
 
Dottorato di Ricerca in Fisica 

Dipartimento di Fisica e Chimica 
Settore Scientifico Disciplinare FIS03 

 
 
 
 

 

 
 

ATOMIC EMISSION AND PHOTON LOCALIZATION IN 1D 
MICROCAVITY ARRAY 

 
 
 

 
 
 
 
 
 
 
 
 

IL DOTTORE      IL COORDINATORE 
                    Federico Lombardo              Prof. Antonio Cupane 
 
 
 
 
 

 IL TUTOR 
         Prof. Gioacchino Massimo Palma 
 
 
 
 
 
 
 
 
 
 
 
 

CICLO  XXVI 
ANNO CONSEGUIMENTO TITOLO 2016 

 



Contents

Introduction iii

1 Cavity QED: Theory and pratical implementation 1

1.1 Theory on Cavity QED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 CQED in the strong coupling regime: The Jaynes-Cummings model . . 2

1.1.2 Intermediate and weak coupling regime: damped CQED . . . . . . . . 8

1.2 CQED practical implementations . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Fabry-Perot and fiber based cavities . . . . . . . . . . . . . . . . . . . 15

1.2.2 Microsphere and microtoroidal cavities . . . . . . . . . . . . . . . . . 15

1.2.3 Photonic band-gap cavities and quantum dots . . . . . . . . . . . . . . 16

1.2.4 Superconducting stripline resonators and Superconducting qubits . . . 19

2 The Green’s function approach 23

2.1 Fundamental properties of the time-independent Green’s function . . . . . . . 24

2.2 Time-dependent Green’s function: the dynamic of a TLS in a structured reservoir 27

2.2.1 Sponaneous emission of a TLS . . . . . . . . . . . . . . . . . . . . . . 31

2.2.2 TLS in a cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 The Green’s function for tight-binding Hamiltonians . . . . . . . . . . . . . . 36

2.3.1 The uniform CCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.2 The CCA with a single defect . . . . . . . . . . . . . . . . . . . . . . 39



ii CONTENTS

2.3.3 A TLS coupled to the uniform CCA . . . . . . . . . . . . . . . . . . . 42

3 Photon localization and population trapping in Coupled Cavity Arrays 49

3.1 How to couple two or more cavities . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 The TLS emission: photon localization vs population trapping . . . . . . . . . 53

3.2.1 Resonant atom-cavity coupling . . . . . . . . . . . . . . . . . . . . . . 55

3.2.2 Detuned atom-cavity coupling . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Single photon scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Static disorder in Coupled Cavity Arrays 75

4.1 Anderson Localization in Coupled Cavity Arrays . . . . . . . . . . . . . . . . 77

4.1.1 Quantitative description of localization for the 1D Anderson Hamiltonian 78

4.1.2 TLS emission into the disordered-CCA environment . . . . . . . . . . 82

4.2 Non-Markovian open quantum dynamics . . . . . . . . . . . . . . . . . . . . . 87

4.2.1 Markovian processes and quantum dynamical maps . . . . . . . . . . . 88

4.2.2 Non-markovian quantum processes and information flow . . . . . . . . 92

4.2.3 Geometrical measure of non-Markovianity . . . . . . . . . . . . . . . 96

4.2.4 Non-Markovianity measures for the TLS-CCA quantum evolution in
presence of static disorder . . . . . . . . . . . . . . . . . . . . . . . . 98

Conclusions 105

Appendix A 108

Appendix B 109

Appendix C 110



Introduction

Research in cavity quantum electrodynamics (CQED) explores quantum dynamical processes
for individual atoms strongly coupled to the quantized electromagnetic field of a resonator. For
more applications in CQED, current interest lies in the coherent interaction among several cav-
ities coupled each other.
Coupled-cavity arrays (CCAs) typically consist of an arrangement of low-loss single-mode cav-
ities with nearest-neighbor coupling allowing photon hopping between neighboring cavities. In
turn, each cavity may interact with one or more atoms (or atomlike systems). Progress in the
fabrication techniques make such systems experimentally accessible in the immediate future
[1, 9, 10, 140]. Such arrays have been proposed, for example, to control the coherent transport
of a single photon by means of an artificial two-level atom which works as a quantum switch
[17]. Other studies have focused on their potential to work as an e↵ective platform to carry
out quantum information processing tasks [5, 11, 12, 13]. Moreover, recent works have also
shown that, when such an array of coupled cavities is doped with two- or multi-level atoms, the
photon-blockade e↵ect can emerge and it can be achieved a Mott-insulator state of polaritons
that are many-body dressed states of atoms coupled to quantized modes of the optical field in
the array [1, 3, 4].
This research in progress motivates us to further investigate some aspects of the interesting and
extremely rich physics of a CCA interacting with a single two-level atom-like system.

The first part of this thesis is focused on the localization properties of a single excitation
inside such an uniform CCA, which we theoretically examine by means of both analytic and
numerical methods. In particular, in Sec 3.2 we discuss the emission of a two-level atom em-
bedded in a cavity of the array which gives rise to photon localization, i.e. a fraction of the
field is shared between the field-modes of the cavities around the atomic position at long times.
If the atom is located at the central site of a very extended array, the boundary e↵ects can be
neglected. Owing to the presence of polaritonic atom-photon bound states [32], the atom is
in general unable to eventually release the entire amount of its initial excitation to the field
and thus exhibits fractional decay [27, 28, 30]. Such population trapping manifests itself as
a residual oscillatory behavior of the excited state population at long times. Since the bound
states show a spatially extended profile, photon localization takes place so that a fraction of the
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initial excitation remains localized inside the cavities near the atom. The remaining part of the
field propagates away from the atom and its dynamics is regulated by the unbound or scattering
states of the system. The atom-field coupling strength g, or Vacuum Rabi frequency, is a key
parameter which determines the particular dynamics of the excitation released. Specifically, it
is the ratio between this coupling constant and the photon-hopping rate J, characterizing the
coupling between the nearest-neighbour cavities, to determine the long-times balance between
the localized fraction of the initial atomic excitation and the trapped one. In the strong-hopping
regime, i.e. when g/J is small enough, the atom completely decays with exponential law (in the
limit g/J ! 0) showing a Markovian behaviour and its excitation is transferred to the propagat-
ing field. In this case the CCA behaves as an almost flat spectral-density bath for the atom. In
the regime characterized by a very large value of the coupling strength (g/J � 1), instead, the
field remains confined within the cavity coupled to the atom and the resulting dynamics is re-
duced to the well-known Jaynes-Cummings model with a full atom-field energy swapping with
standard vacuum Rabi oscillations at frequency 2g. One might expect that photon localization
and population trapping arise simultaneously as the ratio g/J grows from zero. We found that
this is not the case. For atom-cavity resonant coupling, we highlight the existence of a regime
of intermediate coupling strengths such that significant field localization can occur with no ap-
preciable population trapping. Specifically, when g/J is conveniently chosen within a given
interval, at long times, only a negligible fraction of the localized field-energy is periodically
returned to the atom. In this case the localized field periodically undergoes a mere spatial re-
distribution in the vicinity of the atom. Such behavior arises from the peculiar properties of the
two bound stionary states of the joint atom-field system. When the atom is detund from the
cavity-mode, the localization profile and the population trapping change quantitatively but not
qualitatively, the balance being strongly altered only for very large detuning. The main e↵ect of
the atom-cavity detuning is to produce an imbalance between the two bound states. The atomic
trapped energy is always an increasing function of the detuning, while the localized energy
shows a di↵erent behaviour depending on g/J. However, we show that their ratio, for a given
value of g/J, is a monotonic increasing function of the detuning. As result, the e↵ect of photon
localization without population trapping, maximum at resonance, is still present for moderate
atom-cavity detuning but the range of g/J within which such e↵ect occurs is shrinked.
The localization and trapping properties discussed above arise from the presence of a pair of
polaritonic bound states for the atom-CCA system and the spectrum of the bare uniform CCA,
described by means of a tight-binding model, consists only of unbound states. If one or more
defects are introduced into the bare CCA, i.e. cavities with di↵erent frequencies or hopping
rates, the system will show a bound (photonic) state for each defect. Static disorder in such an
1D array, i.e. cavity-modes with random frequencies or random hopping rates, gives rise to a
spectrum consisting only of localized eigenstates. This is a general multiple-scattering wave
phenomenon (also valid for 2D and, under certain conditions, 3D systems), known as Anderson
localization after Phillip Anderson who first predicted it in 1958 [60]. It has been observed in
condensed matter [71], classical light [72, 73, 75, 76], acoustic waves [77] and Bose-Einstein
condensates [78].
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In the second part of the thesis we deal with the emission of a two-level atom coupled to such
disordered array. Only uncorrelated disorder consisting of coupled cavities with random fre-
quencies and uniform hopping is considered. In Sec 4.1.2 we implement the model by numerical
diagonalization of the atom-CCA Hamiltonian with gaussian disorder for several realizations of
the latter, characterized by di↵erent values of the associated standard deviation. The atom, cou-
pled to the central cavity of the array in the strong-hopping regime (g/J = 0.1), can (almost)
completely release its excitation only for small disorder. We choose to study the system only in
this regime, in which the atom-photon bound states play no role, in order to investigate how the
atomic Markovian dynamics is altered by the presence of static disordr. By means of an open
quantum systems approach, we consider the atomic system interacting with a particular environ-
ment consisting of a restricted set of localized mods, depending on the disorder strength. When
the latter one is large enough, each eigenstate of the bare CCA is localized on a single site.
In this case the eigenstate localized on the central site dominates the atom-field dynamics, the
other ones showing a negligible overlap with the atomic site. This results in a detuned (nearly
closed) Jaynnes-Cummings dynamics between this central eigenmode and the atom. In general,
when the disorder is not too strong, several eigenmodes will overlap on the central site. By
means of numerical simulations, in Sec 4.2.4 we show that the bare-array environment behaves
as a single open QED cavity from the atom perspective. The atom-cavity e↵ective coupling
constant, as well as the atomic external decay rate, will depend on the disorder strength. This
equivalent dynamics describes the averaged evolution over several disorder realizations.

The two parts of the work on which I focused during the three years of my Ph.D. are
presented, respectively, in the third and fourth chapter of this thesis. In Chapter 1 QED Cavities
are introduced and some of the physics of these system is explained. Some of their possible
experimental realizations are also discussed. Chapter 2 is devoted to the introduction of the
mathematical tools needed to analyze the physics of Coupled QED Cavity arrays. Here the
Green’s function method is adopted to obtain the spectral properties of systems consisting of
a two-level atom interacting with a generic bath of modes. Special attention is paid to the
tigth-binding Hamiltonians, which we adopt as mathemathical models to analyze the physical
systems of our interest.
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Chapter 1

Cavity QED: Theory and pratical
implementation

The most elementary form of interaction between light and matter, a single atom interacting
with a single photon, has been the subject of theoretical and experimental research. Tradi-
tionally, one of the main di�culties in atomic physics is the very low probability of detecting
photons and the weak light-matter interaction. In these conditions, experiments demanded that
many photons scatter o↵ a large number of atoms, making it impossible to shed light on the
single quanta interactions. The direct observation of the fundamental quantum interaction has
been for a long time elusive. Since the late ’70 many experimental groups have carried out a lot
of thought experiments, or some of their variants, on which the fathers of quantum physics have
much debated [81, 91, 93, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 109]. Manipulate indi-
vidual objects with such a level of precision required the aid of particular resonators designed
to make su�ciently strong and lasting these single-quanta interactions. Reaching this regime
has been a major focus of research in atomic physics and quantum optics for several decades
and has generated the field of cavity quantum electrodynamics (CQED).
In recent years the number of scientific publications, theoretical and experimental, on the in-
teraction of a single mode of the quantized e.m. field within a cavity QED resonator with a
single two level atom or atom-like system (TLS) has grown considerably, the argument being
an essential chapter of all the latest quantum optics textbooks [81, 82, 83, 84, 85, 86, 87, 88].
This chapter examines the theoretical aspects and possible practical implementations of single-
mode resonators that interact, in di↵erent regimes, with atom-like two-level systems. Moreover,
given the current level of technology, we will see what are the best experimental candidates for
implementing CQED applications.
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1.1 Theory on Cavity QED

Traditional Cavity Quantum Electrodynamics is concerned with the very di↵erent situation of
an atom trapped in a cavity of a size comparable to the wavelength of the emitted radiation. A
major part of all Cavity QED experiments has been performed with Fabry-Perot cavities formed
by rather massive mirrors. As we will see later, more recent settings make use of several new
structures with small-volume micro-cavities.
Although most of the early experiments were made to investigate the changes in the rate of
emission of an atom interacting with a confined environment, di↵erent from the free-vacuum,
consisting of a cavity (for example to test the Purcell e↵ect, in the so called weak-coupling
regime), more recently the focus on Cavity QED has shifted to the possibility to make the atom-
photon interaction as more intense and lasting as possible: the strong coupling regime.

1.1.1 CQED in the strong coupling regime: The Jaynes-Cummings model

Let us consider a series of features common to all realizations of such single-mode cavities
interacting with a two-level system. Since, in the strong coupling regime, the aim of CQED
is to enhance the interaction between atoms and photons, any experimental realization must
ensure that a single photon can be su�cient to saturate the atomic transition. This condition
is achieved by confining the photon to a small volume that can be several orders of magnitude
smaller than in free space (in a Fabry-Perot setup this volume is defined by the mirrors and
the optical modes they support). A small volume increases the atom-light coupling strenght
known, for a single photon, as Vacuum Rabi frequency. It is also important to ensure that the
duration of the interaction is su�ciently long, reducing losses from the cavity and the unwanted
emission of the atom into the external continuum of modes. These essential physical features
are described by the Jaynes-Cummings model [59], wich represents the theoretical framework
for Cavity QED. The authors, in their work dating back to 1963, established the full quantum
electrodynamic theory of a single emitter (e.g. an ammonia molecule in a maser) interacting
with a single mode of the electromagnetic field. For a two-level atom with ground state |gi,
excited level |ei and transition energy ~!a = ~(!e�!g), coupled to a generic reservoir of modes,
as in the case of the vacuum or other particular environments, the total atom-field Hamiltonian
in the Schrödinger picture reads:

Ĥ = Ĥr + Ĥa + Ĥcoup =
X

k

~!kâ†kâk +
~

2
!a�̂z + ~

X

k

gk

⇣

â†k�̂� + âk�̂+
⌘

(1.1)

where the gk coupling constants are generally expressed in dipole approximation and the dis-
persion relation for the allowed frequencies depends on the specific environment (!k = ck for
the vacuum). The k-mode creation and annihilation operators, respectively â†k and âk, satisfy
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(a) (b)

Figure 1.1: An atom inside a single mode cavity. The atom-field coupling is given by the Vacuum
Rabi frequency g. (a) Ideally lossless cavity. (b) System with leakages: the atom is also
coupled to the continuum external modes at rate � and the cavity loses photons
at rate k.

the bosonic commutation relations
h

âk, â†k0
i

= �k,k0 and the atomic Hamiltonian Ĥa = ~
2!a�̂z

is chosen selecting the level ~(!e + !g)/2 as zero for the energies. Moreover, the coupling
Hamiltonian Ĥcoup in (1.1) is expressed in the rotating wave approximation (RWA), i.e. they
have been neglected the counter-rotating terms â†k�̂+ and âk�̂�, these having a negligible e↵ect
on the evolution. The RWA is valid if the field strenght is not too large and assuming also that
the state of the field does not vary rapidly on a time scale of !�1

a . An important property of the
Hamiltonian (1.1) is that it conserves the total number of excitations, indeed the total number
operator N̂ = �̂+�̂� +

P

k â†kâk commutates with Ĥ.
In Fig (1.1(a)) is depicted a single two-level atom in a fixed position inside a single-mode cavity,
whose resonant frequency is !c. Now the TLS is no longer coupled to a continuum of modes,
as in the case of free space, but to a single quantum oscillator representing the only field mode
the cavity ideally supports. As we shall see later, this is the ideal situation of a lossless cavity
with an infinity Quality factor, since in practice any cavity presents losses and therefore the
distribution of the allowed modes has a finite width. This more realistic situation is depicted
in Fig (1.1(b)) in which the photon loss from the cavity mode (for example due to the leakage
through the cavity mirrors) occurs at a rate k and, in addition, the atom can lose its excitation
via spontaneous emission outside of the cavity mode, at a rate �. The situation in wich the atom
can exchange its excitation with the field inside the cavity for a su�ciently long time before
decaying into the external modes and before the cavity loses its field is the above mentioned
strong coupling regime. If we indicate with g the coupling between the atom and the cavity
mode, it is intuitive to deduce that this regime is reached when g � k, �. The theoretical back-
ground for the ideal case of Fig (1.1(a)) is the originally conceived Jaynes-Cummings model
with k = � = 0, i.e. the cavity QED strong coupling regime with infinite Quality factor. Now
here we treat this ideal case, postponing the discussion on the losses to the next section.
From (1.1) we immediately obtain the Hamiltonian for a TLS with transition energy ~!a cou-
pled to a field mode of frequency !c in dipole and rotating wave approximation:
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ĤJC = Ĥc + Ĥa + Ĥac = ~!c

 

â†â +
1
2

!

+
~

2
!a�̂z + ~g

⇣

â�̂+ + â†�̂�
⌘

(1.2)

Here the coupling constant g, assumed real without loss of generality, is known as Vacuum Rabi
frequency and the validity of the RWA is maintained for g ⌧ {!a,!c}. However it should be
remembered that in this case the electric and magnetic field inside the cavity, as well as the
vector potential, are stationary waves and their amplitudes are not constant and exhibit nodes
and antinodes within the cavity volume. It can be shown that the electric field and the Vacuum
Rabi frequency are described by the cavity mode function f (r) [83] as :

Ê(r) =

s

~!c

2✏0V

⇣

f (r)â + f ⇤(r)â†
⌘

✏ and g(r) = da · ✏
r

!c

2~✏0V
| f (r)| (1.3)

where V =
R

| f (r)|d3r is the mode volume, ✏ the electric field polarization versor and
da = hg|R|ei the atomic dipole matrix element. If the atom is located at an antinode of the
electric field and, for a suitable choice of the electric polarization, we have ✏ · da = |da| = da,
The Vacuum Rabi frequency is the maximum possible and reads [81]:

g =

s

d2
a!c

2~✏0V
(1.4)

In absence of the coupling term Ĥac, the Hamiltonian Ĥ0 = Ĥc + Ĥa in (1.2) admits tensor-
product eigenstates of the form |e, ni or |g, ni, wich means that the field is in the generic Fock
state |ni and the atom can be either in |ei or in |gi. Its eigenvalues form an infinite ladder of
two-level manifolds separated by the cavity frequency !c. Indicating with � = !a � !c the
atom-cavity detuning, each manifold consists of the two levels |e, ni and |g, n+1i, both carrying
n + 1 total excitations, separated by the energy ~� (the state with the higer energy being |e, ni
or |g, n + 1i, respectively for � > 0 or � < 0 ). In this scheme the atom-field ground state
|g, 0i is apart at the bottom of the ladder. Hence, the uncoupled Hamiltonian Ĥ0 is diagonal
in the basis {|g, 0i, |g, 1i, |e, 0i, |g, 2i, |e, 1i, . . . |g, n + 1i, |e, ni, . . . }. The diagonalization of the
complete Jaynes-Cummings Hamiltonian in (1.2) leads to the following block-diagonal form :

ĤJC =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1
2~!c 0 0 . . . . . .

0 ĥ1 0 . . . . . .
0 0 ĥ2 0 . . .

0 0 0 . . . . . .
...

...
...
... ĥn

0 . . . . . . . . . . . .
. . .

3

7

7

7

7

7

7

7

7
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in which the n-th 2 ⇥ 2 block ĥn mixes the states |g, n + 1i and |e, ni belonging to the n-th
uncoupled manifold of Ĥ0 and, in this two-state basis, it is given by the matrix:

ĥn = ~

2

6

6

6

6

6

4

!c

⇣

n + 1
2

⌘

+ �
2 g

p
n + 1

g
p

n + 1 !c

⇣

n + 1
2

⌘

� �
2

3

7

7

7

7

7

5

(1.5)

with eigenvalues and eigenvectors given by:

E±n = ~!c

 

n +
1
2

!

± ~
r

�2

4
+ g2(n + 1) (1.6)

|+, ni = sin ✓n|e, ni + cos ✓n|g, n + 1i (1.7a)
|�, ni = cos ✓n|e, ni � sin ✓n|g, n + 1i (1.7b)

with

tan 2✓n = �
2g
p

n + 1
�

= �2gn

�
(1.8)

These states, which are generally entangled, are called the dressed states of the atom-field
system and the mixing angle ✓n defined in (1.8) indicates, for each of them, the relative weight
of the two uncoupled eigenstates |g, n+1i and |e, ni. In (1.8) we have introduced the ’n-photons’
Rabi frequency at resonance gn = g

p
n + 1. For very large detuning, but always within the range

of validity of the RWA, i.e. g ⌧ |�| ⌧ !c, the dressed states in (1.7) tend to the uncoupled ones:
for positive detunings we have |+, ni t |e, ni and |�, ni t �|g, n + 1i, while for negative values
they approximate as |+, ni t |g, n + 1i and |�, ni t |e, ni. In Fig (1.2b) is shown the behaviour
of the two eigenenergies E±n , given in (1.6), as a function of the detuning for the generic n-th
dressed level. The correspondig energies for the uncoupled levels are also shown as dotted lines
and they cross at resonance. When the atom-field coupling is turned on, with a Rabi frequency
g, the degeneracy at � = 0 of the two uncoupled levels |g, n + 1i and |e, ni is lifted and the
corresponding dressed states are separated by the minimum energy 2~gn. The energies for the
resonant case with and without coupling are shown in Fig (1.2a). If a nonvanishing detuning
is introduced this energy separation increases and, for very large values, as it happens for the
dressed states, the eigenenergies E±n tend to the uncoupled ones ~!c

⇣

n + 1
2

⌘

± ~�2 .
The atom-field state evolution at the generic time t can be found by solving the time dependent
Schrödinger equation for the Hamiltonian in (1.2). In general it may involve several blocks,
but each ’n+1 excitations’ component of the initial state evolves only with the corresponding
Hamiltonian block ĥn given in (1.5). In the interaction representation with respect to
Ĥc = ~!c

⇣

â†â + 1
2

⌘

, given in (1.2), the state at time t reads:
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Figure 1.2: (a) Dressed states for the Jaynes-Cummings model in the resonant case. On the left, for
each manifold, are shown the uncoupled degenerate states. On the right, when the atom
and the field are coupled with a Vacuum Rabi frequency g, the dressed-states separation
energy is shown. (b) Dressed state energies for the generic n-th manifold as a function
of the atom-cavity detuning �. At resonance the energy level separation is the minimum,
equal to 2gn = 2g

p
n + 1. The uncoupled state energies are represented as dotted lines

and they cross at � = 0. For � � gn the uncoupled levels and the dressed energies
converge. All energies are in ~ = 1 units.

| (t)i =
X

n

h

Ce,n(t)|e, ni +Cg,n+1(t)|g, n + 1i
i

e�i(n+ 1
2 )!ct (1.9)

By projecting the Schrödinger equation onto the |e, ni and |g, n+1i states, we find the equations
of motion for the atom-field probability amplitudes in the n-th manifold:

Ċe,n = �
1
2

i�Ce,n � ig
p

n + 1Cg,n+1 (1.10)

Ċg,n+1 =
1
2

i�Cg,n+1 � ig
p

n + 1Ce,n

For our purposes is su�cient to consider the solutions for | (0)i = |e, ni, i.e. at t = 0 we
consider the atom in |ei and n photons in the cavity. Setting Ce,n(0) = 1 and Cg,n+1(0) = 0 in
(1.10), we find the following time evolution for the probabilities:

Pe,n(t) = |Ce,n(t)|2 = �2

4g02n
+

 

1 � �2

4g02n

!

cos2(g0nt) (1.11)

Pg,n+1(t) = |Cg,n+1(t)|2 = g2
n

g02n
sin2(g0nt)
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Figure 1.3: Atomic excitation probability Pe,0 for the |e, 0i initial state as a function of the time,
with generic Vacuum Rabi constant g. The three curves are relative to di↵erent values
of the atom-field detuning: � = 0 (Black solid), �/g = 2 (Blue dot-dashed), �/g = 5
(Red dashed).

in which we have introduced the ’e↵ective n-photons’ Rabi frequency g0n =
p

�2/4 + g2(n + 1).
The above equations describe the two probabilities Pe,n and Pg,n+1 oscillating at frequency 2g0n
around the average values given by:

< Pe,n >=
1
2

 

1 +
�2

�2 + 4g2(n + 1)

!

(1.12)

< Pg,n+1 >=
g2

n

�2/2 + 2g2(n + 1)

For � = 0 the two average probabilities are 1/2 and the atom-field coupling results in a
perfectly reversible energy exchange between the states |e, ni and |g, n + 1i at frequency 2gn,
indeed, from (1.11), the two probabilities evolve as Pe,n = cos2(gnt) and Pg,n+1 = sin2(gnt). The
case with the atom excited and zero photons at t = 0 is sketched in Fig (1.3), in which the black
solid line represent the evolution of Pe,0 at resonance, and it can be viewed as reversible and
oscillatory spontaneous emission which occurs at frequency 2g. As well-known, an atom into
the vacuum undergoes an irreversible sponaneous loss of its initial excitation since it is coupled
to a continuum of nearly resonant modes. Here the initial atomic excitation is periodically trans-
ferred into a photon that remains inside the ideal lossless cavity and can be absorbed exciting
again the atom and so on. The situation of an atom at resonance in a single-mode ideal cav-
ity is very di↵erent from its spontaneous emission in free space: a coherent atom-field energy
exchange in the first case, an irreversible damping in the second one. The red and blue lines
in Fig (1.3) show the evolution of Pe,0 for the same initial state but with two di↵erent values
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of the atom-cavity detuning. For increasing � the time-averaged probabilities in (1.12) deviate
from their 1/2-value at resonance and for �/gn � 1, in general, Pe,n(t) and Pg,n+1(t) oscillate
respectively around a value very close to unity or to zero and with a very little amplitude. This
is exactly what is to be expected, indeed an atom excited inside and far-o↵ resonance with a
perfect lossless resonator that ’protects’ it from the external continuum of modes cannot decay
and never loses or exchanges its excitation. In this way many experiments have been done in
order to verify the enhancement or suppression of the spontaneous emission of atoms inside
QED cavities in di↵erent regimes [81].
Another interesting feature of the Jaynes-Cummings model is its anharmonicity, since gn /

p
n.

In the strong coupling regime this gives rise to the so-called photon blockade e↵ect, thanks to
which it is possible to observe non-classical states of light. The e↵ect of the atom-light in-
teraction is to create an anharmonic energy ladder dependent upon the photon occupation, as
illustrated in Fig (1.2a). If we consider the atom-cavity system at resonance and pumped by an
external probe laser at frequency !c, the interaction causes the cavity to be shifted o↵ resonance
with the laser after the first photon is absorbed, preventing another photon from entering the cav-
ity until the first photon leaves. This system allows a coherent state to be filtered into a train of
single photons resulting in an anti-bunched output and it has been observed experimentally for
di↵erent CQED setups [106].

1.1.2 Intermediate and weak coupling regime: damped CQED

As already briefly mentioned, in addition to the coherent atom-field interaction, the CQED
dynamics is a↵ected by two main loss processes: spontaneous emission from level |ei to level
|gi at rate � and cavity photon losses at rate k. Such two rates are independent each other. The
Quality factor of a cavity is connected to the rate k by Q = !c/k. The spontaneous emission rate
is di↵erent from the free space decay rate, indeed the atom interacts only with a subset of the
free-space modes determined by the solid angle over which the atom ’sees’ that background.
We refer to a system with � , 0 as open cavity. Although other processes, such as thermal
motion of the atom or dephasing due to background electromagnetic fields, also contribute to
the losses of the system, their e↵ects are usually much smaller and can be disregarded in many
applications. In introducing the Jaynes-Cummings model, we have considered the ideal case of
strong coupling regime and neglected any kind of loss. This obviously requires an infinite Q-
factor and the � = 0 condition must be separately specified. To indicate with a single parameter
the condition for which the strong coupling regime is reached, we define the cooperativity factor
as follows:

⇠ =
g2

2k�
(1.13)
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When ⇠ � 1 the system works in strong coupling and the coherent part of the atom-field
evolution dominates over the decoherence processes.
Let us consider the atom-cavity system in the |e, 0i state at t = 0. In this case the most general
approach to obtain the state-amplitude evolution is the master equation. We consider the system
at zero temperature and restrict our analysis to the ’no-jump’ regime in which the quantum
jumps are unimportant, thus we will consider a wavefunction which incorporates only those
states coupled by the Hamiltonian evolution. As the system evolves, the possible transitions
are:

(i) Free space emission |e, 0i ! |g, 0i at rate �;

(ii) Coherent evolution |e, 0i ! |g, 1i with Vacuum Rabi frequency g;

(iii) Cavity decay |g, 1i ! |g, 0i at rate k.

The Linblad master equation 1 for the atom-cavity density operator reads:

@⇢̂

@t
= � i
~

h

ˆHe f f , ⇢̂
i

+ ��̂�⇢̂�̂+ + kâ⇢̂â† (1.14)

with the e↵ective non-Hermitian Hamiltonian Ĥe f f given by:

Ĥe f f = ĤJC � i~
�

2
�̂+�̂� � i~

k
2

â†â (1.15)

We can obtain the ’no-jump’ evolution by solving the Schrödinger equation i~@t| (t)i = Ĥe f f | (t)i
for the unnormalized state:

| (t)i = Ce,0(t)e�i�t/2|e, 0i +Cg,1(t)ei�t/2|g, 1i (1.16)

In this way the equations of motion for the probability amplitude in (1.10), in presence of losses
and restricted to the {|e, 0i, |g, 1i} subspace, are modified as follows:

Ċe,0 = �
�

2
Ce,0 � igCg,1 (1.17)

Ċg,1 =

 

i� � k
2

!

Cg,1 � igCe,n

1Master equation in Linblad form provides the prototype of a Markovian dynamics for an open quantum system.
Its derivation requires the validity of several approximations, the most important one being the so-called Markov
approximation, i.e. that the environmental correlation time is small compared to the open system’s relaxation or
decoherence time. In Chap 4 we describe a form of time local master equation, characterized by a time-depentent
generator, which takes into account for a much larger class of quantum processes.
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Figure 1.4: (a) Atomic probability evolution at resonance for three di↵erent values of the cavity
damping rate k. All the curves are calculated with the same spontaneous emission rate
� = 0.05g, by analytically solving (1.17). Weak coupling with enhanced emission rate
(k/g = 10, black solid line); weak coupling and very fast cavity with ’vacuum’ de-
cay at rate � (k/g = 100, blue dashed line); Strong coupling with damped oscillations
(k/g = 0.1, red line). (b) Simulation for the cavity transmission in a laser-driven cavity
experiment, showing the normal mode splitting (from [138]). The transmission is plot-
ted as a function of the cavity-laser detuning �L = !c � !L and the atom is assumed
to be resonant with the cavity. The average photon number is hni = 1 and the param-
eters are g, �, k = 2⇡ ⇥ (4.5, 3, 1.25)MHz. The dashed line represents the empty cavity
spectrum.

which admit general solutions for Ce,0(t) and arbitrary g, �, k of the form:

Ce,0(t) = C+e↵+t +C�e↵�t (1.18)

where the coe�cients C+,C� can be derived from the initial conditions |Ce,0| = 1, Cg,1 = 0 and
the exponents are:

↵± =
1
4

(� + k � 2i�) ± 1
2

"

1
4

(� + k � 2i�)2 � 4g2
#1/2

(1.19)

1.1.2.1 Intermediate and strong coupling regime

The exponents in (1.19) are in general complex. For � = 0 it can be seen that they have
nonvanishing imaginary parts if � + k > 4g and the evolution of |Ce,0(t)|2 will show damped
oscillations. We refer to this regime as intermediate coupling. As already seen, the strong
coupling regime is reached when ⇠ � 1 or g2 � k�. In this case we can approximate the
solutions (1.19) as:
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↵± t
1
4

(� + k � 2i�) ± ig (1.20)

This leads to a damped oscillation of |Ce,0(t)|2 at frequency 2g for � = 0 and with damping
constant (� + k)/4, as illustrated in Fig (1.4a). Physically this means that the coupling constant
between the atom and the cavity mode is so strong that a photon emitted into the cavity is likely
to be reabsorbed before leaving out of the cavity.
The damped atom-cavity system gives a finite width to the JC doublet resonances. This can
be seen by calculating the eigenvalues of Ĥe f f in (1.15). In the presence of damping and at
resonance, the two JC eigenvalues in (1.6) are modified as follows [99]:

E±n = ~!c

 

n +
1
2

!

� i
~

4
⇥

k(2n � 1) + �
⇤ ± ~

4

p

16ng2 � (� � k)2 (1.21)

These eigenvalues have a Rabi splitting E+n � E�n which di↵ers from the loseless case. The
normal mode splitting at resonance is shown in Fig (1.4b) for a simulation of a driven-cavity
experiment. This Rabi splitting can only be resolved if the square root in (1.21) is real and if it
is larger than the imaginary part, i.e. g2 � k�. This justifies the definition of strong coupling
regime given above, which can be also seen as the regime in which the spectrum consists of a
doublet of well-separated Lorentzian lines of equal widths (k+�)/4 and energy splitting almost
equal to 2g

p
n.

It is possible to test experimentally the Vacuum Rabi splitting, i.e. the normal mode splitting for
n = 0, by probing the cavity with a laser while monitoring the transmission. For coherent and
su�ciently weak pumping, the atom-cavity spectrum for � = 0 can be obtained as the cavity
transmission as a function of the laser-cavity detuning �L. The transmission can be analytically
calculated by adding a driving term in the Hamiltonian (1.15), proportional to i(â � â†), and
calculating hni in the steady-state regime. The evolution must be restricted to the subspace
spanned by {|e, 0i, |g, 1i, |g, 0i} and the cavity transmission, plotted in Fig (1.4b), is found to be
proportional to |Cg,0(�L)|2.

1.1.2.2 Weak coupling regime

In the weak coupling regime, caracterized by g ⌧ k, �, the dynamics of the emitter is basically
incoherent and dominated by the damping rates. Formally integrating (1.17) yields:

Cg,1(t) = �ig
Z t

0
dt0Ce,0(t0)e(i��k/2)(t�t0) (1.22)

In many experimental cases of weak coupling regime the system can be either a closed cavity
with � = 0 and g ⌧ k, or an open cavity which works in the so called fast cavity regime in
which � < g ⌧ k. In both cases the photon leaks out of the cavity (at rate k) immediately after
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being emitted so that the population of |g, 1i can be neglected [83] and we can assume Ċg,1 t 0
in (1.17) 2, thus:

Cg,1(t) =
ig

i� � k/2
Ce,0(t) (1.23)

This corresponds to evaluate Ce,0 at t0 = t and remove it from the integral in (1.22). The
strongly damped cavity field a↵ects the evolution of the atomic state which can be obtained by
substituting the above value into (1.17):

Ċe,1(t) = �
"

�

2
+

g2(k/2 + i�)
�2 + k2/4

#

Ce,0(t) (1.24)

and the evolution of the atomic excitation probability is:

Pe,0(t) = |Ce,0(t)|2 = e��ct with �c = � +
2g2

k
1

1 + 2(2�/k)2 (1.25)

We retrive an exponential decay for the atomic upper state with rate modified by its coupling to
the overdamped cavity mode. Moreover, for � , 0, the Lamb-shift term proportional to i� in
(1.24) describes an energy shift of the atomic transition due to the detuned interaction with the
cavity mode. The fundamental result represented by (1.25) is that the QED cavities can be used
to enhance or reduce the spontaneous emission rate. At resonance we always obtain an increase
in the decay rate, the well-known Purcell e↵ect. The enhanced rate in (1.25) can be put into the
form:

�c = � (1 + 4⇠) (1.26)

where ⇠ is the Cooperativity factor introduced in (1.13) to describe the open atom-cavity system.
For a closed cavity (� = 0) at resonance, we define the Purcell factor to compare �c in (1.25)
with the vacuum emission rate3 �0 =

d2
a!

3
a

3⇡✏0c3 , using the Quality factor Q = !c/k. This reads:

�c

�0
=

3Q�3

4⇡2V
(1.27)

with � = 2⇡c/!c. In order to obtain a large Purcell factor we should work with high-Q cavity
with small mode volume and the spectral width of the emitter should be smaller than the cavity
width.
For a closed cavity far-detuned from the atomic resonance, � � k, the atomic decay rate is

2This is a good approximation if � and g are small compared to |�| + |k|/2
3We will calculate this rate by means of the Green’s function approach in the next chapter.
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strongly suppressed. This e↵ect has been seen in microwave experiments where the cavity size
is of the order of the wavelength L t �. The decay-rate ratio in this regime is:

�c

�0
=

3�3

16⇡2QV
(1.28)

so the decay rate is suppressed by the cavity quality factor.

1.2 CQED practical implementations

Modern CQED setups result from more than fifty years of incremental improvements in cavity
design and atom manipulations, which have largely benefited from the technological develop-
ment of lasers, quantum optics and solid state devices. The first discussion of a CQED concept
is found in the short note by Purcell [92], in which he predicted that the spontaneous emission
rate of a spin in a magnetic resonance setup, exceedingly low in free space, should be con-
siderably enhanced in a resonant structure, such as a resonant R-L-C circuit used to filter the
free-induction decay NMR signals. This argument was applied to a spin in an NMR context,
but the same e↵ect is expected for an atom in an optical cavity and it applies only as long as
the damped cavity mode can be considered as a continuum. This is the case of CQED in the
weak-coupling regime in which, as described above, spontaneous emission can be enhanced by
imposing boundary conditions to the field radiated by the atom, indeed the Q-factor reaches
high values in small-volume, high-quality cavities.
The first CQED experiments, strictly speaking, date back to the early-mid 1980s, thanks to
progress in laser and microwave technology. These experiments were carried out with Ryd-
berg atoms in the microwave regime, chiefly because it is much easier to achieve a small mode
volume, comparable to the wavelength, when the latter is measured in centimetres rather than
micrometres. In early microwave experiments atoms were detected and used to reveal the evo-
lution of the field in the cavity. Thus Haroche [93] was the first to observe Purcell enhancement
in 1983, using a beam of low-lying Na Rydberg atoms (23S ! 22P transition at 340 GHz) and
a niobium superconducting cavity. The atoms were prepared in the 23S state prior to entering
the cavity; if the latter is o↵-resonant, only 23S atoms were detected after the transit. When
the cavity was tuned in resonance, 22P atoms were detected, showing that the radiative decay
23S ! 22P has been enhanced by the cavity. Shortly after, several other experiments using
beams of atoms in microwave CQED setups were conducted by other researchers to demon-
strate both enhancement and inhibition of spontaneous emission [95]. In 1987 G. Rempe, H.
Walther, and N. Klein demonstrated experimentally for the first time the quantum collapse and
revival predicted by the Jaynes-Cummings model by using a one-atom maser with Rb Rydberg
atoms [97]. At that time optical CQED started to progress in parallel with microwave exper-
iments and, here too, the challenge was the realization of a small-volume high-Q cavity. The
breakthrough came with the development of extremely high-finesse multi-dielectric mirrors,
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mounted in a Fabry-Perot configuration with typical cavity length of t 100µm and mirror di-
ameter in the millimetre range [81]. The photon storage time reached the microsecond range.
In these experiments it is the field leaking from the cavity which provides information about the
atomic behaviour. Suppression of spontaneous emission in the near-infrared was demonstrated
by Haroche in 1987 [100] on the caesium 5D5/2 ! 6P3/2 line at 3.49µm in a planar geome-
try. The first manifestation of the strong coupling regime dates back to 1992 when Thompson,
Kimble et al. [101] observed the ’vacuum Rabi splitting’ using the caesium D2 line at 852
nm and an high-finesse optical resonator. Experiments with atoms trapped and cooled inside
small optical cavities by way of a far-o↵ resonance dipole-force trap (FORT) were carried out
for the first time in the early 2000’s. In [105] trapped caesium atoms were observed continu-
ously via transmission of a strongly coupled probe beam, with individual events lasting t 1s.
At the same time, improvements in trapping techniques made it possible to load atoms deter-
ministically into the cavity, for example with a standing-wave conveyor belt [109]. The latest
development of CQED experiments is that of coherent control. Strong coupling can be used
to manipulate entanglement, and this has given rise to a number of applications in quantum in-
formation. In a recent experiment Rempe employed a scheme that entangles a stationary atom
inside a high-finesse optical cavity with a flying photon. This then carries the entanglement to
a remote location where the photonic state can be mapped onto another atomic system, thus
entangling the atomic emitter with the atomic receiver [98]. The Haroche’s group carried out
other experiments in the same direction. For example they have implemented a nondestructive
counting of photons, the recording of field quantum jumps, the preparation and reconstruction
of ’Schrödinger cat’ states of radiation and the study of their decoherence, which provides a
striking illustration of the transition from the quantum to the classical world [91]. These ex-
periments have also led to the demonstration of basic steps in quantum information processing,
including the deterministic entanglement of atoms and the realization of quantum gates using
atoms and photons as quantum bits.
Here we present a brief, non-exhaustive, review of what are the best experimental CQED can-
didates to implement, given the current level of technology, atom-field coupling applications,
focusing in particular on systems with ’fixed’ atom-like TLS able to work in the strong-coupling
regime.
As mentioned above, the early CQED experiments has been performed with Fabry-Perot cavi-
ties formed by rather massive mirrors. Several new structures with small-volume micro-cavities
have emerged in recent years. These are routinely produced in large arrays and by construction
can allow for e�cient photon tunnelling between neighbouring cavities. In addition, the strong-
coupling regime with cooperativity factors much larger than unity has been achieved in several
of these devices.
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1.2.1 Fabry-Perot and fiber based cavities

The optical Fabry-Perot cavity consisting of two separated parallel mirrors is the most conven-
tional cavity system. In such a cavity, a standing-wave electromagnetic field can exist for a
long time and interact with an atom (or spin) trapped inside the resonator. With an appropriate
design, a Fabry-Perot cavity can achieve high quality factors Q ⇠ 3 ⇥ 108 [107]. However,
traditional bulk-optics based cavities were limited by a relatively large mode volume and very
limited prospect for scalability. Since the mid-2000 arrays of spherical micromirrors etched
on a silicon substrate and coated with a high-reflectivity multilayer dielectric mirror have been
developed [110]. A cavity is formed between this mirror and another planar mirror glued on
the tip of an optical fibre. The spherical mirrors have a typical radius of curvature in the range
⇠ 100�300µm, which allows the cavity mode to be perfectly matched to the fibre. Such a cavity
has a mode volume at least an order of magnitude smaller than bulk optics designs. Working
with cold Rb atoms from a magneto-optical trap (MOT) dropped in free fall, these cavities are
been used as a fast, e�cient single-atom detector [111] and as a single photon source [112].
Here an pump laser passing transversely through the cavity is used to trigger photon emission
into the cavity mode and hence into the single-mode fiber.
Large regular arrays of spherical mirrors can be created with controllable sizes and spacings
and they may contain several hundred mirrors. Their extremely small mode volume leads to a
large single-photon Rabi frequency, and light is conveniently coupled into and out of the cav-
ities via the fibres themselves. With these cavities Purcell factor or cooperativity of ⇠ 40 has
been achieved.
Fibres can also be integrated in large, commercially available arrays, or into a waveguide chip;
thus it should be possible to operate a large number of cavities simultaneously.

1.2.2 Microsphere and microtoroidal cavities

Another class of micro-cavities that are routinely produced in large arrays and which have
very high Q-factors are silicon structures of either a spherical [113], or a toroidal shape [114].
These cavities, with very small mode-volume, are closed silicon sphere or toroids fabricated by
melting the tip of an optical fibre and typically they are carried by a thin pillar in their centre.
Light can be trapped in the so called whispering gallery modes (WGMs)4 if the refractive index
of the material of the sphere is larger than the one surrounding it. Successive total internal
reflections o↵ the concave inner surface confine the light into a thin ring close to the equator.
These high-Q ring modes have been observed and studied extensively in droplets [115]. It

4WGMs had first been observed in the gallery of the cupola of St. Paul’s Cathedral in London. A whisper
spoken close to the wall can be heard all the way along the gallery, some 42 m to the other side. Lord Rayleigh
was the first to identify the refocusing e↵ect of the curved surface as the sound travels along the gallery. He
also conjectured the existence of the thus called whispering gallery modes. He suggested that such modes of the
electromagnetic field could find some applications due to the extreme confinement of the field.
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was soon recognised that the field enhancement caused by the strong confinement of the light
in these modes combined with their high quality factors could lead to strong CQED e↵ects.
Their Q-factor can be as high as 108 with photon storage times of the order of one microsecond
[116]. Clearly such a system is ideally suited for the observation of nonlinear optical e↵ects
and CQED experiments. Very e�cient and highly tunable coupling of photons into and from
those cavities is possible via tapered optical fibres that are placed close to their surface [117].
Here, the evanescent field of both cavity and fibre overlap and photons can hop between them.
The photon hopping rate can thereby be controlled very accurately via the separation between
cavity and fibre. Quantum dots can be deposited on the surface and coupled to the evanescent
field, or a cold atomic ensemble can be brought in close proximity; the relatively large distance
between cavities allows individual addressing of the emitters. These cavities can interact with
atoms or quantum dots in a strong-coupling regime with cooperativity factors ⇠ 50 [108] if the
atoms are placed close to the cavity surface and interact with the evanescent field.

1.2.3 Photonic band-gap cavities and quantum dots

Photonic crystals (PC) are materials patterned with a periodicity in dielectric constant, which
can create a range of ’forbidden’ frequencies called photonic band-gap. Photons with energies
lying in the band-gap cannot propagate through the medium. PCs can be fabricated for one, two,
or three dimensions. One-dimensional PCs can be made of layers deposited or stuck together.
Two-dimensional ones can be made by photolithography, or by drilling holes in a suitable sub-
strate.
Similarly to the wavefunction of an electron inside a periodic potential imposed by the crys-
tal lattice, it can be shown that electromagnetic field inside such a periodic dielectric medium
can be expressed in terms of the electromagnetic eigenmodes which satisfy the Bloch theorem,
and are therefore referred to as Bloch modes. The allowed electromagnetic modes in such a
medium can be obtained as the solutions of the Maxwell’s equation (or wave equation) for the
electric field with a periodic dielectric constant. Therefore, given the frequency !, we can solve
the wave equation in such a periodic medium to find the wavevector k and the allowed Bloch
modes of the system at that frequency5. The dispersion relation !(k) is also called photonic
band diagram. If there is a whole band of frequencies in which the wave equation inside such
a periodic crystal has no solutions for any real k, such a band of frequencies is called photonic
band-gap. Bloch modes in this range of frequencies do not exist, implying that the electromag-
netic waves with frequencies within the photonic band gap cannot propagate through the PC.
In other words, the PC behaves as a mirror for electromagnetic waves with frequencies inside
the photonic band gap. Such reflection could also be viewed as the distributed Bragg reflec-
tion of the electromagnetic wave from the interfaces between regions with di↵erent dielectric
constants. In 1D and 2D structures photonic band gap occurs only for waves propagating in a

5We carry out a similar calculation in Sec. 3.1 to obtain the dispersion relation and the photon-hopping rate for
a system of coupled cavities which can be realized within a PC structure.
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Figure 1.5: Photonic high-Q nanocavities using a 2D photonic-crystal slab. (a) Schematic of the
basic cavity structure having a triangular lattice of air rods with lattice constant a (⇠
0.42µm). The thickness T of the slab and the radius R of the air rods are 0.6a and 0.29a,
respectively. (b) Starting cavity structure with three missing air rods in a line.
(c) Designed cavity structure created by displacing the air rods at both edges to obtain
an ultrahigh Q/V value. From [120].

certain direction or set of directions in which the periodicity of the dielectric constant occurs.
3D PCs, however, can lead to a complete photonic band-gap, meaning that in a certain fre-
quency region the wave propagation is prohibited through the crystal in any direction in space
and for any polarization. In 2D structures, holes may be drilled in a substrate that is transparent
to the wavelength of radiation that the ban-dgap is designed to block [118]. Triangular and
square lattices of holes have been successfully employed. The first 3D structure dates back to
1991 when Yablonvitch [119] was able to produce a microwave PC by drilling an array of holes
in a transparent material, where the holes of each layer form an inverse diamond structure.
In their most common form, PCs are thin slabs (⇠ 100nm) of high-index dielectric patterned
with a regular array of holes. A missing row of holes defines a waveguide and a few missing
holes a cavity. A nanocavity can be created in a photonic band gap material by producing a
localized defect in the structure of the crystal, in such a way that light of a particular frequency
cannot propagate outside the defect area. For example, a defect-microcavity in an hexagonal
2D PC lattice of air holes is formed by changing the radius or the position of a single hole, or
by changing its refractive index. In Fig (1.5) is sketched the scheme for a nanocavity realized
using a 2D silicon based PC slab with Q = 4.5⇥ 104 and volume V = 7⇥ 10�14cm3 [120]. Here
the photonic band-gap e↵ect is used for light confinement in the in x � y plane direction and
total internal reflection (TIR), at the interface between the slab and the air clad, in the vertical z
direction. The basic structure is composed of Si with a triangular lattice of air ’rods’ with lattice
constant a = 0.42µm. The initial structure of the cavity is made with three missing air rods in
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a line and, with this structure, light can be confined by Bragg reflection for the in-plane direc-
tions. If the air rods at both edges of the cavity are shifted, the Q/V ratio is significant increased
[Fig (1.5c)]. In this way, localized modes with frequencies within the photonic band-gap are
producted and these have to be evanescent inside the photonic crystal, i.e. they have to decay
exponentially away from the defect [see Fig (1.6b)]. In other words, the defect behaves as an
optical cavity, and the surrounding PC represents mirrors surrounding the cavity. Large arrays
of such nanocavities have been produced [122] and photon hopping between neighbouring cav-
ities has been observed in the microwave and optical domains [121].
Quantum dots (QD) are small nanostructures where electrons are trapped in a potential-well and
have discrete energy levels. These structures are made usually by sandwiching a tiny chunk of
one type of semiconductor with a smaller band gap inside another semiconductor with a larger
band gap, thereby producing potential barrier for electrons and holes in three dimensions. For
example, InAs QD embedded inside GaAs are formed by self-assembly during a growth process
called molecular beam epitaxy (MBE), as a result of lattice mismatch between InAs and GaAs
[123]. This process of self-assembly of QD is known as Stransky-Krastanov growth. Since QD
islands are formed by self-assembly, their locations are random, and there is a distribution of
sizes and shapes, leading to fluctuations in the energies of transitions of di↵erent QD on the
same wafer (inhomogeneous broadening). QDs exhibit discrete atomic like spectra and for this
reason they are often referred to as artificial atoms. The discrete lines in their spectrum are
produced by recombination of carriers (electrons and holes) occupying discrete energy levels in
the conduction and valence bands.
QDs can be created inside PC nanocavities [124] and made to interact with the cavity mode
to form a standard cavity QED system. The strong-coupling regime with cooperativity factors
up to 70 has already been achieved in such systems. Due to the extremely small volume of
the nanocavity, the Vacuum Rabi frequency can be extremely large, while spontaneous emis-
sion rates are very low. Fig (1.6a) shows a QD in a photonic band gap cavity [125] realized
by means of MBE. Here the semiconductor heterostructure used for subsequent PC fabrication
was grown on a semi-insulating GaAs substrate. The epitaxial structure consists of a 126nm
GaAs slab incorporating a QD of InAs located precisely at the cavity electric field maximum.
When tuned into resonance, the exciton and photon enter the strong-coupling regime of CQED
(with cooperativty ⇠ 10) and the photon stream from the cavity becomes antibunched. Other
examples of CQED strong coupling regime in a similar structure can be found in [126, 127].
For all coupled cavity applications we will discuss later, current decay rates of PCs cavities
remain a limiting factor. This is mainly due to the fact that most structures employ two-
dimensional PC, as placing a QD into a three-dimensional structure is di�cult. The di�culties
to control the properties of individual quantum dots and to place them at desired locations could
even pose a more significant problem.
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Figure 1.6: A quantum dot in a photonic band gap cavity. (a) AFM topography of a GaAs photonic
crystal nanocavity aligned to a hill of material on the surface arising from a quantum
dot buried 63 nm below. (b) Electric field intensity of the photonic crystal cavity mode
showing that the location of the buried QD, indicated by the teal dot, overlaps the field
maximum. From [125]

1.2.4 Superconducting stripline resonators and Superconducting qubits

Superconducting qubits are solid-state artificial atoms which are based on lithographically de-
fined Josephson tunnel junctions. When su�ciently cooled, these superconducting devices ex-
hibit quantized states of charge, flux or junction phase depending on their design parameters.
This allows to observe coherent evolutions of their states. Experimentally, these circuits are fab-
ricated on a micrometer scale and operated at mK temperatures. Thanks to their relatively large
size they are easy to manipulate and control experimentally. Compared to normal harmonic os-
cillators formed by LC circuits, in SC qubits the energy-level separation becomes nonuniform
by introducing a nonlinearity via Josephson junctions. This property allows one to encode a
qubit in the lowest two levels of a SC circuit [128], so they o↵er the possibility to realize an
e↵ective two-level system.
The Cooper pair box (CPB) was among the first superconducting devices to demonstrate prop-
erties of quantum coherence, including evidence for quantum superposition of charge states and
it was the first used to demonstrate coherent control of the quantum states of a qubit in a solid-
state electronic device [129]. This device is composed of a tiny superconducting island coupled
by a Josephson junction to a superconducting reservoir. The state of the qubit is determined by
the number of Cooper pairs which occupy the box.
SC circuits have two important parameters: the Josephson coupling energy EJ and the elec-
trostatic Coulomb energy EC. According to their topology and physical parameters, SC qubits
can be divided into three kinds: charge qubits (using a CPB based scheme, with EJ/EC < 1),
flux qubits (using the circulating supercurrent states in a loop and EJ/EC > 1) and phase qubits
(using the oscillatory states of the circuit and EJ/EC > 1). These solid-state qubits can be
controlled by the applied bias current, gate voltage, and microwave fields. Other two kinds of
charge qubits are the Quantronium and the Transmon. These two circuits are modications of the
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Figure 1.7: Schematic illustration of a typical coplanar waveguide (CPW) resonator used in circuit
QED together with its discretized lumped-element equivalent circuit. The qubit lies
between the center pin and the adjacent ground plane and is located at an antinode of
the electric field, shown in this case for the full-wave resonance of the CPW. From [132]

CPB which improve dramatically the dephasing times of the original circuit [128]. The reason
is that Quantronium and Transmon are more robust with respect to the charge noise, which is
the biggest problem with this kind of circuits.
The energy eigenstates of a charge qubit based on a dc-SQUID setup can be defined by |ei =
cos(✓/2)|0i � sin(✓/2)|1i and |gi = sin(✓/2)|0i + cos(✓/2)|1i, with the transition frequency
⌦ =

p

B2
z + B2

x for ✓ = arctan(Bx/Bz). The eigenstates |0i and |1i represent the excess Cooper
pairs on the superconducting island. The parameter Bz = 4EC(2ng � 1), with the charging en-
ergy EC = e2/2(Cg + 2CJ) and ng = CgVg/(2e), can be controlled by the voltage Vg applied to
the gate capacitance Cg for a given capacitance CJ of the Josephson junction. The parameter
Bx = 2EJ cos(⇡�x/�0), with the Josephson energy EJ, can be changed by an external magnetic
flux through the SQUID loop [17, 130].
A superconducting stripline resonator, on the other hand, is a quasi-one-dimensional coplanar
waveguide resonator (CPW), formed on a chip with a resonance frequency in the microwave
range. CPW consists of a superconducting wire evaporated on an insulating substrate and has
superconducting ground planes adjacent to it on the same surface [131], as shown in Fig (1.7).
Such a system exhibits many standing wave resonances and each resonance is an independent
harmonic oscillator equivalent to a simple LC oscillator. The discretized equivalent circuit for
the CPW resonator is also shown in Fig (1.7), where two gap capacitors C0 at each end play the
role of the mirrors in a conventional optical cavity and the distance between these capacitors
defines the characteristic frequencies of the normal modes. These capacitors couples the res-
onator to external transmission lines and if one assume open-circuit boundary conditions, the
current (but not the voltage) vanishes at the ends of the resonator.
A high-quality microwave resonator can be coupled to SC qubits, which can be used to realize

cavity-QED where the SC qubit is regarded as an artificial atom [133, 134]. Fig (1.7) shows
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also an SC qubit lying between the center pin and the adjacent ground plane and is located at
an antinode of the electric field. In general, the entire setup should be on the millimeter scale in
order to fit the microwave frequency of the SC qubit, and it can be built by etching techniques.
Recent experiments have shown that gigahertz photons can make up to a million bounces before
being lost in a high-quality CPW resonator at low temperatures. An SC qubit can have a large
e↵ective transition dipole moment, e.g. the e↵ective electric dipole moment of a charge qubit is
104 times larger than that of an alkali atom. Moreover, in a CPW resonator, the microwave field
is confined to a much smaller volume than in a conventional 3D optical or microwave cavity.
This can make the field strength in the quasi-1D cavity much larger (about 100 times or more)
than in a 3D cavity and it may be obtained very high Q-factor (> 108) and cooperativity (> 104).
However, SC qubits are sensitive to environmental noise from extrinsic and intrinsic decoher-
ing elements, which leads to short coherence times. For charge qubits, the dominant source of
noise is due to charge fluctuations, such as trapped charges in the substrate and oxide layers of
Josephson junctions. For flux and phase qubits, the noise from flux fluctuations dominates the
decoherence.
A SC circuit involving a CPW resonator and a charge qubit was experimentally demonstrated
by Wallra↵ et al. [135], where a strong electric coupling between a single photon and a charge
qubit was achieved. In this setup, a charge qubit with two identical Josephson junctions is in-
tegrated into the ground planes of the transmission line at or near the antinode of the standing
wave of the voltage on the SC wire for maximum coupling. They experimentally observed the
coherent interaction of a superconducting two-level system with a single microwave photon in
the strong coupling regime.
Flux qubits can also couple to CPW resonators via the induced magnetic field. A flux qubit
placed at or near an antinode of the standing wave of the current on the SC wire can strongly
couple to the SC resonator via the mutual inductance. In such a SC circuit, the vacuum Rabi
splitting in the transmission spectrum was observed, which means that strong coupling was
achieved. In [136] and [137], the inductive coupling between the flux qubit and the resonator
was be enhanced and the system was bring to the ultrastrong-coupling regime.
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Chapter 2

The Green’s function approach

A Cavity represents a particular environment for the atom confined in it. Di↵erent methods
can be applied to the study of the time evolution of a TLS initially prepared in the upper state
and coupled with a radiation reservoir of arbitrary mode structure. The most general approach,
already seen in the previous chapter, is the master equation. In the particular case of an atom
decaying in free space the other most well-known methods are the Wigner-Weisskopf theory
and Fermi’s Golden Rule approach.
Here we summarize the resolvent operator or Green’s function [30, 89, 90], a method that has
proven to play a large role in many body theory, perturbation theory, and even in the develop-
ment of modern quantum mechanics. This is a very convenient tool for the study of the dynam-
ics for problems with a well defined initial state and a total time-independent Hamiltonian. The
method is nonperturbative and lends itself to a systematic development of perturbation theory.
Its description and some simple application discussed below will be a starting point to analyze,
in the next chapter, the problem of a TLS decaying in a finite-band reservoir of modes, in par-
ticular the specific case of an environment consisting of an array of coupled cavities described
by a tight binding Hamiltonian. The Green’s function provides a full description of the system’s
spectrum and, at the same time, allows to obtain the time evolution of all probability amplitudes.
Moreover, it allows to easily solve many problems, such as in Scattering Theory, for which the
Hamiltonian consists of an unperturbed term, whose properties are assumed known, which adds
a second term that represents a perturbation or, as we will see below, a defect.
The first section begin with deriving and stating some useful properties of time-independent
Green’s functions. In the second section, after introducing the main features of the correspond-
ing time-dependent operator, we present the power of the method analyzing the dynamics for a
TLS placed in a generic reservoir of modes. The Green’s function approach is well suited to the
study of the single excitation decay and allows also a direct analysis of the Markovianity of the
process. Moreover, we apply the resolvent operator method to the particular cases of an atom
decaying into the free space and into a QED cavity environment, analyzing, in the latter case,
the di↵erent cavity regimes already seen. In the last section the method is applied to the study
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of specific tight-binding Hamiltonians, a good starting point to introduce the problem of a TLS
interacting with a coupled cavity array. We provide at the end the mathematical tools needed to
analyze, in the next chapter, the photon localization and the scattering problem for this system.

2.1 Fundamental properties of the time-independent Green’s
function

A Green’s function is the solution of an inhomogeneous di↵erential equation of the form:

[z � Ĥ(r)]G(r, r0; z) = �(r � r0) (2.1)

in which z is a complex parameter. In our paricular case, we now consider the time-independent
Schrödinger equation with Hamiltonian Ĥ(r) expressed in the r-representation. The two-value
Green’s function G(r, r0; E) satisfies the same boundary conditions1 as the wavefunction  (r),
solution of the Schrödinger equation [E � Ĥ(r)] (r) = 0. Indicating with �n(r) the eigenstates
of Ĥ in the r-representation and with En the corresponding eigenvalues, the Green’s function
can be expressed as:

G(r, r0; z) =
X

n

�n(r)�n(r0)
z � En

(2.2)

We can define a general Green operator Ĝ(z) such that the above Green’s function reads G(r, r0; z) =
hr|Ĝ(z)|r0i, thus the Green’s operator associated with the Hamiltonian Ĥ is:

Ĝ(z) =
X

n

|�nih�n|
z � En

=
1

z � Ĥ
(2.3)

In general the spectrum of Ĥ contains both discrete and a continous eigenvalues. For the systems
which we will discuss in this chapter and in the next, the continous spectrum is always associ-
ated with unbound eigenstates. Since all eigenvalues of the Hermitian operator Ĥ are real, the
associated Green’s operator defined above is an analytic function on the complex z-plane ex-
cept at those points or portions of the real z-axis that correspond to the spectrum. Separating the
Green’s function in a discrete and continous-spectrum component, we can rewrite the definition
(2.3) as:

Ĝ(z) =
X

n

|�nih�n|
z � En

+

Z

dc
|�cih�c|
z � Ec

(2.4)

1i.e. continuity of  and r and finite or zero value at infinity.
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in which we indicate with |�ni the eigenstates associated with the discrete eigenvalues En and
with |�ci the ones associated with the continuous band of the spectrum, labeled by the index
c. From the last equation it can be seen that Ĝ(z) exhibits simple poles at the position of the
discrete eigenvalues (the inverse is also true) and, for z belonging to the continuous spectrum, it
usually exists but it is not uniquely defined because one can add to any particular Ĝ the general
solution of the homogeneous equation corresponding to (2.1). In this case it is convenient to
define two Green’s functions as the two side limits of G(r, r0; z = Ec), i.e.:

G±(r, r0; z) = lim
s!0+

G(r, r0; z ± is) (2.5)

These limits exist but are di↵erent from each other, thus the continuous spectrum produces a
branch cut in Ĝ(z) along parts of the real z-axis. The operator Ĝ+(E) is also known as resolvent
operator. Using the identity:

lim
⌘!0+

1
x ± i⌘

= P
 

1
x

!

⌥ i⇡�(x) (2.6)

with P denoting the principal value of the integral and (2.4), we can express the discontinuity
G̃(r, r0; z) = G+(r, r0; z) �G�(r, r0; z) as:

G̃(r, r0; E) = �2⇡i

2

6

6

6

6

6

4

X

n

�(E � En)�n(r)�⇤n(r0) +
Z

dc�(E � Ec)�c(r)�⇤c(r0)
3

7

7

7

7

7

5

(2.7)

The knowledge of the Green’s function G(r, r0; z) allows us to obtain immediately the solution
of the general inhomogeneous equation:

[z � Ĥ(r)]u(r) = f (r) (2.8)

where f (r) is a given function and the unknown function u(r) satisfies the same boundary con-
ditions as G(r, r0; z). By taking into account (2.1), we obtain the following solution2 of (2.8):

u(r) =

8

>

>

<

>

>

:

R

G(r, r0; z) f (r0)dr0, z , {En},
R

G±(r, r0; z) f (r0)dr0 + �(r), z = Ec.
(2.9)

where {En} represents the set of all discrete eigenvalues, Ec belongs to the continuous spectrum
of Ĥ and �(r) is the general solution of the corresponding homogeneous equation. If z coincides
with a discrete eigenvalue of Ĥ there is no solution of (2.8), unless f(r) is orthogonal to all

2If u(r) describes physically the response of a system to a source f (r), then G(r, r0; z) describes the response
of the same system to a unit point source located at r0. The physical meaning of the first equation in (2.9) is that
the response to the general source f (r) can be expressed as the sum of the responses to point sources distributed
according to f (r).



26 CHAPTER 2. THE GREEN’S FUNCTION APPROACH

eigenfunctions associated with that eigenvalue.
Below we will use the following fundamental properties of the Green’s function:

(i) The poles of Ĝ(z) coincide with the discrete eigenenergies corresponding to Ĥ and vice
versa;

(ii) The residue at each pole En of G(r,r’;z) is equal to
P✓n

i=1 �i(r)�i(r0), where the summation
runs over the ✓n degenerate eigenstates corresponding to the discrete eigenenergy En;

(iii) The branch cut of Ĝ(z) along the real z-axis coincide with the continuous spectrum of Ĥ
and vice versa.

In particular the property (ii) can be used to get the generic expression for the projector
over the eigenstate |�ni. If the associated eigenenergy En is non-degenerate, the projector is:

|�nih�n| = lim
z!En

(z � En)Ĝ(z) (2.10)

In many cases, as well as in all systems of our interest, the Hamiltonian Ĥ can be separated
into an unperturbed part Ĥ0 and a perturbation term, i.e. Ĥ = Ĥ0 + Ĥ1. All eigenenergies and
eigenfunctions of Ĥ0 are assumed to be known. The Green’s function associated with Ĥ can
be solved by calculating the Green’s operator Ĝ0(z) corresponding to Ĥ0 and expressing Ĝ(z) in
terms of Ĝ0(z) and Ĥ1. From the Green’s operator Ĝ(z), associated with the total Hamiltonian,
we can extract the informations about the eigenvalues and eigenfunctions of Ĥ. Using the
definitions Ĝ0(z) = (z � Ĥ0)�1 and Ĝ(z) = (z � Ĥ0 � Ĥ1)�1, it is straightforward to rewrite Ĝ(z)
in the following form:

Ĝ(z) =
Ĝ0(z)

1 � Ĝ0(z)Ĥ1
(2.11)

Expanding the operator (1 � Ĝ0Ĥ1)�1 in power series it is possible to relate Ĝ(z) to Ĝ0(z) and
Ĥ1 as follows:

Ĝ(z) = Ĝ0(z) + Ĝ0(z)Ĥ1Ĝ0(z) + Ĝ0(z)Ĥ1Ĝ0(z)Ĥ1Ĝ0(z) + . . . , (2.12)
= Ĝ0(z) + Ĝ0(z)Ĥ1Ĝ(z) , (2.13)

The above equation is an inhomogeneous integral equation for Ĝ(z). This expansion allows to
obtain the eigenstates associated with the continuous spectrum of Ĥ in a very simple way. The
time-independent Schrödinger equation for a system with Hamiltonian Ĥ = Ĥ0 + Ĥ1 can be
written as:
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(E � Ĥ0)| i = Ĥ1| i (2.14)

in which we suppose that the energy E belongs to the continuous spectrum of both3 Ĥ and
Ĥ0. According to (2.9), it is possible to consider (2.14) as an inhomogeneous equation whose
general solution is:

| ±i = |�i + Ĝ±0 Ĥ1| ±i (2.15)

where |�i is the general solution of the associated homogeneous of (2.14), i.e. the eigenstate
of the unperturbed Hamiltonian Ĥ0 with energy E. In most physical applications the solution
| �i is discarded on physical ground since it does not correspond to any physically meaningful
situation. In the r-representation (2.15) is an integral equation4 for the unknown | ±i. By
iterating (2.15) we have:

| ±i = |�i + Ĝ±0 Ĥ1|�i + Ĝ±0 Ĥ1Ĝ±0 Ĥ1|�i + . . . (2.16)

Finally, using (2.12), from (2.16) with some algebra it is possible to get the following useful
expression:

| ±i = |�i + Ĝ±Ĥ1|�i (2.17)

2.2 Time-dependent Green’s function: the dynamic of a TLS
in a structured reservoir

In the previous chapter we introduced the problem of a TLS in a generic reservoir of modes in
order to analyze the dynamic of such a system into the environment of a cavity QED. Here we
apply the time-dependent Green’s function approach or resolvent operator method to study the
generic dynamic of a ’TLS + bath’ system, described by the Hamiltonian (1.1). In particular
we treat the specific case of a TLS in free space and also review its evolution inside a cavity.
From now on we will use ~ = 1 units. For problems with a well defined initial state and
total time-independent Hamiltonian, the resolvent operator proves to be a powerful tool for
investigating the dynamics of the system. We can use the Green’s function to calculate the
evolution operator restricted to the TLS dynamic with a given initial condition. If we look at the
spontaneous emission, we consider | (0)i = |ei|0i, i.e. at t = 0 the atom is in its upper state and
there are no photons in the bath. So we start at t = 0 with one excitation and, since the RWA

3In many cases, in all those of our interest, it is possible to choose Ĥ0 and Ĥ1 in such a way that the continuous
spectrum of Ĥ coincides with that of Ĥ0.

4the well-known Lippman�Schwinger equation.
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Hamiltonian (1.1) conserves the total number of quanta, the only other possible states entering
in the dynamic are the |gi|kis, with the atom in its ground state and a photon in the field mode
k. For brevity we indicate the initial state simply with |ei and the field states with |ki. Of course
|gi, |ei and {|ki} are eigenstates of the unperturbed Hamiltonian Ĥr + Ĥa in (1.1) and from the
same equation we have hk|Ĥcoup|ei = gk, i.e. Ĥcoup couples only |ei with the generic field state
|ki, the corresponding matrix element being the coupling constant gk (considered real without
loss of generality). The state of the ’atom + bath’ system at the generic time t is:

| (t)i = Û(t)| (0)i = Û(t)|ei (2.18)

which defines the time evolution operator Û(t) associated with the Hamiltonian (1.1):

Û(t) = e�iĤt (2.19)

The time evolution operator Û(t) can be obtained from the time-independent Green’s operator
Ĝ(z). As in the case of the time-independent Schrödinger equation, the time-dependent problem
can be associated with a corresponding Green’s function di↵erential equation. In this case the
Green’s function associated with a first-order (in time) partial di↵erential equation of the form
i@�/@t � Ĥ(r)� = 0 is defined as solution of the following equation:

"

i
@

@t
� Ĥ(r)

#

G(r, r0, t, t0) = �(r � r0)�(t � t0) (2.20)

Here the time-dependent Green’s function G(r, r0, t, t0) is a function of the di↵erence t � t0 that,
for the sake of simplicity and without loss of generality, we indicate simply as t. Expressing
G(r, r0, t) in terms of its Fourier transform:

G(r, r0, t) =
1

2⇡

Z +1

�1
d!0�(r, r0;!0)e�i!0t (2.21)

and substituting in (2.20) we obtain:

[z � Ĥ(r)]�(r, r0;!) = �(r � r0) (2.22)

that is the same of (2.1). Hence we deduce that �(r, r0;!) = G(r, r0;!), i.e. the Fourier
transform of the time-dependent Green’s function corresponds to the Green’s function of the
associated time-independent problem. But we have seen that G(r, r0,!) may present singular-
ities for real ! (poles and/or branch cuts), thus definition (2.21) must be modified by using a
limiting procedure of the type:

GC(r, r0, t) = lim
C!!R

1
2⇡

Z +1

�1
d!0G(r, r0;!0)e�i!0t (2.23)
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Figure 2.1: Integration paths in the !�plane to get (a) G+(r, r0, t) (red path) and G�(r, r0, t) (blue
path), (b) G̃(r, r0, t) = G+(r, r0, t) �G�(r, r0, t). The paths encircle all singularities of the
integrand, all lying on the real !�axis.

obtaining infinitely many GC(r, r0, t)s depending on how the contour C approaches the real
!�axis !R. Using (2.5) we can define G±(r, r0, t) following the two paths sketched in Fig (2.1a):

G±(r, r0, t) =
1

2⇡

Z +1

�1
d!0G±(r, r0;!0)e�i!0t (2.24)

with G±(r, r0;!) defined in (2.5). These are the only two choices of physical interest. The red
(blue) path for G+(r, r0, t) (for G�(r, r0, t)) approaches !R from the upper half-plane (from the
lower one). For t > 0 (t < 0) we can close the integration path with an infinite semicircle in
the lower (upper) half-plane. Thus it results that G+(r, r0, t < 0) = 0 and G�(r, r0, t > 0) = 0.
We can use the di↵erence G̃(t) = G+(t) � G�(t) to calculate the evolution operator defined in
(2.19). This di↵erence is the time-dependent Green’s function corresponding to the integration
path sketched in Fig (2.1b). Obviously, substituting with t the di↵erence t � t0 in (2.20), we
automatically count the time from the t = 0 instant corrensponding to the initial condition,
compatibly with (2.19). Using (2.7) and (2.24), the time-dependent Green’s function di↵erence
is calculated as follows:

G̃(r, r0, t) =
1

2⇡

Z +1

�1
d!0G̃(r, r0;!0)e�i!0t = (2.25)

= �i
Z +1

�1
d!0

X

n

�(!0 � En)�n(r)�⇤n(r0) = �i
X

n

e�iEnt�n(r)�⇤n(r0)

As in the time-independent case, the time-dependent Green’s function defined above can be
seen as the hr| . . . |r0i matrix element of a given Green’s operator. This turns out to be:
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ˆ̃G(t) = �i
X

n

e�iEnt|�nih|�n| = �ie�iĤt (2.26)

i.e. the time-dependent Green’s operator is proportional to the time-evolution operator
Û(t) = e�iĤt, hence:

Û(t) = iĜ+(t), t > 0 (2.27)

Using |�(t)i = Û(t)|�(0)i, valid only for t > 0, from (2.27) transforming to the r-representation
we obtain the solution of the time-dependent Schrödinger equation in the following form:

�(r, t) = i
Z

dr0G+(r, r0, t)�(r0, 0) (2.28)

that is, the time-dependent Green’s function is a kernel that allows to propagate the state from
t = 0 to the generic time t, hence the name of propagator. In (2.27) we found a very important
result and it will allow us to obtain the evolution of a part of the entire system by Fourier-
transforming a corresponding matrix element of the time-independent Green’s operator. In
(2.25) we took into account only the summation over discrete spectrum present in (2.7), but it
can been shown that (2.27) is a general result, valid for Hamiltonians with continuous and/or
discrete spectrum.
Let us apply the resolvent operator to the dynamics of a TLS interacting with a single-mode
radiation field in the RWA, with total Hamiltonian given in (1.1). As already mentioned, the
’atom+reservoir’ state at time t is | (t)i = Û(t)|ei with the initial condition | (0)i = |ei. We
work in the single-excitation sector of the Hilbert space with basis {|ei, {|ki}} and for the moment
don’t specify the dispersion !k for the field modes and the constants gk. From now on, we set
the zero of the energies on the ground level of the TLS, hence (1.1) is recasted as:

Ĥ = Ĥr + Ĥa + Ĥcoup =
X

k

!kâ†kâk + !a|eihe| +
X

k

gk

⇣

â†k�̂� + âk�̂+
⌘

(2.29)

The time-independent Green’s operator associated to the unperturbed part Ĥ0 = Ĥr + Ĥa of
(2.29) reads:

Ĝ0(z) =
|eihe|

z � !a
+

X

k

|kihk|
z � !k

(2.30)

For the moment we consider discrete the set {|ki}. Using the expansion in (2.12), it is possible
to calculate all matrix elements of the complete Green’s operator Ĝ(z) on the {|ei, {|ki}} basis.
What it has been said so far for the r-representation can be applied to any basis. For example,
hk|Ĝ+(t)|ei describes the propagation of the initial excitation from |ei at t = 0 to |ki at time t or
viceversa. In other words this matrix element represents the probability amplitude of finding at
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time t the excitation as k�mode photon when at t = 0 the state is |ei or viceversa. The atomic
probability amplitude with the same initial condition is calculated as:

ue(t) = ihe|Ĝ+(t)|ei = lim
s!0

i
2⇡

Z +1

�1
dzGee(z + is)e�izt (2.31)

in which we used (2.5), (2.27), (2.24). The time-independent matrix element Gee(z) = he|Ĝ(z)|ei
in (2.31) reads [30]:

Gee(z) =
1

z � !a �
P

k
|gk |2
z�!k

(2.32)

To derive the atomic probability amplitude from (2.31) we need to know the exact expressions
for gk and !k, but from (2.32) we can deduce some general considerations. The function
W(z) =

P

k
|gk |2
z�!k

in the denominator of (2.32) is known as shift-width or self-energy and if the
spectrum of Ĥ is continuous, characterized by the continuous variable k, we have to replace
the summation with an integral. If W(z) is approximately constant for z varying into the range
for which Gee(z) is substantially non-zero, we can replace the shift-width function in (2.32)
with a complex constant W0 and so the resulting expression for Gee(z) has a simple pole at
z = !a + W0. We refer to this as pole approximation and, when it is valid, the real part of W0

represents the vacuum shift of the state |ei, while the imaginary part is the spontaneous decay
width, i.e. the emission rate of the transition |ei ! |gi. By inspecting (2.32), we can see that
the pole approximation holds essentially if two conditions are verified: i) W(z) must be a slowly
varying function of z and ii) |W(z)| ⌧ !a for all z. In this case it is reasonable to approximate
the shift-width function with W0 = W(!a) =

P

k
|gk |2
!a�!k

, since the inversion integrand Gee(z) is
very peaked at z = !a.

2.2.1 Sponaneous emission of a TLS

As already seen in the previous chapter, the most general method to obtain the time evolution of
a small system, as an atom or a two-level system, coupled to many modes of the radiation field
(e.g. a thermal bath of harmonic oscillators) in the dipole and RW approximation is the master
equation. If we indicate with ⇢̂a the reduced density matrix of the atom, the master equation (in
Linblad form) reads:

@⇢̂a

@t
= � i
~

h

Ĥ, ⇢̂a

i

� �
2

⇥

�̂+�̂�⇢̂a + ⇢̂a�̂+�̂� � 2�̂�⇢̂a�̂+
⇤

(2.33)

The second term on the right-hand side describes the spontaneous emission process, in which
the atom loses a photon into the continuum of field modes with rate �. We have neglected the
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stimulated emission and absorption processes, assuming zero thermal occupation of the bath
at the atomic resonance frequency !a (this condition, always verified at T = 0, is realistic at
optical frequencies). The general system evolution is characterized by:

Pe(t) = he|⇢̂a(t)|ei = e��t h�̂�(t)i = he|⇢̂a(t)|gi = e�( �2+i!a)t (2.34)

The equations above show the well-know exponential decay of the excited state probability
Pe(t) with rate � and the atomic coherence oscillating at frequency !a and decaying at rate �/2
(the atom radiates as it decays). This statistical approach cannot provide informations about �,
as it does not take into account how the atomic transition is coupled to each field mode.
The Green’s function approach, as well as a microscopic derivation of the master equation [89],
provides a more accurate description of the dynamics and allows to obtain the exact decay rate.
An atom in free space can be seen as a small system coupled to a reservoir of infinitely many
degrees of freedom which belong to a continuum. In this case, assuming the dispersion relation
!k = ck, we need to introduce the density of field modes, i.e. the summation in (2.32) must be
replaced by an integral. For a given density D(!), there are a total number of D(!)d! modes at
frequency !. Thus the shift-width function reads:

W(z) =
Z 1

0

D0(!)|g(!)|2
z � ! d! (2.35)

In our case the particular environment is the vacuum with a density of modes, accounting for
the two orthogonal polarizations, given by [83]:

D0(!) =
2Vq!2

3⇡2c3 (2.36)

where Vq is the quantization volume and the well-known coupling constant dependence on the
frequency is:

g(!) =
r

!

2✏0Vq
da (2.37)

in which da is the atomic dipole matrix element. Of course the product D0(!)|g(!)|2 in the
numerator of (2.35) no longer contains the quantization volume Vq. So we have all the elements
to calculate the shift-width function in the pole approximation and then, from (2.32) and (2.31),
to obtain the exact probability evolution. The former reads:

W0 =
|da|2

3⇡2✏0c3 lim
⌘!0

Z 1

0

!3

!a + i⌘ � !d! (2.38)

In the above equation W0 = lim⌘!0 W(!a + i⌘). In this way, using (2.6), we obtain:
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W0 = S 0 � i�0 =
d2

a!
2
a

3⇡c3

Z 1

0

!

! � !a
d! � i

d2
a!

3
a

3⇡✏0c3 (2.39)

Thus we can rewrite (2.31) as:

ue(t) = lim
⌘!0

i
2⇡

Z +1

�1
dx

e�ixt

x + i⌘ � !a �W0
(2.40)

The smooth dependence of the vacuum density of states on !, D0(!) / !2 in (2.36), ensures
the applicability of condition i) in the above discussion, i.e. the shift-width function for an atom
decaying into the vacuum is a slowly varying function and, if also condition ii) (W(!a) ⌧ !a)
is verified, it can be replaced by the constant W0 = S 0 � i�0 given in (2.39). The real part S 0,
as already discussed, represents the non-relativistic contribution to the vacuum shift of level
|ei (for a realistic atomic transition this is not a complete result, since it needs to consider
all contributions for all states with non-vanishing dipole matrix element with the state |ei). By
inserting �0 in (2.40), regardless of S 0, we obtain the decaying exponential result, already found
above with the master equation approach, but now we know the exact value of the rate:

Pe(t) = |ue(t)|2 = e��0t with �0 =
d2

a!
3
a

3⇡✏0c3 (2.41)

We now mention briefly the physical meaning of the mathematical restrictions i) and ii) on the
shift-width function. The W(z) ⌧ !a condition concernes with the equivalence of the resolvent
method, in this specific case, with a lowest nonvanishing order perturbation theory, i.e. the
first-order Born approximation for the restricted density matrix of the atom wich is valid if the
coupling potential Ĥcoup in (2.29) is treated perturbatively. More importantly, the requirement
that W(z) must be a slowly varying function of z implies that the emission of a photon into
the continuum of the vacuum modes, due to the atomic de-excitation, is an event of which
the environment loses memory instantly: this is the so-called Markov approximation and it is
important to stress that from this it derives the exact exponential shape of the atomic decaying
law. In the next chapters we will analyze in detail this implication for the case of a TLS decaying
into the enviroment of a coupled QED-cavity array.

2.2.2 TLS in a cavity

Now we want to review the atom-cavity dynamics already seen in the previous chapter by means
of the formalism we have outlined above. Here we consider only a closed, i.e. � = 0, and high-
Q cavity, characterized by a mode-width much lower than the mode-separation. We consider
again the atom excited at t = 0 and, since the Hamiltonian is always of general form (2.29),
we follow the same steps as above up to the point where we need to calculate the shift-width
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function W(z). Let !c be the central frequency of the cavity mode and Q its quality factor. We
introduce the following Lorentzian spectral density of states inside a cavity of volume V:

Dc(!) =
V
⇡

k/2
(! � !c)2 + k2/4

(2.42)

where the photon loss rate k = !c/Q has been introduced in the previous chapter. This spectral
density describes well the finite-width cavity mode coupled to the external dissipative reservoir
[30, 88]. Since Dc(!) is a peaked function around ! = !c, we can assign the value g = g(!c)
to the slowly varing g(!) given in (2.37) 5. Substituting Dc(!)|g(!c)|2 into (2.35) we have:

Wc(z) =
g2k
2⇡

Z 1

0

1
(! � !c)2 + k2

4

d!
(z � !)

(2.43)

In this case, due to the peaked shape of Dc(!), Wc(z) is not a slowly varying function of z, thus
it would be wrong to replace it with a constant in (2.32). With the spectral density (2.42) the
pole approximation is no longer valid. We can calculate the integral in (2.43) on the complex
!�plane with the aid of the residue theorem. Extending the integration to �1, after some
algebraic manipulation, we obtain the following result:

Wc(z) =
g2

z � !c + ik/2
(2.44)

Substituting this into (2.32), the Gee matrix element is calculated as:

Gee(z) =
z � !c + ik/2

(z � !a)(z � !c + ik/2) � g2 (2.45)

which, through the change of variable z ! z + !c and recalling the definition of atom-cavity
detuning � = !a � !c given in the previous chapter, it is rewritten as:

Gee(z) =
z + ik/2

(z � �)(z + ik/2) � g2 (2.46)

Unlike the open space case, Gee(z) now has two poles whose position at resonance is:

z± = �
k
4

0

B

B

B

B

B

@

i ±
r

16g2

k2 � 1
1

C

C

C

C

C

A

(2.47)

The properties of the time-independent Green’s function are quite general and a non-Hermitian
Hamiltonian is characterized in general by a complex spectrum. The poles of Gee(z) in (2.47) are

5For a more rigorous calculation the vacuum Rabi frequency must be correct by a geometrical factor of order
unity accounting for three-dimensional angular average of |g(!c)|2.
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in agreement with the complex eigenvalues (with n = 1 and � = 0) of the damped atom-cavity
system given in (1.21). From the analysis of the di↵erent CQED regimes, we have seen that, by
comparing g with a finite value of the damping rate k (and � , 0 for open cavities), it is possible
to determine the behaviour of Pe(t) = |ue(t)|2 with the certainty that, for su�ciently long times,
the atomic population is lost. This property follows from the analysis of the Green’s function
for general (Hermitian or non-Hermitian) Hamiltonians. The poles with a positive imaginary
part fall outside the contour of integration and thus do not contribute to the inversion integral
(we recall that, for t > 0, G�(t) = 0 and the inversion integral (2.31) is calculated from (2.24)
choosing G+). The complex poles with negative imaginary part lead to a transient dissipative
behaviour and do not contribute in the long-time limit. The purely real poles, on the other hand,
represent a stable nondecaying state of the system and thus determine the behaviour in the long-
time limit. In our case we have neither real poles nor poles with Im{z} > 0 and the two complex
poles in (2.47) have both negative imaginary part, in agreement with the damped behavior we
expected. The behaviour of ue(t) will then depend on the ratio g/k and, by substituting (2.46)
into (2.31) we obtain, for � = 0, the following atomic probability evolution:

Pe(t) = |ue(t)|2 =
1
2

e�
kt
2
�

1 + cos(2g0t)
�

with g0 =
p

g2 � k2/16 (2.48)

If k � g, we have an exponential decay as in open space. In this case, the cavity energy
damping is so fast, compared with the rate with which it is deposited by the atom, that it is as if
the atom were radiating directly into the open space: this is the weak-coupling regime for cavity
QED we have discussed in the previous chapter. On the contrary, if g � k, the atom exchanges
its excitation with the cavity in the strong coupling regime at frequency t 2g and the loss
into the outside environment is comparatively slow. In this limit, in which the emitted photon
survives su�ciently long to be reabsorbed and to cause oscillations between the populations
of the excited and the ground states, the atom-photon dynamics is described with very good
approximation by the Jaynes-Cummings model with n = 0. But whenever the damping rate k
has a finite value, as it is clear from (2.48), the atom will end up in the ground state in the limit
t ! 1 and the cavity will be empty of energy. The Green’s function approach reveals this as
a rigorous consequence of the structure of the density of states. We have chosen a Lorentzian
form in (2.42), but, for su�ciently large time, the atom will end up in its ground state assuming
any form of density of states with wings extending to infinity, regardless g/k and �. Moreover,
if the atom is detuned from the cavity mode (� , 0), the situation di↵ers quantitatively but not
qualitatively. Also in this case the atom, although it is protected somewhat against decay, will
eventually lose its inital excitation.
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Figure 2.2: Equivalent network for: (a) An uniform infinite array of single-mode coupled cavities
(CCA) with frequency !c and hopping rate J; (b) A CCA with a ’defect-mode’ of
di↵erent frequency !d = !c + !1; (c) An uniform CCA with a cavity coupled at rate g
to a TLS with transition frequency !a.

2.3 The Green’s function for tight-binding Hamiltonians

Now we introduce the so-called tight-binding Hamiltonians (TBH), which have the general
form:

Ĥ =
+1
X

x=�1
!xâ†xâx +

+1
X

x=�1

⇣

Jx,x+1â†xâx+1 + h.c.
⌘

(2.49)

We will use the bosonic tight-binding model to treat the photon hopping through an infinite
array of single-mode coupled cavities (CCA). In (2.49) x is a discrete-position index, indicating
the position of the cavity at point x through the array. The operator â†x (âx) creates (annihilates)
a photon of frequency !x at the xth cavity. By engineering the CCA in such a way that the field
modes exhibit spatial overlap, photon hopping can occur between nearest-neighbor cavities. For
the moment we consider only ideal lossless cavities, all with the same mode-frequency !c or
at most with only one cavity with frequency di↵erent from the other. The second term on the
right-side of (2.49) describes the photon hopping with rate generally dependent on the position
x, x + 1 of the pair of adjacent cavities. We will consider below only uniform hopping through
the CCA at rate J. Since we are interested in the single-excitation transport, it is convenient
to express the Hamiltonian in the single-excitation subspace, spanned by the orthonormal basis
vectrors |xi. These are the discrete version of the |ri vectors used in r-representation, hence
hx|x0i = �x,x0 .
At the end of the chapter we will apply the Green’s function theory to the coupled TLS + CCA

system, i.e. a TLS coupled to a single cavity of the uniform array, which we will cover in the
rest of the thesis.
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2.3.1 The uniform CCA

In the absence of defects, the uniform CCA in the single-excitation subspace, whose equivalent
network is sketched in Fig (2.2a), is described by a tight-binding Hamiltonian of the form:

Ĥ0 = !c

+1
X

x=�1
|xihx| + J

+1
X

x=�1
(|xihx + 1| + |x + 1ihx|) (2.50)

Hamiltonians in this form are well-known and widely used in solid-state physics to describe the
electronic properties of crystalline solids. Of course, the infinite array and its Hamiltonian have
traslational invariance and this property gives rise to a continuous spectrum with a lower bound,
as in the case of the atom in open space, as well as with an upper bound. The Hamiltonian
(2.50) can be diagonalized as:

Ĥ0 = lim
N!1

N/2�1
X

x=�N/2

!N
k |�N

k ih�N
k | (2.51)

that is the thermodynamic limit (N ! 1) of a finite closed array of N coupled cavities with the
cyclic boudary conditions |N/2i = | � N/2i. For the finite case we have N extended eigenfunc-
tions and eigenvalues of the form:

|�N
k i =

1p
N

N/2�1
X

x=�N/2

eikx|xi , (2.52)

!N
k = !c + 2J cos k , (2.53)

k =
2⇡n
N

(n = �N/2,�N/2 + 1, . . . ,N/2 � 1) (2.54)

(2.53) and (2.52) represent, respectively, the free photon dispersion law and the associated field
normal modes. The N possible photon energies fall in the frequency range [!c � 2J,!c + 2J]
and, in the thermodynamic limit, it becomes a continuous band (we omit the N�index) with the
k�mode index in (2.54) varying continuously in the range [�⇡, ⇡]
Knowing the expressions for |�ki and !k, we can use the infinite CCA’s Hamiltonian in its
diagonal form (2.51) to express the associated Green’s operator. From the definition (2.3) it
reads:

Ĝ0(z) = lim
N!1

X

k

|�N
k ih�N

k |
z � !N

k

(2.55)

Thus the Green’s function has only a branch cut corresponding to the continous spectrum of
frequencies !k. Its generic matrix element in the {|xi} basis are:
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G0(x, x0; z) = hx|Ĝ0(z)|x0i = lim
N!1

1
N

X

k

eik(x�x0)

z � !N
k

=
1

2⇡

Z ⇡

�⇡
dk

eik(x�x0)

z � !c � 2J cos k
(2.56)

Here and in (2.55) we use the discrete eigenfunctions given in (2.52), for which hx|�N
k i =

eikx
p

N, and in the thermodynamic limit we substitute 1
N
P

k ! 1
2⇡

R ⇡

�⇡ dk. To evaluate this
integral, we observe first that it depends on the absolute value |x � x0|. It is possible to calculate
it by transforming it into an integral over the complex variable w = eik along the unit circle and
using the method of residues, then the result is [90]:

G0(x, x0; z) =
(�z̃ +

p
z̃2 � 1)|x�x0 |

p

(z � !c)2 � 4J2
f or |z � !c| > 2J , (2.57)

G±0 (x, x0; z) =
⌥i

⇣

�z̃ ± i
p

1 � z̃2
⌘|x�x0 |

p

4J2 � (z � !c)2
f or |z � !c|  2J (2.58)

with

z̃ =
z � !c

2J
(2.59)

For �1  z̃  1, i.e for z belonging to the continuous band, the integral (2.56) is not well
defined and Ĝ0(z) has a branch cut, hence this condition gives the continuous spectrum of Ĥ
which lies in the real z�axis between !c � 2J and !c + 2J. In this case we have calculated in
(2.58) the analytic continuations G±0 as defined in (2.5). As mentioned above, this side limits
are useful to obtain the evolution operator for a given initial condition. In particular, one can
see that the diagonal Green’s matrix elements do not depend on the x-position (we denote the
diagonal elements G0(x, x; z) simply by G0(z)) and have square root singularities at both band
edges, i.e. Van Hove singularities characteristic of one-dimensional systems. From (2.53) we
can calculate the density of states obtaining:

⇢(!) = � dk
d!
=

1
p

4J2 � (! � !c)2
= |G±0 (!)| (2.60)

for ! belonging to the spectrum. Since | � z̃ +
p

z̃2 � 1| < 1 for |z̃| > 1, from (2.57) we can see
that the o↵-diagonal matrix elements G0(x, x0; z) decay exponentially with the distance |x � x0|
when z does not coincide with the spectrum. This is no longer true when �1  z̃  1.
Now we can use the time-dependent Green’s function to get the time-evolution amplitude for
the generic site x0 that we suppose to be excited at t = 0. From (2.31), substituting in this
atomless array |ei with |x0i, irrespective of the position of the initially excited site, we have for
t > 0:
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u0(t) = iG0(t) =
i

2⇡

Z +1

�1
dzG+0 (z)e�izt = J0(2Jt) =

 

2
2⇡Jt

!1/2

cos(2Jt � ⇡/4) + O(t�3/2) (2.61)

where J0 is the Bessel function of the first kind and zero order. The asymptotic form of u(t)
depends on the singularities of G0(z) on the real z�axis, i.e. on the branch cut and particularly
its end points. For the one-dimensional infinite array, indeed, near these points we have
|G±0 (z)| = ⇢(z) / z�1/2 and, since

R +1
0 z1/2e�iztdz / t�1/2, one obtains this asymptotic decay.

2.3.2 The CCA with a single defect

We consider here the case of the same infinite CCA whose perfect periodicity has been broken
at just one site, i.e. the cavity at site |xdi has a single-mode of frequency !d = !c +!1, di↵erent
from all the other (Fig (2.2b)). This is the analogue of the problem of a substitutional impurity
in a perfect periodic lattice, well-known in solid state physics. The corresponding tight-binding
Hamiltonian reads:

Ĥ = Ĥ0 + Ĥ1 with Ĥ1 = !1|xdihxd| (2.62)
in which Ĥ0 is the Hamiltonian of the perfect CCA given in (2.50) and Ĥ1 is the defect term and
the system is thus described by an Hamiltonian consisting of an unperturbed part and a pertur-
bation term, as discussed at the beginning of the chapter. The Green’s function corresponding
to Ĥ can be evaluated exactly in terms of Ĝ0(z) and !1. Using the expansion (2.12), after some
manipulation, we obtain:

Ĝ(z) = Ĝ0(z) +
!1

1 � !1G0(z)
Ĝ0(z)|xdihxd|Ĝ0(z) (2.63)

in which G0(z) at the denominator is the diagonal matrix element of Ĝ0(z) that does not depend
on the position. As already seen, the poles of Ĝ(z) correspond to the discrete eigenvalues of Ĥ
and, in the present case, the Green’s function has only a pole given by G0(!p) = 1/!1, i.e. at
the frequency:

!p = !c ±
q

4J2 + !2
1 f or !1 ? 0 (2.64)

Thus the Hamiltonian in (2.62) has one and only one discrete level of frequency !p for any
nonvanishing value of !1. Note that the pole must lie outside the band of Ĥ0, because inside the
band G0(z) has a nonzero imaginary part (cf. (2.58) with x = x0) and consequently
G0(!p) = 1/!1 cannot be satisfied. From (2.10) we can obtain the expression for the associated
bound state 6 | bi by calculating the residue of G(x, x0; z) at the pole z = !p:

6It can be shown that !p is always non-degenerate [90].
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Res{G(x, x0;!p)} = lim
z!!p

(z � !p)G(x, x0; z) = hx| bih b|x0i (2.65)

From (2.63) we calculate the residue, finally obtaining the following expression for | bi:

| bi =
X

x

bx|xi, with bx =
G0(x, xd;!p)
p�G00(!p)

(2.66)

where, from (2.57), G00(z) = dG0(z)
dz < 0 for z not belonging to the spectrum. Moreover, since

for z outside the band the o↵-diagonal matrix elements G0(x, x0; z) decay exponentially with the
distance |x � x0|, it can be seen that | bi is a localized state in the vicinity of the impurity site
|xdi. The amplitudes bx in (2.66) can be put into the form:

bx = Be�
|x�xd |
� with

1
�
= � log

2

6

6

6

6

6

6

6

6

4

s

1 +
!2

1

4J2 �
|!1|
2J

3

7

7

7

7

7

7

7

7

5

(2.67)

with normalization constant B and localization length �, which is a measure of the linear extent
of the bound eigenfunction. The state is the more localized the larger is |!1|.
The Green’s function in (2.63) has the same branch cut of Ĝ0, hence the spectrum of Ĥ coin-
cides with that of Ĥ0. Using (2.17) it is possible to obtain the corresponding eigenstates in the
scattering form:

| ±k i = |�ki + Ĝ±Ĥ1|�ki (2.68)

with the Ĥ0’s eigenstates |�ki given in (2.52) for an N�sites cyclic array. We choose only the ’+’
solution that corresponds to the physical case where the incident photon is scattered from the
defect, either reflected back or transmitted forward. Substituting the corresponding side limit of
(2.63) into (2.68) we obtain the x�site amplitude for the unbound state | +k i:

hx| +k i = hx|�ki + !1hxd|�ki
G+0 (x, xd;!k)
1 � !1G+0 (!k)

(2.69)

in which !k is the common spectrum of Ĥ and Ĥ0, given by the N ! 1 limit of (2.53), and the
generic matrix elements of Ĝ+0 in the thermodynamic limit are given in (2.58). In particular, the
amplitude of | +k i at the defect site xd reads:

hxd| +k i =
hxd|�ki

1 � !1G+0 (!k)
(2.70)

Moreover, from (2.69), the transmission coe�cient for a plane wave propagating from the left
and incident on the defect is found to be:
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Tk =
1

|1 � !1G0(!k)|2
=

 

1 +
!2

1

4J2 � !2
k

!�1

(2.71)

and does not exhibit any resonant structure.
If we now consider the defect site |xdi initially excited (t = 0), the excitation decay amplitude is
again obtained by calculating iG(t) as for the uniform CCA. Now the contour integral has two
contributions:

u(t) = iG(t) =
i

2⇡

Z

cut
dzG+(z)e�izt +

i
2⇡

Z

pole
dzG+(z)e�izt = uc(t) + up(t) (2.72)

This is a general expression valid for Hamiltonians with both discrete and continous eigenval-
ues. Here uc is the probability amplitude contribution due to the branch cut of G(z), which is
calculated in the same way that in (2.61), while up is the contribution due to the pole. The
former describes the fraction of the initial excitation propagating away from the defect towards
the extremes of the CCA. It can be calculated as series of Bessel’s functions [62]. The pole
contribution is obtained by calculating the contour integral on a path that surrounds only the
pole, hence from the theorem of residues we have:

up(t) = �2⇡i
1

2⇡
Res{G+(!p)}e�i!pt = |bxd |2e�i!pt (2.73)

where (2.63) and (2.66) were taken into account. From (2.73) it can be seen that, in presence
of a single pole, even as t ! 1 there will be a finite probability |bxd |4 of finding the excitation
at site xd that was initially excited. This is known as fractional decay. Moreover, we can see
how a single bound state of the form (2.67) ensures the presence at long times of a finite proba-
bility amplitude in each site of the array. Indeed the pole-contribution up(x, t) to the probability
amplitude for the generic site x at time t, for the same initial condition, can be obtained by
expressing the evolution operator as in (2.26) i.e. :

up(x, t) = hx| bih b|xdie�i!pt = |B|2e�|x�xd |/�e�i!pt (2.74)

Hence the probability profile for t ! 1 is due only to the pole contribution and reads:

P(x, t ! 1) = |B|4e�2|x�xd |/� (2.75)

It is distributed with an exponential profile, centred on the defect site, through the entire array
and the width of the profile is characterized by half the localization length of the bound state.
The bound state profile is very peaked around the defect for large |!1|/J (cf. (2.67)), and so
the probability profile at t ! 1 (the constant B depends also on !1/J to normalize the bound
state). The presence of a single defect, which mathematically corresponds to the presence of a
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pole of Ĝ(z) outside the band, gives rise to a localized bound state of exponential x�profile that
allows a fraction of the initial excitation to remain localized around the defect site: we refer to
this as photon localization. The strenght of the defect |!1|/J determines the part of excitation
which remains near xd and the one which propagates away, as well as the localization profile.

2.3.3 A TLS coupled to the uniform CCA

In Fig (2.2c) is sketched the equivalent network of a TLS, whose transition frequency is !a,
coupled to a cavity of the infinite uniform CCA. We consider the TLS inside the cavity at site
x0, coupled at rate g in dipole and RW approximation. For the moment we neglect any kind of
loss. The general formalism for a TLS interacting with a structured reservoir presented in Sec.
2.2 can be applied also in this case. The general form for the x-representation Hamiltonian,
with the same notation of (2.49), is:

Ĥ = !a�̂+�̂� + !c

+1
X

x=�1
â†xâx + J

+1
X

x=�1

⇣

â†xâx+1 + h.c.
⌘

+ g
�

�̂+âx0 + h.c.
�

(2.76)

Here the last term on the right side represents the coupling of the atom with the x0th cavity, as
described for the Jaynes-Cummings model in (1.2). In the single-excitation subspace with basis
given by the orthonormal vectors {{|xi}, |ei}, where |ei represents the atomic excited state, the
tight-binding Hamiltonian for this system reads:

Ĥ = !a|eihe| + Ĥ0 + Ĥac with Ĥac = g (|x0ihe| + |eihx0|) (2.77)

By using the diagonal form (2.51) of Ĥ0 in the thermodynamic limit, (2.77) can be put in the
k-representation as follows:

Ĥ = !a|eihe| + lim
N!1

X

k

!N
k |�N

k ih�N
k | + lim

N!1
gp
N

⇣

|�N
k ihe| + |eih�N

k |
⌘

(2.78)

The eigenstates |�N
k i of Ĥ0 and the corresponding eigenvalues !N

k are given, respectively, in
(2.52) and (2.53) for a finite N�sites array. The limiting procedure leads to a continuous eigen-
values band, as above mentioned. The form (2.78) is a particular case of the Fano-Anderson
Hamiltonian. In the present problem the atom is coupled to a finite band of modes with a
k�independent coupling strength. Also in this case, by separating the Hamiltonian (2.76) in the
unperturbed term Ĥ00 = Ĥ0 + !a|eihe| and the coupling term Ĥac, it is possible to express the
total Green’s function in terms of Ĝ00 and Ĥac. Here Ĝ00, with the above notation, reads:

Ĝ00(z) =
|eihe|

z � !a
+ lim

N!1

X

k

|�N
k ih�N

k |
z � !N

k

(2.79)
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that is the uniform-CCA Green’s function Ĝ0 with in addition the bare-atom term |eihe|/(z�!a).
Again, using the expansion (2.12), we obtain the following expression:

Ĝ(z) = Ĝ00(z) + Ĝ00(z)
⇥

f |eihx0|+h.c.+ f1 |eihe|+ f2 |x0ihx0|
⇤

Ĝ00(z) (2.80)

The detailed calculation to expand Ĝ and express it in this form is reported in Appendix A. The
complex functions f , f1, f2 are given by:

f (z) =
g

1 � g2G0e(z)G00(z)
, f1(z) = gG00(z) f (z), f2(z) = gG0e(z) f (z). (2.81)

with the following Ĝ00’s matrix elements in the N ! 1 limit:

G00 = hx0|Ĝ00(z)|x0i = hx0|Ĝ0(z)|x0i =
1

2⇡

Z ⇡

�⇡
dk

1
z � !c � 2J cos k

, (2.82)

G0e = he|Ĝ00(z)|ei = 1
z � !a

(2.83)

G00(z) is the diagonal matrix element G0(x, x; z) for the uniform CCA given in (2.56), calculated
in (2.57) and (2.58), here renamed for clarity. From the discussion on the uniform CCA and
from (2.82), we know that G00(z) has a branch cut on the real z�axis for z which coincides
with the spectrum of Ĥ0. The Green’s function of the TLS + CCA in (2.80) thus present the
same cut. As for the CCA with a single defect, the perturbation term of the total Hamiltonian
leaves the spectrum unchanged compared to that of the uniform CCA and involves only the
addition of discrete poles on the Green’s function matrix elements. These poles are the discrete
eigenenergies of Ĥ. In order to find them, from (2.81), we need to find the roots of equation
1 � g2G0e(z)G00(z) = 0 for the external domain |z � !c| > 2J in which G00(z) reads (cf. (2.57)):

G00(z) =
1

p

(z � !c)2 � 4J2
f or |z � !c| > 2J (2.84)

Using (2.83), the above equation takes the form (z�!a)
p

(z � !c)2 � 4J2 = ±g2. By introducing
z0 = z � !a, we choose to calculate the poles with the !a = 0 energy scale. In this case the
equation to solve is z0

p

(z0 + �ac)2 � 4J2 = ±g2, i.e. the quartic equation:

z02
h

(z0 + �ac)2 � 4J2
i

= g4 (2.85)

Here we have defined the atom-cavity detuning �ac = !a � !c as in Chap1. When �ac , 0,
solutions of (2.85) are algebraically extended and we report them in Appendix C. The quartic
equation admits two real solutions !± and, for �ac = 0, they read:
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!0± = ±
q

2J2 +
p

g4 + 4J4 f or �ac = 0 (2.86)

We indicate the resonant solutions using the subscript ’0’. As expected, for any finite g,
|!0±| > 2J, i.e. these fall out of the band (branch cut). In the strong-hopping limit g ⌧ J,
!0± ' ±2J and the poles collapse into the band. In the strong-coupling7 limit g� J, instead,
they reduce to !0± '±g since we retrieve a standard Jaynes-Cummings model where the atom
significantly interacts only with the x0th cavity.
Furthermore, with the help of (2.10), we obtain the matrix elements of the corresponding pro-
jectors by calculating the residues of Ĝ(z) at the poles. This calculation presents a relatively
simple algebra only for the resonant case and we carry out it in Appendix B. For �ac = 0 we
find:

hx| ±0 ih ±0 |xi = lim
z!!0±

(z � !0±)G(x, x; z) / %2|x�x0 |, |%| < 1 f or �ac = 0 (2.87)

thus the residues of Ĝ(z) at the poles !0± decay exponentially with |x � x0| and, by imposing an
ansatz compatible with this condition, we obtain:

| ±0 i=N
X

x

(± %)|x�x0 ||xi ± ce0 |ei (2.88)

with

N =

q

(1 � c2
e0)(1 � %2)

%
, (2.89)

% =
!0+ �

p

!0+
2 � 4J2

2J
, (2.90)

c2
e0 =

g4

2!0+
2 (!0+

2 � 2J2)
=

⌘4

2
⇣

⌘4 + 2
p

⌘4 + 4 + 4
⌘ f or �ac = 0 (2.91)

where the excitonic components of the states are ±ce0, with ce0 real positive and we have intro-
duced the rescaled coupling constant:

⌘=
g
J

(2.92)

As in the case of the CCA with a single defect, we have bound states [29, 32, 33] with an
exponential probability profile. The probability to find the atom in |ei when the system is in

7This should not be confused with the strong-coupling regime of the atom-cavity Jaynes-Cummings model
described in Chap1. Here we neglect any cavity leakage, thus we are implicitly assuming that the atom interacts
with the x0th cavity in strong-coupling regime.
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either of the two bound states is c2
e0 and is given in (2.91). In this resonant case we obtain a

couple of states | ±0 i with symmetrical eigenenergies with respect to the center of the band.
With an exponential ansatz as in (2.88) we obtain the bound states with a generic detuning and
their generic expression as a function of !± reads:

| ±i = A±
X

x

e�
|x�x0 |
�± |xi + ce±|ei (2.93)

with

�± = log

2

6

6

6

6

6

6

6

4

g2

2J!±

2

6

6

6

6

6

6

6

4

1 +

s

4J2!2
±

g4

3

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

5

�1

, |A±|2 =
 

e2/�± + 1
e2/�± � 1

+
g2

!2
±

!�1

, ce± =
gA±
!±

(2.94)

The normalization constants A± are defined up to a phase factor. Again, the localization lengths
�± measure the linear extension of the two bound eigenfunctions. Here their two values are dif-
ferent for �ac , 0 and converge, when �ac ! 0, to the common localization length �0 associated
with both states | ±0 i of the resonant case. By substituting (2.86) into (2.94) we can cast | ±0 i
into the following form:

| ±0 i = |A0|
X

x

(±1)|x�x0 |e�
|x�x0 |
�0 |xi±ce0|ei with �0 = log

"

1
2

 

q

p

⌘2 + 4 � 2 +
q

p

⌘2 + 4 + 2
!#�1

(2.95)
in which the constant |A0| is the resonant limit of |A±|. Here, again, the presence of bound states
leads to photon localization. In this case the field remains localized around the atomic position.
For the resonant case, the localization length of the probability profile is �0/2 and, from (2.95),
it decreases with ⌘ = g/J. In the strong-coupling limit �0 ! 0, hence the field remain entirely
localized on the x0-site. Moreover, from (2.91), c2

e0 ! 1
2 as well as

P

x | ±0 (x)|2. This means that,
in the limit ⌘ � 1, both bound states describe a total excitation consisting of a field component,
nonvanishing only on the x0�site, and an excitonic component, both with probability 1/2. This
is in agreement with the asymptotic behaviour !±0 ! ±g, when the Jaynes-Cummings limit is
reached. By introducing a nonvanishing detuning, the bound states show a localization profile
with di↵erent lengths. For �ac > 0, �� (�+) is larger than (smaller than) �0 calulated at the
same ⌘ (and viceversa for �ac < 0): the atom-cavity detuning introduce an imbalance between
the two localization profiles. For |�ac| > g the most extended bound state (namely | �i) tends
to a quasi-photonic state, i.e

P

x | �(x)|2 ! 1, while the other one tends to a quasi-excitonic
state, i.e. |ce+|2 ! 1. This is in agreement with the fact that an atom very far-detuned from the
cavity-mode frequency does not exchange energy with the field.
Now we apply again (2.17) to calculate the unbound or scattering states. The scattering problem
is similar to that of the CCA with a defect-mode and it will be discussed in Chap 3. In this case
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the TLS acts as a scattering center for an incident photon and the reflection amplitude depends
on both ⌘ and �ac/J. As in (2.68), the generic k�state is obtained by means of the Green’s
function and its analytic continuation (side limit):

| +k i = |�ki + Ĝ+(!k)Ĥac|�ki (2.96)

Here also we neglect the solution deriving from Ĝ� since it has no physical meaning. The
unperturbed |�kis are eigenstates of Ĥ0 in the thermodynamic limit. Using (2.52), (2.77) and
(2.80) the perturbation term reads:

Ĝ+(!k)Ĥac|�ki=
gp
N

2

6

6

6

6

6

4

 

1 +
f1(!+k )
!+k

! |ei
!+k
+

f (!+k )
p

N!+k

X

k0

|�k0 i
!+k � !k0

3

7

7

7

7

7

5

(2.97)

where we set !+k = !k + is. Upon projection on |xi and on |ei, for N � 1, we can express (2.96)
as:

| ki =
X

k

ckx|xi + cke|ei, �⇡  k  ⇡ (2.98)

with the x-components ckx given by:

ckx =

8

>

>

<

>

>

:

1p
N

⇣

eik(x�x0) + rke�ik(x�x0)
⌘

x � x0 < 0,
1p
N

skeik(x�x0) x � x0 > 0.
(2.99)

and with transmission and reflection amplitudes sk, rk. The most simple way to obtain rk, with
the ansatz (2.99), is by imposing the boundary condition ckx+0 = ckx�0 and by projecting the
Schrödinger equation onto hx0|. The reflection amplitude thus reads [17]:

rk =
⌘2

4i sin k( �ac
2J � cos k) � ⌘2

(2.100)

and the transmission amplitude is obtained by the constraints sk = rk + 1 and |sk|2 + |rk|2 = 1.
By projecting (2.97) onto |ei, we finally find the excitonic amplitude of | ki, i.e. :

cke =
⌘p
N

1 + rk
⇣

2 cos k � �ac
J

⌘ (2.101)

In the next chapter we will use these results to analyze the atomic emission into the CCA-
reservoir and the photon scattering problem. Here we consider only the emission in the strong-
hopping limit (⌘! 0) highlighting the role of the shift-width function or self energy. We don’t
need to take into account the discrete poles since, in this limit, they collapse into the band (this
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is true for generic �ac). The general expression for the atomic probability amplitude is given by
(2.72), where we have to consider only the branch-cut contribution, i.e:

uc(t) =
i

2⇡

Z

cut
dzG+ee(z)e�izt = lim

s!0+

i
2⇡

Z

cut
dzGee(z + is)e�izt (2.102)

In this way the contour integral is expressed in the same form of the general decay amplitude
(2.31), valid for an atom interacting with a generic reservoir. Using (2.80) and (2.81), we obtain:

Gee(z + is) = he|Ĝ(z + is)|ei = 1
z + is � g2G00(z)

(2.103)

By comparing this with the general case (2.32), recalling that now the energy scale is defined by
!a = 0, we find the self-energy function for a TLS interacting with an infinite CCA-reservoir:

W(z) =
X

k

|gk|2
z � !k

= g2G+00(z) = � ig2

p

4J2 � (z + �ac)2
(2.104)

Here the k�mode dispersion is given by the constant g2/N, as result from (2.78), and the last
term is the N >> 1 limit of the sum, obtained by using the result for G00(z) = hx0|Ĝ0|x0i
given in (2.58) and changing the scale. Now we can see why it is possible to apply the pole
approximation for W(z), as in the case of the free-space TLS. First we note that W(z) is purely
imaginary for |z+ �ac| < 2J. In the strong-hopping limit |W(0)| ⌧ �ac and the main contribution
to the contour integral comes from the region z t 0, so we can approximate
W(z) t W(0) in (2.102) for not too strong detuning (�ac < 2J). The explicit form of the contour
integral (2.102) in the pole approximation thus reads:

uc(t) = lim
s!0+

i
2⇡

Z

cut

e�iz

z + is + i|W(0)|dz (2.105)

This is the same that (2.40), i.e. the probability amplitude for the free-atom decay, but with a
di↵erent rate, given by the imaginary part of the pole. In this case W(0) is purely imaginary
and, from (2.105), we obtain:

pe(t) = |uc(t)|2 = e��t, with � = 2|W(0)| = 2g2

p

4J2 � �2
ac

(2.106)

In the limit g/J ! 0, a TLS decaying into the CCA-reservoir shows a Markovian probability
amplitude, as in the free space. The decay-rate is g2/J for the resonant case. For small detun-
ing, W(z) is a slowly varying function of z and its small absolute value makes it possible the
perturbative substitution W(z) t W(0) into the contour integral. Here we have neglected the
bound-states contribution to the atomic evolution. We will see in the next chapter that when the
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discrete eigenvalues collapse into the band, i.e. in the strong-hopping limit, contributions like
(2.74) become negligible with respect to the contour integral (2.102).



Chapter 3

Photon localization and population
trapping in Coupled Cavity Arrays

Cavity quantum electrodynamics (CQED) studies the properties of atoms coupled to discrete
photon modes in high-Q cavities. Such systems, which we reviewed in the first chapter, are of
great interest in the study of the fundamental quantum mechanics of open systems, the engi-
neering of quantum states, measurement-induced decoherence and have also been proposed as
possible candidates for use in quantum information processing and transmission [81, 103].
More recently, several authors have considered the possibility of coupling each other many
of such cavities, part or all of them contain a TLS (or a multiple-level atom-like system).
Such Coupled Cavity Arrays (CCA), known also as Coupled Resonator Optical Waveguides
(CROW), and several variants turned out to be a promising tool of investigation in many branches
of modern physics. With the currently available photonic-crystal technology, it is possible to
realize such an atomless arrays with a large number of components [140], the main experimen-
tal problem being the atom-CCA coupling. Very large arrays including one or more atoms have
been so far only theoretically proposed. The first proposal of such an systems, dating back to
2006, is due to M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio and concerns the study of
strongly correlated many-body phenomena [1]. Shortly after, the use of atom-light interaction
in coupled microcavity arrays has taken several directions: spin models [2], phase diagrams
and phase transitions [4], dynamical e↵ects [6, 12] and quantum information applications [5].
An interesting and rich dynamics characterises the propagation of initially localized excitations
along the array [7, 8, 16]. In this respect, the simplest - yet very interesting - scenario is the
propagation of excitation in single-atom arrays, where only one cavity of the CCA is coupled
to a single two-level atom. Most of the attention in such setup has been focused on single- or
multi-photon scattering [17, 18, 19, 23, 24, 25], where one or more photons impinge on the
initially unexcited atom. Here we want to focus on the interplay between photon localizzation
and atomic population trapping resulting from the emission of an initially excited TLS. We have
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introduced in the previous chapter the mathematical tools necessary to analyze this physics, i.e.
the essential ingredients to solve problems of scattering, atomic emission, population trapping
and localization applied to the TLS-CCA interaction.
In Sec 3.1 we present the theoretical description for the coupling of several cavities in an array.
In Sec. 3.2 we analyze our results about the emission of a TLS coupled with the central cavity of
the array and we focus in particular on the interplay between the atomic trapped excitation and
the corresponding fraction converted in cavity field that, at long times, localizes into the cavi-
ties near the atomic site. The dynamics is investigated in di↵erent regimes of the atom-cavity
coupling strength, both at resonance and detuned coupling. Finally, in Sec. 3.3, we present a
brief review of the scattering problem for a single photon propagating in the same system.

3.1 How to couple two or more cavities

The physical process underlying the coupling of two adjacent QED cavities is the evanescent-
field coupling between the respective high-Q modes. Photon hopping can occur between neigh-
bouring cavities due to the overlap of the spatial profile of cavity modes, as sketched in Fig
(3.1a). The best candidates for such a realization are the 2D photonic crystals, which we re-
viewed in Sec 1.2. With these realizations, in which the single resonators consist of defect cav-
ities embedded in a two-dimensional periodic structure whose resonant frequency falls within
the forbidden gap of the surrounding 2D structure, it is relatively simple to obtain an uniform
string of high-Q cavities whose adjacent field-modes can be coupled (Fig (3.1b)) [140]. In order
to obtain a tight-binding Hamiltonian of the form (2.49) or (2.50), the mode-profile of the single
resonator should not be significantly altered when it approaches another one, thus we assume
su�ciently large separation between the individual resonators which are weakly coupled. This
coupling is exactly the optical analog of the tight-binding limit in condensed-matter physics,
in which the overlap of atomic wave functions is large enough that corrections to the picture
of isolated atoms are required yet at the same time is not large enough to render the atomic
description completely irrelevant.
In order to model such a process, we describe the array of cavities, arranged along the x�direction,
by a periodic dielectric constant ✏(r) = ✏(r+ naux), where r is the position inside a generic cav-
ity of the one-dimensional array, a the distance between the centers of two adjacent cavities and
n an integer [14]. In the Coulomb gauge we have r · (✏(r)A) = 0 and the vector potential can
be expanded as linear combination of single-cavity contributions whose frequency is !c:

Ak(r, t) = ei!kt
X

n

e�inkaA0(r � naux) (3.1)

The localized modes described by the vector potential A0(r) are the analogue of the Wannier
functions, by means of which the field operator is expanded in the well-known Bose-Hubbard
model of condensed matter physics. Since the vector potential in (3.1) satisfies the Bloch the-



3.1. HOW TO COUPLE TWO OR MORE CAVITIES 51

Figure 3.1: (a) An array of single-mode cavities. Photon hopping can occur between two nearest-
neighbour cavities owing to the spatial overlap of the corresponding modes profile.
(b) Corresponding photonic-crystal realization, obtained by coupling the 2D individual
defect cavities (from [14]). The distance between the centers of the cavities is a and ux
indicates the direction versor of the array. The medium is described by two di↵erent
refraction indexes, n1 and n2.

orem, we can limit ourselves only to the eigenfrequencies belonging to the first Brillouin zone:
�⇡a  !k  ⇡

a . Applying the Maxwell’s equations to A0(r), localized around a generic n�site,
we find:

r ⇥ (r ⇥ A0(r)) = ✏0(r)
!2

c

c2 A0(r) (3.2)

In which ✏0(r) denotes the single-cavity dielectric constant. From (3.1) it can be seen that the
above equation can be applied to the generic k�mode of the expanded vector potential, i.e.:

r ⇥ (r ⇥ Ak(r)) = ✏(r)
!2

k

c2 Ak(r) (3.3)

Here we have replaced ✏0(r) with the periodic dielectric constant ✏(r) and !c with the eigen-
value !k. We consider the single-cavity vector potential A0 normalized in such a way that
R

V dr|A0(r)|2=1, where the integration is over the cavity volume V . In order to find the disper-
sion relation, we substitute (3.1) into (3.3) and multiply both sides from the left by A⇤0(r). After
integrating over the position, we find:

!2
k = !

2
c

1 +
P

n,0 e�inka�n

1 + � +
P

n,0 e�inka↵n
(3.4)

where ↵n,�n and � are defined as:
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↵n =

Z

dr ✏(r) A⇤0(r) · A0(r � na ux) (3.5a)

�n =

Z

dr ✏0(r � na ux) A⇤0(r) · A0(r � na ux) (3.5b)

� =

Z

dr [✏(r) � ✏0(r)] |A0(r)|2 (3.5c)

When the separation a between the cavities is su�ciently large or the coupling is su�ciently
weak, the only modes with overlapping profiles are the nearest-neighbor. In this case we have
to keep only the ↵±1, �±1 and � integrals in (3.5). Of course, from symmetry considerations, we
also require that ↵1 = ↵�1 and �1 = ��1 and assume all integrals to be su�ciently small. In this
way, substituting these integrals in (3.4), the dispersion relation is simplified as follows:

!k = !c

"

1 � �
2
+ (�1 � ↵1) cos(ka)

#

(3.6)

The band of frequencies is centered around!0c = !c (1 � �/2). If the periodic dielectric constant
✏ coincides with ✏0 at each site, from (3.5c) it results � = 0 and!0c = !c. This is strictly true only
for isolated cavities, but we will assume below a weak enough cavity-coupling to approximate
� t 0. Thus the hopping rate J we introduced in Sec 2.3 is found to be:

J
!c
=

1
2

(�1 � ↵1) =
1
2

Z

dr [✏0(r � a ux) � ✏(r � a ux)] A⇤0(r)A0(r � a ux) (3.7)

and the dispersion relation takes the form !k = !c + 2J cos k discussed in Sec 2.3. The group
velocity of the CCA is:

vg(k) =
d!k

dk
= �Ja sin(ka) (3.8)

and it is maximum for k = ± ⇡
2a , i.e. at ! = !c.

The Hamiltonian in second quantization form (2.49) is obtained by introducing the creation and
annihilation operators of the localized field-modes or Wannier functions, â†n and ân with x = na.
Hence, considering only nearest-neighbor coupling with the uniform hopping rate in (3.7), the
CCA Hamiltonian assuming identical cavities reads:

Ĥ = !c

X

n

â†nân + J
X

n

⇣

â†nân+1 + â†n+1ân

⌘

(3.9)

where â†n (ân) creates (annihilates) a single-photon of frequency !c inside the n�th cavity. In de-
riving (3.9) we have neglected the counterrotating terms which contain products of two creation
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or two annihilation operators. This is resonable because the overlap integrals (3.5) are generally
small, i.e. J/!c ⌧ 1. Since the total excitation-number operator N̂ =

P

n â†nân commutates with
Ĥ, the total photon-number is conserved.
The tight-binding Hamiltonian (3.9) is a particular case of the Bose-Hubbard model, which was
first discussed by Fisher et al in [69] as the bosonic counterpart of the Hubbard model. The
B-H Hamiltonian, indeed, contains also an interaction term of the form U

P

n â†nân

⇣

â†nân � 1
⌘

that describes the interactions between bosons at each site, with strengh U. For non-vanishing
U, there are two di↵erent phases at zero temperature that are separated by a quantum phase
transition when the ratio U/J crosses a critical value. The uniform tight-binding Hamiltonian
(3.9) is the J >> U limit of the B-H model, in which the tunnelling term dominates and the
lowest-energy state of the system is a condensate of delocalised bosons, i.e. the system is in
a superfluid phase. Above a specific value of U/J, the system ceases to be a superfluid and
becomes a Mott insulator, with a well-defined number of localised particles in each site. In
this case it will thus be energetically favourable for the bosons to evenly distribute across all
lattice sites and avoid moving around in order to minimise the repulsion. The superfluid to Mott
insulator phase transition is of a quantum character and is driven by quantum fluctuations, as it
occurs even at zero temperature. Photons are noninteracting bosons, and there is no possibility
to have any quantum phase transitions in purely photonic systems. For a pure Bose system as
that described by (3.9), the conducting phase at zero temperature is always superfluid. However,
engineered arrays of optical cavities, few-level atoms, and laser light can form a strongly inter-
acting many-body system which can simulate condensed matter physics models [1, 2, 3, 4]. For
such a simulation of a Bose-Hubbard model a self-interaction term is needed. Indeed, the Bose-
Hubbard self-interaction term has the form of a Kerr self-nonlinearity (â†n)2(ân)2 and its e↵ect
is generally negligible at the level of individual quanta. By placing several TLS or multi-level
atoms inside each cavity and using external lasers, it is possible to generate strong nonlinear
interaction among the photons of the cavity mode. Indeed, strong interactions of the light mode
with atoms inside the cavity, under particular circumstances, mediate strong nonlinear inter-
action among the photons. The strength of the nonlinearity can be increased even further if
instead of considering photons as the bosonic particles of the model, one considers polaritons,
joint photonic-atomic excitations.

3.2 The TLS emission: photon localization vs population trap-
ping

We now describe the emission of a TLS into an environment consisting of a CCA initially in
the vacuum state [15]. We consider the atom embedded into a cavity of the uniform array. A
sketch of the entire setting and its equivalent network is shown in Fig (3.2). The mathematical
description of the joint atom-CCA system is reviewed in Sec 2.3.3. In the following we will
label with ’0’ the position of the cavity containing the atom. The CCA can be realized by
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Figure 3.2: (a) Sketch of the setup. A large array of single-mode cavities, where one cavity is
coupled to an initially excited two-level atom. Photon hopping can occur between two
nearest-neighbour cavities. (b) Equivalent network.

using either coupled superconducting transmission line resonators [139] or defect resonators in
photonic crystals [140], whose main features have been described in Sec. 1.2. Such systems are
of importance in the study of the fundamental properties of open quantum systems, as well as
for quantum information processing applications.
We will focus on the strong-coupling regime and on the polariton formation when a single qubit
is coupled to a mesoscopic photonic system. From the perspective of the qubit, the CCA is a
mesoscopic system representing a dissipative electromagnetic environment featuring a spectral
density that is highly structured. In the absence of additional qubit decay channels, polaritonic
bound-states typically are formed in such a system. In the previous chapter we have discussed
their mathematical expressions by using the Green’s function method.
The single-atom CCA - under rotating-wave approximation and in the thermodynamic limit of
an infinite number of cavities - is described by the Hamiltonian (2.76) and it is a known instance
of the general Fano-Anderson [20, 21] (or Friedrichs-Lee) model, where a two-level system
is coupled to a finite band of bath modes with a constant coupling strength. When the TLS
frequency lies at the middle of the band, the resulting dressed system features a continuous band
(which coincides with the bare bath band) and two symmetrical out-of-band discrete levels.
The polaritonic bound states are associated to the latter ones and they are given in (2.95), while
(2.98) is the expression for the unbound stationary states associated with the band. We have
seen that each bound state is localized around the atom’s position on the lattice, the localization
length being a decreasing function of the coupling strength. Owing to the presence of the atom-
photon bound states, the atom is in general unable to eventually release the entire amount of its
initial excitation to the field and thus exhibits fractional decay. By discussing the expressions
for the discrete eigenvalues at resonance given in (2.86), we mentioned the Jaynes-Cummings
limit g � J, in which their asymptotic values t ±g witness a dynamics involving energy-
exchange only between the atom and the cavity containing it. This is the extreme-case of
population trapping for this system, in which the time-averaged atomic population at long times
is 1/2 and the atom periodically exchanges the entire content of its initial energy with the 0th
cavity field so as to exhibit standard vacuum Rabi oscillations. In this case only bound states
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take place to the atom-field dynamics. On the other hand, the unbound or scattering states are
responsible for the fractional-propagation of the field, i.e. part of the initial atomic excitation
is converted in light departing away from the emitter. In the strong-hopping limit g ⌧ J,
for which the discrete eigenvalues collapse into the band, the atom-field dynamics is almost
entirely governed by the unbound states. In this case standard exponential decay of atomic
population takes place, the atom showing an (almost) Markovian1 behaviour as in the free-
space decaying or in weak-coupling regime of a single cavity QED, while the photon wave
function spreads in either direction of the array in such a way that, for long enough times,
it vanishes within any finite region around the central cavity. At intermediate values of the
coupling rate, in general, the dynamics features partial field localization and atomic fractional
decay, the latter being due to population trapping that manifests as a residual oscillation of the
atom’s excitation at large times. Whenever partial population trapping takes place then, clearly,
photon localization must occur, with part of the field propagating away and the remaining is
confined (symmetrically) around the cavities next to the atom. In this case the (trapped) atomic
population oscillates with a time-averaged value less than 1/2 and the energy swapping involves
several cavities (the whole array, in principle) symmetrically arranged around the atom, the field
in each cavity oscillating with amplitude exponentially decreasing with the distance from the
atom. As we will see below, this exponential localized field-profile has the same localization
length as that of the bound states, being closely linked to these. We want to examine in details
the balance, at long times, between the atomic trapped excitation and the corresponding field-
localized part for di↵ertent coupling regimes. Initially we consider the resonant-atom case,
introducing the detuned case later. In presence of atom-cavity detuning the localized profile and
population trapping change quantitatively but not qualitatively, the balance resulting strongly
altered only for very large detuning. In general, we will see how field localization and atomic
population trapping do not arise simultaneously as the coupling rate grows from zero and we
will highlight the existence of a regime of intermediate coupling strengths such that significant
field localization can occur with no appreciable population trapping. In such cases, thereby, field
localization is not accompanied by appreciable fractional atomic decay. At long enough times,
in this regime the localized fraction of the photon wave function undergoes time modulation in
intensity. Unlike in the strong-coupling limit, such modulation is not connected with atomic
excitation/emission processes (the atom having fully decayed to the ground state). Rather, it
reflects a mere time-continuous redistribution of light among the cavities next to the atom.

3.2.1 Resonant atom-cavity coupling

From the previous chapter we have all the ingredients to investigate the atomic emission into the
field vacuum by an initially excited atom i.e., to study the time evolution of the state |�(0)i = |ei.
Since the atomic and cavity frequencies coincide, in this case the dynamics is independent of

1In Sec 4.2, by introducing an exact definition of open quantum Markovian processes, we will see that, strictly
speaking, a Markovian dynamic for the TLS-CCA interaction can’t occur for any finite g/J.
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their common value !c, which here we set to zero. A straightforward decomposition of |�i in
terms of all bound and unbound stationary states as given by Eqs. (2.88) and (2.98), respectively,
leads to the following joint-state at time t�0:

|�(t)i =
X

k

c⇤kee
�i!kt| ki+

X

µ=±
ce0 e�i!0µt| µ0i . (3.10)

with continuous-spectrum frequencies !k = 2J cos k associated to the branch cut of the Green’s
function (2.80) and discrete eigenvalues, corresponding to the poles, given in (2.86). It is conve-
nient to express the atom’s excitation probability amplitude ↵(t) as the sum of two contributions:

↵(t)= he|�(t)i=↵u(t) + ↵b(t) , (3.11)

where ↵u(t) and ↵b(t) are the contribution due to the unbound and bound states respectively, i.e:

↵u(t) = he|
X

k

c⇤ke e�i!kt| ki=
X

k

|cke|2e�i!kt , (3.12)

↵b(t) = he|
X

µ=±
ce0 e�i!0µt| µ0i=2c2

e0 cos(!0+t) , (3.13)

where we used !0� =�!0+ [cf. (2.86)] and cke, ce0 given respectively in ((2.101) with �ac = 0)
and (2.91).
For the corresponding field-evolution we use the notation of the previous chapter, i.e. the dis-
crete array-position index is x (the nearest-neighbor cavities distance a is set to unity), with
x0 = 0. The photon excitation amplitude at the xth cavity is obtained by projecting (3.10) onto
|xi:

 (x, t)= hx|�(t)i= u(x, t)+ b(x, t) (3.14)

with

 u(x, t) =
X

k

ckxc⇤kee
�i!kt , (3.15)

 b(x, t) = ce0N
X

µ=±
µ(µ %)|x|e�i!0µt =2ce0N%|x|

(

�i sin!0+t for |x| even
cos!0+t for |x| odd (3.16)

In analogy with the atomic amplitude, here  u(x, t) [ b(x, t)] stands for the contribution from
the unbound (bound) stationary states to the photon probability amplitude  (x, t) and ckx, N ,
% are given respectively in (2.99), (2.89), (2.90). Below we evaluate separately the atomic and
field’s contributions to the state evolution.
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3.2.1.1 Atom’s excitation amplitude

When the coupling strength is very small [cf. Fig. (3.3a)] standard spontaneous emission takes
place and the atomic excitation exhibits a purely exponential decay. In such conditions, indeed,
the emitter does not sense the finiteness of the field band (correspondingly, the e↵ective spectral
density is flat). We have already analyzed this strong-hopping case at the end of Sec. 2.3.3,
by evaluating the unbound contribution to the amplitude with a contour-integral of the Green’s
function matrix element Gee(z) in pole approximation, i.e. by replacing the self-energy function
with a constant. In this limit we have neglected the bound-states contributions to the amplitude,
justifying this with the collapse of the discrete external poles into the band. Now we want to
prove this more rigorously. Using (2.91), we can see that ↵b ! ⌘4

4 cos(!0+t) for ⌘ small enough,
while ↵u(t) does not vanish in the limit ⌘ ! 0 at any finite t. Indeed, for ⌘ = 0, it results
↵b = 0 and therefore ↵u =1 since the decoupled atom never decays. Thus, when ⌘ ⌧ 1, the only
relevant contribution to the atomic excitation amplitude is the unbound one, i.e. ↵(t) t ↵u(t).
With the help of (2.101), substituting 1

N
P

k ! 1
2⇡

R

dk for N � 1, ↵u(t) can be expressed in the
integral form as:

↵u(t) =
⌘2

2⇡

Z ⇡

�⇡
dk

sin2 k

sin2(2k) + ⌘4

4

e�i!kt (3.17)

which is a (real) time function that vanishes in the limit t ! 1. This can be seen by noting first
that in (3.17) we can replace e�i!kt ! cos(!kt) since the contribution from the imaginary part
vanishes (this yields an odd integrand function). This and the Jacobi-Anger expansion [34]:

cos(z cos k)= J0(z)+2
1
X

n=1

(�1)nJ2n(z) cos(2nk) (3.18)

allow us to express ↵u(t) as a series of Bessel functions:

↵u(t)=a0 J0(2Jt)+
1
X

n=1

an J2n(2Jt) (3.19)

with a0= I0, an�1=2(�1)nIn and where In is obtained from integral (3.17) by replacing the com-
plex exponential with cos(2nk). In Figs. (3.3) and (3.5), we study the behavior of the atomic
excitation pe(t)= |↵(t)|2 and the photon probability distribution px(t)= | (x, t)|2, respectively, for
di↵erent values of the rescaled coupling strength ⌘ = g

J . The plots were drawn through numeri-
cal evaluation of (3.12) and (3.15). Due to the appearance of the Bessel functions, the amplitude
↵u(t) eventually decays to zero after exhibiting secondary oscillations [cf. Fig. (3.3b)], these be-
coming less and less significant as ⌘! 0. This can be proved by expressing (3.17) as:

↵u(t)=
⌘2

⇡

Z ⇡

0
dk F(k) e�2iJt cos k with F(k)=

sin2 k

sin2(2k) + ⌘4

4

(3.20)
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Figure 3.3: Atom’s excitation probability pe = |↵|2 against time (in units J�1) for increasing values
of the rescaled coupling strength ⌘ = g/J.

where we have used that both F(k) and the complex exponential are even functions of k. Func-
tion F(k) is peaked around k = ±⇡/2, the height of the peaks becoming infinite in the limit
⌘ ! 0. Hence, in the strong-hopping limit, the dominant contribution to the integral (3.20)
comes from values of k close to k = ⇡/2, the only unbound states with appreciable excitonic
component being the quasi-resonant ones. One can therefore make the approximations sin k'1,
cos k'⇡/2� k, which yields F(k)'1/[4(k�⇡/2)2+⌘4/4], and, moreover, extend the integration
range to [�1,1]. This entails:

↵u(t)' ⌘
2

⇡

Z 1

�1
dk

e2iJ(k�⇡/2)t

4(k�⇡/2)2+⌘4/4
⌘ ⌘

2

⇡

Z 1

�1
dk

e2iJtk

4k2+⌘4/4
= e�

⌘2
2 Jt (3.21)

where we made use of the Fourier-transform of a Lorentzian, which results in an exponential
function. The decay rate of pe(t) = |↵u(t)|2 is g2/J, in agreement with (2.106), obtained by the
Green’s function in pole-approximation. In the first chapter we have also found an exponential
decay for an atom in free-space and in the weak-coupling regime of a damped cavity QED. The
Markovian behaviour of pe(t) is a general feature of the dynamics of a two-level atom which is
coupled to a ’memoryless’ reservoir of field modes initially in the vacuum state. For a generic
structured bath of modes and for a generic initial condition, the atomic excitation probability
can be expressed as pe(t) = pe(0)|�(t)|2 where the function �(t) is defined as the solution of the
integrodi↵erential equation [42]:
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d
dt
�(t) = �

Z t

0
dt0⇣(t � t0)�(t0) (3.22)

corresponding to the initial condition �(0) = 1, where ⇣ denotes the two-point reservoir correla-
tion function, obtained by Fourier-transforming the spectral density ⇢(!)|g(!)|2. If the spectral
density varies very slowly with !, the corresponding correlation function ⇣(⌧) turns out to be
narrow enough and �(t) is expected not to present pronounced secondary oscillations. On the
other hand, if the spectral density is a very peaked function, as in the case of an high-Q cavity
QED with Lorentzian density of states given in (2.42), the bath is caracterized by a ⇣�function
slowly decaying in time (esponential decreasing for the CQED with Lorentzian d.o.s.). Indicat-
ing with t⇤ this characteristic (long) decay-time, it is as if the bath had memory of the atomic
state at t up to time t + t⇤. This results in pronounced revivals in the atomic probability evo-
lution, as a back-flow of information2 from the environment in which the atom decays (cf. Fig
(1.4) for the CQED example). In our case pe(0) = 1 and �(t) = ↵u(t) for ⌘ ⌧ 1. The spectral
density is g2

⇣

4J2 � !2
⌘�1/2

and, in this particular case, it is proportional to the self-energy func-
tion [cf. (2.104) with �ac = 0]. The pole approximation for the Gee(z) Green’s function matrix
element, by means of which the contour integral can be approximated as (2.105) resulting in
the exponential law (2.106), is equivalent to consider completely flat the spectral density. By
Fourier-transforming it we obtain ⇣(⌧) / �(⌧) and by substituting in (3.22), the solution for
|�(t)|2 is found to be the same exponential decay law, with the same rate. This is analogous to
the free-space atomic emission analyzed in Sec 2.2.1. Here we have generalized our discussion
on the shift-width function. A smooth enough spectral density is a su�cient condition to obtain
a Markovian evolution of pe(t) and the atom gradually releases its energy to a ��correlated in
time (memoryless) environment. In our case this occurs for very weak atom-cavity coupling
and can also be seen as result of the very-peaked Lorentzian-shape function F(k) in (3.20), rep-
resenting the excitonic component distribution of the unbound states: in the ⌘ ⌧ 1 limit, only
states with energy very close to the atomic one are involved in the atomic emission process.
As the g/J ratio is increased, secondary oscillations are introduced as shown in Figs (3.3b) and
(c). As already discussed, the amplitude ↵b in (3.13) is an oscillatory term that never exactly
vanishes for any finite ⌘ and gives rise to population trapping. In general, this occurs whenever a
pole (external or in-continuum3) of the Green’s function is associated to a bound state with non-
vanishing component on the ’starting’ state (as already seen also for the single-defect CCA in
Sec. 2.3.2, where we examined the dynamics of a single-photon initally in a defect-cavity), i.e.
a nonvanishing excitonic component in this case. Notwithstanding, as long as the ratio g/J is
not significantly larger than zero, for all practical purposes the atom releases the entire amount

2We will analyze this point better in the next chapter, by dicussing the general non-Markovian behavior of
quantum processes in open systems.

3It has been shown that bound states embedded into the band, note also as bound states in continuum (BIC), can
exist in a tight-binding structured continuum without point-like gaps provided that the interaction of the localized
state with the continuum is engineered in such a way to suppress discrete-continuum coupling at some frequencies
inside the band [26].
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of initial excitation to the field [cf. Fig. (3.3c)]. As g further approaches J [see Figs. (3.3d) and
(e)] the amount of excitation that remains trapped within the atom becomes more significant,
with pe(t) reducing to a stationary oscillation in the long-time limit. The oscillatory contribu-
tion ↵b(t), given in (3.13), has an amplitude proportional to c2

e0, that is the square value of the
excitonic component for both bound states (see 2.88). From (2.91) it can be seen as c2

e0 ranges
from 0 (for ⌘ ⌧ 1, atom decoupled) to 1/2 (for ⌘ � 1, Jaynes-Cummings limit) and, conse-
quently, ↵b(t), oscillating at frequency !0+, has amplitude ranging from zero to 1. In the latter
case the discrete eigenvalue !0+, given in (2.86), approaches to g while, from (3.17), it results
au(t) t 0 and hence a(t) t ab(t) t cos(gt): as expected, we retrieve vacuum Rabi oscillations
corresponding to the coherent interaction between the atom and the 0th cavity [see Fig. (3.3f)].
In this limit, as opposed to the case where ⌘ ⌧ 1, the free-field band ’seen’ by the emitter has
negligible width, hence an e↵ective single-mode behavior takes place. To summarize, one can
easily identify three main regimes:

(i) almost exponential decay;

(ii) non-exponential decay (showing secondary oscillations) with no significant population
trapping;

(iii) significant population trapping giving rise to fractional decay.

3.2.1.2 Field’s excitation amplitudes

The photon excitation amplitude at the xth cavity is expressed also as sum of an unbound  u(x, t)
and a bound  b(x, t) contribution (see (3.15) and (3.16)). With the help of (2.99), (2.100) and
(2.101), for N � 1, the former can be arranged in a wave-packet form as:

 u(x, t)=
⌘

⇡

Z ⇡

�⇡
dk

e�i!kt |sin k|
i⌘2 + 4| sin k| cos k

 

eikx� ⌘2ei|kx|

⌘2+4i| sin k| cos k

!

(3.23)

This describes the propagating fraction of the initial atomic excitation. Also in this case,
by using the Jacobi-Anger expansion, it is possible to put  u(x, t) in a Bessel-expansion form as
done for ↵u(t) in (3.17), the coe�cients an in this case resulting functions of x. This is su�cient
to prove that  u(x, t) decays to zero at any x for enough long times. Now we want to analyze in
details the localized fraction of the field, resulting from the spatial profile of the bound states.
We have already discussed the field localization at t ! 1 for the defect-CCA in Sec 2.3.2: the
presence of a bound state with exponential decreasing probability, associated to discrete eigen-
value, allows a fraction of the initial excitation to remain localized around the defect-cavity.
Now, from the discussion of Sec 2.3.3, we know that the two bound states associated with !0±
have also a spatial profile of the form A0e�|x|/�0 (see (2.95)), with |A0|2 ! 1/2, �0 ! 0 (and,
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Figure 3.4: Probability profiles for bound states at resonance [see (2.88)) and (2.95))], with ⌘ = 1.6
(blue dashed line) and ⌘ = 0.6 (black line). The localization length is the monotonic
decreasing function �0(⌘) given in (2.95)).

at the same time, c2
e0 ! 1/2) for ⌘ � 1. At resonance, a bound state with large excitonic

component has, at the same time, large amplitude at x = 0 and small localization length. In
Fig (3.4) are sketched two probability profiles for bound states with ⌘ = 1.6 (blue dashed line)
and ⌘ = 0.6 (black line): the higher is the coupling constant, the narrower is the probability
profile. This is in agreement with what discussed, indeed, in the ⌘ � 1 limit, the dynamics of
the initially excited atom must involves only the 0th cavity.
In Fig (3.5) we show the time evolution of the photon probability distribution along the cavity
array for the three representative values, ⌘ = 0.1 (a), ⌘ = 0.8 (b), ⌘ = 2 (c), corresponding to
regimes (i), (ii) and (iii), respectively. For exponential decay [regime (i), cf. Fig. (3.3a)], the
photon wave function slowly spreads along the array as shown Fig (3.5a) exhibiting a wiggled
profile. At long enough times, the probability to find the photon within a finite region around the
atom vanishes [see bottom panel in Fig (3.5a) which shows px at a very large time]. In the oppo-
site regime [see Fig (3.5c)], when population trapping takes place [regime (iii), cf. Fig. (3.3e)-
(f)] most of the photon wave function remains localized around the atom. Such localised light is
periodically absorbed and next reemitted by the atom as it is clear from the top-panel diagram.
In this limit, the unbound-states contribution to the field, given in (3.23), becomes negligible,
hence  (x, t) t  b(x, t) at any x and t large enough. Due to the presence of strongly localized
bound states, in the strong-coupling limit,  b(x, t) becomes strongly peaked around the central
cavity, whose corresponding probability amplitude oscillates as sin(!0+t) t sin(gt) according
to (3.16), hence most part of the field is localized close to the atom and a continuous atom-field
energy exchange goes on at angular frequency t 2g.

3.2.1.3 Photon localization without fractional decay

The bound-state contribution  b(x, t), as well as the corresponding contribution ↵b(t) to the
atomic excitation amplitude, oscillates with finite amplitude at any finite ⌘. Using (3.16), (2.89),
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(2.90) and (2.91) we can rearrange it in an exponential form as:

 b(x, t)=A e�
|x|
�0 �(t) , (3.24)

where �(t)=�i sin(!0+t) [�(t)=cos(!0+t)] for even (odd) |x|, while A and the localization length
�0 (given by (2.95) and here reported for convenience) are:

A =
⌘5

⇣

⌘4 + 2
p

⌘4 + 4 + 4
⌘

q

p

⌘4 + 4 � 2
, �0 = log

"

1
2

 

q

p

⌘2 + 4 � 2 +
q

p

⌘2 + 4 + 2
!#�1

(3.25)
In the regime (ii), as shown in Fig (3.5b), despite negligible population trapping and hence in
the presence of almost-full atomic decay, a small yet appreciable fraction of the photon wave
function remains localized in the neighborhood of the atom (central region of the top-panel
diagram). The corresponding bottom panel shows the field profile at very long times: although
most of the emitted light propagates away from the emitter, a significant photon density survives
indefinitely next to the atom. Since at long enough times the field is reduced to the localized
term  b(x, t) and the atomic amplitude to the corresponding trapped excitation amplitude ↵b(t),
both non-decaying oscillating functions representing respectively photonic and excitonic part
of the surviving excitation, it is natural to assess the relative importance of each of the two
contributions. In order to do this, it is convenient to define (at long times) the time-averaged
localized mean photon energy as "̄ f loc =

P

x | b(x, t)|2 (in units of the atomic frequency) and,
correspondingly, the time-averaged trapped mean atomic energy as "atr = |↵b(t)|2. Clearly the
time average of sin2(!0+t) and cos2(!0+t) in | b(x, t)|2 and |↵b(t)|2 are equal to 1/2 and the
averaged energies read:
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"̄atr = |↵b(t)|2 = 2c4
e0 =

⌘8

2
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p

⌘4 + 4 + 4
⌘2 (3.27)

The first is equivalent to the time-averaged probability that a photon is found at |x| . �0

at long times and it is obtained as the N ! 1 limit for an N-sites array whose central cavity
(corrisponding to the 0th site) is coupled to the atom. A major feature in (3.26) and (3.27) is the
di↵erent functional behaviour of "̄ f loc and "̄atr. In particular, for small ⌘, "̄ f loc⇠⌘4 while "̄atr⇠⌘8.
Such di↵erent scaling is evident in Fig (3.6), where we plot "̄ f loc and "̄atr vs ⌘. Either function
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Figure 3.5: Space-time diagram of the photon probability distribution function px(t) along the cav-
ity array (top panels) for ⌘ = 0.1 (a), ⌘ = 0.8 (b), ⌘ = 2 (c). The bottom panels
display px at a very large time, specifically Jt = 350 (a) and Jt = 95.5 [(b) and (c)].
Throughout, time is measured in units of J�1.
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Figure 3.6: Time-averaged trapped mean atomic energy "̄atr (black solid line) and localized mean
field energy "̄ f loc (blue dashed) against ⌘ = g/J. For comparison, we also plot the be-
havior of !0+�2J (in units of J and setting !c = 0), as given by (2.86), which measures
the occurrence of bound states. "̄atr and "̄ f loc are in units of the atomic frequency.

vanishes at the origin and saturates to 1/2 for ⌘�1 corresponding to the expected behaviours in
regime (i) and (iii), respectively. Moreover, from Fig (3.6), it is clear that the averaged energy
of the localized field in general exceeds the atomic one and, compared to "̄atr, converges to 1/2
more quickly. Thus, it is possible to identify a particular range for ⌘ within which, at long
times, significant field localization occurs but only a negligible fraction of the localized field
energy is periodically returned to the atom. Clearly there are not mathematical thresholds which
strictly define the onset of atomic excitation-trapping or field localization. However, because
of the di↵erent scaling law, their behaviours at intermediate values are quite di↵erent, therefore
we can identify physical thresholds beyond which each function is significantly di↵erent from
zero. These thresholds are ⌘ ' 0.4 for "̄ f loc and ⌘ ' 0.9 for "̄atr. This explains why as ⌘ grows
from zero, field localization becomes significant before population trapping. As a consequence,
within this range, the time-oscillating profile of the localized field entailed by the sinusoidal
functions of !0+t [featured in �(t)] is essentially due to an energy redistribution of the field
among the cavities next to x=0. This behaviour can be appreciated by a closer inspection of the
central region around x=0 in the space-time diagrams in Figs (3.5b) and (c), which we display
on a magnified scale in Figs (3.7a) and (b), respectively. In the latter case, as remarked above,
the overall field intensity exhibits a periodic modulation (due to full periodic absorption of the
atom). In the former case, instead, the overall intensity is nearly constant in time but periodically
undergoes a substantial redistribution in space as witnessed by the long-time checkerboard-like
pattern in Fig (3.7a).
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Figure 3.7: Space-time diagram of the photon probability distribution function px in the vicinity of
x = 0 for ⌘ = 0.8 (a) and ⌘ = 2 (b). Time is measured in units of J�1.

Figure 3.8: Photon probability distribution for ⌘ = 0.9 and �/J = 0 (a) and �/J = 0.1 (b) at time
Jt = 30. The latter corresponds to �t = 3. Note that the scale of the px axis in (b) is
smaller than the corresponding one in (a).

3.2.1.4 E↵ect of dissipation

To account for cavity leakage, in line with standard methods used in the literature, we add to
Hamiltonian (2.76) a non-Hermitian term Ĥleak = �i�

P

x â†xâx, where � is the decay rate of
each cavity. To estimate how the e↵ect discussed above (occurrence of photon localization in
absence of fractional decay) is a↵ected, we consider the paradigmatic case where ⌘ = 0.9 and
�/J = 0.1 (hence dissipation is rather significant). In Fig (3.8) we plot the distribution of the
photon probability along the array. For comparison, the same function at the same time in the
lossless case is also displayed. Clearly, the dominant e↵ect of dissipation consists of a rescaling
of the photon probability, which is expected as a consequence of the leakage. Remarkably,
though, the changes in the function shape are minor and the photon localization around the
atom’s location is still well evident. Correspondingly, for the same values of the parameters,
the atomic excitation probability exhibits a full decay (not shown), which is in fact complete at
Jt ' 10 [see also Fig (3.3d)]. Therefore, on a qualitative ground and as long as the array has not
decayed to the vacuum state, the presence of dissipation does not spoil the e↵ect that photon
localization occurs in absence of fractional decay. For di↵erent values of the parameters, we
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numerically observed that, unless �/J is quite high, dissipation has in general little e↵ect on the
shape of the photon’s probability distribution function. A systematic comprehensive analysis of
the e↵ect of dissipation is beyond the goals of the thesis.

3.2.2 Detuned atom-cavity coupling

It is known that an atom strongly detuned from a cavity-mode does not exchange energy with it.
As discussed in Chap.1, for large detuning, the atomic probability amplitude oscillates in time
with a small amplitude around a value close to unity. Hence, in the limit of very large detuning
(dispersive regime) the atom does not decay at all.
Here we analyze the general behaviour, as a function of the atom-cavity detuning, of the time-
averaged energies "̄atr and "̄ f loc we have introduced above. We expect that the atomic trapped
energy, for a given ⌘, increases more quickly than the corresponding localized energy for in-
creasing values of the detuning. Indeed, for a very far-detuned interaction, the atom cannot
release energy to the field. In Sec 2.3.3 we have discussed the general expressions of the bound
states, given by (2.93), and we have expressed the localization lengths, given in (2.94), as a
function of the eigenvalues !± which, in turn, are functions of g, J and �ac = !a � !c (the en-
ergy scale is defined here considering !a = 0). It should be stressed that the RW approximation
holds if g, �ac ⌧ {!c,!a} and J ⌧ !c.
In the following the atom-cavity detuning is indicated with � and its rescaled value with �̃ = �/J.
As remarked above, the eigenenergies corrspond to the discrete poles of the Green’s function,
i.e. the (real) solutions of quartic equation (2.85). Their explicit expressions are reported in Ap-
pendix C. By means of these solutions, using (2.94), in Figs (3.9a) and (c) we plot the lengths
�+ and �� associated, respectively, with | +i and | �i, as a function of ⌘ and �̃. It can be seen
that, if � > 0, the localization length associated with | +i is smaller than the corresponding
value at resonance (given in (3.25)), while �� is larger than �0. Moreover, Figs (3.9b) and (d)
show also the behaviour of the squared excitonic components |ce±|2 (cf. (2.94)) as a function
of ⌘ and �̃. They are also unbalanced so that, as �̃ grows from zero, the bound state ’+’ (the
bound state ’-’) has |ce+|2 (|ce�|2) larger than (smaller than) the corresponding value at resonance
c2

e0 (given in (2.91)). Hence, by increasing the detuning (� > 0) for a given ⌘, | +i will show
a more lolcalized profile and, at the same time, its excitonic component will increase and | �i
will exhibit an opposite behaviour. However, Fig (3.9) shows also that localization lengths as
well as excitonic components of | +i and | �i are not simmetrically unbalanced. For � > 0,
�+ and |ce+|2 show a rapid transition, respectively to zero and one, when � grows beyond the
band-edge value 2J. This variation is the more rapid, the smaller the coupling. On the other
hand �� and |ce�|2 exhibit a di↵erent behaviour, showing always a smooth variation within the
�̃ > 0-semiaxis for any ⌘. For � < 0 the situation is reversed (not shown in figure), indeed,
the negative threshold is � = �2J and the ’-’ bound state has localization length and excitonic
component which vary quickly beyond the negative band-edge. This is a reflection of the be-
haviour of the two eigenvalues !±. These are plotted in Fig (3.10), referred to the center of the
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Figure 3.9: Localization lengths of the bound states and square values of the excitonic components
as a function of ⌘ and �̃: �+ (a), �� (c), |ce+|2 (b), |ce�|2 (d).
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Figure 3.10: Discrete eigenvalues !+ and !� in units of J referred to the center of the band, real
solutions of (2.85), as a function of the detuning for ⌘ = 0.2 (blue dashed), ⌘ = 1.5
(red dotted) and ⌘ = 2 (black).

band, when �̃ varies around the positive band-edge, for di↵erent values of ⌘. When ⌘ is small
enough, !+ reaches its minimum value at �̃ t 2 and, under this threshold, it is quickly stopped
at !+ t 2J. For higher values of ⌘, when the detuning is decreased under �̃ = 2, it approaches
the corresponding resonant-value more gradually. The behaviour of !� for negative detuning
around �̃ = �2 is analogous. In Fig (3.10) the negative eigenvalue is also shown. It smoothly
crosses the threshold �̃ = 2 and approaches the negative band-edge value for detuning large
enough. In the limit �̃ � ⌘ (dispersive regime) we found a purely excitonic state | +i (with
�+ = 0) and a completely delocalized state | �i (with ce� = 0) or opposite situation for negative
detuning.
Here we want to analyze the general behaviour of "̄atr and "̄ f loc, therefore we are not interested
in the propagating fraction of the excitation. So we calculate the state |�(t)i with an expression
analogous to (3.10), but only including the bound-states contributions to the evolution. We start
with the same initial condition |�(0)i = |ei, hence the polaritonic state at time t reads:

|�b(t)i =
X

µ=±
c⇤eµ e�i!µt| µi (3.28)

with bound-states | ±i given in (2.93). Thus, the atomic amplitude reads:
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where, from (2.94), we took into account the relation ce± = gA±/!±. By projecting (3.28) onto
|xi, the expression for the bound-states contribution to the field amplitude reads:

 b(x, t) = hx|�b(t)i =
" |A+|2
!+

e
⇣

� |x|�+ �i!+t
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+
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(3.30)

Following the definition of "̄atr given in (3.27) for the resonant case, we obtain:

✏̄atr = |↵b(t)|2 = ⌘4
"

�

�

�

�

�

A+
!+

�

�

�

�

�

4

+

�

�

�

�

�

A�
!�

�

�

�

�

�

4#

(3.31)

Here the time-average of |↵b(t)|2 is obtained from (3.29) which includes oscillating terms with
zero time-average. Thus, the trapped energy depends on |A±| and !± which are, in turn, func-
tions of ⌘ and �. In the same way, following the definition of "̄ f loc given in (3.26), from (3.30)
the field-localized mean energy reads:

✏̄ f loc !
+1
X

x=�1
| b(x, t)|2 = ⌘2
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where, also in this case, the functional dependence on ⌘ and on � is implicitly contained in |A±|,
�± (given in (2.94)) and !±. Using for the latter ones the exact solutions of (2.85) (reported in
Appendix C), we plot in Fig (3.11) the behaviour of "̄ f loc and "̄atr and their ratio as a function
of ⌘ and �̃. As expected, the trapped atomic energy turns out to be a monotonic function of
both ⌘ and �̃ (Fig (3.11b)). Setting �̃ > 2, it results "̄atr t 1 when the coupling is small enough.
By increasing ⌘ from zero, the trapped energy approaches 1/2 (i.e. its saturation value of the
strong-coupling resonant case) when ⌘ � �. On the other hand, for �̃ < 2, the trapped energy
shows a behaviour similar to that of the resonant case, approaching 1/2 from zero when ⌘ is
increased. We can see that "̄atr(�̃) for very low coupling is a ’step-function’ in the limit ⌘ ! 0
(clearly, the singular case ⌘ = 0 is not included), showing a sudden variation around �̃ = 2. This
behaviour reflects that of the localization length and excitonic-component of | +i plotted in Fig
(3.9b), which, at small ⌘, provides the main contribution to the atomic dynamics and it arises
from the mathematical properties of !±. In this case, indeed, the condition �̃ ? 2 determines if
the atom can release its energy to the field or less. At very small coupling and �̃ > 2 the atomic
excitation is locked and the system works in the dispersive regime, i.e. the atom exchanges a
small fraction of its energy, at long times, only with the central cavity and it oscillates with a
very small amplitude around a value close to one (see (1.12)), at the e↵ective-Raby frequency
g0 =

p

g2 + �2/4 t �/2 [cf. Fig 1.3]. For �̃ < 2, instead, the atomic frequency falls inside the
photonic band and the atom will release entirely its excitation to the field showing an alomst
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Figure 3.11: 3D Plots of ✏̄ f loc (a) and ✏̄atr (b) for 0.1 < ⌘ < 2, 0 < �̃ < 3. Contour plot of ✏̄ f loc/✏̄atr
for 0.4 < ⌘ < 0.8, 0 < �̃ < 1 (c).

markovian behaviour. Setting ⌘ to a generic value, the two opposite situations of resonant and
dispersive coupling are anyhow reached but now, the transition to the dispersive regime occurs
more gradually. As shown in (Fig (3.11b)), this transition is the more slow the larger the cou-
pling. Clearly, at any finite ⌘, the release of atomic energy to the localized field is possible even
if �̃ > 2 because the two bound states have nonvanishing photonic components. This is a con-
sequence of the fact that, at any finite coupling, the two discrete eigenvalues are not collapsed
into the band. In Fig (3.11a) we plot the localized mean energy as a function of ⌘ and �̃. In
this case the profile of "̄ f loc vs ⌘ is monotonic too, but its behaviour as a function of �̃ is not
monotonic for ⌘ small enough. When the coupling is not too large (approximately less then
1.7), the localized energy against �̃ increases until reaching a maximum and then, by further
increasing the detuning, it drops to zero. This is also shown in Fig (3.12a) for ⌘ = 0.7, where
the point at which the two energies are equal roughly corresponds to the maximum of "̄ f loc. Fig
(3.12b) shows, for ⌘ = 2, a monotonic behaviour of both "̄ f loc and ✏̄atr. For ⌘ small enough,
the function "̄ f loc(�̃) is very peaked around �̃ = 2, correspondingly to the rapid transition of the
atomic trapped energy. This reflects the sudden drop of �+ when �̃ crosses the band-edge value
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Figure 3.12: Plots of ✏̄ f loc and ✏̄atr as a function of �̃ for ⌘ = 0.7 (a) and ⌘ = 2 (b).

[see Fig (3.9a)], indeed the excitonic bound state (| +i for � > 0), at small ⌘, shows a rapid
transition to a completely localized state.
Population trapping as a function of the atom-field detuning has been examined for several
models of photonic band gab structures [29, 30, 33]. John and Wang [32] proposed for the first
time a simple qualitative model for an infinite PBG structure based on the idea of a spherical
Brillouin zone. They introduced an isotropic model, assuming that a propagating photon experi-
ences the same periodic potential no matter what the polarization or the direction of propagation
is. This model is characterized by a semi-infinite band with divergent d.o.s. at the band edge.
When the atomic frequency is chosen at the band-edge, a substantial fraction of the population
in the initial excited atomic state remains trapped and Pe(t) ! 4/9 at long times. This pop-
ulation trapping is significantly reduced if the atomic fraquency falls inside the band (� > 0),
while Pe(t) ! 1 for atomic transition far enough from the band-edge (� < 0) [30]. Our model,
in the ⌘ ⌧ 1 limit, shows qualitatively a similar behaviour. In this case, indeed, if the atomic
frequency is chosen near the positive band-edge (�̃ > 2), the long time dynamics of the atomic
and field excitation is dominated by the ’+’ bound state and the behaviour is similar to a corre-
sponding semi-infinite band model (the other bound state plays no role). In general, in a system
characterized by a structured reservoir with divergent spectral density, external bound states
with significant excitonic component can arise even at small coupling, by suitably choosing the
atomic frequency near or outside the band-edge.
In Fig (3.11c) is shown a contour plot for the ratio ✏̄ f loc/✏̄atr as a function of ⌘ and �̃. The values
of ⌘ are chosen within the range for which, at resonance, there is photon localization with negli-
gible population trapping. The ratio is always a monotonic decreasing function of both ⌘ and �̃,
hence, although for a given (not too large) value of ⌘ it is possible to localize more energy into
the field by adjusting the detuning, correspondingly an increase of ✏̄atr will occur so that their
ratio is decreased [see also Fig (3.12a)]. The contour plot shows that the e↵ect of localization
without population trapping is present even if the atom is detuned from the cavity mode but, as
� increases, the range of ⌘ for which the e↵ect persists is shrinked.
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3.3 Single photon scattering

Now we briefly analyze the coherent transport of a single photon, which propagates through the
array from an extreme toward the center and is scattered by the TLS. By setting ⌘ and adjusting
the detuning, the atom can be seen as a controllable quantum switch for the photon coherent
transport.
We emphasize that on energetic grounds a single photon cannot excite the photon-atom bound
states described above and, therefore, these states are of no relevance in single-photon scattering
calculations. The TLS (partially) absorbs an incoming single photon and a decomposition of the
system’s initial state into the (polaritonic) single-particle eigenstates given in (2.98), with x�
and e�components respectively in (2.99) and (2.101), does not involve the bound states. Thus,
the excited TLS will eventually decay into its ground state. The bound states can be energeti-
cally reached via multiphoton scattering processes. For example, in [19] is demonstrated that
when a propagating two-photon wave packet interacts with the TLS, a sizable fraction of the
photon population becomes trapped at the TLS site. In other words, once the TLS is apprecia-
bly excited by one of the incoming photons, the remaining photon sees a modified (saturated)
TLS and is thus (partially) scattered into the hitherto unreachable bound photon-atom states via
multiparticle scattering processes. After the scattering is complete, the bound states are again
decoupled from the continuum and, thus, cannot decay.
The reflection amplitude r(k) is given in (2.100) and the corresponding reflection coe�cient
R(k) = |r(k)|2 is maximum, at resonance, for k = ±⇡/2, i.e for a photon resonant with the atomic
frequency (! = 0, with the energy scales adopted here) that results, hence, completely reflected
by the atom. In this case the TLS behaves as a perfect mirror, therefore as proposed in [17], a
TLS with tunable frequency can be used as a quantum switch to control the coherent transport
of photons.
Figs (3.13a) and (b) show a phase diagram of R(k), for two non-resonant values of k, as a func-
tion of ⌘ and �̃. The scattering process, as it can be seen, degenerates to a total reflection for
each k in the limit ⌘ � 1 (in the white area the reflection is nearly one). In this limit there is no
energy exchange between free propagating (single) photons and the atom because all unbound
states have almost vanishing excitonic components (cf. (2.101)).
In Fig (3.14a) and (b) are shown the reflection coe�cients as a function of k, respectively at
resonance and with �̃ = �1. Because of the nonlinear dispersion, the line shape of the reflection
coe�cient results more general with respect the Breit-Wigner or Fano resonances [17]. For de-
tuning small enough, R(k) fits well the Breit Wigner line shape in the region k t ±⇡/2, indeed
by expanding the cosine around k = ±⇡/2 we have:

r(k) t
ig2

2J(�� � ⇡J ± 2Jk) � ig2 (3.33)

whose square value represents a B-W resonance with line width proportional to ⌘4.
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Figure 3.13: Contour plots of the reflection coe�cient R(k) = |r(k)|2 [see (2.100)] as a function of
⌘ and �̃ for k = ⇡/3 (a) and k = ⇡/15 (b).

Figure 3.14: Reflection coe�cient R(k) = |r(k)|2 (black solid) and transmission (blue dotted) as a
function of k for �̃ = 0 (a) and �̃ = �1 (b).
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Chapter 4

Static disorder in Coupled Cavity Arrays

It is well-known that electrons in a crystalline solid show electrical conductivity thanks to a
constructive interference among various scattering trajectories. The wave nature of the electron
gives rise to allowed energy bands and forbidden gaps for its motion in the solid. Disorder in
the crystal hinders electrical conductivity, and for some energies the electronic wavefunctions
are localized in space. The phenomenon of localization, being, in the first instance, a prop-
erty of the states in random quantum mechanical systems, has its most striking experimental
manifestation in the transport properties of condensed matter systems. Indeed, the one-particle
wavefunctions in macroscopic, disordered quantum systems at the absolute zero can be expo-
nentially localized. This means that, on average, their amplitudes are exponentially decaying
in space at infinity. This remarkable phenomenon, first discussed by Philip W. Anderson in
1958 [60] but fully appreciated only in the last decades, arises from wave interference, an ef-
fect common to both photons and electrons. Beyond a critical amount of impurity scattering,
Anderson discovered, the di↵usive, zigzag motion of the electron is not just reduced, it can
come to a complete halt. The electron becomes trapped and the conductivity vanishes. This
e↵ect, known as Anderson localization, is a general wave phenomenon that applies also to the
transport of electromagnetic waves, acoustic waves, spin waves, etc. It has also been observed
by localization of a Bose-Einstein condensate in a 1D disordered optical potential [78], by lo-
calization of light in an optical fiber medium [73], in certain dielectric microstructures [74] and
strongly confined Anderson-localized cavity modes are been generated by deliberately adding
disorder to photonic crystal waveguides [79]. Anderson localization finds its origin in the wave
interference between multiple-scattering paths. In the strong scattering limit, the distructive in-
terferences can completely halt the waves inside the disordered medium.
In Sec. 2.3.2 we have seen that an uniform CCA whose perfect periodicity has been broken at
just one site, where the cavity mode has a frequency di↵erent from the others, has a localized
eigenstate, associated with an eigenvalue out of the band, whose spatial extension depends on
the absolute-value di↵erence between the defect-mode frequency and the array’s modes one.
The defect-cavity acts as a scattering center and, if it is initially excited, there will be fractional
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decay and photon localization with exponential profile, at long times, around the defect. In
Chap.3 we have investigated the photon localization and population trapping which arise from
the emission of a TLS coupled to the central cavity of an uniform CCA. In this case the atom
acts as a scatterer for a photon propagating through the array and impinging on it. Localiza-
tion and trapping of the polaritonic excitation, taking place when the atom is initially excited,
are phenomena mathematically related to the presence of a pair of localized states, both with
exponential profile qualitatively similar to the defect-CCA’s bound state. If now we couple the
atom, initially excited, to an infinite CCA with a defect-cavity located in a generic site, we ex-
pect that a fraction of the atomic excitation will be back-scattered by the defect and will excite
again the atom and so on. In this way we should expect a significant revival of the atomic pop-
ulation even in the strong-hopping limit in which, for an uniform CCA, the atom would decay
showing a nearly Markovian behaviour. Of course, the frequency of these secondary revivals
will depend on the distance between the atom and the defect-cavity, i.e. on the time taken by
the atomic excitation to reach the defect and come back to the atom. If we now consider a
completely disordered infinite CCA, with random cavity frequencies statistically independent
on the position (but uniform in the hopping rate), each cavity will behave as a defect and will
back-scatter a fraction of the atomic excitation impinging on it. In this way, for strong enough
disorder, there will be incoherent sum of excitation amplitudes in almost all sites except in the
central one, from which the atom would begin to decay eventually releasing its energy to the
field if the system was uniform. In other words, the atomic strong-hopping Markovian decay is
prevented and, for strong enough disorder, the atom can’t get rid of its excitation.
As we will see below, one of the main aspects of one-dimensional Anderson Localization is
that, in presence of static disorder, all the eigenstates are localized and exhibit a probability
profile, in x�representation, the more localized the stronger the disorder.
This is the scenario of Anderson localization for Coupled Cavity Arrays we shall analyze in
this chapter. More precisely here we study the atomic emission, in the strong-hopping limit,
for di↵erent strengths of static disorder described by random cavity-mode frequencies with
normal probability distribution. Using the open quantum systems approach, we analyze, from
a more general perspective, the Non-Markovianity for the coupling between the TLS and the
disordered-CCA. The latter performs a particular environment, characterized by a given set of
eigenmodes whose energy and position-distribution depend on the disorder strength. The mea-
sure for the Non-Markovianity of the quantum process, which we will introduce in Sec. 4.2,
quantifies the complexive back-flow of information from the environment to the system during
the entire dynamics. This quantity does not depend on the initial atomic state, but it represents
a general property of the quantum dynamics arising from the TLS-environment coupling and
vanishes for Markovian processes. In this latter case (never exactly verified if the environment
consists of a CCA, either uniform or disordered) the information ’stored’ into the TLS state will
always flow away from the system to the environment and all possible atomic initial states will
be brought into a single common final state that, in all cases described by the general Fano-
Anderson Hamiltonian (1.1) with an almost-flat spectral density, is the ground one. We link the
Non-Markovianity measure with a representative quantity of the disorder strength of the CCA,



4.1. ANDERSON LOCALIZATION IN COUPLED CAVITY ARRAYS 77

which we introduce in the next section, that measures the spatial extention of the near-resonant
eigenstate for a given dirorder realization. In this way we demonstrate that the quantum evolu-
tion of an atom interacting with a disordered array, for small enough disorder and by averaging
over many realizations with a given standard deviation, is comparable to that for which the envi-
ronment consists of an open (� , 0) non-dissipative single-mode cavity with a suitable volume
(i.e. with a suitable coupling constant).

4.1 Anderson Localization in Coupled Cavity Arrays

In what follows we describe a model which accounts for the disordered CCA, described by the
following 1D Anderson Hamiltonian with uniform hopping and random local frequencies:

Ĥ =
+1
X

x=�1
!xâ†xâx + J

+1
X

x=�1

⇣

â†xâx+1 + h.c.
⌘

(4.1)

In Fig (4.1) is sketched the array with static disorder, in which the cavity at the x�site has a
single-mode of random frequency !x, statistically independent on the position. Our analysis
will be restricted to the strong-hopping limit of the TLS-CCA coupling, so that the eigenfunc-
tions of the disordered bare array are not substantially modified. The disorder may be due to an
imperfect production technique (in figure di↵erent cavity-volumes are associated with di↵erent
mode-frequencies) or may be deliberately added [79].
Analogous models were proposed, in its pioneeristic work dating back to 1958 [60], by Philip
W. Anderson to study the di↵usion of an electron in 1D, 2D and 3D crystalline structures. What
he found was that even weak potential perturbations causes a suppression of electronic di↵u-
sion. He postulated that a disordered potential will cause the plane wave like Bloch states of the
non-disordered system to scatter and destructively interfere with one another. This interference
causes the new eigenstates of the system to be spatially localized in the material. As a conse-
quence, an electron that occupies a localized state will not be able to conduct through the system.
This is the phenomenon of Anderson localization we have introduced above and in solid-state
physics it is due to the presence of crystalline impurities, topological defects, vacancies, dis-
locations etc. Moreover, Anderson showed that the dimensionality of the system and strength
of the disorder play a key role. In 1D and 2D, for arbitrary disorder, the space-probability dis-
tribution for a single excitation remains localized within a region whose dimension depends
on the disorder. In 3D, instead, for small enough disorder, the probability distribution di↵uses
in time. Three-dimensional systems show regions, in energy space, of localized and extended
states that are sharply separated at particular values of energy. These energies are referred to
as mobility edges 1. Much progress in understanding localization was due to the development
of an one parameter scaling theory [65] which was based on the earlier work by Thouless on

1This makes possible the Anderson quantum phase transition in certain three-dimensional solids.
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Figure 4.1: Coupled cavity array with static disorder. The single-mode cavity frequencies !x are
random variables statistically independent on the position. The random distribution
of the frequencies may be due to an imperfect fabrication technique that gives rise to
cavities with di↵erent mode-volumes. The hopping rate is assumed uniform.

the quantum conduction in thin wires [64]. The theory describes the flow of the dimensionless
conductance G(L) under rescaling:

�(G) =
d logG(L)

d log L
(4.2)

where L is the linear size of the system and �(G) is independent on L but depends on the model
studied. Thouless point is that Anderson localization sets in when the energy level widths are
smaller than the level separation. The ratio of both energies is the dimensionless Thouless
conductance G(L), so the condition G < 1 represents a criterion for Anderson localization. The
one-parameter scaling theory predicts that, when the time-reversal and spin-rotation symmetries
are preserved (in the absence of magnetic field and spin-orbit coupling, for condensed-matter
systems), in 1D and 2D all one-particle states are localized, and therefore no mobility edge
exists, even if disorder is very weak.

4.1.1 Quantitative description of localization for the 1D Anderson Hamil-
tonian

The tight-binding Anderson Hamiltonian (4.1), describing several one-dimensional systems in-
cluding the disordered CCA, exhibits localized eigenstates for any kind of disorder with arbi-
trary strength. If, in the single excitation subspace, cx is the probability amplitude at the xth site
for a generic eigenstate of energy E, the time-independent Schrödinger equation reads:

Ecx = !xcx + J (cx+1 + cx�1) (4.3)

It is possible to prove that the amplitudes cx show the asymptotic behaviour:

cx = fxe�|x|/� (4.4)
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where fx is a random function of the position and, in the limit of zero disorder, for each eigen-
state �! 1. This is an intuitive but not very usefull definition of localization length.
For 1D systems the localization length may be calculated from the limiting behaviour of prod-
ucts of random matricies [66, 68]. This method provides, at the same time, a proof that each
eigenstate has a localized profiles in presence of arbitrary disorder. It is an equivalent represen-
tation of the Schrödinger equation (4.3) and is based on the Tranfer Matrix defined as follows:

"

cn+1

cn

#

= T̂n

"

cn

cn�1

#

(4.5)

where the transfer matrix for the eigenstate with energy E is given by:

T̂n =

"

(E � !n)/J �1
1 0

#

(4.6)

in which the!ns are the random frequencies for each cavity and (4.3) can be derived by carrying
out the matrix multiplication in (4.5). For an (N + 1)�sites array we can calculate the total
transfer matrix across the entire array by successive matrix multiplications:

Q̂N = T̂1T̂2T̂3...T̂N (4.7)

that satisfies the theorem of Oseledets [61], i.e. there exists a limiting matrix for the infinite
array:

⌦̂ = lim
N!1

h

Q̂N Q̂†N
i1/(2N)

(4.8)

For 1D systems T̂n, Q̂N and ⌦̂ are 2⇥ 2 matricies. The two eigenvalues of the limiting matrix ⌦̂
are inverses each other and we refer to these as e±�̃, where ±�̃ are the characteristic Lyapunov
exponents of Q̂N in the limiting case. In general, the smallest of these eventually determines the
slowest possible exponential increase of the state for x ! 1. To calculate the generic pair of
amplitudes (cx, cx�1) for the given eigenstate using the transfer matricies, we choose the initial
pair (c1, c0) = (1, 0), the choice being arbitrary. Using (4.6) and (4.7) it is possible to show that
the final vector can then be related to the lowest Lyapunov exponent (the negative one) by [68]:

�2�̃(E) = lim
x!1

1
x

log
⇣

c2
x + c2

x�1

⌘

(4.9)

This means that the amplitudes cx of the eigenstate of energy E are exponentially decreasing for
x ! 1 with characteristic length �̃�1(E) and it is possible to identify this with the localization
length of the eigenstate 2.

2This is proven to be a self-averaging quantity
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Knowledge of the time-independent Green’s function provides another way to define the local-
ization length for a given eigenstate and to relate it to the spectral properties of the system. The
absolute square of the Green’s function matrix element G(x, x0; E) represents the probability for
the transition of an excitation of energy E from the site x to x0. This is also referred as trans-
mission probability and, in all cases in which it decays exponentially for large distances, it may
be used to define the localization length at energy E as follows:

1
�
= � lim

N!1
1

2N
log

�

�

�G+(1,N; E)
�

�

�

2 (4.10)

where G+(1,N; E) is the analytic continuation of the Green’s function between the sites 1 and
N as defined in (2.5) and the localization length so obtained is always finite in 1D disordered
systems. Moreover, for a finite discrete system, the matrix element G(1,N; z) has a pole for each
eigenvalue Ei whose residue is ci

1ci
N . In this way Thouless calculated the localization length3 of

the j�th eigenstate as its fall-o↵ distance in the limiting case [63]:

��1
j = lim

N!1
1

N � 1

X

i, j

log
⇣

✏ j � ✏i

⌘

(4.11)

in which ✏i are the eigenvalues in units of J. This formula is very useful to compute numerically
the localization lengths. For a long statistically homogeneous array the sum over states can be
replaced by an integral over the density of states and the localization length reads:

��1(E) =
Z 1

�1
⇢(z) log (E � z) dz (4.12)

If the Green’s function is known (or can be numerically calculated), it is possible to calculate
⇢(z) using the following useful expression [90]:

⇢(z) = �1
⇡
=m{Tr[Ĝ+(z)]} (4.13)

The parameter that we will use in the following, characterizing the localization of eigen-
states, is the inverse partecipation number or inverse partecipation ratio [67]. It is a measure of
the portion of space where the amplitude of the eigenfunction di↵ers markedly from zero and,
for a given normalized eigenstate with x�amplitudes cx = hx| i, it is defined as:

IP =
N

X

x=1

|cx|4 (4.14)

3The general formula is referred to 1D disordered systems with non-uniform hopping.
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where N is the total number of sites and 1/N  IP  1. For completely extended eigenstates,
such as in the case of the uniform CCA with cyclic boundary conditions, IP = 1/N since
the eigenfunction is evenly divided over the entire array. The opposite limit is reached by an
eigenfunction whose x�representation is a ��Dirac centered on a given site. This is the case
of the 1D Anderson Hamiltonian (4.1) with frequencies !x randomly selected from a generic
distribution in the range [�W,W] (for example an uniform, normal or Cauchy distribution) in the
limit W/J � 1. As mentioned above, a disordered 1D system, described by a tight-binding-like
Hamiltonian, shows Anderson localization for arbitrary disorder and its eigenstates will become
the more localized the larger is the disorder strength W/J. Thus, in the limit W/J � 1, each of
them shows a ��Dirac profile (each eigenstate being centered on a di↵erent site), indeed when
J ! 0 the Anderson Hamiltonian (4.1) is diagonal in the x�representation and there is no longer
photon hopping. In this case all eigenstates have IP = 1 and the corresponding eigenvalues
coincide with the disordered mode-frequencies. The density of states of the disordered CCA
can be obtained, for example, by numerical computation of the Green’s function and by means
of (4.13). In general, the dirorder removes the divergences at E = ±2J of the uniform d.o.s.,
given in (2.60), and states with energy |E| > 2J begin to appear.
In what follows we will use only normal distributions to simulate the disordered CCA, i.e. we
consider the random frequencies !x distributed with gaussian probability density independent
on the position (uncorrelated disorder), given by:

P(!) =
1

�
p

2⇡
e�

!2

2�2 (4.15)

where � is the standard deviation for a given disorder realization and < !x >= 0, i.e. the
distribution is centered on the band center value of the uniform CCA. In general, for not too
strong disorder, the resulting band of eigenvalues, as well as the density of states in the band
central region, only deviates slightly from the corresponding quantities of a perfectly ordered
array. In Fig (4.2) the disordered d.o.s., obtained by a numerical computation with �/J = 1,
is compared with the corresponding function (2.60) of the uniform CCA. They almost coincide
around the band center, but the disordered d.o.s vanishes for large energies, showing two tails at
|E| > 2J. Fig (4.3a) and (b) show the probabability-amplitude profiles for three eigenfunctions
and the corresponding eigenvalues band obtained by numerical diagonalization of Hamiltonian
(4.1) with N = 200 for two realizations of the gaussian disorder, characterized by standard
deviations � = 0.1 (a) and � = 1 (b) in units of J. Several eigenmodes with eigenvalues near
the edges of the band become exponentially localized in space with localization length smaller
than the near band-center modes [70, 75], as shown in insets (1) and (2) of Fig (4.3a). For
low enough disorder, the eigenfunctions near the band center remain almost extended inside the
finite system [see Fig (4.3a), inset 3], i.e. they have IP t 1/N. These modes will be localized
in an infinite system, but on a much larger length scale. As the disorder strength is increased,
a larger fraction of the modes becomes localized within the finite array and for a given N,
when �/J is large enough, all eigenfunctions will show a localized profile within the N sites,
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Figure 4.2: Numerical computation of the density of states for a disordered CCA with �/J = 1
(black dots). The red line plots the corresponding d.o.s. of the uniform CCA, as given
in (2.60), with J = 1 and corrected by a constant factor. From [80].

as shown in Fig (4.3b). As remarked above, they will be equally localized, each on a di↵erent
site, with IP t 1 when �/J � 1. We can justify this behaviour by means of (4.12) in which
the asymptotic vanishing profile of the disordered d.o.s. must be considered. Alternatively, we
can see that, for the state with maximum rescaled eigenvalue ✏M and N finite, the sum in (4.11)
takes its maximum value, thus the localization length �M is minimum. Moreover, we can see
that localized eigenfunctions near the top of the band are flat phased, i.e. their wave amplitude
is in phase at all sites [see insets (2) of Fig (4.3a) and (b)]; while localized eigenmodes at
the bottom of the band are staggered [cf. insets (1) of both figures], i.e. their wave function’s
amplitude has a ⇡ phase flip between adjacent sites. Notably, these localized eigenmodes are
localized at well-separated regions in space and have a similar width.

4.1.2 TLS emission into the disordered-CCA environment

Now we focus on the atomic emission into the disordered CCA sketched in Fig (4.1), where
we consider the atom coupled to the central cavity of the array. Here also we present numerical
computations of both atomic probability and field evolution considering the initial atom-field
state |�(0)i = |ei. In order to describe the coupling between the TLS and the disordered CCA,
we express the Anderson Hamiltonian (4.1) in the single excitation subspace. The coupling
term in RW approximation is Ĥac, already introduced in (2.77). Thus, the total Hamiltonian in
the x�representation reads:
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Figure 4.3: Eigenvalues band and x�amplitude profiles for three eigenstates obtained by numerical
diagonalization of Hamiltonian (4.1) with N = 200 for two realizations of the gaussian
disorder, characterized by standard deviations � = 0.1 (a) and � = 1 (b). The eigen-
ergies are in units of J. The band still shows a cosine-shaped profile for weak disorder
(a) but no more in (b), in which there are several eigenvalues external with respect the
uniform-band limits ±2J. In each of the two figures, insets (1) and (2) relate, respec-
tively, to the eigenstates with larger and smaller eigenvalue, while inset (3) relates to the
band center eigenstate.
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Figure 4.4: Simplified representation of the atomic coupling with a few of localized modes for a
disordered 100-sites array. The atom interacts with six localized modes centered on
di↵erent sites and the corresponding coupling constants are represented by the lines in
greyscale. If the disorder srength is large enough, the modes localized around distant
sites have a small overlap with the central atomic site, i.e. the corresponding coupling
constants are small (grey thin lines). The atom is mainly coupled with the central mode
and the corresponding coupling constant is the largest (black solid line).

Ĥ =
N

X

x=1

[!x|xihx| + J (|xihx + 1| + h.c.)] + g (|x0ihe| + h.c.) (4.16)

An N�sites (odd) array with open boundary conditions is considered and the atom is coupled
to the central cavity in x0 = (N + 1)/2. As in the previous chapter, the energy scale adopted cor-
responds to !a = 0. The cavity-frequencies !x are randomly generated with the gaussian PDF
given in (4.15) centered on the atomic frequency and standard deviation �. We are interested
in the disorder-induced modifications of the atom-field dynamics when the bare uniform array
behaves as an almost-Markovian reservoir of modes and we choose to study the atom-field dyn-
mics in the strong-hopping regime with g/J = 0.1. In Sec. 3.2.1.1 we discussed the behaviour
of a TLS decaying into a generic bath and we demonstrated that in strong-hopping regime the
atom-photon bound states contributions to the dynamics can be neglected because only states
with energies very close to the atomic one are involved in the atomic emission process.
As discussed above, although the 1D Anderson Hamiltonian admits only localized eigenstates,
when the disorder strength is not too large, i.e. when �/J is small enough, several eigenstates
with energies near the band center are almost completely extended within the length of the finite
array. The eigenstates of (4.16) have localization properties quite similar to the corresponding
disordered bare-array ones, but they have also excitonic components. The analysis we want to
lead is based on the fact that the x-profile of the eigenstates is not substantially modified by
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the presence of the atom-field coupling term in (4.16), but only by the disorder-induced An-
derson localization. We have to retrive, in the thermodynamic limit, the scattering states with
x�amplitudes given in (2.99), excitonic components in (2.101) and the corresponding bound
states (2.88) when �/J ! 0. For strong enough disorder, as discussed in the case of the bare
disordered CCA, the atom-CCA system admits only single-site localized eigenstates. Thus,
in strong-hopping coupling and when �/J � 1, only the eigenstate peaked on x0 shows an
excitonic component substantially di↵erent from zero. This can be easily demonstrated by con-
sidering perturbatively the Jaynes-Cummings coupling term in (4.16) and, by the knowledge of
the unperturbed eigenstates (each of them with IP t 1, centered on a di↵erent site), the exci-
tonic components can be obtained by expanding the eigenstates up to first order in g/J.
The CCA, in general, behaves as a particular bath of modes from the perspective of the atom.
We have seen that the Fano-Anderson Hamiltonian (2.78) for an uniform array describes a bath
of modes which the atom (site in the central position) is coupled to, with uniform coupling
constant g/

p
N. Disorder, as well as other configurations of the atom-CCA 4, breaks the trasla-

tional invariance and, in general, a non-uniform dispersion of the coupling constants arise. We
expect that the coupling of the atom with a generic eigenmode | li of the disordered bare-CCA
is proportional to h l|x0i, i.e. the atom is coupled with eigenmodes showing a large overlap with
the cavity’s site containing it. We can easily formalize this argument by expressing (4.16) into
the basis of the eigenstates | li of the Anderson Hamiltonian (4.1) that, in the single excitation
subspace, corresponds to the first term of (4.16). So the atom-CCA Hamiltonian is rewritten as:

Ĥ =
X

l

⇥

!l | lih l| + (gl| lihe| + h.c.)
⇤

with gl = gh l|x0i (4.17)

where !l are the corresponding eigenvalues and gl is the coupling constant between the atom
and the l-th mode of the disordered CCA. For a given disorder realization 0 < gl < g and,
if �/J is su�ciently large so that the CCA shows localized eigenmodes centered on di↵erent
positions within the N sites, the coupling constant dispersion shows a well-shaped x-profile
with maximum at x = x0. Clearly this profile reflects how large is the amplitude of each
eigenmode at the central site and, in the two limiting cases � = 0 and � � J, the coupling
dispersion is, respectively, completely flat (i.e. gl = g/

p
N for each l, in presence of cyclic

boundary conditions) and gl = g�(l� x0) (for both open and cyclic boundary conditions). In the
latter case, in which the only mode with nonvanishing x0-amplitude is the central one and the
eigenvalues !l coincide with the cavity random-frequencies !x, the atom interacts only with the
central cavity and a detuned Jaynes-Cummings dynamics with coupling constant g and detuning
�!x0 is found. So, if the atomic frequency !a (which we have chosen as the zero-frequency)
can be adjusted, standard Vacuum Rabi oscillations at frequency 2g are found in the strong
disordered system, by setting !a = !x0 . In general, when the disorder is not too strong, the
atom exchanges energy with a given set of eigenmodes, depending on the coupling dispersion,

4For example, for an atom coupled to the xs�th cavity of a semi-infinite uniform array, the coupling-constant
dispersion is g(k) / sin (kxs) [26].
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Figure 4.5: Space-time diagram of the photon probability distribution along the disordered array
(top panels) for three realizations of the gaussian disorder obtained by numerical di-
agonalization of Hamiltonian (4.16) with g/J = 0.1 and N = 1001: �/J = 0.1 (a),
�/J = 0.5 (b), �/J = 1.5 (c). The bottom panels display the corresponding evolutions
of the atomic probability Pe(t).
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i.e. on �/J. In Fig(4.4) is depicted a simplified situation in which, for a 100-sites disordered
array, the atom mainly interacts with six localized modes. The lines in greyscale represent the
six corresponding coupling constants and the largest of these is represented by the black solid
line which indicates the coupling with the central mode. In Fig (4.5) are shown three numerical
simulations for the time evolution of the atomic excitation and photon probability distribution
along an array of N = 1001 cavities, for di↵erent realizations of the gaussian disorder. The atom
is coupled to the central cavity in strong-hopping regime, with g/J = 0.1. For small disorder,
the dynamics, plotted in Fig (4.5a), is quite similar to the case of a TLS nearly resonant with
the uniform CCA. In this case a major part of the eigenstates are completely extended within
the N sites, i.e. almost each state shows a significant overlap with the central site, and the atom
interacts with an almost flat spectral-density bath. Correspondingly the photon wave function
spreads along the array [cf. Fig (3.5a)]. For large values of �/J, Anderson localization takes
place and the field does not propagate toward the external regions of the array and remains
confined within the central region, as shown in Fig (4.5b). Qualitatively this can be easily
justified. The main contributions to the photonic amplitude evolution at the generic x-th site
arise from eigenstates which significantly overlap the x-th position. If �/J is large enough, the
system has only localized eigenstates and, when the distance |x � x0| exceeds a certain value,
the atom will be significantly coupled only with eigenmodes for which h |xi t 0. In this way,
the initial atomic excitation can’t reach the x-th cavity or the more distant ones. Fig (4.5c)
represents the strong-disorder case, for which the atom mainly interacts with the central cavity
and, in this particular disorder realization, the x0-cavity frequency is not close to the zero and a
far-detuned Jaynes-Cummings interaction comes out.

4.2 Non-Markovian open quantum dynamics

In Chap 2 we have seen that, under certain conditions, the dynamics of a TLS interacting with
a particular environment can be described by a quantum Markovian process. In Chap 3, by an-
alyzing the TLS-CCA interaction in di↵erent coupling regimes, we found Markovian dynamics
in the limiting case g/J ! 0 and referred to the strong-hopping dynamics (with non vanishing
g/J ⌧ 1) as ’almost Markovian’.
The aim of this Section is to characterize, by means of a well-defined quantifier, the non-
Markovianity of the process describing the interaction of a TLS with the disordered CCA,
which we expect depends on the disorder strength. First some key concepts are introduced,
in order to give a general, but non-exhaustive, characterization of the open quantum processes
and to analyze the border between Markovian and non-Markovian dynamics.
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4.2.1 Markovian processes and quantum dynamical maps

In classical probability theory and statistics a Markov process can be used to model a random
system that changes states according to a transition rule that only depends on its current state.
In other words, a process satisfies the so-called Markov property if one can make predictions
for the future of the process based solely on its present state. In this sense it can be thought of
as a ’memoryless’ process [38]. We will see how the concept of Markovianity is expressed in
the quantum case.
In Chap 1 we used the Linblad master equation to analyze the dynamics of a TLS decaying
into a damped cavity. This approach was also used in Sec. 2.2.1 to introduce the spontaneous
emission of a TLS. Master equations with a generator in the Linblad form describe a particular
class of Markovian quantum processes. In the open quantum systems theory, a master equation
of general form:

d
dt
⇢S (t) = L(t)⇢S (t) (4.18)

can be used to describe the evolution of the system’s reduced density matrix ⇢S (t) interacting,
by means of an Hamiltonian term HI , with a given environment E. The dynamics of the total
’S+E’ system, described by the Hamiltonian:

H = HS + HE + HI (4.19)

is closed, i.e. it is given by a unitary time evolution. In general, a time-dependent generator
L(t) defines a master equation in the time local form (4.18) as a linear first-order di↵erential
equation for the open system state. It can be shown that, in order to preserve the Hermiticity
and trace of the density matrix, this generator must be of the form [42, 43]:

L(t)⇢S (t) = �i
⇥

HS (t), ⇢S
⇤

+
X

k

�k(t)
"

Vk ⇢S (t) V†k �
1
2

n

V†k Vk, ⇢S (t)
o

#

(4.20)

where HS (t) and Vk(t) are time-dependent operators, the former being self-adjoint and �k(t) are
the time-dependent decay rates. In some particular cases of Markovian evolution, the genera-
tor in (4.20) is defined by means of time-independent operators and positive time-independent
rates, that corresponds to the Linblad master equation, example of which are given in (1.14) and
(2.33). To better analyze this point and to give an exact definition of Markovian quantum pro-
cesses, we introduce another key concept in the theory of open quantum systems: the quantum
dynamical map, defined as follows:

"(t2, t1)⇢S (t1) = ⇢S (t2) t2 � t1 (4.21)
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i.e. "(t2, t1) maps any open system state at time t1 to the corresponding open system state at time
t2 � t1. Open quantum dynamics can be described by means of such a map if it satisfies certain
conditions: " must be linear, trace-preserving and it must be also completely positive5 [43, 46].
Considering the map "(t, 0) as a smooth time-dependent function, di↵erentiating (4.21) with
t2 = t and t1 = 0, the corresponding linear generator of the master equation 6 is easily obtained:

L(t) = "�1(t, 0)
d
dt
"(t, 0) (4.22)

in which we have assumed that the inverse "�1(t, 0) of the map "(t, 0) does exist or, in other
words, we have assumed the di↵erentiability of the map in a such a way that:

lim
⌧!0

"(t + ⌧, t) � I
⌧

:= L(t) (4.23)

is well-defined at any time. Not all quantum processes are defined by means of di↵erentiable
maps. In some cases, e.g. for very strong system-environment couplings, the inverse of the
map and, hence, also the time local generator L(t) does not exist. However, it is possible
to demonstrate that, for an analytic time-dependence, "�1(t, 0) 7 and L(t) do exist apart from
isolated singularities of the time axis [43]. By means of these considerations we can define a
quantum process as Markovian if it is defined by means of a linear, completely-positive trace-
preserving map (CPT) which satisfies the following condition:

"(t + ⌧, 0) = "(t + ⌧, t)"(⌧, 0) 8t, ⌧ � 0 (4.24)

i.e. if 8t, ⌧ � 0 the CPT map "(t + ⌧, 0) can be written as a product of the two CPT maps
"(t + ⌧, t) and "(⌧, 0). This condition is known as divisibility of the map. Hence, all divisible
CPT maps describe Markovian prcesses. There are many quantum processes which are not
divisible. For instance if "(t, 0) is not invertible, a linear map "(t+ ⌧, t) which fulfills (4.24) may
not exist [48]. Moreover, it can be demonstrated that a CPT map is divisible if and only if the
corresponding generator can be written in the form (4.20) with �k(t) � 0 8 [46].

5A linear map M acting on a matrix space S is positive if it transorms positive semidefinite matrices into
positive semidefinite matricies. In addition, M is said to be completely positive if for any matrix space S0 such
that dim(S0) � dim(S), and ⇢0 2 S0, ⇢0 � 0 ) M ⌦ I(⇢0) � 0. Not all quantum process are described by
completely positive maps. Due, e.g., to the presence of initial system-environment correlations, only positive maps
are involved [57]. Complete positive maps are much easier to characterize than maps that are merely positive [46].

6There exists a powerful method for the microscopic derivation of time-local master equations of the form
(4.18) which is known as time-convolutionless projection operator technique [42]. This technique yields a system-
atic expansion of the generator of the master equation in terms of ordered cumulants.

7The inverse of the map is not required to be completely positive. In general, it is not only not completely
positive, but even not positive.

8This theorem is a consequence of the famous Gorini-Kossakowski-Sudarshan-Lindblad theorem. The au-
thors (A. Kossakowski and co-workers and, indepentently, G. Lindblad) analyzed the case of a time-homogeneous
equation, i.e. a time-independent generator L(t) = L that they discovered to be the generator of a semigroup of
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Thus, a quantum process is Markovian if and only if it can be described by a time-local master
equation of the form (4.20) with non-negative rates. So the Linblad master equation, that is the
particular case of (4.20) with time-independent operators and non-negative time-independent
rates, descibes a restricted class of Markovian processes. Such processes belong to the dy-
namical semigroup of CPT maps [40, 41], i.e. their time-independent generator L is defined
as:

"(t, 0) = eLt (4.25)

from which trivially descends the divisibility condition (4.24). Here we don’t give a proof of
the theorem just stated, but it can be seen that if the dynamical map "(t, 0) is divisible with a
unique map "(t + ⌧, t) depending smoothly on ⌧, we can use (4.23) to obtain the generator L(t).
Since "(t + ⌧, t) is CPT and satisfies "(t, t) = I, the corresponding generator will preserve the
Hermicity and the trace of the density matrix and it must be in Linblad form for each fixed t,
that is, it must have the form (4.20) with �k(t) � 0 [48].
It is in general not trivial to derive a Linblad master equation starting from a given system-
environment model with a microscopic Hamiltonian of the form (4.19). Such a derivation
requires the validity of several approximations, the most important one being the so-called
Markov approximation. This approximation presupposes a rapid decay of the two-point correla-
tion functions of those environmental operators that describe the system-environment coupling
HI . More precisely, if ⌧E describes the time scale of these correlations and ⌧R the relaxation or
decoherence time of the system, the Markov approximation demands that:

⌧E ⌧ ⌧R (4.26)

which implies that the environmental correlations decay on a time scale much faster than the
open system’s relaxation or decoherence time, i.e. the system’s dynamics is characterized by
variables with two very di↵erent time scales, the environmental variables being fast and the
system ones being slow [43]. The Markov approximation is justified in many cases of phys-
ical interest. Typical examples are the weak coupling optical master equations describing the
interaction of radiation with matter, as those we discussed in Chap 1 and 2. When deriving
the evolution equations for an open quantum systems from microscopic models, the adjective
’Markovian’ is widely used to design master equations obtained under the so-called ’Born-
Markov’ approximation. More concretely, the Born approximation truncates the perturbative
expansion of ⇢S (t) in the interaction Hamiltonian HI =

P

i S i ⌦ Ei (where the operators S i (Ei)
are defined in the system’s (environment’s) Hilbert space), at first non-trivial order. This leads
to some di↵erential equation of the form [42, 46]:

completely positive quantum dynamical maps if and only if it has the well-known Linblad form [40].
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d
dt
⇢S (t) = �i

⇥

HS (t), ⇢S
⇤

+
X

i, j

⌦i j(t)⇢S (t)S j + S j⇢S (t)⌦†i j(t)� S j⌦i j(t)⇢S (t)� ⇢S (t)⌦†i jS j (4.27)

where

⌦i j(t) =
Z t

0
ds Ci j(s)e�iHS sS ieiHS s with Ci j(s) = Tr

h

E je�iHE sEieiHE s⇢E

i

(4.28)

Ci j are the correlation functions of the environment, which is in the state ⇢E and has free Hamil-
tonian HE. If these correlations are narrow in time, i.e. if the condition (4.26) is fulfilled, the
upper limit in the integral in (4.28) can be extended to infinity and, more rigorously, this defines
the Markov approximation. Despite the fact that the ’Born-Markov’ approximation leads to
master equations with time-independent coe�cients, they do not always define a valid quantum
dynamical semigroup because they break the completely positivity. Thus, these models should
not be referred as ’Markovian’ in strict sense. If the ’Born-Markov’ approximation is combined
with a secular approximation (i.e. neglecting fast oscillating terms in the evolution equation,
as the RW approximation described in Chap 1, that we adopt for all models here described) a
valid quantum dynamical semigroup is obtained, and then the dynamics can be certainly called
Markovian.
Condition (4.26) is characteristic of a memoryless environment. This can be viewed better if we
consider a simple collisional model describing the system-environment interaction [46]. In this
model, the interaction between system and environment is made up of a sequence of individual
collisions at times t1, t2, ...tn. Each collision produces a change in the state of the system ⇢S

given by:

⇢S (tn+1) = TrE

h

U(tn+1, tn)⇢S ⌦ ⇢EU†(tn+1, tn)
i

= "(tn+1, tn) ⇢S (tn) (4.29)

where ⇢E is the state of the environment assumed to be the same for every collision, and
U(tn+1, tn) is the unitary operator, describing the system-environment interaction, associated
with the total Hamiltonian (4.19) of the closed ’S+E’ system. The system’s state ⇢S is obtained
by tracing over the environmental states. The successive concatenations of these collisions
lead to a quantum Markovian process. Indeed, from (4.29), it is straightforward to see that
"(tn+2, tn) = "(tn+2, tn+1)"(tn+1, tn) and since " is a CPT map, the process is Markovian. At every
time tn the system interacts with the environmental state ⇢E via the unitary operation U. At the
following time step tn+1, the system finds again the environment in the same state ⇢E, forgetting
any correlation caused by the previous interaction at tn. Provided the limit maxn|tn+1 � tn| ! 0,
is well-defined, this process can be seen as a discrete version of quantum Markovian dynamics.
Hence, Markovian evolutions may be thought as made up of a sequence of memoryless colli-
sions, where the environmental state is the same and the total state of system and environment is
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uncorrelated at each collision as if there were no previous interaction. Notably, any Markovian
dynamics can be seen as a collisional model like this. Indeed, it can be demonstrated that a
completely positive dynamics described by the map " can be seen as the reduced dynamics of
some unitary evolution acting on an extended state with the form ⇢S ⌦ ⇢E where ⇢E is the same
independently of ⇢S [39]. Thus, since for Markovian evolutions a CPT map "(t2, t1) exists for
all t2 � t1, we may write it9 as:

"(t2, t1)(·) = TrE

h

U(t2, t1)(·) ⌦ ⇢EU†(t2, t1)
i

(4.30)

where U(t2, t1) may depend on t2 and t1 but ⇢E can be taken to be independent of time. This
does not mean that we must impose system and environment to be uncorrelated at any time to
get Markovian evolutions. Rather, the conclusion is that the obtained evolution may also be
thought as the result of memoryless system-environment infinitesimal collisions, characterized
by very fast decaying correlations fulfilling the conditions ⌧E ⌧ tn+1 � tn and (4.26).

4.2.2 Non-markovian quantum processes and information flow

In the case of deviations from the dynamics of a quantum Markov process one speaks of a
non-Markovian process, implying that the dynamics is characterized by significant memory ef-
fects. Non-Markovian memory e↵ects are typically significant for structured environments in
the strong system-environment coupling regime. Various concepts of non-Markovianity were
introduced recently to define the border between Markovian and non-Markovian quantum evo-
lution. In order to quantify this concept, the so-called measures of non-Markovianity are intro-
duced. Basically, each such a measures is a function which assigns a number (positive or zero)
to each dynamics, in such a way that the zero value is obtained if and only if the dynamics is
Markovian. Each measure must be formulated completely by means of the quantum dynamical
map of the process. Quantum master equations with the time-local structures given by (4.18)
and (4.20) are very useful for also the description of non-Markovian processes. It follows from
the preceding discussion that in order for such a master equation to yield a nonzero measure, at
least one of the rates �k(t) must take on negative values for some interval of time. Moreover, it
can be demostrated that temporarily negative rates in the master equation in general do not lead
to a violation of the complete positivity of the dynamical map.
Many di↵erent measures of non-Markovianity have been proposed in the literature to quantify
memory e↵ects in open systems, based on, for examples, the divisibility of dynamical map
[44, 45, 46], the distinguishability of states [47, 48, 49], quantum entanglement [51], quantum
Fisher information [52], mutual information [53], geometrical characterization [56], the decay
rate of the master equation itself [54] and two time correlation functions [55].

9This CPT map can be expressed by means of a Krauss sum, i.e. "(tn+1, tn)(·) = P

i, j Ki j(·)K†i j. The Krauss

operators are given by Ki j =
q

pE
j h�E

i |U(tn+1, tn)|�E
j i, for ⇢E =

P

j pE
j |�E

j ih�E
j | [81].
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Here we first show the explicit expression for the dynamical amplitude-damping map which
describes the decay of a TLS into a generic bosonic reservoir initially in the vacuum state, with
general Hamiltonian in rotating wave approximation given in (1.1) or (2.29). In this way we can
define the exact border between Markovian and non-Markovian behaviour for such a general
dynamics10. Shortly after, we give a brief description of the BLP measure of non-Markovianity
[47, 48], a recent approach which defines and quantifies the emergence of quantum memory
e↵ects in terms of the exchange of information between the open system and its environment.
In the next section we discuss in detail the geometrical measure due to S. Lorenzo, F. Plastina
and M. Paternostro [56] which we will adopt in Sec. 4.2.4 to characterize the non-Markovian
dynamics of a TLS decaying into the disordered CCA.
The model which we used to describe the coupling of a TLS to a reservoir of electromagnetic
field-modes, labelled by the index k, with corresponding frequencies !k, coupling constant gk

and Hamiltonian in RW approximation conserves the total number of excitations, therfore it
allows to derive an analytical expression for the dynamical map (4.21). This map can be repre-
sented in terms of the system’s density matrix elements ⇢i, j(t) = hi|⇢(t)| ji (we omit the subscript
’S’), with i, j = {e, g} as follows:

⇢ee(t) = |�(t)|2⇢ee(0), (4.31)
⇢gg(t) = ⇢gg(0) + [1 � |�(t)|2]⇢ee(0),
⇢eg(t) = ⇢⇤ge(t) = �(t)⇢eg(0)

where the function �(t) was introduced in (3.22) as the solution of the integro-di↵erential equa-
tion:

d
dt
�(t) = �

Z t

0
dt0⇣(t � t0)�(t0) (4.32)

corresponding to the initial condition �(0) = 1. This equation can be derived by imposing the
Schrödinger equation for the probability amplitudes {↵k(t)},↵e(t) of the atom-bath system with
no photons in the initial state (i.e. {↵k(0)} = 0), in the interaction picture with respect Hcoup in
(2.29)11. The atomic probability amplitude is thus:

↵e(t) = ↵e(0)�(t) (4.33)

and the kernel ⇣(t � t0) is the two-time correlation function of the reservoir [42] and reads:

10A more detailed analysis which employees both master equation in Born-Markov approximation and the time-
convolutionless approach can be found in Ref [42].

11This procedure was already used in the classic paper by Weisskopf and Wigner (1930) on the determination
of the natural line width.
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⇣(t � t0) =
X

k,k0
gkgk0 h0|ak ak0ei(!k0�!k)(t�t0)|0iei!a(t�t0) =

X

k

|gk|2ei(!a�!k)(t�t0) (4.34)

where the coupling consants are considered real without loss of generality and the bosonic
commutation relations have been taken into account. The generic bath of modes is characterized
by a spectral density whose Fourier transform is ⇣(⌧). The map defined by (4.31) is completely
positive if and only if |�(t)|  1. Moreover, by calculating the matrix elements of ⇢ at time t+ ⌧,
we can check the divisibility condition (4.24):

⇢ee(t + ⌧) =
�

�

�

�

�

�(t + ⌧)
�(t)

�

�

�

�

�

2

⇢ee(t), (4.35)

⇢gg(t + ⌧) = ⇢gg(t) +
"

1 �
�

�

�

�

�

�(t + ⌧)
�(t)

�

�

�

�

�

2#

⇢ee(t),

⇢eg(t + ⌧) = ⇢⇤ge(t + ⌧) =
�(t + ⌧)
�(t)

⇢eg(t)

from which it follows that the corresponding "(t+⌧) is a CPT map if and only if |�(t+⌧)|  |�(t)|,
i.e. the dynamical map of the model is divisible and the process is Markovian if and only if |�(t)|
is a monotonically decreasing function of time. This statement holds true also for the case in
which �(t) vanishes at some finite time. The corresponding time-local master equation can be
written by introducing the following quantities:

�(t) = �2<e
 

�̇(t)
�(t)

!

= � 2
|�(t)|

d
dt
|�(t)|, S (t) = �2=m

 

�̇(t)
�(t)

!

(4.36)

and the exact master equation for the reduced system dynamics in the form (4.20) reads [42]:

d
dt
⇢(t) = � i

2
S (t)[�+ ��, ⇢(t)] + �(t)

"

�� ⇢(t)�+ �
1
2
�+ ��⇢(t) � 1

2
⇢(t)�+ ��

#

(4.37)

where S (t) plays the role of a time-dependent Lamb shift. From (4.36) we can see that if at some
time |�(t)| is an increasing function, hence the divisibility of the map is broken, correspondingly
the rate �(t) takes negative values. Thus, for the present model, a non-Markovian dynamics is
equivalent to the nondivisibility of the dynamical map and to the occurrence of a negative rate in
the master equation. From these consideration we can deduce that the dynamics characterizing
a TLS decaying into the uniform CCA is always non-Markovian. Indeed, the bound-states con-
tribution ↵b(t) to the atomic probability amplitude, given in (3.13) for the resonant case, is an
oscillatory term for any finite coupling constant g/J (and for any atom-cavity detuning), thus,
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from (4.33), we deduce that, for this system, |�(t)| is not a monothonic decreasing function. Due
to the presence of such an oscillatory term, the corresponding map is not divisible ad the master
equation takes periodically negative rates. For this reson we indicated as ’almost-Markovian’
the dynamics of the system in the strong-hopping limit.
Recently Breuer, Laine and Pilo (BLP) proposed a definition of non-Markovian dynamics in
terms of the behavior of the trace distance [47, 48]. They state that a quantum evolution, given
by some dynamical map, is Markovian if the trace distance between any two initial states ⇢1 and
⇢2 decreases monotonically with time. The trace distance describes the probability of success-
fully distinguish two quantum states and the change in their trace distance can be interpreted as
a flow of information between the system and the environment. It is defined as follows:

D(⇢1, ⇢2) =
1
2

Tr|⇢1 � ⇢2| with |⇢| =
p

⇢†⇢ (4.38)

and it satisfies 0  D  1. For a TLS or a qubit, ⇢ is a 2 ⇥ 2 matrix which can be expressed in
the Bloch form, i.e. :

⇢ =
3

X

i=0

Tr[⇢�i]�i ⌘
3

X

i=0

ri�i (4.39)

with �0 = I/
p

2 and �1,2,3 are, respectively, the Pauli’s matricies �x,y,z and

ri = Tr[⇢�i] (4.40)

are the components of a four-dimensional vector ~r = (1/
p

N, r). Here r ⌘ (r1, r2, r3) ⌘
(rx, ry, rz) is the Bloch vector associated with ⇢. In the two-dimensional Hilbert space we have
2D(⇢1, ⇢2) = |r1�r2|, i.e. the trace distance between two states is half of the Euclidean distance,
on the Bloch sphere, between their corresponding Bloch vectors. It is preserved under unitary
evolution, i.e. the information is preserved under the dynamics of closed systems, and all CPT
maps are contractions for this metric, i.e. D("⇢1, "⇢2)  D(⇢1, ⇢2). The change in the distin-
guishability of states of an open system can be interpreted as a flow of information between the
system and the environment and the contraction property guarantees that the maximal amount
of information the system can recover from the environment is the amount of information that
previously flowed out the system. For a given Markovian process, described by a CPT divis-
ible map, the trace distance between a pair of initial states is monotonically reduced and this
can be seen as an unidirectional information flow between the system and the environment.
This process will eventually lead the initial pair of states to coincide, i.e. their distinguisha-
bility is monotonically reduced to zero. If, on the other hand, the process is non-Markovian
the trace distance between ⇢1 and ⇢2 does not show such a monotonic behaviour and there
must be, for some interval of time, an increase of D(⇢1, ⇢2), corresponding to the information
back-flow. The information flowing from the environment back to the system allows the earlier
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states of the system to have an e↵ect on the later dynamics of the system; that is, it allows the
emergence of memory e↵ects. By means of these considerations, BLP defined the measure of
non-Markovianity [48] as follows:

NT = max
⇢1,2(0)

X

i

⇥D(⇢1(bi), ⇢2(bi)) �D(⇢1(ai), ⇢2(ai))
⇤

(4.41)

To calculate this quantity, one first determines for a given set of pair of initial states the total
growth of the trace distance over each time interval [ai, bi] for which @t[D(⇢1(t), ⇢2(t))] � 0.
This has to be maximized over the optimal initial pairs of states that, for 2 ⇥ 2 density ma-
tricies, are always antipodal points on the Bloch sphere [50]. ClearlyNT = 0 for all Markovian
processes.

4.2.3 Geometrical measure of non-Markovianity

In Ref [56] is described a non-Markovianity measure based on the change in volume of the set
of accessible states of the evolving system12. Also this approach provides a measure for the
non-Markovianity that is a characteristic of the map itself and does not depend on the initial
state of the system. As a result, if the optimized trace distance decreases monotonically, so does
the volume, which is however much easier to evaluate through the determinant of the dynamical
map.
For a given CPT map "(t, 0), using the same definitions given in (4.39) and (4.40), the corre-
sponding map for the Bloch vector can be written as:

~r(t) = F (t)~r(0) with Fi j = Tr
h

�i "(t, 0)[� j]
i

(4.42)

As F0 j = �0 j, this is an a�ne transformation for the Bloch vector. Letting qi(t) = Fi0, the map
F (t) reads:

F (t) =
"

1 0
q(t) A(t)

#

! r(t) = A(t)r(0) + q(t)/
p

2 (4.43)

It is straightforward to prove that the matricies F (t) and A(t) have the same determinant, i.e.
kF (t)k = kA(t)k. The action of F is given by a rotation (possibly composed with an inversion),
a shrink of the Bloch vector, and a final rotation with possibly a translation. The set of physical
Bloch vectors for a TLS is given by [58]:

B2 = {r ⌘ (rx, ry, rz) : (�1) jh j(r) � 0 ( j = 1, 2)} (4.44)

12This method is quite general and allows to deal with systems with both finite and infinite dimensional Hilbert
space.
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where hj(r) are the coe�cients of the characteristic polynomial det (xI � ⇢). Hence, if V(t) is
the volume, within the Bloch sphere (V  1), consisting of the set of evolved Bloch vectors at
time t, we have:

kA(t)k = V(t)
V(0)

(4.45)

Thus, the determinant of A(t) gives the contraction factor of the volume of accessible states
with respect to its value at t = 0. For a given Markovian process, the accessible-states volume
decreases monothonically during the evolution. Similarly to the trace distance characterization,
a process is non-Markovian if, for some interval of time, @t kA(t)k > 0. This leads to define the
following non-Markovianity measure:

NV =
1

V(0)

Z

@tV(t)>0
@tV(t) =

Z

@tkA(t)k>0
@t kA(t)k (4.46)

For the amplitude-damping map of a TLS in a generic reservoir of field-modes, defined in
(4.31), the evolution of the Bloch vector is:

A(t) =

2

6

6

6

6

6

6

6

6

4

<e�(t) =m�(t) 0
�=m�(t) <e�(t) 0

0 0 |�(t)|2
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) kA(t)k = |�(t)|4 =
�

�

�

�

�

↵e(t)
↵e(0)

�

�

�

�

�

4

(4.47)

Hence, in this case of atom-reservoir coupling with Hamiltonian (2.29), the variation of the
volume of accessible states is given by the fourth power of the absolute value of the atomic
probability amplitude with the initial condition ↵e(0) = 1.

We have analyzed in Chap 2 the atomic emission into a reservoir consisting of a damped
cavity which is equivalent to a structured environment with a lorentzian d.o.s., as defined by
(2.42). The corresponding atomic probability evolution Pe(t) at resonance, for a given coupling
constant g and photon loss rate k, is given in (2.48). Fig(4.6a) shows the time evolution of the
determinant kA(t)k = P2

e(t) in the coupling regime with g < k/4 for which it is a monotonic
decreasing function of time. The corresponding Markovian decrease of the volume of accessible
states is also shown. On the other hand, for g > k/4 in (2.48), one has a non-monotonic
behaviour of kA(t)k and, as shown in Fig(4.6b), the corresponding non-Markovian dynamics is
characterized by a non-monotonic evolution of the accesible volume. In this last case, since the
derivative of kA(t)k takes periodically positive values, the measureNV defined in (4.46) takes a
nonvanishing value that is the higher the larger is g/k and, in the case of perfect lossless cavity
(k = 0), it diverges.
The geometrical measure of non-Markovianity, similarly to the trace-distance based measure,
can be linked to the change of the classical information encoded in the states of a system. If
we indicate with w(r) the probability density associated with an arbitrary distribution of the
Bloch vectors within the space B2 defined in (4.44), the corresponding di↵erential entropy is



98 CHAPTER 4. STATIC DISORDER IN COUPLED CAVITY ARRAYS

Figure 4.6: Time evolution of the determinant of the amplitude-damping map defined in (4.47) for
Markovian (a) and non-Markovian dynamics (b). Quantitatively, the curves displayed in
the figure correspond to the spontaneous emission of a TLS in a resonant leaky cavity
with the Lorentzian d.o.s given in (2.42) and coupling/damping ratio given by g/k =
0.2 (a) and g/k = 2 (b). The set of accessible states, whose volume changes in time
according to the behavior of the determinant, is also pictured.

S[w(r)] = �
R

B2
w(r) log2 w(r)dV . If the states are evolved through the map (4.43), after a time

t⇤ the probability density function is rescaled as w0(r(t⇤)) = w(r(t⇤))/ kA(t⇤)k and the entropy
changes as S[w0(r(t⇤))] � S[w(r(0))] = log2 kA(t⇤)k. In this way a contraction of the accessible
volume implies a loss of information.

4.2.4 Non-Markovianity measures for the TLS-CCA quantum evolution
in presence of static disorder

We have seen that the atomic emission into the uniform CCA is a non-Markovian process for any
finite g/J. Due to the presence of the oscillatory bound-states contribution ↵b(t) given in (3.13),
the geometrical measure of non-Markovianity defined in (4.46) for such a system is divergent.
This occurs for a generic system, whose evolution is described by the amplitude-damping map
(4.47), which shows population trapping. In order to analyze the non-Markovianity of the
quantum process which describe the coupling between a TLS and the disordered CCA, we
define the following modified version of the geometrical measure NV :

NVr =

R tmax

@tkA(t)k>0 @t kA(t)k
R tmax

@tkA(t)k<0 @t kA(t)k
(4.48)
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where, from (4.47), kA(t)k = P2
e(t). Here the integrals of @t kA(t)k are not calculated over the

entire dynamics but up to a conveniently choosen time tmax. This definition is adopted because
we compute the system’s evolution, hence the non-Markovianity measure, by means of numer-
ical simulations. The measure NVr quantifies the ratio between the total increase of the volume
of accessible states and the corresponding decrease up to t = tmax, i.e. the ratio between the
information which the TLS loses into the disordered-CCA’s environment and the correspond-
ing back-flow. For a finite-dynamics analysis of a system characterized by population trapping,
the ratio between these two integrals provides a better way to quantify the non-Markovianity
of the process with respect to the integral (4.46) calculated up to t = tmax. From the dis-
cussion of Sec.4.1.2 we know that the set of eigenmodes of the disordered CCA significantly
involved in the atomic dynamics depends largely on the disorder strength. Here we study the
non-Markovianity for the process of a TLS interacting with the disordered CCA by numerical
computations ofNVr for di↵erent standard deviations of the gaussian disorder. The simulations
are performed for an array of N = 1001 cavities, the central one containing the atom which
is coupled to, with g/J = 0.1. The measure NVr is averaged, for each standard deviation �
of the disorder, over 10000 realizations of the disordered array. Open boundary conditions are
considered and the maximum time is chosen at tmax = 240/J for each computational run, i.e.
the time for which, in the uniform case, the photonic excitation has almost reached the borders
of the array. The measure of non-Markovianity is compared with a representative quantity of
the bare-array with a given disorder strength, also averaged over 10000 realizations with a given
�, that is the localization length (�0) of a given selected eigenstate. More specifically, for each
disorder realization, we choose the eigenmode which provides the largest contribution to the
atomic evolution. With reference to (4.17), out of the entire set of eigenmodes {| li} of the bare
disordered CCA, with corresponding eigenvalues !l, we select the eigenstate | 0i for which the
ratio |h l|x0i/!l| is maximum, i.e. out of the states which significantly overlap the central-cavity
site |x0i, we choose the less detuned one. The corresponding eigenvalue is labeled as !0. As we
will discuss below, the localization length of | 0i can be considered proportional to the volume
of an e↵ective cavity coupled with the atom. For each disorder realization, | 0i is an eigenstate
of the bare CCA and the corresponding measure of non-Markovianity is clearly performed on
the TLS-CCA coupled system with such disordered local energies. We consider standard devi-
ations whitin the range 0  �/J  2 and, for each selected �, the same set of 10000 realizations
is used to compute both the average measure of non-Markovianity and the average localization
length. As a definition for this last quantity, we adopt the inverse partecipation number (IP)
defined in (4.14), thus the localization length of | 0i reads:

�0 = IP�1( 0) =
1

PN
x=1 |h 0|xi|4

(4.49)

In Fig (4.7a) we plot the mean value of ��1/2
0 as a function of the standard deviation � (for

J = 1). The mean value is calculated, for each �, over the 10000 realizations of the local-
energies set {!x}. The inset of the figure show the corresponding standard error of the mean
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Figure 4.7: (a) Root of the inverse partecipation number (IP1/2
0 = ��1/2

0 ) of the eigenstate | 0i
with the maximum ratio |hx0| 0i|/!0 as a function of the disorder standard deviation �
(see text), for J = 1. The points represent the averages over 10000 realizations of the
disordered bare-CCA with N = 1001, for each value of �. In the inset are shown the
corresponding standard errors of the mean (SEM) magnified by a factor 1000.
(b) Eigenvalue of | 0i (!0) as a function of �, averaged over 10000 realizations for the
same disordered CCA. The bars indicate the corrisponding SEMs.

(SEM). Since we assume open boundary conditions, the eigenstate | 0i in the uniform case
(with associated ! = 0 eigenvalue) has not the plane-wave x�representation, as in (2.52), but
in this case it reads:

 0(x) = hx| 0i =
r

2
N + 1

sin (±⇡x/2) f or � = 0 (4.50)

and the corresponding IP0 is t 2/N, thus ��1/2
0 = IP1/2

0 approaches the value t
p

2/N when
� ! 0. As the disorder is increased, �0 decreases until the upper limit of ��1/2

0 = 1 is reached
for very strong disorder. In this case, | 0i is strongly localized around the central site and, as
discussed in Sec. 4.1.2, the corresponding eigenvalue !0 coincides with the local energy !x0 .
In Fig (4.7a) this limiting case is not reached, thus the value � = 2 does not correspond to a
disorder strength for which the CCA shows only single-site localized eigenstates (i.e. only the
states with higher energies have single-site profiles). In Fig(4.7b) the eigenvalue !0, averaged
over the di↵erent realizations, is plotted as a function of �. It can be seen that the near-resonant
condition for the choice of | 0i is largely satisfied for � < 1. For stronger disorder the error
bars become larger and !0 begins to take random values around the zero.
The non-Markovianity measure of the TLS-CCA quantum evolution takes always finite values.
However, in Fig (4.8a) the averaged value of NVr, plotted as a function of �, is not appreciably
di↵erent from zero when � ! 0. Clearly this depends on the negligible population trapping
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in the strong-hopping regime (the bound contribution ↵b(t) to the atomic amplitude, given in
(3.13), oscillates with amplitude ⇠ 10�5, so the residual oscillation of kA(t)k ! |↵b(t))|4 is of
the order ⇠ 10�20 for g/J = 0.1 and � = 0), as well as on the choice of tmax. The average
measure increases with � and approaches the unity when the disorder is strong enough. This
means that when � is large enough, on average, the TLS recovers from the environment the
same amount of information which it has released. A further increase of the disorder does not
change such dynamics. Indeed, when all the eigenstates show a localized profile, only a few of
these contribute significantly to the atomic evolution, thus the probability amplitude ↵e(t), for
each realization, will include a small number of oscillating components (cf. Fig (4.5b) and (c))
and each of the two integrals in (4.48) will be t 1 (if tmax, hence the linear extension of the
CCA, is large enough). Clearly, in this case, both numerator and denominator of NVr are t 1
for each single disorder realization. The averaged value of NVr is also plotted in Fig (4.8b) as
a function of ��1/2

0 . The threshold corresponds to the lower limit ��1/2
0 t

p
2/N, i.e. � = 0.

The inset of the figure shows the small-disorder behaviour of the average NVr (dots) compared
with the same non-Markovianity measure of an e↵ective CQED model (solid line) that we here
qualitatively discuss. We have described the damped CQED model in Sec. 1.1.2, by means of
approximate solutions of the Linblad Master equation defined in (1.14) and (1.15). Here we
consider the same model for an open cavity with infinite Q-factor, i.e. k = 0 and � , 0. In this
case the J-C level |g, 1i is not coupled to external modes, but the atom decays by direct cou-
pling of the level |e, 0i to an external bath with rate �. The atom-photon coupling constant or
Vacuum-Rabi frequency is given in (1.4) and depends on V�1/2, where V is the cavity volume.
If we modify only one length of a 3D cavity, namely � = y/y0 (e.g. the distance between the
mirrors in a Fabry-Perot setup along the y-axes), correspondingly the coupling constant varies
according to ⌦ / ��1/2. For a given realization of the disordered CCA with localization length
�0, we select the coupling constant of the e↵ective CQED model at ⌦ = g��1/2

0 and detun-
ing � = �!0. In other words, the eigenstate | 0i chosen with the criterion discussed above
plays the role of a cavity of frequency !0 which the atom is coupled to, with Rabi frequency
⌦. Moreover, the bath of modes coupled to the level |e, 0i is chosen from an appropriate set of
eigenstates of the disordered CCA by means of a numerical procedure. We compute, for a given
realization, the density of states ⇢(! = 0) and, for each eigenmode | li, the overlap with the
central site h l|x0i. The decay rate of the CQED model associated with this disorder realization
is obtained by means of a Fermi’s golden-rule argument and reads � = ⇡

N
PN

l=1 |h l|x0i|2⇢(0). We
use this values of ⌦, � and � to solve the master equation of the open CQED model (in the basis
{|g, 1i, |e, 0i}, with k = 0) given by (1.14), (1.15) and ((1.5) with n = 1). The corresponding
atomic amplitude is used to compute the non-Markovianity measure, with the same definition.
In this way, for a given �, we associate with the i-th disorder realization the non-Markovianity
measure N i

Vr, the correponding measure of the e↵ective CQED model N (i)e f f
Vr , the localization

length �i
0 and the e↵ective coupling constant ⌦i = g/

q

�i
0 (with detuning �!i

0). In the inset of
Fig (4.8b) are compared the two average measures (the averages, for a given �, are calculated
over nR = 10000 realizations, i.e. N = PnR

i=1N i/nR), each of them as a function of ��1/2
0 . This
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Figure 4.8: (a) Geometrical measure of non-Markovianity for the TLS-CCA quantum evolution as
a function of the disorder standard deviation � (for J = 1). The points represent the
averages over 10000 realizations, for each value of �, of the disordered CCA with
N = 1001 and the TLS coupled to the central cavity with g/J = 0.1. In the inset
are shown the corresponding standard errors of the mean (SEM) magnified by a factor
1000. (b) The same data of the non-Markovianity measure are plotted as a function
of ��1/2

0 = IP1/2
0 (see text and Fig (4.7a)). The inset shows the non-Markovianity

measure at small disorder of the TLS-CCA (dots) compared with the same measure
for the e↵ective open CQED model discussed in the text (solid line).
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last quantity, also averaged over nR realizations for a given disorder, represents both the size of
the nearly resonant eigenstate and the coupling constant of the e↵ective CQED. A good agree-
ment between the TLS-CCA and the open CQED dynamics is found for small disorder. Indeed,
the atomic evolution in the strong-hopping regime of the uniform CCA is dominated by the
contributions of nearly resonant unbound states which show excitonic components character-
ized by the peaked distribution F(k), given in (3.20), centered around k = ±⇡/2 (corresponding
to ! = 0). In the case of small disorder this distribution is not significantly modified and, on
average, !0 t 0 [cf. Fig (4.8b)]. In these conditions, in which the eigenmodes with signifi-
cant overlap h l|x0i are still the near-resonant ones, the open CQED model with the numerical
computation of the decay rate � discussed above provides a good approximation of the atomic
dynamics. Finally, we point out that both measures of non-Markovianity approach the unity
for strong enough disorder (not shown in figure). Indeed, the e↵ective model associated with a
strongly disordered CCA corresponds to a CQED setup with large coupling constant and small
decay rate, since the major part of the eigenmodes has not significant overlap with the central
site of the CCA. Clearly, in the limiting case of very large � the detuned CQED dynamics with
� = 0 and Rabi frequency ⌦ = g is retrived.
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Conclusions

In this thesis some aspects of the interesting physics of a one-dimensional coupled cavity array
(CCA), interacting with a two-level atom (TLS), have been theoretically investgated. The array
consist of an arrangement of low-loss QED cavities with nearest-neighbor coupling allowing
photon hopping (due to the overlap of the evanescent field modes) between neighboring cavi-
ties. In particular, we have examined the single-excitation transport dynamics in the emission
process when the atom is coupled in the strong-coupling regime to the central cavity of a long
CCA, either in the uniform case as in presence of static disorder. A tight-binding model, with
Hamiltonian under rotating-wave approximation, has been adopted and the atom turns out to
be e↵ectively coupled to a finite band of bath modes with constant coupling strength. Similar
models have been widely used in the framework of scattering problems, for both the CCA (with
one or more TLS [17, 18, 19, 22, 23, 25, 31]) and equivalent condensed matter systems [28].
The Green’s function approach, used to investigate the spectral properties, provided the mathe-
matical tools needed to analyze the atomic dynamics and the photon-localization.
The main results concerning the interacion of a TLS with the uniform CCA have been dis-
cussed in Sec. 3.2. By investigating the time evolution of the atomic population as well as the
photon probability distribution across the array, we have highlighted the occurrence of several
regimes. For very weak values of the coupling-strength (with respect to the photon-hopping
rate) and at resonance, standard exponential decay of the atom’s population takes place. At
the same time, the photon wave function spreads in either direction of the array in such a way
that, for long enough times, it vanishes within any finite region around the central cavity. In
this strong-hopping limiting case, the atom ’sees’ an almost flat spectral-density bath and only
the near resonant modes significantly contribute to the atomic dynamics (the e↵ects due to the
finiteness of the band are negligible). In contrast, when the coupling is large enough, the field
fully localizes close to the atom’s site since in this limit the dynamics reduces to the well-known
Jaynes-Cummings model. Correspondingly, full population trapping takes place and the atom
periodically exchanges the entire content of its initial energy with the localized field so as to
exhibit standard vacuum Rabi oscillations. At intermediate coupling, in general, the dynamics
features partial field localization and atomic fractional decay, the latter being due to population
trapping that manifests as a residual oscillation of the atom’s excitation at large times. Popula-
tion trapping and photon localization are phenomena which arise due to the presence of a pair
of atom-photon bound states whose properties (such as the localization lengths and excitonic
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components) have been analyzed in detail. At resonance these polaritonic states are associated
with two discrete eigenvalues external and symmetrical with respect to the band center and their
exponential decreasing spatial-profiles are identical (up to a phase factor). Population trapping
become relevant when the bound states show also large excitonic components. We found that,
as the atom-cavity coupling constant grows from zero, field localization becomes significant be-
fore population trapping takes place. In particular, when the coupling is chosen within a given
range, at long times, there is appreciable localization of the field around the atomic position,
while the atom remains almost completely de-excited, i.e. population trapping is negligible. In
these conditions the field undergoes a mere spatial redistribution whitin the central region of the
array [15]. This regime is not strongly modified by the presence of moderate atom-cavity de-
tuning. The main e↵ect of a detuned interaction with respect to the resonant case is an increase
of the atomic trapped energy. Indeed, for very large detuning, the dispersive regime is reached
and the atom does not decay. We found that, if the coupling constant is not too large, the energy
associated with the localized field is not a monotonic function of the detuning and shows a max-
imum near the band-edges. This localized-field energy exhibits a narrow peak around the band
edges for small coupling, i.e. significant localization of the field arises only when the atomic
transition energy is setted at the band edges. Correspondigly the population trapping shows a
sharp transition between 0 and 1 when the detuning crosses this thresholds. Moreover we have
shown that, for any value of the coupling constant, the ratio between the localized energy and
the trapped one (at long times) always decreases as the detuning increases. As result, the e↵ect
of field localization without population trapping, maximum at resonance, is still present for not
too strong detuning, but it occurs within a narrower range of the coupling constant.
The last chapter is devoted to the study of the TLS-CCA interaction in presence of static disor-
der. We have considered a completely disordered CCA, with random cavity-mode frequencies
statistically independent on the position (but uniform in the hopping rate) in the strong-hopping
atom-field regime. In this case each cavity behaves as a defect and back-scatters a fraction of
the atomic excitation impinging on it. If the disorder is strong enough, the atomic Markovian
decay is prevented as the atom cannot get rid of its excitation. In such an 1D system Anderson
localization takes place and all eigenstates are localized and exhibit a probability profile, in the
x-representation, the more localized the stronger the disorder. We have implemented the model
by numerical diagonalization of the TLS-CCA Hamiltonian with gaussian disorder for several
realizations of the latter, characterized by di↵erent values of the associated standard deviation
(�). Using the open quantum systems approach, we have investigated, from a more general
perspective, the Non-Markovianity for the coupling between the TLS and the disordered-CCA.
This latter performs a particular environment, characterized by a given set of eigenmodes whose
energy and position-distribution depend on the disorder strength. The geometrical measure of
non-Markovianity [56], that quantifies the complexive back-flow of information from the en-
vironment to the system, has been adopted and several simulations for di↵erent values of �
have been performed (for each disorder strength we have averaged the measures over 10000
realizations of the disordered CCA). In this way we have analyzed the behaviour of the average
non-Markovianity as a function of the localization length of the eigenstate which exhibits the
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largest overlap on the atomic site (this length is also an average over 10000 realizations for each
�). As results, if the disorder is not too strong, the non-Markovianity profile so obtained is
comparable with the corresponding measure calculated for a TLS which interacts with a single
open-cavity with a suitable volume (i.e. with a suitable coupling constant) and detuning. The
decay rate for this e↵ective model is obtained by means of a numerical procedure that takes into
account a given set of localized eigenmodes of the disordered CCA. We found a good agree-
ment since, although some disorder is introduced, the eigenmodes with significant overlap on
the central site are still the near-resonant ones and the open CQED model provides a good ap-
proximation of the TLS-CCA dynamics. Moreover, the measures of non-Markovianity for both
the CCA and the open cavity environments approach the unity and the agreement is also found
for very strong disorder (in this case the e↵ective cavity is nearly closed since the atom mainly
interacts with only a localizied state of the CCA and a detuned Jaynes-Cummings dynamics is
retrived). Further investigations are needed to extend this study to the regime of intermediate
disorder strength.
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Appendix A: Green’s function expansion

Let Ĝ00(z) be the green function associated with Ĥ00 = Ĥ0 + !a|eihe| (see Eq. (2.77)). The
eigenstates of the latter, in the overall Hilbert space, are {|'ki} and |ei with eigenvalues
!k=!c + 2J cos k and !a, respectively. Hence, using the corresponding spectral decomposition
of Ĥ00,

Ĝ00(z) =
|eihe|

z � !a
+

X

k

|'kih'k|
z � !k

. (51)

Ĝ(z) can be linked with Ĝ00(z) through the series expansion in (2.12) that in this case reads:

Ĝ(z)=Ĝ00(z) + Ĝ00(z)ĤacĜ00(z) + Ĝ00(z)ĤacĜ00(z)ĤacĜ00(z) + ... (52)

This can be regarded as a series expansion of Ĝ(z) in terms of powers of the coupling strength g,
the form of which reads (we omit the dependence on z since this is unnecessary for the scopes
of this section):

Ĝ=Ĝ(0)+Ĝ(1)g+Ĝ(2)g2+... , (53)

where Ĝ(0)⌘Ĝ00, Ĝ(1)=g�1Ĝ00ĤacĜ00, ..., each Ĝ(k) thus being independent of g. Using this along
with Eq. (51) and the fact that in the one-excitation-sector Ĥac=g|eih0|+h.c., up to the 4th power
in g we find:

Ĝ(1) = Ĝ00 (|eih0|+|0ihe|) Ĝ00 ,
Ĝ(2) = Ĝ00 (G00|eihe|+G0e|0ih0|) Ĝ00 ,
Ĝ(3) = G00G0e Ĝ00(|eih0|+|0ihe|) Ĝ00 ,
Ĝ(4) = G00G0e Ĝ00(G00|eihe|+G0e|0ih0|) Ĝ00

By induction, this is generalized for any integer k�1 as

Ĝ(2k+1) = (G00G0e)k Ĝ00(|eih0|+|0ihe|) Ĝ00 ,
Ĝ(2k) = (G00G0e)k�1 Ĝ00(G00|eihe|+G0e|0ih0|) Ĝ00 .

Note that even and odd power terms are always proportional to Ĝ00 (G00|eihe|+G0e|0ih0|) Ĝ00 and
Ĝ00 (|eih0|+|0ihe|) Ĝ00, respectively. By introducing now the geometric series f =g

P1
n=0(g2G00G0e)n,

whose sum coincides with Eq. (2.81), together with functions f1(z)=gG00(z) f (z) and
f2(z) = gG0e(z) f (z), we straightforwardly end up with Eq. (2.80). From Eq. (51), G0e(z) =
(z � !a)�1 and

G00(z) =
X

k

|h'k|0i|2
z � !k

N�1�! 1
2⇡

Z ⇡

�⇡
dk

1
z � !c � 2J cos k

, (54)

where we computed the thermodynamic limit N�1 [in this limit, owing to Eq. (2.54), 2⇡/N!
dk].
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Appendix B: Bound stationary states at resonance

Based on (2.80) and recalling that f1(z)= gG00(z) f (z), f2(z)= gG0e(z) f (z), the residues needed
for the calculation of | ±0 ih ±0 | are given by

r=Res( f ,!0±)=±
g5

2
p

g4 + 4J4
q

2J2 +
p

g4 + 4J4
, (55)

r1=Res( f1,!0±)=
g4

2
p

g4 + 4J4
, (56)

r2=Res( f2,!0±)=
g6

2
p

g4 + 4J4(2J2 +
p

g4 + 4J4)
. (57)

Substituting these in Res(Ĝ,!0±) yields

| ±0 ih ±0 | = �
r

2⇡!0+

Z ⇡

�⇡
dk
|eih�k|+h.c.
!k ⌥ !0+

+
r1

!2
0+
|eihe|

+
r2

4⇡2

Z ⇡

�⇡
dk

Z ⇡

�⇡
dk0

|�kih�k0 |
(!k ⌥ !0+)(!k0 ⌥ !0+)

. (58)

Setting x0 = 0, the matrix elements of projector (58) are calculated as

he| ±0 ih ±0 |ei =
r1

!2
0+
, (59)

hx| ±0 ih ±0 |x0i =
r2

4⇡2

Z ⇡

�⇡
dk

eikx

!0+ ⌥ !k

Z ⇡

�⇡
dk0

e�ik0x0

!0+ ⌥ !k0

=
r2

!2
0+ � 4J2

(± %)|x|+|x
0 | , (60)

he| ±0 ih ±0 |xi = hx| ±0 ih ±0 |ei=±
r

!0+

q

!2
0+ � 4J2

(± %)|x| ,

(61)

where % is given in Eq. (2.90). In deriving Eqs. (60) and (61) we have used Eq. (2.57). Based
on (2.90), (57) and (59), the following identity holds

r2

!2
0+ � 4J2

=
(1 � c2

e0)(1 � %2)
1 + %2 . (62)

Using this and the identity
p

r1r2 = r [cf. Eqs. (55)-(57)] one can check that the projector
associated with state (2.88) has the same matrix elements as those in (59), (60) and (61). This
proves (up to an irrelevant phase factor) that the state corresponding to projector (58) is indeed
given by Eq. (2.88).
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Appendix C: Solutions of quartic equation (2.85)

In what follows are reported the solutions of (2.85). Depending on the pair {g, �}, some of these
are real.
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