
Dottorato in Fisica
Dipartimento di Fisica e Chimica

FIS-03

Nanorings driven by strong laser fields: dynamics and applications 

IL DOTTORE IL COORDINATORE
                         Dario Cricchio                  Antonio Cupane

IL TUTOR
                     Emilio Fiordilino

CICLO  XXVI
ANNO CONSEGUIMENTO TITOLO 2016





1 Theory 7

1 Introduction 9

2 Harmonic Generation Theory 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Multiphoton Ionization and High Harmonic Generation (HHG) . . . . 13

2.2.1 High Harmonic Generation . . . . . . . . . . . . . . . . . . . . 14

2.3 Strong Field Approximation (SFA) . . . . . . . . . . . . . . . . . . . 18

2.4 High Harmonic Spectrum . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Electronic trajectory in three steps regime . . . . . . . . . . . . . . . 20

2.5.1 FFT of the dipole moment of the electron . . . . . . . . . . . 24

2.5.2 Acceleration of the electron . . . . . . . . . . . . . . . . . . . 26

2 Results 35

3 Fullerenides: High Harmonic Generation 37

3.1 Theoretical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Comparision of Results . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 High-order-harmonic generation in dimensionally reduced systems 45

4.1 Introduzione . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Nanorings driven by a two-color laser field 57

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3



6 Nanoring as Logic Gate and memory mass device 65

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3.1 Store information . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7 Classical chaos and harmonic generation in laser driven nanorings 75

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.3.1 Plain ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.3.2 Structured ring . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8 Momentum partition between constituents of exotic atoms dur-

ing laser-induced tunneling ionization 89

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.2 The simpleman model and the

energy-momentum conservation . . . . . . . . . . . . . . . . . . . . . 93

8.3 Strong field approximation . . . . . . . . . . . . . . . . . . . . . . . . 96

8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.4.1 Hydrogen atom . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.4.2 Exotic atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.4.3 The role of the Coulombic atomic potential . . . . . . . . . . . 107

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.6 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9 Graphene in strong laser field: experiment and theory 111

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4



9.3 Theoretical studies of the HHG in graphene . . . . . . . . . . . . . . 121

9.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3 Conclusions 129

10 Conclusions 131

11 Publications 137

12 Congresses 139

13 Schools 141

5





Part 1

Theory

7





1 Introduction

Our research started from the idea of creating a simple model that could explain

some features of the interaction between graphene and laser. Graphene is a carbon

allotrope composed of a monoatomic layer of atoms arranged in a regular hexagonal

pattern and which has essentially a bidimensional geometry. It has important elec-

trical, optical and mechanical properties, a high electronic mobility, and it can be

rolled to form nanotubes that can be approximated to one-dimensional wires. The

state of the art permits the fabrication of nanotubes whose length is much larger

than the radius; in these conditions the energy states pertaining to the circular mo-

tion are practically unpopulated. It is this consideration that provides meaning to

the one dimensional assertion. Graphene has important properties: it was realized

that the dispersion relation is linear around the six corners of the two-dimensional

hexagonal pattern, leading to zero effective mass for electrons and holes. If, in the

graphene structure, we substitute particular hexagons with pentagons, the geometry

becomes spherical and we obtain a new allotrope of the carbon: the fullerene C60.

The name is an homage to Buckminster Fuller, whose geodesic domes the fullerene

resembles. Spherical fullerene are called Buckyballs; an example is the C60 whose

structure is a truncated (T = 3) icosahedron (soccer-ball like) with 20 exagons and

12 pentagons. According to Euler’s theorem these 12 pentagons are required for

closure of the carbon network consisting of n hexagons and C60 is the first stable

fullerene because it is the smallest possible to obey this rule. In this structure none

of the pentagons make contact with each other. There exist fullerenes smaller of the

9
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 nm
Figure 1.1: Equivalence between one single graphene cell and one nanoring.

C60, but they have adjacent pentagons (called pentalene) that destabilize the struc-

ture. The fullere has been a topic of our recent research in which we have studied

the behavior under the influence of a laser field. It has been shown that the use of

C60 can also produce short pulses with duration of the order of τ ∼ 2
√
meR/eEL

with R the radius of the fullerene, EL the laser electric field strength, me the mass

of the electron and e the positive elementary charge in [1, 2, 3].

Another interesting object is the nanoring, small ringformed crystal. The first

nanoring fabricated was a zinc oxide nanoring with a diameter 1 to 4 µm and thin,

wide shells that were 10 to 30 nm thick[4]. Nanorings consisting of Ag quantum dots

with C6ν symmetry interacting with a circularly polarized light were studied in [5],

where it is shown that the high harmonic generation (HHG) spectra obtained from

artificial nanorings are more intense than the HHG spectra obtained from benzene.

The main intuition of our research is to approximate the single cell of graphene to

a nanoring. Our system is composed of one electron constrained on a circumference

of which we calculate the emission of high harmonics and the polarization of the

emitted harmonics. The origin of the harmonic generation is based in the non-

linearity of the electron-laser interaction energy. This non-linear interaction forces

10



the molecule to emit a wide spectrum of harmonics of the pumping field. Optimizing

our model, we have achieved an emission of harmonics compatible with that of the

graphene. We will show our calculations compared with the experimental data.

Furthermore we deepen the study of nanoring and their interaction with the laser

and usage in quantum information.

Finally I will show the research conducted at the Max-Planck-Institut für Kern-

physik about the momentum partition between constituents of exotic atoms during

laser induced tunneling ionization.
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2 Harmonic Generation Theory

2.1 Introduction

In order to understand the work done in these years, it is useful to explain what are

the processes that are the basis of the generation of harmonics. Especially in the

first part of the thesis I will discuss the following topics:

• Multiphoton ionization

• High Harmonic Generation

• Strong Field Approximation (SFA)

where I will explain the behavior of one electron driven by a laser field, consequently

I will show the equations that permit to calculate the harmonic spectra.

2.2 Multiphoton Ionization and High Harmonic

Generation (HHG)

Atoms and molecules driven by a laser field can be ionized by the absorption of the

minimum number of photons necessary such that the total energy of the photons

just exceeds tu the ionization energy Es. If N is the number of absorbed photons,

the energy of the emitted electron Ee will be:

Ee = N~ω − Es < ~ω (2.1)

13
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Having defined the multiphoton ionization, we can discuss the high harmonic

generation (HHG) that describes the diffusion by the matter of high harmonics of

the driving field. The HHG process can be described using the three-step model.

2.2.1 High Harmonic Generation

Usually the high harmonic generation can be described by three steps

I: An incident laser field ionize the atom and remove the electron from its ground

state to the continuum (tunnel ionization).

II: The electron propagates in the laser field acquiring kinetic energy and its

motion can be described classically.

III: The electron recombines emitting a photon of energy equal to kinetic energy

acquired in the previous steps.
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Figure 2.1: In this figure we show the total potential generated by superposition of the coulombian potential VC
(dashed line) and the laser potential VL (pointed line) at the instant of maximum intensity.

Step I: Tunnel Ionization

In the tunnel ionization the electron absorbs a sufficient number of photons to exceed

the barrier of potential. When the electron-laser interaction is comparable with the

electron-nucleus force, the laser field cannot be described perturbatively. If we

consider small frequencies and high intensity, the ionization can be described by

means of a tunnel ionization. The laser-molecule interaction energy (in the single

active electron approximation) is:

VL = e~E(t) · ~r

where ~E(t) is the laser field and ~r is the electron position.

Step II: Propagation in the Laser Field

Due to high intensity of laser field, it is possible neglect the interation between

electron and nucleus. In this picture, the electron is subordinate only to the force

of laser field:

~F = m~a = −e~E(t).

We suppose that the laser field is polarized along the z-axes and that its electric

15



field is described by:

Ez(t) = E0 cos(ωLt) (2.2)

Assuming that ionization start at time ti, and integrating equation (2.2) from ti to

t, we obtain:

v(t) = vi −
eE0

mωL
(sin(ωLt)− sin(ωLti)) = vi + vD −

eE0

mωL
sin(ωLt) (2.3)

where vD = eE0
mωL

sin(ωLti) is the drift velocity and vi is the velocity at time ti. If we

integrate the (2.3) we obtain the position of electron:

z(t) = zi + (vi + vD)(t− ti) + eE0

mω2
L

(cos(ωLt)− cos(ωLti)) . (2.4)

The kinetic energy is:

EKin(t) = 1
2mv(t)2 = 1

2m
(
vi + vD −

eE0

mωL
sin(ωLt)

)2
. (2.5)

The average kinetic energy in a period of the laser field is:

〈EKin〉 = 1
2m(vi + vD)2 + e2E2

0
4mω2 = 1

2(vI + vD)2 + UP , (2.6)

where UP is the Ponderomotive Energy. The potential ponderomotive energy is

equal to the average energy of oscillation of the electron in the laser field.

Step III: Recombination

In this final step the electron recombines with the parent nucleus emitting high-

energy photons. In particular the total energy is the sum of the ionization energy

and the ponderomotive energy.

From equations 2.3 and 2.6 we can calculate the time of the electron collision and

the corresponding kinetic energy. We can calculate the time collision by equating

to zero the eq. 2.4

z(tc) = zi + (vi + vD)(tc − ti) + eE0

mω2
L

(cos(ωLtc)− cos(ωLti)) = 0. (2.7)
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We can assume at the ionization instant that initial velocity and position are null

because the laser oscillations are very large respect to the electron position and

that only the electrons with small velocity after ionization can recombine with the

nucleus. With these approximations the equations 2.7 and 2.5 become:

−ωL(tc − ti) sin(ωLti) = cos(ωLtc)− cos(ωLti) (2.8)

EKin(tc) = e2E2
0

2mω2 (sin(ωLtc)− sin(ωLti))2 (2.9)

From these two equation we that the kinetic energy stems from the ionization instant

ti as well as from collision time tc; and that tc is a function of ti:

tc = f(ti); (2.10)

hence the electron collision energy depends from the ionization time:

EKin(ti) = e2E2
0

2mω2 [sin (ωLf(ti))− sin(ωLti)]2 . (2.11)

In order to find the maximum oh this expression, we must to impose

dEKin(t)
dt

= e2E2
0

2mω [sin(ωLf(ti))− sin (ωLti)]
[
cos (ωLf(ti)) d

dti
f(ti)− cos(ωLti)

]
= 0. (2.12)

With numerical calculation we find the maximum for

ωt ≡ 0.09π, 1.09π (2.13)

that corresponds to

EKin = 3.17Up. (2.14)

Then when the electron recombines, we must sum all energy contributions:

Emax = EI + 3.17Up = ~ωcutoff . (2.15)

In this way we can have a good evaluation of the cutoff position.
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2.3 Strong Field Approximation (SFA)

The interaction of atoms and molecules with a laser field can be fruitfully described

by using the strong field approximation. In the SFA the main assumption is that in

the continuum the electron dynamic is dominated by the laser field and the nucleus

potential is a weak perturbation that can be ignored at the lowest order [6].

Consider one atom in single active electron approximation driven by an intense

laser field ~E(t) and hence with a total Hamiltonian:

H = − ~2

2m∇
2 + V (~r) + e~r · ~E(t) = H0 + e~r · ~E(t), (2.16)

where H0 is the free Hamiltonian and V (~r) is the coulombian interaction energy and

~r is the electron position. Then the Schrödinger equation of the system is given by

i~
∂

∂t
| Ψ(t)〉 =

[
H0 + e~r · ~E(t)

]
| Ψ(t)〉 (2.17)

The ground state | 0〉 and the excited states | e〉 of the free Hamiltonian are:

H0 | 0〉 = −Ip | 0〉 (2.18)

H0 | e〉 = Ee | e〉 (2.19)

with Ip the ionization energy. Now we assume that the electron goes to the contin-

uum by tunnel effect and that the electron in the continuum can be treated as a free

particle and finally that the external laser field is very large such that the Keldysh

parameter γ =
√
Ip/2Up < 1. With these approximations, the wave function at time

t can be expanded as

| t〉 = eiIpt
(
| 0〉+

∫
d3~vb(~v, t) | ~v〉

)
(2.20)

with | ~v〉 the atomic states in the continuum indicated by the kinetic momentum ~v

and b(~v, t) its probability amplitude. Choosing an electric field along the x direction

Ex = E0 cos(ωt) and substituting this wave function into the Schrödinger equation

and integrating over the time, we obtain the solution for b(~v, t):

b(~v, t) =
∫ t

0 dt′E0 cos(ωt′)dx(~v + e ~A(t)− e ~A(t′))e
−i
∫ t
t′ dt

′′

[
(~v+e ~A(t)−e ~A(t′′))2

2 +Ip

]
(2.21)
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where dx is the x component of the dipole moment matrix element ~d(~v) = −〈~v |

~r | 0〉, and ~A(t) = (−E0 sin(t), 0, 0) is the vector potential of the external laser

field. The equation 2.21 can be divided in two parts, in the first one the the term

E0 cos(ωt′)dx(~v + e ~A(t) − e ~A(t′)) represents the probability amplitude to find the

electron in the continuum with canonical momentum ~p = ~v + e ~A(t), and the expo-

nential term describe the free propagation of the electron in the laser field from the

time t′ to the time t and represents the quasiclassical action.

Then if ~p is the canonical momentum, we can write the quasiclassical action as

S(~p, t, t′) =
∫ t

t′
dt′′


(
~p− e ~A(t′′)

)2

2 + Ip

 . (2.22)

In order to calculate the x component of the time dependent dipole moment, it

is necessary calculate x(t) = 〈Ψ(t) | x | Ψ(t)〉:

x(t) = i
∫ t

0
dt′

∫
d3~p E0 cos(t′)dx(~p− e ~A(t′))d∗x(~p− e ~A(t))e−iS(~p,t,t′) + c.c (2.23)

where the matrix element d∗x(~p − e ~A(t)) = 〈0 | x | ~p − e ~A(t)〉 is proportional to

the probability that the electron recollide to the nucleus at time t. The integration

over d3~p is equivalent to the sum over all possible values of ~p but Lewenstein [6]

demonstrate that only the electron that at the exit of tunneling have a velocity

close to zero can recollide with the nucleus. This is the main feature of the SFA.

2.4 High Harmonic Spectrum

In this section we show the typical high harmonic spectrum.

The spectrum can be divided in three regions: in the first region, typically

the first ten harmonics, we have a decay of the harmonic intensities that become

constants in the second region called plateau. Finally in the last region we have

a cutoff, were we have a fast decay of the harmonic intensities. This is clearly a

non-linear process.
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Figure 2.2: Typical high harmonic spectrum.

We can use several alternatives in order to calculate the harmonic spectrum. In

particular:

• Electronic trajectory in three steps regime

• Fourier transform of the dipole moment of the electron

• Acceleration of the electron

The use of one method instead another is due to the mathematical convenience of

the system to be studied. In order to explain the three methods, we will show the

results obtained for a nanoring driven by a two color laser field and we will compare

them.

2.5 Electronic trajectory in three steps regime

In order to explain the electronic trajectory in three steps regime , we give the

example of the ionization of one atom in which the electron is ionized and then

recollide with core. In this system we consider a two color elliptically polarized

electric field:

~E(t) = 1
2i

[
E1√
1+ε21

(ê1 − iε1ê2) eiωt + E2√
1+ε22

(ê1 − iε2ê2) ei2ωt
]

+ c.c. (2.24)
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with εj ∈ [−1, 1] the ellipticity of the laser field, E1,2 its amplitude and ê1,2 the

versor. The vector potential is

~A(t) = −
∫ t

~E(t′)dt′. (2.25)

Also we define

~α(t) = e

m

∫ t
~A(t′)dt′ (e =| e |). (2.26)

The rate emission of the n-th harmonic with polarization êj is given by the equation

wn(êj) = 1
8π2ε0~

(
nω

c

)3
| Tn(êj |2, (2.27)

where the element of the matrix t are calculated with the equation

Tn(êj) =
∫ t0+T

t0

1
T
ê∗j
~d(tf )einωtfdtf (2.28)

with t0 the initial time and T = 2π/ω. In strong field approximation (SFA) the

matrix elements of the dipole moment ~d(tf )can be approximated as

~d(tf ) = − i
~

∫
〈ψ0 | e~r | ~q + e

~
~A(tf )〉d3~q ·

·
∫ tf

−∞
dti〈~q + e

~
~A(ti) | e~r · ~E(ti) | ψ0〉 ·

· e
− i

2m~

∫ tf
ti

[~~q+e ~A(t)]2dt+ i
~E0(tf−ti). (2.29)

If we join the all the exponential terms into the quasiclassical equation, we obtain

the following action:

S(~q, ti, tf ) = 1
2m

∫ tf

ti
[~~q + e ~A(t)]2dt+

∫ ti

tf

E0dt+
∫ ∞
tf

n~ωdt = (2.30)

=
∫ ∞
tf

(E0 + n~ω)dt+ 1
2m

∫ tf

ti
[~~q + e ~A(t)]2dt+

∫ ti

−∞
E0dt. (2.31)

Initially the atom is in the ground state:

| ψ0〉e−
i
~E0t (2.32)

At time ti the electron goes to the continuum, in tunnel regime, because the interac-

tion e~r~E(ti). At time t < ti the system is in the ground state, finally at time tf the
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electron returns to the starting point recombining with the nucleus and emitting a

laser photon with energy n~ω. The T matrix (eq. 2.28), can be calculated with the

saddle point method:

Tn(êj) ∝
∑
s

Ms
e−

i
~Ss√

det
(

∂2S
∂qk∂q`

) , (2.33)

where Ss ≡ S(~qs, tis, tfs) is the action calculated in the sallde points s and Ms ≡

M(~qs, tis, tfs) is the product of the non exponential terms of the dipole moment

matrix element in Eq. 2.29. The saddle point are the solution of the following

equations:

m

tf − ti

[
~α(ti)− ~α(tf )

]
= ~~q (2.34)

1
2m [~~q + e ~A(ti)]2 = E0 (2.35)
1

2m [~~q + e ~A(tf )]2 = n~ω + E0 (2.36)

At first we need to find the initial time saddle point tis. We set:

A(t) = sin(ωti)
ω

, (2.37)

in the Eq. 2.35:

1
2m

[
~2q2 + 2~~qe ~A(ti) + e2A(ti)2

]
= E0 (2.38)

1
2m

[
~2q2 + 2~~qesin(ωti)

ω
+ e2 sin(ωti)2

ω2

]
= E0 (2.39)

~2q2 + 2~~qesin(ωti)
ω

+ e2 sin(ωti)2

ω2 − 2mE0 = 0 (2.40)

sin(ωti)2

ω2 + 2~~q
e

sin(ωti)
ω

− 2mE0 − ~2q2

e2 = 0 (2.41)

sin(ωti)2 + 2~ω~q
e

sin(ωti)−
(
2mE0 − ~2q2

)
ω2 = 0 (2.42)

hence we have

sin(ωti) = −~ω~q
e
± 1

2

√√√√(2~ω~q
e

)2

+ 4ω2 2mE0 − ~2q2

e2

= −~ω~q
e
± ω

e

√
2mE0 (2.43)
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= −ω
e

(
~~q ±

√
2mE0

)
(2.44)

Then we have four solutions:

ωtis1 = arcsin
[
−ω
e

(
~~q +

√
2mE0

)]
(2.45)

ωtis2 = π + arcsin
[
−ω
e

(
~~q +

√
2mE0

)]
(2.46)

ωtis3 = arcsin
[
−ω
e

(
~~q −

√
2mE0

)]
(2.47)

ωtis4 = π + arcsin
[
−ω
e

(
~~q −

√
2mE0

)]
(2.48)

Similarly from the Eq. 2.36 we find the final time saddle point tfs:

ωtfs1 = arcsin
[
−ω
e

(
~~q +

√
2m (n~ω + E0)

)]
(2.49)

ωtfs2 = π + arcsin
[
−ω
e

(
~~q +

√
2m (n~ω + E0)

)]
(2.50)

ωtfs3 = arcsin
[
−ω
e

(
~~q −

√
2m (n~ω + E0)

)]
(2.51)

ωtfs4 = π + arcsin
[
−ω
e

(
~~q −

√
2m (n~ω + E0)

)]
(2.52)

Now we must calculate the electron motion into the laser field by the classical Newton

equation: m~a(t) = −e~E(t). The solution of this equation with the initial condition

~r(ti) = ~ri e ~v(ti) = ~vi is:

m~v(t) = e
[
~A(t)− ~A(ti)

]
+m~vi (2.53)

~r(t) = ~ri + ~α(t)− ~α(ti)−
[
e

m
~A(ti)− ~vi

]
(t− ti). (2.54)

Using the recollision condition in the starting point ~r(tf ) = ri we have

m
~α(ti)− ~α(tf )

tf − ti
= m~vi − e ~A(ti) = ~p, (2.55)

this equation is in agreement with Eq. 2.34. Because the energy conservation

condition in Eq. 2.35, the initial kinetic energy of the electron into the laser field

must be equal to the its final energy in the atomic ground state:

1
2m~v

2
i = E0. (2.56)
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This requirement can be satisfied with a complex velocity ~vi such as:

<(~vi) · =(~vi) = 0 (2.57)

<(~vi)2 −=(~vi)2 = 2E0

m
(2.58)

Similarly for the energy conservation at final time tf :

1
2m~v(tf )2 = n~ω + E0, (2.59)

the final electron velocity must satisfy the conditions:

<(~v(tf )) · =(~v(tf )) = 0 (2.60)

<(~v(tf ))2 −=(~v(tf ))2 = 2(n~ω + E0)
m

. (2.61)

Complex time and velocity are the consequence of the fact that the electron arises

from the tunneling. Now we can calculate the harmonic spectra by the Fourier

transform of the Eq. 2.54 or by the calculation of the electron acceleration. These

two method are studied in the following two sections.

2.5.1 FFT of the dipole moment of the electron

Another method to obtain the harmonic spectrum is by the Fourier transform of the

dipole momentum. We consider a system composed by one electron constrained over

a circle of radius R driven by two laser fields along its plane (the x− y plane), with

angular frequency ωx and ωy = 2ωx. The laser along the x axis is taken n-photon

resonant between the ground state and the first excited state.

We write the total electric field as:

~EL(t) = E0
[
ε̂xfx(t) cos (β) cos(ωxt) + ε̂yfy(t) sin (β) sin(ωyt)

]
(2.62)

where E0 is the total amplitude of the electric field and fk(t) the shapes of the two

laser pulses. The convenient parameter β sets the intensity of the two lasers and

leaves unchanged the total intensity; for β = 0◦ we have only the electric field along

the x axis, for β = 45◦ the two electric fields have the same intensity and finally for

β = 90◦ we have only the second electric field.
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The Hamiltonian of the system is:

H = H0 + eE0xR cos(θ)fx(t) cos(ωxt) + eE0yR sin(θ)fy(t) sin(ωyt), (2.63)

where R is the radius of the nanoring, θ is the angle between the electron position

and the x axis, E0x = E0 cos(β), E0y = E0 sin(β) andH0 is the Hamiltonian in absence

of external laser fields:

H0 = − ~2

2me

∇2 = − ~2

2mer2

 ∂
∂r

(
r2 ∂

∂r

)
− ˆ̀2

. (2.64)

where me is the mass of electron and ` is the operator of the orbital angular mo-

mentum. Since r is constant, the derivatives over r will vanish:

H0 = ~2

2meR2
ˆ̀2. (2.65)

But ˆ̀2 = ˆ̀2
x + ˆ̀2

y + ˆ̀2
z, and the symmetry of the system permit us to write the free

Hamiltonian as

H0 = ~2

2meR2
ˆ̀2
z (2.66)

with `z the z component of the angular momentum operator in units of ~.

If we solve the time dependent Schrödinger equation we find the expansion co-

efficients am of the wave function | t〉:

| t〉 =
+∞∑
m,−∞

am(t) | m〉 (2.67)

where | m〉 = eimϕ/
√

2π are eigenstates of H0.

The equation we arrive at is:

iȧm = ωmam + eE0R

2~ {[cos (β) fx(t) cos(ωxt)− i sin (β) fy(t) sin(ωyt)]am−1 +

+ [cos (β) fx(t) cos(ωxt) + i sin (β) fy(t) sin(ωyt)]am+1}. (2.68)

thus we have a set of coupled differential equations. From the state | t〉 we calculate

the dipole moment ~D. The emitted spectrum of high harmonics will be the Fourier

transform of the dipole momentum.

~D =
+∞∑
m,−∞

[
ε̂x<

(
a∗m−1am

)
+ ε̂y= (a∗mam−1)

]
. (2.69)
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2.5.2 Acceleration of the electron

The last method to calculate the harmonic spectrum is by the calculation of the

electron acceleration. We consider a system composed by one nanoring driven by

a laser field; the Hamiltonian, and the full state of the charge carrier in the ring

are the same of the past section. In this manner, the time dependent Schroedinger

equation (TDSE)

i~∂t|t〉 = H|t〉, (2.70)

and

H | t〉 =
∞∑

n=−∞
~ωncn | n〉+ Vxfx(t) sin(ωLt)

∞∑
n=−∞

cn cos(θ) | n〉 (2.71)

+ Vyfy(t) sin(ωLt)
∞∑

n=−∞
cn sin(θ) | n〉 (2.72)

with Vi = eE0iR, i = x, y, the potential energy of the charge carrier.

If we project 〈m | state, we obtain:

i~ċm = ~ωmcm + Vxfx(t) sin(ωLt)
∞∑

n=−∞
cn〈m | cos(θ) | n〉

+ Vyfy(t) sin(ωLt)
∞∑

n=−∞
cn〈m | sin(θ) | n〉 (2.73)

−i~ċ∗m = ~ωmc∗m + Vxfx(t) sin(ωLt)
∞∑

n=−∞
c∗n〈m | cos(θ) | n〉

+ +Vyfy(t) sin(ωLt)
∞∑

n=−∞
c∗n〈m | sin(θ) | n〉 (2.74)

We set

umn = 〈m | cos(θ) | n〉 = 1
2 (δm−n+1,0 + δm−n−1,0) . (2.75)

where umn ∈ <, then umn = u∗mn.
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Likewise we have

vmn = 〈m | sin(θ) | n〉 = i

2 (δm−n+1,0 − δm−n−1,0) . (2.76)

Then the equation 2.73 will be

i~ċm = ~ωmcm + Vxfx(t) sin(ωLt)
∞∑

n=−∞
umncn

+ Vyfy(t) sin(ωLt)
∞∑

n=−∞
vmncn. (2.77)

The x and y positions of the charge carrier are

x(t) = 〈t | x | t〉 = 〈t | R cos(θ) | t〉

= R
∞∑

n,m=−∞
c∗mcn〈m | cos(θ) | n〉 = R

∞∑
n,m=−∞

umnc
∗
mcn (2.78)

y(t) = 〈t | y | t〉 = 〈t | R sin(θ) | t〉

= R
∞∑

n,m=−∞
c∗mcn〈m | sin(θ) | n〉 = R

∞∑
n,m=−∞

vmnc
∗
mcn (2.79)

If we set Smni = c∗mcn, ,with i = x, y, then we define:

i~Ṡmni = i~(ċ∗mcn + c∗mċn) = (2.80)

=
−~ωmc∗m − ViF (t)i sin(ωLt)

∞∑
k=−∞

u∗mkc
∗
k

 cn +

+ c∗m

~ωncn + ViF (t)i sin(ωLt)
∞∑

k=−∞
unkck

 (2.81)

setting ωnm = ωn − ωm we obtain:

i~Ṡmnx = ~ωnmc∗mcn − Vxfx(t) sin(ωLt)
∞∑

k=−∞

[
u∗mkc

∗
kcn − unkc∗mck

]
(2.82)

= ~ωnmc∗mcn − Vxfx(t) sin(ωLt)
∞∑

k=−∞

[
u∗mkSkn − unkSmk

]
(2.83)

i~Ṡmny = ~ωnmc∗mcn − Vyfy(t) sin(ωLt)
∞∑

k=−∞

[
v∗mkc

∗
kcn − vnkc∗mck

]
(2.84)

= ~ωnmc∗mcn − Vyfy(t) sin(ωLt)
∞∑

k=−∞

[
v∗mkSkn − vnkSmk

]
. (2.85)

Then the velocities will be:

i~ẋ(t) = i~R
∞∑

n,m=−∞
umnṠmnx (2.86)
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i~ẏ(t) = i~R
∞∑

n,m=−∞
vmnṠmny (2.87)

with

umnunk = 1
4 (δm−n+1,0 + δm−n−1,0) (δn−k+1,0 + δn−k−1,0) (2.88)

= 1
4 (δm−n+1,0δn−k+1,0 + δm−n+1,0δn−k−1,0 + δm−n−1,0δn−k+1,0 + δm−n−1,0δn−k−1,0)

umnu
∗
mk = umnukm = 1

4 (δm−n+1,0 + δm−n−1,0) (δk−m+1,0 + δk−m−1,0) (2.89)

= 1
4 (δm−n+1,0δk−m+1,0 + δm−n+1,0δk−m−1,0 + δm−n−1,0δk−m+1,0 + δm−n−1,0δk−m−1,0)

vmnvnk = −1
4 (δm−n+1,0 − δm−n−1,0) (δn−k+1,0 − δn−k−1,0) (2.90)

= −1
4 (δm−n+1,0δn−k+1,0 − δm−n+1,0δn−k−1,0 − δm−n−1,0δn−k+1,0 + δm−n−1,0δn−k−1,0)

vmnv
∗
mk = −vmnvkm = 1

4 (δm−n+1,0 − δm−n−1,0) (δk−m+1,0 − δk−m−1,0) (2.91)

= 1
4 (δm−n+1,0δk−m+1,0 − δm−n+1,0δk−m−1,0 − δm−n−1,0δk−m+1,0 + δm−n−1,0δk−m−1,0)

Then the velocities:

i~ẋ(t) = i~R
∞∑

n,m=−∞
umnṠmnx (2.92)

= ~R
∞∑

n,m=−∞
umnωnmc

∗
mcn −RVxfx(t) sin(ωLt) ·

·
∞∑

n,m=−∞
umn

∞∑
k=−∞

[
u∗mkc

∗
kcn − unkc∗mck

]
(2.93)

= ~R
2

∞∑
n=−∞

(
ωn,n−1c

∗
n−1 + ωn,n+1c

∗
n+1

)
cn −

− RVxfx(t) sin(ωLt)
∞∑

n,m=−∞

∞∑
k=−∞

[
umnu

∗
mkc

∗
kcn − umnunkc∗mck

]
(2.94)
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= ~R
2

∞∑
n=−∞

(
ωn,n−1c

∗
n−1 + ωn,n+1c

∗
n+1

)
cn −

1
4RVxfx(t) sin(ωLt) ·

·
∞∑

n,m=−∞

∞∑
k=−∞

[
(δm−n+1,0δk−m+1,0 + δm−n+1,0δk−m−1,0+

+ δm−n−1,0δk−m+1,0 + δm−n−1,0δk−m−1,0) c∗kcn −

− (δm−n+1,0δn−k+1,0 + δm−n+1,0δn−k−1,0+

+ δm−n−1,0δn−k+1,0 + δm−n−1,0δn−k−1,0) c∗mck
]

(2.95)

= ~R
2

∞∑
n=−∞

(
ωn,n−1c

∗
n−1 + ωn,n+1c

∗
n+1

)
cn −

1
4RVxfx(t) sin(ωLt)

∞∑
n,m=−∞

·

·
[ (
δm−n+1,0c

∗
m−1 + δm−n+1,0c

∗
m+1 + δm−n−1,0c

∗
m−1 + δm−n−1,0c

∗
m+1

)
cn −

− c∗m (δm−n+1,0cn+1 + δm−n+1,0cn−1 + δm−n−1,0cn+1 + δm−n−1,0cn−1)
]

(2.96)

= ~R
2

∞∑
n=−∞

(
ωn,n−1c

∗
n−1 + ωn,n+1c

∗
n+1

)
cn −

− RVxfx(t) sin(ωLt)
4

∞∑
n=−∞

[ (
c∗n−2 + 2c∗n + c∗n+2

)
cn −

− c∗n−1 (cn−1 + cn+1)− c∗n+1 (cn−1 + cn+1)
]

(2.97)

= ~R
2

∞∑
n=−∞

(ωn,n−1Sn−1,n,x + ωn,n+1Sn+1,n,x)−

− RVxfx(t) sin(ωLt)
4

∞∑
n=−∞

[
Sn−2,n,x + 2Sn,n,x + Sn+2,n,x − Sn−1,n−1,x −

− Sn−1,n+1,x − Sn+1,n−1,x − Sn+1,n+1,x

]
(2.98)

i~ẏ(t) = i~R
∞∑

n,m=−∞
vmnṠmny (2.99)

= ~R
∞∑

n,m=−∞
vmnωnmc

∗
mcn −RVyfy(t) sin(ωLt) ·

·
∞∑

n,m=−∞
vmn

∞∑
k=−∞

[
v∗mkc

∗
kcn − vnkc∗mck

]
(2.100)

= ~R
2

∞∑
n=−∞

(
ωn,n−1c

∗
n−1 − ωn,n+1c

∗
n+1

)
cn −RVyfy(t) ·

· sin(ωLt)
∞∑

n,m=−∞

∞∑
k=−∞

[
vmnv

∗
mkc

∗
kcn − vmnvnkc∗mck

]
(2.101)
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= ~R
2

∞∑
n=−∞

(
ωn,n−1c

∗
n−1 − ωn,n+1c

∗
n+1

)
cn −

1
4RVyfy(t) sin(ωLt) ·

·
∞∑

n,m=−∞

∞∑
k=−∞

[
(δm−n+1,0δk−m+1,0 − δm−n+1,0δk−m−1,0−

− δm−n−1,0δk−m+1,0 + δm−n−1,0δk−m−1,0) c∗kcn +

+ (δm−n+1,0δn−k+1,0 − δm−n+1,0δn−k−1,0 − δm−n−1,0δn−k+1,0+

+ δm−n−1,0δn−k−1,0) c∗mck
]

(2.102)

= ~R
2

∞∑
n=−∞

(
ωn,n−1c

∗
n−1 + ωn,n+1c

∗
n+1

)
cn −

1
4RVyfy(t) sin(ωLt)

∞∑
n,m=−∞

·

·
[ (
δm−n+1,0c

∗
m−1 − δm−n+1,0c

∗
m+1 − δm−n−1,0c

∗
m−1 + δm−n−1,0c

∗
m+1

)
cn +

+ c∗m (δm−n+1,0cn+1 − δm−n+1,0cn−1 − δm−n−1,0cn+1 + δm−n−1,0cn−1)
]

(2.103)

= ~R
2

∞∑
n=−∞

(
ωn,n−1c

∗
n−1 − ωn,n+1c

∗
n+1

)
cn −

RVyfy(t) sin(ωLt)
4 ·

·
∞∑

n=−∞

[ (
c∗n−2 − 2c∗n + c∗n+2

)
cn + c∗n−1 (cn+1 − cn−1) + c∗n+1 (cn−1 − cn+1)

]

= ~R
2

∞∑
n=−∞

(ωn,n−1Sn−1,n,y − ωn,n+1Sn+1,n,y) +

+ RVyfy(t) sin(ωLt)
4

∞∑
n=−∞

[
Sn−2,n,y − 2Sn,n,y + Sn+2,n,y + Sn−1,n+1,y −

− Sn−1,n−1,y + Sn+1,n−1,y − Sn+1,n+1,y

]
(2.104)

With a second time differentiation, we obtain the accelerations along x and y.

For the x acceleration we must calculate:

d

dt

[~R
2

∞∑
n=−∞

(ωn,n−1Sn−1,n,x + ωn,n+1Sn+1,n,x)
]

= (2.105)

~R
2

∞∑
n=−∞

(
ωn,n−1Ṡn−1,n,x + ωn,n+1Ṡn+1,n,x

)
(2.106)

d

dt

[
−RVxfx(t) sin(ωLt)

4

∞∑
n=−∞

(
Sn−2,n,x + 2Sn,n,x + Sn+2,n,x−

− Sn−1,n−1,x − Sn−1,n+1,x − Sn+1,n−1,x − Sn+1,n+1,x

)]
= (2.107)

= −RVxfx(t)ωL cos(ωLt)
4

∞∑
n=−∞

(
Sn−2,n,x + 2Sn,n,x + Sn+2,n,x −
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− Sn−1,n−1,x − Sn−1,n+1,x − Sn+1,n−1,x − Sn+1,n+1,x

)
−

− RVxḟx(t) sin(ωLt)
4

∞∑
n=−∞

(
Sn−2,n,x + 2Sn,n,x + Sn+2,n,x −

− Sn−1,n−1,x − Sn−1,n+1,x − Sn+1,n−1,x − Sn+1,n+1,x

)
−

− RVxfx(t) sin(ωLt)
4

∞∑
n=−∞

(
Ṡn−2,n,x + 2Ṡn,n,x + Ṡn+2,n,x −

− Ṡn−1,n−1,x − Ṡn−1,n+1,x−̇Sn+1,n−1, − Ṡn+1,n+1,

)
(2.108)

with:

Ṡmnx = −iωnmc∗mcn + i

~
Vxfx(t) sin(ωLt)

∞∑
k=−∞

[
u∗mkc

∗
kcn − unkc∗mck

]
(2.109)

= −iωnmc∗mcn + i

2~Vxfx(t) sin(ωLt)
∞∑

k=−∞
·

·
[

(δm−k+1,0 + δm−k−1,0) c∗kcn −

− c∗m (δn−k+1,0 + δn−k−1,0) ck
]

(2.110)

= −iωnmc∗mcn + i

2~Vxfx(t) sin(ωLt) ·

·
[ (
c∗m−1,x + c∗m+1,x

)
cn − c∗m (cn−1,x + cn+1,x)

]
(2.111)

= −iωnmSm,n,x + i

2~Vxfx(t) sin(ωLt) ·

·
(
Sm−1,n,x + Sm+1,n,x − Sm,n−1,x − Sm,n+1,x

)
. (2.112)

Then the x acceleration will be the summation of eq. 2.105 and eq. 2.108.

For the y acceleration we must calculate:

d

dt

[~R
2

∞∑
n=−∞

(ωn,n−1Sn−1,n,y − ωn,n+1Sn+1,n,y)
]

= (2.113)

~R
2

∞∑
n=−∞

(
ωn,n−1Ṡn−1,n,y − ωn,n+1Ṡn+1,n,y

)
(2.114)

d

dt

[
RVyfy(t) sin(ωLt)

4

∞∑
n=−∞

(
Sn−2,n,y − 2Sn,n,y + Sn+2,n,y + Sn−1,n+1,y−

− Sn−1,n−1,y + Sn+1,n−1,y − Sn+1,n+1,y

)]
= (2.115)
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= RVyfy(t)ωL cos(ωLt)
4

∞∑
n=−∞

(
Sn−2,n,y − 2Sn,n,y + Sn+2,n,y + Sn−1,n+1,y −

− Sn−1,n−1,y + Sn+1,n−1,y − Sn+1,n+1,y

)
+

+ RVyḟy(t) sin(ωLt)
4

∞∑
n=−∞

(
Sn−2,n,y − 2Sn,n,y + Sn+2,n,y + Sn−1,n+1,y −

− Sn−1,n−1,y + Sn+1,n−1,y − Sn+1,n+1,y

)
+

+ RVyfy(t) sin(ωLt)
4

∞∑
n=−∞

(
Ṡn−2,n,y − 2Ṡn,n,y + Ṡn+2,n,y + Ṡn−1,n+1,y −

− Ṡn−1,n−1,y + Ṡn+1,n−1,y − Ṡn+1,n+1,y

)
(2.116)

with:

Ṡmn,y = −iωnmc∗mcn + i

~
Vyfy(t) sin(ωLt)

∞∑
k=−∞

[
v∗mkc

∗
kcn − vnkc∗mck

]
(2.117)

= −iωnmc∗mcn + 1
2~Vyfy(t) sin(ωLt) ·

∞∑
k=−∞

[
(δm−k+1,0 − δm−k−1,0) c∗kcn +

+ c∗m (δn−k+1,0 − δn−k−1,0) ck
]

(2.118)

= −iωnmc∗mcn + 1
2~Vyfy(t) sin(ωLt) ·

·
[ (
c∗m+1,y − c∗m−1,y

)
cn + c∗m (cn+1,y − cn−1,y)

]
(2.119)

= −iωnmSm,n,y + 1
2~Vyfy(t) sin(ωLt) ·

·
(
Sm+1,n,y − Sm−1,n,y + Sm,n+1,y − Sm,n−1,y

)
. (2.120)

Then the x acceleration will be the summation of eq. 2.113 and eq. 2.116. In fig.

2.3 we can see the spectra calculated using the two methods: dipole spectrum and

acceleration spectrum. Both the spectra are very similar, in fact they present the

same information. We have some differences in the first part of the spectra, there

the dipole spectrum presents a descendent shape while the acceleration spectrum

have a little peak near the 5-th harmionic. We can obtain the same shape of the

acceleration spectra by multiply the dipole spectra for ω4. We also notice that the

acceleration spectrum presents a wider plateau than the dipole spectrum. In this

thesis we do not show the spectra calculated with the electron trajectory because at

present we are working on it and we do not have complete simulations.
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Figure 2.3: Harmonic spectra calculated on one nanoring of radius R=2.7 au and a driven by a laser field with

λ = 800 nm and intensity I = 6 · 1014 W/cm2. On the left we present the dipole spectrum and on the right we

present the acceleration spectrum. In the x-axes we have the harmonic order and in the y-axes we have the intensity

in arbitrary units.
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Results
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3 Fullerenides: High Harmonic
Generation

In this chapter we study the behaviour of one fullerene in presence of a strong Laser

field and compare our theoretical model with experimental studies of high-order

harmonic generation in the plasmas containing fullerenes under different plasma

conditions and laser parameters in the case of sub-5 fs (femtosecond = 10−15 s)

pulses.

3.1 Theoretical Model

We consider one electron constrained over a spherical surface with 60 atoms in the

presence of a laser electric field linearly polarized along the z-axis. We have chosen

to use this values to compare it with the fullerens C60. Fullerenes have a graphite-

like structure, but instead of purely hexagonal packing, they also contain pentagons

(or even heptagons) of carbon atoms, which bend the graphene sheet into spheres,

ellipses, or cylinders. Among fullerenes, C60 is particularly noteworthy since its

pentagonal and hexagonal rings of carbon atoms give it a spherical shape. This

feature endows C60 with an appealing spherical symmetry which can be used to

simplify the treatment [1].

In the dipole approximation, the laser field has the form

~E(t) = k̂ ~ELf(t) sin(ωLt) (3.1)

with EL the intensity of the field, f(t) the pulse profile and k̂ the z-unit vector. In

our calculation we have used two pulse profiles: the first one has trapezoidal shape
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and the second one a gaussian shape. The TDSE to be solved is

i~
∂

∂t
ψ(t) = Hψ(t) (3.2)

with H the hamiltonian of the system:

H = H0 + ~ΩL(t) cos(θ) sin(ωLt) (3.3)

where

H0 = ~2

2I
ˆ̀2 (3.4)

is the hamiltonian of the electron in the absence of the laser, ˆ̀2 is the angular

momentum operator, and

ΩL(t) = eE(t)R
~

, (3.5)

where E is the electric field.

The energies of the states of the unperturbed hamiltonian H0 are

~ω` ≡
~2

2I `(`+ 1), (3.6)

and the energy gap between adjacent levels grows linearly with the level order,

~ω`+1,` ≡ ~(ω`+1 − ω`) = ~2

I
(`+ 1) (3.7)

then the gap between contiguous energy levels is linearly increasing with `, this is

the result of the supposed spherical symmetry and mimics the characteristic ioniza-

tion suppression of the fullerene. Infact the fullerene C60 has an ionization energy

of about 7.6 eV but it can absorb photons from the laser field up to 50 eV before

undergoing ionization [7]. It is convenient to write the state vector | t〉 as a lin-

ear combination of eigenstates of the laser free Hamiltonian ~2

2IL
2. If we solve the

TDSE we find the expansion coefficients c`m of the wavefunction | t〉, and the linear

combination of the state vector | t〉 will be :

| t〉 =
∞∑
`′=0

∑̀
m′=−`

c`′,m′ (t) | `′,m′〉. (3.8)
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Because ϕ is a cyclic variable, the laser will couple solely states with m = m′; let

| Λ,m〉 be the initial state of the electron, with Λ the quantum number of the initial

orbital angular momentum, then the Schrödinger equation becomes

iċ`m = ω`c`m + ΩL

∞∑
`′=Λ

sin(ωLt)〈`,m | cos(θ) | `′,m〉c`′,m (3.9)

The matrix elements are:

〈`,m | cos(θ) | `′,m〉 =
√

4π
3

∫
Y`,m(θ, ϕ)∗Y1,0(θ, ϕ)Y`′,m(θ, ϕ)dΩ. (3.10)

If we set

b`m ≡

√√√√(`+m+ 1)(`−m+ 1)
(2`+ 1)(2`+ 3) (3.11)

we obtain ∫
Y`,0(θ, ϕ)∗Y1,0(θ, ϕ)Y`+1,m(θ, ϕ)dΩ =

√
4π
3 b`,m if ` ≥ Λ

∫
Y`,0(θ, ϕ)∗Y1,0(θ, ϕ)Y`−1,m(θ, ϕ)dΩ =

√
4π
3 b`−1,m if ` > Λ

Therefore

iċΛ,m = ωΛcΛ,m + Ω0(t)bΛ,m sin(ωLt)cΛ+1,m (3.12)

iċ`>Λ,m = ω`c`,m + Ω0(t) sin(ωLt)(b`−1,mc`−1,m + b`,mc`+1,m) (3.13)

Thus, the TDSE can be written as the following set of coupled differential equations

iċΛ,m = ωΛcΛ,m + Ω0(t)bΛ,m sin(ωLt)cΛ+1,m

iċΛ+1,m = ωΛ+1cΛ+1,m + Ω0(t)(bΛ,mcΛ,m + bΛ+1,mcΛ+2,m) sin(ωLt)

iċΛ+2,m = ωΛ+2cΛ+2,m + Ω0(t)(bΛ+1,mcΛ+1,m + bΛ+2,mcΛ+3,m) sin(ωLt)
...

iċΛ+s,m = ωΛ+scΛ+s,m + Ω0(t)(bΛ+s−1,mcΛ+s−1,m + bΛ+s,mcΛ+s+1,m) sin(ωLt)
...

iċΛ+M,m = ωΛ+McΛ+M,m + Ω0(t)bΛ+M−1,mcΛ+M−1,m sin(ωLt)

iċΛ+M+1,m = 0
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Figure 3.1: (Color online) Calculated data of the harmonic spectra from fullerene plasma in the case of (a), (b)

780 nm and (c) 1300 nm probe radiation. The pulse durations are (a) 2 optical cycles (5.2 fs), (b) 12 optical cycles

(31 fs), and (c) 8 optical cycles (34 fs).
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since the energy gap increases linearly with `, the higher levels will not be sig-

nificantly populated and then it is possible to truncate the system of differential

equations for N a sufficiently large integer. Then the energy levels with quantum

number ` > Λ + M , where M is quantum number that refers to the z-projection

of the angular momentum, do not participate to the dynamics of the system. The

set of differential equations shows a ladder like structure so that any energy level

is coupled to the two nearest levels. This system of differential equations has been

truncated at the level M and it has been numerically solved by use of the matlab

numerical routine ode45. The ode45 rutine is based on an explicit Runge-Kutta

formula, the Dormand-Prince pair. It is a one-step solver, in computing y(tn), it

needs only the solution at the immediately preceding time point, y(tn−1) .

The wave function yields the electric dipole moment as:

〈t | R cos(θ) | t〉 = R
∞∑
s,0

(c∗Λ+s,mcΛ+s+1,m + cΛ+s,mc
∗
Λ+s+1,m)bΛ+s,m (3.14)

whose Fourier transform yields the spectrum.

The calculated harmonic spectrum from C60 is presented in Fig. 3.1 on the facing

page in the case of 775 nm (~ΩL= 1.6 eV) femtosecond pulses propagating through

the fullerene medium. The theoretical model presented here exploits the spherical

symmetry of the C60 by introducing radical approximations, the most important of

which is the fact that the molecule cannot be ionized. This approximation deserves

some comments. In spite of the ionization suppression of the C60 molecule, some

ionization is bound to occur so that the theory becomes unreliable when ionization

becomes relevant; this situation is reached when the laser pulse is intense or long

lasting. The theory can be extended to cope with these situations by introducing

an imaginary part in the energy of the levels.

3.2 Experimental Results
We give a detailed description of experimental setup made by the research group at

the Imperial College of London led by Rashid Ganeev and Jon Marangos.
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Figure 3.2: Comparative studies of the HHG from fullerene plasma using the 4.5 fs (triangles) and 40 fs (circles)

pulses.

In the experiment was used a short laser pulse to create the fullerene ablation

plume. The laser is a Ti:sapphire with a wavelength 775 nm and intensity Ifs = 5 ·

1014W/cm2 It was focused into the plasma plume to generate high-order harmonics.

The HHG radiation was analysed by a spatially-resolving XUV spectrometer. In

these experiments it has been studied in particular the C60 powder for harmonics

generation.

The results of comparative studies of the HHG in fullerene plasma using the

few-cycle (4.5 fs) and multi-cycle (40 fs) pulses are presented in Fig. 3.2. One can

see that the cutoff in the case of longer pulses (25th harmonic) was shorter with

regard to the few-cycle pulses.

42



3.3 Comparision of Results

We presented the results of the experimental and theoretical studies of high-order

harmonic generation in the plasmas containing fullerenes under different conditions

and laser duration of the pulse of 4.5 fs anf 45 fs.

In Fig. 3.1 we show the calculated harmonic spectra from C60 in the case of 780

nm(photon energy Eph =1.6 eV) and 1300 nm (photon energy Eph =0.96 eV) pulses

propagating through the fullerene medium. The calculations were carried out for

2-cycle pulses (t = 5.2 fs) and 12-cycle pulses (t = 1 fs) of 780 nm radiation and

8-cycle pulses (t = 34 fs) of 1300 nm radiation and intensity 6 · 1014 W/cm2 , which

were close to the conditions of fullerene HHG experiments. The spectra are formed

of well-resolved harmonics but with broadened lines (in the case of short pulses) and

hyper Raman lines (in the case of long pulses). Hyper Raman, lines with frequency

other than harmonics, are due to transitions between laser dressed molecular states.

Our calculations showed well-defined harmonics (up to Hc =31) in the case of

1300 nm multicycle pulses. The theoretical model exploited the spherical symmetry

of the C60 by introducing a number of approximations, the most important of which

is that the molecule cannot be ionized. This approximation deserves some comment.

In spite of the ionization suppression of the C60 molecule, some ionization is bound

to occur so that the theory becomes unreliable when ionization becomes significant.

The harmonic cutoff in the case of 1300 nm radiation was extended compared with

780 nm radiation (Hc =17), analogously as in the case of experiment.

The comparative studies using 3.5 and 40 fs pulses showed that, for few-cycle

pulses, the harmonic cutoff is extended compared with multicycle pulses, which can

be attributed to reduced fragmentation of C60 for the shorter pulse. The comparison

of fullerene harmonic spectra generated in the case of 1300 and 780 nm multicycle

probe pulses showed the extension of generating harmonic orders in the former case.

Theoretical calculations of fullerene harmonic spectra were carried out in the single

active electron approximation, which showed harmonics up to Hc =31 in the case of

1300 nm multicycle pulses and up to Hc =17 in the case of 780 nm multicycle pulses.
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4 High-order-harmonic generation in
dimensionally reduced systems

4.1 Introduzione

In this chapter we discuss the response of a nanoring driven by a laser field in different

states of polarization with particular attention to the spectrum emitted by the laser-

induced charge oscillations. We use the dependent wave function of a nanoring driven

by a laser field for studying the properties of the electromagnetic radiation emitted

by the nanoring as a function of the polarization state of the laser. The diffused ra-

diation has the characteristics of high order harmonic generation. For non circularly

polarized laser field it is evident an extension of the expected cutoff position indicating

that nanorings are efficient sources of radiation. The polarization state of the emitted

harmonics can be opportunely controlled by varying the parameters of the pump field.

The profile of the absorbed angular moment shows that a magnetic moment can be

induced depending on the polarization of the driven field.

4.2 Theory

Let us consider an electron constrained over a circle of radiusR lying in the x−y plane

and acted upon by a laser elliptically polarized in the same plane.

The number of free parameters entering the problem is large and might entwine

the relation between causes and effects into a Gordian knot; thus, in the following,
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we undertake all the simplifying steps which can help the comprehension. With this

guiding idea we confine our treatment to relatively long pulse duration in order to

reduce effects related to envelope phase and line broadening. The external electric

field is therefore taken of the form

~E(~r, t) = ELf(t)
[
~εx cos β cos(ωLt) + ~εy sin β sin(ωLt)

]
(4.1)

~εx and ~εy being the unit vectors along the x and y axes respectively and β ∈ [0, π/2]

a parameter characterizing the field polarization: β = 0 gives a laser polarized along

the x axis, β = π/2 gives a laser polarized along the y axis, β = π/4 gives a circular

polarization. It is worth to note that the phase of the field, for linear polarization along

the two axes, differs by π/2, therefore slightly different results are to be expected in

the two cases. The pulse shape of the field is described by the function f(t).

We solve the time dependent Schroedinger equation

i~
∂

∂t
|t〉 = H|t〉 (4.2)

with

H = H0 + ~Ω(t)
[
cos β cos(ωLt) cosϕ+ sin β sin(ωLt) sinϕ

]
(4.3)

the full time dependent Hamiltonian of the problem. Here

H0 = ~2

2meR2
ˆ̀2
z (4.4)

is the laser free Hamiltonian, with only the kinetic energy term, and

~Ω(t) ≡ eELRf(t) (4.5)

describes the laser-ring maximum interaction energy; ˆ̀
z is the usual z component of the

orbital angular momentum operator (in units of ~) whose eigenvectors and eigenvalues

are the well known angular momentum states

ˆ̀
z|m〉 = m|m〉, m = 0,±1,±2 . . . ; (4.6)

the analytical expression for |m〉 being

|m〉 → Φm(ϕ) = eimϕ√
2π
. (4.7)
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The states |m〉 are eigenstates ofH0 with energy

H0|m〉 = ~ωm|m〉 ⇒ ~ωm = ~2m2

2meR2 (4.8)

and provide a suitable basis for the Hilbert space of our problem. The ground state

|0〉 is not degenerate while the states | ±m〉 have the same energy.

We expand the time dependent state |t〉 as a linear combination of the bare states

|t〉 =
+∞∑

m=−∞
am(t)|m〉; (4.9)

by making use of the matrix elements

〈n| cosϕ|m〉 = 1
2(δm−n+1,0 + δm−n−1,0) (4.10)

〈n| sinϕ|m〉 = −i2 (δm−n+1,0 − δm−n−1,0) (4.11)

we obtain a set of coupled equations for the probability amplitudes:

iȧn = ωnan + Ω(t)
2
{

[cos β cos(ωLt)− i sin β sin(ωLt)]an−1+

+ [cos β cos(ωLt) + i sin β sin(ωLt)]an+1
}

(4.12)

showing a ladder type coupling of the states; this set of equations has been solved by

numerical integration. The gap between the energy levels increases linearly with |n|

and we expect that upper states are negligibly populated and do not contribute to the

evolution of the systems. Therefore we solve this set of coupled equations by mere

truncating the system for |m| ≥ 10; we checked that states with |m| > 10 do not

contribute to the final result for the values of the physical parameters we use .

From the state |t〉we can calculate all time dependent quantum averaged (TDQA)

parameters that are relevant to our ends. The TDQA dipole moment is ~D(t) = −e~r(t)

with

~r = ~εx〈t|x|t〉+ ~εy〈t|y|t〉 =
+∞∑

n=−∞

[
~εx<(a∗n−1an) + ~εy=(a∗nan−1)

]
(4.13)
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the TDQA position of the electron, the TDQA energy being given by

E(t) =
+∞∑

m=−∞
|am(t)|2~ωm (4.14)

and the TDQA angular momentum acquired by the electron being

Lz(t) =
+∞∑

m=−∞
|am(t)|2m~. (4.15)

To these quantities we associate the correspondent time independent quantum

averaged quantities:

〈E〉 = 1
T

∫ T

0
E(t)dt (4.16)

and

〈Lz〉 = 1
T

∫ T

0
Lz(t)dt (4.17)

with T the laser pulse duration.

In the last two decades, HHG has been dedicated much attention because opens the

route towards devices generating high frequency and coherent electromagnetic radia-

tion. In atoms driven by a linearly polarized field, it already seems a well established

fact that the maximum obtainable frequency ωM (cutoff) is given by the general law

of the eq. 2.15 on page 17.

The relation (2.15) can be easily determined from mere energy conservation law

and classical physics; it corresponds to a classical trajectory of the electron that reaches

the continuum and then is recaptured by the parent ion [8, 9]; such a trajectory exists

only for linearly polarized laser field. By quantal or classical calculations the favorable

trajectory that gives rise to the emission of ~ωM can be determined [10]. At this point

it should be stressed that the cutoff photon is emitted during the head on collision and

recapture process but any electromagnetic emission is essentially due to the accelera-

tion of the electron. HHG has been obtained for physical situations when no recollision

is presented such as two level systems [11, 12, 13] or even when no bound state is sup-

ported such as repulsive potentials [14]. Other cutoff laws have been obtained for two

level atoms or molecules [15, 11, 16, 17].
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If a source of high frequency radiation is looked after, it is of paramount importance

to be able to increase the value of ωM by changing the free physical parameters. How-

ever the rigid law in Eq. (2.15) seems to leave to the researcher the laser parameters

and, essentially, EL/ωL as efficient control knob.

Sources other than atoms are under investigation. Among the more promising

there is to consider molecules providing all their free parameters as control knobs.

Accordingly to theory, the emission power is proportional to |~r(ω)|2 (~r(ω) is the Fourier

transform of ~r(t)); molecules have larger sizes, are more polarizable than atoms and,

thus, can give a good harmonic yield at relative lower laser intensity. Nanomolecules

have large dimensions, display simplifying symmetries that paradoxically can make

calculations easier than for smaller molecules and, when nanodots are at hand, can be

taylored at will.

One of the points of interest of this chapter is the study of the dependence of the

polarization state of the emitted harmonics upon the polarization state of the pump

laser. Elliptically polarizable laser fields, that do not favor HHG from atoms, can

stimulate emission from molecules; this is an appealing feature for molecules since it

allows the control of the polarization of the harmonics [18]. Moreover nanorings can

be magnetized and the question is still a scarcely explored ocean.

All of this suggests us the study of a nanoring driven by a laser field in different

polarization states. Again, to keep the extension of this work within reasonable bound-

aries, we shall concentrate solely on the main effects without following all the rivulets

furrowing the area whose exploration is procrastinated to subsequent works.

4.3 Results

Here we present calculations of a nanoring with radius R = 2.7a0 driven by a laser

field given in Eq.(4.1); f(t) is a trapezoidal function with ramps lasting 4 optical

cycles (oc) and total duration of 32 oc. Since we are interested in the response of

the system to different laser polarization, we decide to keep the overall laser intensity

IL ∝ E2
L = E2

x + E2
y constant. Here, according to Eq. (4.1), Ex = EL cos β and
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Figure 4.1: Spectrum emitted by the nanoring. The relevant parameters entering the calculations are IL = 4 ·1014

W/cmâĹŠ2, λL = 1969 nm ( ~ωL = 0.63 eV). (Top) β = 0◦ (laser polarized along the x axis); (bottom) β = 20◦

(elliptically polarized laser, Ix = 3.5 · 1014 W/cm2; Iy = 4.7 · 1013 W/cm2 )

Ey = EL sin β denote the maximum values of the driving field along the x and y

directions respectively. As a rule we denote the laser with IL given in W cm−2.

The polarization of the nth harmonic field is determined by the angle ψ and the

eccentricity ec defined as [19, 18]:

tan 2ψ = tan(2α) cos δ , 0 ≤ ψ < π (4.18)

ec = tanχ , −π/4 < χ ≤ π/4 (4.19)

with sin 2χ = sin 2α sin δ, tanα = (E (n)
x /E (n)

y ) and δ the relative phase between E (n)
x

and E (n)
y ; the negative (positive) sign for ec takes into account for the clockwise (coun-

terclockwise) orientation of the emitted harmonic.
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Figure 4.2: (Top) Average energy (in au); (bottom) average angular momentum (in units of ~) absorbed by the

ring in the whole laser shot versus the polarization parameter β in degrees. The relevant parameters used for the

calculations are IL = 4 · 1014 W/cmâĹŠ2 , λL = 1969 nm ( ~ωL = 0.63 eV)

We discuss the response of the system to a laser operating in the infrared and

visible laser regime and start our discussion with the case when ~ωL = 0.63 eV so that

ω1 − ω0 = 3ωL. The laser intensity is taken as IL = 4 · 1014 W cm−2. With such a

choice of the parameters, Eq. (2.15) gives an expected cutoff of the emission in atoms

at ωM = 12ωL.

In Fig ( 4.1 on the preceding page) we show the spectrum emitted by the nanoring for

two different polarizations. A circularly polarized pump does not produce harmonics

and this is to be waited for, since the model is too symmetric to give a significant yield in

the actual situation. Movies of the behavior of the electronic packet show the presence

of a rotating packet with constant velocity, then the absence of significant electron

acceleration prevents the emission of photons . Linear and elliptic polarization show

emission lines (harmonic and not) and an extended cutoff.

Always for the same laser intensity IL in Fig. ( 4.2) we show the absorbed energy

〈E〉 [from Eq: ( 4.16 on page 48)] and the acquired angular momentum 〈Lz〉 [from Eq:
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Figure 4.3: Spectrum emitted by the nanoring. The relevant parameters entering the calculations are IL = 4 ·1014

W/cmâĹŠ2, λL = 591 nm ( ~ωL = 2.1 eV). (Top) β = 0◦ (laser polarized along the x axis); (bottom) β = 20◦

(elliptically polarized laser, Ix = 3.5 · 1014 W/cm2; Iy = 4.7 · 1013 W/cm2 )

( 4.17 on page 48)]: there is a net absorption of energy and angular momentum during

the laser shot at all values of β. Letting aside the obvious result for linear polarization,

we see that for a wide range of angles the transferred momentum is distributed along

a plateau. This means that a magnetic momentum can be induced in a nanoring by a

loosely polarized laser field. We have performed similar calculations for ~ωL = 2.1 eV

and the same value of the laser intensity giving a nominal cutoff energy ωM = 3ωL. In

Fig.s ( 4.3) the spectra are shown. Again the cutoff is more extended than expected and

shows that nanorings are efficient emitters. This appealing results can be motivated

by considering the differences between atoms and nanorings. In atoms, by using the

three steps model, the cutoff is the maximum energy obtainable by the active electron

and compatible with a recapture act. Conceptually in nanorings there is no upper

limit to the energy that can be gained by the electron and delivered in a single photon

emission. It is surprising that a simple system with states coupled in a ladder way can

still emit all the energy in a single shot. Of course the position of the plateau is an
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Figure 4.4: (Top) Average energy (in au); (bottom) average angular momentum (in units of ~) absorbed by the

ring in the whole laser shot versus the polarization parameter β in degrees. The relevant parameters used for the

calculations are IL = 4 · 1014 W/cmâĹŠ2 , λL = 591 nm ( ~ωL = 2.1 eV)

important parameter both for fundamental and technological reasons. Its analytical

determination has been shown to be laborious in the simple two-level system [11]; in

nanorings its position and extension is intriguing but as yet unexplained.

Fig. ( 4.4) shows the averaged energy 〈E〉 absorbed by the ring and the averaged

absorbed angular momentum 〈Lz〉. Again the previously shown trend is confirmed al-

though the averaged absorbed angular momentum does not show the previous plateau

as a function of the polarization parameter β. One of the most interesting uses of

HHG is the possibility of creating very short, isolated, pulses. To this goal several

schemes have been developed; particularly attractive seems the use a driving laser

field of time dependent polarization [20, 21]. In Tables ( 4.1 on the next page) and

( 4.2 on the following page) we list the polarization angles ψ and the eccentricity ec
versus the order of the emitted harmonic. It is clear from the data that the polar-

ization state of any harmonic is controlled by the polarization state of the pumping

field. This feature can be of great use in the synthesis of short harmonics via the

53



β ↓ n→ 1 3 5 7 9 11 13 15 17 19 21

0
(

0
0

) (
0
0

) (
0
0

) (
−
−

) (
0
0

) (
0
0

) (
0
0

) (
0
0

) (
0
0

) (
−
−

) (
−
−

)

5
(

0
0.54

) (
−
−

) (
90

0.12

) (
89
−0.1

) (
103
−0.36

) (
−
−

) (
−
−

) (
3

0.45

) (
−
−

) (
−
−

) (
−
−

)

10
(

1
0.69

) (
5

−0.16

) (
94

0.09

) (
91

0.28

) (
88

0.13

) (
−
−

) (
−
−

) (
−
−

) (
0

−0.36

) (
−
−

) (
−
−

)

15
(

2
0.6

) (
−
−

) (
101
0.64

) (
−
−

) (
−
−

) (
−
−

) (
20

0.25

) (
4

0.6

) (
124
0.62

) (
72

0.61

) (
50

0.54

)

20
(

1
0.65

) (
13
−0.28

) (
176
−0.76

) (
86
0.5

) (
78
−0.45

) (
−
−

) (
178
−0.19

) (
2

0.25

) (
159
−0.48

) (
99
−0.08

) (
99
−0.24

)

25
(

1
0.83

) (
1

0.76

) (
165
−0.01

) (
89
0.5

) (
106
0.08

) (
−
−

) (
3

0.36

) (
5

0.56

) (
20
0.7

) (
65
−0.05

) (
60
−0.43

)

30
(

1
0.93

) (
8

0.9

) (
175
0.47

) (
87

0.63

) (
99
−0.42

) (
−
−

) (
−
−

) (
17

0.12

) (
−
−

) (
−
−

) (
−
−

)

35
(

0
0.97

) (
1

0.98

) (
172
0.45

) (
88

0.88

) (
96

0.95

) (
−
−

) (
−
−

) (
−
−

) (
−
−

) (
−
−

) (
−
−

)

40
(

0
0.99

) (
4
1

) (
5

0.82

) (
43

0.85

) (
−
−

) (
−
−

) (
−
−

) (
−
−

) (
−
−

) (
−
−

) (
−
−

)

45
(

103
1

) (
−
−

) (
−
−

) (
−
−

) (
−
−

) (
−
−

) (
−
−

) (
−
−

) (
−
−

) (
−
−

) (
−
−

)

Table 4.1: Polarization angle ψ (up value in
(0..

0..

)
) and eccentricity ec (bottom value in

(0..
0..

)
) versus the order n

of the harmonic for different value of the parameter β. The relevant parameters of the calculations are λL = 591

nm (~ωL = 2.1 eV), IL = 4 · 1014 W cm−2. The not given values are for harmonics not present in the spectrum.

control of the polarization state of the pump field. Preliminary results show that the

harmonic radiation of nanoring can be synthesized to give pulses duration ∼ 1/10 oc.
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Table 4.2: Polarization angle ψ (up value in

(0..
0..

)
) and eccentricity

ec (bottom value in
(0..

0..

)
) versus the order n of the harmonic for

different value of the parameter β. The relevant parameters of the

calculations are λL = 591 nm (~ωL = 2.1 eV), IL = 4 · 1014 W cm−2.

The not given values are for harmonics not present in the spectrum.

The described effects are ro-

bust against modification of du-

ration and shape of the pulse.

We obtained the response of the

nanoring to trapezoidal pulses

with duration 16 and 64 oc and

checked that the spectrum is es-

sentially unchanged by this pa-

rameter. Instead the use of a

gaussian or sin2 pulse with 32

oc makes the spectrum regularly

noisier.
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4.4 Conclusion

Nanoparticles such as buckyballs, nanotubes and rings are molecules of, possibly, large

dimensions. Their shape presents interesting symmetries that can be exploited to

obtain information on their behavior; these symmetries are particularly at hand when

dealing with a laser illuminating the material; actually it seems that the field can be as

strong as to make not useful a detailed knowledge of the bare states of the molecules.

The impressive simplicity of treatment possible for buckyballs and rings [2, 22] shows

the opportunity to seek for models giving a quick crop of reliable information; the

comparison with experiments [3] conforts and strengthens the hopes.

Rings driven by a laser can efficiently emit an electromagnetic field endowed of

interesting properties. We have seen. first of all, that the spectrum of the emission

is wider than expected from atoms and that the cutoff law is quite similar to the

cutoff law for buckyballs; then, that the characteristics of the harmonic field can be

controlled by changing the laser parameters. In particular, our investigations show

that the polarization of the driving laser provides a fine tool of control; as a result, the

polarization of the diffused harmonics can be tuned.

Preliminary results show that within our model nanorings are suitable to emit a

train of short electromagnetic pulses obeying a scaling law for the duration similar

to the one for buckyballs; our simulations reveal a peculiar dependence of the train

upon the laser polarization that cannot be reported here to keep this work within a

reasonable limit. An interesting point is the fact that non zero angular momentum can

be stored in the ring; a point to be developed in future research is the determination of

the optimal pulse profile to maximize the storage. Since the equation of motion of the

electron in the nanoring and of a rigid rotator are the same, the output of these study

can cast light on the problem of setting in motion a molecule with a definite angular

velocity.

Experiments have been carried out on the second harmonic generation of a thin

silver sheet [23] with a matrix of geometrical nanoholes. A small area of graphene

can be seen as a collection of holes or of tangent nanorings and therefore our model
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calculations receive from these results confirmation and impetus.

We have elected to describe the laser pulse as a superposition of two orthogonal

pulses of the same shape f(t) [Eq. ( 4.1 on page 46)] but of course time dependent

polarization state of the driver opens a wide range of possibilities all foreshadowing

interesting channels to be explore
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5 Nanorings driven by a two-color laser
field

5.1 Introduction

In this chapter we use a model of nanoring driven by two orthogonal laser fields of

angular frequency ωx and ωy, with ωy = 2ωx, and ωx resonant between the ground

state and the first excited state. We chose this ratio of the two laser photon frequencies

because in calculations not shown in this thesis we obtained more harmonics with

respect to other configurations.

Our system is composed by one electron constrained on a circumference. We

calculate the emission and the polarization of the emitted harmonics. The origin of

the harmonic generation is based in the non linearity of the electron-laser interaction

energy. This non linear interaction forces the molecule to emit a wide spectrum of

harmonics of the pumping field. Several studies have shown that a two color field can

enhance considerably the harmonic yield [24, 25, 26, 27].

The study of the emission properties of a ring driven by a quasi-periodic train of

electromagnetic half-cycle pulses is shown in [28], where it is shown that a sequence of

pulses induces a non-equilibrium charge polarization. The charge oscillation generates

an electromagnetic emission that can be tuned by changing the shape and the intensity

of the pulses. In [29] it is shown that the presence of an impurity influences the

polarization of the emitted harmonics and allows the HHG in the terahertz range.

Recently we obtained encouraging results using an elliptically polarized laser field

[30]. In that work we studied the dynamics of a nanoring driven by a strong laser field
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in different states of polarization obtaining spectra up to 21th harmonic. With this

model, using two laser fields, we obtain spectra up to 51th harmonic. Then this is a

good method for controlling the harmonic emission. We turn on the two lasers at two

different instants so that the two pulse shapes are shifted. Then we perform a Gabor

analysis on the total spectrum to study the contribution that the two individual lasers

give to the spectrum.

Finally we study the angular momentum and the energy acquired by the electron

and we show that the electron stores a residual angular momentum after we turn off

the laser.

5.2 Theory

The system is composed by one electron constrained over a circle of radiusR driven by

two laser fields on its plane (the x−y plane), with angular frequency ωx and ωy = 2ωx.

The laser along the x axis is taken n-photon resonant between the ground state and

the first excited state. We made this choice because the combination of two lasers,

consisting of the fundamental and the second harmonic, enhances the harmonic signal,

compared with the case when only one laser [31, 32] is present. Total electric field,

Hamiltonian and wave function are the same of the precedent chapter.

From the state | t〉 we calculate the dipole moment ~D and the emitted spectrum of

high harmonics, the absorbed angular momentum Lz and the absorbed energy E as a

function of the time and of the angle β:

~D =
+∞∑

m=−∞

[
ε̂x<

(
a∗m−1am

)
+ ε̂y= (a∗mam−1)

]
(5.1)

E(t) ≡ 〈t | H0 | t〉 =
+∞∑

m=−∞
|am(t)|2~ωm (5.2)

Lz(t) =
+∞∑

m=−∞
|am(t)|2~m (5.3)

Of course E(t) and Lz(t) are related; in fact, we can write the absorbed energy as:

E(t) = ~2

2meR2 〈t | ˆ̀2
z | t〉 = ~2

2meR2

[
(∆`z)2 + (Lz(t))2

]
, (5.4)
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where ∆`z is the variance. The first term is related to the dispersion of the wave

function and the second term to the net motion along the ring.

5.3 Results

In our calculations we use a nanoring with radius of R = 2.7 au and a laser intensity

of I ∝ |E0x |2 +|E0y|2 = 4 · 1014 W/cm2. Since the gap between the energy levels

increases linearly with |m| the system of differential equations (eq. 4.12 on page 47)

can be safely truncated for a sufficiently large integer |m|. In our calculations we use

the states m = −10, ..., 10.

We introduced a delay time between the two laser fields to study the spectrum and

harmonic yield as a function of the overlap between the two fields. From results not

shown here we have seen that for E0y > E0x we obtain a wider spectrum.

Ag(t0;ω) =
∫ +∞

−∞
A(t)e−(t−t0)2/(2σ2)e−iωtdt (5.5)

In Fig. 5.1 on the next page we show the spectra obtained using a laser field with

~ωx = 0.38 eV and ~ωy = 0.76 eV when we turn on the second laser 0, 12, 28 and 32

optical cycles (oc) after the first laser. We used a trapezoidal pulse shape of 32 oc with

4 oc ascent and 4 oc descent. From these spectra we can see that, shifting the second

pulse shape, the spectrum varies considerably; in particular with a delay of 28 optical

cycles we obtain a richer and clean spectrum where in the first part we have mainly

odd harmonics and in the second part of it we have even harmonics. However the

laser intensity in the region of the overlapping is greater than other regions because we

have the contribution of two laser fields. It is important to notice that when the two

pulses are completely separate, the spectrum is very poor. Then we can deduce that

even a small overlap of the two pulse shapes is sufficient to produce a rich spectrum

of harmonics. The shape and the harmonic yield of the spectrum can be strongly

manipulated by changing the temporal shift between the two pulses within one optical

cycle.
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Figure 5.1: Dipole power spectra obtained using a laser field with ~ωx = 0.38 eV, that corresponds to 5 resonance

photons between the ground state and the first excited state, ~ωy = 0.76 eV and β = 65◦. We show the spectrum

when we turn on the second laser 0, 12, 28 and 32 optical cycles after the first laser. For each laser we used a

trapezoidal shape pulse of 32 oc with a 4 oc ascent and a 4 oc descent.

In Fig. 5.2 on the facing page (left) we show the spectra with two different shifts.

It is clear the possibility of control given by a judiciously choice of the shift. In Fig. 5.2

on the next page (right) we show the spectrum obtained using only one laser with

angular frequency ωx (top) and, using only one laser with with angular frequency

ωy (bottom). We notice that the sum of the two spectra generates a total spectrum

with more harmonics and this is a good result because we can think to generate a

large spectrum using two lasers that individually would generate few harmonics. To

understand the contribution given by each laser field at different instants, we performed

a Gabor analysis of our data. The Gabor transform of a signal A(t) is defined in [33]:

Ag(t0;ω) =
∫ +∞

−∞
A(t)e−(t−t0)2/(2σ2)e−iωtdt (5.6)

and can be interpreted as giving the spectrum of a signal as seen through a temporal

window centered at t0 and width σ; in the present calculations always σ = 5 oc.

We show the Gabor analysis to the case ~ωx = 0.38 eV, ~ωy = 0.76 and a 28 oc

temporal shift between the two pulses. In Fig. 5.3 on page 62 we compare the Gabor

spectra taken during the first and the second part of the pulse with the spectra emitted
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Figure 5.2: Left:Dipole power spectra obtained using a laser field with ~ωx = 0.38 eV, ~ωy = 0.76 eV and

β = 65◦. We show the spectrum when we turn on the second laser 0.5 oc and 0.7 oc after the first laser. Right:

(top) Harmonics spectra obtained using solely a laser field with ~ωx = 0.38 eV (top), ~ωy = 0.76 eV (bottom) and

β = 65◦.

by the ring when only one laser is present. The first part of the spectrum, before the 15th

harmonics is generated by the first laser and the second part is generated by the second

laser. Furthermore odd order harmonics are emitted when the first laser is active and

even order harmonics when the second laser is active (of course even order harmonics

are just odd harmonics of the second laser); the latter assertion is demonstrated in

Fig. 5.4 on page 63 presenting the temporal evolution of two harmonics of opposite

parity. Actually between 28 oc and 32 oc we can see the turning off and on of the

odd and the even harmonics respectively. In Fig. 5.5 on page 64-Left we show the

polarization of the emitted harmonics obtained using ~ωx = 0.38 eV, ~ωy = 0.76

eV and β = 65◦ with a complete overlapping of the two shape pulses. In this figure

we report the angle of the ellipse (top) and the eccentricity (bottom) of each emitted

harmonic; they are the angle between the semi-major axes of the polarization ellipse

and the x axis and its eccentricity. From calculations not shown in this thesis, we

saw that these parameters are controlled by the intensity and the frequency of the
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Figure 5.3: Gabor power spectra with σ = 5 oc, ~ωx = 0.38 eV and ~ωy = 0.76. Top row: the window is centred

at t0 = 15 oc (left) and at t0 = 43 oc (right). Bottom row: Gabor spectrum obtained when only one laser along x

axix is present (left) and when only one laser along y axix is present (right); the window is centred at 15 oc after

the on switching of the laser field.

two laser. In Fig. 5.5 on page 64-Right we show the energy (top) and the angular

momentum (bottom) absorbed by the laser field using β = 50◦. We can see that the

electron absorbs and emits energy periodically: this comportment is generated by a

non uniform motion of the electron along the ring. We suspect that this uneven motion

generates some of those spectral lines that are not harmonics. It is important to notice

that in this configuration the electron stores a residual angular momentum.

5.4 Conclusions

Nanorings driven by a laser field can efficiently emit harmonics with a large spectrum,

in fact a broad and dense spectrum is a prerequisite for the construction of short pulses

since it could be used for linearly superposing waves within a suitable band [34]. In

this chapter we have shown the possibility of controlling the emitted harmonics by

changing parameters such as the laser intensity, the energy of the laser photon or the
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shift between the shape pulses. In our calculations we chose the rate of the two laser

field, ωy = 2ωx, in order to enhance the harmonic generation [31, 32].In particular we

noticed that when the intensity of the laser along the y axis is greater than the one

along the x axis, we can obtain a richer spectrum. We notice that the combination of

two laser generates a spectrum with more harmonics respect to the case of only one

laser.
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Figure 5.4: Time evolution of the 13th harmonic (top)

and the 18th (bottom) relative to the spectrum with a

shift of 28 oc and β = 65◦. Parameters as in Fig. 5.1 on

page 60.

We also studied the spectrum by vary-

ing the shift between the pulse shapes. In

this case we noticed that it is sufficient

a brief superposition of the pulse shapes

to generate a wide spectrum. The best

case is when the two pulse shapes share

their tails. In this case we obtain a cleaner

spectrum and harmonics clearly defined.

To study the contribution of each laser

to the total spectrum, we performed a

Gabor analysis. From this analysis we

noticed that the laser with angular fre-

quency ωx has a greater contribution in

the first area of the total spectrum, about

the first fifteen harmonics, and that it generates the odd harmonics. On the other hand

the laser with angular frequency ωy generates the even harmonics and has a greater

contribution in the final area of the total spectrum. We noticed a great improvement to

the spectrum by using a temporal shift within one optical cycle. This small shift leaves

unchanged the position of the plateau. Thank to this behaviour, we have a fine control

knob of the spectrum. Another important result is that we can control the polarization

of the emitted harmonics and the angular momentum of the electron. The control of

the polarization of the emitted harmonics is important for all application requiring

radiation with a particular photon energy and polarization. We can imagine to create

a laser that uses nanoring to obtain particular configurations of photon energy and
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Figure 5.5: Left: Polarization of the harmonics emitted obtained using a laser field with ~ωx = 0.38 eV, ~ωy = 0.76

eV and β = 65◦. On the top of this figure we show the angle of the polarization ellipses and on the bottom we show

the eccentricity of the polarization ellipses. The negative sign of the eccentricity denote reverse rotation direction

of the laser field. Right: Energy absorbed (top) by the electron and angular momentum absorbed (bottom) by the

electron as a function of time using a laser field with ~ωx = 0.38 eV, ~ωy = 0.76 eV and β = 50◦.

polarization in output simply by changing the input parameters.

Finally we have shown that the nanoring can acquire a residual angular momentum

and that it absorbs and emits energy periodically . This periodical emission can

generate some of those spectral lines that are not harmonics. With these last results

we hope that the nanorings can be used to store angular momentum and use it in

quantum information theory.
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6 Nanoring as Logic Gate and memory
mass device

6.1 Introduction

This chapter uses the knowledge gained in previous works to go in a new and inter-

esting field, that of the quantum computation. In fact the rapid development of the

nanosciences opens new technological frontiers. Computer science is one of them: by

some years we are observing a saturation in the microprocessors performance which

requires the finding of new objects that allow the construction of logic circuits faster

and smaller than today’s. For these reasons the research is focusing on a new kind of

devices that show electrical and optical properties and that can be suitable to construct

logic circuits: nanorings and graphenes are an example of them. They show interesting

behavior in nanotechnology, optic and computer science thanks to their electrical and

optical properties that make them apt to implementation in logic circuits.

The work that we discuss in this chapter deals with the possibility to use nanorings,

driven by a laser field, as logical gates. Our system is composed by one nanoring, with

only one active electron, driven by an elliptically polarized laser field. We calculate

the harmonics and the Raman lines emitted and the angular momentum acquired by

the electron in different states of polarization of the incident laser field. The process

that we use is the high harmonic generation (HHG) [35, 36]. Several studies shows

that the use of a two-color laser field or of a laser photon energy resonant between the

ground state and the first excited state can enhance the emitted spectrum [3, 29, 31].

Then we calculate the HHG spectra and, from the use of the wavelet transform, we
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recognize the presence of a signal composed by the first two harmonics and the Raman

lines. We perform our calculations by varying the states of polarization of the incident

laser field. We also calculate the angular momentum acquired by the electron in order

to use it to create a truth table of logical operations and then to use the nanoring as

a logic gate. We give examples of implementation of nanoring to construct a basic

logic circuit such as the half and the full-adder. We can also construct a reversible

logic gate, the Toffoli gate, using two nanorings. Finally we discuss the possibility of

constructing a memory mass device using an array of nanorings.

6.2 Theory

In our system we consider the same past model of nanoring of radius R in the single

active electron approximation driven by one laser elliptically polarized along the same

plane. The dipole moment of the system is:

~D = e~r(t) = ε̂x〈t | x | t〉+ ε̂y〈t | y | t〉 =

=
+∞∑

m=−∞

[
ε̂x<

(
a∗m−1am

)
+ ε̂y= (a∗mam−1)

]
(6.1)

where~r is the position of the electron. The angular momentum acquired by the electron

is:

Lz(t) =
+∞∑

m=−∞
|am(t)|2~m, (6.2)

and the correspondent time averaged angular momentum is:

〈Lz〉 = 1
T

∫ T

0
Lz(t)dt. (6.3)

From the angular momentum we can define the magnetic momentum as ~m = γ~L, with

γ the gyromagnetic ratio of the electron.
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6.3 Results

7
Figure 6.1: Top: Final (solid line) and time averaged

(dashed line) angular momentum obtained with ~ωL = 2

eV and IL = 1014 W/cm2 and R=2.7 a0. Bottom: Morlet

wavelet analysis of the dipole moment for β = 0◦, 45◦, 90◦.

Inourcalculationsweusedifferentconfig-

urations of laser intensity and laser pho-

ton energy. In particular we use laser in-

tensities IL in the range 1010 − 1014 W/

cm2 and laser energy ~ωL in the range

0.1−2 eV, that in wavelength correspond

to 12398 nm and 620 nm, and a radius

from R = 2.7 a0, like the radius of the

aromatic group, until to R = 100 a0. In

fact large value of radius require small en-

ergies of the laser photon and less laser

intensity. Then the dependence upon the

radiuspermitstoengineerthenanoringto

obtain particular transition energies and

to make it flexible for various uses. In Fig.

6.1 (top) we show the final and the time averaged angular momentum versus the polar-

ization angle with R=2.7 a0, ~ωL = 2 eV and IL = 1014 W/cm2. The time averaged

angular momentum is calculated for each polarization angle using the Eq. 6.3. In this

simulation we use a laser duration of 32 optical cycles (oc) with a trapezoidal pulse

shape. To understand when a signal is present, we performed a Morlet wavelet analysis

on the total spectrum. The Morlet mother wavelet is defined as:

M(x) =
(
e−ix − e−

σ2
0

2

)
e
− x2

2σ2
0 (6.4)

where σ0 is a parameter that indicates the time-frequency resolution of

the integration [37]. In our calculation, we chose σ0 = 6, that cor-

respond to 6 oscillations of the signal within the Morlet wavelet shape.

We indicate with H1 and HII , the first two odd harmonics of the spectrum and with

HR1 andHR2 the signals corresponding to the Raman transitions located near the first
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and the second even harmonics of the HHG spectrum. In fact by the Eq. 5.2 we have

~ω1 = 1.9 eV, ~ω2 = 7.6 eV, ~ω3 = 17 eV, then we can define the signal HR1 as the

transition between the virtual level with energy of 2~ω1 = 3.8 eV and the ground state,

and signalHR2 as the combination of two Raman transition: ~ω2 and ~ω2 + ~ω1 = 9.4

eV. The Raman transitions depend upon the radius of the nanoring, we chose the value

R=2.7a0 inordermakethesystemcomparable toasinglecell ofgrapheneoranaromatic

group.

Ex,y HI HII HR1 HR2 Lz

0 0 0 0 0 0 0

1 0 1 1 1 1 0

0 1 1 1 1 1 0

1 1 1 0 1 0 1

L = 0 OR XOR OR XOR AND

Table 6.1: Truth table: in input we have the laser states Ex,y and in

output we have the first two odd harmonics, the Raman transitions

and the final angular momentum.

In Fig. 6.1 (bottom) we show

the wavelet analysis for β =

0◦, 45◦, 90◦. In this analysis the

lineHR1 is slightly shifted up the

4 eV by the presence of a non Ra-

man line. In fact if within the

oscillations in σ0 we have sev-

eral lines, the final value of the

wavelet is shifted towards the

more intense line. Now we create

a truth table where we associate

the values 1 and 0 to the polarization states of the incident laser field and to the presence

or absence of signals. In particular we can divide the elliptical polarized laser into two

components: Ex parallel to the x axis and Ey parallel to the y axis. When the laser is off,

we have the state Ex = 0 and Ey = 0 (Ex,y = (0, 0)); for β = 0◦ → Ex,y = (1, 0) , for

β = 90◦ → Ex,y = (0, 1) and for β = 45◦ → Ex,y = (1, 1). We also associate the value 1

when the system presents a final angular momentumLz. In Tab. 6.1 we can see that the

first odd harmonic and theHR1 line behave as a OR logic gate, the second odd harmonic

and theHR2 line behaves as a XOR logic gate andLz behave as a AND logic gate.

Now we study the system using two consecutive laser pulses. We use the first laser

pulse, circularly polarized, as a pump (β = 45◦) and the second laser pulse, elliptically

polarized, to probe the system. We make this choice in order to prepare the system with

aninitialangularmomentum. FromthedashedlineofFig. 6.1wecanseethatforβ = 45◦
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Figure 6.2: Final (solid line) and time averaged (dashed

line) angular momentum obtained with ~ωL = 2 eV and

IL = 1014 W/cm2 and R=2.7 a0. Initial angular momen-

tum L < 0 (top) and L > 0 (bottom).

we have a positive time averaged angular

momentum and the emission of the first

odd harmonic and the HR1 line (Fig. 6.1

(bottom-middle)). We obtain different

results varying the sign of the initial an-

gular momentum. In Fig. 6.2 we show

the final and the time averaged angular

momentum with different signs of the ini-

tial angular momentum: L < 0 (top) and

L > 0 (bottom). In this simulation we

used a laser duration of 64 oc where in the

first 32 oc we prepared the system with

an initial angular momentum in order to

study the nanoring with different starting

conditions. In Fig. 6.3 we show the respective wavelet analysis. If we have a positive

initial angular momentum we obtain a BUFFER for the first odd harmonic, the HR1

line, and for the final angular momentum, a XOR logic gate for the second odd harmonic

and a RESET for theHR2 line; if the initial angular momentum is negative, we obtain

a BUFFER for the first odd harmonic and theHR1 line, an AND logic gate for theHR2

line and an OR for the second odd harmonic. These results are listed in the truth table

of Tab. 6.2. We are aware that high values of the laser photon and intensity can present

some difficulties in the applications. In fact is preferred to use these high values in a

powder of nanorings or in a strip containing nanorings in order to generate harmonics in

different regions containing nanorings. From this point of view, we consider the system

with radius of R = 2.7 a0 as the inferior limit of validity of our model. In fact in other

calculation, that now we will show, we decrease the laser intensity and the energy of the

photon laser and increase the radius until 100 a0. These new parameters are preferable

for the constructions of logic port because there is not the risk of destroying the object.

With large radii we obtain the same results. In Fig. 6.4 we show the wavelet transform

using a radius ofR = 25 andR = 50a0 respectively, a laser intensity of 1010 W/cm2 and
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Figure 6.3: Morlet wavelet analysis of the dipole moment with ~ωL = 2 eV and IL = 1014 W/cm2 and R=2.7 a0

for β = 0◦, 45◦, 90◦ and an initial angular momentum L > 0 (top line) and L < 0 (bottom line).

a laser photon of 0.1 eV and without an initial angular momentum. We can see that the

structure of the emitted lines is the same but less defined. This because the harmonic

spectrum present several non Raman lines that shift and enlarge the lines.

Now we show how nanorings can be arranged to form logic circuits. Examples of

logical circuits are the half and the full adder. The half adder is a digital electronic

component that has in input two bits (Ex and Ey in our case) and give in output their

sum(S)andtheircarry(C). Wecanusethenanoringwithoutinitialangularmomentum

as an half adder using as output the second odd harmonic, the HR2 line and Lz (Tab.

6.3). Combining two nanorings, we have the possibility to make a full adder, where we

use the carry of a previous summation. In fact we can use the harmonics obtained by one

nanoring as input for a second nanoring etcetera. In this way we obtain a logic circuit

with a set of concatenated nanorings.

6.3.1 Store information

We now suggested a way of using the nanoring to store information. When a nanoring

is driven by a circular polarized laser field, the electron will round on it with a circular

motion. ThismovementwillgenerateacurrentI. Ifwecall ~S thesurfaceof thenanoring,
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Ex,y H1 HII HR1 HR2 Lz

0 0 1 0 1 0 1

1 0 1 1 1 0 1

0 1 1 1 1 0 1

1 1 1 0 1 0 1

L>0 BUFFER XOR BUFFER RESET BUFFER

Ex,y H1 HII HR1 HR2 Lz

0 0 1 0 1 0 1

1 0 1 1 1 0 1

0 1 1 1 1 0 0

1 1 1 1 1 1 0

L<0 BUFFER OR BUFFER AND //

Table 6.2: Truth table: in input we have the laser states Ex,y with a initial positive angular momentum (top) and

with a negative initial angular momentum (bottom). In output we have the first two odd harmonics, the Raman

transitions and the final angular momentum.

the magnetic moment generated by the motion of the electron will be:

~m = I
∫

d~S, (6.5)

or, in terms of the angular momentum: ~m = γ~L. If we have a planar array of nanorings

and if ~σ is the surface of the laser spot containing several nanorings, the magnetic

momentum generated will be proportionally to the summation of the the contributions

of each nanoring within the laser spot surface (Fig. 6.5). Then we can use the nanoring

to store information with the magnetic momentum. In these calculations we did not

take into account the information decay.

When the nanoring is driven by a laser field in the state (1,1), it acquire an angular

momentum and we obtain Lz = 1. Then if we use another laser pulses with inverse

circular polarization, we obtain an angular momentum state Lz = 0; we can consider

the angular momentum like a pseudo-spin.

These simple behaviours make the nanoring an interesting object to store information.
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Figure 6.4: Morlet wavelet analysis of the dipole moment for β = 0◦, 45◦, 90◦, a radius of R = 25 (top line) and

R = 50 a0 (bottom line), a energy of laser photon of 0.1 eV and an intensity of 1010 W/cm2.

6.4 Conclusions

We can consider the nanorings a real alternative to modern logic components thanks

to their size and speed.

Ex,y Sum Carry

0 0 0 0

1 0 1 0

0 1 1 0

1 1 0 1

Table 6.3: Truth table of the

half adder: in input we have

the laser states Ex,y and in out-

put we have the values of the

second odd harmonic and the

HR2 line for the sum, and the

values of Lz for the carry.

We investigated the possibility to use nanorings driven

by a laser field to make logic circuits. In particular we used

the emitted signals and the final angular momentum of the

nanoring to create logic gate that can be used to make logic

operations. In fact we noticed the possibility to construct

the XOR, OR and AND logic gates and use them to make a

half and full adder. Combining two or more nanorings, we

can obtain a full adder, but the presence of XOR and AND

logic gates give us the possibility to make a Toffoli gate. The

Toffoli gate is an universal reversible logic gate that permits

to construct any reversible circuit. It has 3 bit inputs (a, b and

c) and outputs and realizes the function c XOR (a AND b).

In fact if we set the first two bits, the Toffoli gate inverts the
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Figure 6.5: Schematic representation of array of nanorings used to store informations. When one array is driven

by the laser field, it creates a magnetic moment that represents a bit.

third bit, otherwise all bits remain the same. Then it is possible to use the nanorings

as a Toffoli gate and create any logic circuit. We also can use the angular momentum

acquired by the electron in the nanoring to store information. In fact we can consider

the final angular momentum like a pseudo-spin that can be reversed by changing

the direction of circular polarization of the incident laser field. The entire process,

including harmonics generation, Raman transitions, and angular momentum, takes

about 10−15 seconds. In addition we can create cells of nanoring arrays and store

informations on it using the laser to generate a magnetic moment. In this chapter

we showed several simulations to study the system with different parameters, such as

the radius, the energy of the laser photon and the intensity of the laser. In fact if we

enlarge the radius and decrease the energy laser photon, we obtain the same results. If

we think to construct a nanoring with a radius of 25 or 50 a0, we can use a laser photon

with energy ∼ 0.1 eV and a laser intensity of ∼ 1010 W/cm2.
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7 Classical chaos and harmonic
generation in laser driven nanorings

7.1 Introduction

In this chapter we study a quantum ring driven by an intense laser field that emits

electromagnetic radiation stemming from the strong acceleration experienced by the

active electrons. The shape of the spectrum is multiform and is ruled by the relevant

parameters of the problem. In order to elucidate the physical origin of such a rich

variety of spectra we study the comportment of one single classical charge constrained

both on a unidimensional structured ring acted upon by a linearly polarized laser field.

Our simulations show that the response of the ring evidences chaotic and unstable

behaviour that can be at the origin of the variegated quantum results. Thus the model

here discussed might cast light in the still obscure relation between classical chaos and

quantum realm.

7.2 Theory

In the effort to penetrate the core of the problem, in this chapter we adopt a simple

model of the system by removing details which might blur the understanding of the

results. All approximations have been proved to be valid in the quantum treatment of

HHG. Therefore we consider a model system in the single active electron approximation

with one electron constrained to move along a one dimensional ring of radiusR driven

by a linearly polarized electric field. The presence of tangential forces acting on the
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electron is explicitly considered with the introduction of a potential that structures

the ring; for definiteness we investigate a model characterized by the presence of six

potential wells regularly distributed along the circle that might mimic six atoms in a

circle (such as a graphene cell) or, better, a structure introduced in the ring by the

manufacturer; the quantal treatment of the system can be found in [38]. However it

must be understood that the one presented in [38] and hereafter is a simple model

meant to give information on the general comportment of an artificial slender annular

system.

The classical Hamilonian of the electron on the ring is assumed to be

H = `2

2I + U0 cos(6φ) + V0 cos(φ) sin(ωLt). (7.1)

A small dissipative term proportional to φ̇ is added to the equation of motion to wash

away any intrinsic instability of the undamped equations [39] and gives the Newton

equation of motion

φ̈ = 6U0

I
sin(6φ) + V0

I
sin(φ) sin(ωLt)− 2γφ̇ (7.2)

with φ the angular coordinate of the moving particle, ` the conjugate momentum

(angular momentum), I the moment of inertia of the particle, 2U0 the depth of the

structures, V0 the maximum laser-particle interaction energy and ωL the laser angular

frequency. The equation of motion is non linear in φ at all orders and could introduce

chaotic behaviour in the dynamics. For later use it is convenient to obtain the x

component of the acceleration of the charge. Let x(t) = R cos(φ) be the x component

of the position of the charge, then the relative component of the acceleration is:

ẍ = −R
[
φ̈ sin(φ) + φ̇2 cos(φ)

]
. (7.3)

Since it is better to work with adimensional parameters, by defining the scaled time

(or, loosely, time) τ = ωLt, the equation of motion is equivalent to the two coupled

first order differential equations:
φ′ = `

`′ + 2a` = u sin(6φ) + v sin(φ) sin(τ)
(7.4)
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with a = γ/ωL, u = 6U0/(Iω2
L), v = V0/Iω

2
L and the prime sign denoting derivative

with respect to τ ; the dynamical variables (φ, `) form the phase space of the particle

whose angular momentum is L = IωL`. The set of differential equations must be

solved with initial conditions (φ(0), `(0)) = (φ0, `0).

In the three-step model (chap. 2.2.1), the cutoff energy is equal to the maximum

kinetic energy of the electron and is released in the recombination step plus the energy

of the ground state. Indeed our model can support a generalized picture of ionization

and recombination of the electron: in principle it must not be excluded the possibility

that the particle, initially confined in the neighborood of a particular potential well,

under the action of the laser ends up its motion captured in the neighborhood of a

different potential well. In the light of the previous discussion we also evaluate the

kinetic energy in units of V0:

K ≡ L2

2IV0
= `2

2v . (7.5)

Let ~p(τ) be the position of the electron in our adimensional phase space at the instant τ ;

we are interested in understanding how the trajectories of the electron are determined

by the choice of the initial position ~p(0). The point at issue here is to understand if

very close initial conditions result in very close final trajectories or not; in other words

the point at issue is to determine if the equations of motion can have chaotic nature

and, eventually, to delimit the areas of the input parameters which result in chaos. We

leave to subsequent investigation of more realistic two dimesional systems a refined

analysis.

As a first step we stroboscopically map in the phase space the trajectory points

sampled at intervals ∆τ = 2π for several choices of the initial condition ~p(0); we call

the ensuing plot as Poincaré section. In the Poincaré section, the presence of reg-

ular patterns, accumulation and randomly distributed points discriminates periodic

behaviour from attractors and chaotic behaviour [40, 39].

From the Larmor formula, we know that the power spectrum of the electromagnetic

field emitted by the accelerating charge is proportional to |A(ω)|2 where A(ω) is the
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Fourier transform of the dipole acceleration:

A(ω) = 1√
2π

∫ +∞

−∞
x′′(τ)e−iωτdτ ; (7.6)

consequently, for any simulation reported in this chapter, we provide the spectrum

|A(ω)|2 versus the harmonic order.

7.3 Results

I (W cm−2) v

1013 0.9120

4.7 · 1013 1.9771

4.72 · 1013 1.9813

4.74 · 1013 1.9855

5 · 1013 2.0392

1014 2.8839

5 · 1014 6.4486

Table 7.1: Laser intensities I in W

cm−2 used throughout the calculations

and corresponding values of the adi-

mensional parameter v.

We have calculated the temporal evolution of the elec-

tron in the ring for several choices of the three load

parameters a, u and v and for many choices of ~p(0), the

initial position of the particle in the phase space. Since

the number of possible outputs is huge, in what follows

we show only few plots in order to provide the general in-

formation. Having in mind the HHG from the quantum

counterpart of this classical model [38], we choose the

values of the load parameters corresponding to a meso-

scopic ring and to the lasers used in the laboratories.

Therefore we always take R = 10a0, with a0 the Bohr

radius, λ = 1060 nm corresponding to ωL = 1.78 · 1015

sec−1 (~ωL = 1.16 eV) and γ = 5 · 10−3ωL. The initial

reduced angular momentum `0 is an important load pa-

rameter which strongly affects the nature of the problem; in the following we always

confine ourselves to the choice `0 = 0. Throughout the work the laser intensity I

has been taken within the lower side range of the value used in HHG experiments; in

Table (7.1) the conversion between I and v can be found. The depth of the wells,

when non-null, has been taken as U0 = 7.5 · 10−2e2/a0 = 2.04 eV corresponding to

u = 2.4348.

78



7.3.1 Plain ring

We begin by studying the case of the plain ring by settingu = 0; thus, in absence of laser

all points of the ring are equivalent; when the laser field is active and polarized along the

x axis, an electron at rest at φ = 0◦ and φ = 180◦ remains at rest. The most effective

coupling between laser and electron is at φ = 90◦ and φ = 270◦ because at those points

the laser field is tangent to the circumference. We present here few paradigmatic plots

for a = 5 · 10−3 and discuss the characteristic features of the motion. For v = 0.912

generally speaking the Poincaré section presents three different attractors, mainly

near φ0 = 30◦, φ0 = 90◦, φ0 = 150◦, but also near the specular points φ0 = 210◦,

φ0 = 270◦, φ0 = 330◦ with different values of `; this feature meaning that the motion

has three different periods. It is also frequent the existence of only one attractor orbit;

the transition from a type to a different type is abrupt. For example in Fig. (7.1)

(v = 0.912) in the left column we show the Poincaré section for three different and

close starting positions and in the right column the corresponding spectrum of the

emitted electromagnetic radiation. The stroboscopic positions in the phase space,

after some initial erratic behaviour which might induce the impression of randomness,

finally settle down on accumulation points detected in the plots of left column from

the larger density of representative points. Somehow surprisingly, the HHG spectrum

of the radiation is formed by well resolved odd order harmonic lines together with

spectral lines which in the quantal realm would be named hyper-Raman. All lines

stem from a large and broad shape which often appears also in quantum calculation.

In Fig. (7.2) we show similar plots with a stronger field (v = 2.0392). The Poincaré

sections reveals always two accumulation points reached after erratic exploration of the

phase space; the Fourier power spectrum instead shows well resolved odd, even and half

order harmonics stemming from the mentioned continuous background. Half integer

harmonics are generally considered as pinpointing the insurgence of chaos. Since a

larger value of v means a stronger laser-ring coupling, these different behaviours seem

to be expected. It must be remarked that a periodic attractor is not reached always.

When φ0 = 30◦ (plots not shown) the stroboscopic points wanders all over the phase
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Figure 7.1: Left column: Poincaré section of the motion of the electron in a plain ring; abscissa φ (degrees);

ordinate ` (diensionless). Right column, Fourier power spectrum of φ(τ) (arb. un.) vs the harmonic order ω/ωL.

u = 0. Always the electron starts at rest. The starting points are: top φ0 = 17◦, center φ0 = 17.2◦, bottom

φ0 = 17.3◦; the calculations are carried out for 200 cycles. The values of the load parameters are a = 5 ·10−3, u = 0

and v = 0.912.
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Figure 7.2: Left column: Poincaré section of the motion of the electron in a plain ring; abscissa φ (degrees);

ordinate ` (diensionless). Right column: Fourier power spectrum of φ(τ)(arb. un.) vs the harmonic order ω/ωL.

u = 0. Always the electron starts at rest. The starting points are: top φ0 = 10◦ (calculations carried out for 200

cycles); center φ0 = 40◦ (calculations carried out for 800 cycles); bottom φ0 = 50◦ (the calculations carried out for

400 cycles). The values of the load parameters are a = 5 · 10−3, u = 0 and v = 2.0392.
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space and does not settle at any accumulation point fact reflected in a broad, dense

and indistinct power spectrum.

Contradictory behaviour can be observed in Fig. (7.3) were the Poincaré section

for two different values v, all other parameters being left constant, are shown. Unex-

pectedly, a chaotic behaviour is evident for the weakest v (first row); in spite of the fact

that the Poincaré sections seem similar, the lower section ends at the accumulation

point (φ, `) = (270◦,−1). This characteristic has a match in the radiation spectrum

which presents a comb of odd order harmonics in the second case.

We conclude that the plain ring exhibits chaotic behaviour which is reflected in

broad and indistinct electromagnetic spectrum.
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Figure 7.3: Left column: Poincaré section of the motion of the electron in a plain ring; abscissa φ (degrees);

ordinate ` (diensionless). Right column: Fourier power spectrum of φ(τ)(arb. un.) vs the harmonic order ω/ωL.

u = 0. Always the electron starts at rest from φ0 = 90◦; for both plots a = 5 · 10−3; the calculations are carried

out for 1500 cycles. Top v = 2.8839 the phase space is filled and does not show periodicity. Bottom v = 6.4486 a

late periodicity is evident.
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7.3.2 Structured ring

In this paragraph we show how the equation of motion of the electron can be unstable

against small variations of the parameters of the problem; this effect could be called

parametric chaos.

We now structure the ring by releasing the condition u = 0; of course in this case

the dynamics is much more complex than before.

In the absence of the laser, the system has six stable equilibrium points (at φn =

30◦+n60◦ withn = 0 . . . 5) and six unstable equilibrium points; our choice of a particle

initially at rest would always result in a pendular, damped motion towards the closest

stable position.

The introduction of an external laser field introduces variations to the theme. A

weak enough laser can only push the electron toward an oscillation about the closest

stable position. At intermediate intensity it can force the particle to rotate along the

ring and, eventually, to finish its motion oscillating around a well other than the parent

one. All of these options are determined by the actual value of the initial condition and

of the parameters. Tiny changes on these values will induce different terminal states

of motion.

In Fig. 7.4 we show the Poincaré section in three cases that start from very close

initial position (9◦, 10◦, 11◦) but result in a final different state of motion. The three

simulations reach a different attractor in a rather dissimilar way. It is significative the

central plot of Fig. 7.4: the attractor point is at φ = 150◦ which is reached for τ > 250

cycles; the stroboscopic point moving in a chaotic way for most of the simulation finally

settles into an attractor at φ = 150◦, however occasionally we have also observed death

and revival of chaos. The power spectra are less ambiguous: they are equally noisy

and indistinct. The particle that starts from the bottom of a potential well (φ0 = 30◦)

oscillates about this position and emits a well resolved spectrum; however if it starts

from φ0 = 90◦, where the laser coupling is mostly effective, then it quickly begins to

rotate along the ring and eventually finishes captured by the well at φ0 = 150◦. The

reason of such a different behaviour is to be find in the fact that the laser is weak enough
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to be unable to extract the particle from the parent well but in the most favorable case.

We conclude that the motion of a laser driven electron in a structured ring is chaotic.

The chaotic nature of the motion does not make easy any prediction on the total energy

that can be absorbed by the ring during a full laser shot; heuristically we can say that

the maximum energy that the electron can absorb from the field should be of the order

of 2V0; we have numerically found that within the range of our values from Eq. (7.5)

that K ≤ 2.8.

Of course even a very stable laser field can present small fluctuations of the intensity

during an actual shot or from shot to shot. The outcome of a particular output must

be checked against such small fluctuation. From Fig. 7.5 we deduce that unfavorable

cases can be found resulting in different physical behaviour. The top row of the figure

shows a noteworthy effect. We have checked that the electron does not rotate along

the ring: this fact is suggested, but not proved, by the appearance of the Poincaré

section. Thus the laser is not intense enough to extract the electron from the parent

well. The power spectrum is surprising: it shows a comb of odd harmonics which would

be paradigmatic if obtained in a quantum framework.

Therefore we conclude that the equation of motion of the charge carrier can be

unstable against small variations of the parameters of the problem; this effect could

be called parametric chaos. In performing experiments care must be paid to choose

parameters whose indetermination is within stability regions of the equation. The

results of Fig. 7.5 have large physical relevance. From one hand, it warns against the

risk to extract general physical interpretations from data obtained from experiments

run with an unstable laser field. From the other hand, it points towards the possibility

to control the output of an experiment by a fine tuning of the laser parameters.
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Figure 7.4: Left column: Poincaré section of the motion of the electron in a structured ring; abscissa φ (degrees);

ordinate ` (diensionless). Right column: Fourier power spectrum of φ(τ)(arb. un.) vs the harmonic order ω/ωL.

u = 0. In all the three plots the electron starts at rest and calculations are carried out for 300 cycles. Top φ0 = 9◦;

center φ0 = 10◦; bottom φ0 = 11◦. The values of the load parameters are a = 5 · 10−3, u = 2.4348 and v = 2.0392.
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Figure 7.5: Left column: Poincaré section of the motion of the electron in a structured ring; abscissa φ (degrees);

ordinate ` (diensionless). Right column: Fourier power spectrum of φ(τ) (arb. un.) vs the harmonic order ω/ωL.

Always the electron starts at rest from φ0 = 90◦. Top v = 1.9771, calculations carried out for 300 cycles; center

v = 1.9813, calculations carried out for 600 cycles; bottom v = 1.9855, calculations carried out for 600 cycles. The

values of the load parameters are a = 5 · 10−3, u = 2.4348.
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7.4 Conclusion

The simulations indicate that plain and structured rings acted upon by a laser are

good emitters of HHG and versatile tools for controlling the extension of the plateau

and the polarization of the emitted harmonics both in classical and quantum domain

[30, 41]. In fact, the particular symmetry of the system permits easy engineering of a

suitable configuration of the laser pump fields which induces the ring to emit radiation

with predesigned characteristics. We have seen that a classical charge, bound on a

circle and driven by a laser, displays a variety show of comportment which can be

obtained by small changes of the initial conditions and of the physical parameters

characterizing the system such as the laser intensity. Surprisingly the classical spectra

closely resemble the quantum ones with odd order harmonics and broad resonance

lines that were also found in HHG from few level atoms.

In [38] it is shown that the wave function of one electron on a structured ring

is described by Mathieu functions. These are non hypergeometric function showing

oscillating stable as well as unstable solutions.

In the classical realm, the Mathieu equation occurs in the study of parametric os-

cillations that are induced by small non resonant excitation; the assortment of possible

cases and connections is large and can only be mentioned here; we refer the interested

reader to the book by Nayfeh and Mook [42]. The physical systems quickly slips toward

chaotic behaviour. We consider as suggestive, however, that the wave function of a

quantum ring is described by Mathieu functions which are underlying the physics of

classical parametric excitations.

The relation between classical chaotic systems and their quantum equivalent is still

obscure and is object of debate. We hope that a ring can unveil some of the secrets of

the issue.
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8 Momentum partition between
constituents of exotic atoms during

laser-induced tunneling ionization

This chapter is the result of the collaboration with the Professor Karen Z. Hatsagort-

syan, whom I am very grateful, at the Max-Planck-Institut für Kernphysik, of Hei-

delberg in Germany. Now we present the article resulting from this collaboration (D.

Cricchio, E. Fiordilino and K. Z. Hatsagortsyan Phys. Rev. A, 92:–, doi: 92.023408,

2015) in which we investigate the influence of the atomic core (ion) degree of freedom

on the electron (muon) tunneling dynamics in the strong field of a circular polarized

laser in the case of hydrogen, muonium, muonic hydrogen, and positronium atoms. In

particular we study the impact of this effect on the photoelectron (-muon) momentum

distribution and, respectively, on the partition of the photon momentum transfer be-

tween the electron (muon)and on the partition of the photon momentum between the

electron (muon) and the atomic core (proton, antimuon, positron).

8.1 Introduction

In a strong laser field ionization of an atom takes place by absorption of multiple

laser photons [43, 44, 45]. The photons carry momentum which is distributed among

the ionized electron and the atomic core (ion) after the interaction. The photon mo-

mentum transfer in ionization is a nondipole effect, theoretically described by a first

relativistic correction to the nonrelativistic Hamiltonian. In classical terms the mo-

mentum transfer to the electron along the laser propagation direction arises due to the

magnetically induced Lorentz force. At rather strong laser fields the ionization is in the
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tunneling regime, when the Keldysh parameter γ is small, and the electron is released

from the atom by means of tunneling through the potential barrier formed by the laser

suppressed atomic potential. In the tunneling regime the Lorentz force induces the

momentum transfer to the electron along the laser propagation direction either when

the electron moves in continuum after releasing from the atom, or during the tunneling

step of the ionization. The first effect is characterized by the the relativistic field pa-

rameter ξ ≡ eE0/mecω, where the E0 and ω are the laser field amplitude and angular

frequency, respectively,−e andme are the electron charge and mass, respectively, and

c is the speed of light. The momentum transfer along the laser propagation direction

in continuum is ∆pz ∼ Up/c, where Up = mec
2ξ2/2 is the electron ponderomotive

energy in the laser field. It is responsible for shifting of the angular distribution of

photoelectrons from the laser polarization direction into the propagation direction in

relativistically strong laser fields when ξ ∼ 1 [43, 46], for the suppression of the electron

rescattering with the ion [47] and, consequently, suppression of nonsequential double

ionization [48, 49] and high-order harmonic generation [50, 51].

The relativistic theory for the under-the-barrier dynamics demonstrated [52] that

the magnetically induced Lorentz force brings about a momentum shift along the laser

propagation direction also during the under-the-barrier motion. It has a characteristic

value of Ip/c, which can be estimated from ∆pz ∼ e(va/c)B0τk ∼ Ip/c, with the atomic

velocity va =
√

2Ip/me, the ionization potential Ip, the laser magnetic field B0 = E0,

the Keldysh time τK = γ/ω, and the Keldysh parameter γ =
√
Ip/2Up.

At nonrelativistic intensities the photon momentum transfer is rather small, nev-

ertheless, it has been measured in a recent remarkable experiment [53], using non-

relativistic laser intensities of 2 − 10 × 1014 W/cm2 and detecting electron momenta

of an order of 10−3 a.u.. The experimental results [53] in a circularly polarized laser

field indicated that after tunneling ionization the ion carries a momentum Ip/c along

the momentum of incoming photons, while the electron carries a momentum of Up/c.

This is in accordance with calculations of [54] and with the so-called simpleman model

[55]. The latter assumes that the electron appears at the ionization tunnel exit with a

vanishing momentum and then is driven solely by the laser field. The ion momentum
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in this case follows from the momentum conservation law.

However, due to the Lorentz force effect during the under-the-barrier dynamics,

the electron appears at the tunnel exit with a nonvanishing momentum along the laser

propagation direction [52]. The latter contributes to the asymptotic electron momen-

tum because of which the final ion momentum decreases with respect to the prediction

of the simpleman model. Thus, the peak of the electron momentum distribution along

the laser propagation direction is at pez = Ip/3c (if the Coulomb field of the atomic core

is neglected during the under-the-barrier motion), in contrast to the simpleman model

vanishing prediction, and the ion should carry a momentum piz = 2Ip/3c [56, 52].

Moreover, the ion momentum increases when the Coulomb field of the atomic core is

accounted for in the near the over-the-barrier ionization regime, e.g., it is piz = 0.8Ip/c

at E0/Ea = 0.05, see Fig. 6 in [57], where Ea = (2Ip)3/2 is the atomic field strength.

As it is noted in [56], these results are not inconsistent with the experiment of Ref. [53]

because of the large experimental error. The experiment on the momentum partition

at ionization is most clearly shown in a circularly polarized laser field because in this

case the recollisions are avoided. In a linearly polarized field the Coulomb focusing

because of recollisions modifies significantly the final momentum distribution [58] and

complicates the analyses [59]. Recently, a numerical relativistic calculation of the

electron momentum distribution in a linearly polarized laser field [60] indicated that

the momentum shift in the laser propagation direction depends linearly on the laser

intensity, which is in accordance with the experiment [53].

If the atomic degree of freedom is neglected during tunneling ionization of the

electron, the momentum transfer to the ion can be simply deduced via the momentum

conservation law, taking into account the electron momentum after the ionization. In

treating the electron dynamics in strong field ionization, usually, the ion is assumed to

be not moving. While it is a good approximation for the ionization of hydrogen and

other common atoms because of smallness of the mass ratio of the electron to the ion,

it is not the case for exotic atoms such as muonium [the bound state of an electron

and antimuon, the mass ratio of an electron to muon is me/mµ ≈ 1/207], muonic

hydrogen [the bound state of a muon and a proton, the mass ratio of a muon to proton
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is mµ/mp ≈ 0.1126] and positronium [the bound state of the electron and positron,

the mass ratio of an electron to a positron is me−/me+ = 1]. The hydrogen ionization

problem taking into account the ion degree of freedom first was considered in [56]

for derivation of the ion momentum, however, neglecting its impact on the electron

momentum distribution.

Note that the influence of the nuclear degrees of freedom on the electronic dynamics

is well known in strong field molecular processes as, so-called, non-Born-Oppenheimer

dynamics, see e.g. [61, 62, 63].

In this chapter we investigate the influence of the atomic core (ion) degree of free-

dom on the electron (muon) tunneling dynamics in a strong laser field of a circular

polarization in the case of hydrogen, muonium, muonic hydrogen, and positronium

atoms. The impact of this effect on the photo-electron (-muon) momentum distribu-

tion and, respectively, on the partition of the photon momentum transfer between the

electron (muon) and the atomic core (proton, antimuon, positron) are studied.

We label by “electron” the negative component of the exotic atom, which is the

electron in the case of muonium and positronium, and muon in the case of muonic

hydrogen. The label “ion” is employed for the positive component of the exotic atom,

which is the proton in the case of muonic hydrogen, antimuon in the case of muonium,

and the positron in the case of positronium.

The structure of the paper is the following. In Sec. 8.2 the momentum partition is

analysed using the simpleman model along with the energy-momentum conservation

law. In Sec. 8.3 the result of the strong field approximation (SFA) is presented, which

is followed by the discussion in Sec. 8.4 and the conclusion in Sec. 8.5.

8.2 The simpleman model and the

energy-momentum conservation

In this section we derive the momentum partition between the electron and ion during

tunneling ionization, assuming that the photoelectron dynamics follows the simpleman
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model [55]. The information provided by energy and momentum conservation laws

is used to deduce the ion momentum ~pi and the number of absorbed laser photons n

corresponding to a certain photoelectron momentum ~pe in the tunneling ionization

process.

According to the simpleman model, the electron appears in continuum with a

vanishing momentum in the most probable trajectory and afterwards is driven by

the laser field, absorbing n laser photons. The energy conservation for the ionization

process reads:

(εe −mec
2) + (εi −mic

2) = nω − Ip, (8.1)

where εe,i = c
√
~p2
e,i +m2

e,ic
2 and me,i are the energy and mass of the electron and the

ion, respectively. The momentum conservation provides

~pe⊥ + ~pi⊥ = 0 (8.2)

pe z + pi z = nω

c
, (8.3)

where pe,i z and ~pe,i⊥ are the electron and the ion momentum components along the

laser propagation direction z and the transverse direction, respectively. Combining

Eqs. (8.1) and (8.3) we derive

(εe − cpe z −mec
2) + (εi − cpi z −mic

2) = −Ip. (8.4)

In the case of a common atom (mi � me) the kinetic energy of the ion is small and

can be neglected, εi −mic
2 ≈ 0. In the plane laser field

Λ ≡ ε− cpz (8.5)

is an integral of motion [47]. In the simpleman model Λe = mec
2 for the electron be-

cause of vanishing of the electron kinetic momentum at the tunnel exit. Consequently,

the ion momentum is derived

piz = Ip
c
. (8.6)

In the simpleman model the electron transverse kinetic momentum in continuum is

derived from the conservation of the transverse canonical momentum ~pe⊥ − e ~A(φ) =
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const. Taking into account that at the ionization moment φ0 the electron kinetic

momentum is vanishing, we have

~pe⊥ = −e
[
~A(φ0)− ~A(φ)

]
, (8.7)

where φ = ω(t − z/c) is the laser phase. The electron longitudinal momentum is

derived from the conservation law

Λe,i + cpe,i z = c
√
p2
e,i +m2

e,ic
2, (8.8)

which yields

pe,i z =
c2p2
⊥ +m2

e,ic
4 − Λ2

e,i

2cΛe,i

. (8.9)

Assuming a vanishing transverse momentum at the tunnel exit (Λe = mec
2) yields

pe z = e2

2me

[
~A(φ0)− ~A(φ)

]2
. (8.10)

At switching off the laser field ~A(φ)→ 0:

~pe⊥ = −e ~A(φ0), (8.11)

pe z = Up
c
, (8.12)

εe = mec
2 + Up , (8.13)

where Up = e2 ~A2(φ0)/(2me) = mec
2ξ2/2. Therefore, according to the simpleman

model, Eqs. (8.3), (8.6) and (8.12), from the totally absorbed photon momentum

during ionization

nω

c
= Ip

c
+ Up

c
(8.14)

the ion absorbs the momentum piz = Ip/c and the rest of the photon momentum Up/c

is transferred to the electron.

The experiment of Ref. [53] is in accordance with the above mentioned results

of the simpleman model. However, the ion dynamics during the tunneling and the

relativistic features of the electron under-the-barrier dynamics [56, 52, 57] have impact
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on the momentum partition in strong field ionization which will be discussed in the next

sections. Here we shortly mention that when going beyond the simpleman model, the

Lorentz force during the under-the-barrier motion induces a nonvanishing momentum

component for the electron, p(0)
ez , along the laser propagation direction at the tunnel

exit. Then, Λe ≈ mec
2 − cp(0)

ez , when p(0)
ez � mec as usually is the case, and from

Eq. (8.4) one derives

piz = Ip/c− p(0)
ez . (8.15)

In the case of exotic atoms, when the constituents masses are of the same order,

the simpleman condition for the vanishing momentum at the tunnel exit concerns the

relative momentum

M~p(0) = mi~p
(0)
e −me~p

(0)
i = 0 , (8.16)

see Table I. Then, ~p(0)
e⊥ = ~p

(0)
i⊥ = 0, because of Eq. (8.2). Moreover, taking into account

that p(0)
i z = (mi/me)p(0)

e z , one has

Λi −mic
2 = mi

me

(Λe −mec
2), (8.17)

and from Eq. (8.4) one derives

Λe = mec
2
(

1− Ip
Mc2

)
, (8.18)

Λi = mic
2
(

1− Ip
Mc2

)
, (8.19)

whereM = me+mi. The electron and ion momenta can be calculated from Eqs. (8.9)

and (8.11), which finally leads to the following expressions in the leading order of

Ip/(Mc2):

~pe⊥ = −e ~A(φ0) , (8.20)

pe z ≈ mec

[
ξ2

2

(
1 + Ip

Mc2

)
+ Ip
Mc2

]
, (8.21)

~pi⊥ = e ~A(φ0) , (8.22)

pi z ≈ mic

[
ξ2

2
m2
e

m2
i

(
1 + Ip

Mc2

)
+ Ip
Mc2

]
. (8.23)
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This general expression for the final electron and ion momenta according to the sim-

pleman model includes the limiting cases of the infinitely heavy ionic core [mi → ∞,

see Eqs. (8.6), (8.11) and (8.12)] and of the positronium atom [me = mi]. In the latter

case there is symmetry between the electron and positron dynamics stemming from a

positronium atom

pe z = pi z ≈
mecξ

2

2

(
1 + Ip

2mec2

)
+ Ip

2c . (8.24)

where piz denotes the positron momentum.

Thus, the simpleman model along with the energy-momentum conservation pro-

vides information on momentum partition between the electron and ion in the tunnel-

ing ionization process, given by Eqs. (8.20)-(8.23). We underline that the simpleman

model does not take into account the initial momentum of the electron at the tunnel

exit, which can arise due to the Lorentz force [52] and due to nonadiabatic dynam-

ics (in the intermediate regime between the tunneling and mutiphoton regimes) [64].

Moreover, the Lorentz force effect depends on the ionic recoil inducing corrections of

the order of me/mi. Note also that the final momentum distribution is disturbed also

by the Coulomb focusing during the electron motion in the continuum [58].

In the next sections the Lorentz force effect and the impact of the ion recoil for the

momentum partitioning between the ion and the electron are discussed.

8.3 Strong field approximation

We consider strong field ionization of a simple atomic system consisting of a positively

and a negatively charged particles (labelled as ”ion” and ”electron”, respectively)

which are initially in the ground state of the bound system. The main aim is to study

the influence of the ion motion on the electron tunneling dynamics and its impact

on the momentum partitioning between the ionized electron and the atomic core in

tunnelling ionization. The theory will be applied for the cases of ionization of hydrogen,

muonium, muonic hydrogen, and for positronium. The degree of freedom both of the

ion and the electron will be taken into account. The effect of the magnetically induced
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Lorentz force on the ionization dynamics is included by means of nondipole treatment

of the laser field in the weakly relativistic regime.

The Hamiltonian of the system under the consideration, consisting of an ion and

an electron in a laser field reads:

H = 1
2mi

− i~∇i − qi ~A
(
t− zi

c

)2

(8.25)

+ 1
2me

− i~∇e − qe ~A
(
t− ze

c

)2

+ qiqe
| ~re − ~ri |

,

where ~re,i, qi = 1 and qe = −1 are the radius-vectors and charges of the ion and the

electron, respectively (henceforth atomic units are used). To simplify the calculations

it is convenient to write the Hamiltonian in the relative and the center-of-mass (c.m.)

coordinates:

H = 1
2mi

− imi

M
~∇R + i~∇r − qi ~A

(
τ + me

M

z

c

)2

(8.26)

+ 1
2me

− ime

M
~∇R − i~∇r − qe ~A

(
τ − mi

M

z

c

)2

+ qiqe
r

The variable transformation is shown in Table I. We use nondipole description in order

to study the dynamic of the system under the influence of the magnetic component of

the laser field which is responsible for the momentum transfer from the photons to the

electron and the ion. The circularly polarized laser field propagating in z-direction is

~R = (X, Y, Z) = mi~ri +me~re
mi +me

~ri = ~R− me

M
~r t− zi

c
= τ + me

Mc
z

~r = (x, y, z) = ~re − ~ri ~re = ~R + mi

M
~r t− ze

c
= τ − mi

Mc
z

µ = mime

mi +me

~∇i = mi

M
~∇R − ~∇r τ = t− Z

c

M = mi +me
~∇e = me

M
~∇R + ~∇r ζ = Z

η ≡ m2
i −m2

e

mime

~P = ~pe + ~pi
∂

∂Z
= ∂

∂ζ
− ∂

c∂τ

~̂P = −i~∇R, ~̂p = −i~∇, ~̇p = µ~̇r ~p = mi~pe −me~pi
M

∂

∂t
= ∂

∂τ

Table 8.1: The variable transformation to the relative and c.m. coordinates and, further, to the light-time.
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described by a vector potential:

Ax(zα, t) = A0 cosω(t− zα/c)

Ay(zα, t) = A0 sinω(t− zα/c) (8.27)

with A0 = E0/ω and α ∈ {i, e}.

The ionization transition amplitude is calculated using SFA [65, 66, 67]:

Mfi = −i
∫ ∞
−∞

~dt 〈Ψ~P ,~p(t) | VL(t) | Ψ0, ~P0
(t)〉 (8.28)

where

VL(t) ≡
∑
α

− qα
me

~pα ~A(zα, t) + q2
α
~A2(zα, t)
2mα


describes the interaction with the laser field; |Ψ0, ~P0

(t)〉 = |Φ0〉eiIpt+i ~P0 ~R is the initial

bound state of the electron-ion system which is in the ground state |Φ0〉with the energy

−Ip; the momentum of c.m. of the electron-ion system is ~P0; |Ψ~P ,~p(t)〉 is the continuum

state of the electron and ion in the laser field with the asymptotic c.m. momentum ~P

and the relative momentum ~p, neglecting Coulomb interaction.

Similar to [43], the transition matrix element of Eq. (8.28) can be represented as

Mfi = −i
∫ ∞
−∞

~dt 〈Ψ~P ,~p(t) | V (~r) | Ψ0, ~P0
(t)〉, (8.29)

where V (~r) = qiqe/r is the atomic potential.

The continuum wave function for the electron and ion system in the laser field,

after transformation to the light-time τ = t − Z/c, where Z is the c.m. coordinate

along the laser propagation direction, fulfils the equation

i∂τΨ~P ,~p(τ) = ĤΨ~P ,~p(τ) , (8.30)

with

Ĥ = 1
2mi

− imi

M

~∇R −
~̂z

c
∂τ

+ i~∇− qi ~A
(
τ + me

M

z

c

)2

+ 1
2me

− ime

M

~∇R −
~̂z

c
∂τ

− i~∇− qe ~A(τ − mi

M

z

c

)2

.
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Taking into account the conservation law [ ~̂P, Ĥ] = 0, the c.m. coordinates are factor-

ized in the wave function:

Ψ~P ,~p(τ, ~r, ~R) = exp
(
i ~P · ~R− iEt

)
φ(~r, τ), (8.31)

with the c.m. energy E and momentum ~P , after the interaction is switched off.

In the weakly-relativistic regime the vector potential can be expanded to the first

order in 1/c:

~~A
(
τ ± mαz

Mc

)
≈ ~A(τ)∓ mαz

Mc
~E(τ). (8.32)

Then, neglecting the high-order terms over 1/c in Eq. (8.30), we arrive at the following

equation: {
i
(

1− Pz
Mc

)
∂τ −

1
2µ

[
−i~∇+ ~A(τ)

]2
(8.33)

+ z

mec

[
−i~∇+ ~A(τ)

]
~A′(τ)

(
1− me

mi

)
− P 2

2M + z

Mc
~P · ~A′(τ) + E

}
φ(~r, τ) = 0 .

When the wave function is parametrized as

φ(~r, τ) = exp[i~p · ~r + iT (τ)z − iS(τ)] , (8.34)

one obtains

T (τ) = η

Mc
(
1− Pz

Mc

) ∫ τ

−∞
dτ ′

[
~p+ ~A(τ ′)

]
~A′(τ ′) , (8.35)

S(τ) = 1
2µ
(
1− Pz

Mc

) ∫ τ

−∞
dτ ′

[
~p+ ~̂zT (τ ′) + ~A(τ ′)

]2
, (8.36)

where µ and η are defined in Table I. Finally, the continuum wave function for the

electron-ion system in the laser field in the leading order of the 1/c-expansion is

Ψ~P ,~p(τ, ~r, ~R) = N exp (iS) , (8.37)

with the normalization constantN and the action

S = ~P · ~R− Et+ ~p · ~r + η z

Mc

~p · ~A(τ) +
~A2(τ)

2
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− 1
µ

(
1 + Pz + ηpz

Mc

) ∫ τ

−∞
dτ ′

~p · ~A(τ ′) +
~A2(τ ′)

2

 . (8.38)

We calculate the matrix elements of the amplitude between the ground state and the

continuum as:

Mfi = −iN
∫
~dt
∫
~d~R

∫
~d~r e−iSV (r)Φ0(r)eiIpt, (8.39)

assuming that the atom is at rest in the initial state ~P0 = 0.

Let us first consider the momentum sharing between the electron and the ion in the

simplest and transparent case when the atomic potential is modelled by a short-range

potential. Later we will discuss the correction to this picture due to the real atomic

potential. In the case of short-range potential

V (r) = (2π/κ)δ(~r)∂rr, (8.40)

one has 〈~p|V |Φ0〉 = −
√
κ/(2π), with κ ≡

√
2µIp. We expand the last term of the

action in Eq. (8.38):

exp
{
− i
µ

(
1 + Pz + ηpz

Mc

) ∫ τ

−∞

(
~p · ~A(τ ′) + A2

2

)
~dτ ′
}

=
∞∑

n=−∞
inJn(ζ) exp {inωτ + iσ0τ + inϕ0} , (8.41)

where Jn(ζ) is the Bessel functions, n is the number of absorbed photons, tanϕ0 =

px/py, and

ζ =
(

1 + Pz + ηpz
Mc

)
p⊥A0

µω
, (8.42)

σ0 =
(

1 + Pz + ηpz
Mc

)
A2

0
2µ, (8.43)

and obtain for the transition amplitude

Mfi = i(2π)3N
√
κ δ

(
~P⊥
) ∞∑
n=−∞

δ
(
PZ + σ0

c
− nω

c

)

× δ

(
P 2
Z

2M + p2

2µ + Ip + σ0 − nω
)
Jn (ζ) einϕ0 (8.44)

Then we can calculate the ionization rate

dW = |Mfi|2
d3 ~P

(2π)3
d3~p

(2π)3 = |Mfi|2
d3~pi

(2π)3
d3~pe
(2π)3 . (8.45)
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Describing the final phase space via the electron and ion momenta, the ionization rate

reads

dW

d3~pid3~pe
= κ

(2π)4

∑
n

δ (~pe⊥ + ~pi⊥) δ
(
pez + piz −

nω − σ0

c

)
× δ (∆) J2

n(ζ) , (8.46)

where

∆ ≡ Ip − nω + σ0 + p2
e

2me

+ p2
i

2mi

,

σ0 = m2
ec

2ξ2

2µ

[
1 + pez + piz

Mc
+ η

Mc

(
mi

M
pez −

me

M
piz

)]
,

ζ = mecξpe⊥
µω

[
1 + pez + piz

Mc
+ η

Mc

(
mi

M
pez −

me

M
piz

)]
.

After the integration over the ion momenta, one obtains for the photoelectron momen-

tum distribution

dW

d3~pe
= κ

(2π)4
1

1 + ξ2

2
m2
e

m2
i

∑
n

J2
n(ζ)δ (∆) . (8.47)

Here we take into account that∣∣∣∣∣ ∂∂piz pez + piz
nω − σ0

c

∣∣∣∣∣ = 1 + ξ2

2
m2
e

m2
i

.

Expressing the ion momentum via the electron momentum using the momentum con-

servation δ-function, we have

ζ = mecξpe⊥
µω

[
1 +

(
1− me

mi

)
pez
mec

+ m2
e

Mmi

ν

]
, (8.48)

ν = 1
1 + ξ2

2
m2
e

m2
i

{
nω

mec2 −
ξ2

2
me

µ

[
1 +

(
1− me

mi

)
pez
mec

]}
, (8.49)

∆ = mec
2
{
Ĩp + p2

e

2µmec2 − ν
(

1 + pez
mic

)
+ ν2

2
me

mi

}
, (8.50)

where Ĩp ≡ Ip/mec
2 and ν ≡ (nω − σ0)/mec

2 .

The ionization rate given by Eq. (8.47) depends on ion mass and takes into account

the impact of the motion of the c.m. of the electron-ion system on the tunneling

dynamics. For the hydrogen atom it is negligible as it scales with the small ratio

me/mi ≈ 1/1836. However, for exotic atoms this effect cannot be neglected.
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8.4 Discussion

Let us analyse the ionization differential rate to find out the most probable momentum

of the ionized electron and ion in the case of different atomic systems. We can approx-

imately replace the summation over the photon number n in Eq. (8.47) by integration

and carry out the latter using the δ-function:

dW

d3~pe
≈ κ

(2π)4
J2
n(ζ)

ω
(

1 + pez
mic
− me

mi

ν
) , (8.51)

where we have used that

∂∆
∂n

= ω

1 + ξ2

2
m2
e

m2
i

(
1 + pez

mic
− me

mi

ν
)
. (8.52)

Here, the number of absorbed photons, or the parameter ν, is determined from the

energy conservation ∆ = 0, whose approximate solution reads

ν ≈
Ĩp + p2

e

2µmec2

1 + pez
mic

, (8.53)

where we have used that Ĩp � 1 and p2
e � µmec

2. Accordingly, the number of absorbed

laser photons is

n = mec
2

ω

{
ν

(
1 + ξ2

2
m2
e

m2
i

)
+ ξ2M

2mi

[
1 +

(
1− me

mi

)
pez
mec

]}
,

(8.54)

The qualitative behaviour of the momentum distribution according to the differential

ionization rate of Eq. (8.51) is determined by the Bessel function. In the tunneling

regime, when Up/ω � 1 and Ip � 1, one has ζ � 1, therefore, for the further analysis

we will use the asymptotics of the Bessel function n ∼ ζ →∞ [68]:

J2
n(ζ) ∼ 1

2π
√

2(n− ζ)ζ
exp

{
−4
√

2
3

(n− ζ)3/2

ζ1/2

}
. (8.55)

The peak of the momentum distribution corresponds to the minimum of the expression

F ≡ (n−ζ)3/ζ, achievable at n ∼ ζ, where n and ζ are given by Eqs. (8.54) and (8.48).
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8.4.1 Hydrogen atom

First, let us consider the simplest limit of infinitely heavy ion mi →∞. In this case,

ν = κ2

2 + p2
⊥
2 + p2

z

2 , (8.56)

ζ = mec
2

ω
ξp⊥(1 + pz), (8.57)

n = mec
2

ω

[
ν + ξ2(1 + pz)

2

]
, (8.58)

with κ2/2 ≡ Ĩp, p⊥ ≡ pe⊥/mec and pz ≡ pe z/mec, which yields

F(p⊥, pz) =
(
mec

2

ω

)2 [κ2 + p2
⊥ + p2

z + (ξ2 − 2p⊥ξ)(1 + pz)]3

8ξp⊥(1 + pz)
. (8.59)

The conditions for F = min, ∂F/∂p⊥ = 0 and ∂F/∂pz = 0, read, respectively:

6 [p⊥ − ξ(1 + pz)] p⊥ = κ2 + p2
⊥ + p2

z + (ξ2 − 2p⊥ξ)(1 + pz),

3(1 + pz)
[
2pz + ξ2 − 2p⊥ξ

]
= (8.60)

= κ2 + p2
⊥ + p2

z + (ξ2 − 2p⊥ξ)(1 + pz).

Solving the latter in perturbation with respect to ξ and taking into account that p⊥ ∼ ξ

and pz ∼ ξ2, as well as κ ∼ ξ, we obtain:

pe⊥ = mecξ

(
1 + γ2

6

)
, (8.61)

pe z = Ip
3c + p2

e⊥
2mec

. (8.62)

In the latter the leading order terms with respect to γ are retained (γ = κ/ξ < 1 in

the tunnelling regime). The ion momentum can be deduced from the δ-functions of

Eq. (8.46),

pi z = νmec
2 − pe z , (8.63)

pi⊥ = −pe⊥ . (8.64)

and using Eqs. (8.49),(8.61), and (8.62):

pi z = 2Ip
3c . (8.65)
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Comparing Eq. (8.65) with our qualitative discussion in Sec. II, see Eq. (8.15), we can

conclude that the electron momentum at the tunnel exit is p(0)
z = Ip/3c, which is the

reason of variation the ion momentum from the Ip/c value. This result coincides with

the predictions of Refs. [56, 52].

8.4.2 Exotic atoms

In the case of exotic atoms, such as positronium (me/mi = 1), muonic hydrogen atom

(me/mi ≈ 0.1126), and muonium (me/mi ≈ 1/207), the masses of constituents are

comparable and, therefore we have to use the general expressions for the parameters

n and ζ, given by Eqs. (8.48),(8.49), and (8.54).

First, we find an approximate solution of Eq. (8.49) in perturbation with respect

to the parameter ξ:

ν ≈ ν(2) + ν(4) , (8.66)

where ν(n) ∼ ξn, assuming that p⊥ ∼ ξ and pz ∼ ξ2.

ν(2) = p2
⊥
2 (1 + µ̃) + κ2

2 , (8.67)

ν(4) = p2
z

2 (1 + µ̃)− ν(2)µ̃pz + ν(2)2

2 µ̃ , (8.68)

where µ̃ ≡ me/mi. The parameters of the Bessel functions up to the order of ξ4 are:

ζ ≈ mec
2

ω
(1 + µ̃)ξp⊥

[
1 + (1− µ̃)pz + µ̃2

1 + µ̃
ν(2)

]
, (8.69)

n ≈ mec
2

ω

{
ν(2)

(
1 + ξ2µ̃2

2

)

+ ν(4) + ξ2

2
[
1 + µ̃+ (1− µ̃2)pz

]}
. (8.70)

The condition ∂F/∂p⊥ = 0 in this case yields:

3p⊥(1 + µ̃)
[
1 + (1− µ̃)pz + µ̃2

1 + µ̃
ν(2)

] {
(1 + ξ2µ̃2)p⊥

+ µ̃p⊥(ν(2) − pz)− ξ
[
1 + (1− µ̃)pz + µ̃2

1 + µ̃
ν(2) + p2

⊥µ̃
2
]}
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=
{
ν(2)

(
1 + ξ2µ̃2

2

)
+ ν(4) + (1 + µ̃) [1 + (1− µ̃)pz]

ξ2

2

− (1 + µ̃)ξp⊥
[
1 + µ̃+ (1− µ̃)pz + µ̃2

1 + µ̃
ν(2)

]}

×
[
1 + (1− µ̃)pz + µ̃2

1 + µ̃
ν(2) + p2

⊥µ̃
2
]
, (8.71)

which in the leading order reads

3p⊥(p⊥ − ξ) = (p⊥ − ξ)2

2 + κ2

2(1 + µ̃) . (8.72)

The solution of the latter provides us the most probable transverse momentum:

pe⊥ = mecξ

(
1 + γ2

6
1

1 + me
mi

)
. (8.73)

The derived transverse momentum component contains a nonadiabatic correction, the

term ∼ γ2 in Eq. (8.73), which is absent in our simpleman estimation via Eqs. (8.20)

and which is disturbed by the ion recoil (see the term me/mi).

The second condition of the maximal probability ∂F/∂pz = 0 is

3
[
1 + (1− µ̃)pz + µ̃2

1 + µ̃
ν(2)

]{
(1− µ̃2)ξ

2

2 + pz(1 + µ̃)− ν(2)µ̃

−(1− µ̃2)ξp⊥
}

= (1− µ̃)
{
ν(2)

(
1 + ξ2µ̃2

2

)
+ ν(4)

+(1 + µ̃) [1 + (1− µ̃)pz]
ξ2

2

− (1 + µ̃)ξp⊥
[
1 + µ̃+ (1− µ̃)pz + µ̃2

1 + µ̃
ν(2)

]}
. (8.74)

In the leading order, the Eq. (8.75) is simplified:

3
[
(1− µ̃)ξ

2

2 + pz −
p2
⊥
2 µ̃− µ̃ κ2

2(1 + µ̃) − (1− µ̃)ξp⊥
]

= (1− µ̃)
[
p2
⊥
2 + κ2

2(1 + µ̃) + ξ2

2 − ξp⊥
]
, (8.75)

the solution of which provides us the most probable longitudinal momentum:

pe z = p2
e⊥

2mec
+ Ip

3c

(
1 + me

M

)
. (8.76)
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The ion momentum is derived from Eqs. (8.63) and (8.64). The second term corre-

sponds to the momentum of the electron at the tunnel exit. The longitudinal compo-

nent of the ion momentum, then, is

pi z = p2
⊥

2mec

me

mi

+ 2Ip
3c

(
1− me

2M

)
. (8.77)

The electron and ion longitudinal momentum Eqs. (8.76) and (8.77) are different

from the prediction of the simpleman model Eqs. (8.21) and (8.23). It is due to the

nonvanishing electron-ion relative momentum at the tunneling exit which depends on

the ionization energy Ip as well as on the mass ratiome/M . The latter factor describes

the role of the ion motion during the tunneling process.

Now, from Eqs. (8.73), (8.76), and (8.77), we are able to evaluate the most probable

momentum for ionization of exotic atoms, taking into account the effect of the ion

motion on the ionization dynamics.

Muonium

In the case of muonium (electron and antimuon) the most probable momentum of the

electron is

pe⊥ ≈ mecξ
(
1 + 0.166γ2

)
, (8.78)

pe z ≈
p2
e⊥

2mec
+ 0.335Ip

c
. (8.79)

The momentum of the antimuon is

pµ̄⊥ ≈ mecξ
(
1 + 0.166γ2

)
, (8.80)

pµ̄ z ≈
p2
e⊥

414mec
+ 0.665Ip

c
. (8.81)

Muonic hydrogen

In the case of a muonic hydrogen atom (muon and proton) the most probable momen-

tum of the muon is

pµ⊥ ≈ mecξ
(
1 + 0.1498γ2

)
, (8.82)
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pµ z ≈
p2
µ⊥

2mµc
+ 0.367Ip

c
, (8.83)

While for the proton they are

pp⊥ ≈ mecξ
(
1 + 0.1498γ2

)
, (8.84)

pp z ≈
p2
µ⊥

16mµc
+ 0.633Ip

c
, (8.85)

Positronium

In the case of a positronium atom the most probable momentum of the photoelectron

is

pe⊥ = mecξ

(
1 + γ2

12

)
, (8.86)

pe z = p2
e⊥

2mec
+ Ip

2c . (8.87)

The positron momentum components are the same by the absolute value (the trans-

verse momentum is opposite).

8.4.3 The role of the Coulombic atomic potential

In the discussion above, we assumed a short-range atomic potential, Eq. (8.40). Now

we examine how the SFA calculations are modified when the exact Coulombic atomic

potential is employed. In this case the matrix element 〈~p|V |Φ0〉 = −
√
κ/(2π) should

be replaced by

〈~p|V |Φ0〉 = 4
√
πακ3/2

κ2 + p2
⊥ + [pz + β(τ)]2

≈ 4
√
πακ3/2

κ2 + p2

[
1− 2pzβ(τ)

κ2 + p2

]
, (8.88)

where α = e2/~ and

β(τ) = β0 + β1 sin(ωτ + ϕ0)

β0 ≡
(

1− me

mi

)
mecξ

2

2 ,
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Figure 8.1: The electron distribution function over the momentum along the laser propagation direction pz ≡

pe z/(mecξ2/2) in the case of a positronium ionization: (solid) via Eq. (8.90) using Coulomb atomic potential;

(dashed) via Eq. (8.51) (multipled by a factor of 100) when atomic potential is modelled by a short range potential.

The transverse momentum is evaluated at the maximum of the momentum distribution pe⊥ = mecξ(1 + γ2/12)

according to Eq. (8.86), pz,max ≡ (pe⊥/mcξ)2 + γ2/2 corresponds to the longitudinal component of the electron

momentum at the maximum of the distribution according to Eq. (8.87). The laser parameters are E0/Ea = 0.2,

ω = 0.05 (γ = 0.5, ξ = 0.0172).

β1 ≡
(

1− me

mi

)
ξp⊥

In Eq. (8.88) we have expanded the expression with respect to β(τ) ∼ 1/c. Then

rather than Eq. (8.46), we will have the following differential ionization rate

dW

d3 ~Pd3~p
= 4

π

∑
n

α2κ3

(κ2 + p2)2 δ
(
~P⊥
)
δ
(
Pz + nω − σ0

c

)

× δ (∆) J2
n(ζ)

[
1− 4pz

κ2 + p2

(
β0 + n

ζ
β1

)]
. (8.89)

The ionization differential rate integrated over the ion momenta reads

dW

d3~pe
≈ 4

π

J2
n(ζ)

1 + pez
mic
− me

mi

ν
(8.90)

× α2κ3

(κ2 + p2)2

[
1− 4pz

κ2 + p2

(
β0 + n

ζ
β1

)]
,

where p2 = p2
e⊥ + (pez −m2

ecν/M)2 and pz = pez −m2
ecν/M . The parameters ζ, ν, n

are determined by Eqs. (8.48), (8.49) and (8.54).

The qualitative behaviour of the ionization rate is illustrated in Fig. 8.1 on the

example of the positronium ionization. The accounting of the exact atomic potential

corrects only the value for the ionization rate, but the position of the peak of the
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momentum distribution is determined by the Bessel function. Therefore, one can

rely on the conclusions on the momentum sharing between the ion and the electron

presented in this section above. Figure 1 illustrates that our analytical expression o

Eq. (8.87) [which is the particular me = mi case of the general Eq. (8.76)] provides

the correct value for the longitudinal component of the electron momentum at the

maximum of the distribution.

8.5 Conclusion

We have investigated the momentum partition between the constituents of exotic

atoms during strong field tunneling ionization. The momentum distribution is devi-

ated from the prediction of the simpleman model. One reason for the deviation is that

the electron appears in the continuum with nonvanishing momentum along the laser

propagation direction which is due to the effect of the magnetically induced Lorentz

force during the under-the-barrier dynamics and due to nonadiabatic effects. The sec-

ond reason is the impact of the recoil of the atomic core on the tunneling dynamics and,

therefore, on the momentum shift of the electron (muon) along the laser propagation

direction. The second factor is negligible for common atoms but significant in the case

of exotic atoms such as muonic hydrogen and positronium.
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9 Graphene in strong laser field:
experiment and theory

In this final chapter we present the article (R. Ganeev, E. Fiordilino, D. Cricchio, P.

P. Corso, M. Suzuki, S. Yoneya, and H. Kuroda Las. Phys. Lett., doi: 12:065401–,

2015) that can be considered the conclusion of the main project. In fact the main

research is to find a model that can explain the dynamic and the characteristics of the

graphene. In order to do it we created a model where we have nanorings instead the

hexagonal cells of graphene. In this last work we compare the harmonic generation of

the graphene driven by one and two laser field with the harmonic generation calculated

using our nanoring model.

9.1 Introduction

The laser ablation based high-order harmonic generation (HHG) has been advanced to-

wards the carbon-containedmolecules of increasing complexity suchas carbonnanofibers

and diamond nanoparticles (NP) [69], fullerenes [70, 71, 72], and carbon nanotubes

[73, 71]. The estimates of similar plasma structures produced on the surfaces of pow-

dered nanomaterials during laser ablation have shown that the concentration of parti-

cles becomes in the range of 1016 - 1017 cm-3 [69, 70], which is sufficient to observe the

high-order nonlinear optical processes induced in these species. The cross-section of

recombination of the accelerated electron with the parent particle in the case of NP is

higher compared with the atoms [74]. The uncertainty in the exact mechanism of the

HHG from NP has previously been underlined in a few studies [75, 74, 76] . Among
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additional mechanisms, the ionization and recombination to the same ion, to the neigh-

boring ions, and to the whole NP have been proposed. The experiments with gas NP

have revealed some difficulties in disentangling the harmonics produced by different

species (monomers and NP of different sizes). One has to note that the comparative

studies of HHG in the plasmas consisted of either NP or monomers showed that, at

optimal experimental conditions, the former emitters provide stronger harmonic yield,

thus pointing out the advanced properties of the large emitters of harmonics in the

NP-contained plasmas. In the meantime, the nonlinear optical properties of another

clustered species, graphene, have been in the centre of various theoretical and experi-

mental studies during last few years [77, 78, 79, 80, 81, 82, 83]. Particularly, the HHG

from a graphene sheet exposed to intense femtosecond laser pulses has been calculated

in Ref. [83] based on the three-step model of HHG. They predicted that graphene may

generate more intense harmonic signals than gas-phase atoms or molecules and serve

as a useful tool for selective harmonic generation when exposed to an intense driving

laser field. The first experimental evidence of harmonic generation in this medium

has been reported in Ref. [77] by using the ablation technique for graphene-contained

plasma formation with further propagation of the ultrashort pulses through the pre-

formed plasma medium. In the meantime, the interaction of the plasma components

with the laser fields are rather complex and the content of the emitting particles is

not well determined, thus a theoretical approach that might give a quick qualitative

hint on the expected results is called for. The important issues that were missed dur-

ing those first observations of the harmonic generation from the graphene-contained

plasmas are the morphological studies of the debris of ablated graphene, comparative

application of the single- and two-color pumps of plasma, use of recently developed

double-pulse method for the HHG in the powdered targets, and theoretical consid-

eration of the HHG in this medium based on the conditions of experiments. In this

chapter, we address these issues and show the peculiarities of harmonic generation

in the plasma contained the wrapped sheets of graphene. We also describe a simple

model of laser-graphene interaction, which reasonably well reproduces the details of

the experimental findings.
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Figure 9.1: Experimental setup. DP, driving pulse; HP, heating pulse; SL, spherical lens; CL, cylindrical lens;

VC, vacuum chamber; GCT, graphene-containing target; EP, extended plasma; NC, nonlinear crystal (BBO); HB,

harmonic beam; XUVS, extreme ultraviolet spectrometer.

9.2 Experiment

Analysis of the morphology of original and ablated graphene

The experimental setup was similar to those used for the harmonic generation in

various laser-produced extended plasmas [84]. Briefly, the uncompressed radiation

of Ti:sapphire laser (central wavelength λ = 802 nm, pulse duration 370 ps, pulse

energyEhp = 3 mJ) was used to ablate the graphene-contained target and to form the

extended plasma plume using the cylindrical focusing of the heating pulse [Fig. 9.1].

The compressed driving pulse from the same laser with the energy of Edp = 4 mJ and

64 fs pulse duration was used, 35 ns from the beginning of ablation, for the focusing

inside the graphene-contained plasma. The intensity of driving pulse inside the plasma

volume was 8 · 1014 W/cm2. The harmonic emission was analyzed by an extreme

ultraviolet spectrometer. Graphene nanoparticle powder (SkySpring Nanomaterials

Inc.) was used as the ablating target. The powder of graphene NP was glued on the

5-mm-long glass plates, which were then installed in the vacuum chamber for ablation.

The morphology of graphene was analyzed using the transmission electron microscopy
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Figure 9.2: TEM images of original graphene nanopowder (left panel) and deposited debris (right panel) at the

optimal conditions of ablation. The length of the black lines is 200 nm.

(TEM) of the original NP and plasma debris. Left panel of Fig. 9.2 shows the TEM

image of as-supplied powder of graphene. The sizes of graphene NP were distributed in

a broad range of 10 - 80 nm. We also analyzed the plasma debris, which were collected

on the carbon grids placed nearby to ablation area, at the optimal and non-optimal

conditions of NP-contained plasma formation. These conditions refer to the strong

and weak harmonic yields from the graphene-contained plasma. The analysis of post-

ablation conditions of the deposited debris provides the information about the plasma

components despite the possible difference between the composition of the plasma in its

early stages and the deposited material, which can be modified due to the aggregation

on the substrate. To compare the dependence of the spatial characteristics of the debris

under different ablating conditions, the target was ablated using the 370 ps pulses of

the Ti:sapphire laser at a repetition rate of 10 Hz using the variable fluencies. The right

panel of Fig. 9.2 shows the material ejected upon ablation of graphene nanopowder.

One can see that the shapes of deposited material were similar to those of the initial

NP-contained target, though the sizes of deposited NP were smaller, probably due to

disintegration of large crumpled and wrapped sheets of graphene onto the smaller parts.

The monolayer, bilayer, and trilayer nanosized chunks were observed depending on the

conditions of ablation. In these studies, the moderate laser ablation fluency (∼ 0.7
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J/cm2) was used, which corresponded to the conditions of efficient HHG. Ablation

of the graphene-contained target by higher fluency (∼ 2 J/cm2) did not yield similar

nanostructured deposits, but rather the groups of chaotically shaped large aggregates.

The harmonic yield from the plasma produced using high fluency of heating pulses

was lower compared with the optimal conditions of ablation. The use of high ablation

fluencies resulted in the formation of the large amount of free electrons, which is a

detrimental factor for the HHG due to the growing contribution of latter species on

the phase mismatch between the driving and harmonic waves. The presence of larger

amount of NP in the plasma did not compensate for the deteriorated phase relations

between interacting waves caused by significant amount of free electrons in the plasma

plume.

Variation of harmonic emission using the extended and narrow graphene-

contained plasmas

In the case of graphene NP, the ablation plasma plume may contain various species

of carbon, i.e. neutrals and ions, small molecules, small and large NP, aggregates,

etc., which can contribute to harmonic generation in various extents. It is important

to determine their presence in the region where the driving laser beam interacts with

the expanding plasma. The indirect confirmation of the change of the role of these

species in the harmonic generation can be proven by the observation of the variation

of harmonic yield and cutoff at different fluencies of heating radiation. This pecu-

liarity, which showed the relatively strong harmonic yield and low cutoff at moderate

ablation (i.e., at a fluency of heating radiation in the range of 0.5 − 0.8 J/cm2), as

well as the weak harmonic yield and extended cutoff at stronger ablation (1.5 − 1.8

J/cm2), points out the involvement of NP or monomers as the harmonic emitters

at these two conditions of ablation. Below we show the results supporting this as-

sumption. Previous studies have shown that the use of extended plasmas enables

the growth of HHG efficiency compared with the narrow plasma plumes produced on

the bulk targets [84]. Similar feature was observed in the case of the comparative

studies of the 0.5- and 5-mm-long graphene NP plasmas (Fig. 9.3 on the next page).
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Figure 9.3: Harmonic spectra from 5 mm-long (up-

per panel) and 0.5 mm-long (middle panel) graphene-

containing plasma at the optimal ablation of targets. The

over-excitation of graphene containing target at the con-

ditions of narrow plasma formation (bottom panel) led to

the appearance of C III emission lines, followed by the

insignificant growth of harmonic yield.

The harmonic cutoff at the ”optimal”

conditions of ablation of the extended

target (i.e. at the fluence of∼ 0.6 J/cm2,

which corresponded to the presence of the

NP in the plasma plume) was H21 (up-

per panel).Note that, in the case of ex-

tended plasma (` = 5 mm), the stability

of harmonic yield was better compared

with the narrow plasma plume (` = 0.5

mm). The propagation through the ex-

tended graphene plasma plume did not

lead to attenuation of harmonic radia-

tion caused by absorption due to small

density of the NP plasma. The har-

monic yield in the case of 5-mm-long

plasma was 10 times larger compared

with the 0.5-mm-long plasma (middle

panel). The over-excitation of 0.5-mm-

long target led to appearance of the emis-

sion lines from multiply charged carbon

followed with the insignificant growth of

harmonic yield compared with the former

case (bottom panel).

These studies showed that the divergence and spectral width of the harmonics pro-

duced in the graphene NP plasma were larger than those produced in the monomer

plasma plumes, particularly in the case of ablation of the bulk graphite. The larger di-

vergence could arise from a stronger influence of the long trajectories of accelerated and

recombined electrons on the harmonic yield. This assumption can be explained by the

growth of recombination cross section when larger particles have a higher probability

to recombine with the returning electron moving on the long trajectory. The obser-
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vation of relatively low-order harmonics from the graphene-contained plasma could

be related with the involvement of neutral NP as the emitters of coherent radiation.

The growth of the fluency of heating radiation from 0.6 to 1.4 J/cm2 on the 5-mm-long

graphene target led to strong plasma emission assigned to the doubly and triply ionized

carbon. At these conditions, the harmonic cutoff was extended from H21 to H33, with

the weaker harmonic yield along a whole range of generation compared with the case

of the ”optimal” ablation of graphene NP. This extension of cutoff was related with

the appearance of a large amount of ionized carbon monomers, dimers, and trimers,

which may largely contribute to the high-order harmonic yield at these conditions.

Similar cutoff was observed in the case of ablation of the bulk graphite target. Thus

one can assume that the original graphene NP were responsible for the generation of

relatively strong harmonics up to the H21, while the appearance of ionized monomers

led to extension of cutoff and weaker harmonic yield.

Application of two-color and double-pulse schemes for the HHG in graphene

plasma

The division of driving field on two parts, particularly through the second-harmonic

generation in the nonlinear optical crystal, may add some insight in the dynamics of

harmonic emission in the presence of a weak second field. This weak field can modify the

emission spectrum by adding the even harmonic components. It was shown recently

that the addition of weak (∼5%) orthogonally polarized second-harmonic field allows a

significant growth of odd and even harmonic generation in the silver plasma produced

on the extended bulk target [85]. It would be interesting to analyze the influence of

similar additional field on the harmonic spectra originated from the graphene NP.

Figure 3 shows the raw images of the single-color (802 nm, upper figure) and two-

color (802 nm and 401 nm, bottom figure) pump induced spectra of the harmonics

generated in the graphene-contained plasma. The 0.3-mm-thick BBO crystal was in-

stalled on the path of the focused driving radiation inside the vacuum chamber [9.1].

Though the second-harmonic (λ= 401 nm) conversion efficiency was only∼5%, the en-

ergy of this field was sufficient to significantly modify the whole high-order harmonic
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Figure 9.4: Raw images of the harmonics generated in the graphenecontaining plasma using the single-color (802

nm, upper panel) and two-color (802 nm + 401 nm, bottom panel) pumps.

spectrum. The role of 401 nm radiation was clearly underlined in this experiment,

which showed that, even at very large difference between the energies of the funda-

mental and second harmonic fields (95:5), the energies of even harmonics (H10 - H14)

were similar to the odd ones. At the same time, these studies showed that, contrary

to the monomer plasma [85], the two-color pump of graphene-contained plasma did

not lead to the growth of harmonic yield, as well as did not allow the even harmonic

generation in the short-wavelength range. Largest even harmonics in these two cases

of different emitters corresponded to the H42 [85] and H16 (Fig. 9.4). The reasons

of the difference in the involvement of the weak second field in the case of monomers

and NP are, probably, related with lesser growth of the ionization rate in the latter

case, while, in the case of monomers, the growth of this parameter was assumed to be

a main reason of the observed enhancement of harmonic yield in the case of gas HHG

experiments [86].

Below we describe our studies of the harmonic generation using the double 802-nm

femtosecond pulses propagated close to the graphene-contained target. The harmonics

were observed in the case of double-pulse configuration of femtosecond radiation, with-

out the preliminary ablation of target by picosecond heating pulses. The graphene-

contained target was moved toward and out of the optical axis of the double-pulse ultra-

short radiation using the translation stage to create the conditions when this radiation
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”touches” the target. We were able to achieve the conditions when the generating har-

monics prevail over the plasma emission induced during ablation of graphene powder

by the wings of the spatial distribution of the focused radiation (see inset in Fig. 9.5).

Figure 9.5: Harmonic and plasma spectra obtained dur-

ing propagation of the laser radiation near the graphene

target at different ratios of the P1 and P2. Inset: scheme

for harmonic generation using the double-pulse method.

FB, first beam; SB, second beam; T, target; HB, harmonic

beam.

The optimization of this process was ac-

complished by producing the variable

driving radiation using the manipulation

of the triggering signal on the Pockels

cell in the regenerative amplifier of our

Ti:sapphire laser. The variation of the

delayed signal on the driver of Pockels

cell led to separation of single pulse or

double pulses, with the time interval be-

tween pulses of 8 ns. The variable de-

lay allowed the formation of two driving

pulses for harmonic generation (double-

pulse scheme) with different ratios be-

tween the intensities of these pulses [87].

The usefulness of the application of the

proposed double-pulse scheme for the

harmonic generation is related with the

simplified analysis of the high-order non-

linear optical properties of the media.

This scheme can find the application in

the nonlinear spectroscopy of powdered

materials. One can assume the difficulty

in the formation of a sufficient amount of

particles in the plasma plume produced

during excitation of the target by the spa-

tial wing of the first pulse using the double-pulse scheme. Small interval between first

(P1) and second (P2) pulses (8 ns) also prevents the appearance of a large amount
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of plasma particles along the axis of propagation of the second pulse. The heating,

annealing, and evaporation of glued graphene powders occurred at the conditions of

strong interaction of the wing of the first beam and the target. We gradually moved

the graphene-contained target up and down to keep the stable harmonic yield. The

ratio between the first and second pulses was varied in a broad range (between 1:100

and 3:1). The optimum conditions were found at the P1 : P2 = 2:1 (Fig. 9.5 on the

preceding page, upper panel) when the strong lower-order harmonics were generated

while the plasma emission was insignificant. The use of 1:3 ratio between first and

second pulses significantly decreased the harmonic yield (middle panel; the plot was

10 times multiplied for better visibility). No harmonics were observed in the case of

single pulse (bottom panel) and low P1 : P2 ratios (¡1:5) of the double-pulse scheme, as

well as in the case of pure glue. We compared these double-pulse studies of graphene-

contained plasma with similar experiments using extended bulk targets. Particularly,

the harmonic cutoff in the case of double-pulse excitation of the bulk silver was lesser

than in the case of the conventional heating of target by picosecond pulses followed

with the optimally delayed (43 ns) single femtosecond pulse propagation through the

silver plasma plume (H27 and H61 respectively). In the meantime, our experiments

with graphene-contained plasma showed the opposite results [H31 (not shown in the

middle panel of Fig. 9.5 on the previous page) and H23 (upper panel of Fig. 9.3 on

page 116)]. The latter difference is related with the involvement of various components

of ablated graphene (neutral NP and ionized monomers respectively in the cases shown

in the upper panel of Fig. 9.3 on page 116 and middle panel of Fig. 9.5 on the preceding

page), while in the case of bulk target, the singly ionized silver monomers were involved

in the HHG at the conditions of single- and double-pulse schemes. The difference in

the harmonic cutoffs from silver plasma was attributed to the extremely unfavorable

conditions of plasma formation on the bulk target using the weak spatial wing of the

first pulse in the case of the double-pulse scheme, contrary to the graphene target.

The comparison of graphene with similar powdered target (carbon nanofiber powder)

showed that the optimal conditions of plasma formation using double-pulse scheme

were achieved at significantly different ratios of P1 : P2 (2:1 and 1:3 [87], respectively).
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Probably, the difference in the nonlinear optical properties of the sheets of graphene

and the extended ( 10 µm) tubes of nanofibers was the main reason of the observed

optimization of HHG at different ratios of two pulses.

9.3 Theoretical studies of the HHG in graphene

The species content of the plasma used in the experiments cannot be well determined

as it depends upon group of factors. However, in spite of the appearance of different

components during graphene ablation, it is possible developing a theory, which can

account for the observed spectra in different experimental conditions. We focus our

attention on the graphene content of the plume and adopt the simplest possible model

of HHG, which can give some insight of this process without blurring the main results.

The striking geometrical symmetry of complex systems, such as C60 and graphene

ring, can be exploited for simplifying, to some extent, the Hamiltonian to be used [88].

For example, a wealth of information on stability, energy levels and other physical

properties of spherical carbon allotropes can be gained by modeling the macromolecule

as a spherical surface where the electrons are constrained to move [2]. Moreover, the

presence of a moderate laser pulse forces the electron to undergo oscillations that may

result in an averaging of the details of the location and structure of the atoms within the

molecule, hence justifying the use of simple models. Thus the model of a single active

electron bound on a spherical surface accounts for HHG [1] and for the experimental

observation [72].

Unidimensional models of ring-shaped structures in the presence of laser field have

proved that such species could be good emitters of harmonics [30, 41]. Therefore,

to explain the basic structure of the experimental spectra emitted by the graphene-

contained plasma, we consider a single electron bound over a one-dimensional circle of

radius R driven by two orthogonal laser fields with angular frequencies x and y. Such

a model is meant to mimic a single graphene ring but can account for a larger planar

aggregatio of single graphene rings; however, in what follows, we carry out simulations
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for a single ring. The full Hamiltonian of the problem is

H = H0 +
[
~ωxgx cos(ϕ) sin(ωxt) + ~ωygy sin(ϕ) sin(ωyt+ θ)

]
(9.1)

where

H0 = ~2 ˆ̀2
z

MR2 (9.2)

is the Hamiltonian of the ring in the absence of the external field, ~2 ˆ̀2
z is the z

component of the angular momentum operator, M is the mass of the charge carrier,

~ωx(y) is the laser-ring interaction energy, 0 ≤ gx(t) ≤ 1 and 0 ≤ gy(t) ≤ 1 are the

profiles of the x and y components of the field. Let | n〉 = einϕ/
√

2π and ~ωn = ~n2/

(2MR2) denote the eigenstates and eigenenergies ofH0 such thatH0 | n〉 = H | n〉 =

~ωn | n〉. It is possible to write the full state | t〉 of the charge carrier in the ring as

| t〉 =
+∞∑

n=−∞
cn(t) | n〉. (9.3)

In this way, the time dependent Schrödinger equation (TDSE) i~∂t = H | t〉

assumes the form of a ladder of coupled differential equations
i~ċm(t) = ~ωmcm(t) + 1

2π

[
A(t)cm−1 + A(t)∗cm+1

]
cm(t = 0) = δm,0

(9.4)

where

A(t) = ~ωxgx sin(ωxt) + i~ωygy sin(ωyt+ θ) (9.5)

By defining uj,k = c∗j(t)ck(t), the quantum averaged components of the charge position

assume the form

x(t) = 〈t | x | t〉 = R
+∞∑

m=−∞

1
2πum,m−1(t) + u∗m,m−1(t)

]
(9.6)

y(t) = 〈t | y | t〉 = R
+∞∑

m=−∞

i

2πum−1,m(t) + u∗m−1,m(t)
]

(9.7)

The electromagnetic emission from the graphene rich plume finds its physical origin

in the large accelerations undergone by the molecular charges acted upon by the laser
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field. Following the common use, the general properties of the spectrum is obtained

by adopting the single active electron approximation that assumes that one electron

alone is affected by the field, and by using the classical Larmor formula

dS

dω
= 4q2

3c3 | ~a(ω) |2 (9.8)

where dS/dω is the energy irradiated in the frequency range [ω, ω + dω] by the ac-

celerating charge q during the whole laser shot; ~a(ω) is the Fourier transform of the

acceleration; two successive applications of the TDSE give the needed expression for

it

ẍ = − R

2π~2

{
~ωm−1,mu̇

∗
m,m−1 + 1

2π
[(
Ȧ+ Ȧ∗

)
um,m−2 + (A+ A∗) u̇m,m−2−

− Ȧ∗um−1,m−1 − A∗u̇m−1,m−1 − Ȧum+1,m−1 − Au̇m−1,m−1
] }

+ cc (9.9)

ÿ = − iR

2π~2

{
~ωm,m−1u̇

∗
m−1,m + 1

2π
[(
Ȧ+ Ȧ∗

)
um−1,m−1 + (A+ A∗) u̇m−1,m−

− Ȧ∗um−2,m − A∗u̇m−2,m − A∗um,m − Au̇m,m
] }
e+ cc (9.10)

with

i~u̇j,k = ~ωk,juk,j
1

2π [A(t)uj−1,k + A(t)∗uj,k−1 − A(t)uj+1,k] (9.11)

In what follows we give the results of our numerical calculations with laser and

ring parameters equal to those used in the above described experimental conditions;

namely the ring radius isR = 3a0 (a0 is the Bohr radius), the laser photon wavelengths

are λx = 802 nm and λy = 401 nm. For simplicity, the pulse profiles were chosen equal

and rectangular gx(t) = gy(t) = 1 and pulse duration τ = 25 optical cycles of the

fundamental or τ = 6.7 · 10−14 s. We consider both cases of single or two simultaneous

laser fields driving the charge carrier; the total intensity is Ix + Iy = 8 · 1014 W/cm2.

When both 802 and 401 nm pulses are present simultaneously, the intensity of the two

orthogonal laser fields are taken in the ratio Ix/Iy = 95/5. To easy the comparison

with the experimental plots, we show only the harmonic content.

We begin our theoretical analysis by considering the case when single laser pulse

(802 nm) drives the graphene ring.
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Figure 9.6: left: Spectrum emitted by a graphene unit cell driven by a single, linearly polarized laser field. The

parameters of calculations are: R = 3 a0; laser wavelength λx = 802 nm; laser intensity I = 8 · 1014 W/cm2; and

pulse duration τ = 6.7 · 10−14 s. Right: Spectrum emitted by a graphene unit cell driven by two orthogonal laser

fields. The parameters entering the calculations are: R = 3 a0; laser wavelengths λx = 802 nm and λx = 401 nm;

laser intensities Ix = 7.6 · 1014 W/cm2 and Iy = 4 · 1013 W/cm2; and pulse duration τ = 6.7 · 10−14 s.

The harmonic spectrum, shown in Fig. 9.6 (Left), is formed by a plateau followed

by a cutoff after H17, which is approximately the same as the experimental one al-

though the descend defined from calculations is rather steeper (compare with Fig. 9.3

on page 116). However the properties of emitted radiation can be controlled with a judi-

cious change of the characteristics of the pump field. For example, an extended cutoff is

to be expected by exploiting resonances between the laser photon energy and graphene

transition while the polarization state of a particular harmonic can be controlled with

the polarization of the laser [30]. It is apparent in Fig. 9.6 (Right) that the presence

of an orthogonal, second harmonic laser field (Iy = 4 · 1013 W/cm2, Ix = 7.6 · 1014

W/cm2) slightly extends the plateau in countertendency to the experimental result

(see Fig. 9.4 on page 118). However, the use of the weaker laser intensity Ix = 6 · 1014

W/cm2, gives a smaller cut-off and a better general agreement between calculations

and experiments. This can be understood by considering that in the present simula-

tion we used the nominal intensity of the experiments and a rectangular pulse shape.

This is a simplifying assumption since a real laser pulse presents some spatio-temporal
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Figure 9.7: Spectrum emitted by a graphene unit cell driven by two sequential linearly polarized laser fields along

the x-axis. The parameters entering the calculations are: R = 3 a0; laser wavelengths λx = 802 nm; laser intensities

Ix1 = 8 · 1014 W/cm2 and Ix1/Ix2 = 2; and pulse duration τ = 6.7 · 10−14 s.

fluctuations, the overall effect of which is the reduction of the average field experienced

by the graphene ring. Other results indicate that by changing the phase in Eq. (1) it is

possible to achieve a fine control of the extension of cutoff and of the relative intensity

of harmonics. Indeed, an adjustable delay of the second, y-polarized pulse, provides

an additional control of the overall harmonic spectrum. In this case, time-frequency

analysis performed by means of the Morlet’s short time Fourier transform indicates

a temporal dependence of the profile of selected harmonics, which could allow a real

time manipulation of chemical reactions [41]. In this chapter, we restrict the laser

physical parameters to those of the experimental conditions; however the system has

been theoretically examined in different configurations of the drivers and reveals as an

attractive tool for controlling the driving and harmonic radiation. Figure 9.7 shows

the spectrum obtained with two sequential pulses both polarized along the x axis with

intensity Ix1 = 8 · 1014 W/cm2 and Ix1 = 2Ix2. The aim of these calculations is a
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comparison with the results of double-pulse experiments shown in the upper panel of

Fig. 9.5 on page 119. We must stress that this calculation gives only a tentative value,

since the experimental conditions are radically different from previous experiments;

indeed no attempt has been given to describe the time laps between the two pulses

or the changed density of the plasma. However, the agreement is noteworthy; for

example, calculations were able to reproduce a local maximum of the H15.

9.4 Discussion

The theoretical model takes into account only the emission from the confined electrons

in the graphene component of the plasma. The reasonable agreement with observed

experimental data might suggest that the actual plume is mostly formed of small,

but entire, planar graphene cells whose emission overcomes that from smaller compo-

nents such as carbon atoms, molecules or from other fragments and allotropes. This

consideration might indicate the possibility of using HHG as a diagnostic tool. More-

over, the mentioned presence of a free electron cloud is detrimental for HHG and can

quench the HHG contribution from recollisional electrons thus explaining the fact that

a model that does not account for ionization is sufficient. The agreement also shows

that fine details of the molecular target are often unnecessary for the description of

laser-induced phenomena in complex molecules. Different experimental conditions

might be realized and require more refined models. These models should include the

details of the interaction between electrons and atoms and a mechanism resembling

the three-step model. The model we propose is just a first approximation of the ac-

tual system since it takes into account the symmetry of the problem, while excluding

the details of any potential, which could mimic the presence of scattering centers.

This approach is justified by the fact that during the evolution within the graphene’s

ring, the electron wave function generally averages fine details of the potential. It

seems that recollisional effects do not contribute much to the HHG perhaps because

of the presence of both ionized electrons and undistinguished debris of the ablation

process. In fact, the obtained results are qualitatively in good agreement with the
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experimental results thus showing that the overall profile of the emitted spectrum is

mainly due to the angular symmetry of the physical system. Currently, we are trying

to improve our model in order to take into account the details of the potential and we

are confident we will be able to show more results in the near future moving towards

a better level of approximation. In doing so at the moment we are facing the prob-

lem of properly shaping the potential, since we are considering a single-active electron

model in which we need to take somehow into account the screening effect of the other

electrons. Actually the calculations are able to reproduce with accord the extension

of the cutoff and some details of harmonic spectrum such as the presence of a local

maximum of the intensity of the H15 in Figs. 5 and 7. However the theory predicts

a faster quenching than the observed one. The reason of this disagreement cannot be

ascertained because of the imprecise knowledge of the plasma composition and of the

theoretical assumptions. The above reasons do not allow the quantitative comparison

of the observed values of the intensities of harmonics obtained during experimental

and theoretical studies. Raw estimates of harmonic efficiency in the range of H11 -

H19 (∼ 5 · 10−5) allow calculating the approximate amount of coherent XUV photons

per pulse (∼ 2 · 108photons/pulse). The theoretical calculations do not allow the

direct quantitative definition of the absolute value of converted photons but rather

provide the qualitative coincidence of the plateaulike range of harmonic distribution

and harmonic cutoff.

9.5 Conclusions

In conclusion, we have analyzed the interaction of ablated graphene and strong laser

field. Morphological studies confirmed the presence of relatively large multi-plate

graphene species deposited on the nearby substrates at the conditions of the optimal

ablation of graphene target using the 370-ps pulses. We have observed the monolayer,

bilayer, trilayer, etc. nanosized chunks depending on the conditions of ablation. How-

ever, some uncertainty still remains about the correlation of the presence of different

graphene NP in the plasma and their influence on the nonlinear optical response of
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the medium. The ablation of graphene target at different fluencies of heating pulse

has revealed two sources of harmonic generation (the neutral NP in case of intense

lower-order harmonics and the ionized monomers in case of higher-order harmonics).

We have presented the single- and two-color studies of plasma harmonics during ab-

lation of the graphene powders and obtained the equal odd and even harmonics at

very small ratio between the second and fundamental driving energies (1:19). We have

also analyzed the HHG using the double-pulse scheme during interaction of the spatial

wings of two femtosecond beams with the graphene and found the optimal conditions

for the HHG. Finally, we have presented and discussed a simple theory to explain the

observations. The graphene ring was modeled as an unstructured one-dimensional

circular structure within the single active electron approximation. The comparison

between theoretical and experimental spectra showed a reasonable agreement for both

the harmonic cutoff and the shape of spectrum.
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10 Conclusions

The main research of these three years of studies was focused on investigation of the

properties of the quantum rings driven by a laser field and on the way they can be

used to approximate the the comportment of the graphene in these conditions. In

particular we studied

• High harmonic generation

• Polarization of the emitted harmonics

• Energy and angular momentum acquired by the electron

• Modulation of the high harmonic spectrum by changing the laser parameters

All these calculations were performed using both one and two orthogonal lasers and

varying the initial parameters such as the laser intensity, the laser photon energy, the

shape and the laser pulse duration and the dimensions of the quantum ring. These

different initial conditions were performed in order to have a complete knowledge of

the dynamic of the nanoring and permit us to demonstrate that our model is a good

approximation to calculate the high harmonic spectrum of the graphene driven by a

laser field.

The main results obtained in these three years can be summarized as follows:

I We presented the comparisons of the experimental and theoretical studies of

high-order harmonic generation in the plasmas containing fullerenes under dif-
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ferent conditions and laser duration of the pulse of 4.5 fs and 45 fs. The com-

parative studies show that, for shorter pulses, the cutoff of harmonic generation

from fullerenes increases compared with case of multi-cycle pulses (published in

[3]).

II Quantum rings driven by a laser can efficiently emit an electromagnetic field

endowed of interesting properties: the characteristics of the harmonic field can

be controlled by changing the laser parameters. In particular, our investigations

show that the polarization of the driving laser provides a fine tool of control;

as a result, the polarization of the diffused harmonics can be tuned. Another

interesting result is the fact that non zero angular momentum can be stored in

the nanoring (published in [2]).

III In this work we have shown the possibility of controlling the emitted harmonics

by changing parameters such as the laser intensity, the energy of the laser photon

or the shift between the shape pulses. We notice that the combination of two

orthogonal lasers generates a spectrum with more harmonics respect to the case

of only one laser. We also studied the spectrum by varying the shift between

the pulse shapes. With a Gabor analysis of the spectrum we noticed that the

laser with angular frequency ωx has a greater contribution in the first area of the

total spectrum and that it generates the odd harmonics. On the other hand the

laser with angular frequency ωy generates the even harmonics and has a greater

contribution in the final area of the total spectrum. Another important result is

that we can control the polarization of the emitted harmonics and the angular

momentum of the electron. Finally we have shown that the nanoring can acquire

a residual angular momentum and that it absorbs and emits energy periodically.

With these last results we hope that the nanoring can be used to store angular

momentum and use it in quantum information theory (published in [89, 41]).

IV We investigated the possibility to use nanorings driven by a laser field to make

logic circuits. In particular we used the emitted signals and the final angular

momentum of the nanoring to create logic gate that can be used to make logic
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operations. In fact we noticed the possibility to construct the XOR, OR and AND

logic gates and use them to make a half and full adder. Combining two or more

nanoring, we can obtain a full adder, but the presence of XOR and AND logic

gates give us the possibility to make a Toffoli gate. We also can use the angular

momentum acquired by the electron in the nanoring to store information. In

fact we can consider the final angular momentum like a pseudo-spin that can be

reversed by changing the direction of circular polarization of the incident laser

field (published in [90, 91]).

V We study a quantum ring driven by an intense laser field that emits electromag-

netic radiation stemming from the strong acceleration experienced by the active

electrons. In order to elucidate the physical origin of such a rich variety of spectra

we study the comportment of one single classical charge constrained both on a

plain and a structured ring and acted upon by a linearly polarized laser field.

Our simulations show that the response of the ring evidences chaotic and unsta-

ble behavior that can be at the origin of the variegated quantum results. Thus

the model here discussed might cast light in the still obscure relation between

classical chaos and quantum realm.

VI We investigated the momentum partition between the constituents of exotic

atoms during strong field tunneling ionization. The momentum distribution

is deviated from the prediction of the simpleman model. One reason for the

deviation is that the electron appears in the continuum with nonvanishing mo-

mentum along the laser propagation direction which is due to the effect of the

magnetically induced Lorentz force during the under-the-barrier dynamics and

due to nonadiabatic effects. The second reason is the impact of the recoil of the

atomic core on the tunneling dynamics and, therefore, on the momentum shift

of the electron (muon) along the laser propagation direction. The second factor

is negligible for common atoms but significant in the case of exotic atoms such

as muonic hydrogen and positronium (published in [92]).

VII We presented the single- and two-color studies of plasma harmonics during ab-
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lation of the graphene powders and obtained the equal odd and even harmonics

at very small ratio between the second and fundamental driving energies (1:19).

We have also analyzed the HHG using the double-pulse scheme during interac-

tion of the spatial wings of two femtosecond beams with the graphene and found

the optimal conditions for the HHG. Finally, we have presented and discussed

a simple theory to explain the observations. The graphene ring was modeled

as an unstructured one-dimensional circular structure within the single active

electron approximation. The comparison between theoretical and experimental

spectra showed a reasonable agreement for both the harmonic cutoff and the

shape of spectrum (published in [93]) .

To finalize, we trust that the present work could be hopefully for a better under-

standing of the dynamics of the nanorings, and in general of the dimensionally reduced

systems, driven by strong fields.

134



Publications

Ph. D. Publications

[1] D. Cricchio and E. Fiordilino Nanoscale, doi:10.1039/C5NR06905J, 2015.

[2] D. Cricchio, E. Fiordilino and K. Z. Hatsagortsyan Phys. Rev. A 92, 023408

(2015).

[3] R. Ganeev, E. Fiordilino, D. Cricchio, P. P. Corso, M. Suzuki, S. Yoneya, and

H. Kuroda Las. Phys. Lett. 12(6), 065401 (2015).

[4] D. Cricchio and E. Fiordilino Las. Phys. Lett., 11(6), 066002 (2014), doi:

10.1088/1612-2011/11/6/066002.

[5] R. A. Ganeev, C. Hutchison, T. Witting, F. Frank, S. Weber, W. A. Okell, E.

Fiordilino, D. Cricchio, F. Persico, A. Zäır, John W. G. Tisch and J. P. Marangos
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Speakers (July 19): Nanorings driven by a laser field.

Abstract: We present the dynamics of an electron constrained over an 1D ring with

radius of 0.142 nm driven by a laser field. The temporal evolution of the system is eval-

uated by a semi-analytical solution of the full quantum time dependent Schrödinger

equation. In our calculation the gap energy between the ground and the first excited

state of the nanoring is three times the photon energy laser (0.63 eV) and the laser

intensity is 4 · 1014 W/cm2. Our analysis is performed by considering different polar-

ization states of the incident laser. Our attention is mainly focused on the study of the

High Harmonic Generation (HHG), the energy and the angular momentum absorbed

by the driven system. We observe 1) that the harmonic yield is strongly dependent

upon the pump polarization field and almost vanishes for circular polarization and 2)

that the ring can be left in a state with average angular momentum different than zero.
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Abstract:We study the application of one nanoring driven by a laser field in different

states of polarization in logic circuits. In particular we show that assigning boolean

values to different state of the incident laser field and to the emitted signals, we can

create logic gates such as OR, XOR and AND. We also show the possibility to make

logic circuits such as half-adder and full-adder using one and two nanoring respectively.

Using two nanorings we made the Toffoli gate. Finally we use the final angular mo-

mentum acquired by the electron to store information and hence show the possibility

to use an array of nanorings as a mass memory device.
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