

thus even enabling to implement active control mechanism if 

necessary; 

 TLCDs frequency can be easily changed, simply adjusting the liquid 

column height inside the container. This is an attractive feature, 

should one need to retune the damper in case of a change in the 

primary system frequency. 
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All these characteristics make TLCDs a particularly attractive passive 

control device and, therefore, an interesting alternative among other 

systems. 

On this base, in this Chapter the main features of TLCDs will be 

discussed in detail. Specifically, in Section 2.2 a brief literature review in 

the area of TLCD is presented. Relevant literature is also referenced at 

appropriate places in later chapters of the dissertation. Some of the 

existing applications of these dampers, especially in civil engineering 

structures, are discussed in Section 2.3. Further, the governing equations 

for the motion of the liquid inside the device, as well as of TLCD 

controlled structures, are derived in Section 2.4. In Section 2.5, the 

existing approaches in literature for the optimal design of these dampers 

are discussed. Finally, in Section 2.6, control performances of TLCDs are 

investigated, both numerically and experimentally, and comparison with 

TMD device is also considered to further assess the efficiency of these 

systems. 
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2.2    Literature review on TLCD systems 

 

As already stated, it was firstly Sakai et al. (1989) who introduced 

TLCDs as an effective device for reducing vibrations of civil engineering 

structures. In this regard, some of the earliest studies on TLCDs for the 

control of wind excited structures can be found in Xu et al. (1992) and 

Balendra et al. (1995), while the performance of TLCDs for applications 

to seismic excited structures was studied by Won et al. (1997) and Sadek 

et al. (1998). 

Gao and Kwok (1997) studied the effectiveness of TLCDs in 

controlling structural vibration, and estimated the optimum parameters of 

TLCDs for maximum reduction of peak structural response to harmonic 

excitation. Their results showed that the mass ratio and structural 

damping ratio govern the optimum parameters. Related studies were 

conducted by Balendra et al. (1995, 1998, 1999), Chang and Hsu (1998) 

and Chang (1999), Yalla and Kareem (2000) and Debbarma et al. (2010). 

Readers are referred to Section 2.5 for a detailed analysis of relevant 

studies on optimum TLCD parameters evaluation. 

Multiple Tuned Liquid Column Dampers (MTLCDs) with natural 

frequencies distributed around the natural frequency of the primary 

system requiring control have been studied extensively by Fujino and 

Sun (1993), Sadek et al (1998), Chang et al. (1998), Gao et al. (1999), 

and Yalla and Kareem (2000). Such systems lead to smaller sizes of 

TLCDs which would improve their construction, installation and 
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maintenance, and also offer a range of possible spatial distributions in the 

structure. The tuned multiple spatially distributed dampers, offer a 

significant advantages over a single damper since multiple dampers, 

when strategically located, are more effective in mitigating the motions 

of buildings and other structures undergoing complex motions (Bergman 

et al. 1989). 

Experimental studies on these devices have been conducted for the 

first time by the same Sakai et al. (1991) verifying the performance of a 

TLCD installed in a small-scale model of a pylon of a cable-stayed 

bridge. Balendra et al. (1995) conducted tests on the TLCDs with shaking 

tables, to study the effect of different opening ratio of the inner orifice on 

the motion of the liquid. Xue et al. (2000) have presented an 

experimental study on the application of TLCDs for the reduction of the 

pitching motion of the structures and have conducted some tests to 

delineate the influence of the different parameters of the damper on the 

performance of TLCDs. More recently Colwell and Basu (2008) have 

considered the use of various liquids in TLCDs, testing the effect of 

viscosity on the properties of the control system, demonstrating that 

TLCDs performance deteriorates at increasing fluid viscosity. 

A rather small variation of TLCDs, the so-called Liquid Column 

Vibration Absorbers (LCVAs), has been proposed by Hitchcock et al. 

(1997a), considering an intermediate horizontal tube with different cross 

sectional area with respect to the vertical tubes of the U-shaped 

container. Results showed that since the vertical and the horizontal parts 

of the container have different dimensions, some benefits can be obtained 

such as easier adjustment of the frequencies and wider range of reachable 
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natural frequencies. In fact, LCVA natural frequency is determined not 

only by the height of the liquid column but also by its geometrical 

configuration. 

Experimental tests on such devices have been conducted by Hitchcock 

et al. (1997b), for LCVAs without orifices inside the tank, to determine 

the features affecting their characteristics. Specifically natural frequency 

of LCVA was found to depend also on the ratio of the cross-sectional 

area of the vertical columns to the cross-sectional area of the horizontal 

column. 

One of the major disadvantages of TLCDs and LCVAs is that their 

control effect is unidirectional; accordingly they may be installed in 

structures that oscillate with a single prevalent direction, but not on 

structures oscillating in several directions. To overcome this problem, 

systems such as the Double Tuned Liquid Column Damper (DTLCD), 

formed by two TLCD positioned orthogonally to one another (Fig. 2.3) 

(Sakai et al., 1991), have also been proposed. 

 

 
Fig. 2.3 – Double Tuned Liquid Column Damper. 
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Also a fluid-dynamic hybrid system, called Hybrid Tuned Liquid 

Column Damper (HTLCD), was developed to overcome this problem 

(Fig. 2.4). This system consists of a unidirectional TLCD fixed on a 

rotating circular platform, whose motion is controlled by an electro-

mechanical device (Battista et al., 2008). This hybrid system is passive in 

the production of the control forces to reduce the amplitude of the 

oscillations, while it is of the active type in the research phase of the 

prevailing direction of the action. 

 

 
Fig. 2.4 – Hybrid Tuned Liquid Column Damper (Battista et al., 2008). 

 

Finally, a different type of TLCD, called Pressurized Tuned Liquid 

Column Damper (PTCLD) (Ziegler, 2008; Hochainer, 2005; Hochainer 

and Ziegler, 2006), has been proposed generating a pressure inside the 

two air chambers sealed at both ends of a TLCD. In this way the 

frequency can be adjusted not only by varying the height of the liquid 

column, but also the pressure inside of its two air chambers. 
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In recent years several applications of modified TLCD devices have 

been studied in order to enhance the control performance. In Min et al. 

(2014) a two-way column/sloshing liquid damper has been proposed; in 

Sarkar and Gudmestad (2014) the TLCD has been coupled to a pendulum 

mass damper; Al-saif et al. (2011) investigate on a modified version of 

TLCD in which a moving ball is introduced in the horizontal part of the 

pipe; in Ziegler (2008) a novel design of a torsional sealed liquid 

column-gas damper (TLCGD) has been presented in order to enhance the 

efficiency in strongly asymmetric buildings. 
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2.3    Applications of TLCDs for structural control 

 

Even though TMDs, and their modifications, represent the great majority 

of currently applied passive vibration control devices with auxiliary 

mass, there exist several real applications of TLCDs systems for 

vibration mitigation. To show the applicability of these devices, in this 

Section some of these examples are presented. 

One of the first installations of TLCD in a building dates back to the 

mid-90s (Teramura and Yoshida, 1996), in the Sofitel Hotel (Tokyo, 

Japan), a 26 story steel building with a height of 106m (Fig. 2.5). 

 

 
Fig. 2.5 – Sofitel Hotel (Tokyo, Japan). 
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This building has a large height to width ratio and it is therefore wind 

sensitive. For this reason a TLCD with a period adjustment equipment 

(LCD-PA) has been built, thus making it possible to adjust the movement 

of the liquid within the TLCD, as shown in Fig. 2.6. 

 

 
Fig. 2.6 – LCD-PA. 

 

The device installed in the Sofitel Hotel is a bidirectional TLCD with 

a rectangular base, with four Period Adjustment (PA) devices, a total 

weight of 58t and a weight of the liquid only of 36t. The tank has a part 

in which the liquid is free to move horizontally, four vertical sections at 

each corner and four air chambers that constitute the PA, separated by 

dividers; the PA is housed between two vertical sections, as shown in 

Fig. 2.7. 

 

 
Fig. 2.7 – The built system. 
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It is worth noting that tests have shown that this system has effectively 

reduced maximum accelerations of almost 50% with respect to the 

uncontrolled structure. 

Another interesting and more recent application of TLCDs can be 

found in the One Wall Centre (Vancouver, Canada) (Fig. 2.8). 

 

 
Fig. 2.8 – The One Wall Centre (Vancouver, Canada). 

 

Completed in 2001 and with a height of 150m, the tower contains two 

TLCDs at the top, each one with 230t of water, installed to reduce wind 

induced vibrations (Fig. 2.9). 
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(a) 

 
(b) 

Fig. 2.9 – TLCD design for One Wall Centre: (a) top floor plan; (b) cross-section of one 

of the TLCDs. 
 

Examples of TLCDs controlled structures can be found also in the 

USA. For instance the Random House Tower (New York, USA) (Fig. 

2.10) is a skyscraper completed in 2003 and with an height of 208m, 

containing two orthogonal TLCDs of 430t and 290t respectively (Fig. 

2.11). 
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Fig. 2.10 – The Random House Tower (New York, USA). 

 

 
(a) 

 
(b) 

Fig. 2.11 – TLCD design for the Random House Tower: (a) 50° floor plan; (b) East-

West section through building top. 
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Another example can be found in the Comcast Center or One 

Pennsylvania Plaza (Philadelphia, USA). This tower, completed in 2008 

and with a height of 297m, constitutes the world largest existing TLCD, 

with a mass of liquid of 1.300t (Fig. 2.12). 

 

 
(a) 

 
(b) 

Fig. 2.12 – TLCD design for the Comcast Center (Philadelphia, USA): (a) the tower; (b) 

3D rendering of the TLCD tank. 
 

In the early design stages of the project, space was allocated at the top 

of the building for the supplementary damping system. To optimize 
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lateral drift serviceability performance, the tower required supplementary 

damping in its most slender axis only; therefore, one large TLCD was 

designed instead of the more typical two orthogonal TLCD 

configurations. Overall structural cost savings (in millions of dollars) 

have been obtained by using TLCD’s to achieve occupant comfort and 

lateral drift serviceability criteria. 

Finally, it is worth mentioning that TLCDs have been planned for the 

proposed Millennium Tower (Tokyo, Japan), a 170-floor (840m high) 

skyscraper, designed by architect Sir Norman Foster. Due to this super-

tall building exposure to typhoons, external damping sources are needed 

to control the wind induced vibrations. In addition to massive steel 

blocks at the top, there are water tanks with ducts between them. The 

water would provide passive resistance under normal conditions, but 

under high winds, the sensors trigger a pumping mechanism, changing 

the control mode from passive to active. Figures 2.13 and 2.14 show the 

rendering of the structure and the scheme of the circular TLCD concept 

in this tower. 
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Fig. 2.13 – The Millennium Tower (Tokyo, Japan). 

 

 
Fig. 2.14 –The Millennium Tower: passive and active TLCD concept. 
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2.4    The equations of motion 

 

As shown in previous Section 1.2.5, TLCDs are passive control devices 

belonging to the family of Liquid Vibration Absorbers systems. Similarly 

to the more common TMDs, TLCD frequency needs to be appropriately 

tuned to the structural frequency, and TLCD damping ratio needs to be 

correctly chosen, in order to reach the best performance in terms of 

structural vibration control. Clearly, before presenting the classical 

procedures proposed in literature for the optimal choice of TLCDs design 

parameters, the classical equation of motions for the TLCD liquid 

displacements and TLCD controlled structures displacements have to be 

introduced. 

In this regard, in Section 2.4.1 the equation of motion of the TLCD 

device only will be derived, whereas in Section 2.4.2 the motion of 

TLCD controlled system will be taken into account, considering the cases 

of base excited structures. 

 

 

2.4.1    Governing equations of TLCD devices 

 

Consider a TLCD device as shown in Fig. 2.15, excited at the base with 

an acceleration  g
x t . The vertical and the horizontal column cross-

sectional areas are Av and Ah, respectively. Since the transversal 

dimension of the vertical columns is generally much smaller than the 
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horizontal length, during the motion the liquid volume inside the vertical 

columns is assumed to move vertically relative to the tube with an 

average velocity  y t . Further, from the continuity equation, the 

horizontal liquid velocity in the horizontal duct has an average velocity 

 y t , where   is the area ratio of the vertical column to the horizontal 

column of the TLCD, that is  v h
A A  . 

 

 
Fig. 2.15 – TLCD device. 

 

Using the energy principles, the equation of motion of the liquid 

displacement  y t  can be derived from the Lagrange equation 

   
y

T U T U
Q

t y y

    
  

   
 (2.1) 
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where T and U are the total kinetic energy and the total potential energy 

of the system, respectively, and Qy is the total non-conservative force in 

the direction of  y t , related to the head loss. 

In particular, assuming unsteady and non-uniform flow (Hitchcok et 

al., 1997a), negligible sloshing behavior on the liquid surface and 

dimension of the column cross-section much smaller than the horizontal 

length of a TLCD (Chaiviriyawong et al., 2007), the kinetic energy T and 

potential energy U can be written as (Chang and Hsu, 1998) 

     

   

2
2 2 2 2

2
2 2

1 1 1

2 2 2

1

2

L H R

g g g

V V V

v g h g

T y x dV y x dV y x dV

A h y x A b y x

   

  

      

   

  

 

(2.2) 

 2 2

L R

v

V V

U gz dV gz dV A g h y        
(2.3) 

where VL and VR are the volumes of the fluid in the left and right column 

respectively, VH is the volume of fluid in the horizontal section of the 

TLCD, g is the gravitational acceleration,   is the density of liquid, h 

and b are the vertical and horizontal liquid length respectively, and z is 

the vertical coordinate measuring from a reference datum (see Fig. 2.15). 

Substitution of Eq. (2.2) and (2.3) in Eq. (2.1) leads to the classical, 

and widely used equation of motion of the liquid in the TLCD (Sakai et 

al, 1989; Gao et al, 1999) 

         2

2

1

2
g

e e

b
y t y t y t y t x t

L L


      (2.4) 

where 
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2
e

L h b   (2.5) 

is defined as the effective liquid length,   is the head loss coefficient and 

2

2

e

g

L
   (2.6) 

is the natural frequency of liquid oscillation inside the TLCD container. 

It can be observed that, if the simple case of uniform cross section 

 1   is considered, then  2
e

L L h b   , which represents the total 

length of the liquid inside the TLCD. 

It is worth stressing that, in order to obtain Eq. (2.4), the non-

conservative force (see Sakai et al., 1989) 

   21

2
y h

Q A y t y t     (2.7) 

has been used, which should take into account the head loss caused by 

the presence of an orifice inside the TLCD and the head losses caused by 

sharp-edged turn-elbow, the transition of the cross section in the vicinity 

of the elbow (Wu et al, 2005) and viscous interaction between the liquid 

and rigid container wall (Hitchcok et al., 1997a). Note that the absolute 

value of the liquid velocity which appears in Eq. (2.7), allows for the 
y

Q  

to be considered always opposed to the liquid flow. 
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2.4.2    Governing equations of TLCD controlled structures 

 

Consider now a shear-type SDOF structure (main system) subjected to a 

base excitation  g
x t , whose equation of motion can be written as 

       gM x t Cx t Kx t M x t     (2.8) 

where  x t  is the relative displacement of the main system and ,M C  

and K  are the mass, damping and stiffness parameters of the main 

structure respectively. 

 

 
Fig. 2.16 – TLCD controlled system. 
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Let the motion of the main system be controlled through a TLCD 

device (see Fig. 2.16). Clearly, because of the base acceleration, the mass 

M of the structure will be subjected to a displacement in the horizontal 

direction  x t , and the water level will consequently experience a 

displacement in the vertical direction  y t . The equation of motion of 

this two degrees-of-freedom system can be derived through the Lagrange 

equations 

( ) ( )
 x

d T U T U
Q

dt x x

    
    

 (2.9) 

( ) ( )
y

d T U T U
Q

dt y y

    
  

  
 (2.10) 

where T and U are the total kinetic and potential energy respectively, and 

Qx is the non-conservative force in the direction of  x t . 

As far as the potential energy U is concerned, it can be simply 

obtained as the sum of the potential energy of the liquid Ul and the 

potential energy of the structure Us, given respectively as 

0

2 2

0

( )

h y h y

l v v vU A g zdz A g zdz hA g y  
 

     (2.11) 

21

2
sU Kx  (2.12) 

As far as the kinetic energy T is concerned, it can be simply obtained 

as the sum of the kinetic energy of the liquid lT  and the kinetic energy of 

the structure sT , given respectively as 
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       

 
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2
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 

 (2.13) 

2 2 21 1
( ) ( 2 )

2 2
s g g gM x x M x xT xx     (2.14) 

Finally, assuming classical viscous damping for the structural system, 

the non-conservative force Qx is given as  

xQ Cx   (2.15) 

Substituting Eqs. (2.11-2.12) and (2.13-2.15) in Eqs. (2.9-2.10) and 

manipulating, leads to the classical equations of motion of TLCD 

controlled systems under a base excitation 

(2 )

(2 )

v h h

g v h g

Mx A h A b x A b y Cx Kx

Mx A h A b x

   

 

     
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 (2.16) 

2 21
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v h h h v

h g
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       

 

    

 

 (2.17) 

Rewriting yields the system 

   

21
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2

v e h v e g

h v e h v h g

M A L x A b y Cx Kx M A L x
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       



    


 (2.18 a,b) 

Finally, in the case in which  1  , then 
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             
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 (2.19 a,b) 

where  m AL  represents the total liquid mass in the TLCD device 

and  hm Ab  is the liquid mass of the horizontal portion only. 

Equations (2.19) are then the equations of motion of the system that, 

even in the simple case in which main system behaves linearly, is a 

system of second-order nonlinear differential equations. In Eq. (2.19b), in 

particular, the second term represents the inertial force that opposes the 

motion with a corresponding mass of liquid equal to m, the damping 

effect is represented by the third term in which it appears the head-loss 

coefficient ξ; finally the last term in the first member represents the 

restoring force of the liquid mass, considering that the difference in 

piezometric level between the two liquid free surfaces is  2y t . The 

terms  hm x t  and  h gm x t , represent the forces acting in opposite 

direction to that of the motion, when the TLCD container is subjected to 

an acceleration     gx t x t . These two terms imply, however, that the 

horizontal portion of the TLCD is always completely full of liquid. 

Finally, dividing Eq. (2.19a) by M  and Eq. (2.19b) by m , Eq. (2.19) 

can be recast in canonical form as 

             
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 (2.20 a,b) 
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where  1 12C M   and  2

1 K M   are the damping coefficient 

ratio and natural frequency of the main structure respectively, 

m

M
   (2.21) 

is the mass-ratio between the liquid and the main structure, and 

b

L
   (2.22) 

is the ratio between the horizontal liquid length b and the total liquid 

length L, namely the so-called length ratio. 
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2.5    Optimization of the design parameters 

 

All previous studies on TLCD indicate that highest damper control 

performance could be achieved only if its parameters are chosen 

properly. Therefore, an appropriate selection of the damper parameters 

should be crucial. However, due to inherent nonlinear liquid damping, a 

great computational effort is required to search the optimum parameters 

of TLCD numerically. Several studies have been then performed to 

determine optimal TLCD parameters. 

In this regard, considering the case of harmonic excitation, interesting 

studies have been developed in (Shum, 2009; Wu et al., 2009, and 

Farshidianfar and Oliazadeh, 2009). Specifically in Shum (2009) a closed 

form solution scheme for explicit design formulas of TLCD parameters 

has been obtained for the case of undamped primary structures, by 

optimizing the response at the two invariant points and verified the 

results with those obtained from the conventional iterative method. Wu et 

al. (2009) introduced a closed form solution together with design tables 

for both uniform and non-uniform TLCDs, as quick guidelines for 

practical use. Further, Farshidianfar and Oliazadeh (2009), dealing with 

the problem of a structure connected to a TLCD and subject to a 

harmonic base excitation, concluded that better control performances are 

obtained for higher value of the mass ratio   and higher value of the 

parameter  . 
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On the other hand, when concerned with earthquake type of loadings, 

these formulations may not model correctly the system behavior, leading 

to improper TLCD design parameters. 

Dealing with earthquake ground motion, Won et al. (1996, 1997) 

investigated the seismic performance of TLCDs for the passive control of 

flexible structures using time-domain non-stationary random vibration 

analysis. In their works a non-stationary stochastic process with 

frequency and amplitude modulation is used to represent the earthquake 

strong motion, and a simple equivalent linearization technique is used to 

account for the nonlinear damping force in the TLCD. Furthermore a 

parametric study is conducted to investigate the effects of the mass ratio, 

head loss coefficient, and loading intensity on the TLCD performance. 

Sadek et al. (1998) investigated on the evaluation of design parameters 

for single and multiple-TLCDs in a deterministic framework. Wu et al. 

(2005) derived a design procedure for TLCDs for damped SDOF 

structures under a white noise type of wind excitation and white noise 

type of earthquake excitation (Wu and Chang, 2006) and presented the 

design optimum parameters numerically obtained through the 

minimization of the normalized response of a damped SDOF structure 

equipped with a TLCD. However, it is worth stressing that, in the 

aforementioned studies, an iterative procedure has been used, which is 

not practically feasible for pre-design purposes that require a straight 

approach. 

Direct approach was firstly presented by Yalla and Kareem (2000). 

Using the TLCD theory and the equivalent linearization scheme, they 

proposed a new non-iterative procedure for explicit expressions of 
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optimum tuning ratio and head loss coefficient considering undamped 

primary structures subjected to white noise and filtered white noise 

excitations representing wind and seismic loadings. Similarly in Chang 

and Hsu (1998) the equations of motion for the liquid column vibration 

absorber (LCVA) are obtained and the optimal head loss coefficient is 

derived explicitly under the condition that the LCVA's frequency is tuned 

to that of the structure. 

Furthermore, in Chang (1999) two sets of common formulas for the 

optimal properties as well as some useful design formulas for various 

passive absorbers, including TLCD, TMD and LCVA, have been derived 

in closed form for undamped primary structures, under a broad-band 

white noise excitation of either wind or earthquake type of loadings. 

Specifically, for a wind type of loading assumed as a Gaussian white 

noise process with power spectral density S0, the obtained expressions are 
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where     for the TMD case, while  2    for the TLCD case. 

Further, for a Gaussian white noise process base excitation, the optimal 

parameters have been obtained as 
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where 2,opt  is the optimal value of the TLCD frequency, while 2,opt  is 

given as 

2,

22

eq

opt

c

AL


 
  (2.27) 

eqc  being the equivalent damping coefficient of the linearized counterpart 

of the equation of motion Eq. (2.20), according to the procedure outlined 

in the following Section 3.2. Note that in (Chang, 1999), an approximate 

formula has been reported for the structural displacement variance of the 

controlled system as 
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where 0G  is the one-sided white noise strength. 

Recently Gosh and Basu (2007), extending the classical theory of 

fixed–point frequencies to undamped structure-TLCD system, proposed a 

new approach for optimal parameters design. In this regard, a closed 

form solution for the optimum tuning ratio of a TLCD attached to an 
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undamped structure has been obtained minimizing the maxima of the 

displacement transfer function of the structure. Then they justify the 

assumption of the existence of fixed-points for damped structural systems 

with attached TLCD through numerical studies. 

Finally another procedure to obtain the optimum TLCD parameters 

has been proposed by Hochrainer (2005), based on the analogy between 

TLCDs and TMDs. He showed in fact that the dynamics of TLCD can be 

described in terms of the corresponding TMD, as shown in Fig. 2.17, as it 

is possible to subdivide the total liquid mass m in a so-called active mass 

*m , which affects the dynamic behavior of the structure, and in a so-

called inactive mass m . 

 
Fig. 2.17 – Analogy between the TLCD and the TMD (Hochrainer, 2005). 

 

Specifically, he obtained 

2*m m  (2.29) 

 2* 1m m m m      (2.30) 

Consequently, once TLCD geometry has been chosen, the 

aforementioned analogy can be used to derive the optimal frequency 

value and the optimal value of the equivalent damping ratio, using the 

already introduced relation for the TMD design in Section 1.4.4. 
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2.6    Effectiveness of the control: TMD vis-à-vis TLCD 

device 

 

In this Section, the control performance of the TLCD will be 

investigated, in comparison also to the more common TMD device. 

Specifically, both numerical analysis on a benchmark structure, and 

experimental investigation will be performed in order to highlight the 

efficiency of the control of both devices and underscore the differences. 

 

 

2.6.1    Numerical investigation on a benchmark structure 

 

A flexible building modeled as a SDOF system excited at the base with a 

Gaussian white noise is here considered as an example to demonstrate the 

control performance of the TMD and TLCD. The mass, stiffness and 

damping coefficient of the SDOF system are assumed respectively as 

7 24.61 10M Ns m  , 
61.04 10C Ns m   (corresponding to 1 1%  ) 

and 
75.83 10K N m   (corresponding to 1 0.179 2 rad s   ). These 

properties represented the first mode of a benchmark 75-story flexible 

skyscraper used in Chang (1999) and Chand and Hsu (1998) and Wu and 

Chang (2006). 

To compare the control performances of the TMD with those of the 

TLCD, for various input strength 0G  and different mass ratio  , in 
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Fig.2.18 the structural variance 2

X  for the uncontrolled system (black 

bold line), the TMD controlled system (continuous dot line) and TLCD 

controlled system (crosses), are reported. Specifically, since the system is 

excited by a Gaussian white noise, the structural displacement steady 

state variance of the uncontrolled system can be obtained in closed form 

as 

0

2 0

3

1 14
X

G


 
  (2.31) 

while the steady state variances of the TMD and TLCD controlled 

systems are obtained through Eq. (2.28) considering     and 

 2    respectively. Note that in that figure, a value of  0.8   has 

been used for the TLCD system. 

As shown in Fig. 2.18, variances of TLCD controlled systems are 

always slightly higher than those of the TMD controlled systems, for 

every value of the mass ratio. However, for higher values of the mass 

ratio, differences among the two control systems decrease. Further, 

variances for both TLCD and TMD systems increase for greater values of 

the input intensity. 
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Fig. 2.18 – Structural displacement variance for TMD and TLCD controlled systems as 

a function of 0G : continuous black line - SDOF main system, lines with dots – TMD, 

crosses – TLCD with  0.8  . 

 

Another relevant aspect is related to the variation of the control 

performances for different values of the length ratio  . In this regard, in 

Fig. 2.19 the control performance of the TMD system is compared with 

the one of the TLCD device, for different values of  . Specifically, in 

this case the control performance index  , given by 

0

2

2

X

X





  (2.32) 

has been used, since it is independent on the input strength 0G . Note that 

in Eq. (2.32) 2

X  is the variance of the controlled system computed 

through Eq. (2.28), while 
0

2

X  is the variance of the uncontrolled system, 
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given by Eq. (2.31). Clearly, the smaller the value of   is, the higher is 

the control performance. 

As shown in Fig. 2.19, once again higher control is reached through 

the TMD, regardless the value of   of the TLCD system. However, 

differences in the control performance between TMD and TLCD 

decrease for higher values of  . 

 

 
Fig. 2.19 – Control performance index for the TMD and TLCD. 

 

From these figures, it is apparent that TMDs are more efficient in 

terms of control performance, in comparison with TLCDs with the same 

mass ratio. Note that similar results have been obtained by (Chang, 1999) 

for the case of wind excitation. 
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However, as stated in (Chang, 1999): “Although the control 

performance of the TMD is always better than the liquid type of mass 

dampers, there may well be other practical situations when the latter type 

is still preferred. These liquid type of mass dampers offer some unique 

practical advantages, such as low cost, easy adjustment, flexible 

installation, and almost maintenance-free which might eventually 

outweigh the slightly better control performance provided by the TMD”. 

 

2.6.2    Experimental investigation 

 

Since comparisons in previous Section 2.6.1, are made purely based 

on the mathematical derivations in (Chang, 1999) under ideal situations 

where the base excitation is assumed to be broadband stationary, in this 

Section control performances of both TMD and TLCD control devices 

are experimentally compared. 

In this regard, three different experimental models have been built and 

tested in the Laboratory of Experimental Dynamics at the University of 

Palermo. 

The first one is a small scale SDOF shear-type frame (Fig. 2.20(a)) 

composed by two steel columns and two nylon rigid plates as base and 

floor respectively, whose dimensions are reported in Fig. 2.20(b). The 

total mass of the model is  4.481M kg , of which 0.408kg takes into 

account the dead weight of the tube mass of TLCD or of the TMD 

connection element. Note that, considering the geometric dimensions 



Structural vibration control through Tuned Liquid Column Dampers: theoretical and 

experimental analysis 

73 

given in Fig. 2.20(b), the theoretical natural frequency of the 

aforementioned system is  1, 10.605the rad s  . 

 

 

 

 
 

 
(a) 

 
(b) 

Fig. 2.20 – SDOF shear-type model: (a) picture of the experimental setup; (b) 

dimensions. 
 

In the second model (Fig. 2.21(a)), the U–shaped Plexiglass cylinder 

tube of diameter  0.054d m  (see Fig. 2.21(b) for details) with a 

constant cross section  222.9A cm  rigidly connected to the upper 

plate of the SDOF frame, has been filled with water, to create a simple 

TLCD control system. Water  3997 g dm   has been poured to a 

level of  0.04h m  from the centerline of the base tube, equivalent to a 
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total liquid quantity of 450ml and total liquid length of  0.185L m , 

which correspond to a theoretical natural frequency, given by Eq. (2.6), 

of  2, 10.29the rad s  , so that the TLCD device has been correctly 

tuned to the frequency of the main system 1,the . Further, the liquid mass 

is  0.422m kg , corresponding to a mass ratio   closed to 0.1. 

 

 
 

(a) 

 
 

 

 

 
(b) 

Fig. 2.21 – SDOF system with TLCD: (a) picture of the experimental setup; (b) 

dimensions. 
 

In the third model (Fig. 2.22(a)) a simple pendulum has been rigidly 

connected to the SDOF shear-type frame, so as to set up a simple TMD 

control system. The TMD is composed of a steel rod, whose dimensions 

are reported in Fig. 2.22(b), bolted to the upper floor, and a steel mass of 

 0.440m kg  connected to the free end. The total mass of the TMD 
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device was almost the same of the TLCD device, so as to maintain 

unvaried the mass ratio of the TLCD model and of the TMD one. 

Further, considering the geometric dimensions given in Fig. 2.22(b), the 

theoretical natural frequency of the TMD device is 

 , 9.13TMD the rad s  , so that it is correctly tuned to the theoretical 

frequency of the uncontrolled system, according to the procedure 

outlined in Section 1.4. 

 

 

 
 

 
(a) 

 
(b) 

Fig. 2.22 – SDOF shear-type model with TMD: (a) picture of the experimental setup; 

(b) dimensions. 
 

As far as the test procedure is concerned, acceleration responses at the 

base, at the storey and on the TMD mass have been acquired using 

Miniature DeltaTron Accelerometers Bruel & Kjær – Type 4507-002 
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piezoelectric accelerometers. In order to condition and amplify current 

signals coming from accelerometers before being acquired and saved, a 

conditioning amplifiers, the Brüel&Kjær Nexus Range Of Conditioning 

Amplifier – Type 2693A014, has been used. Voltage signals have been 

acquired by means of a National Instruments NI-PCI-442 Analogical-

Digital (A-D) Acquisition Board and then processed using a self-

developed signal processing software in Labview and Matlab 

environment. Further, shear-type models have been mounted on a 

shaking table model Quanser Shake Table II that provides the ground 

motion. Figure 2.23 shows the schematic experimental setup, while 

details on the various elements of the acquisition system used for the 

experimental tests can be found in Appendix A. 

 

 
Fig. 2.23 – Acquisition system for the shake-table test. 

 

The dynamics parameters of the uncontrolled system have been 

determined by exciting the structure through sweep sine tests in the 

frequency range: 0.1 - 4 Hz (see Fig. 2.24). 
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Fig. 2.24 – Recorded sweep sine base acceleration. 
 

Four series of data were recorded and, using the acceleration signals, 

the mean Frequency Response Functions (FRF) was computed (see 

Fig.2.25). Finally, by means of the peak-picking procedure together with 

the half-power bandwidth method (Ewins, 1984) the natural frequency 

and the damping ratio of the main system have been obtained as 

 1 10.12rad s   1 1.61f Hz  and  1 0.009  respectively. Note that 

the experimentally obtained natural frequency is rather close to the 

theoretical one, given above. 

All the models have been investigated under a series of different 

sinusoidal ground motion, to capture the main features of the control 

performance of TLCD and TMD. 

In particular two values of the amplitude of the ground acceleration 

have been selected: 0.5 mm and 1 mm. For each amplitude, four different 

values of excitation frequency have been considered: 

1.4 ,1.53 ,1.6Hz Hz Hz  and 1.75 Hz. 
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Fig. 2.25 – Experimental FRF. 
 

Experimental results in terms of acceleration at the storey of all the 

three models driven by a sinusoidal ground motion at resonance, are 

compared in Fig. 2.26. 

 

0 10 20 30 40 50 60
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Tempo [s]

A
c
c
e

le
ra

z
io

n
e

 [
m

/s
2
]

 

 

accelerazione SDOF accelerazione TLCD accelerazione TMD

 
 

Fig. 2.26 – Experimental response acceleration for sinusoidal ground motion with 

amplitude 0.5mm and frequency 1.6 Hz: black line – uncontrolled system; red dashed 

line – TLCD controlled system; blue dotted line – TMD controlled system. 
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It is apparent that at resonance both controlled systems are very 

effective and this is fundamental for vibration control. In particular, for 

both amplitude values, the TMD allows a reduction of the main system 

acceleration of about the 88%, while with the TLCD reduction of the 

83% is reached. Then, as expected, the control performance obtained 

through the TMD is just slightly superior to the TLCD one, and this 

justifies the growing interest on TLCD. 

Experimental investigation has also shown that in some cases an 

amplification of the acceleration responses may be caused by the TMD 

and the TLCD devices if a correct choice of the damping parameters is 

not performed (Di Matteo et al., 2012). 

For instance, considering a sinusoidal ground motion of frequency 

1.4Hz, the TLCD causes an amplification of about 45% of the 

uncontrolled system acceleration (Fig. 2.27). 
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Fig. 2.27 – Experimental response acceleration for sinusoidal ground motion with 

amplitude 0.5mm and frequency 1.4 Hz: black line – uncontrolled system; red dashed 

line – TLCD controlled system; blue dotted line – TMD controlled system. 
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On the other hand, with a sinusoidal frequency of 1.75Hz the TMD 

causes an amplification of about 60% of the uncontrolled system 

acceleration (Fig. 2.28). 
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Fig. 2.28 – Experimental response acceleration for sinusoidal ground motion with 

amplitude 0.5mm and frequency 1.75 Hz: black line – uncontrolled system; red dashed 

line – TLCD controlled system; blue dotted line – TMD controlled system. 
 

It is worth noting that this behavior is probably due to the non-perfect 

choice of values of the damping ratio for the TMD and TLCD devices. 

Better performances can in general be reached also at frequencies 

different from the resonance one, for optimal values of the damping 

coefficient, which however are not generally easy to obtain. 

Previous considerations are reported just to describe the general 

behavior of both devices, but of course, the performance control is not 

compromised, since the maximum value of the uncontrolled acceleration 

is never exceeded. 
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Chapter 3 

Novel direct approximate solution for the optimal 

design of TLCD systems 

 

3.1    Introduction 

 

Analytical and experimental studies on the control performance of 

TLCD in reducing structural dynamic response are widely developed in 

literature, as shown in previous Chapter 2. From these studies it is 

apparent that, like TMDs, the effectiveness of a TLCD depends on proper 

tuning and damping value. The determination of the optimal TLCD 

parameters, with respect to the main structure to be controlled, plays a 

key role in structural design, hence the insistent demand of performing 

response analysis in a quick way for pre-design purposes. 

However, even assuming that the main structure behaves linearly, the 

response of the whole damper-structure system is nonlinear and the 

determination of the optimal parameters is time consuming. 

In order to overcome this problem, there has been a proliferation of 

studies to evaluate the optimal TLCD tuning parameters by using 

simplified formulations, as detailed in Section 2.5. 
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It is worth stressing that, in the vast majority of cases, an iterative 

procedure has been used, which is not practically feasible for pre-design 

purposes, which require a straight approach. 

On the other hand, as shown in Section 2.5, few studies introduce a 

direct approach for the evaluation of the design parameters (Yalla and 

Kareem, 2000; Chang and Hsu, 1998; Chang, 1999; Gosh and Basu, 

2007). From all these analyses, it emerges that to facilitate the design 

procedure, design formulas for choosing appropriate parameters based on 

the optimization of stochastic responses basically assumed no damping in 

the structure (Yalla and Kareem, 2000; Chang and Hsu, 1998; Chang, 

1999), since it has been shown that if the structure is lightly damped the 

influence of structural damping on design parameter values is negligible 

(Luft, 1979). However, in presence of structural damping, results 

obtained may not represent the actual optimum since damping may have 

a significant effect on the design parameters. 

In this Chapter a straight formulation is introduced to more simply 

evaluate TLCD parameters and to predict the behavior of a damped main 

system controlled with a TLCD under random loads. 

Clearly, as detailed in Section 3.3, the proposed simplified 

formulation is approximate since obtained through the Statistical 

Linearization Technique (SLT) and according to some assumptions 

pertaining the control effectiveness. 

However, in Section 3.4 the reliability of the proposed formulation, 

useful for pre-design purposes, has been assessed by comparison with 

numerical Monte Carlo Simulation (MCS) based on the nonlinear 

complete system. Moreover, a parametric analysis has been carried out in 
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order to investigate the effectiveness of the proposed formulation when 

the underlying assumptions are not fulfilled and to define the parameters 

range of applicability. 

Further, in Section 3.5 the proposed formulation has been used to 

derive the optimal TLCD design parameters, and comparison with 

previous methods in literature is shown. 

Finally, in Section 3.6 numerical results obtained with the 

straightforward formulation are validated through an experimental 

campaign on a small scale SDOF shear-type model equipped with a 

TLCD device. 
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3.2    Statistical linearization of TLCD 

 

In this Section, a brief review of the classical Statistical Linearization 

procedure applied to TLCD controlled systems is presented for sake of 

clarity. Further details on the general the Statistical Linearization 

Technique (SLT) can be found in (Roberts and Spanos, 1990). 

Suppose that the main system equipped with a TLCD is driven by 

random forces like earthquake ground accelerations. Ground motion 

records exhibit non-stationary characteristics both in time and in 

frequency domain, but it is of common use to consider that earthquakes 

have a pseudo-stationary part that can be modeled as zero-mean Gaussian 

random process. In this way, it is possible to take advantage of the 

powerful tools of stochastic analysis, if the pseudo-stationary part of the 

ground motion is adequately long with respect to the natural period of the 

structural system and the damping is sufficient to limit the transient 

response. 

Therefore, let the earthquake ground accelerations be modeled as a 

zero mean Gaussian white noise processes. It follows that the 

displacements of the main system and of the liquid, and their derivatives, 

are stochastic processes too (here denoted with capital letters). Moreover, 

due to the presence of the nonlinear damping term, responses are non-

Gaussian processes. 

According to the SLT, the original nonlinear system Eq. (2.20) is 

replaced by a linear equivalent one as follows: 
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 (3.1) 

where 2  is the equivalent damping ratio, obtained minimizing the mean 

square with respect to 2  (Spanos, 1981; Roberts and Spanos, 1990). 

Omitting the time dependence, for clarity sake, yields 
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 (3.2) 

where  E   means ensemble average and  2c L . Once the 

minimum is evaluated the equivalent damping is obtained as 
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 (3.3) 

Since the system in Eq. (3.1) is linear and it is forced by a Gaussian 

process, the responses are Gaussian processes too and then the averages 

involving the velocity of the fluid Y  in equation (3.3) can be written as: 

2
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As a consequence, the expression for the equivalent damping ratio 

becomes 

2

2

2
Y

c
 

 
  (3.5) 



Chapter 3                Novel approximate solution for the optimal design of TLCD systems 

 

86 

where 
Y

  is the standard deviation of the velocity of the fluid. It should 

be noted that the expression reported in Eq. (3.5) is in total agreement 

with those reported in (Balendra et al., 1995; Banlendra et al., 1999). 

Moreover, it should be stressed that the kind of nonlinearity exhibited 

by TLCDs, namely Y Y , can be also recast as  
2

sgnY Y , that belongs 

to the more general class of nonlinearities represented by  sgnY Y


 

when 2  ,  sgn   being the signum function. 

This latter class has been investigated since several dissipating devices 

can be modeled in this way. For instance, by setting 0   one can obtain 

a pure friction device, while by choosing 0 1   a nonlinear viscous 

damper is modeled (Barone et al., 2008). 

The determination of an equivalent linear system for this class of 

devices has been performed in many different ways in literature. For 

example in Soong and Constantinou (1994) and Lee et al. (2004) the 

equivalent viscous damping ratio is obtained by equating the energy 

dissipated by an equivalent linear viscous damping with the energy of the 

nonlinear one in one cycle of vibration under harmonic forces, while in 

Di Paola et al. (2007 and 2008) an approach based on SLT has been 

proposed for the case of the viscous damper subjected to random loads 

for SDOF systems, and in Di Paola et al. (2009) a similar technique has 

been applied also for multi-degree-of-freedom (MDOF) systems. 

In Di Paola et al. (2009) the equivalent viscous damping ratio for the 

general case of a nonlinear damping force described as 

 sgndf c Y Y


 , is found to be 
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1

2

1

2

2

2 1
2

2 Y

c







 
 





 
  
   

(3.6) 

where     is the Gamma function. Notice that relation (3.6) reduces to 

Eq. (3.5) for 2  . 

The use of Eq. (3.5) for design purposes is not straightforward since 

the standard deviation of the velocity of the fluid 
Y

  is still unknown and 

it implicitly depends on 
2 ; then, in general, an iterative procedure is 

necessary as outlined in the following. 

Let recast the equation of motion of the equivalent linear system Eq. 

(3.1) in compact form as 

       +  lin gt t t X t  MZ C Z KZ Mτ  (3.7) 

where      
T

t X t Y t   Z  is the vector collecting the displacement of 

the degrees of freedom,  
T

1 0τ  is the location vector and the 

transpose operation is denoted with the apex T. M, Clin, and K are the 

mass matrix, the linearized damping matrix and the stiffness matrix, 

respectively, particularized as 

2
1 1 1

2
2 2 2

2 01 0
;  ;  

0 21 0
lin

   

  

    
      
     

M C K  (3.8) 

As a first attempt of the iterative procedure, 
Y

  is easily evaluated by 

fixing an arbitrary value of 2  (even equal to zero) as: 
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 2 2

0

YYY
G d   



   (3.9) 

where  YYG   is the one-sided Power Spectral Density function (PSD) 

of the fluid displacement, obtained by using the input-output relationship 

 
   

   
     

*TT

g

XX XY

X

YX YY

G G
G

G G

 
   

 

 
  
 

ZZ
G H ττ H  (3.10) 

in which * means complex conjugate,  
gX

G   is the one-sided PSD of 

the input and  H  is the transfer function of the equivalent linear 

system, defined as follows: 

 
1

2

lini  


    H K C M  (3.11) 

i being the imaginary unit. A new attempt of 2  is easily found by using 

Eq. (3.5) and by substituting 
Y

  evaluated with Eq. (3.9), and so on. The 

procedure should converges rapidly to the actual value of 2  and, by 

using other terms of the response PSD matrix  ZZG , the complete 

response statistics of the response can be computed. 
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3.3    Direct pre-design procedure 

 

The iterative procedure previously described is well established and 

represents a very reliable tool for evaluating the main dynamical 

characteristics of nonlinear systems; however the equivalent linear 

system is found through several numerical evaluations. 

Aiming at providing a tool to promptly compute the equivalent 

damping ratio of TLCDs, the aforementioned iterative procedure cannot 

be pursued, and a different approach is needed. 

To this aim, note that Eq. (3.5) provides a relationship between the 

equivalent damping ratio 2  and the standard deviation of the fluid 

velocity 
Y

 . In order to find a simplified straight relationship between the 

input characterization  
gX

G   and the estimated value for 2 , a closed-

form solution in terms of steady state response statistic 
Y

  is proposed, 

as detailed in the following. 

Specifically, modeling the input as a zero-mean stationary Gaussian 

white noise process, the Lyapunov equation of the evolution of the 

covariance matrix (Bryson and Ho, 1969) of the linear systems Eq. (3.7) 

can be used as: 

      0

T T

s s s st t t G  Q Q QΣ D Σ Σ D G G  (3.12) 

where  tQΣ  is the covariance matrix in terms of the state vector 

coordinates 
T

   Q Z Z , which can be written as 
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 

2 2 2 2

2 2 2

2 2

2

 

X XY XX XY

Y YX YY

X XY

Y

t
sym

   

  

 



 
 
 
 
 
  

QΣ  (3.13) 

G0 is the one-sided white noise strength and sD  and sG  are defined as 

2

1 1 1
 ;s s

lin

  

   
        

0 I 0
D G

M K M C M τ
 (3.14) 

where 2I  is a 2x2 identity matrix. 

The solution of Eq. (3.12) gives the full evolution of all response 

statistics. As above stated, we are interested only in the evaluation of the 

steady state response statistics, that can be achieved by equating to zero 

the right-hand side term of Eq. (3.12). This matrix equation provides a set 

of linear equations for the determination of all the nontrivial components 

of the response covariance matrix. By solving this set of equation the 

exact values of the steady state covariance matrix can be retrieved. In 

particular, after some algebra, the exact solution for the steady state 

variance of the main system displacement and fluid velocity can be 

expressed as 

2 20 0

3

1 2

 ;
4 4

X Y

x y

G G

z z

 
 

 
   (3.15 a, b) 

in which the terms zx and zy have the following expression 

 ;z z
x y

zx zy

N N
z z

D D
   (3.16 a, b) 

where 
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     
    

2 2 2 2 2 2 2

1 2 2 1 1 2 1 2

22 2 2 3 4

1 2 1 2

4 2 2 2 1 1

4 1 1

zN               

         

       

    
 (3.17) 

    
     
      

2 22 4 2 2

2 1 2

2 2 2 2 2

2 1 2

2 42 2 3 4

1 2 2

1 4 1

1 4 3 4 1 1

1 4 1 1

zxD          

       

         

     

     

     

 (3.18) 

  2 2 3 2

1 2 1 11 4 4zyD              (3.19) 

and the frequency ratio, namely  2 1    has been introduced. 

Obviously the obtained relations Eqs. (3.17 - 3.19) are cumbersome 

and cannot be used for practical design purposes. Aiming at an 

approximate evaluation of 2 , Eq. (3.16 b) may be expanded in Taylor’s 

series with respect to 2 , retaining only the first two terms. Then, since 

the main system is assumed lightly damped, higher powers of 1 , namely 

2

1  and 3

1 , can be neglected obtaining: 

 

   

2 2

2 2

2

2 3 2 4

1 2

2

2 1

1 1

yz
     



        



    

     

 (3.20) 

Moreover, the TLCD may be assumed perfectly tuned with the main 

system by letting 1  . Introducing this assumption in Eq. (3.20) yields 

 1 2yz      (3.21) 
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in which the dimensionless parameter 21       depends only on 

the geometry of the TLCD. 

In this way the steady state variance of the fluid velocity 2

Y
  can be 

directly related to the white noise strength G0 as 

 
2 0

1 2 24Y

G


   



 (3.22) 

Finally, a direct relationship that provides the equivalent damping 

ratio 2  as a function of the input strength G0 is obtained by eliminating 

2

Y
  from Eqs. (3.3) and (3.22) 

 
2

2 0
2 1 2 3 3

12

G c
  

 
   (3.23) 

in which 2  has been replaced by 1 . 

The nonlinear algebraic Eq. (3.23) can be easily solved either in 

closed form or by numerical means in order to obtain a good estimate of 

2 , useful for design purpose. 

Specifically, considering that the cubic Eq. (3.23) lacks in its linear 

term and that, assuming realistic values of the system parameters 

included in Eq. (3.23), the polynomial discriminant   is greater than 

zero, then the proposed formulation provides only one real solution in 

terms of 2  as 

 
 

2
32 3

2 2 2 0

33
2 0

1 3
3 9

3 23
3 9

2

a
a a a

a a



 
 
        
 

    
 

 (3.24) 
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where 

2
3 20 1

0 2 2 0 03 3

1

; ; 4 27
2

G c
a a a a a



   
       (3.25 a, b, c) 

Recalling the definitions of  2

2 2g L   and  2c L , a 

relationship that provides the value of the head loss factor   in terms of 

equivalent linear damping ratio 2  is promptly found as 

   1 2 0 2

2

0 1 0 1

2 ,1
4g

G G

     
 

 


   (3.26) 

where 

 
 1 2

0 2 2

2
, 4g

  
   




  (3.27) 

Although the approximate evaluation of the equivalent damping ratio 

has been derived for Gaussian white noise, its extension to non-white 

Gaussian processes characterized by a PSD function  
gX

G   can be 

easily achieved. In fact, for lightly damped structural systems, the 

response will be narrow-banded and there will be no significant 

differences if the term G0 in Eq. (3.23) is replaced with  1
gX

G  . 

In order to more strongly clarify the enhanced proposed procedure in 

comparison with the classical iterative one, in Fig. 3.1 a step-by-step 

flowchart comparing the two methods is provided. 
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(a) 

 
 

 

 

 

 

 

 

 

(b) 
Fig. 3.1 – Flowchart of the two methods: (a) classical iterative procedure; (b) proposed 

approach. 
 

In the following section the approximate procedure here proposed will 

be validated through several numerical simulations in which the 

responses of two different structural systems equipped with TLCD, 

subjected to broadband noise and earthquake-type random loads, will be 

studied in detail. 
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3.4    Numerical analysis 

 

In the present Section the direct proposed approach for the evaluation of 

the equivalent damping useful as pre-design tool is validated by means of 

numerical simulations. 

The main system considered, hereinafter referred to as “system 1”, 

relevant to buildings design and equipped with TLCD, is a flexible 75-

story building used in Chang and Hsu (1998) and here adopted for TLCD 

design under random Gaussian broadband noise loading. The first mode 

properties of this building are 7 24.61 10M Ns m  , 

61.04 10C Ns m   (corresponding to 1 1%  ) and 
75.83 10K N m   

(corresponding to 1 0.179 2 rad s   ). The random Gaussian 

broadband noise is generated ensuring that the PSD can be considered 

constant in a frequency range from zero to the Nyquist frequency. 

 

 

3.4.1    Exact solution versus approximate proposed solution for the 

steady state liquid velocity variance 

 

In the previous section an approximate method to evaluate 2  without 

iteration is introduced as pre-design tool. In order to prove the reliability 

of such a tool Fig. 3.2(a) shows the comparison among the values of 2  

estimated by means of the iterative procedure – Eqs. (3.9 – 3.11) - and 
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values obtained by numerically solving Eq. (3.23), for a wide range of 

the input strength G0 acting on system 1. 
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Fig. 3.2 – (a) Equivalent linear damping ratio versus input strength; (b) Fluid velocity 

steady state variance versus equivalent linear damping ratio. 
 

As expected, the proposed formulation becomes less effective when 

the input strength G0 increases. However, even for a high value of 

   
2

3 2

0 10G m s rad s  the error is always below 10%. 

In Fig. 3.2(b) the exact values of variance 2

Y
 , computed using Eq. 

(3.15 b), are compared with those computed through Eq. (3.22) for a 

wide range of the equivalent linear damping ratio 2 . The apparent good 

agreement between the two curves in Fig. 3.2(b) shows how the 

simplified formulation is able to correctly estimate the relationship 

between 2  and 2

Y
 . The maximum error for 2  up to 0.05 is about 20%. 

However, as it will be demonstrated in the next section, the proposed 

method leads to an accurate estimate of main system displacements. 
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3.4.2    Results in time domain 

 

The ability of the pre-design formulation to predict the system response 

in time domain is investigated. In this regard, results obtained 

considering system 1 excited by a broadband Gaussian noise with a total 

duration of 20 s  (using 5 0 6 0 02, . , .     , and 0.98  ), are depicted 

in the following figures. In particular, main system and fluid 

displacements time histories are reported for nonlinear system Eq. (2.20) 

and equivalent linear system Eq. (3.1) in Figs. 3.3(a) and 3.3(b) 

respectively. It is evident the good match in time domain between the 

nonlinear and equivalent linear system responses, particularly for the 

main system case Fig. 3.3(a). 
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(b) 

Fig. 3.3 – (a) Sample of main system displacement time history; (b) Sample of fluid 

displacement time history. 
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3.4.3    Results in terms of response variance 

 

In this section comparison among response variances of system 1, 

considering the nonlinear system Eq. (2.20) and the equivalent linear 

system Eq. (3.1) with 2  as in Eq. (3.23), is presented for various values 

of the input strength G0. 

Specifically, for the nonlinear systems in Eq. (2.20), the variances 

have been computed through MCS performed using for each analysis 

2000 samples of ground accelerations and directly integrating the 

equation of motion; then response statistics in terms of steady state 

variances have been computed. Transient effects have been avoided by 

computing the response statistics in ergodicity. Thus, the initial 

conditions on the state variables of the response for the k-th sample 

function have been assumed as the state at the end of the (k-1)-th sample 

function of the response. 

Further, steady state response variances of the equivalent linear 

system Eq. (3.1) have been then computed following the procedure 

reported in Eqs. (3.9 – 3.11). 

The response statistics of the nonlinear system Eq. (2.20) and of the 

equivalent linear system Eq. (3.1) are then compared in Figs. 3.4. In 

particular, Fig. 3.4(a) shows the comparison in terms of the main system 

displacement variance 2

X , while Fig. 3.4(b) shows the comparison in 

terms of fluid displacement variance 2

Y . 
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Fig. 3.4 – (a) Variance of main system displacement versus input strength; (b) Variance 

of fluid displacement versus input strength. 
 

From a close observation of the latter figure, it appears that, since the 

nonlinear term in Eq. (2.20) involves the fluid velocity, the agreement 

between the fluid displacement variances 2

Y  is poor for increasing values 

of input strength. On the other hand, Fig. 3.4(a) shows that the main 

system displacement variances 2

X , predicted by the linearized system, 

are in a very good agreement with those obtained by the nonlinear system 

for a wide range of input strength, assessing the reliability of the 

proposed method. 
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3.5    Parametric analysis 

 

In the present Section the pre-design tool is validated by means of a vast 

parametric numerical analysis. 

Specifically, in previous Section 3.3 a pre-design value of 2  has been 

derived assuming that 2  is practically coincident with 1  and that the 

main system is lightly damped. 

In this section several numerical analyses will be carried out in order to 

investigate the effectiveness of the proposed formulation, when these 

assumptions are not fulfilled. 

Two different main systems relevant to buildings design and equipped 

with TLCD will be used. 

The first one, referred to as “system 1”, is the 75-story building under 

random Gaussian broadband noise used in Chang and Hsu (1998) and in 

previous Section 3.4. 

The second structural system (hereinafter referred to as “system 2”) 

driven by non-white earthquake-type random loads, has the first mode 

properties 7 24.61 10M Ns m  , 
62.328 10C Ns m   (corresponding 

to 1 1%  ) and 
82.904 10K N m   (corresponding to 

1 0.401 2 rad s   ). 

The non-white earthquake-type loading is a Gaussian noise generated 

in such a way that the associated response spectrum (RS) is consistent 

with the one provided by a seismic code. For the sake of brevity, in the 
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present applications only results pertinent to the RS proposed by the 

Eurocode 8 with soil type C are reported, being the analyses conducted 

for other soil types always comparable. In Appendix B the characteristics 

of the non-white earthquake-type loading are reported. 

It will be shown how variation in parameters like the structural 

damping ratio 1 , the mass ratio  , the length ratio  , the presence of 

orifices (parameter  ) and the input intensity, affects the proposed 

formulation. 

The aim of this section is then to define the parameters range in which 

the proposed formulation is an efficient tool for structural design. 

Therefore, a reference set of parameters has been selected, that is 

   
2

3 2

1 01 2 0 60 2 10 0 25g% , % , . , ,G m s rad s ,a . g           

and, in turn, one of the parameters has been varied in a wide range.  

In the following figures results in terms of normalized structural 

displacement variance 
0

2 2

X X   are reported, where 
0

2

X  is the structural 

displacement variance of the uncontrolled system and 2

X  is computed 

according to Eq. (3.15 a) using the approximate proposed procedure. In 

particular, results obtained by MCS performed on the nonlinear system 

Eq. (2.20) (solid lines) are compared with those obtained by stochastic 

analyses on the equivalent linear system Eq. (3.3) (symbols) for 

frequency ratio 2 1    ranging from 0.80 to 1.20 and for both system 

1 and system 2. 

 

 



Chapter 3                Novel approximate solution for the optimal design of TLCD systems 

 

102 

 

3.5.1    Effect of structural damping 

 

In Fig. 3.5 the effects of the variation of the structural damping ratio 

1  on the proposed formulation are shown for both systems. For all 

values of structural damping here considered, the normalized main 

displacement variance 
0

2 2

X X   predicted by the approximate 

formulation are practically coincident with those computed by MCS 

when the tuning ratio   is close to the unity, otherwise small deviations 

can be detected. 

The maximum percentage differences for each value of 1  in the 

range of   of practical interest, i.e. 0.9 1  , are reported in Table 3.1 

and Table 3.2 for both systems. 

It is worth to note that in both system 1 and system 2 cases, the 

difference between the approximate formulation and the MCS results 

decreases when 1  value increases. 
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Fig. 3.5 – Main system normalized displacement variance: comparison between MCS 

(solid line) and the proposed formulation (symbols) for different values of the structural 

damping 
1

 : (a) system 1; (b) system 2. 
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Table 3.1 - Maximum percentage differences in terms of variances for   ranging from 

0.90 to 1.00 – system 1 

 % diff.  % diff.  % diff.  % diff. G0 % diff. 

0.1 3.75% 1.0% 3.94% 0.40 4.71% 1 3.30% 5∙10-5 1.67% 

0.5 3.62% 1.5% 4.03% 0.50 3.47% 2 3.39% 1∙10-4 3.24% 

1.0 3.39% 2.0% 3.39% 0.60 3.39% 5 2.31% 5∙10-4 3.71% 

2.0 2.51% 2.5% 3.08% 0.70 3.14% 10 5.91% 1∙10-3 3.39% 

5.0 1.90% 3.0% 2.90% 0.80 3.57% 20 8.51% 5∙10-3 3.09% 

10.0 1.10% 3.5% 2.80% 0.90 4.07% 50 11.00% 1∙10-2 3.64% 
 

 

Table 3.2 - Maximum percentage differences in terms of variances for   ranging from 

0.90 to 1.00 – system 2 

 % diff.  % diff.  % diff.  % diff. ag/g % diff. 

0.1 7.33% 1.0% 6.42% 0.40 7.03% 1 7.50% 0.05 7.82% 

0.5 6.99% 1.5% 6.35% 0.50 6.70% 2 6.04% 0.10 7.40% 

1.0 6.04% 2.0% 6.04% 0.60 6.04% 5 5.45% 0.15 7.36% 

2.0 5.16% 2.5% 6.73% 0.70 5.70% 10 8.27% 0.20 6.95% 

5.0 3.23% 3.0% 6.26% 0.80 5.35% 20 9.95% 0.25 6.04% 

10.0 2.51% 3.5% 6.01% 0.90 5.35% 50 8.17% 0.30 5.23% 
 

 

This behavior, apparently in contrast with one of the hypothesis of the 

approximate formulation, can be explained considering that when 1  is 

very small the main structure behaves like a narrow band system, its 

response is more influenced by the tuning ratio and the linearized system 

response deviates from MCS results for non optimal values of   (i.e. 

0.90   and 1.00  ). 
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3.5.2    Effect of mass ratio 

 

Figure 3.6 reports the effects of the variation of the mass ratio   on the 

proposed formulation for both systems. Values of mass ratio from 1% to 

3.5% have been considered and the normalized variance 
0

2 2

X X   

determined by means of approximate formulation are very close to those 

computed by MCS on the nonlinear system for   close to the unity. For 

other values of   significant deviation can be observed, however, it is 

worth stressing that in the range of   of practical interest, i.e. 0.9 1  , 

the maximum deviations are lower than 5% for system 1 and lower than 

10% for system 2, as reported in Table 3.1 and Table 3.2, respectively. 

 

0.8 0.9 1.0 1.1 1.2



0.0

0.2

0.4

0.6

0.8

1.0


x
2
/

x
,0

2

0.8 0.9 1.0 1.1 1.2



0.0

0.2

0.4

0.6

0.8

1.0


x
2
/

x
,0

2

=1%

=1.5%

=2%

=2.5%

=3%

=3.5%

a) b)  

(a)                   (b) 
Fig. 3.6 – Main system normalized displacement variance: comparison between MCS 

(solid line) and the proposed formulation (symbols) for different values of the mass 

ratio  : (a) system 1; (b) system 2. 
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3.5.3    Effect of length ratio 

 

In Fig. 3.7 similar results obtained by varying the length ratio   from 

0.40 to 0.90 are reported. It is shown that the proposed formulation is 

slightly affected by the variation of   for both systems.  

The percentage differences between the normalized variance 
0

2 2

X X   

obtained through the approximate formulation and by means of MCS on 

nonlinear system are very low for values of   of practical interest and 

become larger when   departs from unity, as reported in Table 3.1 and 

3.2. 
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Fig. 3.7 – Main system normalized displacement variance: comparison between MCS 

(solid line) and the proposed formulation (symbols) for different values of the length 

ratio  : (a) system 1; (b) system 2 
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3.5.4    Effect of head loss coefficient 

 

Figure 3.8 explains how the variation of the head loss coefficient   

affects the proposed formulation. Varying   from 1 to 50 corresponding 

to orifice open ratio up to 80% (Wu et al., 2005), the normalized variance 

0

2 2

X X   has been evaluated by using the approximate formulation and 

by MCS on the nonlinear system for   ranging from 0.80 to 1.20. 
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Fig. 3.8 – Main system normalized displacement variance: comparison between MCS 

(solid line) and the proposed formulation (symbols) for different values of the head loss 

coefficient  : (a) system 1; (b) system 2. 

 

For values of   less than 10 (weak nonlinearity) and for   close to 

the unity the result are in good agreement each other. If the nonlinear 

term increases (higher values of  ) the accuracy of the results conducted 

by the SLT and approximations decreases and significant errors can be 

observed. Note that the maximum percentage errors are always lower 

than 11% and, if   is less than 10, the maximum percentage errors are 

lower than 6% for system 1 and 8% for system 2, as reported in Table 3.1 

and 3.2 respectively. 
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3.5.5    Effect of input intensity 

 

Figure 3.9 reports the effects of the variation of the input intensity on the 

proposed formulation. For system 1 driven by broadband Gaussian noise 

values of input strength G0 ranging from 55 10  to 

   
2

2 21 10 m s rad s  have been considered, while for system 2, driven 

by earthquake-type loading, values of peak ground accelerations ag 

ranging from 0.05g to 0.30g have been taken into account. 
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Fig. 3.9 – Main system normalized displacement variance: comparison between MCS 

(solid line) and the proposed formulation (symbols) for different values of input 

intensity: (a) system 1; (b) system 2. 

 

Comparison between the normalized variances 
0

2 2

X X  , determined 

by means of approximate formulation and those computed by MCS, 

shows that no significant deviation can be observed in the whole range of 

the input intensity. In the range of   of practical interest, i.e. 0.9 1   

the maximum percentage differences are lower than 4% for broadband 

Gaussian noise and lower than 8% for earthquake-type loading, as shown 

in Tables 3.1 and 3.2 respectively. 
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In conclusion, in the present section some numerical simulations have 

been carried out in order to assess the robustness of the assumptions on 

which the approximate formulation is based. Moreover, the performed 

parametric analysis showed that the response variance computed by the 

proposed approximated formulation does not exhibit substantial deviation 

from the actual values (those obtained through the MCS on nonlinear 

system) in the parameters range of practical interest. 
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3.6    Determination of the optimal design parameters 

 

In order to show the effectiveness of the proposed simplified procedure 

for practical use, in the present Section an analysis on the optimal choice 

of the TLCD design parameters has been developed. In particular it will 

be shown that the optimal design of the TLCD can be effectively 

performed using the proposed approximate formulation.  

Because of the nonlinearity in equation of motion Eq. (2.20), a closed-

form solution for the optimal values of the TLCD parameters is difficult 

to achieve and numerical methods have to be used. However, there is no 

need for an optimization procedure that involves all four parameters 

(namely the tuning ratio  , the mass ratio  , the length ratio   and the 

head loss coefficient  ), since the mass ratio   and the length ratio   

are often limited by economical and structural constraints. In the 

optimization procedure here proposed, the optimum values of the tuning 

ratio   and the head loss factor coefficient   are sought, while other 

parameters are assigned. 

According to the approximate proposed formulation, Eq. (3.15 a) 

expresses the displacement variance of a 2-DOF linear system. The 

optimum values in terms of tuning ratio opt  and equivalent linear 

damping ratio 
2 ,opt  can then be found by using a simple numeric 

minimization procedure on the smooth function 1 xz , with xz  given in 

Eq. (3.16 a). It is worth stressing that, at this stage, the optimal 
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parameters 
opt  and 

2 ,opt  do not depend neither on the input intensity, 

since the system is linear, nor on the frequency of the main system, but 

only on the main system damping ratio 1 , and on the non-dimensional 

TLCD parameters   and  . As a consequence, the parameter 

 0 2,,opt opt    in Eq. (3.27) also depends only on 1 ,   and  . 

Once 
opt  and 

2 ,opt  have been found, the corresponding value in 

terms of TLCD optimal head loss coefficient 
opt  is easily obtained by 

Eq. (3.26) as 

 0 2,

0 1

,opt opt

opt
G

  



  (3.28) 

In the following some numerical results have been reported. Firstly, a 

comparison with the optimal values obtained in literature has been 

performed. With reference to the previously defined structural system 1, 

and accordingly to Wu and Chang(2006), the input strength of the white 

noise ground motion is set as    
2

6 2

0 2 3 6373 10G . m s rad s   , 

while the mass ratio and the length ratio are 0 0298.   and 0 774.  , 

respectively. In Table 3.3 the parameters obtained for three cases of main 

structural damping: 1 1%  , 1 5%   and 1 10%  , respectively have 

been reported in terms of optimal tuning ratio opt , optimal head loss 

factor opt , and performance control index  . The performance control 

index has been defined as 
0

2 2

X X   , namely the normalized mean 
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square value of the structural response  X t  with respect to the main 

structural response  0X t . 

 

Table 3.3 - Comparison of optimum parameters with Chang (1999) and Wu and Chang 

(2006) 
 tuning ratio opt 

 opt err %  

Chang (1999) 0.973 -0.05 63.324 0.256 

Wu and Chang (2006)  0.969 - 63.235 0.255 

Proposed approach 0.969 0.01 65.390 0.255 

 opt  opt 

Chang (1999) 0.973 2.21 95.402 0.710 

Wu and Chang (2006)  0.952 - 94.571 0.705 

Proposed approach 0.952 -0.03 83.527 0.705 

 opt  opt 

Chang (1999)  0.973 5.53 133.937 0.889 

Wu and Chang (2006)  0.922 - 130.683 0.879 

Proposed approach 0.922 -0.03 106.370 0.879 
 

 

It has to be stressed that the values provided by Chang (1999) are 

derived in absence of structural damping ( 1 0  ), while results in Wu 

and Chang (2006) have been obtained by means of extensive numerical 

iterative procedures, similar to that reported in Fig. 3.1. In Table 3.3 are 

also reported the percentage differences between the herein obtained 

values and the ones reported in Wu and Chang (2006) in terms of optimal 

tuning ratio opt . 

As shown, the optimal values obtained by the proposed approach in 

terms of tuning ratio opt  are in a very good agreement with results from 

literature. 
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Note that by using the proposed definition of the equivalent linear 

damping an impressive reduction in computational effort is achieved. In 

fact, if a classical procedure is used to define the equivalent linear 

system, a time-consuming iterative scheme has to be set up. Conversely, 

following the here proposed approach, the evaluation of the optimal 

values can be obtained by means of a numerical minimization of a 

smooth function, without any iteration, thus resulting in a very significant 

reduction in computational effort. 

The main advantage of the proposed approach lies in the evaluation of 

the optimal values in terms of tuning ratio 
opt  and equivalent linear 

damping ratio 
2 ,opt  of an equivalent linear system. 

Such parameters are suitable to be used to create design charts in 

which optimal values can be easily determined. In order to propose an 

effective tool for pre-designing TLCD devices, the charts depicted in this 

section report optimal values directly in terms of  0 2,,opt opt   , taking 

full advantage of Eqs. (3.27) and (3.28). The design charts, reported in 

Figs. 3.10 and 3.11, have been evaluated for 0.60  . Clearly, it is 

possible to create other design charts for different values of  . In 

particular, the chart depicted in Fig. 3.10 illustrates the optimal tuning 

ratio opt  and the parameter 0  in abscissa and ordinate, respectively, 

while in the chart depicted in Fig. 3.11 the optimal tuning ratio opt  and 

the performance control index   are reported in abscissa and ordinate, 

respectively. In both design charts some curves for several different 
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values of damping ratio 1  (black solid lines) and of mass ratio   

(dashed red lines) are also reported. 
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Fig. 3.10 –Optimal design chart in terms of opt  and 0  for different values of damping 

ratio 1  and mass ratio  . 

 

The use of the proposed design chart is illustrated in the following. 

Suppose that the damping ratio of the main system is 1 2%   and the 

mass ratio is set as 2%   for structural constraints, thus identifying the 

point A in FIgs. 3.10 and 3.11. The design charts provide the optimal 

parameters 0 980opt .   and 0 0.086   (from Fig. 3.10) and the 
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corresponding performance control index 0.56   (from Fig. 3.11). 

Obviously, from Eq. (3.26) the optimal head loss factor 
opt  can be easily 

evaluated. 
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Fig. 3.11 –Optimal design chart in terms of opt  and   for different values of damping 

ratio 1  and mass ratio  . 

 

Furthermore, the herein proposed design charts can be used to 

properly choose the design parameters of a TLCD. Suppose that the 

damping ratio of the main system is 1 1%   and that a target 

performance control index 0.45   is desired. These parameters identify 
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the point B in the design chart in Fig. 3.11 and, from the chart in Fig. 

3.10, the optimal design parameters 0 9906opt .   and 0 0.034   may be 

evaluated and the optimal head loss factor 
opt  can be evaluated again by 

Eq. (3.26). 

At a design stage, in order to evaluate optimal parameters 
opt  and 

opt  a value of the intensity of the input has to be estimated. This could 

be achieved by the following steps: a) according to the specific seismic 

code, the expected earthquake loading may be defined in terms of 

spectral acceleration response spectrum; b) seismic acceleration may be 

modeled by a zero-mean stationary Gaussian process gX , fully 

characterized by its PSD function  
gX

G  , coherent with the assigned 

response spectrum; c) in case of lightly damped system the evaluation of 

the input intensity may be easily obtained as  1
gX

G  . 

To show the accuracy of the proposed procedure also in the case of a 

system under earthquake type of loading, the aforementioned procedure 

has been applied to system 2 described in Section 3.5. 

Specifically, in this case evaluation of optimal tuning parameters has 

been performed comparing results from the proposed approach with 

those obtained by MCS. With reference to structural system 2, in Table 

3.4 tuning ratio opt  and optimum head loss coefficient opt , have been 

computed for both nonlinear formulation Eq. (2.20) and equivalent linear 

system Eq. (3.1) in which 2  is computed via the proposed approximate 

formulation, while other parameters have been set as 3%   and 
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0 6.  . In case of nonlinear systems the displacement variance 2

X  has 

been computed through MCS, while for equivalent linear systems 

Eqs.(3.7) to (3.11) have been used. 

In Table 3.4 the performance control index 2 2

0E[ ] E[ ]X X   has 

been reported, as well. These results have been obtained for different 

values of input intensities. For the sake of shortness, in the present 

applications only results obtained by the RS proposed by the Eurocode 8 

with soil type C are reported, but the analyses for other soil types or other 

inputs always give comparable results. In Appendix B the PSD function 

coherent with RS provided in Eurocode 8 has been fully defined. For all 

intensities of the input the optimal parameters of TLCD obtained by the 

proposed approximate procedure are in very good agreement with those 

obtained by MCS. 

 

Table 3.4 - Optimum TLCD parameters for system 2. 

 Equivalent linear 
  

Nonlinear 

ag/g 
opt

 
opt
     

opt
 

opt
  

0.05 0.9813 6.5076 0.2982 
  

0.9835 7.3511 0.3106 

0.10 0.9813 3.2880 0.2983 
  

0.9808 3.8263 0.3108 

0.15 0.9808 2.1743 0.2983 
  

0.9823 2.4849 0.3104 

0.20 0.9811 1.6257 0.2983 
  

0.9800 1.8479 0.3104 

0.25 0.9810 1.3014 0.2983 
  

0.9825 1.3219 0.3105 

0.30 0.9810 1.0860 0.2983 
  

0.9806 1.1684 0.3104 
 

 

As stated before, optimal tuning parameters depend also on the main 

system damping ratio. Unfortunately, the estimation of 1  is often 

affected by significant uncertainties. In Table 3.5 the percentage 
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differences in the evaluation of optimal parameters and performance 

control index are reported with respect to the errors in the evaluation of 

1  of ±10%. It is worth stressing that, uncertainties in 1  cause very 

small deviation in the optimal tuning parameters, while the errors in 

performance control index determination are higher. 

 

Table 3.5 - Deviations in optimal parameters and performance control index for errors 

in the evaluation of 
1

 of ±10%. 

 tuning ratio 
 normalized head 

loss factor 

 performance control 

index 

1 opt err %   err %   err % 

 -10% 0.9829 0.03  0.0763 -0.91  0.3308 -7.44 

1% - 0.9826 -  0.0770 -  0.3574 - 

 +10% 0.9824 -0.02  0.0777 0.91  0.3826 7.05 

 -10% 0.9806 0.06  0.0826 -1.67  0.5250 -5.78 

2% - 0.9800 -  0.0840 -  0.5572 - 

 +10% 0.9794 -0.06  0.0853 1.55  0.5864 5.24 

 -10% 0.9717 0.20  0.0996 -2.83  0.7914 -3.13 

5% - 0.9698 -  0.1025 -  0.8170 - 

 +10% 0.9677 -0.22  0.1053 2.73  0.8387 2.66 
 

 

Furthermore, it is worth stressing that the optimal parameters obtained 

from these design charts are fully reliable, although they are determined 

by means of an approximate approach. In fact, in the parameters range of 

practical interest results from the proposed formulation are in very good 

agreement with those obtained by MCS performed on the nonlinear 

equations, as it has been already shown in the previous sections and in 

Table 3.1. 
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3.7    Experimental investigation 

 

Once the proposed direct pre-design formulation has been extensively 

numerically investigated, in this Section numerical results previously 

obtained are validated through an experimental campaign on a small 

scale shear-type model built in the Laboratory of Experimental Dynamic 

at University of Palermo. 

Specifically, in order to experimentally validate the pre-design 

proposed formulation for the equivalent linear damping estimation, a 

small-scale SDOF shear-type frame (main system), composed by two 

steel columns and two nylon rigid plates as base and floor respectively, 

has been built. Further, TLCD-controlled system has been realized with a 

U–shaped Plexiglas® cylinder tube rigidly connected to the upper plate 

of the main system. 

To examine the effects of the mass ratio   on the proposed 

formulation, three different configurations of TLCDs with same 

horizontal liquid length b , but different cross sectional area A have been 

considered. In particular, since in (Chang and Hsu, 1998) the mass ratio 

2.9 %   for a 75 stories skyscraper has been used as benchmark 

problem, and many papers from then on have considered that value (see 

for example(Wu and Chang, 2006)) in order to compare the optimized 

parameter, Configuration #1 and #2 have been chosen so as their mass 

ratio values perfectly include the one considered in(Chang and Hsu, 

1998). Furthermore, as described in Section 3.4, differences among the 



Structural vibration control through Tuned Liquid Column Dampers: theoretical and 

experimental analysis 

119 

simplified proposed formulation and the Monte Carlo Simulation (MCS) 

results increase when the value of the mass ratio increases. This behavior 

has led to investigate Configuration #3, which indeed takes into account 

a higher mass ratio not relevant for practical application. 

It is worth noting that, since the proposed simplified formulation in 

Eq. (3.23) has been derived considering the input modeled as a zero-

mean stationary Gaussian white noise process, the experimental 

campaign has been accomplished considering a broadband noise at the 

base, which is practically the same as considering a white noise 

excitation. However, as demonstrated in Section 3.4 through an extensive 

parametric investigation, satisfactory results may also be obtained 

considering non-white earthquake random loads with Response Spectra 

coherent with building codes. 

 

3.7.1    Main systems 

 

Note that, since the main system has to take into account the dead 

weight of the TLCDs tube, three small-scale SDOF shear-type frames 

with the three empty TLCD devices on the upper plate, have been used as 

three main systems configurations. 

In Figs. 3.12(a-c) pictures of the three main systems configurations are 

shown while in Figs. 3.12(d- f) schematic drawings of the structures with 

the corresponding dimensions are depicted. 
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Configuration #1 Configuration #2 Configuration #3 
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(f) 

Fig. 3.12 – Experimental setup of the main systems; (a) - (c) picture of the three SDOF 

structures configurations; (d) - (f) main systems dimensions. 
 

In order to experimentally identify dynamic parameters of the three 

main systems configurations, the three SDOF structures have been 

excited at the base through a shaking table model Quanser Shake Table II 

which provides the displacement controlled ground motion (Figs. 3.13(a-
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c)). The acceleration responses at the base and at the storey of the 

systems have been acquired using Miniature DeltaTron Accelerometers 

Brüel&Kjær – Type 4507-002B piezoelectric accelerometers. In order to 

condition and amplify voltage signals coming from accelerometers 

before being acquired and saved, a conditioning amplifiers, the PCB 

model 481A amplifier, has been used. 

Voltage signals have been generated by means of a National 

Instruments NI-PCI-MIO-16XE-10 and have been digitalized and 

acquired by means of a National Instruments NI-PCI-4472 Analogical-

Digital (A-D) Acquisition Board and then processed using a self-

developed signal processing software in LabView and Matlab 

environment. 

Details on the various devices and systems employed for the 

experimental set-up are further described in Appendix A, while Fig. 3.13 

shows an outline of the experimental set-up. 

 

Signal conditioner

and amplifier

Shaker

amplifier

Accelerometers

Experimental

model

Shake

Table

Signal processing

#1

#2

A/D conv.

D/A conv.

 
Fig. 3.13 – Acquisition system for Shake Table test. 
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Ten samples of broadband noise, in the range 0.5÷10 Hz, each having 

duration of 40 s and a sampling frequency of 1 kHz, have been generated 

and used as ground acceleration. For each sample the accelerations have 

been recorded and the mean Frequency Response Function (FRF) was 

computed (Maia and Silva, 1997). 

Finally, once obtained the FRFs for each configuration, dynamic 

parameters were identified by using some well-known parameter 

extraction techniques (Ewins, 1984, Maia and Silva, 1997) such as 

Rational Fractional Polynomial method (Richardson and Formenti, 

1982), genetic algorithm (Levin and Lieven, 1998) and particle-swarm 

optimization method (Kennedy and Eberhar, 1995). 

All these techniques provide similar estimations of the parameters that 

are reported in Table 3.6. 

 

Table 3.6 - Main systems dynamic parameters. 

 Configuration #1 Configuration #2 Configuration #3 

M 4.503 kg 4.267 kg 4.215 kg 

C 0.0906 N s/m 0.1195 N s/m 0.1375 N s/m 

K 455.72 N/m 458.86 N/m 466.48 N/m 

1  0.001 0.0027 0.0031 

1  10.06 rad/s 10.37 rad/s 10.52 rad/s 
 

 

In Figs. 3.14(a, c, e) comparisons among experimental and numerical 

mean FRFs are depicted for the three main systems configurations. 

In order to assess the reliability of the identified parameters, a 

numerical-experimental comparison has also been made for the three 

configurations of main systems, as reported in Figs. 3.14(b, d, f). In this 
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pictures the relative acceleration time histories recorded at top mass 

location are compared with those computed by the theoretical model 

defined by Eq. (2.8) setting as parameters those reported in Table 3.6. 
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(f) 

Fig. 3.14 – Experimental (black solid line) and numerical (red dashed line) comparison 

of mean FRFs (a ,c, e) and relative accelerations (b, d, f) of the main systems: 

(a, b) Configuration #1; (c, d) Configuration #2; (e, f) Configuration #3. 
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3.7.2    TLCD devices 

 

As previously stated, to examine the effects of the mass ratio   on the 

proposed formulation, three different groups of TLCDs have been 

considered. In this regard three different diameters d have been used for 

the three TLCDs configurations, while centerlines of the vertical 

branches are at the same distance b  each other for all the TLCDs. The 

tube has been filled with water ( 31000kg m  ), reaching different 

levels h  from the centerline of the base tube for tuning each TLCD with 

the main system. 

In Figs. 3.15(a)-(c) pictures of the three TLCD devices are shown 

while in Figs. 3.15(d)-(f) schematic drawings of the TLCDs with the 

corresponding dimensions are depicted. 

 

Configuration #1 Configuration #2 Configuration #3 

 
(a) 

 
(b) 

 
(c) 

0.105 m

0.04 m

0.054 m

 
(d) 

0.035 m

0.034 m

0.105 m

 
(e) 

0.035 m

0.024 m

0.105 m

 
(f) 

Fig. 3.15 – TLCD devices; (a) - (c) picture of the three TLCDs configurations; (d) - (f) 

TLCDs dimensions. 
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In order to experimentally identify dynamic parameters of the three 

TLCDs configurations, the U-shaped tubes filled with water to a level 

4h cm  for Configuration #1 and 3.5h cm  for Configuration #2 and 

#3, have been rigidly connected and excited at the base through a APS 

Dynamic–Model 133 shake table (Figs. 3.15(a)-(c)). 

An accelerometer on the table itself has been used to acquire the input 

signal while a simple video camera model Canon IXUS 100IS has been 

used to record the TLCD water free surface displacements. 

 

Accelerometer

TLCD device

APS Shaker

Graduated

rod

to the Shaker

amplifier

to the Signal

conditioner

Camera

 
Fig. 3.16 – Acquisition system for TLCDs test. 

 

As shown in Fig. 3.16, the camera was rigidly connected through a 

screw to the plate of the shaker to create a moving reference frame, 

integral with the TLCD devices. The screw was moved up or down until 

a suitable position was reached so that the camera focuses only on the left 

column liquid during its entire motion, to record the free water surface 

displacement only. 

Dynamic parameters of the TLCD devices have been identified by 

exciting the U-shaped tubes with broadband noise in the range 0.5÷10 Hz 

through the APS shaker. For each TLCD device 20 samples of broadband 
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noise with a duration time of 25 s have been generated and used as 

ground acceleration. For each sample, the acceleration at ground and the 

liquid displacement were recorded through the accelerometer and the 

video camera respectively. Each video was recorded at 30 fps 

(corresponding to a sampling frequency of 30 Hz) and high-definition 

full-frame images of 1280 x 720 pixels were acquired and transferred to 

the computer. 

In order to determine the free water surface displacements for each 

analyzed configuration, an image processing method in MATLAB 

environment was used. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 3.17 – Image processing; (a) extracted frame from the video; (b) binary image; (c) 

image with the determined pixel position (black point on the water interface). 
 

Specifically, each frame in the RGB color space (Fig. 3.17(a)), is 

converted into the equivalent hue, saturation and value (HSV) image, and 

these components are then extracted. Once assigned and applied suitable 

low and high thresholds value to the HSV image components (to filter 

out unnecessary color and additional noises) these are converted into 

binary images, which have intensity values of 0 (corresponding to black 

color) or 1 (corresponding to white color), and then combined together to 

obtain a binary image in which the water is colored in white and the rest 

of the image is black (Fig. 3.17(b)). This binary image is used to identify 
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the free water surface in the left column of the TLCD, and the pixel 

position corresponding to the passage from the black to the white color of 

a chosen point at the centre of the TLCD column, is determined in the 

analyzed frame (point A in Fig. 3.17(c)). 

Once the pixel positions have been acquired for all frames, conversion 

to displacement in meters has been made with a calculated scale factor, 

determined though the graduated rod rigidly connected to the plate of the 

shaker (Fig. 3.16). In this way the free water surface displacement time 

histories has been obtained from the videos and samples of the extracted 

time histories for the three TLCDs configuration are depicted in Fig. 

3.18. Finally the mean Frequency Response Function (FRF) has been 

computed to identify the natural frequency of the liquid 2  while the 

head loss coefficient   was computed by minimizing the error between 

the measured FRFs of the liquid displacement and those from Eq. (2.4) 

considering as input the recorded accelerations. The identified TLCDs 

parameters are detailed in Table 3.7. 

 

Table 3.7 - TLCD configurations parameters. 
 Configuration #1 Configuration # 2 Configuration # 3 

d 0.054 m 0.034 m 0.024 m 

A 3 22.29 10 m  4 29.08 10 m  4 24.52 10 m  

b  0.105 m 0.105 m 0.105 m 

h  0.04 m 0.035 m 0.035 m 

L 0.185 m 0.175 m 0.175 m 

mTLCD 0.4380 kg 0.1614 kg 0.0815 kg 

2  11.97 rad/s 11.81 rad/s 11.81 rad/s 

  6 7 7 

c 16.21 m
-1 

18.92 m
-1

 20 m
-1

 

  9.7 % 3.8 % 1.9 % 

  0.57 0.6 0.6 
 



Chapter 3                Novel approximate solution for the optimal design of TLCD systems 

 

128 

In order to assess the reliability of the identified parameters, for each 

TLCD configuration numerical-experimental comparison of mean FRFs 

and of time history liquid displacements are depicted in Fig. 3.18. 

As shown for each TLCD configuration the numerical results match 

very well the corresponding experimental results, in time domain and in 

frequency domain as well. 

 

5 10 15 20 25
10

-4

10
-3

10
-2

10
-1

Frequency [rad/s]

F
R

F
 A

m
p

li
tu

d
e

 

 

 
(a) 

5 10 15

-0.01

0

0.01

Time [s]

D
is

p
la

ce
m

en
t 

[m
]

 
(b) 

5 10 15 20 25
10

-4

10
-3

10
-2

10
-1

Frequency [rad/s]

F
R

F
 A

m
p

li
tu

d
e

 

 

 
(c) 

5 10 15

-0.01

0

0.01

Time [s]

D
is

p
la

ce
m

en
t 

[m
]

 
(d) 

5 10 15 20 25
10

-4

10
-3

10
-2

10
-1

Frequency [rad/s]

F
R

F
 A

m
p
li

tu
d
e

 

 

 
(e) 

5 10 15

-0.01

0

0.01

Time [s]

D
is

p
la

ce
m

en
t 

[m
]

 

 

 
(f) 

Fig. 3.18 – Experimental (black solid line) and numerical (red dashed line) comparison 

of mean FRF (a ,c, e) and liquid displacement time histories (b, d, f): (a, b) 

Configuration #1; (c, d) Configuration #2; (e, f) Configuration #3 
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3.7.3    TLCD controlled systems 

 

In order to validate the reliability of the identified dynamic parameters of 

the main systems and TLCD devices (Tables 3.6 and 3.7), also for the 

three TLCD controlled systems, the three structures have been excited, 

with the same base excitation used for the main systems, through the 

shaking table model Quanser Shake Table II. In this regard in Figs. 

3.19(a-c) pictures of the three TLCD controlled systems configurations 

are shown while in Figs. 3.19(d-f) schematic drawings of the three 

TLCDs configurations with the corresponding dimensions are reported. 

 

Configuration #1 Configuration #2 Configuration #3 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 3.19 – Experimental setup of the controlled system; (a) - (c) picture of the three 

controlled structures; (d) - (f) controlled systems dimensions. 
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A numerical-experimental comparison has been made for the three 

TLCD-controlled systems configurations, as reported in Fig. 3.20(a- c). 

In these pictures the relative acceleration time histories recorded at top 

mass location are compared with those computed by the numerical model 

defined by Eq. (2.20) and parameters in Tables 3.6 and 3.7. 

The very good agreement between the numerical and experimental 

curves shows that the dynamical parameters have been correctly 

identified. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Structural vibration control through Tuned Liquid Column Dampers: theoretical and 

experimental analysis 

131 

30 32 34 36 38 40
-1

-0.5

0

0.5

1

Time [s]

A
cc

el
er

at
io

n
 [

m
/s

2
]

 
(a) 

30 32 34 36 38 40
-1

-0.5

0

0.5

1

Time [s]

A
cc

el
er

at
io

n
 [

m
/s

2
]

 
(b) 

30 32 34 36 38 40
-1

-0.5

0

0.5

1

Time [s]

A
cc

el
er

at
io

n
 [

m
/s

2
]

 
(c) 

Fig. 3.20 – Comparison between experimental (black solid line) and numerical (red 

dashed line) data in time domain for the TLCD controlled systems: (a) 

Configuration #1; (b) Configuration #2; (c) Configuration #3. 
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3.7.4    Experimental validation of the proposed formulation 

 

Once the main systems and TLCD-controlled systems have been 

identified, the proposed direct pre-design formula Eq. (3.23) has been 

validated in terms of statistics by the experimental procedure outlined in 

the following. 

Experimental campaign has been developed to assess the validity of 

the formula for the three different values of mass ratio  , characterizing 

the aforementioned three systems configurations. The three 

configurations of the main system and of the TLCD-controlled system 

have been subjected to a broadband noises in the range 0.5÷10 Hz. For 

each configuration 10 samples of broadband noise, with duration of 40 

seconds, have been generated and the accelerations at the ground and at 

the top mass have been recorded. 

The statistics of experimental response accelerations in terms of 

variance have been computed and then compared with the variances 

obtained by solving numerically the nonlinear system Eq. (2.20) and the 

linearized one Eq. (3.1) with 
2

  obtained through Eq. (3.23). In the 

numerical simulations the recorded ground accelerations have been used 

as base accelerations gX .  

In Fig. 3.21 comparison among variances 2

X
  of accelerations for 

main systems (green crosses and green dots) and TLCD-controlled 

system (red rhombi, red squares and red triangles) at the different levels 

of mass ratio   is depicted. 
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Fig. 3.21 – Experimental validation in term of variances. Variances of the main system 

(green) and TLCD-controlled system (red). Crosses and squares indicate 

numerical results (Eq. (2.8) for main system, Eq. (2.20) for TLCD-controlled 

system respectively), triangles stand for equivalent linear system (Eq. (3.1)), 

dots and rhombi stand for experimental results (main system and TLCD-

controlled system respectively). 
 

As shown, experimental results (red rhombi) are in a good agreement 

with the numerical ones (red squares) for all the values of mass ratio 

analyzed while results of the direct proposed procedure (red triangles) 

deviates from the experimental results at increasing values of the mass 

ratio, as also demonstrated in (Di Matteo et al., 2014). 

Further experimental campaign to assess the validity of the formula at 

different values of the input strength 0G  has been done. Both 

Configurations #1 of the main system (Fig. 3.12(a)) and TLCD-

controlled system (Fig. 3.19(a)) have been subjected to six increasing 

levels of input strength, by taking advantage of the capability of the 

shaking table to perfectly reproduce any displacement time history. For 

each level 50 samples of broadband noise, with duration of 50 seconds, 
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have been generated and the accelerations at the ground and at the top 

mass have been recorded. 

The statistics of both input and response accelerations in terms of 

variance have been computed and then compared with the variances 

obtained by solving numerically Eqs. (2.20) and (3.1). In the numerical 

simulations the recorded ground accelerations have been used as base 

accelerations gX . 

 

 
Fig. 3.22 - Experimental validation in term of variances. Variances of the main system 

(green) and TLCD-controlled system (red). Crosses and squares indicate 

numerical results (Eq. (2.8) for main system, Eq. (2.20) for TLCD-controlled 

system respectively), triangles stand for equivalent linear system (Eq. (3.1)), 

dots and rhombi stand for experimental results (main system and TLCD-

controlled system respectively). 
 

In Fig. 3.22 comparison among variances of accelerations 2

X
  for 

main system (green crosses and green dots) and TLCD-controlled system 

(red rhombi, red squares and red triangles) versus the input variance 2

gX
  

is shown. 
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The equivalent linear system (red triangles) obtained by using the 

proposed formulation follows very closely the trends of both 

experimental statistics and numerical results by using the nonlinear 

equation, showing that no significant deviation may be observed in the 

analyzed range of input intensity, as also highlighted in (Di Matteo et al., 

2014). Further, in order to completely estimate the approximation 

induced by the SLT, in Fig. 3.23 relative acceleration time histories 

recorded at top mass location (experimental data) are compared with 

those computed by both the numerical nonlinear model defined by Eq. 

(2.20) and the equivalent linear system Eq. (3.1). In these evaluations the 

parameters reported in Tables 3.6 and 3.7 are used. 
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Fig. 3.23 - Comparison among experimental (bold line), nonlinear system (solid line) 

and numerical equivalent linear system (dashed line) data in time domain. 
 

Once again, the curves corresponding to the nonlinear system and the 

equivalent linear system are practically coincident, thus proving the 

reliability of the proposed formulation in predicting structural responses, 

even in experimental field. 

 





 

 

Chapter 4 

Innovative modeling of TLCD motion: a fractional 

derivative perspective 

 

4.1    Introduction 

 

In this Chapter a different formulation for the liquid motion within a 

TLCD device is developed, based on the mathematical tool of fractional 

calculus. 

As shown in Section 4.2, although the increasing use of these devices 

for structural vibration control, existing model does not always lead to 

accurate prediction of the liquid motion. In fact, for some TLCD 

geometrical configurations of engineering interest, the classical equation 

of motion, derived in previous Chapter 2, may not accurately describe the 

real liquid motion within the device. A refined model can be then 

necessary for accurate simulation of the behavior of TLCD systems. 

In this regard, it will be demonstrated in Section 4.3 how correctly 

including the first linear liquid sloshing mode, through the equivalent 

mechanical analogy well established in literature, produces numerical 

results that highly match the corresponding experimental ones. 

Furthermore, in Section 4.4 a different mathematical formulation of 

the equation of motion of the TLCD liquid displacement is proposed, 
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taking advantage of fractional operators and their properties. Specifically, 

since the apparent effect of sloshing is the deviation of the natural 

frequency from the theoretical one, a fractional differential equation of 

motion is proposed to model the liquid vertical displacements within the 

TLCD device. The latter choice is supported by the fact that the 

introduction a fractional derivative of order   alters simultaneously both 

the resonant frequency and the degree of damping of the system.  

In Section 4.5 the proposed formulation will be extended to deal with 

structures controlled through TLCD devices. 

Finally in Section 4.6 it will be shown, through an extensive 

experimental analysis, how the proposed model can accurately describe 

both liquid surface and structural displacements. Specifically, 

experimental validation of the predicted behavior is fully developed in 

frequency and time domain, focusing only on TLCDs without orifices, so 

that the characteristics associated with TLCD geometry could only be 

investigated. 
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4.2    Motivations and background 

 

Since their first appearance in 1989 in the work by Sakai et al. (1989), 

TLCD devices received growing attention among researchers who deal 

with structural control. 

Although TLCDs have been studied extensively in literature, most 

researches (Gao et al, 1997; Chang and Hsu, 1998; Chang, 1999; Yalla 

and Kareem, 2000; Wu et al., 2009) are mainly focused on the 

determination of their optimal design parameters through stochastic 

linearization technique. Experimental studies on these devices were first 

conducted by Sakai et al. (1989), but since then few researches have 

experimentally assessed the validity of the classical formulation 

developed in (Sakai et al; 1989), comparing predicted TLCD 

characteristics with the corresponding experimental values. 

In this regard, one of the first and main contributions is the work of 

Hitchcock et al. (1997), where an extensive experimental investigation on 

the features of different TLCDs configuration is presented. As stated in 

the aforementioned study, TLCDs characteristics were found to be 

dependent on their geometrical configurations. In particular, it was 

pointed out for the first time that, increasing the area ratio   between the 

TLCD vertical column cross-sectional area (Av) and the horizontal 

column cross-sectional area (Ah), can increase substantially discrepancies 

among experimental and numerical natural frequencies. These 

discrepancies were ascribed to the amplified flow separation at the 
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corners for the larger area ratio, which was not considered in the classical 

theoretical model (Sakai et al., 1989). Since then, it seems that the 

engineering community has ignored those results, and no attempt has 

been made to derive different formulations leading to numerical results 

closer to the experimental ones, up to the study of Chaiviriyawong et al. 

(2007). As in fact highlighted in that paper, most previous researches 

focused on TLCDs with a small ratio of transition zone between the 

vertical and horizontal portion (corner-to-corner width w (see Fig. 4.1)) 

to horizontal length. This configuration is well described by classical 

formulation, but it is not generally appealing for structures, since space 

constraints often limit TLCD horizontal length. 

Experimental evidences presented in (Chaiviriyawong et al., 2007) 

perfectly agree with those in (Hitchcock et al., 1997) showing how, in 

case of TLCD with large transition zones, poor agreement between 

numerical results based on the classical formulation in existence and 

experimental values is obtained. In this case, the variation in liquid 

velocity in the relatively large transition zone between the vertical 

columns and the horizontal part cannot be ignored. 

A numerical potential-flow method, known as numerical panel 

method, has been then applied to predict the real liquid displacement in 

TLCDs. However, due to its complexity it is not suitable for engineering 

purposes; further, since the effect of liquid viscosity has not been 

considered, discrepancies between predicted natural frequencies and 

those experimentally obtained still exist in some cases. 

Note that flow separation in large transition zone is not the only 

source of differences between theoretical and experimental results. As in 
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fact pointed out in the extensive experimental study of Wu et al. (2005), 

when broadband noise excitation tests are performed, significant sloshing 

behavior on the liquid surface may be clearly observed. However, since 

the liquid displacement is generally measured at the center of the cross-

section, it is believed that such a motion may be neglected. 

More recently, Konar and Gosh (2013) have studied the effects of the 

sloshing phenomenon on the control performance of TLCDs. In this case, 

however, the equations of motion of sloshing and vertical liquid 

displacement are not derived considering their simultaneous and coupled 

effect, which may lead to uncorrected prediction of the real behavior. 
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4.3    Equation of motion with sloshing 

 

Consider a TLCD device excited at the base with an acceleration  g
x t , 

as shown in Fig. 4.1. The vertical and the horizontal column cross-

sectional areas are Av and Ah, respectively. 

 

 

Fig. 4.1 - TLCD device. 
 

As previously reported, for this system Eqs. (2.4) and (2.6) are widely 

used in literature to model the motion of the liquid inside the TLCD. 

However, in some recent works it has been experimentally seen that 

discrepancies between experimental and theoretical frequencies given by 

Eq. (2.6) arise (Hitchcock et al., 1997; Di Matteo et al., 2012), reflecting 

differences between experimental and numerical results in time domain 

as well. 
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Aforementioned discrepancies may be caused by several phenomena, 

which are not considered in the classical formulation Eq. (2.4), such as 

variation of the liquid velocity in case of large transition zones between 

vertical and horizontal part, vortices and separation in the flow induced 

by liquid viscosity, sloshing effects of the liquid in the vertical columns 

(Wu et al., 2005; Konar and Ghosh, 2013) and sharp edge effects in case 

of sharp corners (Lee et al., 2012) 

Sloshing modes, for example, are clearly visible in experimental tests, 

as shown in Fig. 4.2. In this picture the movement of the water surface, 

corresponding to the first sloshing mode, in the left column of the TLCD 

during a test, performed at the Laboratory of Experimental Dynamics at 

University of Palermo, is depicted. 

 

 

Fig. 4.2 - First sloshing mode of the TLCD during a test. 
 

A first attempt to include the sloshing phenomenon has been presented 

in (Konar and Gosh, 2013), but in this case the equations of motion of 

sloshing and liquid displacement have not been derived considering the 

simultaneous effect of sloshing and liquid vertical motion. 
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Here the equation of motion of the liquid displacement is derived by 

taking into account this simultaneous effect. In particular, the 

fundamental sloshing mode of vibration in the two vertical columns is 

modeled by an equivalent mechanical model, as described in Ibrahim 

(2005), consisting of spring-mass-dashpot systems (see Fig. 4.3) with 

spring stiffness k in series with dashpots with damping coefficient c. 

 

 

Fig. 4.3 - TLCD with equivalent mechanical model of sloshing. 
 

Consider L
m  and R

m  as the total liquid masses of the left and right 

vertical column respectively, 1L
m  and 1R

m  as the equivalent masses of 

the first sloshing mode in the two vertical columns, and 0L
m  and 0R

m  the 

remaining liquid masses in the left and right part. 

Similarly to the equivalent mechanical model used for sloshing in 

rigid containers (Ibrahim, 2005), but considering that, in the case of 

TLCD, fluid in the vertical columns moves in  y t  direction, it is 
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assumed that 
0L

m  and 
0R

m  are associated to the vertical liquid 

displacement  y t  as well. On the other hand 1L
m  and 

1R
m  are associated 

to the displacement coordinates  L
x t  and  R

x t  of the equivalent linear 

mechanical systems representing the sloshing effect of the first mode 

(Ibrahim, 2005) of liquid surface in the left and right vertical columns of 

the TLCD respectively (Fig. 4.3). 

As the left and the right vertical columns of the TLCD are 

geometrically identical and subjected to same base motion, then 

     L R
x t x t x t  . 

The equivalent model should satisfy the following conditions on the 

fluid total mass 

  0 1L v L L
m A h y m m     (4.1 a) 

  0 1R v R R
m A h y m m     (4.1 b) 

Representing the masses 0L
m  and 0R

m  as a certain rate p  of the total 

liquid masses L
m  and R

m , from Eqs. (4.1) it can be derived that 

 0L L v
m p m p A h y    (4.2 a) 

 0R R v
m p m p A h y    (4.2 b) 

     1
1 1

L L v
m p m p A h y      (4.2 c) 

     1
1 1

R R v
m p m p A h y      (4.2 d) 

With these assumptions, the total kinetic and potential energy can be 

written as 



Chapter 4        Innovative modeling of TLCD motion: a fractional derivative perspective 

 

146 

       
2 2

2 2 1
1

2
v g v g h g

T p A h y x p A h x x A b y x           (4.3) 

 2 2 2

v
U A g h y kx    (4.4) 

Using the energy principles, the equation of motion of the liquid 

displacement  y t  can be derived from the Lagrange equation: 

   
y

T U T U
Q

t y y

    
  

   
 (4.5) 

where Qy is the total non-conservative force in the direction of  y t , 

related to the head loss, as reported in Chapter 2. 

Substitution of Eq.(4.3) and (4.4) in Eq.(4.5), leads to equation of 

motion of the liquid in the TLCD, associated to the vertical liquid 

displacement  y t , considering the simultaneous effect of the first liquid 

sloshing mode 

         2

2

1

2
g

e e

b
y t y t y t y t x t

L L


      (4.6) 

where 2
e

L ph b   can be defined as the sloshing induced effective 

liquid length,   is the area ratio of the vertical column to the horizontal 

column of the TLCD  v h
A A  , and 

2

2

e

g

L
   (4.7) 

is the corresponding modified natural frequency of vertical liquid 

oscillation inside the tube. 
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Thus, it has been demonstrated that correctly including in the equation 

of motion the first linear sloshing mode dynamics, a variation of the 

natural frequency, experimentally seen in recent studies (Chaiviriyawong 

et al., 2007; Di Matteo et al., 2012; Lee et al., 2012), could be justified, 

leading to the modified natural frequency as in Eq. (4.7). 

It is worth noting that the parameter p , as the head loss coefficient  , 

may be experimentally identified. However, unlike the head loss 

coefficient for which many experimental tests are needed, p  is easily 

obtained from Eq. (4.7) once the experimental natural frequency of 

liquid, say 
exp

, is identified. 
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4.4    Proposed model with fractional derivative 

 

As highlighted in the previous Section, Eq. (4.6) is a nonlinear 

differential equation depending on two unknown parameters, namely p  

and  , which both have to be experimentally identified if differences 

between experimental and numerical results obtained with Eq. (2.4) 

emerge. For this reason at this stage it cannot be considered as a valid 

improvement of Eq. (2.4), until a correct prediction of the values of p  

depending on the TLCD parameters will be derived. 

However, further enhancements may be observed if a fractional 

derivative term is introduced in Eq. (2.4) replacing the nonlinear 

damping term. This leads to the following proposed equation for 

modeling the liquid motion of TLCD 

        2

0 2

1

2

C

t g

C b
y t D y t y t x t

L L

       (4.8) 

where C  is a constant that can be viewed as the fractional damping 

coefficient and   0

C

tD y t  is a force represented by an  -order left 

Caputo fractional derivative, expressed as (Podlubny, 1999) 

 
 

   0

0

1
, 0 1

1

t

C

t

d
D y t t y d

d

    
 

   
    (4.9) 

being    the Euler-Gamma function. 
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Note that, Eq. (4.8) depends on the theoretical natural frequency 
2  

given by Eq. (2.5) and, since it contains only linear terms, it is now a 

linear fractional differential equation that governs the motion of the 

liquid inside the TLCD. 

Resorting to the Fourier transform property of fractional derivatives, 

that is 

       0

C

tD y t i y t
 F F  (4.10) 

the liquid displacement Frequency Response Function (FRF) 

      y gH Y X    may be easily obtained from Eq. (4.8) as 

 
 2 2

2

1

2

y

b

LH
C

i
L





  




  

 (4.11) 

This theoretical model was proposed on the basis of several 

considerations: 

i. As well established in literature (Wu et al., 2009; Di Matteo et al., 

2014), the nonlinear behavior of the TLCD system may be 

effectively described considering the equivalent linear model, since 

the system is weakly nonlinear and stochastic linearization technique 

works very well both in frequency and time domain; 

ii. As demonstrated in(Di Paola et al., 2012, Failla and Pirrotta, 2012), 

the fractional operator may be discretized in a set of Maxwell half-

oscillator, leading to a mechanical representation analogous to the 

equivalent mechanical model of sloshing; 
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iii. As pointed out in (Spanos and Evangelatos, 2010), the fractional 

derivative may alter simultaneously both the resonant frequency and 

the degree of damping of the system. 

On this solid ground, introducing this proposed formulation the cited 

effects of sloshing, turbulence and flow separation, that could modify the 

theoretical natural frequency, contemporary with viscous interaction and 

hydrodynamic head losses, that represent the damping effects, are 

naturally taken into account. 

As far as the numerical solution of Eq. (4.8) is concerned, numerical 

results of the proposed formulation can be obtained implementing the 

Newmark method having discretized fractional derivative via Grunwald-

Letnikov (GL) as detailed in (Failla and Pirrotta, 2012). 

In particular, considering a quiescent system at 0t   and subdividing 

the time interval [0, ]ft  into equally-spaced steps t , the fractional 

derivative Eq. (4.9) at time instant it i t   may be approximated with the 

following GL series expansion 

   0
0

0

lim
i

C

t i k i
t

k

D y t t GL y t k t 

 


     (4.12) 

where kGL  are coefficients to be computed in the recursive form as 

1 0

1
, 1k k

k
GL GL GL

k




 
   (4.13) 

Substituting Eq. (4.12) into Eq. (4.8), the equation of motion of the 

fractional system at the time instant it i t   can be rewritten as 
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       2

2

0

1

2

i

i k i i g i

k

C b
y t t GL y t k t y t x t

L L

  



        (4.14) 

In this form, Eq. (4.14) can be solved with a classical Newmark method, 

as described in (Failla and Pirrotta, 2012). 

Observe that Eq. (4.8) does represent a valid improvement of the 

classical model in Eq. (2.4). The proposed Eq. (4.8) is in fact a linear 

differential equation, albeit of fractional order. The corresponding FRF 

can be then found directly as in Eq. (4.11). Thus, even if two parameters 

( C
 and  ) are still involved in the model, they can be efficiently found 

from experimental FRFs as it will be shown in the following section. 

On the contrary, Eq. (4.6) is a nonlinear differential equation, and 

determination of the unknown parameters ( p  and  ) from experimental 

data, may be a rather daunting task. Further, it is worth noting that even 

Eq. (2.4) is a nonlinear differential equation, in which at least one 

parameter ( ) has to be determined through experimental tests. No 

reliable relations, in fact, exist in literature linking TLCD geometric 

parameters to the head loss coefficient. 
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4.5    Proposed model for TLCD controlled structures 

 

In previous Section 4.4 attention was focused on the modeling of the 

liquid motion inside the device only. 

To extend those results for TLCD controlled systems, proceeding as in 

Section 4.4, the nonlinear damping term in Eq. (2.20) can be replaced 

with a Caputo fractional derivative term, leading to the alternative 

equations of motion in the form 

             

          

2
1 1 1

2
0 2

1 2 1

1

2

g

C
gt

x t y t x t x t x t

C
x t y t D y t y t x t

L
 

     

  







      

    
 (4.15 a,b) 

Note that Eq. (4.15) is now a system of linear coupled differential 

equations, the second of which is of fractional order. 

Further, Fourier transforming Eqs. (4.15) and taking into account Eq. 

(4.10) yields 

         

       

2 2
1 1 1

2 2
2

2

2

1 2

2

1 g

g

i

C
i

L

X Y X

X Y X
 

    

  

     

     

      
  

     
  

   

  
 (4.16 a,b) 

Thus, the structural displacement FRF       x gH X X    

can be written as 
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 
 

 
 

2 2

4 2
2 2

1 1 1

1

1 2
x

B
H

i
B

  





  
    



 



   

 (4.17) 

while the liquid vertical motion FRF       y gH Y X    is 

 
 

 
 

2

1 1 1

4 2
2 2

1 1 1

2

1 2
yH

B
i

B

  


  
    



 
 

 
 

    
 

 (4.18) 

where 

   2 2

2

1

2

C
B i

L


        (4.19) 

It is worth stressing that, if the main structural parameters 1  and 1  

are known, Eq. (4.17) can be used to identify the two unknown 

parameters C  and  , through a best fitting on the experimentally 

evaluated structural displacement FRF. This procedure will be clearly 

shown in the following sections. 

As far as the numerical solution of Eq. (4.15) is concerned, 

considering a quiescent system at  0t   and subdividing the time 

interval 0, ft    into equally-spaced steps t , the fractional derivative in 

Eqs. (4.15) can be approximated with the following GL series expansion 

as in Eq. (4.12) 

Therefore, the equation of motion for the proposed fractional model at 

the time instant it  can be rewritten as 
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             

         

2

1 1 1

2

2

0

1 2 1

1

2

i i i i g i

i

i i k i i g i

k

x t y t x t x t x t

C
x t y t t GL y t k t y t x t

L

 

     

  



       



       



 (4.20) 

Specifying Eq. (4.20) for the following time instant 
1it 
 and 

subtracting from Eq. (4.20), yields 

   2

1 1 1

2

0 2

1 2 1

1 1

2 2

g

g i

x y x x x

C C
x y t GL y y x t P

L L

  

     

   

            



           


 (4.21) 

where          1 1,i i i ix x t x t y y t y t       ,

    1g g i g ix x t x t    and 

     1 1

1

0
i

i k i i i

k

P GL y t k t y t k t GL y 



          (4.22) 

The term iP  can be then considered as a pseudo-force, depending on 

the liquid displacement until the time instant it . 

Rewriting Eq. (4.21) in compact matrix form, yields 

gx    MΔZ CΔZ KΔZ = A B  (4.23) 

where 

x

y

 
  

 
ΔZ  (4.24) 

1

1

 



 
  
 

M  (4.25) 
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C  (4.26) 

2

1 0

0 a

 
  
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K  (4.27) 

1 



 
  
 

A  (4.28) 
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2
i

C
t P

L

 

 
 
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(4.29) 

2

2 0

1

2

C
a t GL

L

 

      (4.30) 

In this way a classical Newmark scheme can be applied to find the 

numerical solution of the differential Eq. (4.23). Specifically, applying 

the constant average acceleration method the following relations hold 

true 

   1
2

i i

t
t t 


   ΔZ Z Z  (4.31) 

     
2

1
4

i i i

t
t t t t 


     ΔZ Z Z Z  (4.32) 

in which  itZ  is the state variables vector 

 
 

 
i

i

i

x t
t

y t

 
  
 

Z  (4.33) 
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Substituting Eqs. (4.31) and (4.32) into Eq. (4.23) and manipulating, 

yields 

   
2

1

1
2 4

i i g

t t
t t t x



    
        

   
Z θ M C K Z KZ A B  (4.34) 

where 

2

2 4

t t 
  θ M C K  (4.35) 

Clearly, once obtained the response acceleration vector  1it Z  from 

Eq. (4.34), velocity and displacement responses can be determined 

through Eqs. (4.31) and (4.32). 
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4.6    Experimental investigation 

 

In this Section the proposed formulations for the TLCD device and 

TLCD controlled structures are validated through an experimental 

campaign on a small scale model built in the Laboratory of Experimental 

Dynamic at University of Palermo. 

Since a vast experimental campaign has been accomplished to validate 

the proposed formulations for both the device only and the TLCD 

controlled systems, here results will be analyzed separately. 

Specifically, results obtained from the proposed fractional formulation 

Eq. (4.8) on the TLCD device only will be analyzed in Section 4.6.1, 

while results for the extension to the case of TLCD controlled structures 

Eq. (4.15) will be analyzed in Section 4.6.2. 

 

 

4.6.1    TLCD devices 

 

To experimentally validate the proposed linear fractional formulation Eq. 

(4.8), TLCD systems have been realized with U–shaped Plexiglas
®

 

cylinder tubes in the Laboratory of Experimental Dynamic at University 

of Palermo. 

It is worth noting that in (Chaiviriyawong et al., 2007) three different 

configurations of TLCD have been studied varying the ratio between the 

corner to corner width w (see Fig. 4.1) and the horizontal liquid length b. 
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To aim at reproducing analogous results obtained in (Chaiviriyawong et 

al., 2007), so as to further validate the proposed formulation, three TLCDs 

configurations have been tested, which were characterized by the same 

corner to corner width to horizontal length ratios considered in 

(Chaiviriyawong et al., 2007). In particular, three sets of TLCD devices 

with same horizontal liquid length b, but three different diameters d have 

been used. Moreover, tubes have been filled with water reaching two 

different liquid levels h from the centerline of the base tube, for each one 

of the three sets of TLCD devices. Thus two different values of natural 

frequency for each set have been obtained. 

In Fig. 4.4(a-c, g-i), pictures of the six TLCD device configurations 

are shown while in Fig. 4.4(d-f, l-n) schematic drawings of the TLCDs 

with the corresponding dimensions are depicted. 

The six TLCD configurations have been rigidly connected and excited 

at the base through an APS Dynamic–Model 133 shake table, which 

provides the ground motion (Fig. 4.4(a-c, g-i)). In particular, the input 

signals have been acquired using an accelerometer on the table itself, the 

Miniature DeltaTron Accelerometers Brüel&Kjær – Type 4507-002B 

piezoelectric accelerometer. Further, in order to condition and amplify 

voltage signals coming from accelerometer before being acquired and 

saved, a PCB conditioning amplifier was used (model 481A). 
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Configuration #1a Configuration #2a Configuration #3a 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Configuration #1b Configuration #2b Configuration #3b 

 
(g) 

 
(h) 

 
(i) 

 
(l) 

 
(m) 

 
(n) 

Fig. 4.4 - TLCD devices;(a) – (c), (l) – (n) pictures of the six TLCD configurations; 

(d) – (f), (g) – (i) TLCD dimensions. 

 

Voltage signals have been generated by means of a National 

Instruments NI-PCI-MIO-16XE-10, and digitalized and acquired by 

means of a National Instruments NI-PCI-4472 Analogical-Digital (A-D) 

Acquisition Board and then processed using signal processing software in 

LabView and MATLAB environments. 
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During the motion, a video camera (model Canon IXUS 100IS) was 

used to record the TLCD water free surface displacements. 

In Fig. 4.5, a schematic view of the acquisition system is depicted. 

 

 

Fig. 4.5 - Acquisition system for TLCDs test. 
 

As shown, the camera was rigidly connected through a screw to the 

shaker plate to create a moving reference frame, integral with the TLCD 

devices. To record the free water surface displacement only, the screw 

was moved up or down until a suitable position was reached so that the 

camera focuses only on the left column liquid during its entire motion. 

Broadband noise in the range 0.5÷10 Hz, supplied through the APS 

shaker, was used as input signal both to identify the TLCD devices 

dynamic parameters, and to validate the proposed formulation as well. 

For each TLCD device, 20 samples of broadband noise, with a duration 

time of 25 s and sampling frequency of 1 kHz, have been generated and 

used as ground acceleration. For each sample, the acceleration at ground 

and the liquid displacement were recorded through the accelerometer and 

the video camera respectively. Each video was recorded at 30 fps 

(corresponding to a sampling frequency of 30 Hz) and high-definition 
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full-frame images of 1280 x 720 pixels were acquired and transferred to 

the computer. 

In order to determine the free water surface displacements for each 

analyzed configuration, an image processing procedure in MATLAB 

environment was developed. 

In particular, each frame in the RGB color space (Fig. 4.6(a)), has 

been converted into the equivalent hue, saturation and value (HSV) 

image. These components are then extracted. Once assigned and applied 

suitable low and high threshold values to the HSV image components (to 

filter out unnecessary color and additional noises) these have been 

converted into binary images, which have intensity values of 0 

(corresponding to black color) or 1 (corresponding to white color), and 

then combined together to obtain a binary image in which the water is 

colored in white and the rest of the image in black (Fig. 4.6(b)). This 

binary image has been used to identify the free water surface in the left 

column of the TLCD, and the pixel position corresponding to the passage 

from the black to the white color of a chosen point at the centre of the 

TLCD column, has been determined in the analyzed frame (point A in 

Fig. 4.6(c)). 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 4.6 - Image processing; (a) extracted frame from the video; (b) binary image; (c) 

image with the determined pixel position (black dot on the water interface). 
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Once the pixel positions have been acquired for all frames, conversion 

to displacement in meters has been made with a calculated scale factor, 

determined though the graduated rod rigidly connected to the shaker 

plate (Fig. 4.5). In this way the free water surface displacement time 

histories have been obtained from the videos, and the averaged 

Frequency Response Function (FRF) for each TLCD configuration has 

been computed. 

 

4.6.1.1 Experimental results versus numerical results: classical 

formulation vis-à-vis equation of motion with sloshing 

 

Once the FRFs have been obtained, experimental natural frequency exp  

has been directly identified from the corresponding FRF for each TLCD 

configuration, while the head loss coefficient   has been computed by 

minimizing the error between the measured FRFs of the liquid 

displacement and that from Eq. (2.4) having considered as input the 

recorded accelerations. The geometric and identified TLCD parameters, 

for each configuration, are detailed in Tables 4.1 and 4.2. 

 

Table 4.1 - TLCD configurations parameters for Configurations #a. 
 Configuration #1a Configuration # 2a Configuration # 3a 

d 0.054 m 0.034 m 0.024 m 

A 3 22.29 10 m  
4 29.08 10 m  

4 24.52 10 m  

b  0.105 m 0.105 m 0.105 m 

w  0.076 0.048 0.034 

h  0.04 m 0.035 m 0.035 m 

L 0.185 m 0.175 m 0.175 m 

2  10.29 rad/s 10.59 rad/s 10.59 rad/s 

exp  11.97 rad/s 11.81 rad/s 11.56 rad/s 

  6 8 15 
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Table 4.2 - TLCD configurations parameters for Configurations #b. 
 Configuration #1b Configuration # 2b Configuration # 3b 

d 0.054 m 0.034 m 0.024 m 

A 3 22.29 10 m
 

4 29.08 10 m
 

4 24.52 10 m
 

b  0.105 m 0.105 m 0.105 m 

w  0.076 0.048 0.034 

h  0.05 m 0.05 m 0.05 m 

L 0.205 m 0.205 m 0.205 m 

2  9.78 rad/s 9.78 rad/s 9.78 rad/s 

exp  11.31 rad/s 10.81 rad/s 10.56 rad/s 

  6 8 15 
 

 

To assess the reliability of the identified parameters, for each TLCD 

configuration numerical-experimental comparison of liquid displacement 

time histories are depicted in Figs. 4.7-4.12. In these pictures numerical 

time histories liquid displacements are contrasted with the experimental 

ones; in particular the recorded free water surface displacements are 

compared with those computed with the classical theoretical model 

defined by Eq. (2.4) (say classical numerical results) and those obtained 

with the theoretical model defined by Eq.(4.6) (say numerical sloshing-

vertical motion results) in which the real experimental natural frequency 

is involved, setting those reported in Table 4.1 as parameters. It is worth 

noting that classical numerical results and sloshing-vertical motion 

results have been obtained with a 4th–order Runge-Kutta method, 

considering as input the recorded accelerations. 
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Fig. 4.7 - Comparison of liquid displacement time histories for Configuration #1a: 

Experimental results (black solid line), classical numerical results (blue 

dotted line) and numerical sloshing-vertical motion results (red dashed line). 
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Fig. 4.8 - Comparison of liquid displacement time histories for Configuration #1b: 

Experimental results (black solid line), classical numerical results (blue 

dotted line) and numerical sloshing-vertical motion results (red dashed line). 
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Fig. 4.9 - Comparison of liquid displacement time histories for Configuration #2a: 

Experimental results (black solid line), classical numerical results (blue 

dotted line) and numerical sloshing-vertical motion results (red dashed line). 
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Fig. 4.10 - Comparison of liquid displacement time histories for Configuration #2b: 

Experimental results (black solid line), classical numerical results (blue 

dotted line) and numerical sloshing-vertical motion results (red dashed line). 
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Fig. 4.11 - Comparison of liquid displacement time histories for Configuration #3a: 

Experimental results (black solid line), classical numerical results (blue 

dotted line) and numerical sloshing-vertical motion results (red dashed line). 
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Fig. 4.12 - Comparison of liquid displacement time histories for Configuration #3b: 

Experimental results (black solid line), classical numerical results (blue 

dotted line) and numerical sloshing-vertical motion results (red dashed line). 
 

 



Structural vibration control through Tuned Liquid Column Dampers: theoretical and 

experimental analysis 

167 

As shown for each TLCD configuration, sloshing-vertical motion time 

histories match very well the corresponding experimental results. On the 

other hand, classical numerical results from Eq. (2.4) are rather different 

from the experimental ones, and the difference grows at increasing levels 

of the corner to corner width w to horizontal length ratio, as expected and 

detailed in aforementioned (Chaiviriyawong et al., 2007). 

 

4.6.1.2 Experimental results versus numerical results: classical 

formulation vis-à-vis proposed fractional formulation 

 

In order to evaluate the TLCD parameters of the theoretical proposed 

model (  and C ) in Eq. (4.8), the nonlinear least square curve fitting 

method using MATLAB has been applied to fit the experimental data of 

the FRFs with Eq. (4.11). The identified TLCD parameters, for each 

configuration, are detailed in Table 4.3. 

 

Table 4.3 - Fractional TLCD parameters 
 Conf.#1a Conf. #1b Conf. #2a Conf.#2b Conf. #3a Conf. #3b 

  0.2 0.21 0.3 0.41 0.6 0.63 

C  8.58 7.41 4.58 3.59 2.17 2.06 
 

 

To prove the validity of the aforementioned proposed fractional 

formulation, for each TLCD configuration numerical-experimental 

comparisons of liquid displacement time histories are depicted in Figs. 

4.13-4.18. In these pictures the recorded free water surface displacements 

are compared with those computed with the proposed model defined by 

Eq. (4.8), setting those reported in Table 4.1-4.3 as parameters. It is 
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worth noting that numerical results of proposed formulation (Eq.(4.8)) 

have been obtained implementing the Newmark method having 

discretized fractional derivative via Grunwald-Letnikov (GL) as detailed 

in Section 4.4. 

As shown for each TLCD configuration, time domain numerical 

results obtained considering the proposed model closely match the 

corresponding experimental results. 
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Fig. 4.13 - Comparison of liquid displacement time histories for Configuration #1a: 

Experimental results (black solid line), classical numerical results (blue 

dotted line) and proposed model results (magenta dash-dot line). 
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Fig. 4.14 - Comparison of liquid displacement time histories for Configuration #1b: 

Experimental results (black solid line), classical numerical results (blue 

dotted line) and proposed model results (magenta dash-dot line). 
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Fig. 4.15 - Comparison of liquid displacement time histories for Configuration #2a: 

Experimental results (black solid line), classical numerical results (blue 

dotted line) and proposed model results (magenta dash-dot line). 
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Fig. 4.16 - Comparison of liquid displacement time histories for Configuration #2b: 

Experimental results (black solid line), classical numerical results (blue 

dotted line) and proposed model results (magenta dash-dot line). 
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Fig. 4.17 - Comparison of liquid displacement time histories for Configuration #3a: 

Experimental results (black solid line), classical numerical results (blue 

dotted line) and proposed model results (magenta dash-dot line). 
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Fig. 4.18 - Comparison of liquid displacement time histories for Configuration #3b: 

Experimental results (black solid line), classical numerical results (blue 

dotted line) and proposed model results (magenta dash-dot line). 
 

Further in Figs. 4.19 and 4.20, comparison among experimental, 

numerical sloshing-vertical motion and proposed model liquid 

displacement time histories and FRF are depicted, having chosen 

Configuration #3b case for sake’s space only. 

 

10 11 12 13 14 15 16 17 18 19 20

-6

-4

-2

0

2

4

6

x 10
-3

Time [s]

D
is

p
la

ce
m

en
t 

[m
]

 

Fig. 4.19 - Comparison of liquid displacement time histories for Configuration #3b: 

Experimental results(black solid line), numerical sloshing-vertical motion 

results (red dashed line) and proposed model results (magenta dash-dot line). 
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Fig. 4.20 - Comparison of liquid displacement mean FRF for Configuration #3b 

Experimental results (black solid line), numerical sloshing-vertical motion 

results (red dashed line) and proposed model results (magenta dash-dot line). 
 

As it can be observed in Fig. 4.20, the curves are practically 

coincident in frequency domain, assessing that proposed model results 

are also very satisfactory in frequency domain. Note that in (Di Matteo et 

al., 2014b and 2015) analogous figures of liquid displacement FRF are 

reported for other configurations, showing the same order of accuracy of 

the proposed model in the frequency domain. Further, from a closer 

observation of Fig. 4.19, the proposed model time history appears to be 

slightly more accurate in predicting the experimental behavior, than the 

sloshing-vertical motion one. 
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4.6.1.3    Discrepancy evaluation and concluding remarks 

 

In order to better evaluate the differences among experimental and 

numerical results, a properly percentage discrepancy index has been 

defined as 

   

 

2

2

f

i

f

i

t

th ex

i i

t

i t

ex

i

t

y t y t dt

y t dt



  







 (4.36) 

where [ti–tf] is the observation window,  iy t  denotes the liquid 

displacement of the i-sample, while the apexes th and ex stand for 

numerical and experimentally measured, respectively. 

Therefore, the discrepancy index between numerical and experimental 

time histories, for the various analyzed TLCD configurations, and for the 

three theoretical formulations, has been computed for each sample. In 

Fig. 4.21 the index i  for the twenty samples of Configuration #3b is 

reported. 

Moreover to get an overview of all results, the mean error for each 

formulation has been computed, as reported in Table 4.4, where ec stands 

for the mean discrepancy index of the classical formulation, es stands for 

the mean discrepancy index of the sloshing formulation and ep stands for 

the discrepancy index of the proposed formulation. 
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Fig. 4.21 - Values of the percentage discrepancy index i  for the twenty samples: 

comparison among classical numerical results (blue circles), numerical 

sloshing-vertical motion results (red crosses) and proposed model results 

(magenta dots) for Configuration #3b. 
 

Table 4.4 - Mean value of the discrepancy index. 
 Conf.#1a Conf.#1b Conf. #2a Conf.#2b Conf. #3a Conf. #3b 

ec 136.89% 154.20% 81.22% 93.28% 28.82% 41.22% 

es 12.19% 14.27% 13.07% 11.64% 13.52% 10.11% 

ep 11.68% 11.57% 11.62% 5.51% 6.72% 5.51% 
 

 

As shown in Table 4.4, mean discrepancy indexes obtained 

considering the proposed fractional formulation are always smaller than 

those obtained from the other two formulations, thus proving that this 

fractional differential equation of motion can captures the real motion of 

the TLCD free water surface. 

As in fact pointed out in Wu et al. (2009), considering a broadband 

noise, the TLCD free water surface experiences a sloshing motion 

together with the predicted vertical motion. Such additive sloshing effect 

may lead to deviation of the measured liquid frequency from the 
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theoretical one. The fractional damping term, introduced in the equation 

of motion, is able to recover excellently the different frequency. 

Moreover, in literature so far, it has been pointed out that the bigger 

the ratio between the corner-to-corner width w and the horizontal length 

b, the more the classical formulation deviates from experimental results 

(Hitchcock et al., 1997). This fundamental behavior has been confirmed 

from findings here introduced. In fact from Configuration #1 (where 

classical formulation is not reliable) to Configuration #3, classical 

formulation results tend to match the corresponding experimental ones, 

with increasing accuracy, while the other two formulations always lead to 

reliable results. 

 

4.6.2    TLCD controlled systems 

 

Once the proposed fractional formulation has been validated for the 

TLCD device only, the behavior of TLCD controlled structures has been 

analyzed. 

To this end, firstly an experimental campaign on a small scale SDOF 

shear-type frame has been carried out to determine main system 

parameters. Pertinent results are presented in Section 4.6.2.1. 

Secondly, experimental tests on the corresponding TLCD controlled 

systems have been performed to validate the proposed fractional 

formulation. Pertinent numerical vis-à-vis experimental results are shown 

in Section 4.6.2.2. 
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4.6.2.1    Main systems parameters identification 

 

In order to experimentally validate the proposed linear fractional 

formulation for TLCD controlled systems in Eq. (4.15), the same three 

main system configurations used in Section 3.7.1 have been employed. In 

Figs. 4.22(a-c) pictures of the three main systems configurations are 

shown while in Figs. 4.22(d-f) schematic drawings of the structures with 

the corresponding dimensions are depicted. 

To experimentally identify dynamic parameters of the three main 

systems configurations, the three SDOF structures have been excited at 

the base through a shaking table model Quanser Shake Table II which 

provided the displacement controlled ground motion (Figs. 4.22(a-c)). 

The acceleration responses at the base and at the storey of the systems 

have been acquired using Miniature DeltaTron Accelerometers 

Brüel&Kjær – Type 4507-002B piezoelectric accelerometers. 
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Fig. 4.22 – Experimental setup of the main systems; (a) - (c) picture of the three SDOF 

structures configurations; (d) - (f) main systems dimensions. 
 

Signals coming from the accelerometers have been acquired trough a 

NI PXIe-1082 DAQ device, equipped with a high-performance 16-

channels NI PXIe-4497 board. Finally the entire system has been 

controlled via a self-developed signal processing software in LabVIEW 

environment. In Fig. 4.23 the principal devices used for the shake table 
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tests are presented, while details on the various devices and systems 

employed for the experimental set-up are described in Appendix A. 

 

 

Fig. 4.23 – Acquisition devices for shake table tests. 
 

Ten samples of broadband noise, in the range 0.5÷10 Hz, each having 

duration of 60 s and a sampling frequency of 1 kHz, have been generated 

and used as ground acceleration. For each sample the accelerations have 

been recorded and the mean FRF was computed (Ewins, 1984). 

Once obtained the sought FRFs, dynamic parameters have been 

identified for each configuration using well-known techniques such as 

half-power bandwidth method and Rational Fractional Polynomial 

method. All these techniques leaded to similar results of the systems 

dynamic parameters, which are reported in Table 4.5. 

In order to assess the reliability of the identified parameters, 

experimental vis-à-vis numerical mean FRFs are depicted in Fig. 4.24 for 

the three main systems configurations. The perfect agreement between 

numerical and experimental results demonstrates the accuracy of the 

identified parameters in Table 4.5. 

 

Table 4.5 - Main systems dynamic parameters. 

 Configuration #1 Configuration #2 Configuration #3 

M 4.486 kg 4.226 kg 4.208 kg 

1  0.005 0.0032 0.0037 

1  9.10 rad/s 9.54 rad/s 9.65 rad/s 
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(a) 

 
(b) 

 
(c) 

Fig. 4.24 - Comparison between experimental (black solid line) and numerical (blue 

dashed line) displacement FRFs: (a) Configuration #1; (b) Configuration #2; 

(c) Configuration #3. 
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4.6.2.2    TLCD controlled systems parameters 

 

Once main systems and TLCD devices parameters have been 

identified (see Tables 4.1-4.5), the validity of the proposed theoretical 

fractional model Eqs. (4.15) has been proved through several 

experimental tests on three TLCD controlled systems configurations, as 

outlined in the following. 

In this regard three configurations of TLCDs controlled systems have 

been analyzed. Specifically, Configurations #b parameters (see Table 

4.2) of TLCDs devices have been used. Thus, just the diameter d of the 

TLCD devices has been varied for each configuration, keeping constant 

the horizontal length b and the liquid height h (Fig. 4.4(g-n)). 

Pictures of the three systems configurations are shown in Figs. 4.25(a-

b) while in Figs. 4.25(c-d) their schematic drawings are reported with the 

corresponding dimensions. 

The three configurations have been excited at the base with the 

Quanser Shake Table II, through broadband noises in the range 0.5-10 Hz 

and duration of 60 s. Specifically 10 samples of broadband noise with 

variance equal to 0.0025 m
2
/s

4
 for each configuration have been 

generated, accelerations at the ground and at the upper plate have been 

recorded and the three mean FRFs have been computed. 

As previously done for the TLCD devices only, once the three mean 

FRFs of the TLCD controlled structures have been obtained, a best fitting 

procedure has been applied to identify TLCD parameters for the 

theoretical fractional model (   and C ). Therefore a nonlinear least 
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square curve fitting method using MATLAB, has been applied to fit the 

two mean experimental FRFs with the corresponding theoretical ones 

given in Eq. (4.17). Identified parameters are reported in Table 4.6 for 

the three configurations analyzed. 

 

Configuration #1 Configuration #2 Configuration #3 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 4.25 – Experimental setup of the controlled system; (a) - (c) picture of the three 

controlled structures; (d) - (f) controlled systems dimensions. 
 

It is worth noting that, rather remarkably, identified values of   and 

C  are very close to those obtained using the TLCD devices only and 

reported in Table 4.3, thus further proving the correctness of the 

procedure outlined. 

 

0.05 m 
0.05 m 0.05 m 
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Table 4.6 - Fractional TLCD parameters 
 Configuration #1 Configuration  #2 Configuration #3 

  0.155 0.41 0.63 

C  9.92 3.59 2.06 
 

 

To assess the validity of the proposed theoretical fractional model in 

Eqs. (4.15), numerical-experimental comparison of mean FRFs and 

relative structural accelerations are depicted in Figs. 4.26-4.31 for each 

TLCD controlled system configuration. Specifically in Figs. 4.26-4.28 

the recorded relative upper plate accelerations are compared with those 

computed with Eq. (2.20) (say classical nonlinear formulation results) 

and those obtained numerically integrating Eq. (4.15) (say proposed 

fractional formulation results) using as parameters those reported in 

Tables 4.5-4.6. 

 

 

Fig. 4.26 - Comparison of structural acceleration time histories for Configuration #1: 

Experimental results (black solid line), classical numerical results (blue dash-

dot line) and proposed fractional model results (red dashed line). 
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Fig. 4.27 - Comparison of structural acceleration time histories for Configuration #2: 

Experimental results (black solid line), classical numerical results (blue dash-

dot line) and proposed fractional model results (red dashed line). 
 

 

Fig. 4.28 - Comparison of structural acceleration time histories for Configuration #3: 

Experimental results (black solid line), classical numerical results (blue dash-

dot line) and proposed fractional model results (red dashed line). 
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Further in Figs. 4.29-4.31 the corresponding experimental and 

numerical mean FRFs are depicted. In all cases, the recorded 

accelerations have been used as input. It is worth noting that numerical 

classical results have been obtained with a 4th-order Runge-Kutta 

method, whereas numerical solution of Eqs. (4.15) have been performed 

implementing a Newmark method through a discretization of the Caputo 

fractional derivative (Spanos and Evangelatos, 2010; Failla and Pirrotta, 

2012), as detailed in previous Section 4.5. 

 

 

Fig. 4.29 - Comparison of structural displacement mean FRF for Configuration #1 

Experimental results (black solid line), numerical classical results (blue dash-

dot line) and proposed fractional model results (red dashed line). 
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Fig. 4.30 - Comparison of structural displacement mean FRF for Configuration #2 

Experimental results (black solid line), numerical classical results (blue dash-

dot line) and proposed fractional model results (red dashed line). 
 

 

Fig. 4.31 - Comparison of structural displacement mean FRF for Configuration #3 

Experimental results (black solid line), numerical classical results (blue dash-

dot line) and proposed fractional model results (red dashed line). 
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As shown for each configuration, proposed fractional model results 

closely match the corresponding experimental ones both in time and in 

frequency domain. On the other hand, due to the discrepancies between 

theoretical liquid natural frequency 
2  and the experimentally identified 

one 
exp , numerical classical results are rather different from 

experimental data. 

 

4.6.2.3    Discrepancy evaluation 

 

In order to better evaluate the differences among experimental and 

numerical results, a properly percentage index has been introduced as 

   

 

2

2

f

i

f

i

t

th ex
i i

t

i t

ex
i

t

x t x t dt

x t dt



  







 (4.37) 

where i ft t    is the observation window,  ix t  denotes the relative 

structural accelerations of the i-sample, while the apexes th and ex stand 

for numerical and experimentally measured, respectively. Clearly, as 

shown in Eq. (4.37), the greater the value of i  the higher the 

discrepancy is. Therefore, values of the index in Eq. (4.37) for the three 

analyzed TLCD controlled systems configurations have been computed 

for each sample considering both classical nonlinear formulation results 

(Eq. (2.20)) and proposed fractional formulation results (Eq. (4.15)). 

Figs. 4.32-4.34 show the trend of the discrepancy index i  for the 10 

samples of Configurations #1-#3. 
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Fig. 4.32 - Values of the percentage discrepancy index i  for the ten samples: 

comparison among classical numerical results (blue circles) and proposed 

fractional model results (red dots) for Configuration #1. 
 

 

Fig. 4.33 - Values of the percentage discrepancy index i  for the ten samples: 

comparison among classical numerical results (blue circles) and proposed 

fractional model results (red dots) for Configuration #2. 
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Fig. 4.34 - Values of the percentage discrepancy index i  for the ten samples: 

comparison among classical numerical results (blue circles) and proposed 

fractional model results (red dots) for Configuration #3. 
 

Further, to get an overview of these results, the mean discrepancies for 

each model has been computed as reported in Table 4.7, where ec stands 

for the mean discrepancy of the classical model and ep stands for mean 

discrepancy of the proposed fractional formulation. 

 

Table 4.7 - Mean value of the discrepancy index. 
 Configuration #1 Configuration #2 Configuration #3 

ec 51.42% 42.72% 20.42% 

ep 7.69% 7.12% 9.09% 
 

 

As shown in Table 4.7, mean discrepancies obtained considering the 

proposed formulation are always smaller than those obtained from the 

classical one, thus proving that Eq. (4.15) can captures the real motion of 

TLCD controlled structures. 
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Further, the statistics of experimental response accelerations in terms 

of variance have been computed and then compared with the variances 

obtained by solving numerically the nonlinear system Eq. (2.20) and the 

proposed fractional formulation. Eq. (4.15). In the numerical simulations 

the recorded ground accelerations have been used as base accelerations. 

In Fig. 4.35 comparison among variances 2

X
  of accelerations for 

main systems and TLCD-controlled system for the different levels of 

mass ratio   is depicted. 

 

 
Fig. 4.35 – Experimental validation in term of variances for different mass ratios  . 

Experimental variances of the main system (black squares) and TLCD-

controlled system (black crosses). Classical numerical results (blue circles) 

and proposed fractional model results (red dots). 
 

As shown, experimental results (black dots) are in a good agreement 

with the numerical fractional formulation ones (red stars) for all the 

values of mass ratio analyzed, while results of the classical formulation 

(blue crosses) deviates from the corresponding experimental results. 
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4.6.2.4    Variation of parameters to input strength 

 

Since classical formulation for TLCD controlled structures Eq. (2.20) 

is a nonlinear equation of motion, a natural question arises regarding the 

behavior of the system at different levels of the input strength. Therefore, 

experimental campaign to assess the validity of the proposed linear 

fractional formulation at different values of the input strength has also 

been carried out.  

Both Configurations #2 of the main system (Fig. 4.22(b)) and TLCD-

controlled system (Fig. 4.25(b)) have been subjected to three increasing 

levels of input strength, by taking advantage of the capability of the 

shaking table to perfectly reproduce any displacement time history. For 

each level 10 samples of broadband noise, with duration of 60 seconds, 

have been generated and the accelerations at the ground and at the top 

mass have been recorded. 

The statistics of both input and response accelerations in terms of 

variance have been computed and then compared with the variances 

obtained by solving numerically Eqs. (2.20) and (4.15). 

In the numerical simulations the recorded ground accelerations have 

been used as base accelerations gx , while already identified parameters 

in Tables 4.1 and 4.5-4.6 have been considered. 
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Fig. 4.35 - Experimental validation in term of variances for values of the input intensity. 

Experimental variances of the main system (black squares) and TLCD-

controlled system (black crosses). Classical numerical results (blue circles) 

and proposed fractional model results (red dots) 
 

In Fig. 4.35 comparison among variances of accelerations 2

X
  for 

main system (black squares) and TLCD-controlled system versus the 

input variance 2

gX
  is shown. 

As can be seen, numerical results obtained from the proposed 

fractional formulation (red dots) follow closely the corresponding 

experimental results (black crosses) for each input strength. On the other 

hand, numerical results obtained from the classical formulation (blue 

circles) are rather different, and discrepancies increase for greater values 

of the input strength. 

It is worth noting that, for the numerical simulation of the proposed 

fractional formulation, identified parameters reported in the second 

column of Table 4.6 have been used. As stated in previous Section 

4.6.2.2, those parameters have been obtained considering an input 
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strength of 2 2 40.0025
gX

m s  . Therefore the same parameters 

identified for one input strength 2

gX
  resulted to be suitable to determine 

the structural variances of accelerations 2

X
  also for greater values of 

2

gX
 , thus further proving the validity of the proposed linear fractional 

formulation, even at increasing level of the input strength. 

 



 

 

Chapter 5 

Stochastic analysis of TLCDs: a Wiener Path 

Integral (WPI) approach 

 

5.1    Introduction 

 

Limitations pertaining to available information and the interpretation of 

prevalent mechanisms, as well as inherent uncertainty in critical 

engineering problems, have necessitated the study of systems with 

stochastic parameters and input. In this context, a stochastic approach 

constitutes a rational basis for system analysis and sustainable design. 

Nevertheless, complex nonlinear and hysteretic behavior observed in 

many systems renders such a stochastic analysis a persistent challenge. In 

this regard, theoretical research in the field of stochastic dynamics has 

already led to seminal advancements (e.g. see Soong and Grigoriu 

(1993), Li and Chen (2009)). For instance, Monte Carlo simulation 

(MCS) techniques (e.g. Rubinsteinand Kroese (2007), Muscolino et al. 

(2003)) have been among the most versatile tools for determining the 

response statistics of arbitrary stochastic systems, and alternative 

efficient approximate analytical and numerical solution techniques (e.g. 

see Spanos and Kougioumtzoglou (2012), Kougioumtzoglou and Spanos 

(2013), Ricciardi (2007)) have been also developed. 
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In this context, it is noted that most of the researches in the field of 

stochastic dynamics, deal with the analysis of systems with different kind 

and degrees of nonlinearity. 

However, in previous Chapter 4 a different mathematical operator, 

namely the fractional derivative, has been used to model the motion of 

the liquid in TLCD device. It is noted that in recent year there has been 

an increasing interest among researchers on the mathematical tool of 

fractional calculus, and a growing number of real applications in which 

fractional operators have been used (Sabatier et al. (2007), Hilfer (2000)). 

Since classical techniques developed for the analysis of nonlinear 

stochastic systems cannot be used directly for systems endowed with 

fractional derivative elements, there is still a need for developing 

efficient approximate analytical and/or numerical solution techniques for 

these kind of systems. 

In this regard, one of the promising frameworks relates to the concept 

of the Wiener Path Integral (WPI). It is noted that although the WPI has 

been well established in the field of theoretical physics, the engineering 

community has ignored its potential as a powerful uncertainty 

quantification tool. The concept of path integral was introduced by 

Wiener (1921, 1930) and was reinvented in a different form by Feynman 

(1948) to reformulate quantum mechanics. A detailed treatment of path 

integrals, especially of the Feynman path integral and its applications in 

physics, can be found in a number of books such as the one by Chaichian 

and Demichev (2001) and Kleinert (2009). Recently, an approximate 

analytical WPI technique for addressing certain stochastic engineering 

dynamics problems was developed by Kougioumtzoglou and Spanos 
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(2012). The technique is based on a variational principle formulation in 

conjunction with a stochastic averaging/linearization treatment of the 

nonlinear equation of motion. In this regard, relying on the concept of the 

most probable trajectory an approximate expression was derived for the 

non-stationary response probability density function (PDF). Further, the 

aforementioned technique was extended by Kougioumtzoglou and 

Spanos (2014) to treat multi-degree-of-freedom (MDOF) systems and 

hysteretic nonlinearities. The enhanced technique circumvents 

approximations associated with the stochastic averaging/linearization 

treatment of the previous development. 

On this base, in this Chapter this novel technique is further 

investigated, showing its reliability also for the efficient determination of 

the response PDF of nonlinear MDOF systems, and systems with 

fractional derivative elements. 

Specifically, in Section 5.2 the basic concepts of the WPI are 

introduced, its application for nonlinear SDOF systems under Gaussian 

white noise is discussed, and several numerical examples are developed 

to show the accuracy of the method. 

In Section 5.3 the application of the WPI for the analysis of nonlinear 

MDOF system is presented, and a novel formulation for an efficient 

evaluation of the nonstationary response PDF of such systems is 

proposed. Several numerical examples have been reported to assess the 

reliability of this proposed procedure. Further the case of the 2 degree-of-

freedom TLCD controlled structure is considered in the last part of the 

Chapter (Section 5.5), assessing the accuracy of the outlined technique 

also with the corresponding experimentally obtained PDFs.  
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Finally, in Section 5.4 the WPI technique is extended to the case of 

nonlinear systems comprising fractional derivatives elements. Several 

numerical examples are presented to show the reliability of the proposed 

procedure, including the case of the proposed fractional formulation for 

the TLCD device, developed in previous Section 4.4. Finally, The case of 

the 2 degree-of-freedom TLCD controlled structure is considered, 

assessing the accuracy of the outlined procedure also with the 

corresponding experimentally obtained PDFs. 
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5.2    WPI for nonlinear systems under Gaussian white 

noise 

 

In this Section an overview of the Wiener Path Integral technique for 

nonlinear SDOF systems will be presented for sake of clarity. 

Specifically, in Section 5.2.1 few basic concepts regarding the simpler 

case of a half-oscillator under Gaussian white noise will be provided, 

together with a brief background on Markov processes and the associated 

Chapman-Kolmogorov and Fokker-Planck equations. 

On this base, in Sections 5.2.2 and 5.2.3 the WPI will be introduced, 

and further extended to the case of nonlinear SDOF systems in Section 

5.2.4. Finally, in Section 5.2.5 the implementation of the procedure will 

be discussed and two numerical examples will be presented to 

demonstrate the reliability of the procedure. 

 

 

5.2.1    Nonlinear half oscillator under Gaussian white noise 

 

Let a nonlinear system under a zero-mean Gaussian white noise  W t  be 

given in the form 

       

  0

, ,

0

X t f X t g X t W t

X X

  




 (5.1) 
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where  ,f X t  and  ,g X t  are nonlinear functions of the response 

process  X t  and 0X  is the initial condition which may be either 

deterministic or a random variable with assigned PDF. 

Further, as far as the Gaussian white noise is concerned, it can be 

characterized by its correlation function given as 

     
21 2 1 tE W t W t q t     (5.2) 

where  E  is the ensemble average, q is the strength of the white noise 

and    is the Dirac’s delta function. 

Equation (5.1) may in turn be converted into an Itô type stochastic 

differential equation, that is the increment  dX t  of the response can be 

written in the form 

       , ,dX t f X t dt g X t dB t   (5.3) 

in which  B t  is the so-called normal Brownian motion process, i.e. a 

zero-mean process with independent increments,  0 0B   with 

probability one and whose increment  dB t  possesses characteristic 

function (CF) given by 

      2exp exp
2

dB

q
E i dB t dt   

 
      

 
 (5.4) 

where i is the imaginary unit. Form this equation it may be recognized 

that  dB t  is of order  
1 2

dt  since its variance  
2

E dB t qdt  
 

 and 

higher order moments are exactly zero. 
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Considering that  W t  is a zero-th order memory Markov process, 

from Eq. (5.1) it immediately follows that the response process  X t  is 

Markovian too, hence the so-called Chapman-Kolmogorv (CK) equation 

holds true, that is 

     , , | , ,X f i X f i i i X i i ip x t p x t x t p x t d x 




    (5.5) 

which is valid for every value of  . 

Equation (5.5) clearly states that to evaluate the PDF  ,X f ip x t   

of the response process  X t  at the time  it  , when the PDF of  X t  

at earlier time it  is already known, it is only necessary to determine the 

so-called Transition Probability Density Function (TPDF) 

 , | ,X f i i ip x t x t  at the same time instant, for an assigned 

(deterministic) initial condition ix  at earlier time it . 

Note that, in the case of normal white noise input the TPDF in Eq. 

(5.5) follows a Gaussian distribution for small   (short time Gaussian 

approximation) (Risken, 1996), given as 

 
 

  
 

2

2

,1
, | , exp

2 ,
2 ,

f i f i

X f i i i
f i

f i

x x f x t
p x t x t

q g x t
q g x t

 


 
  

 
   

   
 

 

 (5.6) 

Therefore Eq. (5.6) together with Eq. (5.5) leads to the evolution of 

the response PDF of the process  X t  in short time steps  . 

Further it has been shown in (Dekker, 1976) that Eqs. (5.5) and (5.6) 

when 0   lead, in exact manner, to the equation 
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         
2

2
, , , , ,

2
X X X

q
p x t f x t p x t g x t p x t

t x x

  
          

 (5.7) 

which is the well-know Fokker-Planck (FP) equation, ruling the 

evolution of the response PDF of the process  X t . 

 

 

5.2.2    Probability density functional and the Wiener Path Integral 

 

It is worth noting that Eq. (5.6) has been the starting point for the 

development of numerical path integral solution approaches which 

essentially constitute a discrete version of the CK equation Eq. (5.5). The 

basic characteristic of the approaches is that the evolution of the PDF is 

computed in short time steps. It was Wehner and Wolfer (1983a, 1983b, 

1987) who first developed certain numerical aspects of the approach and 

established it as a robust numerical tool. Related advancements include 

the work by Naess and Moe (2000) and Di Paola and Santoro (2008) who 

extended the approach to deal with Poisson white noise excitation. 

A characteristic of this numerical approach is the great accuracy 

achieved at the tails of the computed PDF, indicating its suitability also 

for reliability analysis (e.g. Bucher and Di Paola, 2015). 

Note that the fact that the PDF is computed in short time steps can be 

regarded as a major shortcoming of the approach making it 

computationally inefficient. 

In general, the transition PDF  , | ,X f f i ip x t x t  denotes the 

probability of a transition from a point ix  in state space at time it  to a 
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point fx  in state space at time ft  where f it t . Adopting the notation of 

Chachian and Demichev (2001), let  , ; ,i i f fC x t x t  denote the set of 

trajectories starting at point  i ix t x  and having the end point 

 f fx t x . 

Clearly to obtain the transition PDF that the particle starting at point 

 i ix t x  ends up at point  f fx t x , the probabilities over the set 

 , ; ,i i f fC x t x t  of all the trajectories which have common starting and 

ending points must be summed in an appropriate way. This is done by 

utilizing the WPI, which formally denotes the summation over a set of 

trajectories which are assumed to be continuous. 

The WPI can be realized as a functional integral over the space of all 

possible paths. It possesses a probability distribution on the path space as 

its integrand, which is denoted by  W x t    and is called probability 

density functional. In this sense, the transition PDF is given by 

     
 

 ,

,

, | ,

f f

i i

x t

X f f i i

x t

p x t x t W x t dx t         (5.8) 

The method to describe a stochastic process, as that ruled by Eq. (5.1), 

by its probability density functional was first considered by Wiener 

(1930) for the process with  , 0f X t   and  , 1g X t  . In this case the 

WPI (Eq. (5.8)) can be evaluated directly from its definition (e.g. 

Chaichian and Demichev (2001)) and thus, an analytical solution is 

possible. Subsequent generalizations were made by Onsager and 
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Machlup (1953) who considered processes with a linear form of  ,f X t  

and a constant  ,g X t . In this regard Tisza and Manning (1957) 

expressed the probability density functional of this oscillator in the form 

       exp ,

f

i

t

t

W x t dx t C OM x x dt dx t
 
            
 
 
  (5.9) 

where C  is a normalization constant; and  ,OM x x  is the Onsager-

Machlup (O-M) function. It is noted that several research efforts towards 

determining the O-M function for a stochastic process with general 

nonlinear form of  ,f X t  and  ,g X t  resulted in controversial results 

in the 1970s. Nevertheless, most papers converged towards the results 

found in Stratonovich (1971). In this regard, the probability density 

functional for processes with general  ,f X t  and  ,g X t  is given by 

     
 

 
exp ,

,

f

i

t

t

dx t
W x t dx t C OM x x dt

g x t

   
          
    
  (5.10) 

where 

 
 

     
2

1
, , '

2 ,

x
OM x x b x g x t b x

g x t

  
        

 (5.11) 

and 

 
     

 

1
, ' , ,

2

,

f x t g x t g x t

b x
g x t



  (5.12) 

in which (‘) denotes differentiation with respect to the variable x . 
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5.2.3    Lagrangian formulation and variational principle for the 

most probable path 

 

It can be readily seen that even if the O-M function Eq. (5.11) is 

constructed, the analytical solution of the WPI in Eq. (5.8) is at least a 

rather daunting, if not impossible, procedure. Thus, to circumvent the 

aforementioned challenge, several research efforts have focused on 

developing approximate techniques for determining the transition PDF 

 , | ,X f f i ip x t x t . In this regard, researchers have adopted a Lagrangian 

formulation and have interpreted the O-M function as a Lagrangian 

function for determining the most probable path, namely the most 

probable trajectory that connects the points  i ix t x  and  f fx t x . In 

this manner, a variational principle can lead to the associated Euler-

Lagrange equations, whose solution is the most probable process 

realization (Graham, 1977). 

Note that the solution to the variational formulation is required to be 

twice differentiable. This is not the case for the sample paths of systems 

with nonlinear function  ,g X t  (e.g., Grigoriu 2002). Thus, in these 

cases, the O–M function cannot be defined as a Lagrangian. Instead, the 

O–M function can be defined as the Lagrangian giving the most probable 

tube if one seeks the probability that a path lies within a certain region 

(e.g. tube) along a differentiable function (see Durr and Bach (1978) and 

Kougioumtzoglou and Spanos (2012) for relevant discussions). 
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On the other hand, for the quite general class of processes with 

nonlinear function  ,f X t  and  ,g X t c , where c  is a constant, the 

O-M function can be defined as a Lagrangian function. In this case then 

       exp ,

f

i

t

t

W x t dx t C x x dt dx t
 
            
 
 
L  (5.13) 

with 

 
 

 
2

1
, '

2

x f x
x x f x

c

  
   
   

L  (5.14) 

while Eq. (5.8) provides the transition PDF. 

It is noted that the O-M function has been substituted by the 

Lagrangian  ,x xL  in Eq. (5.13) to provide a variational principle 

compatible solution technique. The basic concept of the variational 

technique (e.g. Chachian and Demichev 2001) suggests that the largest 

contribution to the WPI of Eq. (5.8) comes from the trajectory for which 

the integral in the exponential in Eq. (5.13) becomes as small as possible. 

Calculus of variations (e.g. Ewing 1985) dictates that this trajectory is 

subjected to the condition 

 , 0

f

i

t

c c

t

x x dt L  (5.15) 

which leads to the Euler-Lagrange (E-L) equation 

   0, ,c i i c f f
c c

x t x x t x
x t x

  
   

  

L L
 (5.16) 
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where  cx t  represents the most probable trajectory. Further, solving the 

boundary value problem of Eq. (5.16) yields a solution for the transition 

PDF of the process  cx t  (e.g. Chachian and Demichev 2001) in the 

form 

     , | , exp ,

f

i

t

X f f i i f i c c

t

p x t x t t t x x dt
 
   
 
 
L  (5.17) 

Note that for fixed time points it  and ft  the function  f it t   can 

be determined by applying the normalization condition 

 , | , 1X f f i i fp x t x t dx





  (5.18) 

This formulation yields the most probable path of a diffusion process, 

namely the trajectory which determines the most probable sample paths 

of the process. The concept of the most probable path can be viewed as 

something equivalent to the fact that the most probable value of a random 

variable is the one corresponding to the maximum value of the PDF. 

 

 

 

 

 

 

 

 

 



Chapter 5                Stochastic analysis of systems with fractional derivative elements: 

                                a Wiener Path Integral (WPI) approach 

206 

 

5.2.4     Lagrangian formulation for the most probable path of SDOF 

systems 

 

In previous sections, the simple case of a half-oscillator has been 

considered to introduce the WPI technique. In the ensuing analysis, based 

on the work of Kougioumtzoglou and Spanos (2014) the analytical WPI-

based technique is extended and generalized to account for nonlinear 

SDOF and for MDOF systems. The enhanced technique builds on the 

early research paper by Onsager and Machlup (1953) and on some recent 

research work by Taniguchi and Cohen (2008), where they generalized 

the original approach by Onsager and Machlup (1953) to systems with 

kinetic energy. In this manner, they considered explicitly the inertial 

effects of particles. In this regard, consider the nonlinear oscillator in the 

form 

   2
0 02 ,x x x f x x w t      (5.19) 

where  ,f x x  represents a nonlinear function which depends on the 

instantaneous values of x  and x ,   in the damping ratio, 0  is the 

natural frequency of oscillator; and  w t  represents a Gaussian, zero-

mean white noise process possessing a power spectrum 0S . 

The probability density functional for the white noise process  w t  is 

given by (e.g. Chaichian and Demichev (2001), Taniguchi and Cohen 

(2008)) 
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 
 2

0

1
exp

2 2

f

i

t

t

w t
W w t C dt

S

 
    
 
 
  (5.20) 

Following the approach suggested in Kougioumtzoglou and Spanos 

(2014), substituting Eq. (5.19) into Eq. (5.20) and interpreting the 

probability density functional  W w t    as the probability density 

functional  W x t    for x  yields 

 
  

2
2

0 0

0

2 ,1
exp

2 2

f

i

t

t

x x x f x x
W w t C dt

S

 



 
   

     
 
 

  (5.21) 

Thus the corresponding Lagrangian function is given by 

 
  

2
2

0 0

0

2 ,1
, ,

2 2

x x x f x x
x x x

S

 



  
L  (5.22) 

According to the variational principle of Eq. (5.15) the sample path 

which contributes most to the associated WPI satisfies the equation 

 , , 0

f

i

t

c c c

t

x x x dt L  (5.23) 

which leads to the E-L equation 

2

2
0

c c cx t x xt

    
  

   

L L L
 (5.24) 

with the four boundary conditions 

       ,  ,  , c i i c i i c f f c f fx t x x t x x t x x t x     (5.25) 

where  cx t  represents the most probable trajectory. 
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Next, solving Eq. (5.24) together with Eq. (5.25) yields a solution for 

the transition PDF  , , | , ,f f f i i ip x x t x x t  (e.g. Chachian and Demichev 

2001) in the form 

     , , | , , exp , ,

f

i

t

f f f i i i f i c c c

t

p x x t x x t t t x x x dt
 
   
 
 
L  (5.26) 

where, for fixed time points it  and ft  the function  f it t   can be 

determined by applying the normalization condition 

 , , | , , 1f f f i i i f fp x x t x x t dx dx

 

 

   (5.27) 

 

5.2.5    Mechanization of the procedure and numerical applications 

 

In this Section the mechanization of the WPI technique is outlined and 

the versatility and the accuracy of the technique is assessed via numerical 

examples. In this regard, two nonlinear oscillators are considered. In the 

following, the initial time instant  0it   is used, whereas zero initial 

conditions are assumed, that is  0 0c ix x   and  0 0c ix x  . To 

apply the WPI technique for the given boundary conditions 

       0 0,  0 0,  , c c c f f c f fx x x t x x t x    , the most probable path  cx t  

is determined by solving numerically the boundary value problem Eq. 

(5.24). Specifically, for a given final time instant ft  and a given final 

boundary conditions  ,f fx x , Eq. (5.24) yields a single path  cx t . 
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Further, substituting the determined most probable path  cx t , in the 

Lagrangian function of Eq. (5.22), a single point of the system response 

PDF is given through Eq. (5.26). In this regard, if an effective domain of 

values for the system joint response PDF is considered (i.e. 

,  ,  ,   ,u f f min f maxx x x    and ,  ,  ,   ,q f f min f maxx x x   ), discretized so that  

   , , 1 Δ , 1, ,u f f min fx x u x u s      (5.28) 

with 

   , ,Δ 1f f max f minx x x s    (5.29) 

and 

   , , 1 Δ , 1, ,q f f min fx x q x q r      (5.30) 

with    , ,Δ 1f f max f minx x x r   , the system response joint PDF at 

time instant ft  can be determined by solving the boundary value 

problem of Eq. (5.24) for each and every combination of ,u fx  and ,q fx  

( s r  times in total). 

In Fig. 5.1 a schematic representation of the WPI procedure is 

outlined. Obviously, in the general case where no analytical solution 

exists for the system of ordinary differential equations (Eqs. (5.24-5.25)) 

the determination of the system response PDF can be computationally 

demanding. Nevertheless, to obtain reliable response PDF estimates for 

instance via a Monte Carlo Simulation (MCS), especially in the tails of 

the PDF where samples occur with low probability, the number N of 

excitation realizations to be produced and of subsequent numerical 
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integrations of Eq. (5.19) must be large  610N  . Further, the values of 

s and r can be reduced substantially if a priori knowledge related to the 

PDF shape characteristics is available (e.g. for an adequately smooth 

PDF shape). 

 

 
Fig. 5.1 - Schematic representation of the WPI procedure. 

 

5.2.5.1    Duffing nonlinear system 

 

As far as the numerical examples are concerned, firstly the case of a 

Duffing nonlinear oscillator is considered. The associated equation of 

motion is 

 3
0x x k x x w t      (5.31) 

where   represents the magnitude of the nonlinearity. Considering Eq. 

(5.22) the Lagrangian associated to Eq. (5.31) becomes 

 
 

2
3

0

0

1
, ,

2 2

x x k x x
x x x

S

 



  
L  (5.32) 
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whereas Eq. (5.24) yields the corresponding E-L as 

   
4

2 2 2 2 2 5 3
0 0 04

2 6 6 3 4 0c
c c c c c c

d x
k x x x k x x k x

dt
             (5.33) 

along with the four boundary conditions. 

To assess the reliability of the proposed technique, comparisons are 

made between the response PDF determined by the described WPI 

technique and the exact stationary PDF, which is know in closed form for 

the Duffing nonlinear oscillator in Eq. (5.31) as (e.g., Lin (1967)) 

 
2 4 2

0

0

, exp
2 4 2

st

k x x x
p x x C

S

 



  
      

   

 (5.34) 

where C  is a constant to be determined applying the normalization 

condition. In Fig. 5.2 the exact steady-state PDF is compared with the 

solution of the WPI considering  100s r  . Comparison demonstrates 

a satisfactory level of accuracy. 

 

 
Fig. 5.2 - Marginal displacement response PDF for the Duffing oscillator with 

0 01, 0.5, 1, 1 2k S        at t=6s: black solid line - exact steady state 

solution; red dot line - WPI solution. 
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5.3    Proposed efficient WPI for nonlinear MDOF systems 

 

In previous Section 5.2 the WPI technique has been introduced and 

derived for the case of a nonlinear SDOF system. Numerical examples in 

Section 5.2.5 have shown the reliability and accuracy of the procedure, 

even for highly nonlinear systems. 

Here, in Section 5.3.1, the WPI technique is further extended to deal 

with nonlinear MDOF systems, as more clearly detailed in 

Kougioumtzoglou and Spanos (2014). As shown, in this case the derived 

procedure can be computationally demanding. For this reason, in Section 

5.3.2, a novel efficient WPI technique for the response determination of 

nonlinear MDOF systems will be proposed. In Section 5.3.3, numerical 

examples will show the accuracy and enhanced efficiency of the 

proposed procedure. 

 

5.3.1 Numerical implementation for MDOF systems and 

computational cost 

 

As far as the stochastic response determination of nonlinear MDOF 

systems is concerned, the WPI technique outlined in previous Section 5.2 

can be further generalized for the case of MDOF systems. To this aim, 

consider a m-degree-of-freedom (m-DOF) nonlinear system 

   t   Mx Cx Kx g x,x f  (5.35) 
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where x  is a 1m  displacement vector  1
T

mx xx , M , C  and K  

denote the m m  mass, damping and stiffness matrices, respectively, and 

 g x,x  is an arbitrary nonlinear vector function. Further,  tf  is a white 

noise stochastic excitation vector process possessing a power spectrum 

matrix fS  of the form 

0

0

0

0

S

S

 
 


 
  

fS  (5.36) 

In a similar manner as in Eq. (5.22) the Lagrangian for the MDOF 

system of Eq. (5.35) becomes 

       
1

2

T -1
x,x,x = Mx + Cx + Kx + g x,x B Mx + Cx + Kx + g x,xL  (5.37) 

where 

0

0

2 0

0 2

S

S





 
 


 
  

B  (5.38) 

Next, the variational principle of Eq. (5.23) becomes 

 , , 0

f

i

t

c c c

t

dt  x x xL  (5.39) 

which yields the system of E-L equations  
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, , ,
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0

c c c

c m c m c m

x t x xt

x t x xt

    
  

   

    
  

   

L L L

L L L

 (5.40) 

together with the 4 m  boundary conditions 

       

       

,1 1, ,1 1, ,1 1, ,1 1,

, , , , , , , ,

,  ,  , 

,  ,  , 

c i i c i i c f f c f f

c m i m i c m i m i c m f m f c m f m f

x t x x t x x t x x t x

x t x x t x x t x x t x

   

   

 (5.41) 

Next, solving Eqs. (5.40-5.41) yields the transition PDF 

 , , | , ,f f f i i ip t tx x x x  in the form 

     , , | , , exp

f

i

t

f f f i i i f i c c c

t

p t t t t dt
 
   
 
 
x x x x x ,x ,xL  (5.42) 

where ,1 ,
T
c c c mx x   x  represents the most probable trajectory (m-

dimensional). Note that for fixed time points it  and ft  the function 

 f it t   can be determined by appropriate normalization of the form 

  1, 1, , ,, , | , , 1f f f i i i f f m f m fp t t dx dx dx dx

 

 

  x x x x  (5.43) 

It is worth pointing out that for linear systems, i.e.   0g x,x , the 

boundary value problem (BVP) of Eqs. (5.40-5.41) can be solved 

analytically yielding an explicit closed-form expression for the most 
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probable path cx . In this regard, substituting cx  into Eq. (5.42) the 

transition PDF becomes a multi-dimensional Gaussian PDF of the form 

 
 

   1
, ,

2 1
, | , exp

2lin

m
T

G f f i i f y lin lin f y lin

lin

p t t



 

    
 

y y y μ S y μ
S

 (5.44) 

where fy  denotes the state space vector 

1, 1, , ,( )T
f f f m f m fx x x x y  (5.45) 

and linS  and ,y linμ  are the covariance matrix and the mean response 

vector for the state space vector, respectively. 

Clearly, for 0i y  yields , 0y lin μ . 

Unfortunately, for the case of nonlinear systems, i.e.   0g x,x , the 

BVP of Eqs. (5.40-5.41) cannot, in general, be solved analytically; thus, a 

numerical solution technique needs to be implemented. In this regard, for 

a given time instant ft  and a given vector value  ,f fx x  numerical 

solution of Eqs. (5.40-5.41) yields a single point of the response PDF via 

Eq. (5.42). 

As shown in Section 5.2.5, ordinarily an effective domain of values is 

assumed for the response PDF  , , | , ,f f f i i ip t tx x x x ; that is, for the j-th 

components ,j fx  of fx  and ,j fx  of fx  it is assumed that 

     min max

, , ,  ,
k

j f j f j fx x x 
  

, 
       

min
,, , 1 Δ , 1, ,

k
j fj f j fx x k x k n     with 

      
max min

, , ,Δ 1j f j f j fx x x n    and 
     min max

, , ,  ,
k

j f j f j fx x x 
  

, 
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     
min

,, , 1 Δ
k

j fj f j fx x k x   ,  1, ,k n  with 

      
max min

, , ,Δ 1j f j f j fx x x n   , respectively. It can be readily seen 

that in the general case where no analytical solution exists for the system 

of ordinary differential equations (Eqs. (5.40-5.41)) the determination of 

the system response PDF can be computationally demanding. 

Specifically, for an m-DOF system the number of BVPs of the form of 

Eqs. (5.40-5.41) to be solved is 2mn . Note that based on numerical 

examples a value of 30n   has been deemed adequate for determining 

the system response PDF with reasonable accuracy in most cases. 

Clearly, this value is indicative as well as problem dependent. For 

instance, a higher value of n  is expected to be used for highly non-

smooth/non-Gaussian system response PDFs. 

Overall, for low-dimensional problems the proposed technique can be 

significantly more efficient than MCS. For instance, for the case of 

SDOF systems, and utilizing the value 30n   the related computational 

cost corresponds to the numerical solution of 2 900n   BVPs of the form 

of Eqs. (5.24-5.25). Alternatively, to obtain reliable response PDF 

estimates via MCS, especially in the tails of the PDF where samples 

occur with low probability, the number N  of excitation realizations to be 

produced and of subsequent numerical integrations of Eq. (5.35) needs to 

be quite large 610N  . Further, the determination of the system response 

PDF at a specific time instant ft  via the WPI technique is accomplished 

without the need to advance the solution in short time steps as it is 

required by the existing alternative numerical path integral solution 
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schemes that rely on a discrete version of the Chapman-Kolmogorov 

equation. Thus, the computationally expensive multi-dimensional 

convolution integral that needs to be evaluated at every time step is 

circumvented. 

 

5.3.2   Proposed efficient MDOF system response PDF determination 

 

The standard implementation of WPI technique as discussed in Section 

5.3.1 proves to be computationally cumbersome for MDOF systems. 

However, combining the WPI solution framework with appropriately 

chosen expansions for approximating the system response PDF can 

dramatically decrease the associated computational cost. 

In general, the joint non-Gaussian transition PDF for the system of 

Eq.(5.35) can be approximated by 

 
 

1 2 2 21

2

2

1 2

,

1, 2, 2 ,0 0 0

, | ,
, | ,

T

m m

m

j
G nonlin f f i i

NG f f i i j j j jj j
f f m fj j j

p t t
p t t c

y y y

  



  


 

  
  

y y
y y  (5.46) 

where 1 2 2T mj j j j    . The function  , , | ,G nonlin f f i ip t ty y  is a 

joint Gaussian distribution of the form of Eq. (5.44). The difference is 

that the covariance matrix and the mean response vector of ,G nonlinp  

denoted as nonlinS  and ,y nonlinμ  respectively, correspond to the response 

state vector of the nonlinear system of Eq. (5.35). Further, Eq. (5.46) can 

take various specific forms depending on the expansion chosen, such as 

Gram-Charlier and Edgeworth expansions; see Beaman and Hedrick 



Chapter 5                Stochastic analysis of systems with fractional derivative elements: 

                                a Wiener Path Integral (WPI) approach 

218 

(1981), Crandall (1985), Spanos and Donley (1991, 1992), Lee (1995), 

Muscolino et al. (1997), Ricciardi (2007) for some indicative references. 

Nevertheless, ordinarily utilized expansions such as the Gram-Charlier 

and the Edgeworth ones can lead to unacceptable estimates of the PDF, 

since the positive-definite property of the PDF is not always guaranteed. 

Thus, to avoid negative PDF estimate values, the joint non-Gaussian 

transition PDF of the system in Eq. (5.35) can be approximated as 

   , | , exp ,
fNG f f i i f fp t t t 

 yy y y  (5.47) 

where  ,
f f fty y  is a polynomial of degree l for the 2m variables fy . 

In other words, the polynomial function  ,
f f fty y  approximates the 

joint non-Gaussian log-PDF (e.g. Er 1998; Di Paola and Sofi 2002). 

In this regard, the polynomial corresponding to the m-DOF system of 

Eq.(5.35) can be written in the compact form 

 
 

 

2 1

1 2 11
1 2 1 2 1

1 2 2

1, 1
0

, , ,
0 0 0

,

m

m i
i m

f P

m

k j jk j k jk
j j j

f f i f f f m f m f
j j j

l

k

t c t x x x x





 

   

  


  y y  (5.48) 

where l is the chosen degree of the polynomial; and  
Pi fc t  denotes the 

unknown coefficients with  1, ,p pi N , where pN  is the total 

number of unknown coefficients. 

In particular, for an l-degree polynomial and 2m state variables, pN  

can be obtained as 
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 

0

2 1 2 !

2 1 !2 !

l

P

k

k m m l
N

m l m


   
  

 
  (5.49) 

Note that the unknowns to be determined in the expansion of 

Eq.(5.48) are only the pN  coefficients  
Pi fc t . In the following, an 

efficient determination technique based on the “localization” properties 

of the WPI is developed. 

Specifically, for a number N  of points corresponding to an effective 

domain of values of the response state vector fy  the BVP of Eqs. (5.40-

5.41) is solved numerically; thus, N  points of the joint response PDF 

 , | ,NG f f i ip t ty y  are determined via Eq. (5.42), considering 

  1f it t   . Next, utilizing Eqs. (5.47) and (5.48) a linear system of 

N  algebraic equations for the pN  unknown coefficients  
Pi fc t  can be 

formed; that is, 

 lnAc b  (5.50) 

where c  is the 1pN   vector of the unknowns  
Pi fc t ; b  is the 1N   

vector of the joint response PDF  , | ,NG f f i ip t ty y  values as 

determined by numerically solving Eqs. (5.40-5.42) for N  PDF domain 

points; and A  is the pN N  matrix of the PDF effective domain values 

2 1

1 2 1 2 1
1, 1, , ,

m

i
i m

k j
j j j

f f m f m fx x x x



 

 
. 
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Clearly, if pN N  the linear system of algebraic equations of 

Eq.(5.50) is over-determined, whereas if pN N  the number of 

unknowns is equal to the number of available equations. Further, solving 

the linear system of Eq. (5.50) yields the pN  unknown coefficients 

 
Pi fc t  to be used in Eq. (5.47). Finally, applying the normalization 

condition as in Eq. (5.43) to the joint response PDF  , | ,NG f f i ip t ty y  

in Eq. (5.43), yields the joint non-Gaussian transition PDF for the system 

response of Eq. (5.35). 

To emphasize the efficiency of the aforementioned implementation, 

consider the case of a 2-DOF system  2 4m   and a fourth-order 

polynomial  4l  . Note the degree of the polynomial is sufficient, in 

general, to approximate the non-Gaussian form the response PDF of a 

wide range of nonlinear systems of engineering interest. For this case, the 

total number of unknown coefficients is 70pN   which means that the 

number of BVPs to be solved is, at least, 70pN N  . In comparison 

with the standard implementation of the WPI where 2 810000mn   BVPs 

need to be solved for a value of 30n  , the herein proposed technique 

appears thousands of times more efficient computationally than the 

standard implementation of the WPI technique. 

More generally, for relatively greater values of the DOF of the system 

m, the proposed implementation yields  2 !
l

pN N m l  , which is a 

power law function of m. On the other hand the standard implementation 
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of the WPI yields 2mn  BVPs to be solved, which is an exponential 

function of m. Since an exponential function diverges to infinity much 

faster than a power law function, the proposed implementation of the 

WPI is always more computationally efficient than its standard 

implementation, and the efficiency grows almost exponentially as the 

number of DOF m grow. 

 

5.3.3   Numerical examples 

 

In this section the reliability and efficacy of the proposed technique are 

demonstrated by various numerical examples. These include nonlinear 

systems with a bimodal response PDF as well as MDOF nonlinear 

systems of engineering interest. The initial conditions assumed are 

 0 0c i x x  and  0 0c i x x . The most probable path cx  is 

determined by numerically solving the BVP of Eq. (5.40) in conjunction 

with the boundary conditions Eq. (5.41). Specifically, following the 

procedure described in the previous Section 5.3.2, the pN  coefficients 

 
Pi fc t  are obtained by solving N  BVPs, whereas the joint non-

Gaussian transition PDF for the system of Eq. (5.35) is determined 

through Eq. (5.47). Note that all the numerical results presented in this 

section have been obtained considering pN N . 

Clearly, as highlighted in section 5.3.2 the proposed technique is 

hundreds orders of magnitude faster than both the standard WPI 

technique and the MCS, which requires solving Eq. (5.35) numerically 
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millions of time to derive a reliable response PDF estimate. Further, note 

that the value of pN  can be reduced substantially if a priori knowledge 

of the PDF shape characteristics is available (e.g., for an adequately 

smooth PDF shape). In fact, not all of the pN  terms of the polynomial 

expansion in Eq. (5.48) would be generally necessary to adequately 

estimate the system response PDF. 

 

5.3.3.1    Duffing nonlinear SDOF system 

 

Firstly, for sake of simplicity in order to show how to apply the proposed 

efficient WPI procedure, a SDOF Duffing nonlinear oscillator is 

considered. 

 3
0x x k x x w t      (5.51) 

where   is a constant describing the magnitude of the nonlinearity. The 

associated Lagrangian function of Eq. (5.51) is already given in 

Eq.(5.29), whereas the corresponding E-L equation is given in Eq. (5.30). 

Figure 5.3 shows plotted nonstationary marginal displacement 

response PDFs corresponding to various time instants. These have been 

obtained considering a fourth order polynomial in Eq. (5.48), and by 

integrating the corresponding joint PDF in Eq. (5.47) over the velocity 

domain. Note that for the fourth order polynomial  4l   of this SDOF 

system  2 2m  , the number of coefficients  
Pi fc t  in Eq.(5.48) is 

 15pN  ; and thus, the polynomial can be written as 
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  2 2 4
, 1 2 3 4 5 6 15, ,

f fx x f f f f f f f f f fx x t c c x c x c x c x x c x c x          (5.52) 

Comparisons with the exact marginal stationary response 

displacement PDF, obtained by integrating Eq. (5.32), and pertinent MCS 

results, demonstrating a high level of accuracy. 
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Fig. 5.3 - Marginal response displacement PDF  ,p x t  for the Duffing oscillator with 

01, 0.3, 1k     and 0 1 2S   via the developed technique; 

comparison with MCS data (20000 samples) and exact marginal stationary 

distribution. 
 

The reliability of developed approximate technique is further assessed 

by considering a Duffing bimodal oscillator, obtained by utilizing a 

negative term 0k . Figure 5.4 shows the plotted nonstationary marginal 

displacement response PDF, for various time instants. These have been 

obtained by considering a fourth order polynomial as in Eq. (5.52). 

Comparisons with pertinent Monte Carlo simulations demonstrate a 
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satisfactory level of accuracy obtained with the proposed approximate 

technique. 
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Fig. 5.4 - Marginal response displacement PDF  ,p x t  for the bimodal Duffing 

oscillator with 01, 0.3, 1k      and 0 1 2S   via the developed 

technique; comparison with MCS data (40000 samples) and exact marginal 

stationary distribution. 
 

5.3.3.2    MDOF nonlinear system 

 

The case of a 2-DOF system endowed with a Duffing nonlinearity is 

considered next. By introducing the coordinate transformations 

1 1 2 2 1;y x y x x    (5.53) 

Eq. (5.35) becomes 

   t   My Cy Ky g y f  (5.54) 

where 
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1 0

1 1

 
  
 

M  (5.55) 

0

c c

c

 
  
 

C  (5.56) 

and 

0

k k

k

 
  
 

K  (5.57) 

Further the nonlinear vector  g y  of Eq. (5.54) takes the form 

 
3
2

0

k y

 
   
 

g y  (5.58) 

where   is a constant defining the magnitude of the nonlinearity. The 

associated Lagrangian of Eq. (5.54) takes the form 

 
   

22 3
1 1 1 2 2 2 2 2 1 2

0

, ,
1

2 2

y cy ky ky cy y cy ky y ky

S





        
y y yL  (5.59) 

Next, substituting Eq. (5.59) into Eq. (5.40) an manipulating yields 

 
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4 4
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2 2 2 2
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c c
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d y d y
k c y k y

dt dt

c y k y k y y k y y

d y d y
k c y k y c y k y

dt dt
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 

    

   

    

     

     2
2, 2, 0c cy 

 
(5.60) 

together with the 4×2 boundary conditions 
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       

       

,1 1, ,1 1, ,1 1, ,1 1,

,2 2, ,2 2, ,2 2, ,2 2,

,  ,  ,  ,

,  ,  ,  .

c i i c i i c f f c f f

c i i c i i c f f c f f

x t x x t x x t x x t x

x t x x t x x t x x t x

   

   

 (5.61) 

To assess the reliability of the technique, comparisons are made 

between the nonstationary response displacement PDFs of the nonlinear 

2-DOF system  01,  0.1,  1 2 , 0.1k c S       determined by the WPI 

technique together with a fourth order expansion of the polynomial in 

Eq.(5.48), and data obtained via MCS (30000 samples). Specifically, for 

a fourth order polynomial  4l   corresponding to this 2-DOF system 

 2 4m  , the number of coefficients  
Pi fc t  in Eq.(5.48) is  70pN  . 

Thus, only 70 BVPs of the form of Eq. (5.40) are numerically solved for 

determining the pN  coefficients through Eq. (5.50). Note that in 

Kougioumtzoglou and Spanos (2014), where the same example was 

considered, 415  BVPs were solved to obtain the PDFs of the response 

processes via the ordinarily used implementation of the WPI technique. 

Figures 5.5 and 5.6 show the plotted nonstationary marginal response 

displacement PDFs  1,p y t  and  2 ,p y t , respectively. As shown in 

these figures, comparisons with MCS data demonstrate a satisfactory 

degree of accuracy for the determined response PDFs. 
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Fig. 5.5 - Marginal response displacement PDF  1,p y t  for 2-DOF nonlinear building 

structure with 1, 0.1, 0.1k c     and 0 1 2S   via the developed 

technique; comparison with MCS data (30000 samples). 
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Fig. 5.6 - Marginal response displacement PDF  2 ,p y t  for 2-DOF nonlinear building 

structure with 1, 0.1, 0.1k c     and 0 1 2S   via the developed 

technique; comparison with MCS data (30000 samples). 
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5.4    Extension of the WPI for nonlinear systems endowed 

with fractional derivative elements 

 

The WPI technique, introduced in Section 5.2 and extended to the case of 

MDOF systems in Section 5.3, proved to be an interesting tool which 

allowed for an efficient determination of the nonstationary response PDF 

of nonlinear systems under Gaussian white noise. 

As demonstrated in previous Chapter 4, the motion of a TLCD device 

and TLCD controlled structures can be accurately described through 

linear differential equations of fractional order, as in Eqs. ( 4.8) and 

(4.15). Obviously applications of fractional derivatives in structural and 

mechanical engineering are not limited only to the case of TLCD 

systems. On the contrary, fractional calculus has been successfully 

applied in diverse fields such as viscoelasticity and rheology, control 

theory, bioengineering, image and signal processing, random walk 

models (Sabatier et al. (2007) and Hilfer (2000)) and vibration control or 

seismic isolation (Makris and Constantinou (1991, 1992) and Koh and 

Kelly (1990)). 

Clearly, due to uncertainties for instance related to input forcing 

functions, analysis of systems with fractional derivative terms under 

stochastic excitations represent an interesting open topic. 

In this context, existing approaches for the stochastic response 

evaluation of linear and nonlinear oscillators endowed with fractional 

derivative elements resort either to stochastic averaging (Huang and Jin 
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(2009), Chen and Zhu (2011)) or to statistical linearization (Spanos and 

Evaangelatos, 2010) or to a simplification of the original SDOF system 

by an increase of the system dimension (Di Paola et al. (2012), Failla and 

Pirrotta (2012)). These techniques exhibit various degrees of 

approximation or limitations, due to the characteristics of the fractional 

operators and the complex nonlinear behavior observed in many systems 

which renders such a stochastic analysis a persistent challenge. Thus, 

there is still a need for an efficient and accurate procedure for the 

stochastic response determination of these systems. 

Considering the advantages introduced with the WPI, it can be of 

interest to extend this technique also for systems with fractional 

derivative elements. 

In this regard, in Sections 5.4.1 and 5.4.2 the WPI technique will be 

further generalized to treat linear and nonlinear systems endowed with 

fractional derivatives terms subjected to stochastic excitation. Further, 

numerical applications will show that the herein developed WPI 

technique may offer a desirable alternative for determining the non-

stationary response PDF of linear and nonlinear oscillators efficiently and 

with a satisfactory degree of accuracy. 
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5.4.1    Problem formulation 

 

In the following the analytical WPI based technique, described in Section 

5.2.4 (see also Kougioumtzoglou and Spanos (2014)) is extended and 

generalized to account for linear and nonlinear SDOF systems endowed 

with fractional derivatives elements. In this regard, consider a nonlinear 

oscillator whose motion is governed by the differential equation 

             2
0 ,

i i

C C
t t t tx t C D x t x t f x t D x t w t 

      (5.62) 

where a dot over a variable denotes differentiation with respect to time; 

  i

C
t tD x t  is a force governed by a  -order left Caputo fractional 

derivative defined as (Podlubny (1999)) 

 
 

   
11

,    1
Γi

i

t n
nC

t t n
t

d
D x t t x d n n

n d

    
 

 
    

   (5.63) 

0  is the natural frequency; C  is a constant which can be viewed as 

a damping coefficient if 1  , or as a stiffness coefficient if 0  ; 

    ,
i

C
t tf x t D x t  represents a non-linear function depending on the 

instantaneous values of  x t  and   i

C
t tD x t ; and  w t  is a zero mean 

Gaussian white noise process of power spectral density 0S . Note that 

Eq.(5.62) reduces to the equation of motion of a conventional (non-

fractional) nonlinear oscillator (Kougioumtzoglou and Spanos (2014)) 

when   approaches one. 
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In order to apply the WPI to this kind of systems, following the 

approach proposed in Kougioumtzoglou and Spanos (2014), Eq. (5.62) is 

substituted into Eq. (5.21) and the probability density functional 

 W w t    for  w t  is interpreted as the probability density functional 

 W x t    for  x t . This yields 

 
    

2
2
0

0

,1
exp

2 2

f
i i

i

C Ct
t t t t

t

x C D x x f x D x
W x t C dt

S

 
 



 
   

     
 
 

  (5.64) 

Next, resorting to the Lagrangian formulation for the most probable 

path introduced in Section 5.2.3, for the oscillator of Eq. (5.62), the 

corresponding Lagrangian function can be defined as 

 
    

2
2
0

0

,1
, ,

2 2

i i

i

C C
t t t t

C
t t

x C D x x f x D x
x D x x

S

 






  
L  (5.65) 

Adopting next the variational formulation followed in 

Kougioumtzoglou and Spanos (2014) the largest contribution to the 

Wiener path integral comes from the trajectory for which the integral in 

the exponential becomes as small as possible. Variational calculus rules 

(Ewing (1985)) dictate that this trajectory with fixed end points satisfies 

the extremality condition 

 , , 0

f

i

i

t

C
c t t c c

t

x D x x dt L  (5.66) 

where  cx t  denotes the most probable trajectory. In the ensuing 

analysis, the variational problem defined in Eq. (5.66) is coined fractional 
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variational problem (FVP), since Eq. (5.66) contains a  -order left 

Caputo fractional derivative. This yields a corresponding Euler-Lagrange 

(E-L) equation of the form 

2

2
0

0
f

t t C
c ct c

D
x xD x t




   
  

  

L L L
 (5.67) 

with the four boundary condition    0, 0c i c ix t x t  , 

   ,c f f c f fx t x x t x  . Note that although Eq. (5.62) contains Caputo 

fractional derivatives only, the fractional E-L Eq. (5.67) contains right 

Riemann-Liouville fractional derivatives of the form  

   
11

( ) ,    1 ,
Γ( )

f

f

tn
n

t t n
t

d
D f t t f d n n

n dt

    


 
    

   (5.68) 

as well (see Appendix C for details). Further, solution of the fractional 

Euler-Lagrange Eq. (5.67) yields a closed form expression for the 

transition PDF  , , | , ,f f f i i ip x x t x x t ; that is, 

     , , | , , , ,

f

i

i

t

C
f f f i i i f i c t t c c

t

p x x t x x t t t exp x D x x dt
 
   
 
 
L  (5.69) 

Note that for fixed time points it  and ft  the function  f it t   can 

be determined by merely applying the normalization condition 

 , , | , , 1f f f i i i f fp x x t x x t dx dx

 



   (5.70) 
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5.4.2    The fractional variational problem (FVP) 

 

It is worth stressing that the FVP of Eq. (5.66) is a special case of the 

following general class of FVPs which contain several functions 

    1, ,jy t j m  , and positive fractional order derivatives  k
 ; 

that is, 

   

 1 1

1

1 1 1

, ,

, , , , , , , , , ,

f

n n

i i i i

i

m

t

C C C C
m t t t t m t t t t m

t

Min Max J y y

t y y D y D y D y D y dt
  

 

    
 (5.71) 

   

   

   11 1 1

1 1 1 1

            

            

            

,

,

j i ji j f jf

j i ji j f jf

nn n n
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  

   

 

 

 

 (5.72) 

where 1 , 1 ,  1, ,    kj m k k k n          and the function  is 

continuously differentiable with respect to all its arguments. The 

involved fractional derivatives are defined in the Caputo sense with 

 
( )k

i

k
C
t t k

d y t
D y t

dt


 , if k k  . 

According to a well-established result in calculus of variations 

(Agrawal (2002), Malinowska and Torres (2010)), the corresponding 

Euler-Lagrange equations for the above defined FVP of Eq. (5.72) are 
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1

0,     1 k

f k

i

n

t t C
j k t t j

D j m
y D y






 
   

 
  (5.73) 

which should satisfy the boundary conditions of Eq. (5.72). Note that the 

right Riemann-Liouville fractional derivatives  k

it tD


 appear in the 

fractional differential Eq. (5.73), even though they do not appear in the 

functional  1, , mJ y y . In Appendix C, a detailed derivation of the 

Euler-Lagrange Eq. (5.73) is presented. Also, note that if 

 , 1, ,k k k n   , the terms ( )k

i

C
t t jD y t


 are replaced with k k

jy t   

and the operators  k

it tD


 are replaced with    1 kk k t   ; thus, in this 

case Eq. (5.73) reduces to the standard Euler–Lagrange equations 

 
( )

1

1 0,     1 
n k

k

k k
j k j

j m
y t y

  
    

  
  (5.74) 

where 
 ( )

k
jk

j k

y t
y

t





. It follows that a necessary condition for 

 1, , mJ y y  to have an extremum for the given functions 

    1, ,jy t j m   is that   jy t  satisfy the E-L equations (5.73) and the 

boundary conditions (5.72). The fact that Eq. (5.82) combines right 

Riemann-Liouville fractional derivatives with left Caputo fractional 

derivatives increases the difficulty of finding an exact solution. Thus, 

several numerical methods have been developed in the literature to 

address the FVP of Eq. (5.73). In the ensuing analysis a general direct 

solution approach (Ritz method) is utilized building on earlier work by 
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Lotfi and Yousefi (2013). Readers are referred to (Lofti and Yousefi, 

2013) for further details regarding the convergence of the adopted 

technique. 

 

5.4.2.1    General FVP solution technique 

 

Obviously, the E-L Eq. (5.73) has its own theoretical and 

methodological, albeit somewhat cumbersome, merit. However, as 

shown in Lotfi and Yousefi (2013), it is possible to solve directly the 

FVP of Eq. (5.71) and (5.72) without resorting to the E-L Eq. (5.73) by 

making use of the shifted Legendre polynomials and the Hermite 

interpolating polynomials. Specifically, the Legendre polynomials are 

orthogonal polynomials in the interval  1,1 , which can be defined by 

the well-known Rodrigues’ formula  

   21
1 ,       1,2,

2 !

p p

p p p

d
L x x p

p dx

 
     

 
 (5.75) 

or, by utilizing the recurrence formula 

     1 1

2 1
,       1,2,

1 1
p p p

p p
L x x L x L x p

p p
 


   

 
 (5.76) 

where    0 11,L x L x x   and  pL x  is the Legendre polynomial of 

order p . 

Further, since the functional  1, , mJ y y  of Eq. (5.71) is defined in 

the interval ,i ft t 
   together with the constraints of Eq. (5.72), 

approximate solutions of the FVP can be expressed as a combination of 
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shifted Legendre polynomials, orthogonal in the interval ,i ft t 
  , and 

Hermite interpolating polynomials which respect the boundary conditions 

of Eq. (5.72). In particular, considering the change of variable 

2 i f

f i

t t t
x

t t

 



, the shifted Legendre polynomial  1pP t  of order 1p  , 

which is defined in the interval ,i ft t 
  , can be evaluated via the 

recurrence formula 

     1 1

22 1
,       1,2,

1 1

i f
p p p

f i

t t tp p
P t P t P t p

p t t p
 

  
    

    

 (5.77) 

where  0 1P t   and  1

2 i f

f i

t t t
P t

t t

 



. Furthermore, the coefficients 

,  0 1ka k n   , of the Hermite interpolating polynomial 

  , 1 jH t j m  , of the form 
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

   (5.78) 

can be determined so that 
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 (5.79) 

Finally, let  jy t  denote polynomials of the form 
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         
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h
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j l j i f l j

l

y t c t t t t P t H t
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     (5.80) 

where  lP t  is the shifted Legendre polynomial of order l orthogonal in 

the interval ,i ft t 
  ,  jH t  is the Hermite interpolating polynomial, 

,      ,   ,      l jh c n    , with  1 , 1 ,   1, ,kj m k k n       . 

In this regard, it is possible to determine an approximate solution 

   , 1, ,jy t j m of the FVP Eq. (5.71) and (5.72) by simply 

determining the coefficients ,l jc . Substituting next Eq. (5.80) into 

Eq.(5.71) yields 

 1 1

0,1 ,1 0, ,

1 1 1

, , , , , ,

, , , , , , , , , ,
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i i i i
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m t t t t m t t t t m
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t y y D y D y D y D y dt
  

     

    
 (5.81) 

Note that Eq. (5.81) is now a function of the unknowns ,l jc  

   0, , , 1, ,l h j m  . In this manner, the FVP of Eqs. (5.71) and 

(5.72) can be solved approximately by directly optimizing the function 

0,1 ,1 0, ,, , , , , ,h m h mJ c c c c      to determine the coefficients ,l jc . 

Specifically, according to differential calculus rules, a necessary 

condition for determining the minimum (or the maximum) of function 

 J  is the existence of the system of equations 

,

,

0,    0, , ,  1, ,
l j

l j

J c
l h j m

c

        


 (5.82) 
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The solution of Eq. (5.91) yields the values of the coefficients ,l jc ; 

thus, the polynomials    , 1, ,jy t j m  which approximate the 

solution of the original FVP of Eq. (5.71) and (5.72) are determined. 

Note that for the specific special case of Eq. (5.66) only one function 

of a single variable is involved; thus, it follows that  1j m   and the 

approximate function of Eq. (5.81) degenerates to 

   1
0 , , , , , ,

f

n

i i

i

t

C C
h t t t t

t

J c c t y D y D y dt
    (5.83) 

which is an algebraic function of the unknowns  , 0, ,lc l h . The 

corresponding approximate polynomial solution Eq. (5.83) becomes 

         
1

0

h
nn

l i f l

l

y t c t t t t P t H t




     (5.84) 

where only one interpolating polynomial  H t  has to be determined for 

every group of boundary value conditions considered. Based on the 

aforementioned developments, a simple scheme for the direct solution of 

the FVP of Eq. (5.66) takes the form: 

 

Step 1. Find the value of the maximum order derivative and the 

corresponding maximum order integer derivative n in 

Eq.(5.65); 

Step 2. For the considered 2n boundary conditions, find the Hermite 

interpolating polynomial of degree 2n-1; 
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Step 3. Choose a suitable number h of shifted Legendre polynomials 

for the approximating polynomial of Eq. (5.84); 

Step 4. Solve the system of h algebraic equations (5.82) and find the h 

coefficients  , 0, , 1lc l h  ; 

Step 5. Substitute the computed coefficients lc  in Eq. (5.84) to 

determine the approximate polynomial solution  y t  of the 

FVP of Eq. (5.66). 

 

5.4.3    Numerical results 

 

In this section, the versatility and the accuracy of the proposed 

technique is assessed via numerical examples. Specifically, the linear 

oscillator with fractional derivatives elements (System 1) and the Duffing 

nonlinear oscillator with fractional derivatives elements (System 2) are 

considered. 

In the following, the initial time instant  0it   is used, whereas zero 

initial conditions are assumed (initially at rest). To apply the developed 

WPI technique for the given boundary conditions    0 0, 0 0c cx x   

and    ,c f f c f fx t x x t x  , the most probable path  cx t  is 

determined by solving the FVP of Eq. (5.66) according to the 

methodology developed in Section 5.4.2. In this regard,  cx t  is 

approximated by the polynomial  y t  after solving the system of h 

algebraic equations Eq. (5.82) to determine the h coefficients 
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 , 0, , 1lc l h  . Further, substituting the determined most probable 

path    cx t y t , for a given final time instant ft  and given boundary 

conditions  ,f fx x , in the Lagrangian function of Eq. (5.69), a single 

point of the system response PDF is given. In this regard, if an effective 

domain of values for the system joint response PDF is considered (i.e. 

, ,min ,max  ,u f f fx x x 
 

 and , ,min ,max  ,q f f fx x x   ) discretized so that 

 , ,min 1 Δu f f fx x u x   ,  1, ,u s  with 

   ,max ,minΔ 1f f fx x x s    and  , ,min 1 Δq f f fx x q x   , 

 1, ,q r  with    ,max ,minΔ 1f f fx x x r   , the system response 

joint PDF at time instant ft  can be determined by solving the FVP of 

Eq.(5.66) for each and every combination of ,u fx  and ,q fx  ( s r  times 

in total). As far as the selection of the number h is concerned, it is noted 

that the value of this parameter strongly depends on the specific problem 

under consideration. In this regard, in general, a greater value of h might 

be required for determining the solution of the FVP for greater values of 

the final time instant ft . Also, a greater value of h might be required 

when strong nonlinearities are considered in the kernel of the functional 

Eq. (5.83). Obviously, a greater value of h leads to enhanced accuracy, at 

the expense, however, of higher computational cost. Readers may refer to 

the following numerical examples for potential candidate values of the 

parameter h. Further, as a rule of thumb for choosing an appropriate 

value for the parameter h, steps 1-5 of previous Section 5.4.2.1 can be 
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performed for just one pair of values ,u fx  and ,q fx  by utilizing various 

values for h. For an increasing value of the parameter h, a good 

indication that the specific value of h is a reasonable one is when no 

considerable difference is noted anymore in the form of the most 

probable path. 

To further elucidate the mechanics of the technique, Fig. 5.7 provides 

a step-by-step flowchart for the method. 

To demonstrate the accuracy of the developed technique, the WPI 

based determined response PDF for System 1 is compared with the 

corresponding Gaussian distribution, whereas the WPI based determined 

response PDF for System 2 is compared with the corresponding Monte 

Carlo simulation based estimated response PDF. Specifically, for the 

Monte Carlo simulations of System 2 the linear acceleration method 

(Failla and Pirrotta (2012)) is utilized to integrate numerically the 

nonlinear fractional differential equations of motion. 

It is worth noting that one of the significant advantages of the 

developed technique is the determination of the system non-stationary 

response PDF at a time instant ft  without the need to evaluate the PDF 

at all the past time instants as it is required for the existing alternative 

numerical path integral solution schemes. 
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Fig. 5.7 - Flowchart of the algorithm. 
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5.4.3.1   The TLCD case: SDOF linear oscillator with fractional 

derivatives elements 

 

Consider firstly a linear SDOF oscillator with fractional derivatives 

elements (System 1) whose motion is governed by the differential 

equation 

   2
0 2
C

tx C D x x w t
     (5.85) 

Clearly, this may represent also the equation of motion of the TLCD 

device, given in Eq. (4.8), for the liquid displacement only. 

According to the developed technique, substituting Eq. (5.854) into 

Eq.(5.20), the probability density functional  W w t    for  w t  is 

interpreted as the probability density functional  W x t    for  x t . This 

yields 
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Note that the associated Lagrangian function becomes 
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whereas the corresponding E-L Eq. (5.67) takes the form 
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t t C
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D
x xD x t
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 (5.88) 
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In Eq. (5.88) 
f

t t
D  denotes the  -order Riemann-Liouville right 

fractional derivative. Manipulating Eq. (5.887) yields 
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f f f

C Cc
c t c c t c
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 (5.89) 

together with the corresponding boundary conditions 

   0 0, 0 0c cx x   and    ,c f f c f fx t x x t x  . This fourth order 

fractional differential equation Eq. (5.88) involves the right Riemann-

Liouville operator with the left Caputo fractional derivative, with no 

obvious exact analytical solution. Thus, the FVP of Eq. (5.66) is solved 

directly without using Eq. (5.88), via the approach detailed in previous 

Section 5.4.2.1. In this regard, an effective domain of values for the joint 

response PDF  , 0.5,0.5u fx    and  , 3,3q fx    is chosen. Further, the 

parameters values 2 0

1
0.41, 3.59, 10.81  , 

2

rad
C S

s
 


     have 

been considered (experimentally obtained in Chapter 4 for 

Configuration#2b), whereas  7h   Legendre polynomials orthogonal in 

the interval 0, ft 
   have been used in Eq. (5.84) for determining the 

approximate solution  y t  of the most probable path  cx t . 

In Fig. 5.8 solution of the FVP considering 5, 7 and 10 Legendre 

polynomials, for the boundary conditions    0 0, 0 0c cx x   and 

   10 2.9, 1 30c cx x    , is plotted. It can be readily seen that the 
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solution of the boundary value problem considering 7 and 10 Legendre 

polynomials, respectively, is of similar satisfactory accuracy, whereas 

using 5 Legendre polynomials results in decreased accuracy and 

considerable deviation from the 7 and 10 Legendre polynomials cases. 

Further, the determined joint response PDF is plotted in Fig. 5.9. 

 

 
Fig. 5.8 - Comparison of the solution of the boundary value problem for 

   10 2.9, 1 30c cx x    . 

 
 

 
Fig. 5.9 - Response PDF in the given domain  , 3,3u fx    and  , 3,3q fx   . 

x  x  

 ,p x x
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Since System 1 is linear and subjected to a Gaussian process, the 

response is Gaussian too; thus, it is possible to compare the response 

PDF of the oscillator with the corresponding Gaussian distribution with 

the same variance. In this regard, the variance of the linear oscillator is 

determined by employing the following input-output spectral relationship 

in the frequency domain (Spanos and Evangelatos (2010)) 

 

2 0
2

2 2
2

X

S
d

C i




 

  







  
  

(5.90) 

In Fig. 5.10, the marginal stationary displacement response PDF, 

obtained by integrating the PDF over the velocity domain, is compared 

with the corresponding Gaussian distribution. 

 

  
 

Fig. 5.10 - Marginal stationary displacement response PDF at 10ft s . 

 

Fig. 5.10 shows a perfect correspondence between the Gaussian 

distribution and the response PDF obtained by the WPI technique, 

demonstrating the satisfactory accuracy of the proposed technique. 

x  

 p x
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5.4.3.2    SDOF nonlinear Duffing oscillator with fractional derivatives 

elements 

 

Consider next a Duffing nonlinear SDOF oscillator with fractional 

derivatives elements whose motion is governed by the differential 

equation 

   2 3
0 2
C

tx C D x x x w t
       (5.91) 

According to the developed technique, substituting Eq. (5.91) into 

Eq.(5.20), the probability density functional  W x t    for  x t  becomes 

 
  

2
2 3

0 2

0

1
exp

2 2

f

i

Ct
t

t

x C D x x x
W x t C dt

S


  



 
   

     
 
 

  (5.92) 

Further, the associated Lagrangian function becomes 

 
  

2
2 3

0 2

0
0

1
, ,

2 2

C
t

C
t

x C D x x x
x D x x

S




 



  
L  (5.93) 

whereas the corresponding E-L Eq. (5.67) takes the form 

 

 

4
2 2 4 2 3 2
2 2 24

2 2 2
2 0 0 2

2 2 3
0 0

2 6 4 6

       

  3     0

f f

f f

c
c c c c c c

C C
t c t c t c t ct t

C C
t t c c t c t ct t

d x
x x x x x x

dt

C D x C D x C D x C D x

C D D x C x D x C D x

 


  
 

 
 







     

 

 



    

   

   

 (5.94) 

together with the corresponding boundary condition    0 0, 0 0c cx x   

and    ,c f f c f fx t x x t x  . Similarly to Eq. (5.89) this nonlinear 
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fourth order fractional differential equation involves the right Riemann-

Liouville operator of left Caputo fractional derivative, and has no 

obvious exact analytical solution. Thus, the FVP of Eq. (5.66) is solved 

directly without using Eq. (5.94), via the approach detailed in Section 

5.4.2.1. In this regard, an effective domain of values for the joint 

response amplitude PDF  , 2,2u fx    and  , 3,3q fx     41s r  , is 

chosen. Further, the parameters values 

2 0

1
0.3, 1, 1  ,  1,

2

rad
C S

s
  


      are considered, whereas 

 4h   Legendre polynomials orthogonal in the interval 0, ft 
   are used 

in Eq. (5.84) for determining the approximate solution  y t  of the most 

probable path  cx t . 

In Fig. 5.11 solution of the FVP considering 3, 4 and 5 Legendre 

polynomials, for the boundary conditions    0 0, 0 0c cx x   and 

   10 1.9, 1 30c cx x    , is plotted. It can be readily seen that the 

solution of the boundary value problem considering 4 and 5 Legendre 

polynomials, respectively, is of similar satisfactory accuracy, whereas 

using 3 Legendre polynomials results in decreased accuracy and 

considerable deviation from the 4 and 5 Legendre polynomials cases. 

Further, the determined joint response PDF is plotted in Fig. 5.12. 
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Fig. 5.11 - Comparison of the solution of the boundary value problem for 

   10 1.9, 1 30c cx x    . 

 

 
Fig. 5.12 - Response PDF in the given domain  , 2,2u fx    and  , 3,3q fx   . 

 

To assess the accuracy of the proposed technique for the nonlinear 

case also, the non-stationary marginal displacement and velocity 

response PDFs, obtained by integrating the WPI technique based joint 

PDF over the displacement domain (Fig. 5.13) and the velocity domain 

(Fig. 5.14), respectively, are compared with the ones obtained via MCS 

x  x  

 ,p x x
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using 30000 samples and the corresponding Gaussian distribution 

 0  . Comparisons with the MCS data demonstrate a satisfactory level 

of accuracy even for this significant level of system nonlinearity (it can 

be seen that the response PDF for the Duffing system deviates 

significantly from the Gaussian one which corresponds to the linear 

system). 

 

 
 

Fig. 5.13 - Marginal non-stationary displacement response PDF at 5ft s . 

 

x  
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Fig. 5.14 - Marginal non-stationary velocity response PDF at 5ft s . 

 

Regarding computational efficiency, for the chosen grid of 41x41 

points in the PDF domain, the computational cost related to the 

developed technique was approximately 30% of that corresponding to the 

MCS estimates considering 30000 sample paths. 

 

 p x

 

x  
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5.5    Experimental validation of the proposed efficient 

WPI on TLCD controlled structures 

 

In this Section the proposed efficient WPI technique, developed in 

previous Section 5.3, is applied to the case of a TLCD controlled 

structure. Specifically, in order to further assess the reliability of the 

procedure, parameters of the TLCD controlled system Configuration #3 

of Section 3.7.3, are here used. In this manner, the experimental PDFs 

will be compared with the ones obtained through the proposed efficient 

WPI technique. 

Following Chapter 2 and 5.3.3, the equation of motion of the TLCD 

controlled system can be written as 

   t   Mx Cx Kx g x f  (5.95) 

where 

1
1

1
1







 
 
 
 
  

M  (5.96) 

1 12
0

1

0 0

 



 
 
 
  

C  (5.97) 



Structural vibration control through Tuned Liquid Column Dampers: theoretical and 

experimental analysis 

253 

2
1

2
2

0
1

0








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(5.98) 

and 

x

y

 
  
 

x  (5.99) 

 x t  and  y t  being the structural and the liquid displacement 

respectively. 

Further the nonlinear vector  g x  of Eq. (5.95) takes the form 

 

0

2

y y

L





 
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 
 
 

g x  (5.100) 

where   is the head loss coefficient,   is the mass ratio and b L  . 

The associated Lagrangian of Eq. (5.95) takes the form 
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(5.101) 

which yields the system of E-L equations in the form 
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together with the 4 2  boundary conditions 

       

       

,1 1, ,1 1, ,1 1, ,1 1,

,2 2, ,2 2, ,2 2, ,2 2,

,  ,  ,  ,

,  ,  ,  .

c i i c i i c f f c f f

c i i c i i c f f c f f

x t x x t x x t x x t x

x t x x t x x t x x t x

   

   

 (5.103) 

where  ,1cx t  is the most probable path of  x t  and  ,2cx t  is the most 

probable path of  y t . 

As previously stated, to assess the reliability of the technique, 

comparisons are made among the stationary response displacement and 

velocity PDFs of the nonlinear 2-DOF system in Eq. (5.95) determined 

by the WPI technique together with a fourth order expansion of the 

polynomial in Eq. (5.48), and experimental data obtained on 

Configuration #3 in Section 3.7.3 (totally considering 50000 samples for 

the stationary case). In this regard, for a fourth order polynomial  4l   

corresponding to this 2-DOF system  2 4m  , the number of 

coefficients  
Pi fc t  in Eq.(5.48) is  70pN  . Thus, only 70 BVPs of 

the form of Eq. (5.40) are numerically solved for determining the pN  

coefficients through Eq. (5.50). Further, as far as the parameters of the 

system in Eq. (5.95) are concerned, the ones experimentally obtained in 

Section 3.7.3 on Configuration #3 are here used. For sake of clarity those 

parameters are here reported in Table 5.1. 
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Table 5.1 - Parameters of the model in Eq. (6.62). 
 Configuration # 3 

1  10.52 rad/s 

1  0.0031 

L 0.175 m 

2  11.81 rad/s 

  7 

  1.9 % 

  0.6 
 

 

Figures 5.15 and 5.16 show the plotted stationary marginal structural 

response displacement and velocity PDFs  p x  and  p x , respectively. 

As shown in these figures, comparisons with experimental data 

demonstrate a satisfactory degree of accuracy for the determined 

response PDFs. 

 

 
Fig. 5.15 - Marginal stationary response structural displacement PDF  p x  for TLCD 

controlled structure: comparison among experimental data (blue dots) and the 

developed technique (red line). 
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Fig. 5.16 - Marginal stationary response structural velocity PDF  p x  for TLCD 

controlled structure: comparison among experimental data (blue dots) and the 

developed technique (red line). 
 

 

 

 



 

 

Concluding Remarks 

 

 

In this dissertation the Tuned Liquid Column Damper (TLCD), a passive 

vibration control device nowadays increasingly used, has been studied, 

and its effects on structural systems thoroughly investigated. Due to some 

of its inherent characteristics such as low costs, easy installation and 

tuning and lack of maintenance requirements, TLCD represents an 

appealing alternative to many other passive control devices, including the 

widely used Tuned Mass Damper (TMD). Hence, the growing interest on 

this device among researchers concerned with vibration control. 

Beginning with a brief introduction on vibration control mechanism, 

firstly the most common passive vibration control systems have been 

presented, focusing specifically on the simple, yet remarkably interesting, 

case of the TMD. 

Once the basic principles of vibration control have been addressed, the 

system object of this dissertation, namely the TLCD, has been 

introduced. In this regard, after a discussion on the pertinent literary 

review and a presentation on its real applications for buildings vibration 

control, the classical nonlinear governing equations ruling the TLCD 

controlled systems response have been derived. Further, existing 

approaches in literature for the optimal design of these dampers have 

been outlined, and results of a numerical/experimental investigation on 

the control performances of this system compared to the TMD case has 

been also reported. Results confirm that both vibration control devices 
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are able to adequately reduce structural vibrations, and TLCD 

performances are deemed comparable to TMD systems, if an appropriate 

choice of TLCD parameters is accomplished. 

On this base, the optimal selection of the absorber parameters, namely 

tuning ratio and damping ratio, has been considered. Specifically, a direct 

procedure for the determination of optimal TLCD parameters has been 

introduced, considering the case of damped under random agencies. The 

proposed straightforward approximate formulation has been derived by 

means of statistical linearization techniques and under some assumptions 

pertaining the system. Moreover, the design formulation has been derived 

for stochastic loads that can be modeled as zero mean Gaussian white 

noise processes, but an extension to random processes which have 

Response Spectra coherent with building codes can be straightforwardly 

obtained. The analytical formulation consists in a smooth function of the 

main system displacement variance as a function of the approximated 

equivalent TLCD damping ratio. A parametric numerical analysis 

showed that the response statistics obtained by Monte Carlo simulations 

(MCS) on the actual nonlinear system are in good agreement with those 

obtained using the proposed formulation even when the underlying 

assumptions are removed. Results on a benchmark structure have been 

compared with literature results showing the reliability of the proposed 

formulation. It is worth noting that, by using the proposed definition of 

the equivalent linear damping, an impressive reduction in computational 

effort is achieved. In fact, if a classical procedure is used to define the 

equivalent linear system, a time-consuming iterative scheme has to be set 

up. Conversely, following the herein proposed approach, the evaluation 
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of the optimal values can be obtained by means of a numerical 

minimization of a smooth function, without any iteration, thus resulting 

in a very significant reduction in computational effort. From simple 

design it is apparent that the optimal tuning ratio, the optimal head loss 

coefficient and a performance control index can be easily computed once 

the main system structural parameters and the input intensity are 

provided, thus resulting in a very useful and ready-to-use design tool. 

Finally, the straightforward formulation has been validated by means of 

an experimental campaign on a small scale SDOF shear-type model built 

at the Laboratory of Experimental Dynamic of University of Palermo. 

The identification of the main linear system and of the TLCD parameters 

has been conducted and a very good agreement among experimental and 

numerical data has been achieved for three different configurations of the 

device. Results have shown that the responses obtained by the equivalent 

linear system via the proposed formulation are very close to those 

obtained by classical nonlinear one and by experimental results as well. 

Next the analytical modeling of TLCDs has been investigated. 

Although the increasing use of these devices for structural vibration 

control, it has been shown that for some geometrical configuration of 

engineering interest, existing classical formulation does not always lead 

to accurate prediction of the liquid motion. In this regard, it has been 

demonstrated how correctly including the sloshing behavior of the liquid 

inside the TLCD container could greatly improve prediction of the real 

liquid surface displacements. Further it has been shown that the described 

effects which lead to discrepancies among theoretical and experimental 

findings, contemporary with the damping effects, may be taken into 
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account through the mathematical tools of fractional derivatives and 

related concepts. Therefore, an alternative formulation, based on 

fractional operators, has been proposed to model liquid vertical 

displacements in TLCD devices, and its extension to the case of TLCD 

controlled structures have been also derived. In order to fully validate the 

proposed formulation, experimental tests have been conducted in the 

Laboratory of Experimental Dynamic at University of Palermo, on 

various configurations of TLCD devices and TLCD controlled systems. 

Numerical results obtained with the proposed fractional formulation have 

been compared with the corresponding numerical ones computed with 

the classical model and pertinent experimental data. Results have shown 

that proposed fractional formulation can describe with great accuracy the 

real experimental behavior of the liquid and the response of TLCD 

controlled structures, notably improving the prediction of the real liquid 

surface displacements with respect to the classical nonlinear model used 

in literature. Further, since the resulting equations of motion are linear, 

albeit of fractional order, identification of involved parameters is 

extremely simpler than the classical nonlinear formulation. 

Finally, in the last part of the dissertation, the stochastic analysis of 

TLCD systems, and TLCD controlled structures, under Gaussian white 

noise excitation is addressed through the promising novel framework of 

the Wiener Path Integral (WPI) technique. Although for low-dimensional 

systems the recently developed WPI technique can be significantly more 

efficient than MCS, its standard implementation proves to be 

computationally prohibitive for relatively high-dimensional MDOF 

systems. In this regard, a novel WPI technique implementation has been 
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developed by combining the localization capabilities of the classical WPI 

solution framework with an appropriately chosen expansion for 

approximating the system response PDF. It has been shown that the 

herein proposed implementation can drastically decrease the associated 

computational cost by several orders of magnitude. Clearly, for relatively 

high-dimensional systems, the proposed technique is several orders of 

magnitude faster than both the standard WPI technique and the MCS, 

which requires solving the equations of motion numerically thousands of 

times to derive a reliable response PDF estimate. Several numerical 

examples have been presented, whereas comparisons with pertinent MCS 

data have demonstrated the efficiency and reliability of the approach. The 

utility of this theoretical advanced tool for predicting the stochastic 

response of a TLCD-controlled structure has been stressed in the last part 

of the dissertation, where the case of the 2 degree-of-freedom TLCD 

controlled structure is considered, assessing the accuracy of the outlined 

procedure also with the corresponding experimentally obtained PDFs. 

Moreover, with regard to the proposed fractional formulation for the 

motion of TLCD systems, it is worth stressing that the WPI technique has 

been extended for determining the non-stationary response PDF of linear 

and nonlinear systems endowed with fractional derivatives elements. A 

fractional variational principle, in conjunction with the concept of the 

most probable path related to the WPI, has yielded an approximate closed 

form solution for the system non-stationary joint response PDF. In this 

regard, note that the associated Euler-Lagrange fractional differential 

equations to be solved for the most probable path include both right 

Riemann-Liouville fractional derivatives and left Caputo fractional 
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derivatives. Therefore, determining an exact analytical solution is a rather 

daunting, if not impossible task. Here the problem has been circumvented 

by addressing directly the original fractional variational problem without 

resorting to the corresponding Euler-Lagrange equations. Specifically, 

utilizing shifted Legendre polynomials and Hermite interpolating 

polynomials has yielded a simple system of algebraic equations which 

must be solved for determining the most probable path. Thus, the system 

joint response PDF can be determined at a low computational cost. 

Several numerical examples have been presented to show the reliability 

of the proposed procedure, including the case of the TLCD device, and 

comparisons with pertinent MCS data have demonstrated a satisfactory 

degree of accuracy. 

As far as future studies and possible suggested developments are 

concerned, the following points may be considered as possible 

improvements: 

i. In the proposed fractional formulation for TLCD systems, the two 

involved parameters have been experimentally determined. This 

could be further refined, should it be possible to analytically relate 

these parameters to TLCD characteristics. 

ii. Further investigations should be undertaken in order to consider 

also the influence of orifices in the U-shaped containers, on the 

behavior these dampers. 

iii. The effect of more than one TLCD, and their optimal position in 

MDOF systems could be further analyzed. 

iv. The extension of the WPI to non-Gaussian type of white noise 

excitation should be still developed. 



 

 

Appendix A 

The experimental setup 

 

All the experimental tests reported throughout this dissertation in the 

previous chapters have been developed in the Laboratory of 

Experimental Dynamics at the Department of Civil, Environmental, 

Aerospace and Material Engineering of the University of Palermo. An 

overview of the instruments used for the experimental campaign is 

reported in this Appendix. 

 

A.1    Excitation device: Shake Table 

 

Shaking table model Quanser Shake Table II has been employed to 

provide the base excitation to the SDOF shear-type models. 

The main devices used to run the shake table are depicted in Fig A.1. 

The entire setup is composed of a Universal Power Module (UPM) (see 

Fig. A.2), a data acquisition card (DAC) (see Fig. A.3), a PC running the 

WinCon control software and the Shake Table II itself (Fig. A.4). 
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Fig. A.1 - Overview of the major systems components for the Quanser Shake Table II. 

 

Consider for example the signal transitions between the system 

components when the user wishes the Shake Table II to track a sine wave 

and read the resulting acceleration.  

 

 
Fig. A.2 - UPM front panel. 
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Fig. A.3 - Extended terminal board. 

 

 
Fig. A.4 - Quanser Shake Table II. 

 

Using WinCon on the PC, the user specifies the amplitude and 

frequency of the sine wave. The current needed to move the stage at the 

desired sine wave position is calculated in WinCon and sent through the 

analog output channel of the data acquisition board to the UPM device. 
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The power amplifier in the UPM amplifies the current and drives the 

motor. The table moves back and forth at the position and frequency of 

the commanded sine wave. The resulting displacement and acceleration 

of the stage are measured through the on-board encoder and 

accelerometer sensors. These devices are connected to the DAC board 

and their signal can be displayed and processed further in WinCon. 

The top stage of the shake table is driven by a powerful motor that 

allow it to achieve an acceleration of 2.5 g when up to 7.5 kg of mass is 

mounted. The stage rides on two ground-hardened metal shafts using 

linear bearings which allows for smooth linear motions with low path 

deflection. When starting from the center position, the stage is able to 

move 7.62 cm (3 inches) on each side, therefore possessing a total 

displacement of 15.24 cm. In order to move the top platform, a robust 

ball-screw and motor assembly is used. The high-power 400 Watt motor 

is a 3-phase brushless DC actuator. The motor contains an embedded 

high-resolution encoder that allows for the position of the stage to be 

measured with an effective linear resolution of 3.10 μm. An analog 

accelerometer is mounted on the shake table platform in order to measure 

the accelerations of the stage directly, thus allowing for the control 

software to check step-by-step desired and effective displacements of the 

table. A complete list of the Shake Table II specifications is reported in 

Table A.1. 
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Table A.1 - Shake Table II specifications 
Parameter Parameter Description SI Value Units 

Rm Motor armature resistance 2.94 ohm 

Kt Motor current-torque constant 0.360 N.m/A 

Km Motor back-emf constant 0.2034 V/(rad/s) 

Pb Ball-screw pitch 0.0127 m/rev 

Mp Preload mass 7.74 kg 

Ml_max Maximum total load mass 15.0 kg 

Ms Mass of Shake Table II system 27.2 kg 

 Dimension of top stage 0.46 ×0.46 m
2
 

 Dimension of bottom stage 0.61 ×0.46 m
2
 

 Height from bottom to top stage 12.4 cm 

xmax Maximum stroke position 76.2 mm 

vmax Maximum linear velocity of stage 664.9 mm/s 

Fmax Maximum linear force of stage 708.7 N 

amax Maximum linear acceleration of stage 

for 0 kg load 

24.5 m/s
2
 

gmax Maximum linear acceleration of stage 

for 0 kg load 

2.50 g 

KENC Encoder sensitivity gain 3.1006 µm/count 

KACC Accelerometer sensitivity gain -1 g/V 

 Dynamic load capacity of ball nut 12000 N 

 Life expectancy of ball nut at full 

load 

6.35E+008 m 

 Life expectancy of linear bearing 6.35E+006 m 

 Load carrying capacity of linear 

bearings 

131.5 kg 

 

 

A.2    Accelerometers 

 

In order to acquire structural responses in terms of acceleration, the 

principal type of accelerometer used was the Miniature DeltaTron 

Accelerimeter Bruel&Kjær-Type 4507-002. This type of device (Fig. 

A.5) presents high sensitivity, large frequency range and very small 

dimensions and weight. 
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Fig. A.5 - Miniature DeltaTron accelerometers Bruel&Kjær-Type 4507-002. 

 

DeltaTron is a generic name for Bruel&Kjær accelerometers, 

identifying products that operate on a constant current power supply and 

give output signals in the form of voltage modulation on the power 

supply line. The built-in low noise preamplifiers are made using thick 

film technology. They comprise ASICs including a special reference 

voltage that ensures very stable bias voltage over the entire operating 

temperature range. The low output impedance means that one can 

connect long cables between the accelerometers and measurement 

equipment. Further specifications are reported in Table A.2. 

 

Table A.2 - Miniature DeltaTron accelerometers Bruel&Kjær-Type 4507-002 

specifications. 
Housing material ASTM Grade 2 titanium 

Weight 4.8 g 

Sensitivity (@a59.2 Hz) 100 mV/ms
-2 

Resonance Frequency 18 kHz 

Amplitude response ± 10% from 0.4 Hz to 8400 Hz 

Transverse Sensitivity <5% 

Transverse Resonance Frequency >10 kHz 

Ambient Temperature Range -54 to +100°C 

Max. Operational Acceleration (Peak) 5000 g 
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A.3    Conditioning Amplifiers 

 

Charge and current signals coming from the accelerometers need to be 

conditioned and amplified before being acquired and saved. To this aim, 

the conditioning amplifier model Bruel&Kjær Nexus Range of 

Conditoning Amplifier-Type 2693A014 (Fig. A.6) has been used. 

 

 
Fig. A.6 - Miniature DeltaTron accelerometers Bruel&Kjær-Type 4507-002. 

 

This device is able to condition and amplify current signals coming 

from the above presented accelerometers. It is also able to filter and 

integrate acceleration signals into velocity and/or displacements signals. 
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A.4    Analogical-Digital (A-D) Acquisition Board 

 

To acquire accelerometers signals a National Instrument NI-PCI-4472 

Analogical-Digital (A-D) acquisition board has been used (Fig. A.7). 

 

 
Fig. A.7 - National Instrument NI-PCI-4472 A-D acquisition board. 

 

This is a 8-channel dynamic signal acquisition board with 24-bit 

resolution ADCs with 110 dB dynamic range, 8 simultaneously sampled 

analog inputs at up to 102.4 kS/s, ±10 V input range or ±31 V with SMB-

120 cable, variable antialiasing filters and ability to synchronize multiple 

devices for higher channel count applications. Specifications are reported 

in Table A.3. 

 

Table A.3 - National Instrument NI-PCI-4472 A-D acquisition board  specifications. 
Size 17.5 by 10.7 cm 

Connectors SMB male 

Channels 8, simultaneously sampled 

Resolution 24 bit 

Sampling Frequency ƒs from 1.0 to 102.4 kS/s 

Input signal Amplitude Range ±10 V (peak) 

Anti aliasing Bandwidth from 0 to 0.5465 ƒs 

Crosstalk (Channel Separation) -90 dB 

Operating Temperature from 0 to 50 °C 

Relative Umidity from 10 to 90% 
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A.5    The NI PXI system 

 

Recently acquired National Instruments NI PXIe-1082 DAQ device, 

equipped with a high-performance 16-channels NI PXIe-4497 board, has 

been used to acquire signals coming from the accelerometers for some of 

the latest experiments. 

The entire systems can be considered as an all-in-one device able to 

acquire, condition and amplify voltage and charge signals. Further, since 

the same device is also equipped with a NI PXIe-4497 board digital-to-

analog (D/A) converter, it has been used to generate the output voltage 

signals for the APS shake table, thus providing the base excitation. 

Finally the entire system is controlled via a self-developed signal 

processing software in LabVIEW environment. Picture of the device is 

reported in Fig. A.8. 

 

  
Fig. A.8 - National Instruments NI PXIe-1082 DAQ device. 
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A.6    Data acquisition software and procedure 

 

Structure vibrations and table motion have been acquired in terms of 

acceleration. Acquisition sample frequency has been chosen equal to 

1kHz in order to avoid sample aliasing (resulting Nyquist frequency for 

acquired data is 500 Hz, much higher that the highest model frequency). 

Acceleration signals have been processed using self developed 

LabView software which allows real time processing. Post processing 

procedures includes: 

- Anti bias and detrending functions, to eliminate non-zero mean in 

the digitized signals due to a current shift or to a bad conditioning in 

the analogical signal. 

- High frequency filtering to exclude instrumental noise. 

- Time windowing to avoid signal leakage. Leakage is a problem 

encountered when performing the Fourier Transform of a sampled 

data and consists of a spreading of the spectrum over a range of 

frequencies wider than the real ones. Hanning time windows have 

been used for steady periodic and random vibrations. 

- Integration. Accelerations have been integrated twice by means of an 

appropriate high-pass filter to obtain velocities and displacements of 

the systems. 

When necessary recorder signals have been filtered with an 8th order 

Butterworth filter, using cut-off frequencies from 0.5 to 15 Hz. 
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Acceleration signals have been then stored and used to perform 

system identifications procedures and time and frequency analysis, as 

shown in the previous chapters. 

 

 





 

 

Appendix B 

Power Spectral Density coherent with Response 

Spectra 

 

In the present Appendix, the Power Spectral Density (PSD) function 

coherent with elastic Response Spectra (RS) for Eurocode 8 in piecewise 

analytical relationship is reported in order to use the concepts outlined in 

the Chapter 3 of the dissertation. 

Equation (B.1) reports the analytic expression of elastic pseudo-

acceleration Response Spectra prescribed by Eurocode: 
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 (B.1) 

where T  is the natural period, 
ga  is the peak ground acceleration,   is a 

factor depending on the structural damping ( 1   for 5%  ), BT , CT  

and DT  are the period values that delimitate the various branches. In the 

applications of this paper RS for soil type C are used, and the parameters 

values are 0.20BT   s, 0.60CT   s, 2.00DT   s and 1.15S  . In Fig. 
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B.1(a) the RS is depicted. Analyses conducted for other soil types always 

give comparable results. 

 

 
(a) 

 
(b) 

Fig. B.1 – (a) Pseudo-acceleration response spectra prescribed by Eurocode 8; (b) PSD 

compatible with Eurocode 8 response spectra. 
 

Once the nominal duration of the earthquake Ts is selected, it is 

possible to evaluate a PSD function such as the mean maximum peak of 

the response acceleration, computed into the same window of the 

nominal duration of the earthquake, which gives the same results of the 

target RS. It has to be stressed that the PSD so obtained is only related to 

the ground acceleration and not to the superimposed structure, i.e. it is 

absolutely independent of the damping ratio either by yielding or by 

inherent nonlinearities present on the superimposed structure. 

In order to do so, in literature several techniques are available and a 

simple analytical model (Navarra et al., 2013) that is derived from the 

numerical method reported in Cacciola et al. (2004) is here presented. It 

was recognized that the PSD functions compatible with Eurocode 8 RS 

have the shape reported in Fig. B.1(b). In (Navarra et al., 2013) the 
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analytical model reported in Eq. (B.2) is proposed, where 
1G  and 

2G  

have the meaning illustrated in Fig. B.1(b). 
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 (B.2) 

The circular frequencies i  corresponding to the periods iT  in Eq. 

(B.1) and the parameter D  are reported in Eq. (B.3) 
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According to the model presented in (Navarra et al., 2013) the values 

for the exponents ie  for Eurocode 8 are: 1 10 3e  , 2 2 3e  , 3 4 3e    

and 4 8 3e   , while 20ST  s. In Table B.1 the values for 1G , 2G  and 

D  for the RS in Eurocode 8 and soil-type C are reported for several 

values of the intensity parameter ga . In this case the parameter 

D =3.365 rad/s. Figure B.2 reports a comparison between the target RS 

provided by Eurocode 8 and the one obtained by means of a stochastic 

analysis of a SDOF system subjected to a Gaussian process with the PSD 

in Eq. (B.2), in terms of both pseudo-acceleration and displacements. In 
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every case the percentage difference is much below the allowed tolerance 

of 10%. 

 

Table B.1 - Parameter values for the definition of the PSD compatible with Eurocode 

8, soil C response spectra. 
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(b) 

Fig. B.2 – (a) Comparison between target RS and the one obtained via compatible PSD; 

a) pseudo-acceleration response spectra; (b) displacement response spectra. 
 

 



 

 

Appendix C 

The fractional Euler-Lagrange Equation 

 

In this Appendix the detailed derivation of the Euler-Lagrange 

equations for the FVPs In Chapter 5 is presented. The problem is 

formulated herein only in terms of  -order left Caputo fractional 

derivatives, defined as 
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As shown in Eq. (5.67), the right Riemann-Liouville fractional 

derivatives, defined as 
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naturally occur in a problem of fractional calculus of variations, even 

though they do not appear in the functional. These derivatives will be 

denoted as the LCFD and the RRLFD, respectively. Next, utilizing the 

above definitions, let us consider the general class of FVPs which contain 

several functions     1, ,jy t j m  , and multiple positive fractional 

order derivatives  k
 ; that is, 
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where 1 , 1 ,  1, ,    kj m k k k n         , and the function  is 

continuously differentiable with respect to all its arguments. Note that in 

this case, all the boundary conditions (at the starting and ending point) 

are given. 

Next, assume that   *   1, ,jy t j m   are the desired extremizers of 

 1, , mJ y y . Let j   be a small parameter, and  j t  an arbitrary 

admissible function; it is possible to define the following family of 

curves 

     * ,  1 j j j jy t y t t j m      (C.5) 

which satisfy the boundary conditions (C.4); i.e. it is required that 
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Since fractional derivatives are linear operators, it follows that 
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Substituting Eqs. (C.5) and (C.7) into Eq. (C.3), yields 
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A necessary condition for  1, , mJ y y  to have an extremum for 

     * , 1, ,j jy t y t j m    is given by 
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whereas this should be true for all admissible  j t . Differentiating Eq. 

(C.8) with respect to j  and equating to zero, we obtain 
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 (C.10) 

Further, employing the formula for fractional integration by parts for 

left Caputo fractional derivatives, for  k
 , see (Agrawal, 2007a,b; 

Almeida et al., 2011). 
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the second integral of Eq. (C.10) can be written as 
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(C.12) 

Since conditions of Eq. (C.6) are required, Eq. (C.12) reduces to 
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Substituting Eq. (C.13) into (C.10), we get 
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Since  j t  is arbitrary, by a fundamental lemma of the calculus of 

variations, it follows that 
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Equation (C.15) is the desired Euler-Lagrange equation for the 

fractional variational problem (C.3). 
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