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I. FOREWORD 

I.1 GENERALITIES 

Road traffic microsimulation models are one of the latest generation of 

available traffic models and became very popular for the development 

and evaluation of a broad range of road traffic management and control 

systems. They model the movements of individual vehicles, traveling 

around road networks by using car following, lane changing and gap 

acceptance rules; hence, traffic microsimulation models try to replicate 

the behavior of individual drivers. However, the "realism" sought by the 

representation of individual drivers introduces a level of complexity into 

the modeling process which must be taken into account from the stage of 

model calibration. Traffic microsimulation models typically include a 

very large number of parameters, representing various characteristics of 

travelers, vehicles and road system, that must be calibrated before the 

model is applied as a prediction tool of traffic performances (Hollander 

and Liu, 2008). 

Microsimulation models are the ones closer to reality in the reproduction 

of the traffic system opening a wide range of traffic scenarios in which 
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precise descriptions of traffic control and traffic management schemes 

can be explicitly included. 

Microsimulation traffic models can produce visual outputs by which lay 

and technical people can discuss the respective merits of traffic and 

transport proposals. The models can represent road and transport 

networks and their operation and the behaviour of vehicles and travelers 

in more detail, and broaden the range of applications. The visual 

representation of problems and solutions in a format understandable to 

lay people, project managers and modellers is a useful way to gain more 

widespread acceptance of complex strategies. 

I .2 THE AIMS OF THIS PHD THESIS 

In this work of PhD Thesis a methodology to find fundamentals diagrams 

by microsimulations will be presented.  

As it is know from scientific literature, the fundamental diagram relates 

two of the three variables: average speed (v), flow (q) and density (k) to 

each other. If two of these variables are known, the third can be derived 

using the relation q = kv. Therefore, if only one variable is known, and 

the fundamental diagram is known, the traffic state can be determined. 

The fundamental relationship is largely used in road infrastructure 

engineering, e.g. in the level-of-service evaluation of basic freeway or 

multilane segments. 
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The present work of PhD thesis starts by introducing the fundamental 

diagram using Edie’s definitions and the use of speed- density diagrams. 

Another objective will be to analyzed a method that include an automated 

technique based on genetic algorithm (GA) for automating the process of 

calibration of the parameters in order to reproduce the fundamentals 

diagrams of the A22 Brenner freeway.  

A further important objective will be to evaluate the impact of heavy 

vehicle on the quality of flow of the A22 Brenner freeway by calculating 

the Passenger Car Equivalents Factor (PCEs) between heavy vehicles and 

cars based on the results obtained in microsimulation. The calculation of 

PCE (Passenger Car Equivalents) will be done in general terms in order 

to compare the results with those published in the Highway Capacity 

Manual (HCM, 2010) resulting from experimental studies. 

I .3 ORGANIZATION OF THE THESIS 

The present PhD thesis consists of four chapters that illustrate the 

work of study and research that has been developed during the PhD 

course. The chapter one is a background that describes the traffic 

modeling techniques available in the scientific literature with particular 

attention to microscopic simulation models. In particular it will be 

explained the benefit and the advantage of using Traffic Microsimulation 

Models for freeways.  



Traffic fundamentals for A22 Brenner freeway by microsimulation models. 

In the second chapter a statistical approach based on observed and 

simulated speed-density relationships will be applied in the calibration 

process to measure the closeness between empirical data and simulation 

outputs. The comparison established between the lnS-D2 linear 

regressions (where S is for Speed and D is for density) for all simulated 

values and the corresponding linear regressions for the empirical data 

will allow to evaluate the quality of the calibration of the traffic 

microsimulation model. Furthermore, a statistical approach including 

hypothesis testing using t-test and confidence intervals will be used.  

In the third chapter, the most important models for the analytical 

calculation of PCEs (Passenger Car Equivalents) will be presented and 

the Aimsun software performance will be tested. After that, the results of 

microsimulations in Aimsun will be evaluated in order to obtain the 

relevant parameters for the estimation of the PCEs and their comparison 

with those proposed by HCM. 

Finally, the last chapter will show the first results obtained by 

applying a genetic algorithm in the microsimulation traffic model 

calibration process. The calibration will be formulated as an optimization 

problem in which the objective function was defined to minimize the 

differences of the simulated measurements from those observed in the 

speed-density diagram. 
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I. TRAFFIC SIMULATION MODELS 

Simulation is a process based on building a computer model that suitably 

represents a real or proposed system which enables the extraction of valid 

inferences on the behavior of the modeled system, from the outcomes of 

the computer experiments conducted on its model. Simulation has 

become, in recent years, one of the most used and powerful tools for 

systems analysis and design, by its proven ability to answer "what if" 

questions helping the system designer to find solutions for building new 

systems, or assess the impact of proposed changes on an already existing 

system. A simulation model is always a simplified representation of a 

system that addresses specifically those aspects of the studied system 

relevant for the purposes of the analysis from the point of view of the 

system analyst. A simulation model is therefore specific, both for the 

problem and for whoever tries to use the model for finding solutions to 
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the problem. A simulation study has usually the objective of helping to 

achieve a better understanding on how a system behaves, evaluating the 

impact of changes in the system, or in values of the parameters governing 

the system, or of decisions on the policies controlling the system. 

Mathematical modelling of traffic flow behaviour is a prerequisite for a 

number of important tasks including transportation planning, traffic 

surveillance and monitoring, incident detection, systematic control 

strategy design, simulation, forecasting and, last but not least, more 

recently in evaluating energy consumed by transportation systems, 

environmental impacts due to transportation systems, and in assessing 

vehicle guidance systems (Barce1ò et al., 1995a, 1995b). 

Furthermore, traffic modelling plays an important part in the assessment 

of a range of traffic schemes, whether these are new road schemes, 

junction improvements, changes to traffic signal timings or the impact of 

transport telematics. There is a wide range of alternative modelling 

approaches now available based on macro- or micro-simulation methods. 

Micro-simulation models differ significantly from traditional transport 

models in terms of their methodology and supporting algorithms.  

The management of a road network often requires the forecasting of the 

impacts of implementing various traffic management measures. These 

measures include, for example, signal coordination, high occupancy 

vehicle (HOV) lanes, one-way systems, different types of intersection 

control (priority sign, signal or roundabout), signal priority, driver 
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information systems and incident management. Apart from road vehicles, 

trams, light rails, pedestrians and cyclists can also be simulated  

Traffic modelling techniques can be broadly classified into the following 

four types: 

a) Analytical modelling – this technique relates directly to traffic

flow theory and is often a set of equations governing driver

behaviour such as gap acceptance, lane changing, car– following,

or platoon dispersion. The combination of analytical models can

constitute a more complex analytical model for traffic analysis.

Individual sets of analytical equations can also act as sub-models

in other modelling techniques. Analytical modelling is sometimes

also known as microscopic modelling.

b) Microscopic Simulation - the movement of a vehicle in a

microscopic simulation is traced through a road network over

time at a small time increment of a fraction of a second. A

detailed simulation of vehicle-road interaction under the influence

of a control measure is therefore possible. This technique is useful

for a wide range of applications but requires more computational

resources. Random number generators are involved and the

calibration of these models requires more effort, and it is difficult

to optimise model parameters.
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c) Macroscopic Simulation  - vehicles in a macroscopic simulation

are no longer simulated individually. Vehicle movements are

often simulated as packets or bunches in a network with a time

step of one or several seconds. An analytical model such as the

platoon dispersion model is used to govern the movement of a

vehicle platoon along a road link. A macroscopic simulation is

deterministic by nature and is useful for network design and

optimization.

d) Mesoscopic simulation – this technique combines a detailed

microscopic simulation of some key components of a model (e.g.

intersection operations) with analytical models (e.g. speedflow

relationships for traffic assignment). This technique is sometimes

known as mesoscopic simulation and provides more detail to

what is normally an assignment only model. It is also possible to

interface a microsimulation model with a real-time signal control

system such as SCATS - an area of active research and

development at RTA NSW (Millar et al. 2006).

In recent years, Intelligent Transport System (ITS) measures such as 

adaptive signal control algorithms, incident management strategies, 

active bus/tram priority and driver information systems have been 

introduced to freeways and arterial roads. These are complex traffic 

processes and traffic flow theories are often unable to accurately predict 

the impacts in terms of delay, queue length, travel times, fuel 
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consumption and pollutant emissions. Computer models equipped with 

advanced graphical facilities have been developed in recent years to meet 

the needs of a road manager.  

Computer software has long been developed to simulate traffic 

management processes amongst road authorities in Australia (e.g. 

Cotterill et al. 1984; Tudge 1988). Past research also includes the 

development of car-following and lane changing algorithms for 

microsimulation (Gipps 1981 and 1986), the review of eight small area 

traffic management models, and the comparison of macroscopic and 

microscopic simulations (Luk and Stewart 1984; Ting et al. 2004). More 

recent research includes the assessment and further development of car-

following and lane changing algorithms (Hidas 2005; Panwai and Dia 

2004). A key finding is that microscopic simulation models require 

careful calibration to produce meaningful results, especially in the lane 

changing behaviour in congested conditions. 

I.1 BENEFITS OF MICROSCOPIC TRAFFIC SIMULATION

MODELS

Micro-simulation models have the ability to model each individual 

vehicle within a network. In theory, such models should provide a better 

representation of actual driver behavior and network performance, 

particularly when networks are approaching capacity and vehicle 

interactions become far more important in determining the outturn 
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operational performance. They are the only modelling tools available 

with the capacity to examine certain complex traffic problems (e.g. 

junctions, shockwaves, effects of incidents, interaction with pedestrian 

traffic etc.). In addition, there is the appeal to users of the powerful 

graphics offered by most micro-simulation packages. Whilst this can 

provide decision makers and consultee’s graphical representation of the 

performance of a scheme it should never be the only reason for using 

micro-simulation.  

Microsimulation can potentially offer benefits over traditional traffic 

analysis techniques in three areas: clarity, accuracy and flexibility as 

follows:  

 Clarity - a comprehensive real-time visual display and graphical

user interface illustrate traffic operations in a readily

understandable manner. The animated outputs of microsimulation

modelling are easy to understand and simplify checking that the

network is operating as expected, and whether driver behaviour is

being modelled sensibly. With microsimulation, what you see is

what you get. If a microsimulation model does not look right,

then it probably is not right, and vice versa;

 Accuracy - by modelling individual vehicles through congested

networks, the potential exists for more accurate modelling of

traffic operations at complex and simple intersections or merges.

Individual drivers of vehicles make their own decision on speed,
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lane changing and route choice, which could better represent the 

real world than other modelling techniques. For examples, 

analytical and macrosimulation models often use fixed value of 

saturation flows and all vehicles are assumed to behave in the 

same manner. In contrast, microsimulation models represent 

individual vehicles and detailed networks. A parameter such as 

the saturation flow can actually be an output of the model;  

 Flexibility - a greater range of problems and solutions can be

assessed than with conventional methods, e.g. vehicle-activated

signals, demand dependent pedestrian facilities, queue

management, public transport priorities, incidents, toll booths,

road works, signalised roundabouts, shock waves, incidents or

flow breakdown, or slip road merges.

Dowling et al. (2002) lists the following as study conditions where micro 

simulation models are desirable: 

 Conditions that violate one or more basic assumptions of

independence required by HCM models

o Queues spill back from one intersection to another

o Queues overflow turn pockets

o Queues from city streets back up onto freeways

o Queues from ramp meters back up onto city streets
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 Conditions not covered well by available HCM models

o Queue spill-back

o Multi-lane with traffic signals or stop signs

o Truck climbing lanes

o Short through lane adds or drops at a signal

o Boundary points between different signal systems

operating at different cycle lengths

o Signal pre-emption (e.g., railroad crossings and fire

stations)

o HOV lane entry options or design options for starting or

ending an HOV lane

o Two lanes turning left (however, currently no

commercially available micro simulation software can

model this)

o Roundabouts

o Tight diamond interchanges

o Incident management options (Because HCM and

macroscopic models assume a steady-state condition

within each analysis period, they are not well suited to

accurately track the build-up and dissipation of congestion

related to random transitory conditions caused by

incidents.)
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In this regard, Transport of London (2003) lists the following issues as 

being suitable for microscopic simulation models: 

 Complex traffic operation schemes (e.g., bus priority, advanced

signal control, incident management, different modes of toll

collection);

 Significant conflicts among different road users (e.g., pedestrians,

cyclists, buses);

 Major traffic movement restrictions (e.g., lane closures, one-way

system, toll plazas);

 Politically sensitive projects that could benefit from visualization;

 Planning and design of high-value projects with potential large

savings if detailed microscopic simulation models are prepared;

 Emulation of the operation of a dynamic signal control system,

with a simulated network driven directly by the control system

and with significant saving in signal timing preparation and

optimization;

 Town center studies;

 Tram and light rail operations.

However, there are some limitations to consider in microsimulation 

models. In this respect, it is always beneficial to restate Dr. May’s 

observations regarding the use of micro simulation (May 1990): 
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 There may be easier ways to solve the problem; consider all

possible alternatives;

 Micro simulation can be time-consuming and expensive; do not

underestimate time and cost;

 Micro simulation packages require considerable input

characteristics and data, which may be difficult or impossible to

obtain;

 Micro simulation applications or models require calibration,

validation and verification, or auditing, which if overlooked could

make the model useless;

 Development of simulation models requires knowledge in a

variety of disciplines, including traffic flow theory, computer

programming and operation, probability, decision-making, and

statistical analysis;

 Micro simulation is difficult unless the model developer fully

understands the software platform;

 The micro simulation package may be difficult for non-

developers to use because of lack of documentation or unique

computer facilities;

 Some users may apply micro simulation packages and treat them

as black boxes and really do not understand what they represent;

 Some users may apply simulation models and not know or

appreciate model limitations and assumptions.
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The scale of application of microsimulation models depends on the size 

of the computer memory and on the computer power available. Models 

that have not been built to run simulations on large networks but rather to 

achieve highly specific objectives have a small scale of application, 

typically less than one hundred vehicles. The scale of application ranges 

tipically varies from about 20 km, 50 nodes, and one thousand vehicles, 

to a large application of 200 nodes and many thousands of vehicles. 

With the increasing application of micro-simulation models, there is a 

need for advice on their development and application, particularly in the 

context of the motorway and trunk road network. Key issues to be 

addressed include how well and under what conditions or constraints 

micro-simulation works and offer the greatest benefits. The calibration, 

validation and subsequent performance of any model are fundamental 

and, sometimes, contentious issues. The variables that are taken into 

account in micro-simulation models have lead to questions as to the 

validity of the results obtained and the degree to which confidence can be 

placed on the modelling.  

I.2 IMPROVING DECISION-MAKING BY USING 

MICROSIMULATION MODELS

In reality, there are a large number of situations where micro simulation 

led to better investment decisions and more effective designs. There are 

likely to be situations where simulation models provided faulty 
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predictions, but these projects were not included in the web survey. It is 

probably safe to assume, however, that a properly calibrated and 

validated microscopic simulation model will more often than not lead to 

more effective designs and investment decisions because it can more 

closely replicate what is likely to occur in the real world. 

Suggesting that a design is better or more effective is either a subjective 

opinion or it requires some basis of comparison. In most of the cases 

reported in the web survey, the assessment was based on a comparison to 

prior studies using traditional models or HCM calculations. For example, 

an intersection designed as an all-way stop using traditional traffic 

engineering calculations did not perform as expected in the real world. A 

microscopic simulation was then used to confirm the observed behavior 

and develop a more effective design for the intersection. The evaluation 

led to the decision that traffic would be better served if the intersection 

was configured as a round-about. 

Micro simulation modeling has also proved useful in situations that are 

outside the bounds of traditional techniques. These can include odd or 

complex intersection configurations or heavily congested arterials. For 

example, a heavily congested arterial with two cross streets 120 feet apart 

could not be designed using traditional stop sign or signalization 

calculations. A round-about option was modeled using micro simulation 

with the software providing guidance on the appropriate diameter for the 

round-about, whether it required a single or dual lane circle, and how 
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queuing on minor approaches would be eliminated. In addition, the 

model was able to show that driveways for existing businesses around the 

proposed round-about would be too close to the traffic circulating. The 

tool provided the data needed to relocate the driveways a safe distance 

from the round-about. In fact, there are a large number of studies and real 

cases that show the benefits of micro simulation for improved decision-

making. 

I.3 TRAFFIC SIMULATION WITH AIMSUN 

Aimsun by Ferrer and Barcelò (1993) is a software tool able to 

reproduce the real traffic conditions on an urban network which may 

include both expressways and arterial routes. It is based on a microscopic 

simulation approach. The behavior of each single vehicle which is 

present in the network is continuously modeled throughout the simulation 

time period, according to several driver behavior models (car following, 

lane changing, gap acceptance). Having outgrown the stated aim of the 

original Aimsun acronym ‘advanced interactive microscopic simulator 

for urban and non-urban networks’ (Ferrer and Barceló, 1993; Barceló et 

al., 1994, 1998a), the software now includes macroscopic, mesoscopic 

and microscopic models and is simply known as ‘Aimsun’ (Aimsun, 

2008). Expanding in response to practitioners’ requirements, Aimsun has 

come to encompass a collection of dynamic modelling tools. Specifically, 
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these include mesoscopic and microscopic simulators and dynamic traffic 

assignment models based on either user equilibrium or stochastic route 

choice. From a practitioner’s standpoint, macroscopic modelling plays an 

increasingly important role in the area of demand data preparation. The 

primary areas of application for Aimsun are offline traffic engineering 

and, more recently, online (real-time) traffic management decision 

support. In either case, the use of Aimsun, or Aimsun Online, aims to 

provide solutions to short and medium term planning and operational 

problems for which the dynamic and disaggregate models described in 

this chapter are extremely well suited. Strategic planning is an adjacent 

realm for which more aggregate and/or static models continue to be very 

suitable. There are important interfaces between those two realms at the 

level of methodology (effect on demand of lasting changes to the 

effective capacity) and technology (importing from and exporting data to 

strategic planning software) and these will be commented upon further in 

the following sections. 

I .3.1  MODEL BUILDING PRINCIPLES IN AIMSUN 

Building a transport simulation model with Aimsun is an iterative 

procedure that comprises three steps: 

 Model building, that is, the procedure of gathering and

processing the inputs to create the model;
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 Verification, calibration and validation, that is the process

of confirming that implementation of the model logic is

correct; setting appropriate values for the parameters and

comparing the outputs of the model to correspond with

realworld measurements in order to test its validity;

 Output analysis, explores the outputs of model in line with

the overall objectives of the modelling study.

In the next section, some key elements of the Aimsun Traffic 

Microsimulation model will be focused upon. 

I .3.2  MODEL VERIFICATION, CALIBRATION AND 

VALIDATION 

Before starting to modify the model parameters in order to calibrate 

the model, the user must be sure that there are no specification errors that 

affect the model logic and therefore simulation results. Verification 

consists in assuring that the model has been correctly edited in Aimsun, 

checking network geometry, control plans, management strategies and 

traffic demand, and verifying that the model description corresponds to 

the objectives of the study. Aimsun provides a tool that can automatically 

detect errors in supply definition, such as a section where not all the lanes 

at the beginning or at the end are connected or an OD pair with trips but 
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no feasible path. Verification of traffic demand is carried out through a 

manual comparison with traffic counts wherever possible; for example 

the total trips generated and attracted by a zone must be compared with 

the counts of the sections to which the corresponding centroid is 

connected. An important check is to verify that the model is suitable for 

the objectives of the study; the model must include all the area that might 

be influenced by future changes being modelled; the boundaries must be 

free of congestion; if rerouting strategies are simulated, then alternative 

paths must be possible in the network being modelled; OD matrices 

should be time sliced so as to reproduce traffic demand dynamics 

correctly and the study time frame must extend beyond (earlier than) the 

peak hour to avoid starting the simulation in an oversaturated condition. 

Calibration is an iterative process that consists of changing model 

parameters and comparing model outputs with a set of real data until a 

predefined level of agreement between the two data sets is achieved. 

Which output needs to be generated depends on the type of model 

(macro, meso or micro), the objective of the study and the type of 

network. The most significant measures for a highway model are the 

relationship between speed/flow/density, lane utilization and congestion 

propagation.  
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I .3.3  AIMSUN CORE MODEL: CAR FOLLOWING AND LANE

CHANGING

The core models in Aimsun deal with individual vehicles, each 

vehicle/driver having behavioral attributes assigned to them when they 

enter the system; those attributes remain constant during the whole trip. 

The difference between the core models at the mesoscopic and 

microscopic levels relates to the level of abstraction and to the process 

employed to update each vehicle’s status. Accordingly, in what follows, 

two sets of fundamental core models: microscopic behavioral models and 

mesoscopic behavioral models are described separately. 

In the Aimsun micro-simulator, during a vehicle’s journey along a route 

in the network, its position is updated according to two driver behavior 

models termed ‘car following’ and ‘lane changing’. 

The premise behind the models is that drivers tend to travel at their 

desired speed in each road section but the environment (i.e. preceding 

vehicle, adjacent vehicles, traffic signals, signs, blockages, etc.) 

conditions their behavior. Simulation time is split into small time 

intervals called simulation cycles or simulation steps. At each simulation 

step, the position and speed of every vehicle in the system is updated 

according to the algorithm of the lane changing and car following model. 

Once all vehicles have been updated for the current simulation step, 

vehicles scheduled to arrive during this cycle are introduced into the 

system and the next vehicle arrival times are generated. 
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I .3.4  MICROSCOPIC CAR FOLLOWING MODEL 

The car-following model implemented in Aimsun is based on the 

model proposed by Gipps (Gipps, 1986). It can actually be considered an 

evolution of this empirical model, in which the model parameters are not 

global but determined by the influence of local parameters depending on 

the type of driver (speed limit acceptance of the vehicle), the road 

characteristics (speed limit on the section, speed limits on turnings, etc.), 

the influence of vehicles on adjacent lanes, etc. The model consists of 

two components: acceleration and deceleration. The first represents the 

intention of a vehicle to achieve a certain desired speed, while the second 

reproduces the limitations imposed by the preceding vehicle when trying 

to drive at the desired speed.  

This model states that the maximum speed to which a vehicle (n) can 

accelerate during a time period (t, t+T) is given as: 
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where: 

 V(n,t) is the speed of the vehicle n at time t;

 a(n) is the maximum acceleration for the vehicle n;

 T is the reaction time;

 V*(n) is the desired speed of the vehicle (n) for current position.
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On the other hand, the maximum speed that the same vehicle (n) 

can reach during the same time interval (t, t+ T), according to its own 

characteristics and the limitations imposed by the presence of the lead 

vehicle (n−1), is: 

 
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Where: 

 d(n) is the maximum deceleration desired by vehicle n;

 x(n, t) is the position of the vehicle n at time t;

 x(n–1, t) is the position of the preceding vehicle (n−1) at time t;

 s(n–1, t) is the effective length of the vehicle (n−1);

 d(n–1) is an estimate of the vehicle (n−1) desired deceleration.

The speed of the vehicle (n) during time interval (t, t+T) is the minimum 

of the two expressions above: 

 T)t(n,V T);t(n,VminT)tV(n, ba 

Then, the position of the vehicle n inside the current lane is updated 

taking this speed into the movement equation: 
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The car-following model is such that a leading vehicle, i.e. a vehicle 

driving freely without any vehicle affecting its behavior, would try to 

drive at its maximum desired speed. Three parameters are used to 

calculate the maximum desired speed of a vehicle while driving on a 

particular section or turning; of these, two are related to the vehicle and 

one to the section or turning. Specifically: 

 Maximum desired speed of the vehicle i: vmax(i)

 Speed acceptance of the vehicle i: θ(i)

 Speed limit of the section or turning s: Slimit(s)

The speed limit for a vehicle i on a section or a turning s, slimit(i, s), is 

calculated as follows: 

)(S(i))(i,S limitlimit ss   

Then, the maximum desired speed of the vehicle i on a section or a 

turning s, vmax(i, s), is calculated as follows: 

 (i)V);(i,Smin)(i,V maxlimitmax ss   

This maximum desired speed vmax(i, s) is the same as that referred to 

above, in the Gipps’ car-following model, as V∗(n). 

The car-following model proposed by Gipps is a one-dimensional model 

that considers only the vehicle and its leader. However, the 

implementation of the car following model in Aimsun also considers the 
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influence of adjacent lanes. When a vehicle is driving along a section, we 

consider the influence that a certain number of vehicles driving slower in 

the adjacent right-side lane – or left-side lane when driving on the left – 

may have on the vehicle. The model determines a new maximum desired 

speed of a vehicle in the section, which will be used in the car following 

model, considering the mean speed of vehicles driving downstream of the 

vehicle in the adjacent slower lane and allowing a maximum difference 

of speed. 

I .3.5  LANE CHANGING MODEL 

The lane-changing model can also be considered as a development of the 

Gipps lane-changing model (Gipps, 1986). Lane change is modelled as a 

decision process, analysing the necessity of the lane change (such as for 

turning manoeuvres determined by the route), the desirability of the lane 

change (to reach the desired speed when the leader vehicle is slower, for 

example), and the feasibility conditions for the lane change that are also 

local, depending on the location of the vehicle in the road network.  

The lane-changing model is a decision model that approximates the 

driver’s behaviour in the following manner: each time a vehicle has to be 

updated, we ask the following question: Is it necessary or desirable to 

change lanes? The answer to this question will depend on the distance to 

the next turning and the traffic conditions in the current lane. The traffic 

conditions are measured in terms of speed and queue lengths. When a 

driver is going slower than he wishes, he tries to overtake the preceding 
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vehicle. On the other hand, when he is travelling fast enough, he tends to 

go back into the slower lane. If we answer the previous question in the 

affirmative, to successfully change lanes, we must first answer two 

further questions: 

 “Is there benefit to changing lane?” Check whether there will be

any improvement in the traffic conditions for the driver as a result

of lane changing. This improvement is measured in terms of

speed and distance. If the speed in the future lane is fast enough

compared to the current lane, or if the queue is short enough, then

it is beneficial to change lanes;

 “Is it feasible to change lanes?” Verify that there is sufficient gap

to make the lane change with complete safety. For this purpose,

we calculate both the braking imposed by the future downstream

vehicle to the changing vehicle and the braking imposed by the

changing vehicle to the future upstream vehicle. If both braking

ratios are acceptable, then the lane change is possible.

In order to achieve a more accurate representation of the driver’s 

behaviour in the lane-changing decision process, three different zones 

inside a section are considered, each one corresponding to a different 

lane-changing motivation. These zones are characterized by the distance 

up to the end of the section, i.e., the next point of turning (see Fig. 1.1). 

 Zone 1: This is the furthest distance from the next turning point.

The lane-changing decisions are mainly governed by the traffic
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conditions of the lanes involved. The necessity of a future turning 

movement is not yet taken into account. To measure the 

improvement that the driver will achieve by changing lanes, we 

consider several parameters: desired speed of driver, speed and 

distance of current preceding vehicle, speed and distance of future 

preceding vehicle in the destination lane; 

 Zone 2: This is the intermediate zone. It is mainly the desired

turning lane that affects the lane-changing decision. Vehicles not

driving in valid lanes (i.e. lanes where the desired turning

movement can be made) tend to get closer to the correct side of

the road from which the turn is allowed. Vehicles looking for a

gap may try to adapt to it but do not yet affect the behaviour of

vehicles in the adjacent lanes.

 Zone 3: This is the shortest distance to the next turning point.

Vehicles are forced to reach their desired turning lanes, reducing

speed if necessary, and even come to a complete stop (gap

forcing) in order to make the change possible. Within this zone,

vehicles in the adjacent lane may also modify their behaviour

(courtesy yielding) in order to provide a gap big enough for the

vehicle to succeed in changing lanes.
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Figure 1.1 Lane-changing zones 

The lane changing of each vehicle i at section s could be summarized 

with the following elements: 

 Lane Changing zone distance calculation;

 Target Lanes calculation;

 Vehicle behaviour considering the target lanes;

 Gap Acceptance model;

 Target Gap and Cooperation.

The “Lane changing zones” are defined by two parameters, at level of 

turning, Distance to Zone 1 and Distance to Zone 2. These parameters are 

defined in time (seconds) or distance (metres), depending on the user 

preferences. When these parameters are defined in time, the conversion 

to physical distance is calculated as: 

Dm= DT • Slim it(s) 
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Where: 

Dm: Distance in metres; 

DT : Distance in seconds; 

Slim it : Speed limit of the section s. 

The perception of Distance to Zone 1 and Distance to Zone 3 for each 

vehicle could be varied using the Distance Zone Variability defined at 

level of Experiment. 

The “Target Lane calculation” implies that once each vehicle has a 

perception of all distance zones, the lane changing process starts 

calculating the valid target lanes according to the traffic conditions of the 

current position and including the traffic conditions and the feasible lanes 

for reaching the turning movements determined in its path plan and all 

possible obstacles. The output of this process is a set of valid lanes for 

zone 3 (TL3) and a set of valid lanes for zone 2 (TL2). 

Receiving as input the valid target lane per zone (TL2 and TL3), the 

vehicle computes the type of behaviour according its current lane as: 

 If the vehicle’s current lane is not within the subset of valid lanes

determined by Zone 3, the vehicle’s behaviour is determined by

Zone 3;

 If the vehicle’s current lane is within the subset of valid lanes

determined by Zone 3 but outside of the subset of valid lanes
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determined by Zone 2, the vehicle’s behaviour is determined by 

Zone 2; 

 If the vehicle’s current lane is within the subsets of valid lanes of

both Zone 3 and 2, the vehicle’s behaviour is determined by Zone

1.

The main idea is every vehicle tries to reach the set of valid lanes defined 

by zone 2 and 3, and once the current lane of a vehicle is inside of the set 

of valid lanes then the behavior is determined by Zone 1, that means 

overtaking maneuvers inside zone 2 and zone 3.  

When the current lane of a vehicle is in the a valid lane determined by 

zone 2 and 3, in general the behavior is modeled as Zone 1, but there is 

an exception when its leaders is affected by an obstacle (turning 

movement, incident, lane closure, etc.) that is closer than its obstacle, 

then there is the evaluation to overtake the leader using a lane that can be 

outside of the subset of lanes given by Zone 2. 

The “Gap acceptance model for lane changing” used in version 8 of 

Aimsun has been revisited and there is a full consistency with the car 

following model, in order to avoid artificial break down situations: 
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The Gipps car following model is stable (i.e. does not require the use of 

decelerations above the maximum desired deceleration (where dn is an 

estimation of vehicle leader desired deceleration, and a is a parameter of 

aggressiveness set to 1 as a default and takes the value defined inside the 

vehicle type as “Sensitivity for Imprudence Lane Changing” if there is a 

Imprudence Lane Changing) when: 
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The Gipps car following model is crash free when the Gap remains 

positive throughout the deceleration process. This gives an additional 

constrain: 
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This condition must be fulfilled to apply the Gipps car following model 

with a new leader when a vehicle changes lane (i.e. selection of possible 

leader and gap acceptance). 

It is possible to evaluate the speed and position of all vehicles at time 

t+dt if the vehicle changes lane: 

 For the vehicles that are already updated, we take their current

speed and position;

 For the others, we compute the speed and position assuming that

the vehicle changes lane at time t+dt;

In particular, the Gap is acceptable if the physical quantities at time t+dt 

fulfill the three following requirements: 

 the gaps are positive;

 the computed speeds are positive;

 the decelerations imposed are smaller than a*DecelMaxDeseada.

Using the previous equations this can be achieved with one condition at 

time t that needs to be fulfilled for both the upstream and downstream 

gaps. 
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Furthermore, it is possible modifying the acceptance of the gap in the 

lane changing model by defining the following parameters: 

 Percentage for Imprudent Lane Changing Cases: This parameter

defines the probability to one vehicle apply a lane changing with

a non-safe gap (reducing the gap until the length of the vehicle);

 Sensitivity for Imprudent Lane Changing Cases: This parameter

determines the deceleration of the upstream vehicle in order to

estimate the gap necessary to apply an Imprudent Lane Changing.

If this parameter is greater than 1, it overestimates the

deceleration of the vehicle upstream assuming a non-realistic gap.
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II. STATISTICAL APPROACH FOR

CALIBRATING THE MICROSIMULATION

MODEL FOR A22 FREEWAY

As already discussed in the previous chapter, simulation is a 

sampling experiment on the real system through its model (Pidd, 1992). 

This means that the evolution over time of the system model should be 

able to imitate properly the evolution over time of the modeled system, 

and conclusions on the system behavior can be drawn by examining 

samples of the observational variables of interest through statistical 

analysis techniques. Thus a traffic simulation model has to represent the 

system behavior with sufficient accuracy so that the model can be used as 

a substitute for the actual system for experimental purposes. Road traffic 

microsimulation models, first commercially introduced in the 1990s, are 

one of the latest generation of available traffic models and became very 
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popular for the development and evaluation of a broad range of road 

traffic management and control systems. They model the movements of 

individual vehicles, traveling around road networks by using car 

following, lane changing and gap acceptance rules; hence, traffic 

microsimulation models try to replicate the behavior of individual 

drivers. However, the "realism" sought by the representation of 

individual drivers introduces a level of complexity into the modeling 

process which must be taken into account from the stage of model 

calibration. Traffic microsimulation models typically include a very large 

number of parameters, representing various characteristics of travelers, 

vehicles and road network, that must be calibrated before the model is 

applied as a prediction tool of traffic performances (Hollander and Liu, 

2008). Calibration of a traffic microsimulation model is an iterative 

process that consists of changing and adjusting numerous model 

parameters and comparing model outputs with a set of empirical data 

until a predefined level of agreement between the two data sets is 

achieved (Barcelo, 2011). Since no single model can be equally accurate 

for all possible traffic conditions or can include the whole universe of 

variables affecting real-world traffic conditions, every microsimulation 

software has a set of user-adjustable parameters which enable the analyst 

to calibrate the model to match locally observed conditions.  

In order to reproduce the mechanism of a single decision made by an 

individual driver (e.g. the decision to change lane or to use a gap in the 

opposing stream to enter an intersection), every traffic microsimulation 
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model consists of several sub-models each of which includes several 

parameters. Direct measurement of these parameters is complex, because 

many of them represent features difficult to isolate, or extensive data 

collection is required. Thus, in the calibration process, aggregate data, 

which do not describe the behavior of individual drivers, are often used; 

however, when a model is calibrated using aggregate data, the result can 

limit behavioral power (see Hollander and Liu, 2008). Another question 

concerns which parameters have to be considered in the model 

calibration process. Some studies focus on the calibration of driver 

behavior parameters only, while assuming the others are given (see e.g. 

Hourdakis et al., 2003; Kim and Rilett, 2003); other studies introduce 

driving behavior in a broader problem, including the calibration of a 

route choice model and/or an o-d matrix (see e.g. Dowling et al. 2004a). 

There are also differences among calibration studies in terms of variation 

in the number of parameters that must be calibrated before the model can 

be used as a tool for prediction. In the case of a small number of 

parameters, the calibration process can be developed through a manual 

procedure; thus some parameters are calibrated often through multiple 

retries (Toledo et al., 2003). In the case of a longer number of parameter 

subsets, the calibration process normally uses automated algorithms, 

which should allow a closer approach to the optimal solution; anyway 

automated procedure makes it harder to follow changes in the value of 

each parameter (Menneni et al., 2008). However, the selection of 
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calibration parameters is often considered in relation to the purpose of the 

calibration problem. The achievement of calibration targets, i.e. when the 

model outputs are similar to empirical data, can be influenced by the 

simplification of which microsimulation models are fixed. This concerns 

some technical characteristics of micro-simulation models such us the 

transport system update mechanism, the representation of randomness, 

traffic generation, allocating driver/vehicle characteristics, vehicle 

interactions, etc. A further question concerning microsimulation is 

whether this process produces a valid model for the system in general, or 

the model gives only a representation of the specific set of input data. In 

this regard it should be noted that to gain a valid model, two independent 

data sets are necessary: the first set of data should be used for the 

calibration of the model parameters; the second set should be used for the 

running of the calibrated model so that the resulting model output data 

can be compared to the second set of system output data. The comparison 

part is referred to as the validation of the calibrated model; it represents 

the process of checking to what extent the model built replicates reality 

(see e.g. Toledo and Koutsopoulos, 2004). The objective of this chapter 

is to present a methodology which uses speed-density relationships in the 

microsimulation calibration process, stated that they represent the traffic 

flow phenomenon in a wide range of operational conditions and they well 

summarize all the information that may be collected in the field (or 

following a run of the microsimulation model) on two of the three key 

variables of traffic flow. The matching of speed-density relationships 
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from the field with the simulation was evaluated using statistical analysis 

as technique of pattern recognition. A freeway segment under 

uncongested traffic conditions was selected as case study and reference 

will be made to it in the following. Based on traffic data observed at A22 

Brenner Freeway, Italy, statistical regressions between the variables of 

traffic flow were investigated. Analogous relationships were obtained 

using the Aimsun microscopic traffic simulator software, reproducing the 

in field conditions and varying some selected parameters until a good 

matching between field and simulation was achieved.  

I I .1 THE A22 BRENNER FREEWAY

The Brennero Freeway (A22) connects Italy to Central Europe 

inside the European freeway corridor E45 (Göteborg-Gela). At present it 

features two lanes in each direction, starting from the Brennero Austrian 

border (A13 – Innsbrück-Brennero – interchange) and passes through the 

Bolzano, Trento, Verona, Mantova and Reggio Emilia provinces with an 

overall length of 314 km. There are 21 toll-houses, at an average distance 

of 15 km, while the junctions are with the A4 (Milano-Venezia) and the 

A1 (Milano-Roma), at Verona Nord and Campogalliano. For its function 

and geographical position, the Brenner freeway is continuosly occupied, 

along its whole route, by heavy traffic flows and dominated by intense 

seasonal tourist flows. These tourist flows are predominantly directed to 

Lake Garda, Trentino and Alto Adige resorts and to the Adriatic Riviera. 
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The most severe operating conditions of the infrastructure are related to 

the tourist flow peaks and so during these periods poor level of service or 

oversaturation conditions can be recorded. Together with these 

characteristics, we notice that A22 traffic is, in all its components, 

systematically growing consistent with the national freeway network 

trend. The Fig. 2.1 shows the S. Michele section of the A22 Freeway 

studied in this research.  

Fig. 2.1. Italy A22 Brenner Freeway- S. Michele Section 
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Fig. 2.2.  Analyzed section “S. Michele” at A22 Brenner Freeway 

A22 Freeway sections ↓km↓ ↑km↑ City 

Modena Nord 0 315 

MO 
Campogalliano – Modena 3 311 

Area Servizio "Campogalliano" 5 309 

Carpi 11 303 

Reggiolo 28 286 RE 

Pegognaga 37 277 

MN 
Area Servizio “Po” 47 267 

Mantova Sud 49 265 

Mantova Nord 57 257 

Nogarole Rocca 71 243 VR 
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Area Servizio “Povegliano” 74 240 

Verona Sud 86 228 

Verona Nord 88 226 

Area Servizio “Garda” 97 208 

Affi – Lago di Garda Sud 98 207 

Area Servizio “Adige” 119 186 

Ala – Avio 135 179 

TN 

Rovereto Sud – Lago di Garda Nord 147 167 

Area Servizio “Nogaredo” 154 160 

Rovereto Nord 156 158 

Trento Sud 174 140 

Trento Nord 182 132 

Area Servizio “Paganella” 185 129 

San Michele dell’Adige – Mezzocorona 193 121 

Egna – Ora 212 102 

BZ 

Area Servizio “Laimburg Ovest” - 99 

Area Servizio “Laimburg Est” 218 - 

Bolzano Sud 229 85 

Bolzano Nord 237 77 

Area Servizio “Sciliar Ovest” - 69 

Area Servizio “Isarco Est” 250 - 

Chiusa – Val Gardena 261 53 

Bressanone – Zona Industriale 266 48 

Area Servizio “Plose” 272 42 

Bressanone – Val Pusteria 276 38 

Area Servizio “Trens” 294 20 

Vipiteno – Barriera del Brennero 298 16 
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Area Servizio “Autoporto Sadobre” 298 16 

Ponticolo - 7 

Terme di Brennero - 5 

Innsbruck – Confine di Stato – Austria 315 0 - 

Table 2.1. Sections of the A22 Freeway 

The infrastructure has a total length of about 313 km, has 2 lanes for each 

direction, each of a width of 3.75 m, hard shoulders of 2.50 m. The figure 

2.3 below shows the road section of the A22 Freeway. 

Fig. 2.3. Road section of A22 freeway. 

The most severe operating conditions experiencing low Service Levels or 

congested situations. Table 2.2 illustrates the traffic for the A22 wich 

exhibits systematic growth in accordance with the trend of the national 

highways.  
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The Average Annual Daily Traffic AADT (in Italian TGMA- Traffico 

Giornaliero Medio Annuo) is defined as the ratio between the number of 

vehicles traveling in a year and the number of days of the same. 

Tab. 2.2. TGMAtot of A22 Freeway Northbound (Modena- Brennero) 

Tab. 2.3. TGMAtot of A22 Freeway Southbound (Brennero- Modena) 

Km 0‐57 Km 57‐98 Km 98‐135 Km 135‐156 Km 156‐193 Km 193‐229 Km 229‐313

2004 19541 23277 20678 19988 23117 19775 11565

2005 19845 24985 21069 20657 23692 20139 12040

2007 30371 38237 32244 31617 36258 30821 18426

2008 40894 51485 43415 42566 48821 41499 24811

2011 38315 48238 40678 39882 45742 38882 23246

2012 36841 46383 39113 38348 43983 37387 22352

TGMA TOT
ANNO

Km 0‐85 Km 85‐121 Km 121‐158 Km 158‐179 Km 179‐217 Km 217‐257 Km 257‐313

2004 12178 19047 23002 19744 20511 22144 19111

2005 12249 20038 23649 20465 20965 24772 19356

2007 19766 29844 36108 31219 31658 37343 29664

2008 27096 40075 47978 42315 43284 50048 39997

2011 25387 37548 44952 39647 40555 46892 37474

2012 24411 36104 43223 38122 38995 45088 36033

ANNO
TGMA TOT
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Fig.2.4. TGMAtot of A22 Freeway Northbound (Modena- Brennero) 

Fig. 2.5. TGMAtot of A22 Freeway Southbound (Brennero- Modena) 
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In addition, forecast of the traffic in the year 2014 was estimated (Tab. 

2.4, 2.5 and Fig. 2.6). 

Tab. 2.4. Prevision of TGMATOT in the year 2014 (Modena- Brennero) 

Tab. 2.5. Prevision of TGMATOT in the year 2014 (Brennero- Modena) 

Fig. 2.6. Prevision of TGMATOT in the year 2014 (Modena- Brennero) 
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Fig. 2.7. Prevision of TGMATOT in the year 2014 (Brennero- Modena) 
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Before discussing in detail the recommended approach to the 

calibration and validation of micro-simulation models it is useful to state 
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 Model validation is a process of comparing the results of the

model with independent observed data.

In the transportation literature various methodologies for 

calibrating and validating traffic microsimulation models have 

been discussed in several publications (Barceló et al. (2010); Kim 

et al. (2005); Ma and Abdulhai (2002); Toledo et al. (2004); Park 

and Qi (2005); Abdalhaq and Baker (2014)).  

Kim and Rilett (2003) applied a methodology that used a single 

measure, whereas other authors used more than one measure by 

executing sequences of calibration sub-processes, each one of 

which included different traffic measures for calibrating separate 

groups of parameters. Dowling et al. (2004b) proposed a three 

step methodology structured as follows: i) the calibration of the 

driving behavior parameters, performed by comparing capacities; 

ii) the calibration of the route choice parameters, performed by

comparing flows; iii) and finally calibration completed by 

comparing travel times and queue lengths. Hourdakis et al. (2003) 

compared simulated and observed flows to calibrate global 

parameters such as maximum acceleration and other vehicle 

characteristics; then they compared simulated and observed 

speeds to calibrate local parameters and, finally, they proposed an 

optional calibration stage by comparing any measure chosen by 

the user. In order to find a set of model parameters that make the 
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model outputs as close as possible to the field-measured 

capacities, Dowling et al. (2004a) proposed that the capacity 

calibration was one of the steps in microsimulation calibration 

process. The calibration of the model to capacity consisted of the 

global calibration phase, performed to identify the appropriate 

network-wide value of the capacity parameters best reproducing 

on-field conditions, and the fine-tuning phase, performed so that 

the link-specific capacity parameters were adjusted to match more 

accurately the capacity measurements at each bottleneck. Queue 

discharge flow rate can be also used for the estimation of a 

numerical value for capacity, but loss of information can derive 

since the capacity should be expressed by a distribution of 

capacity values and not by a single numerical value only. In this 

regard, Brilon et al. (2007) introduced the stochastic approach for 

highway capacity analysis; thus, the capacity of a highway 

facility was regarded as a random variable instead of a constant 

value. 

However, basing the capacity calibration process on a single 

numerical value, matching the means of the capacity distribution 

could not give very certain results, since other important 

properties of a distribution, or other traffic parameters 

characterizing capacity as speed or density, could be neglected 

(Menneni et al. (2008)). In any case, it should be noted that in the 
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calibration process, the main target should be to maximize the 

information suitable for replicating real system performances. 

Generalized relationships among speed, density, and flow rate can 

allow us to determine the required capacity information; these 

relationships can also provide information regarding free-flow 

and congested regions which cannot be gained from a single 

numerical value or a distribution of capacities. Based on speed-

flow, speed-density, or flow-density relationships which provide 

information about the free-flow, congested, and queue discharge 

regions, a calibration procedure could replicate the whole range 

of traffic behavior and not just the peak period. For model 

calibration purposes, only a proportion of one of the three graphs 

mentioned above, instead of the entire graph, could be used 

(Menneni et al. (2008)). In any case, the amount of information 

available in fitting empirical/simulated data is very important, and 

more information can be obtained by using speed-flow, speed-

density, or flow-density graphs; as a consequence, a higher 

number of parameters can be submitted to the calibration process, 

resulting in a better fine-tuned simulation model. The calibration 

through speed-flow, speed density, or flow-density graphs could 

be considered as the first step, necessarily followed by route-

choice and the system performance calibration. Despite the 

potential benefits in the calibration process, the use of the 

fundamental relationships of traffic flow in the microsimulation 
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calibration process remains still marginal. Wiedemann (1991) 

replicated field speed-flow relationships and used them to 

demonstrate closeness of field and simulated data; Fellendorf and 

Vortisch (2001) demonstrated the ability of a simulation model to 

replicate speed-flow graphs from real-world freeways. Menneni 

et al (2008) developed an objective function based on minimizing 

the dissimilarity between speed-flow graphs. Thus the 

dissimilarity of two graphs by calculating the amount of area that 

is not covered by the other was measured. Since speed and flow 

measurements were represented as point sets, discretization to 

convert point information to area was necessary. Moreover, 

considering that the information derived from the field and 

simulation was often just partial and not a complete speed-flow 

graph, the comparison was only made over the space occupied by 

the field graph. Differently from the approaches mentioned 

above, Mauro et al. (2014) developed the calibration 

methodology based on speed-density relationships in the 

microsimulation calibration process, stated that they represent the 

traffic-flow phenomenon in a wide range of operational 

conditions and well summarize all the information that may be 

collected in field (or following a run of the microsimulation 

model) on two of the three key variables of traffic flow. The 

matching of speed-density relationships from field and simulation 
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was evaluated using statistical analysis as a technique of pattern 

recognition. 

I I .3 THE FUNDAMENTAL DIAGRAM OF TRAFFIC FLOW

FOR THE A22 FREEWAY 

Experimental surveys carried out at observation sections on the A22 

Brenner Freeway, Italy, have allowed the relationships between the 

fundamental variables of traffic flow (namely the speed-flow-density 

relationships) to be modelled for a traffic flow of cars only (Mauro 2003, 

2005, 2007). Data were collected over different locations and multiple 

days and combined to show a complete graph between the pairs of traffic 

flow variables. The aforesaid relationships between flow and density, 

speed and density, speed and flow were developed for the right lane, the 

passing lane and the roadway, through the treatment and the processing 

of traffic data measured at specific observation sections (San Michele, 

Rovereto and Adige) on the A22 Freeway (Mauro 2003, 2005, 2007). A 

procedure for the estimation of the passenger car equivalent factors was 

also developed and reported in (Mauro 2003, 2005, 2007). For the same 

reference framework, under uninterrupted flow conditions an exploratory 

study proposed a criterion for predicting the reliability of freeway traffic 

flow by observing speed stochastic processes (see Mauro et al., 2013). 

First the relationship between speed and density was searched. This 

choice was motivated by the following: considering the real traffic flow 

phenomenon, the speed-density relationship is a monotonically 
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decreasing function and implies a mathematical relation simpler than the 

flow-density and speed-flow relationships; furthermore, the function 

V=V(D) represents in a direct way the interaction between vehicles in a 

traffic stream, where users, through the mutual spacing among vehicles, 

perceive the density and to it adapt their speed. The main speed-density 

models as proposed by literature, were taken into account (e.g. 

Greenshield, 1935; Greenberg, 1959; Underwood, 1961; Edie, 1965; 

May, 1990). The single-regime models were selected; among these, 

May's model (May, 1990) was chosen since it appeared as the best in 

interpreting the available data and the traffic flow phenomena at the 

observed sections, particularly the maximum values of density under 

congested traffic conditions. According to May's model (May, 1990), the 

relationship between speed and density was expressed mathematically as 

follows: 
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where VFF  is the free flow speed and Dc is the critical density, 

namely the density to which is associated the reaching of the capacity 

achieved C. Equation 1 can be converted into linear form by using the 

logarithmic transformation: 
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where V1 is ln(V), a is ln(VFF), b is 
2
cD2

1
-


 and D1 is D2, with VFF and 

Dc as previously defined. Starting from the above equation, by means of 

the fundamental relation between flow Q, density D and speed V, Q = 

D∙V, it was possible to obtain Q as follows: 
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that allowing the speed-flow relationship, V = V(Q), and the flow-density 

relationship, Q = Q(D). To be obtained and thus complete specification 

of the relationships between the parameters VFF and Dc shown before 

were estimated. Traffic flow models were calibrated for the right lane, 

the passing lane and the roadway at the sections under examinations, by 

using the values of Q, veh/h, and V, km/h, and calculating the density D, 

veh/km/lane, from D = Q/V; then, for every value of speed V, 

corresponding to each lane and the roadway, the natural logarithm, lnV, 

was calculated to derive from each of the available pairs (D, V) the 

corresponding pair of variables (D2, lnV). For every observation section, 

based on the corresponding scatter plot (D2; lnV), according to equation 

2.2, a least squares estimation was performed; then, the model calibration 

parameters (VFF and Dc) were calculated for all observation sections (see 

Mauro 2003, 2005, 2007). Thus, the relationships between the 
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fundamental variables of traffic flow were specified for all observation 

sections by using equations 2.1, 2.3 and 2.4; estimations of capacity C 

and speed Vc, corresponding to C, were then performed. For all cases, 

moreover, values of R2 corresponding to (V; Q) and (Q; D) relationships 

are never found to be lower than 0.7. In order to calculate the speed-flow-

density relationships for the right lane, the passing lane and the roadway 

for the A22 Freeway (Italy), the homologous determinations of VFF and 

Dc, corresponding to the three observation sections were averaged. Using 

the VFF and Dc values the speed-flow-density relationships for the 

freeway under examination were obtained (see Fig. 2.8, 2.9, 2.10). In the 

following sections, however, empirical data, which were taken as a 

reference in the calibration of the microsimulation model, are those 

corresponding to the S. Michele observation section (southbound), 

chosen as the case study; for this research. 
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Fig.2.8. Flow (Q) vs. Density (D) for carriage, right lane, passing lane 

Fig.2.9. Speed (V) vs. Density (D) for carriage, right lane, passing lane 
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Fig.2.10. Speed (V) vs. Flow (Q) for carriage, right lane, passing lane 

Table 2.6 shows the values of VFF (Free flow speed), DC (Critical 

density), C (Capacity) and VC (critical speed) related to the speed-flow-

density relationship showed in Fig. 2.8, 2.9, 2.10. 

VFF DC C VC 

Right lane 106.95 23.65 1534.00 64.86 

Passing lane 130.28 25.09 1983.00 79.02 

Carriageway 117.55 48.95 3490.00 71.30 

Tab.2.6. Parameters of speed-flow-density relationships for the A22 Freeway. 

Taking into account the parameters of tab.2.6, the equations (2.1), (2.4) 
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 Inside lane (Right lane):

V ൌ 106.95 ∗ exp ൤െ0.5 ∗ ቀ ୈ

ଶଷ.଺ହ
ቁ
ଶ
൨ (2.5) 

Q ൌ 106.95 ∗ D ∗ exp ൤െ0.5 ∗ ቀ ୈ

ଶଷ.଺ହ
ቁ
ଶ
൨ (2.6) 

 Passing lane:

V ൌ 130.28 ∗ exp ൤െ0.5 ∗ ቀ ୈ

ଶହ.଴ଽ
ቁ
ଶ
൨ (2.7) 

Q ൌ 130.28 ∗ D ∗ exp ൤െ0.5 ∗ ቀ ୈ

ଶହ.଴ଽ
ቁ
ଶ
൨ (2.8) 

 Carriageway:

V ൌ 117.55 ∗ exp ൤െ0.5 ∗ ቀ ୈ

ସ଼.ଽହ
ቁ
ଶ
൨ (2.9) 

Q ൌ 117.55 ∗ D ∗ exp ൤െ0.5 ∗ ቀ ୈ

ସ଼.ଽହ
ቁ
ଶ
൨ (2.10) 

I I .4 CALIBRATION PARAMETERS

Traffic simulation for the freeway facility was performed with 

Aimsun micro-simulator. As for any other microsimulation software 

program, Aimsun comes with a set of user-adjustable parameters for the 

purpose of calibrating the model to local conditions, i.e. to minimize the 
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difference between the empirical and the simulated values of the 

variables of interest. The Aimsun micro-simulator updates the vehicle 

position which moves along the network, basing on two driver behavior 

models named “car following” and “lane changing” (Barcelo, 2011). As 

already mentioned, the car-following model implemented in Aimsun is 

an evolution of the empirical model proposed by Gipps (1981; 1986), in 

which the model parameters are determined by the influence of local 

parameters, depending on the type of driver, the road characteristics, the 

influence of vehicles driving in the adjacent lanes, etc. Very briefly the 

model consists of two components: acceleration, representing the 

intention of a vehicle to achieve a certain desired speed, and deceleration, 

reproducing the limitations imposed by the preceding vehicle when 

trying to drive at the desired speed. The car-following model proposed by 

Gipps considers only the vehicle and its leader; the implementation of 

this model in Aimsun also includes the influence of certain vehicles 

driving slower in the adjacent lane on the vehicle driving along a section 

of road. The model determines a new maximum desired speed of a 

vehicle in the section, considering the mean speed of vehicles driving 

downstream of the vehicle in the adjacent slower lane as well as allowing 

a maximum difference of speed (Barcelo, 2011). The lane-changing 

model can be considered an evolution of the lane changing model 

proposed also by Gipps (1986), according to which the lane change is 

modeled as a decision process analyzing the desirability of a lane change. 
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This in the sense that the benefits of a lane change resulting from the 

attainment of the desired speed when the leading vehicle is slower, and 

the feasibility conditions for a lane change depending on the location of 

the vehicle in the road network are accomodated. For the list of the car 

following and lane-changing model parameters for freeways the reader is 

referred to Barcelo (2011).  

In order to find the set of parameter values for the model that best 

reproduces local traffic conditions at the A22 Freeway, the default values 

for the model parameters were used in trial simulation runs for checking 

any coding error. However, the outcomes of the comparison between 

simulation and empirical data showed that the default parameters 

provided simulation outputs which did not emulate properly the existing 

traffic flow characteristics. The fine-tuning process involved the iterative 

adjustment of some parameters and simulation replications until the 

simulated pairs of speed and density, as closely as possible, matched the 

corresponding pairs observed in the field. Due to unrealistic simulation 

results in comparison to field observations when Aimsun default 

parameters were used, some parameters were changed, based on 

engineering knowledge and best practices. These parameters included the 

minimum headway, representing the time in seconds between the leader 

and the follower vehicle. The reaction time, or the time in seconds it 

takes a driver to react to speed changes in the preceding vehicle, and the 

minimum distance between vehicles or the distance, in metres, that a 

vehicle manteins between itself and the preceding vehicle when stopped. 
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After having explored different combinations of values for the 

parameters, a value of 1.70s was used for the minimum headway 

parameter instead of the default value of 2.10s, whereas a value of 0.8s 

was used for the reaction time parameter instead of the default value of 

0.7s; for the minimum distance between vehicles a values of 1m was 

used instead of the default value of 1.10m, see table 2.7.  

Parameter Default Used Levels 

Minimum headway 
(seconds) 

2.10 1.70 1.70 1.90 2.10 

Minimum distance 
between vehicles  (meters) 

1.10 1.00 1.00 5.00 10.00 

Reaction time – 
(seconds) 

0.70 0.80 0.70 0.80 1.00 

Tab.2.7. Calibration parameters. 

The calibration process also included the adjustments of the desired 

speeds, namely the maximum speed, in km/h, that a certain type of 

vehicle can travel at any point in the network. For example, a “car” 

vehicle type can be defined in Aimsun having as default values, a mean 

desired speed of 110km/h and a deviation of 10km/h; desired speed for 

each vehicle of this type is sampled from a truncated Normal distribution 

(10km/h, 110km/h). According to observational data for A22 Freeway 

and what was reported by Uddin and Ardekani (2002), the desired speeds 
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on the inside lane were assumed to be lower than those in the passing 

lane; moreover, it was noted that the desired speed was sensitive to flow 

rate, tending to decrease as flow rate values became consistent (see Table 

2.8).  

Flow rate [pcu/h] 
Desired speed (mean) [km/h] 

Inside lane passing lane roadway 

<1500 110 140 125 

2000 100 140 115 

2500 95 140 115 

>3000 90 130 115 

Tab. 2.8. Adjustments for the desired speed. 

In the simulation process, a 2km long freeway segment centered on the S. 

Michele observation section (southbound) was used, having the cross 

section of A22 Brenner Freeway (Italy) and a grade equal to 0.09%; the 

aforesaid length was chosen so that all vehicles introduced into the 

segment exited at the end of the segment and no traffic entered and exited 

in the middle. For the freeway segment, 10 simulation replications were 

performed for 7 different values of traffic flow, increasing with 

incremental steps of 500 veh/h from 500 veh/h to 3500 veh/h during a 

time interval of 4 hours; values of traffic variables generated during the 

first half-hour, namely the warm up period, were excluded, because they 

were considered related to a motion condition not fully operational, and 
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therefore unreliable. A fleet of cars only was used, choosing them within 

the range of cars that Aimsun allows to select. With regard to traffic 

generation, in the Aimsun micro-simulator different headway models 

may be selected as interval distributions; the exponential distribution is 

the default distribution among different headway models and it was 

chosen to model time intervals between two consecutive arrivals of 

vehicles. The simulation data were collected by placing virtual detectors 

at exactly the same locations as detectors in the field. Furthermore, the 

simulated values were verified against the empirical values as indicated 

in the speed-density diagrams, where the plots of empirical and simulated 

data for S. Michele section (southbound) are shown in Figure 2.11, 2.12, 

2.13; lnV-D2 regression lines for observed and simulated data for S. 

Michele section (southbound) will be shown in the next section, in which 

issues on implementing the methodology for calibrating the traffic 

microsimulation model will be introduced.  

Fig. 2.11. Speed- density graph for carriageway with plot of field and simulated data. 
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Fig. 2.12. Speed- density graph for the inside lane with plot of field and simulated data. 

Fig. 2.13. Speed- density graph for the passing lane with plot of field and simulated data. 

The GEH index, widely used in the case of microscopic simulation 

models, was calculated as an indicative criterion for acceptance (or 

otherwise rejection) of the model. The GEH statistic is used to represent 
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goodness-of-fit of a model. It takes into account both the absolute 

difference and the percentage difference between the simulated and the 

observed flows. 

 The GEH statistic calculates the index for each counting station as 

follows: 

 2 2

ii

ii
i yx

yx
GEH






where: 

xi = the ith simulated speed; 

yi = the ith observed speed. 

For comparison purposes, each observed speed value was calculated 

from the speed-density equations in Table 2.6, as specified for the 

carriageway, the inside lane and the passing lane, by using the simulated 

values of density. The index is usually interpreted in the following terms: 

if the deviation of the simulated values with respect to the measurement 

is smaller than 5% in at least 85% of the cases, then the model is 

accepted. The fact that for the three case in Fig. 2.11, 2.12, 2.13 (i.e in 

the carriageway, the inside lane and the passing lane), each GEHi 

resulted less than 5 (and equal to 1) would lead to the conclusion that the 

model could be accepted as significantly close to the reality.  
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I I .5 HYPOTESIS TEST FORMULATION

A statistical approach based on observed and simulated speed-

density relationships was applied in the calibration process to measure 

the closeness between empirical data and simulation outputs. The 

comparison established between the lnV-D2 linear regressions for all 

simulated (speed/density) values and the corresponding linear regressions 

for the empirical data allowed the quality of the calibration of traffic 

microsimulation model to be evaluated. Thus, a statistical approach 

including hypothesis testing, using t-test and confidence intervals, was 

used as described briefly below.  Suppose we observe, for i = 1,...,n, the 

measured variable Yi (lnVi) corresponding to certain values of the input 

variables xi (	ܦ௜
ଶ) and we want to use them with the objective of 

estimating the regression parameters (a and·β) in a simple linear 

regression model. If A and B are the estimators that we are searching for, 

then (A + Bxi) is the estimator of the response variable corresponding to 

the input variable xi. In order to get the distribution of the estimators A 

and B, additional assumptions necessarily have to be made. As a starting 

point the estimators A and B are usually assumed to be independent, 

normally distributed with zero mean and constant variance s^2. 

Consequently, if for i = 1, 2, ..., n, the measured variable Yi is the 

response given to the input variable xi, we will assume that Y1, Y2,…, Yn 

are independent and and Yi  N (+ xi , 2).   
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Starting from the above proposition, a statistical test and confidence 

intervals for the regression parameter β were constructed. As it is well 

known the hypothesis to be tested is that β = 0 (the response does not 

depend on the input variable, i.e. there is no correlation between the two 

variables). It can be demonstrated that the statistic for the test here 

considered has a t distribution with n-2 degrees of freedom: 
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Thus an interval containing , at the 1- confidence level, is the 
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The determination of the confidence intervals and statistical tests for 

the regression parameter  was obtained as for . So, the confidence 

interval at the 1-  level is given by:  

 2
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2 , 
2 xx

i iR

n Snn

xSS
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


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
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Table 2.9 shows the coefficient estimates and goodness-of-fit for lnV-D2 

regression lines (observed and simulated) for S. Michele section 

(southbound), for the carriageway, the inside lane and the passing lane; 

on each set of data, statistical inference on the regression parameters 

(intercept and slope) was performed by means of a t-test at the 

significance level of 5%. GEH index was calculated again for each pair 

(Vobs, Vsim) obtained from the regressions in Table 2.9; only under 

saturated conditions (D<Dc) were considered. In all the cases we 

obtained GEH = 100%. A 2 test was also performed considering the 

percentage of occurrence of a class of speed both for the field case and 

for the simulated one in Table 2.9. In all the cases (i.e. the carriageway, 

the inside lane and the passing lane) the test showed that the two 

populations (observed and simulated) did not differ significantly at the 

0.05 level of confidence:  
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 carriageway (50 degree-of-freedom)

5.6748.11 22  cr ;

 inside lane (25 degree-of-freedom)

7.370.93 22  cr ;

 passing lane (25 degree-of-freedom)

7.37.3361 22  cr ;

Road Parameter estimate (s.e.) t (t pr.) 

R
oa

dw
ay

 

fi
el

d β0 4.7726  (0.0100) 477.26 (<.001) 

β1 -0.0002139 (0.000004) -53.47 (<.001) 

si
m

 β0 4.7972 (0.00362) 1325.19 (<.001)

β1 -0.00024417 (0.00000951) -25.67 (<.001) 

In
si

de
 la

ne
 

fi
el

d β0 4.6540 (0.0109) 426.97 (<.001) 

β1 -0.00084291 (0.0000185) -45.56 (<.001) 

si
m

 β0 4.6744 (0.00431) 1084.56 (<.001)

β1 -0.00088134 (0.0000219) -40.24 (<.001) 

P
as

si
ng

 la
ne

 

fi
el

d β0 4.8789 (0.0112) 435.62 (<.001) 

β1 -0.00082173 (0.0000160) -51.36 (<.001) 

si
m

 

β0 4.8819 (0.00183) 2667.71 (<.001)

β1 -0.0007380 (0.0000248) -29.76 (<.001) 

Table 2.9. Coefficients estimates and goodness-of-fit for S. Michele section. 
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Comparing the two regression lines (observed and simulated), including 

statistical confidence areas, a significant overlapping of the regression 

curves can be seen as shown in Fig. 2.14. 

It is worthwhile to note that the simulated data resided almost entirely 

within the confidence band of the regression line fitted to the observed 

data. Thus the microsimulation model was able to reproduce the real 

phenomenon of traffic flow within a wide sufficiently range of 

operations, from the free flow conditions until reaching almost the 

critical density. At the same time we argue that the methodology has 

showed that, if only one regime of traffic flow (for example, the 

congested flow conditions) had been considered, we would not have had 

any assurance of the ability of the model to reproduce, just as well, the 

real operations at different regimes of traffic flow. It should be 

emphasized the exploratory nature of the analysis carried out in this study 

in which, among all models analyzed, only the single-regime model was 

considered having the accuracy and consistency to interpret the 

experimental data which covered the three traffic regimes (i.e., free-flow, 

congested, and queue discharge), and to represent the operating 

conditions for each lane and the entire roadway.  

Nevertheless, in order to improve the calibration process, one can 

hypothesize that modelling separately of the inside lane and the outside 
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lane is preferable and a further survey should be conducted to relax the 

single-regime assumption. 

Fig. 2.14. Roadway- S. Michele section (southbound): plots of field and 

simulated data. 
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Fig. 2.15. Inside lane- S. Michele section (southbound): plots of field and 

simulated data. 
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Fig. 2.16. Passing lane- S. Michele section (southbound): plots of field 

and simulated data. 

I I .6. DISCUSSION AND CONCLUSION 

In this chapter a methodology using speed-density relationships in 

the microsimulation calibration process is described. Statistical analysis 

technique of pattern recognition was used to evaluate the match of speed-

density relationships from field and simulation. Traffic patterns were 

implemented developing relationships between the variables of traffic 

flow for empirical and simulated data: for the former we referred to 
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traffic data observed at A22 Freeway (Italy); for the latter, Aimsun 

software was applied to test freeway segment in uncongested traffic 

conditions for a fleet of cars only. Different to the methodologies referred 

in the technical literature on this topic, this research proposed a measure 

of the closeness between empirical data and simulation outputs was 

achieved through a statistical approach which included hypothesis testing 

and confidence intervals. Encouraging results were obtained from the 

comparison of the observed and simulated data; indeed, a substantial 

overlapping of the regression lines was obtained and the simulated data 

resided almost entirely within the confidence band of the regression line 

fitted to the empirical data. Thus we stated that the microsimulation 

model was able to reproduce the real phenomenon of traffic flow within a 

wide range of operations (from free flow conditions until sufficiently 

reaching almost the critical density). Conversely, the proposed 

methodology showed that, if only one regime of traffic flow (free flow or 

congested conditions) had been considered, we would not have had any 

assurance on the ability of the model to reproduce, as well, the real 

operations at different regimes of traffic flow. Finally, the deepening of 

the model calibration as presented in this work has led the authors to 

develop an approach which considers a much wider landscape 

summarized in the following: i) first, although the results of the 

calibration process may seem satisfactory, the analyst does not have any 

guarantee of his/her work: he/she may have changed (or, in the extreme, 

forced) some parameters, and may have neglected other parameters that 
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are even more important. However, it must be said that this risk can be 

contained when information for the calibration process is derived from 

the speed-flow, speed-density, or flow-density graphs, since a higher 

number of parameters can be submitted to the calibration process, 

resulting in interrelated and improvement on the fine-tuning of a 

simulation model. Moreover, the above relationships provide information 

about the free-flow, congested, and queue discharge regions, which 

cannot be achieved from a single numerical value or a distribution of 

capacities; ii) secondly, although the microsimulation model gave us data 

that, on the whole, belong to the population of the observed data, some 

doubts could relate to what was developed for the inside lane. One single 

model which fits the empirical data both for the inside lane and the 

passing lane, as well as for the entire carriageway, does not always 

represent the best choice. The empirical observations have gradually led 

to consider that modeling the speed-density relationship (and the 

associated fundamental diagram) could be improved differentiating by 

each lane; for example, this can be achieved with regard to the capability 

of the model (single or multi regime) to fit empirical data reasonably well 

over the entire range of a traffic variable (i.e. flow, speed or density). The 

inability of single regime models to perform well over the entire range of 

density may prompt thinking about fitting the data at intervals through 

multiple equations; iii) thirdly, another question to be investigated further 

relates to the traffic generation. Starting the simulation run, the system is 



Traffic fundamentals for A22 Brenner freeway by microsimulation models. 

empty; based on the input volumes and an assumed headway distribution, 

vehicles enter the network from centroids. Although in microsimulation 

one may choose among different headway models (exponential, uniform, 

normal, constant, etc.), the default distribution is usually preferred. 

However, the choice of the distribution should not be so automatic, 

instead it should depend on how much complexity is desired to interpret 

traffic behavior. Indeed, Poisson distribution for vehicle counts and 

negative exponential distribution for time headways are only applicable 

when no interaction between the vehicles occurs, thus enabling them to 

move at random (i.e. traffic flows are light). However as traffic becomes 

heavier the interaction between vehicles increases, therefore vehicles are 

restricted in their driving freedom; moreover, the exponential distribution 

provides nonzero probabilities even for very small values of headways. 

In order to improve the capability of microsimulation models to replicate 

the real traffic phenomenon, distributions different from the exponential 

should be used; where poor agreement between the frequencies of 

observed headways and those predicted by the negative exponential 

distribution (as well as theoretical considerations precluding very short 

headways). It follows that in microsimulation the use of one of the 

default headway distributions can produce inappropriate choices in traffic 

generation, and a user-defined program can be required to feed the 

network with vehicles not without further computational effort and time. 
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III. DEVELOPING PASSENGER CAR 

EQUIVALENTS BY MICROSIMULATION

Passenger car equivalents (PCEs) for heavy vehicles are used to 

convert a mixed vehicle flow into an equivalent flow composed 

exclusively of passenger cars. In transportation engineering their 

calculation is relevant to capacity and level of service determinations, 

since incorporating the impact of heavy vehicles on freeway operations 

make the performance analysis of a specific road infrastructure more 

accurate. Heavy vehicles, indeed, differ from passenger cars for size and 

acceleration/deceleration abilities; these different (physical and 

operational) characteristics can result in different driving behaviour 

depending on the vehicle class in a traffic stream where the distribution 

of vehicles among the classes is, in any case, influenced by location in the 

network and time of day. Due to their larger size and manoeuvring 
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difficulties, heavy vehicles also impose a psychological and practical 

impact of drivers in adjacent lanes (Anwaar et al., 2011; Roess et al. 

2014). The impact of heavy vehicles on freeway operations has been a 

topic of interest since the first edition of the Highway Capacity Manual 

(HCM). The recent versions of the HCM (2000, 2010) provide different 

values of passenger car equivalents for heavy vehicles depending on the 

percentage of heavy vehicles, different grades, and grade length for 

freeways and highways. Addressing the heavy vehicles effect on different 

types of highway facilities, passenger car equivalents are intended for use 

in level-of-service (LOS) analyses. However, assuming the values of 

passenger car equivalents as the HCM (2010) suggests, both 

underestimation or overestimation of the effect of heavy vehicles on the 

quality of the traffic flow may occur. 

Various methodologies have been used to calculate the passenger car 

equivalents for heavy vehicles for different types of facilities. Definitions 

of equivalency based on the heavy vehicle effect on different parameters 

have been proposed. The determination of passenger car equivalents, 

indeed, include methods based on flow rates and density (John and Glauz, 

1976; Huber, 1982; Krammes and Crowley, 1987; Sumner et al., 1984; 

De Marchi and Setti, 2003; Webster and Elefteriadous, 1999), headways 

(Werner and Morrall, 1976; Anwaar et al., 2011), queue discharge flow 

(Al-Kaisy et al., 2002), speed (Hu and Johnson, 1981), delay (Craus et 

al., 1980; Cunagin and Messer, 1983), volume/capacity ratio (Linzer et 

al., 1979), platoon formation (Elefteriadou et al. 1997; Van Aerde and 
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Yagar, 1984; Al-Kaisy et al. 2002) and travel time (Keller and Saklas, 

1984). However, significant differences can be found among the values 

of PCE factors from different methods especially in heterogeneous traffic 

environment; see e.g. Adnana (2014). Only a few studies have been based 

on field data; most current published studies and research used traffic 

simulation to obtain equivalent flows for a wide combination of flows 

and geometric conditions. 

In operational analysis of freeways PCEs calculations should be based on 

density, since it is used to define LOS for freeways (HCM, 2010). In this 

regard, Huber (1982) proposed a framework for PCEs derivation based 

on finding a flow rate of a base stream of passenger cars only and a flow 

rate of a mixed stream QM containing QMpT heavy vehicles and QM(1 – 

pT) cars, having the same level of a measure of impedance. Huber (1982), 

indeed, used some measure of impedence as a function of traffic flow to 

relate one traffic stream of heavy vehicles mixed with passenger cars and 

another traffic stream of passenger cars only. PCE values were related to 

the ratio between the volumes of the two streams at some common level 

of impedance (i.e. the density of both streams). A different approach from 

Huber (1982), was adopted by Sumner et al. (1984) who measured the 

impedance by the number of vehicle-hours in the base and mixed 

streams, which is equivalent to density as a measure of impedance. They 

used microscopic simulations to expand the Huber procedure to calculate 

the PCE of each type of vehicle in a mixed traffic stream taking into 
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account the different types of heavy vehicles, in addition to passenger 

cars. Webster and Elefteriadou (1999), in turn, expanded the work of 

Sumner et al. (1984) by including a wide range of freeway conditions and 

derived PCEs based on density. It is noteworthy that the HCM (2010) 

utilizes PCES to estimate the effect of heavy vehicles on traffic stream 

behaviour under free-flow or undersaturated conditions. Moreover, these 

factors have been used to conduct analyses for all traffic conditions (from 

free-flow to through congested-flow conditions). A growing body of 

recent empirical evidence suggests that the PCEs for undersaturated 

conditions can underestimate the effect of heavy vehicles after the onset 

of congestion (Al-Kaisy et al., 2005). One must say that the acceleration 

and deceleration cycles, as normally experienced during congestion or 

stop-start conditions, impose an extra limitation on the performance of 

heavy vehicles. In this regard, few studies have been conducted to 

explore the effect of heavy vehicles also for forced-flow conditions 

(Ahmed, U., 2010). Al-Kaisy et al. (2002) derived PCES using queue 

discharge flow as the equivalency criterion; however, they are still far 

from a generalization in the results, albeit these findings were consistent 

with field observations as experienced by Yagar and Richard (1996).  

This research proposes the steps of the methodological approach to 

estimate the PCEs in terms of their effects on the operations of a basic 

freeway section. There are two detailed objectives for this research: i) to 

investigate the influence of a range of traffic, road design, and vehicle 

characteristics on PCEs; ii) to propose a set of PCE values to be used in 
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analyzing the operation of basic freeway sections. Since the variation of 

the traffic quality had to be evaluated including different percentages of 

heavy vehicles in the traffic demand, a simulation model has been used to 

isolate traffic conditions difficult to observe in the field, to replicate them 

to generate a significant amount of data, and to quantify the fundamental 

variables of traffic flow, namely the speed, flow, density, for a test 

freeway segment. Using Aimsun software it was possible to account for 

the wide range of traffic conditions on the freeway segment selected as 

case study. The process of finding the best model parameters was 

accomplished by a calibration procedure that used traffic data observed at 

A22 Brenner Freeway (Italy). In order to check to what extent the model 

replicated reality, the validation of the calibrated model was also 

addressed. Simulated data were then used to develop the relationships 

among the variables of traffic flow and to calculate the passenger car 

equivalents for heavy vehicles by comparing a fleet of passenger cars 

only with a mixed fleet, having different percentages of heavy vehicles.  

 

III.I CALCULATION OF PCES: A LITERATURE REVIEW 

As already mentioned in the introduction, various methodologies have 

been used to calculate the passenger car equivalents for heavy vehicles. 

Particularly, the transportation literature proposes several different 

methods to calculate PCEs throughout the evolution of highway capacity 

analysis. These methods have been applied for different cases and 
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situation such as for two lane highways and multilane highways or 

freeways. 

III.1.1 PCES IN THE 1965 HCM

In the 1965 HCM, which was the second edition of the HCM, is 

introduced the concept of LOS and the definition of PCE. In the 1965 

HCM, PCE was defined as “The number of passenger cars displaced in 

the traffic flow by a truck or a bus, under the prevailing roadway and 

traffic conditions” (Elefteriadou et al, 1997). The 1965 HCM used 

relative speed reduction to define PCEs for two lane highways and 

quantified this by the relative number of passings known as the Walker 

method. For multilane highways, PCEs were based on the relative delay 

due to trucks. 

The relative delay due to trucks was calculated using the Walker method 

for two-lane highways in conjunction with gradability curves and field 

observations. Gradability curves relate speed distribution to grades of 

specific length and percent. Steeper grades and longer grades result in a 

more drastic speed reduction. Cunagin and Messer (1983) suggested that 

the gradability curve used to calculate PCEs in the 1965 HCM. was based 

on a truck with a weight to power ratio of 198 kg/kW (325 lb/hp), which 

was considered typical for trucks of the time. However, Roess and 

Messer (1984) emphasized that the normal truck assumed in the 1965 

HCM was of 122 kg/kW (200 lb/hp). Regardless of which truck was 
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assumed, the gradability curve was eventually considered obsolete for 

vehicle performance calculations and was updated in subsequent years. 

PCEs for multilane highways based on relative delay may be found as: 

	்ܧ ൌ
ሺ஽೔ೕି஽ಳሻ

஽ಳ
 (3.1) 

where Dij is the delay to passenger cars due to vehicle type i under 

condition j and DB is the base delay to standard passenger cars due to 

slower passenger cars.  

PCEs in the 1965 HCM were reported for grades of specific length and 

percent, proportion of trucks, and LOS grouped as A through C or D and 

E. As expected, the highest PCE was reported for the longest and steepest 

grade with the highest proportion of trucks and the lowest LOS. 

However, in many cases the PCE for a given grade and LOS decreased 

with increasing proportion of trucks. This result has been obtained by 

many other researchers, as mentioned below. 

III.1.2 PCES BASED ON DELAY 

In 1983, it was used an extension of the 1965 HCM method to calculate 

PCEs for multilane highways based on relative delay. In their approach, 

they used a combination of the Walker method of relative number of 

passings and the relative delay method. They recognized that on 

multilane highways, passing vehicles or overtaking vehicles are inhibited 

only by concurrent flow traffic. PCEs were calculated as: 
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்ܧ ൌ
ሺை்೔ ௏ை௅೔ሻሾሺଵ ௌ௉ಾ⁄ ሻିሺଵ ௌ௉ಳ⁄ ሻሿ⁄

ሺை்ಽು಴ ௏ை௅ಽು಴⁄ ሻሾሺଵ ௌ௉ು಴⁄ ሻିሺଵ ௌ௉ಳ⁄ ሻሿ
  (3.2) 

where OTi is the number of overtakings of vehicle type i by passenger 

cars, VOLi is the volume of vehicle type i, OTLPC is the number of 

overtakings of lower performance passenger cars by passenger cars, 

VOLLPC is the volume of lower performance passenger cars, SPM is the 

mean speed of the mixed traffic stream, SPB is the mean speed of the 

base traffic stream with only high performance passenger cars, and SPPC 

is the mean speed of the traffic stream with only passenger cars. 

Since at low traffic volumes faster vehicles will not likely be impeded in 

overtaking other vehicles, equation (3.2) was used omitting the bracketed 

expression. However at higher traffic volumes, such as near capacity, 

slower overtaking vehicles will impede faster vehicles. This results in 

queue formation in the passing lane. In their research, Cunagin and 

Messer (1983) applied a linear combination of equation (3.2) with and 

without the bracketed expression for intermediate volumes. 

The authors examined three different grade conditions, flat, moderate, 

and steep. In addition, they examined proportion of trucks and volume 

levels corresponding to each of the five LOS categories. The PCEs 

developed, increased relative to the proportion of trucks and volume 

levels in flat and moderate grade conditions. However, in steep grade 

conditions, the PCEs decreased for increasing proportion of trucks. 
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III.1.3 PCES IN THE TRB CIRCULAR 212 

The TRB Circular 212 titled “Interim Materials on Highway 

Capacity” was published in 1980, as an effort to summarize the current 

knowledge in highway capacity and to identify needs for immediate 

research before the completion of the planned third edition of the HCM 

(HCM, 2000). PCEs reported in TRB Circular 212 were developed based 

on the constant v/c method. Linzer et al. (1979) describes the constant v/c 

method, whereby PCEs are calibrated such that the mixed traffic flow 

will produce the same v/c ratio as a passenger car only flow. 

The design chart relates the percent grade, mixed vehicle flow, and 

percent reference trucks to percent capacity (equivalent to v/c ratio). The 

PCE is formulated as: 

்ܧ ൌ
௤ಳି௤ಾሺଵି௉೅ሻ

௤ಾൈ௉೅
 (3.3) 

where qB is the equivalent passenger car only flow rate for a given v/c 

ratio, qM is the mixed flow rate, and PT is the proportion of trucks in the 

mixed traffic flow. 

St John and Glauz (1976) introduced the concept of percent reference 

trucks to account for the variability of truck performance characteristics 

by truck type. This was accomplished by aggregating all truck types into 

a single reference truck. The Ohio Department of Transportation 
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provides an excellent copy of the most common vehicle classification 

scheme on their website. The Federal Highway Administration (FHWA) 

also follows this vehicle classification scheme whereby trucks are 

considered to be vehicle types 5 through 13; the FHWA vehicle 

classification scheme is also available online. For any given truck 

population, they derived weighting factors to compute the percent 

reference trucks. The derived weights were based on the performance of 

each truck type relative to the slowest speed truck. The higher the weight 

factor, the worse performing the subject truck is compared to the slowest 

speed truck. The following equation for percent reference trucks is: 

Percent reference trucks= ்ܲሺ3.16݌ଵ଴ ൅ ଽ݌1.41 ൅ ଼݌0.14 ൅  ଻ሻ݌0.06

where PT is the total proportion of trucks and pi is the proportion of index 

truck type i out of the total proportion of trucks. 

The typical truck used in calculation of PCEs for the TRB Circular 212 

by Linzer et al (1979) was of 183 kg/kW (300 lb/hp), slightly lower than 

the 198 kg/kW (325 lb/hp) truck used in the 1965 HCM, and reflecting 

the increased performance of trucks since the 1960’s. In addition, a light 

truck of 91.4 kg/kW (150 lb/hp) and a heavy truck of 213.2 kg/kW (350 

lb/hp) were used to calculate PCEs. Truck performance curves were used 

from research conducted by Pennsylvania State University, with initial 

truck speed of 88.5 km/h (55 mi/h). Since the research calculated PCEs 

for truck populations with a single weight to power ratio, the percent 
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reference trucks method proposed by the MRI was used by assuming that 

only trucks of the given weight to power ratio existed. 

Results of the constant v/c method for calculating PCEs indicated that 

PCEs did not alter significantly for changes in the v/c ratio or the freeway 

design speed. For this reason, PCEs reported in the TRB Circular 212 

were given according to percent grade, length of grade, and percent 

trucks just as they had been in the 1965 HCM. In addition however, 

PCEs were calculated for freeways with six or more lanes as well as 

typical freeways with four lanes. The need to calculate PCEs for different 

freeway sizes (number of lanes) arose from cases of high proportion 

trucks and/or steep grades. PCEs developed by Linzer et al exhibit a 

decrease for increasing percent trucks. 

III.1.4 PCES BASED ON SPEED 

As an extension to his research on truck performance on upgrades, St 

John (1976) proposed a non-linear truck factor. This non-linearity 

addressed the successively smaller impact of trucks on the traffic stream 

as the proportion of trucks increased. He reasoned that as the proportion 

of trucks increases platoons may form and the interaction with cars may 

be reduced. In addition, he asserted that the effect of multiple truck types 

highlights the need for a non-linear truck factor. The truck factor was 

based on a speed flow relationship. He introduced the concept of 
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equivalence kernel, which accounts for the incremental effect of trucks in 

a traffic stream and is used to calculate PCEs. 

In a report published in 1981, Hu and Johnson (1981) described how to 

use the 1965 HCM to find PCEs based on speed. According to their 

report, PCEs are used to convert a mixed vehicle flow into a passenger 

car only flow with the same operating speed. They used equation (3.3) 

developed by Linzer et al to calculate the PCE. Operating speeds were 

based on the design charts obtained by research performed by the MRI, 

as described in the section on the TRB Circular 212. Hu and Johnson 

(1981) did not use specific grade adjustments, but rather developed their 

PCEs based on extended freeway segments. 

Later, Huber (1982) derived equation (3.3) in a different functional form 

to relate PCE to the flow of a passenger car only traffic stream and a 

mixed vehicle traffic stream. The effect of trucks is quantified by relating 

the traffic flows for an equal LOS. Any equivalent LOS or impedance 

could be chosen for the equality. If for example, density was used to 

define the equal LOS criteria, the flow-density relationship could be used 

to relate the traffic flows at an equal density value. Huber’s basic 

equation is formulated as: 

்ܧ ൌ
ଵ

௉೅
ቀ௤ಳ
௤ಾ
െ 1ቁ ൅ 1 (3.5) 
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where PT is the proportion of trucks in the mixed traffic flow, qB is the 

base flow rate (passenger cars only), and qM is the mixed flow rate. 

Huber used the assumption of statistically similar average travel time as 

the measure of LOS. Equal average travel time on a one-mile segment is 

equivalent to the inverse of the average speed. The consequence of his 

assumption of equal speed is that PCEs decrease as volumes increases. A 

slow moving truck will have a smaller impact on the average speed when 

the total volume is higher. Huber took this result objectionable and 

suggested that equal total travel time be used as a measure of LOS. He 

formulated equal total travel time as the volume in vehicles per hour 

multiplied by the average travel time in hours per mile. By this 

representation, equal total travel time is equivalent to equal density 

because it describes equal vehicle occupancy on the roadway in vehicles 

per mile. The calculation of PCE by equal density is discussed later. 

Sumner et al (1984) calculate the PCE of a single truck in a mixed traffic 

stream, which includes multiple truck types. This calculation requires an 

observed base flow, mixed flow, and flow with the subject vehicles. The 

equal LOS or impedance measure would cut across all three flow curves. 

The relationship described is formulated as: 

்ܧ ൌ
ଵ

௱௉
ቀ௤ಳ
௤ೞ
െ ௤ಳ

௤ಾ
ቁ ൅ 1 (3.6) 
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where ΔP is the proportion of subject vehicles that is added to the mixed 

flow and subtracted from the passenger car proportion, qB is the base 

flow rate (passenger cars only), qM is the mixed flow rate, and qS is the 

flow rate including the added subject vehicles. The authors used total 

travel time in terms of vehicle hours as the equal measure of LOS. In this 

case total travel time was applied to urban arterial roads and measured in 

terms of vehicle hours, which is not equivalent to density. 

Using the formulation in equation (3.6), Elefteriadou et al (1997) 

calculated PCEs for freeways, two-lane highways, and arterials based on 

equal speed. The researchers also examined the impact of prevailing 

traffic flow, proportion of trucks, truck type (by length and weight to 

power ratio), length and percent grade, and number of freeway lanes in 

their evaluation. Their analysis was based on specific truck types, and not 

truck populations. The results of the analysis indicated that PCEs remain 

mostly unchanged for increasing traffic flow on freeway segments while 

PCEs remain unchanged or slightly increase with increasing proportion 

of trucks. The report did not indicate the impact of the number of 

freeway lanes on the PCE. 

In 1984, it was developed a methodology to calculate PCE based on 

relative rate of speed reduction (Van Aerde and Yagar, 1984). This PCE 

was intended for use in average speed analysis of capacity, which is 

unique to two lane highways. Field observations and known speed-flow 

relationships were used to calibrate a multiple linear regression model 
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that estimates the percentile speed based on the free speed and speed 

reduction coefficients for each vehicle type. A linear speed-flow model 

was chosen because the speed-flow relationship within the bounds of 

practical operating volumes was found to be nearly linear. The multiple 

linear regression model is: 

Percentile speed = free speed + C1(number of passenger cars) + 

C2(number of trucks) + C3(number of RVs) + C4(number of other 

vehicles) + C5(number of opposing vehicles) 

where coefficients C1 to C5 are the relative sizes of speed reductions for 

each vehicle type. Although this model was formulated for two lane 

highways with opposing traffic flow, it could be applied to multilane 

highways by setting the coefficient C5 to zero. Using the speed reduction 

coefficients, the PCE for a vehicle type n is calculated as: 

௡ܧ ൌ
஼೙
஼భ

 (3.7) 

where Cn is the speed reduction coefficient for vehilce type n and C1 is 

the speed reduction coefficient for passenger cars. 
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III.1.5 PCES IN THE 1985 HCM 

PCEs in the 1985 HCM were calculated for trucks of 61, 122, and 183 

kg/kW (100, 200, and 300 lb/hp) with 122 kg/kW (200 lb/hp) being 

considered the normal truck population (Roess and Messer, 1984). The 

consideration of freeway size, introduced in the TRB Circular 212, was 

retained in the 1985 HCM. The shift of the typical truck from 183 to 122 

kg/kW (300 to 200 lb/hp) was inspired by indications that the average 

truck population on freeways was between 76 and 104 kg/kW (125 and 

170 lb/hp). Besides this change, the approach to calculating PCE based 

on v/c ratio in the TRB Circular 212 remained unchanged in the 1985 

HCM.  

III.1.6 PCES BASED ON V/C RATIO 

After the publication of the 1985 HCM, the constant v/c method for 

calculating PCE subsided. The constant v/c method was most appropriate 

when LOS was defined primarily in terms of v/c ratio; however, since 

LOS is now defined primarily by density, the constant v/c method is no 

longer favorable. Traffic streams with an equal v/c ratio will not 

necessarily have equal density and speed and therefore LOS. However, 

this method was applied in 1989 to calculate PCEs for expressways in 

Singapore. He reasoned that although density was used to define LOS for 

freeways, capacity analysis performed with PCEs would still be desirable 

to be based on the v/c ratio. The functional form of his relationship was a 
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multiple linear regression equation whereby the v/c ratio was related to 

the PCE multiplied by the observed flow of each vehicle type. The target 

v/c ratio to compute PCE was at 0.67 to 1.0, corresponding to LOS D or 

E. Fan pointed out that for capacity analysis it would be unimportant to 

calculate PCEs at v/c ratios well below capacity. The results of the 

research by Fan were PCEs for multiple vehicle types. 

III.1.7 PCES BASED ON HEADWAYS 

Headways have been used for some of the most popular methods to 

calculate PCEs. Therefore, Werner and Morrall (1976) suggested that the 

headway method is best suited to determine PCEs on level terrain at low 

levels of service. The PCE is calculated as: 

்ܧ ൌ 	 ቀ
ுಾ
ுಳ

െ ஼ܲቁ / ்ܲ (3.8) 

where HM is the average headway for a sample including all vehicle 

types, HB is the average headway for a sample of passenger cars only, PC 

is the proportion of cars, and PT is the proportion of trucks. In their study, 

they used the headway method for low speed trucks and the conventional 

speed method of the 1965 HCM for higher speed trucks. One question 

arises as to use of the headway method for low speed trucks when low 

speeds generally occur on upgrades rather than on level terrain. The 

results of the study replicated PCEs in the 1965 HCM for higher speed 
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trucks. PCEs were categorized by percent grade, length of grade, and 

LOS grouped A and B, C, or D and E. 

In 1982, it was revealed that the presence of trucks in the traffic stream of 

a freeway resulted in increased average headways (Cunagin and Chang, 

1982). The largest headways involved trucks following trucks, and the 

headways increased for larger truck types. Seguin et al (1982) formulated 

the spatial headway method for calculating PCEs. This method defines 

the PCE as the ratio of the mean lagging headway of a subject vehicle 

divided by the mean lagging headway of the basic passenger car and is 

formulated as: 

்ܧ ൌ
ு೔ೕ
ுಳ

(3.9) 

where Hij is the mean lagging headway of vehicle type i under conditions 

j and HB is the mean lagging headway of passenger cars. The lagging 

headway is determined from the rear bumper of the lead vehicle to the 

rear bumper of the following vehicle and therefore includes the following 

vehicle’s length. 

The constant volume to capacity method, equal density method, and 

spatial headway method were compared in 1986 in an article by 

Krammes and Crowley (1987). The authors concluded that the spatial 

headway method was most appropriate for level freeway segments. 

Particularly the authors point out that the spatial headway method not 
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only accounts for the accepted effect of trucks due to size and lower 

performance, but also the psychological impact of trucks on drivers of 

other vehicles. This impact is in the form of aerodynamic disturbances, 

splash and spray, sign blockage, off tracking, and underride hazard. So, 

spatial headway is considered a surrogate measure for density. Both of 

which reflect the freedom of maneuverability in a traffic stream. A 

modification to equation (3.5) put forth by Huber to calculate PCE based 

on flow rate allows the calculation of PCE based on headway. The 

equation uses the lagging headway because it is the following vehicle’s 

perception of maneuverability that affects the PCE. Contradictory to the 

findings of Cunagin and Chang (1982), the lagging headway for trucks 

following trucks was found to be significantly lower than the lagging 

headway for cars following trucks. Therefore, contrasting the 

recommended equation (3.9), the authors suggest that PCE should be 

calculated as: 

்ܧ ൌ 	 ሾሺ1 െ ்ܲሻ்ܪ௉ ൅  ௉ (3.10)ܪ/ሿ்்ܪ݌

where PT is the proportion of trucks, HTP is the lagging headway of trucks 

following passenger cars in the mixed vehicle stream, HTT is the lagging 

headway of trucks following trucks in the mixed vehicle stream, and HP 

is the lagging headway of cars following either vehicle type in the mixed 

vehicle stream. An improvement over equation (3.9) recommended by 

Seguin is that the proportion of trucks is considered in equation (3.10). 
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The authors believe that an increase in the proportion of trucks will result 

in higher PCEs because the opportunity for interaction between cars and 

trucks will increase. 

A drawback of the headway method is that it must be assumed that 

drivers are exhibiting steady state, in lane behavior. It would be difficult 

therefore to separate the headways observed from drivers who are either 

not in steady state, or are not maintaining the lane (continuously 

following the same vehicle). Specific to multilane highways, it is less 

likely that cars will continue to follow trucks given the first opportunity 

to pass. 

III.1.8 PCES BASED ON QUEUE DISCHARGE FLOW

In 2002, Al-Kaisy et al (2002) published a report describing the 

calculation of PCE using measurements of queue discharge flow. The 

hypothesis of their theory was that the effect of trucks on traffic is greater 

during congestion than during under saturated conditions. The congested 

condition is represented by queue discharge flow, where the v/c ratio is 

equal to one. A primary assumption of their work was that queue 

discharge flow capacity is constant except for the effect of trucks in the 

traffic stream. The authors used field observations and linear 

programming to determine the PCE. For the case studies in their analysis, 

they did not find a relationship between PCE and the proportion of 

trucks. However, the authors theorized that the PCE should decrease with 
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increasing proportion of trucks because the interactive effect of trucks on 

trucks may be lower than the effect of trucks on passenger cars. 

III.1.9 PCES BASED ON DENSITY 

As already mentioned, Huber (1982) introduced the concept of using 

equal density to relate mixed flow rate and base flow rate for calculation 

of PCE in equation (3.5). The drawback of Huber’s computation is that it 

assumes the mixed vehicle flow contains passenger cars and only one 

type of truck. However, the formulation in equation (3.6) allows the 

calculation of the PCE of a single truck in a mixed vehicle stream 

including multiple truck types. As applied to freeways, density is the 

most common equal measure of LOS, and Webster and Elefteriadou 

(1999) used this method to calculate PCEs for trucks in 1999. Their 

approach was to use simulation modeling to calculate the flow verses 

density relationships.  

Again, the researchers examined the impact of prevailing traffic flow, 

proportion of trucks, truck type (by length and weight to power ratio), 

length and percent grade, and number of freeway lanes in their 

evaluation. The results of the analysis indicated that PCEs increase with 

increasing traffic flow on freeway segments and decrease with increasing 

proportion of trucks and number of lanes. The most important conclusion 

is that truck type, as defined by length and weight to power ratio, is 

critical for determination of PCEs. 
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Afterwards, De Marchi and Setti (2003) published an article describing 

the limitations of deriving PCEs for traffic streams with multiple truck 

types. In an algebraic derivation, they proved that PCEs developed for a 

single truck type in a mixed traffic flow containing multiple truck types 

using equation (3.6) do not fully account for the interaction between 

trucks. They reasoned that considered separately, “the PCE value for the 

subject vehicle is normally underestimated, because the marginal impact 

decreases as the proportion of subject vehicles in the stream increases.” 

Conversely, the impact of trucks already in the mixed vehicle stream is 

overestimated because their actual proportion should be smaller than it is 

prior to addition of the subject vehicles. 

The authors suggested that a different approach to avoid the errors 

associated with calculating the PCE for each truck separately is to 

calculate an aggregate PCE formulated as: 

்ܧ ൌ
ଵ

∑ ௉೔
೙
೔

ቂ௤ಳ
௤ಾ
െ 1ቃ ൅ 1 (3.11) 

where Pi is the proportion of trucks of type i out of all trucks n in the 

mixed traffic flow, qB is the base flow rate (passenger cars only), and qM 

is the mixed flow rate. This equation is basically equation (3.5) put forth 

by Huber and modified for multiple truck types in the mixed traffic 

stream. This approach, using an aggregate PCE, seems to have been 

adopted in the 1994, 1997, and 2000 editions of the HCM. PCEs in the 
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HCM 2000 are reported by percent grade, length of grade, and percent 

trucks. The PCEs exhibit a decrease for increasing proportion of trucks. 

 

III.2 DATA ANALYSIS AND SIMULATION ISSUES FOR A22 

FREEWAY 

Before explaining the study methodology used, study efforts, made 

both to develop the fundamental diagram of traffic flow for the A22 

Brenner Freeway, and to tackle the issues associated with calibration and 

validation of the simulation model parameters, will be introduced.  

 

III.2.1 TRAFFIC DATA FOR A22 FREEWAY 

The speed-flow-density relationships for a traffic flow of passenger cars 

only were developed following the field survey activities performed on 

the A22 Brenner Freeway, Italy (Mauro, 2007). These relationships were 

built after treating and processing of traffic data collected at specific 

observation sections. Focusing on the development of a criterion for 

predicting the reliability of traffic flow by observing speed stochastic 

processes on A22 Freeway, a study has already been done (Mauro et al., 

2013). The specification of the speed-flow-density relationships is 

discussed by Mauro et al. (2014). Here it will be described briefly the 

May's model (1990), as expressed by the following equation 3.12:  
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where VFF is the free-flow speed and Dc is the critical density (to which is 

associated the reaching of the capacity). Starting from equation 3.12, by 

means of the relationship between the fundamental parameters of traffic 

flow, flow values were obtained; the speed-flow and flow-density 

relationships were also derived. Traffic flow models were calibrated for 

the right lane, the passing lane and both lanes of the roadway; for each 

observation section, the VFF and Dc values were calculated by using the 

logarithmic transformation of equation 3.12.  

Table 3.1 shows VFF and Dc values for the two lanes of the carriageway 

only. Note that for S Michele sections a fleet of cars only was observed; 

for the other observation sections, traffic flows were homogenized before 

the calibration of the May's model to consider the effects of passing 

heavy vehicles; for this purpose the passenger car equivalents calculated 

by Mauro (2007) were used. 
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roadway free flow speed 

[km/h] 

critical density 

[veh/km/2-lanes] 

S. Michele section – 

Southbound 

118.20 48.35 

S. Michele section – 

Northbound 

121.00 45.36 

Rovereto – Southbound 114.30 49.61 

Adige – Southbound 116.30 50.92 

Adige – Northbound  112.60 39.20 

Table 3.1. The May model parameters for the sections on A22 Freeway 

III.3 CALIBRATION AND VALIDATION OF THE MODEL

In the context of the activities developed in micro-simulation, 

calibration was searched by ensuring that Aimsun gave results close to 

empirical data. Thus the empirical measurements of speed, flow and 

density and simulated data as generated by Aimsun were compared. For 

the fundamental core models (i.e. car following and lane changing) as 

implemented in Aimsun for modelling microscopic vehicle movements, 

the reader is referred to the relevant literature (see e.g. Barcelo, 2011; 

Vasconcelos et al., 2009; 2014). 
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Fig. 3.1. View of the Aimsun window: choose of heavy vehicle type 

 

The first step for executing Aimsun was to create a model network for 

the A22 Freeway such as to enable the geometric and functional 

representation of the freeway facility (having basic freeway segments, 

on- and off- ramps, etc.) and the related objects as traffic detectors at 

specific locations in the road network. Focus was then put on a basic 

freeway segment just a little over 2 kilometers and centered on the S. 

Michele observation section (Southbound); this basic freeway segment is 

characterized by the same cross section of A22 Freeway (Italy), having 

two traffic lanes, each 3.75 m wide, in each direction, and a slope of 0.09 

percent. The previously mentioned freeway segment was chosen outside 

of the influence area of ramps so that so that uninterrupted flow 
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conditions were guaranteed. In order to test the traffic microsimulation 

model validity, some model parameters were changed and adjusted until 

the model outputs were similar to empirical data. It is noteworthy that the 

calibration of a microsimulation model is an iterative process which can 

be stopped only when the model matches locally observed conditions 

(Barcelo, 2011). In a previous research a statistical approach including 

hypothesis testing using t-test and confidence intervals was used to 

measure the closeness between empirical data and simulation outputs for 

a test freeway segment under uncongested traffic conditions (Mauro et 

al., 2014). The lnV-D2 regressions for simulated and empirical data were 

compared. Thus the microsimulation model was able to reproduce the 

real phenomenon of traffic flow within a wide enough range of 

operations, from the free flow speed conditions until almost to the critical 

density. However, in this study further considerations have been 

developed.  

In order to reproduce local traffic conditions on A22 Freeway, some 

trial simulation runs were performed by using the default values for the 

model parameters; however, outputs from simulation runs were not quite 

right to represent the existing traffic conditions. Thus, the iterative 

changing of some parameters was done, different combinations of values 

were explored and many simulation replications were needed until the 

difference between the empirical and the simulated values of the 

variables of interest was minimized. Table 3.2 shows the parameter 
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values (default and adjusted) that were used to replicate the field 

conditions. For calibration purposes, a maximum allowed speed (in 

km/h) for the vehicles travelling through the freeway roadway was 

introduced on each lane; moreover, the reaction time, namely the time it 

takes a driver to react to speed changes in the preceding vehicle was 

defined as fixed, that is the same as the simulation step. Global 

parameters in the two-lane car-following model were also considered for 

calibration. This was carried out with the purpose to model the influence 

on the subject vehicle given by a certain number of vehicles driving 

slower in the adjacent right-side lane. These parameters included: the 

number vehicles, or the vehicles driving downstream of the vehicle in the 

adjacent slower lane; the maximum distance, representing the distance 

from the current vehicle within which the number vehicles are taken into 

account; the maximum speed difference, or the differences of speeds 

between two adjacent lanes. The calibration process also included the 

adjustments for the maximum and minimum values of the desired speed, 

namely the maximum speed that a certain type of vehicle can travel at 

any point in the network. For the freeway link, the traffic demand was 

defined by subsequent O/D matrices for a total time interval of 13 hours, 

from 7:00 am to 8:00 pm.  
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Fig. 3.2. Traffic demand of car and truck in Aimsun 

model parameter default value calibrated value 

maximum speed [km/h]  - right 
lane 

120 95 

maximum speed [km/h] - passing 
lane 

120 125 

reaction time [s] 0.75 0.8 

maximum distance [m] 100 100 

maximum speed difference [km/h] 

 

50 

 

50 

minimum desired speed [km/h] for 
cars 

80 85 

maximum desired speed [km/h] for 
cars 

150 125 

Table 3.2. The model calibration parameters 
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An ADT of about 30,000 vehicles per day was considered and hourly 

modulated for representing traffic conditions on A22 Freeway. Passenger 

cars only were considered; their attributes were chosen within the range 

that Aimsun gives. Detectors were located so that they could replicate the 

location of field detectors. The simulated values of speed and density 

were verified against the corresponding empirical values as shown in 

Figure 3.3 Specifically, the graph shows the plots of empirical and 

simulated data for the considered link (S. Michele section - Southbound) 

and the corresponding speed-density relationships. The V=V(D) function 

for simulated data was obtained converting equation 1 into linear form by 

using the logarithmic transformation: 

 

    2
2
cD2

1
-lnln DVV FF 


  or else 11 DbaV    (3.13) 

where V1 is ln(V), a is ln(VFF), b is -1/(2D2
c) and D1 is D2, with VFF and 

Dc as previously defined. By using simulated data VFF and Dc values were 

calculated and equation 3.13 was calibrated; with VFF equal to 109.46 

km/h and Dc resulted equal to 58.77 veh/km/2-lanes, corresponding to a 

capacity value of 3900 veh/h/2-lanes (R2= 0.88). In Fig. 3.3 the speed-

density relationship for empirical data is also shown for both lanes of the 

carriageway; it was built by using VFF and Dc values reported in Table 

3.1 for S. Michele Section – Southbound. 
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Fig. 3.3. Speed-density graphs with plots of field and simulated data. 

For the examined case study, the GEH index was calculated as criterion 

for acceptance, or otherwise rejection, of the model (Barceló, 2011). 

Since the deviation of the simulated values with respect to the 

measurement was smaller than 5% in 96% of the cases, the model was 

accepted as being able to reproduce local conditions and traffic behavior 

with statistical confidence. 

Once the global parameters were adjusted to produce a good fit 

between observed and simulated data, i.e. they began to have little further 
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influence on the model outputs, the validation of the calibrated model 

was addressed also. In this first step of analysis, simulation outputs were 

compared with two empirical data sets that were not used in the 

calibration process. Fig. 3.4 shows the comparison among the simulation 

data and the empirical equation V=V(D) for two observation sections on 

A22 Brenner Freeway in Table 3.1. For performing the comparison, each 

observed speed was calculated from the speed-density equations, as 

specified by the values in Table 3.1 for Rovereto (Southbound) and 

Adige (Southbound) sections, by using the simulated values of density. 

Since the deviation of the simulated values with respect to the 

measurement was smaller than 5% in 96% of the cases for Adige Section 

(Southbound) and smaller than 5% in 94% of the cases for Rovereto 

Section (Southbound), the model validation could be accepted. It is 

noteworthy that field data did not exceed (or just in few cases) the critical 

density and not cover sufficiently oversaturated conditions; therefore, in 

this study is applicable under capacity conditions only. 
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Fig. 3.4. Speed-density graphs with plots of simulated data. 

 

III.4 STUDY METHODOLOGY 

PCEs will estimated as a function of variables that are found to have a 

critical effect on PCE values. In this explorative study, the influence of 

the following traffic and road design characteristics on PCEs will be 

investigated: grade and length of grade, percentage of heavy vehicles in 

the traffic stream, and traffic flow rate. According to Elefteriadou et al. 

(1997), the effect of a heavy vehicle on the quality of traffic flow, and 

then its PCE, is related to the performance characteristics of the heavy 

vehicles also. In this work, the heavy vehicles mix included single trucks 
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and single trailer trucks having the following characteristics: the 

maximum length was assumed equal to 12 m; the maximum desired 

speed was equal to 80 km/h (with a minimum and a maximum value of 

70 km/h and 90 km/h, respectively). For the heavy vehicles mix a 

maximum acceleration of 1 m/s2 (with a range 0.6-1.8 ms2) and a 

maximum deceleration of 5 m/s2 (with a range 4-6 m/s2) were assumed. 

For the other heavy vehicle attributes, default values as proposed by 

Aimsun (version 8.0.4) were assumed. The dynamics of interaction 

between passenger cars and heavy vehicles during overtaking and the 

driving behaviour in the neighborhood of heavy vehicles is handled 

internally by the Aimsun model (Barcelò, 2011). Simulation data were 

used to develop the relationships among the variables of traffic flow and 

to calculate the passenger car equivalents for heavy vehicles by 

comparing a fleet of cars only with a mixed fleet characterized every 

time by different percentages of heavy vehicles. 

I I I .4.1  METHOD OF PCE ESTIMATION 

In this study PCE values were estimated based on the method 

developed by Huber (1982). The method consists of the steps as 

explained in the following: 

 Q = Q(D) curve was generated by simulating a passenger-car-only 

traffic stream from free flow up to critical density. Since the 
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passenger car is the base vehicle, this curve is called the base curve 

(see Fig. 3.5); 

 using a vehicle mix, which includes passenger cars and heavy 

vehicles, another flow-density curve was generated (see Fig. 3.5); 

 Q = Q(D) functions in presence of different percentages of heavy 

vehicles can be developed; O/D matrices must be assigned to 

reproduce a wide range of operational conditions on the roadway, 

from free-flow to critical density; 

 estimation of passenger car equivalents for a given percentage of 

heavy vehicles was achieved by comparing at equal density values, 

the flow rate obtained for entering traffic flows with passenger cars 

only (QB) with the flow value (QM) corresponding to a traffic 

demand characterized by a percentage pT of heavy vehicles; the 

estimation can be developed considering: 

 
 (3.14) 

 

This equation starts from QB=QM (1 - pT)+QMpT ET, where QB is 

a heterogeneous flow including the share referable to passenger 

cars QM·(1 - pT) and the share of heavy vehicles (QM · pT ), 

multiplied by ET for obvious reasons of homogeneity. 
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 Q = Q(D) functions QB and QM for different flow percentages (that 

is 100% passenger cars, 10%, 20% , 30%, heavy vehicles) for the 

freeway roadway can be now developed. In order to apply this 

criterion for calculating ET, lnV-D2 regressions on simulated data 

are necessary.  

Base and mix curves were developed for a combinations of freeway 

grade and length of grade, and percentages of heavy vehicles. It is to be 

expected that each set of conditions results in potentially different flow-

density value for the base and mix scenario. 

III.5 MODELING RESULTS 

As an example of the above proposed method of PCE estimation, the 

investigation of the effect of traffic flow rate and road design variables 

on PCE is shown here. Table 3.3 shows the resulting PCE values for the 

subject types of heavy vehicles and for the explored combinations of 

traffic and road design variables considered in the base and mix curves. 

PCE values are limited to QM < 3000 veh/h/2 lanes in order to avoid 

saturated conditions for which the simulation model was not calibrated. 

In this explorative study estimations in Table 3.3 show that PCEs are 

sensitive, to some degree, to all variables here examined: 

 the effect of heavy vehicles tend to increase with traffic flow rate 

for upgrades as well as downgrades;  
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 increasing the flow rate, the effect of heavy vehicles increases 

even at level grades; 

 having the same value of grade length, there is an increasing 

effect of heavy vehicles at an increasing flow rate;  

 having the same value of freeway grade, there is a higher effect of 

heavy vehicles at high flow rate values;  

 increasing the percentage of heavy vehicles, the effect of heavy 

vehicles on traffic operations slightly decreases, especially when 

traffic flow rates are higher than 2,000 veh/h/2 lanes. 

 
Fig. 3.5. Method of PCE calculation. 
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PCE values obtained in this research are similar to those shown in the 

HCM (2010) at level and slight upgrades (3%) especially at low values 

of flow rate (< 2000 veh/h/ lanes); increasing the flow rate, at high grade, 

HCM PCE values, in turn, are greater when the flow rates increase for 

steep and long upgrades as well as downgrades. 

Grade  
length of 

grade 
 [km] 

Flow rate [veh/h/2 lanes] and percent heavy vehicles [%] 

QM1000 1000<QM2000 2000<QM3000 

10 20 30 10 20 30 10 20 30 

level  
1 1.1 1.4 1.4 1.2 1.5 1.5 1.8 1.7 1.6 

2 1.1 1.4 1.4 1.2 1.5 1.5 1.8 1.7 1.6 

up-grade 
2% 

1 1.2 1.5 1.3 1.3 1.5 1.5 1.6 1.6 1.6 

3 1.2 1.5 1.5 1.4 1.6 1.6 1.8 1.7 1.7 

5 1.2 1.6 1.6 1.4 1.6 1.6 1.8 1.8 1.7 

up-grade 
3% 

1 1.3 1.5 1.5 1.4 1.5 1.5 1.8 1.7 1.6 

3 1.3 1.5 1.5 1.4 1.6 1.6 1.9 1.7 1.6 

5 1.4 1.5 1.6 1.6 1.6 1.6 1.9 1.8 1.7 

up-grade 
5% 

1 1.3 1.5 1.5 1.4 1.5 1.5 2 1.7 1.6 

3 1.4 1.5 1.7 1.5 1.6 1.6 2 1.8 1.8 

5 1.5 1.6 1.7 1.6 1.6 1.7 2 1.8 1.8 

downgrade 
3% 

2 1.1 1.4 1.5 1.3 1.5 1.5 1.8 1.6 1.6 

3 1 1.3 1.4 1.2 1.5 1.6 1.8 1.8 1.7 

downgrade 
5% 

2 1.1 1.4 1.5 1.3 1.5 1.6 1.9 1.8 1.7 

Table 3.3. PCE estimations for different grade level and flow rates 
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These difference are due to the different definition of PCE applied in this 

research, compared to the definition applied in obtaining the HCM PCEs. 

According to Linzer et al. (1979) indeed, the PCEs in the HCM were 

based on equivalent effect on traffic speed, while the PCEs in this 

research were obtained using the definition of PCE as equivalent effect 

on traffic density. Moreover, heavy vehicles considered in this study 

(having a length less than 12 m) are only a part of those considered in the 

simulation model used to estimate the PCEs provided in the HCM . 

 

Fig. 3.6. Flow- density curves for different percentage of truck 
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III.6 CONCLUSIONS 

The effect of highway and traffic variables on the equivalency between 

heavy vehicles and passenger cars was investigated in this research. 

Technical literature still presents few studies related to the calculation of 

passenger car equivalents for heavy vehicles in Italian context. The 

reasons for this are due to time, resources and efforts required for a PCE 

estimation study based on data collected on field. As a consequence, 

microsimulation can be a useful tool for the functional analysis of 

freeway and highways, and for the estimation of the impact of heavy 

vehicles on the quality of traffic flow. Starting from an overview of data 

collected on A22 Brenner Freeway, Italy, the issues associated with 

calibration and validation of the simulation model for the selected case 

study were described. The study methodology that used the traffic 

density as equivalency criteria for the estimation of passenger car 

equivalents for heavy vehicles was then presented. Starting from the 

Huber criterion, passenger car equivalents for heavy vehicles on basic 

freeway sections were estimated using the densities of the mix flow 

generated by Aimsun. Using Aimsun software it was possible to evaluate 

the variation in the traffic quality on freeway, varying the percentage of 

heavy vehicles in the traffic demand. Thus traffic conditions difficult to 

capture in the field were isolated and replicated to have a huge amount of 

empirical data. Simulations have permitted values of the fundamental 
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variables of traffic flow (namely speed, flow, density) for different 

percentages of heavy vehicles to be derived. Data simulated by Aimsun 

were used to develop the relationships among the variables of traffic flow 

and to calculate the passenger car equivalents for heavy vehicles by 

comparing a fleet of cars only with a mixed fleet, characterized every 

time by different percentages of heavy vehicles.  

Despite the exploratory nature of this study, some implications can be 

drawn from the application of the proposed procedure. PCE values of a 

heavy vehicle changes with change in traffic volume and composition. 

The PCE values here estimated resulted sensitive, to some degree, to all 

variables examined: increasing the flow rate, the effect of heavy vehicles 

increased for upgrades and downgrades, as well as at level grades; 

moreover, increasing the flow rate, an increasing effect of heavy vehicles 

on segments having the same value of length occurred. Analogous 

considerations could be made for segments characterized by the same 

grade value, for which there was an increasing effect of heavy vehicles at 

an increasing flow rate. At last, decreasing the percentage of heavy 

vehicles, the effect of heavy vehicles on traffic operations slightly 

increased, especially for traffic flow rates higher than 2000 veh/h/2 lanes. 

The differences between the values of PCEs estimated in this study and 

the HCM values for PCEs were briefly described; reasons for the 

difference between these two set of values were also discussed. However, 

at this stage of the research, the methodological path followed for 
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estimating the PCEs of heavy vehicles in terms of their effects on the 

operations of a basic freeway section has been described. Two objectives 

were pursued: i) to investigate the influence of a variety of traffic, road 

design, and vehicle characteristics on PCEs; ii) to propose a set of PCE 

values to be used in analyzing the operation of basic freeway sections. 

More research remains to better understand and confirm these 

findings. Results, indeed, could be improved upon using an automated 

procedure in the calibration process in order to include the effect of 

further parameters on the model outputs. Moreover, PCEs should be 

calculated for other types of heavy vehicles such as multi-trailer trucks 

and buses, as well varying the traffic scenarios and/or considering other 

geometric variables (for example exploring situations in which a segment 

of freeway consists of composite grades). Collection of typical vehicle 

distribution in real field would be also needed. Only afterwards, a 

validation study of the PCE values estimated for A22 Brenner Freeway 

could carried out using data collected in the field. It should be noted that 

such a field data collection effort was already conducted (Mauro, 2003, 

2005, 2007); however data updating and integration could be hindered by 

difficulties both in the selection of vehicle types for the data collection, 

because it can be difficult to obtain typical vehicle performance 

characteristics, and in the selection of a time period for collecting typical 

traffic volumes on basic freeway sections. 
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IV. AN AUTOMATED PROCEDURE BASED ON

GA FOR CALIBRATING TRAFFIC

MICROSIMULATION MODELS

Numerous problems in science and engineering require the optimization 

of model performance by minimizing the error between the model 

outputs and observations of the real system (Pujol and Poli (2004)). As it 

is known the optimization problems consist of maximizing or minimizing 

an objective function, which expresses how far an observable variable is 

from its simulated value, constrained by the set of feasible values of the 

model parameters on which the simulated variable depends (Hourdakis et 

al. (2003); Ma et al. (2007)). Parameter optimization represents, thus, a 

problem in which the objective is to set the system parameters so as to 

maximize its performance. Microsimulation has been increasingly used 

in engineering applications, but various issues concerning the extent to 
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which its outputs reproduce field data still need to be addressed (Barceló 

et al. (2010)). In traffic modelling, microscopic simulation requires many 

different parameters to describe traffic flow characteristics, driving 

behavior, traffic control systems, and so on. Since some calibration 

parameters, for example those corresponding to the car following and 

lane changing models, are often difficult to collect on the field, it is 

common practice to use the default parameters provided by the 

microscopic simulation models. However, the simulation models under 

default calibration parameters may not accurately represent field 

conditions and usually produce unreliable results (Vasconcelos et al. 

(2014); Barceló et al. (2010); Park and Schneeberger (2003)). In turn, the 

different kind of errors which could affect the outputs of the models, 

limits the required accuracy of the model results (Vasconcelos et al. 

(2009)). A proper calibration of the traffic model parameters has to be 

performed so as to obtain a close match between the simulated and the 

actual traffic measurements. In this perspective the calibration process 

could be a complex and time-consuming task because of the large 

number of unknown parameters (Toledo et al. (2004)). The formulation 

of the calibration process of a traffic model as an optimization problem is 

perhaps the most recommended practice (Barceló et al. (2010)). 

However, increasing the number of variables and parameters, also the 

number of possible parameter values becomes too large to handle without 

automation (Bukharov and Bogolyubov (2015); Ma and Abdulhai 

(2002)). In order to solve the optimization problem, various automatic 
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calibration methods and procedures have been used by researchers in the 

process of calibration of microsimulation traffic models. For the 

calibration of microscopic traffic simulation models some studies used 

sensitivity analysis and trial-and error method which could be very 

resource-intensive and/or time-consuming (Park and Schneeberger 

(2003); Moridpour et al. (2012)); for calibration purposes some other 

studies used multistart algorithms (Ciuffo et al. (2008)), neural networks 

(Otkovic et al. (2013)) and genetic algorithm for input parameters of the 

simulation model (Kim et al. (2005); Park and Qi (2005); Menneni et al. 

(2008); Onieva et al. (2012); Camilleri and Neri (2014)). However, the 

search for an effective solution to the calibration problem cannot be 

exhausted by the choice of the most efficient optimization algorithm. The 

use of available information concerning the phenomenon could allow 

calibration performance to be enhanced, for example, by reducing the 

dimensions of the domain of feasible solutions (Vasconcelos et al. 

(2009); Ciuffo et al. (2008)). According to Hale et al. (2015), this 

reduction in domain could allow use of different optimization methods. 

For the purpose of calibrating a microscopic traffic simulation model, a 

reliable calibration process must include: 1) the definition of a criterion 

to evaluate the performance of a model in terms of an objective function; 

2) the selection of the parameters that will be calibrated and an 

appropriate algorithm to minimize or maximize the objective function; 3) 

the test of calibration results against new data sets. Starting from these 
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considerations, the study presents a calibration methodology that was 

implemented and tested on the A22 Brenner Freeway, Italy, based on a 

real traffic data set. A macroscopic approach was followed in order to 

compare the field measurements with the corresponding simulated 

outputs obtained by using the microscopic traffic simulation package 

AIMSUN for a freeway test segment under congested and uncongested 

traffic conditions. 

This work shows the first results obtained by applying a genetic 

algorithm in the microsimulation traffic model calibration process. The 

calibration was formulated as an optimization problem in which the 

objective function was defined to minimize the differences of the 

simulated measurements from those observed in the speed-density 

diagram. The Genetic Alghorithm tool in MATLAB® was applied for 

calibrating the simulation models. In order to implement this process, the 

optimization technique was attached to Aimsun via a subroutine that 

allowed the data transfer between the two programs. The MATLAB® 

software acted as an interface with Aimsun via external scripting written 

in Python. 

Taking in consideration the best combination of the Aimsun parameters 

resulted from the genetic algorithm, the simulation with optimized 

parameters generated a satisfactory fit to the field data in comparison 

with the simulation using the default parameters. The results also 

indicated that the procedure gave a good fit both in the calibration and 

validation sections.  
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IV.1 DATA GATHERING AND CALIBRATION ISSUES 

This section sets out not only how data were gathered on different 

segments of the A22 Brenner Freeway, Italy, but also the study efforts 

initially made to investigate the methodological issues associated with 

the calibration of the microsimulation model parameters for the A22 

Brenner Freeway, Italy. These subjects of study will be preceded by an 

overview of the calibration methodologies used for traffic 

microsimulation models. Preliminary results from the comparison 

between the empirical measurements of speed density values, and the 

simulated pairs of speed-density as generated by Aimsun (using the 

default values for the parameters of the model) will be also presented. 

 

IV.1.1 DATA GATHERING PROCESS 

The data needed for this study were obtained from a series of 

experimental surveys carried out at different observation sections on the 

A22 Brenner Freeway and multiple days in 2003, 2005, and 2007 (Mauro 

(2007)). The A22 Brenner Freeway refers to a major European trunk 

route, which connects Innsbruck in Austria to Modena in northern Italy. 

High traffic volumes up to 40,000 vehicles per day (of which up to one-

third are heavy vehicles) move on the freeway, with high seasonal tourist 
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flows during holiday times; however, all vehicle categories on the A22 

Freeway are growing similarly to the national trend.  

Details concerning the issues regarding the experimental data collection 

and the treatment of traffic data surveyed at specific observation sections 

along the A22 Freeway are also available in Mauro et al. (2013). The 

summary of the characteristics at the observation stations which were 

selected away from the merging or diverging operations near to the 

on/off ramps is reported in Table 4.1; the same table shows the ratios of 

the peak hour traffic volume (both in the 30th and 100th peak-hour) to 

the annual average daily traffic (AADT) for each location.  

The traffic data were measured at specific stations (Adige, Rovereto and 

S. Michele) on the A22 Freeway and were processed for the purpose of 

deriving the fundamental diagram of traffic flow, namely the flow-

density-speed relation; thus the relationships between flow and density, 

Q = Q(D), speed and density, S = S(D), speed and flow, S = S(Q), were 

developed for the carriageway, the inside lane and the passing lane.  

The measurements of traffic flows, Q, were expressed in passenger car 

units/hour, by homogenizing the traffic flows, measured at 15-minute 

intervals, with the site specific values of Passenger Car Equivalent (PCE) 

factors which were calculated from field traffic data. The criterion based 

on the average headways (Roess et al. (2004)), namely calculating the 

ratio of the average headways between pairs of vehicles (passenger cars, 

heavy vehicles, passenger cars-heavy vehicles, heavy vehicles-passenger 
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cars) to the average headways between pairs of passenger cars only was 

used.  

Tab. 4.1. Geometric conditions around stations and peak hour traffic volume as 

a percentage of AADT by station. 

Since there is the relation Q = D*S, the estimation of one of three 

relations, Q = Q(D), S = S(D), S = S(Q), involves the specification of the 

other two. For this purpose, different models were examined 

(Greenshields et al. (1935); Greenberg (1959); Edie (1963)); the single-

regime model proposed by May (1990) seemed to fit the data much better 

than the other models, especially the values of the maximum densities in 

congested traffic conditions. According to the May model, the relation 

between speed and density, S = S(D) is expressed by the equation (4.1) 

as a function of the free flow speed (SFF ) and the critical density (Dc), 

or the density with which the capacity C is associated:  

Southbound Northbound

Adige

km 
187+300

Rovereto

km 
161+100

S. Michele

km 
126+100

13.80% 12.00%

Station

13.80% 15.20% 13.50%

km 
121+400

km
 121

tangent slope= -0.09%  slope= 0.09% 13.50% 12.10%

15.10% 13.40% 14.30% 12.60%

km 
158+500

km
 158

R= 1200 m slope= 0.43%  slope= -0.43% 15.50%

horizontal
vertical

km 
187+400

km 
187

tangent slope= -0.28 % slope= 0.28 %

Geometric conditions around station
Q/TGM 

(Southbound)

Q/TGM 

(Northbound)

on-ramp off-ramp

alignment

Q30/TGM Q100/TGM Q30/TGM Q100/TGM
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Thus, considering the fundamental relation between flow Q, density D 

and speed S, Q = D*S, the relations between flow and density, Q = Q(D), 

and speed and flow, S = S(Q), are expressed by the following equations: 
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which allow the speed-flow function, S = S(Q), and the flow- density 

function, Q = Q(D) to be developed for each of the selected stations. 

According to traffic engineering literature (Roess et al., 2004), first the 

relation between speed and density was estimated. This expresses, the 

interaction of vehicles in the traffic stream, where drivers experience the 

density, variations of which imply larger or smaller distances between 

vehicles, and thus they adapt their driving behaviour.  

Traffic flow models were calibrated for the inside lane, the passing lane 

and the carriageway at the sections under examination. Based on the 

scatter plot (ln(S); D2), a least squares estimation was performed; SFF and 

Dc were calculated for all observation sections. By using Equations (4.1), 

(4.2) and (4.3), the speed-flow-density relationships were specified for 

each observation section.  
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Then the homologous determinations of SFF and Dc at the observation 

sectionswere averaged; using the obtained values of SFF and Dc, the 

speed-flow-density relationships for each lane and the roadway for A22 

Freeway were developed. See for further details Mauro et al. (2014). 

Table 4.2 shows, for example, SFF and Dc values which were estimated 

for each Southbound station from ln(S)- D2 regressions; estimations of 

capacity C and critical speed Sc, corresponding to C, as well as the values 

of coefficient of determination R2 for each regression line (ln(S); D2), 

were also reported; the mean values of the traffic parameters 

(Southbound and Northbound) are also shown.  

Due to restrictions on the movement of heavy vehicles during the days of 

surveys, it is noteworthy that for S. Michele section only a fleet of cars 

was observed. The restriction was about the movement of some category 

of heavy vehicles which transit was forbidden with an ordinance decreed 

by the A22 managing institution. In particular, the regulation forbade the 

entry of heavy vehicles (up to 7500kg) during the days of survey. 

For the other sections under observation, traffic flows were homogenized 

before the calibration of the May’s model to consider the effects of heavy 

vehicles on traffic flow. For this purpose the passenger car equivalents 

calculated by Mauro (2007) were used. 
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Station 
lane/lanes SFF Dc C SC R2  

(Southbound) 

Adige 
right 109.4 24.22 1607 66 0.93 

passing 128.6 26.2 2043 78 0.93 
2-lanes 116.3 50.92 3592 71 0.95 

Rovereto 
right 105 23.45 1493 64 0.89 

passing 127 26.1 2012 77 0.92 
2-lanes 114.3 49.61 3440 69 0.92 

S. Michele 
right 105 24.36 1551 64 0.88 

passing 131.5 24.67 1967 80 0.7 
2-lanes 118.2 48.35 3467 72 0.91 

Average right 106.95 23.65 1534 64..86 - 
(Southbound 

and 
Northbound) 

passing 130.28 25.09 1983 79.02 - 

   2-lanes 117.45 48.56 3459 71.23 - 

Table 4.2. Parameters of speed-flow-density relations for each traffic station. 

Fig. 4.1. Speed-density graphs with plots of field and simulated data. 
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IV.1.2 CALIBRATION ISSUES FOR THE A22 FREEWAY 

As mentioned above, the aim of the study was to explore 

methodological issues involved in applying a genetic algorithm in the 

microsimulation traffic model calibration process. A calibration was a 

method thet ensured that Aimsun gave outputs close to the empirical 

measurements of the pairs speed-density, flow-density, flow-speed was 

investigated. First for executing Aimsun the model network for the A22 

Freeway was created and the geometric and functional characteristics of 

the basic freeway segments, on–off ramps, as well as traffic detectors at 

specific locations were represented. Note that in the model network of 

the A22 Freeway detectors were located so that they could replicate the 

location of detectors on field. Then a basic freeway segment, centered on 

the Southbound S. Michele station, having the length of about 2 

kilometers and the cross section of A22 Freeway (two traffic lanes, each 

3.75 m wide, in each direction), was considered. Since the basic freeway 

segment was selected far enough from the influence area of ramps, 

uninterrupted flow conditions were guaranteed. Before having recourse 

to an automated procedure to test better the validity of the microscopic 

traffic simulation model, local traffic conditions on A22 Freeway were 

reproduced performing trial simulation runs by using the default values 

only for the model parameters. Based on the empirical data detected on 

the Southbound station of S. Michele, the time series of traffic flow, 

speed and density were replicated in Aimsun in order to test the ability of 
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the model to reproduce the real data series. Passenger cars only were 

considered; their attributes were chosen within the range that Aimsun 

gives. An AADT of 35,000 passenger cars per day was simulated and 

hourly modulated for representing traffic conditions on A22 Freeway. 

For this purpose, a total OD matrix of 35,000 passenger cars was then 

distributed in subsequent O/D matrices for a total time interval of 13 

hours, from 7:00 am to 8:00 pm, assuming the same percentages 

distribution of traffic detected in reality. In this first step, as above 

mentioned we considered the default parameters of Aimsun version 

8.0.5. The simulated data set was fitted as the empirical data by using the 

May model; thus the comparison between the two sets of data was 

performed by using two continuous curves. The simulated values of 

speed and density were verified against the corresponding empirical 

values as shown in Figure 4.1; it shows indeed, the speed-density graph 

diagram with the two curves interpolating the empirical data and the 

simulation outputs (gained by using default parameters) together with the 

plots of field and simulated data. 

IV.2 FORMULATION AND SOLUTION OF THE CALIBRATION 

PROBLEM 

In this section the problem of the formulation and solution of the 

calibration problem is considered. In particular a formal interpretation of 

the problem is given, subsequently a solution by applying genetic 

algorithms is proposed. 
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IV.2.1 FORMAL INTERPRETATION 

Let ሼݑ௞ሽ௞ୀଵே  and ሼݕ௞ሽ௞ୀଵே  be two input-output sequences of observed 

data acquired during suitable traffic measurements and they represent the 

"experimental surveys". Now we want to reproduce the same output 

sequence corresponding to the same input sequence by means of 

simulation. Obviously, in order to obtain the simulated output, indicated 

with ሼݕ௞
ᇱ ሽ௞ୀଵ
ே  , we need to calibrate the model, and this means to find 

values for the model parameters such that the simulated output ሼݕ௞
ᇱ ሽ௞ୀଵ
ே  

tracks as well as possible the observed output ሼݕ௞ሽ௞ୀଵே  given the same 

input ሼݑ௞ሽ௞ୀଵ
ே  .  

Therefore, the problem can be formulated as follows. Let us define 

the following objective function: 

 

jሺβሻ= 1

N
∑ wi ቂ∑ ݃ ቀݕ௜,௞ െ ௜,௞ݕ

ᇱ 	ሺݑ௞, ሻቁேߚ
௄ୀଵ ቃN

i=1   (4.4) 

where k is the discrete time instant, N is the number of measures, 

each one at each time instant, q is the number of outputs taken into 

consideration for the identification procedure, ݓ௜ is the weight associated 

with the error on the i- th variable (the generic i-th variable will be 

specified for the problem under study in the next subsection), ݃ሺ∙ሻ is 

either the square or the absolute-value function, ݕ௜,௞ is the experimental 

value of the i-th variable at the instant k and ݕ௜,௞
ᇱ 	ሺݑ௞,  ሻ is theߚ
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corresponding simulated value that is a function of the input u and of the 

parameter vector β. The solution of the calibrating problem will be the 

parameter vector ߚ∗ that minimize the objective function (see equation 

(4.4)), i.e.: 

∗ߚ ൌ arg݉݅݊ఉ ݆ሺߚሻ  (4.5) 

Equation (4.5) can be solved iteratively; however there are in fact two 

problems: the first one is the stopping criteria, and the second is the 

choice of the initial condition. The first problem can be easily solved by 

selecting a maximum number of iterations or, the algorithm can be 

stopped when: 

ቚ௝
ሺఉሻೖି௝ሺఉሻೖషభ
௝ሺఉሻೖషభ

ቚ ൏  (4.6)  ߝ

Where ε is the error stop quantity and ݆ሺߚሻ௞ and  ݆ሺߚሻ௞ିଵare the values 

of ݆ሺߚሻ computed at the iterations k and k-1, respectively. This stopping 

criteria means that the algorithm will be stopped when the objective 

function variation, between two consecutive instants, is less than a freely 

chosen quantity ε.  

The problem of the initial condition is not trivial; actually most 

algorithms search only for local minima, and in case of multiple minima 

(non-convex problem), the algorithm generally converges only if the 

initial guess is already somewhat close to the final solution. For this 
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reason, the choice of the initial condition is crucial. However, this 

problem is avoided if genetic algorithms are used, since they are 

evolutionary optimization algorithms robust with respect to the initial 

condition (Davis et al. (1991)). 

IV.2.2 PARTICULARIZATION FOR THE CASE UNDER STUDY 

In our case the "experimental surveys" consist of measurements of 

the speed S and of the density D for one day. The estimated output is 

generated by means of Aimsun, i.e. the software Aimsun is running with 

a fixed model corresponding to the model under study, and tuned with a 

suitable set of parameters. Obviously if the selected parameters are 

incorrect, then the estimated speed-density diagram does not coincide 

with the experimental survey. For this reason let us select (4.4) as 

follows: 

J(β)= 
ଵ

ே
∑ ቂଵ

ଶ
൫ܦ௞ െ ௞ܦ

ᇱ ሺߚሻ൯
ଶ
൅	ଵ

ଶ
൫ܵ௞ െ ܵ௞

ᇱ ሺߚሻ൯
ଶ
ቃே

௞ୀଵ  (4.7) 

where N = 96, since we have one day of survey data, one for each 15 

min. We choose as parameters for the optimization the following: 

ߚ ൌ ሾ்ܴ	ܵ௠௔௫		݀௠௜௡ሿ (4.8) 

Where ்ܴ is the reaction time, ܵ௠௔௫	is the maximum desired speed, and 

݀௠௜௡ is the minimum distance vehicle.  
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Note that the reaction time is the time in seconds that it takes a driver to 

react to speed changes of the preceding vehicle, the maximum desired 

speed represents the maximum speed that a certain type of vehicle can 

travel at any point in the road network, and the minimum distance 

between vehicle is the distance, in metres, that a vehicle keeps between 

itself and the preceding vehicle when stopped. 

Now using equations (4.7) and (4.8), the problem (4.5) can be solved 

using the genetic algorithm in MATLAB. In particular starting from a 

generic initial condition, the genetic algorithm generates a set of 

parameters β, and then the software Aimsun is running with the 

parameters β (the Aimsun is attached to MATLAB® via a python 

subroutine that allowed the data transfer between the two programs). The 

Aimsun gives a set of estimated outputs (one for each β) and the 

algorithm computes the objective functions (4.7) associated with each β. 

Finally the algorithm selects the best parameter β and generates a new set 

of parameters β that represent the new generation. This cycle goes on 

until the stopping criteria occurs.  

In our case the stopping criteria is chosen with a specified fixed 

maximum number of iterations (20 generations).  

In our case, the initial population contains 20 individuals and the 

stopping criteria is chosen fixing a maximum number of iterations (20 

generations). With these choices, the computational time is almost 4 

hours using an Intel(R) Core (TM) 2 Quad CPU Q9300 2.50GHz and 
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8Gb of RAM. Note that we stopped the algorithm after 20 iterations 

because, after 20 iterations, the value of the cost function (4.7) reaches a 

steady-state and the algorithm can be stopped. The steady-state condition 

can be checked using condition (4.6), which is satisfied, in our case, with 

ε= 0:1. In other words after 20 iterations the objective function variation, 

between the 20th and the 21st instant, is less than ε = 0:1. Obviously if ε 

is set to a smaller value, then the algorithm will stop after 20 iterations. 

In order to avoid the algorithm generating parameters without a physical 

meaning (i.e. negative reaction time, negative distance among vehicles, 

etc...), the search domain has been reduced defining an upper bound ߚᇱᇱ 

and a lower bound ߚᇱ for β , i.e. ߚᇱ ൑ ߚ ൑  .ᇱᇱߚ

The best ߚ∗ obtained from the solution of this optimization problem will 

be the best value of reaction time, maximum desired speed, and 

minimum distance vehicles such that the simulated speed-density 

diagram tracks as well as possible the experimental one. This represents 

an efficient automated calibration procedure for simulation with Aimsun. 

The results are presented in the next Section. A block diagram of the 

processing steps to execute the algorithm are shown Figure 4.2. The 

details of the genetic algorithms are not given here since it is not the 

objective of this work, instead we are interested on their applications in 

the calibration procedure for traffic simulations with Aimsun. The reader 

is referred to the online MathWorks’s® website or to the large number of 

online manuals for basic knowledge of genetic algorithms. 
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Fig. 4.2 Block diagram of the algorithm. 
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IV.3 SIMULATION RESULTS 

The algorithm detailed above was applied to solve the optimization 

problem as described in Section 3. After 20 generations (approximately 4 

hours of computing time), the algorithm reached the convergence 

condition and returned the optimal solution. The best combination of the 

values of the simulation parameters included the value of 0.72 s (instead 

of the default value of 0.8 s) for the reaction time, which is the time in 

seconds taken for a driver to react to speed changes in the preceding 

vehicle, the value of 0.84 m (instead of the default value of 1 m), for the 

minimum distance between two vehicles, or the distance, in metres, that a 

vehicle keeps between itself and the preceding vehicle when stopped, and 

the value of 104.27 km/h (instead of the default value of 110 km/h) for 

the maximum desired speed, or the maximum speed that a certain type of 

vehicle can travel at any point in the road network.  

To test the consistency of results from GA optimization was tested by 

repeating the GA process two more times with 10 generations and 20 

populations. Naturally increasing the number of generations or 

populations would help to reach goodness of fit value, but it requires 

more computation time. 

Considering the best combination of the modeling parameters resulting 

from the genetic algorithm application, the following Figure 4.3 shows 

the speed–density graph with the two curves interpolating the empirical 
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data and the simulation outputs (gained by using the best output 

parameters) together with the two series of observed and simulated data 

are plotted also. Compared to the graph shown in Figure 4.1showing the 

speed-density graph with the two curves interpolating the empirical data 

and the simulation outputs (produced by using default parameters only), 

together with the plots of field and simulated data, the simulation 

generated using the optimized parameters are a satisfactory fit to the field 

data. 

 

Fig. 4.3. Speed-density graphs with plots of observed and simulated data from 

genetic algorithm application. 
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Infact, a comparison of the uncalibrated Aimsun models (default 

parameters), and the calibrated Aimsun model (GA-based parameters) 

shows the importance of calibration for microscopic simulation models. 

Considering how the genetic algorithm works, namely that the genetic 

algorithm function minimizes the goodness of fit-function, the most 

favourable value value for a population is the smallest fitness value for 

any individual in the population. By minimizing the fitness function, we 

were able to express how far an observable variable was from its 

simulated value, constrained by the set of feasible values of the model 

parameters on which the simulated variable depends. Figure 4.4 shows 

the comparison of the density profiles both for the field measurements 

from the A22 Freeway and for simulation with the default and 

optimization parameters. A better match to the field data clearly is 

obtained using the optimization parameters compared to the default 

parameters. Similar considerations can be made for count and profiles as 

shown in Figure 4.5. 

Figure 4.6 shows the values of the cost function J(β) in Equation (4.7) 

during the optimization period, and the corresponding value of the same 

J(β) computed using the default parameters. From this figure it is evident 

the beneficial effect obtained with the proposed algorithm, since a better 

matching to the field data is clear in comparison with the simulation 

generated by using the default parameters. This fact is confirmed by the 

computation of the cost function in both cases, which is equal to J(β) = 
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69 for optimized parameters and it is equal to J(β) = 82:5 for default 

parameters. 

Fig.4.4. Density profiles for field measurements and simulation outputs. 
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Fig.4.5. Count profiles for field measurements and simulation outputs. 
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Fig.4.6 Values of the cost function J(β) in Equation (7) during the optimization 

period. 

In order to validate the calibrated model, the process of checking to what 

extent the (calibrated) model replicates reality was also performed. Once 

the parameters were optimized to produce the best fit between observed 

and simulated data, i.e. when they had little further influence on the 

modeling results, the validation of the calibrated model was addressed. 

The validation was performed by comparing the simulation outputs with 

an empirical data set which was not used in the calibration process. 

Figure 4.7 shows the empirical and simulated speed-density graphs. 

Specifically the same figure shows the comparison of the simulation data 

(together with the curve which interpolate them), and the empirical 
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equation S = S(D) in which the mean values of the traffic parameters 

(Southbound and Northbound), for the observation stations on A22 

Brenner Freeway, were inserted (see Table 4.2). 

 

Fig. 4.7. Validation process: empirical S-D curve versus simulation outputs. 

Two further comments can be made. Figures 4.4 and 4.5 show good 

results for some time interval, but in some cases the behavior seems to 

deteriorate during periods of low traffic counts. This problem could be 

avoided using different optimal parameters for different time intervals, 

but this requires a more complex model and a larger number of 

parameters that leads to more computational effort. On the other hand, 

the calibrated values in the validation seem to have poor agreement at 
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higher densities. The reason of this result is referable to the choice of a 

on-single regime model such as the May model proposed in Equation 

(4.1). In order to avoid this problem, given that the empirical data 

resulted in many more low-to-medium densities than for higher densities 

where the error between real and simulated data seems high, a two- or 

more regime model can be considered instead of the on-single regime 

model. Indeed, a two or more-regime model is likely to provide much 

improvement for higher densities. Both these comments represent an 

important recommendation emerging from this work and an area for 

further research.  

For each time interval, the simulated density and values of speed were 

compared with the results from the empirical speed-density equation 

were compared and the GEH index was calculated as criterion for 

acceptance, or otherwise rejection, of the model (Barceló et al. (2010, p. 

46)). Since the deviation of the simulated values with respect to the 

measurement was smaller than 3 in 100% of the cases, the model 

validation could be accepted. In particular a GEH of 2.85 has been 

obtained using the default parameters and a GEH of 2.18 has been 

obtained using the optimized parameters. 
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IV.4 CONCLUSION 

In transportation engineering, as in many other branches of computer 

science and mathematics, the benefits of automating the iterative process 

of manually adjusting the values of the parameters as proposed by a 

traffic microsimulation software can be pursued by solving the 

calibration process as an optimization problem. The optimization 

techniques, indeed, searching for an optimum set of model parameters 

through efficient search methods, find a solution that is close to the 

optimal solution and allow the simulation of complex phenomena that 

cannot easily be described analytically. The simulation of the traffic 

conditions on the highway and through intersections will give realistic 

microsimulation results when the objective function is embedded into the 

optimization problem to be solved and is able to effectively minimize the 

differences of the simulated measurements from those observed in the 

field. Thus, the formulation of the calibration process of a traffic model 

as an optimization problem is recommended as worthwhile offering 

much potential if adopted in practice . 

Based on the above considerations, this research presents the first results 

of research on the application of a genetic algorithm to improve the 

calibration of a traffic microsimulation model based on speed-density 

relationships for freeways. The calibration method was implemented and 

tested by using a large set of traffic data collected from the A22 Brenner 

Freeway, Italy. Two sets of data measured at different stations of the A22 
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Freeway were identified, one to perform the model calibration and the 

others for the model validation.  

Aimsun microsimulation software and a freeway segment were used as 

the basis of the study. The field measurements of the traffic variables 

here identified (i.e. flow, speed and density) were compared with the 

corresponding modeling results obtained by using the software Aimsun 

for the selected test freeway segment under congested and uncongested 

traffic conditions.  

Before having recourse to an automated procedure to test better the 

validity of the traffic microsimulation model, local traffic conditions on 

A22 Freeway were reproduced performing trial simulation runs by using 

the default values for the model parameters. The empirical and the 

simulated data sets were fitted by using the May model; thus the 

comparison between the two sets of data was performed by using two 

continuous speed-density curves.  

The calibration was then formulated as an optimization problem to be 

solved based on a genetic algorithm in which the objective function was 

defined so as to minimize the differences between the simulated and real 

data sets in the speed-density graphs. In order to solve the optimization 

problem and then calibrate the simulation model, the Genetic Alghorithm 

(GA) tool in Matlab was applied. Among the parameters within the 

simulation which could affect the simulation outputs and therefore 

considered potentially important for calibration purposes, were the 

reaction time, the minimum distance between vehicle and the maximum 
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desired speed. These parameters had the biggest influence on the 

difference between the observed and the simulated traffic measurements. 

Having in mind the objective to automate the calibration process, the 

optimization technique was attached to Aimsun via a subroutine so that 

the data transfer between the two programs could automatically occur. 

An external script written in Python allowed the Matlab software to 

interact with the Aimsun software.  

Taking into consideration the best combination of the modeling 

parameters resulting from the GA application, we were able to observe 

that the simulation with optimized parameters generated a satisfactory fit 

to the field data, i.e. there was a very good approximation of the field 

measurements. Indeed, the simulated values of speed and density gained 

by using both the best output parameters (resulting from the GA 

application) and the default parameters only (as proposed by Aimsun) 

were verified against the corresponding empirical values by developing 

the speed-density graphs with the curves interpolating the empirical data 

and the simulation outputs for both simulation scenarios.  

Once the parameters were optimized to produce the best fit between 

observed data and simulation, the model calibration could be accepted, 

the validation of the calibrated model was made. This procedure involved 

a comparison of the observed and simulated data for the second set of 

data measured on the A22 Freeway. Thus it was possible to check to 

what extent the model replicated reality and to observe that the 
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calibration process may be considered in a broader context and not only 

limited to one particular test freeway segment of the A22 Brenner 

Freeway.  

Results showed that the genetic algorithm is applicable in the calibration 

and validation process of the traffic microsimulation model for the 

freeway under examination. It should be noted that the comparison 

between the field measurements and the simulation results obtained with 

the default and optimized parameters, only gives an insight into the 

performance of the calibration procedure, without solving the 

optimization issues on the nature of the obtained optimum (i.e. is it a 

local minimum or the absolute minimum?) and/or how well the absolute 

minimum is approximated by the local one, etc. However, beneficial tests 

resulting from the application of an optimization technique, which 

searches for an optimum set of parameters through an efficient search 

method, can compensate the further computational efforts deriving from 

the application of an optimization technique which automates the 

iterative process of manually adjusting simulation parameters not only 

for freeways but also for several other types of road infrastructures such 

as, at grade intersections and interchanges. 
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CONCLUSIONS 

In this work of PhD Thesis a methodology to find the fundamentals 

diagrams for the A22 Brenner freeway by microsimulations was 

presented. In traffic flow theory the fundamental diagram is an essential 

concept. The fundamental diagram relates two of the three variables 

average speed (v), flow (q) and density (k) to each other. If two of these 

variables are known, the third can be derived using the relation q = kv. 

Therefore, if only one variable is known, and the fundamental diagram is 

known, the traffic state can be determined. Furthermore, fundamental 

diagrams is also used to estimate some critical traffic parameters such as 

capacity/critical flow, critical density, etc. provided that the Fundamental 

Diagram truly reflects the intrinsic traffic characteristics. 
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The work of this PhD thesis started by introducing the fundamental 

diagram using Edie’s definitions and the use of speed- density diagrams. 

After that, a statistical approach based on observed and simulated speed-

density relationships was applied in the calibration process in order to 

measure the closeness between empirical data and simulation outputs. 

The comparison established between the lnS-D2 linear regressions for all 

simulated (speed/density) values and the corresponding linear regressions 

for the empirical data allowed an assessment of the quality of the 

calibration for the traffic microsimulation model. 

Afterward, it was developed a method that include an automated 

technique based on GA for automatize the process of calibration of the 

parameters in order to reproduce the fundamentals diagrams of  the A22 

Brenner freeway. In particular, the calibration was been formulated as an 

optimization problem in which the objective function was defined to 

minimize the differences of the simulated measurements from those 

observed in the speed-density diagram. 

Furthermore, the most important models for the analytical calculation of 

PCEs (Passenger Car Equivalents) was presented and the performance of 

the Aimsun software was tested. After that, the results of 

microsimulations in Aimsun was evaluated in order to obtain the relevant 

parameters for the estimation of the PCEs and their comparison with 

those proposed by HCM. 
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From a wider point of view, the importance and the advantages of this 

procedure is also the capability of the model to predict different scenarios 

that may occur in reality in the freeway section by varying different 

initial conditions. 

By using of microsimulation models, integrated with data collected on 

the field, the road managing authority can evaluate the effectiveness of 

an intervention by providing the positive or negative impacts that it will 

have on the operating conditions of the road infrastructure. 

Another important result is that the calibrated and validated model is 

enough flexible to capture the intrinsic functional relationship for a large 

range of field data measured in a freeway section. 
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