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In mature citrus trees, flowering is regulated by exogenous signals (i.e., low/high 

temperature, water shortage/water supply) that control flowering time, and by 

endogenous signals that control flower intensity. Actually, the ratio of endogenous 

promoters to inhibitors is considered as responsible for flowering; however, there is 

evidence suggesting that the inhibitors and their metabolism are the sole factors 

controlling flowering in Citrus. All the meristems have the information and ability to 

flower unless a negative factor hampers the process. The main endogenous factor 

controlling flower intensity is the fruit. 

Attending to the aforementioned, in this PhD. thesis, the following hypothesis 

was tested: 

Fruit inhibits flowering when ripening begins by exporting of hormones that induce 

epigenetic upregulation of flowering inhibitor genes in the leaves, and interfering in 

flower bud differentiation. 

 

The main findings are: 
 

1. The increase in FLC gene expression in ON-tree leaves coincides with fruit 

color change and low temperatures in the flower induction period. CiFT2 is 

expressed in OFF-tree but not in ON-tree leaves. 

 

2. The fruit produces and exports GAs and ABA to the leaves overlapping flower 

induction inhibition whereas these hormones decrease in OFF-tree leaves. GA3 

treatment reduces CiFT2 gene expression but not FLC gene expression.  
 

3. After bud sprouting, the inhibitory signals (FLC, TEM1, SVP) are not expressed 

in the new leaves. Every bud beside a fruit needs to restart vegetative growth to 

gain the flowering ability.  

 

4. The fruit activates proteins from the stress responses and the oxidoreductase 

activity while in OFF-tree the primary metabolism and synthesis of starch is 

upregulated.  
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5. During the flower induction period, the fruit modifies the DNA-methylation 

profile of the FLC gene and increases the expression of methyltransferases that 

increase FLC gene expression. In defruited trees the process is reverted to the 

OFF-tree state.    
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1. Flowering 

 

 Flowering comprises all of the development necessary for the irreversible 

commitment by the meristem to produce a flower or an inflorescence (Kinet, 1993). 

These stages include flower induction, flower initiation, flower differentiation and 

anthesis. The overall flowering process involves many steps, usually starting with 

perception of an environmental factor and terminating with the differentiation of three-

dimensional structures, the floral primordia (Zeevaart, 1976). During development, 

plants must undergo a juvenile phase before transition to adulthood. A period of 

juvenility is characteristic to all higher plants. Juvenility was defined as the period 

during which a plant cannot be induced to flower (Wareing, 1959; Hackett, 1985; 

Poethig, 1990; Goldschmidt and Samach, 2001). This stage finishes with the first 

flower. During the juvenile phase of plant development, meristems acquire 

reproductive competence becoming able to sense and respond to signals that induce 

flowering. In annual/biennial plants this period is very short but in angiosperm trees it 

lasts for several years. 

  

1.1 Flower induction, initiation and differentiation 

 

In the adult stage, the plant is sensitive to inductive factors. Flower induction is 

the transition of the meristem from the vegetative to the reproductive phase. During this 

period, the leaf and the meristem receive flowering signals, and the genes required for 

flower development are turned on. As a result, nutrient, hormone and protein 

metabolism changes inside the bud. Flower initiation is the period when a series of 

histological changes are underway, but no visible morphological differences are 

observed. Flower differentiation is characterized by the development of the primordia 

of floral organs. 

Chailakhyan (1937) proposed that a ‘flower-inducing hormone’ called florigen 

causes flowering. Movement of florigen inside the plant was demonstrated by means of 

grafting experiments. In annual/biannual plants this floral promoting factor is strong 

enough to even induce other plants as well if, for example, a single leaf is grafted onto a 

non-induced plant (Zeevaart, 1976), while in woody plants even though the inducing 

agent may be saturating a high number of the meristems always stay vegetative 

(Davenport et al., 2006).  
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Searle (1965) stated that flower induction of photoperiod-sensitive plants is 

controlled by florigen that is produced in leaves and transported to buds. The export of 

the florigen in the short day plant Perilla sp. from the leaf to the shoot apical meristem 

was related with the idea of the long distance transport through the phloem (King and 

Zeevart, 1973). But the possibility of a slow transfer of the stimulus from cell to cell 

was also suggested from experiments with graft-induced plants where no vascular 

connections were formed (Wellensiek, 1970). Florigen was thought to play a positive 

role activating genes or a negative one, blocking gene-repressors.  

After induction, the shoot apex changes from the vegetative to the flowering 

stage as a result of an increase in its mitotic activity (Bernier, 1971; Gifford and Corson, 

1971). This process was studied in the annual plant Sinapis alba, in which the rate of 

cell division increased eight-fold in the central zone of the meristem and six-fold in the 

peripheral zone. Following the cell division and synchronization of the cells in the apex, 

a peak in DNA and protein synthesis was observed, this being associated with initiation 

of the first flower buds (Jacqmard et al., 1972). 

 

1.2 When do plants flower? Exogenous and endogenous factors inducing 

flowering 

 

Plants have developed the ability to detect seasonal changes in order to decide 

when to flower, according to their possibilities of development. Thus, the timing of 

flowering is regulated by autonomous and environmental factors, and four major 

pathways have been described to induce flowering: photoperiod, vernalization, 

gibberellin (GA) and autonomous pathways (Blázquez et al., 2006; Wilkie et al., 2008). 

Many flowering plants use photoreceptor proteins, such as phytochrome or 

cryptochrome, to sense seasonal changes in night length, or photoperiod. Long-Day 

(LD) and Short-Day (SD) plants flower in response to a change in the length of the dark 

period. LD plants flower when the night length falls below their critical photoperiod. 

These plants typically flower during late spring or early summer, as days are becoming 

longer. Examples of these plants are pea, barley, Arabidopsis thaliana or wheat. On the 

other hand, SD plants flower when the night length exceeds their critical photoperiod. 

These plants typically flower during summer and fall. Examples of these plants are 

cotton or rice. Facultative LD plants can flower under SD conditions whereas obligate 

LD plants cannot. 
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Neutral-day plants do not initiate flowering based on changes in photoperiod. 

Instead, they initiate flowering in response to alternative environmental stimuli 

depending on climate type. In temperate climates, a period of low temperature 

(vernalisation) induces flowering in many plants (e.g. tomato, rose, cucumber). When 

leaves are exposed to low temperatures, sugars accumulate and cold-regulated genes are 

induced to contribute to the cold acclimation process (Gorsuch et al., 2010). Plants are 

able to detect the end of the cold period (winter) and, thus, flower in spring. In tropical 

climates, where no significant variation in photoperiod or temperature occurs, signals 

such as water shortage have the ability to induce flowering (Southwick and Davenport, 

1986).   

The hormonal (GA) and the autonomous pathways also induce flowering, and 

are largely independent from environmental influences (Parcy, 2005). In the 

autonomous pathway flowering is induced by internal cues at particular stages of plant 

development, whereas GA acts directly on the meristem at the flower initiation stage 

interacting with the sucrose content (Blázquez and Weigel, 2000). Therefore, the 

nutritional status also plays a role, at least as a source of energy, to induce flowering. In 

fruit trees a large number of buds remain vegetative in spring. This phenomenon was 

explained by a deficit of nutrients. Based on practical experience in fruit growing, the 

C/N-ratio hypothesis was used to explain differences in flower bud differentiation in 

fruit trees. A high C/N ratio favors flower formation and excessive N fertilization 

inhibits it. However, it seems that nutrients are not the limiting factor for flower 

formation when a threshold level is reached (Lang, 1965). 

Finally, some of these factors interact to induce flowering. Studies of the 

photoperiodic responses of plants have demonstrated considerable diversity in the 

critical length of the dark period, the age at which seedlings are ripe-to-flower and the 

effect of temperature on photoinduction (Zeevart, 1976). In general, all wild populations 

of rice exhibit a strong SD response while cultivated varieties show a lower sensitivity 

(Katayama, 1971). Other plants, as sugarcane, require intermediate photoperiods, 

around 12 ½ hours, for floral initiation (Julien, 1973). The C3 and C4 pathways of 

photosynthesis also have been correlated with the photoperiodic requirement for 

flowering (Purohit and Tregunna, 1974). There is a group of plants originally 

considered to be strictly photoperiodic, which can also be induced to produce flower 

buds by factors other than daylength. One of these factors is the temperature. Thus, the 
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photoperiod requirements, besides the high or low temperatures, regulate flower 

formation (Blondon and Harada, 1972; Deronne and Blondon, 1973).  

In the past, it has been very difficult to detect differences in metabolism or in a 

chemical composition between induced and non-induced plants, and therefore, results 

were difficult to interpret given changes in photoperiod or temperature. However, the 

development of genomic and transcriptomic tools has contributed to a better 

understanding of the metabolic and molecular processes involved in floral biology. 

Most of our knowledge about flower induction has come from studying flowering 

regulatory genes in Arabidopsis thaliana. 

 

1.3 Floral induction in annual/biennial plants compared to mature fruit trees 

 

Floral induction in mature fruit trees is distinct from that of annual/biennial (a/b) 

plants. In trees, it is a quantitative process with a significant proportion of the above 

ground meristems remaining vegetative, while in a/b-plants all the meristems are 

induced at once, which terminates the life of the plant (Bangerth, 2009). In a/b-plants, 

quantitative differences in flowering between species refer to the time of flowering 

during a given season (Zeevart, 1976).  

In mature trees, reproductive competence varies between meristems, both apical 

and lateral, so that when they are exposed to favourable environmental conditions only 

competent meristems perceive flower inductive signals and differentiate into 

inflorescences and flowers (Walton et al., 1997; Battey and Tooke, 2002; Martin-Trillo 

and Martinez-Zapater, 2002; Bangerth, 2009). Although there are differences between 

a/b plants and perennial plants, the genetics of flower induction and floral organ 

formation seems to be similar among them (Tan and Swain, 2007). 

Bangerth (2009) presented two comparative models involved in floral induction 

of a/b and perennial plants: the qualitative molecular-genetic model and the quantitative 

long-distance signal model (Table 1). Both levels of regulation are at work in adult 

trees, and the expression of a number of Arabidopsis “floral integrator”, “flowering 

time” and “flowering identity” genes, and orthologs of them, also occur in apple, citrus, 

grapes and other perennial trees and perennial herbaceous plants (Kotoda et al., 2000; 

Pilliteri et al., 2004b; Sreekantan et al., 2004; Böhlenius et al., 2006; Lifschitz et al., 

2006; Carmona et al., 2007; Nishikawa et al., 2007; Muñoz-Fambuena et al., 2011). 
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However, this does not necessarily imply that these genes have the same or similar 

functions in trees and in Arabidopsis. 

 
Table 1. Comparative scheme of two models involved in floral induction of annual/biennial- (left) and 

perennial (right) plants. Listed are decisive factors involved in the floral induction process. Obvious is the 

number of factors involved in FI in p-plants compared to a/b-plants (from Bangerth, 2009). 

 

2. Molecular basis of flowering 

 

Arabidopsis thaliana has proven to be an ideal organism to study plant 

development although it has no commercial value as it is considered a weed.  During 

the past two decades, many flowering-related genes have been identified in Arabidopsis 

thaliana. Stimulators and repressors of flowering antagonize in metabolic pathways 

activating or inhibiting, respectively, the expression of genes that cause floral transition 

(Figure 1) (for more information see reviews by Blázquez et al., 2006; Wilkie et al., 

2008; Amasino and Michaels, 2010; Andrés and Coupland, 2012; Pin and Nilsson, 

2012; Blümel et al., 2015). This complex interaction of multiple pathways ensures the 

transition of a plant from the vegetative into the generative phase during favourable 

Qualitative “molecular-genetic” model Quantitative “long-distance signal” model 

Floral inducing cues Floral promoting cues 

Photoperiod: low temperature (vernalization): 

gibberellins; unknown autonomous factors stimulate 

flower induction 

Exogenous factors: low temperatures (subtropical trees) 

(+); high light intensity (temperature fruit) (+); water 

shortage (some tropical trees) (+); high photosynthesis 

(sufficient carbohydrates) (+); production and transport 

of long-distance signals to accessible/non-accessible 

meristems 

“Florigen” (FT protein): production and transport from 

leaves or other tissue to the Shoot Apical Meristem 

(SAM) 

Endogenous factors: high number of fruits/seeds 

(biennial bearing) (-); strong vegetative growth (high 

GA concentration) (-); type of rootstock (strong/weak) 

(-/+); localization of buds along the shoot 

(accessible/non-accessible to floral promoters) (+/-) 

Expression of flowering time/identity genes 

(morphogenetic transition) 

Horticultural factors: optimal nutrition, particularly 

with nitrogen (+); partial removal of young fruit 

(thinning) (+); girdling, scoring (+); shoot bending (+); 

shoot pruning (winter/summer) (-/+); root pruning (+) 

Floral morphogenesis Hormones as long-distance signals: gibberellins (-); 

indoleacetic acid (-); cytokinins (+); ethylene (+?) 

(+) promote floral induction; (-) inhibit floral induction.  
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environmental conditions. Genetic analysis of Arabidopsis flowering time mutants 

resulted in four major pathways controlling the time of floral transition: photoperiod, 

vernalization, autonomous and GA pathways. Whereas the photoperiod and the 

vernalization pathways mediate the response to environmental factors (light and 

temperature, respectively), the autonomous and GA pathways are endogenous 

(Martinez-Zapater et al., 1994; Parcy, 2005; Wilkie et al., 2008). Of those, the two main 

pathways promoting the expression of floral integrators genes in Arabidopsis are 

photoperiod and GA. 

 

 
Figure 1. Flowering time gene network with known genetic and epigenetic regulators in Arabidopsis 

thaliana. Arrows indicate a promoting. T-ends indicate an inhibiting genetic interaction. Round dots at 

both ends mark an interaction without a known direction. Dashed lines denote an indirect interaction. 

Genes attributed as major regulators in the different flowering time pathways are written in bold. Red font 

indicates the functional characterization of a gene as a flowering time regulator in cultivated species – 

although not necessarily with the same function as in Arabidopsis – by mutant analysis, sequencing and 

complementation analysis or heterologous expression, RNA interference, or clear linkage with a major 

QTL.  (From Blümel et al., 2015). 
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2.1 Floral integrators genes and flowering pathways 

 

Flower development occurs in the meristems, but floral induction occurs in the 

leaves. The spatial separation between these organs implies the need of a mechanism by 

which the floral signal is transferred from the leaf to the meristem. Among the network 

of genes implied in this mechanism CONSTANS (CO), FLOWERING LOCUS C (FLC), 

FLOWERING LOCUS T (FT), SUPPRESSSOR OF OVEREXPRESSION OF 

CONSTANS 1 (SOC1) and FLOWERING LOCUS D (FD) play a main role in 

identifying and transmitting (or obstructing, in the case of FLC) the flowering signals, 

whereas LEAFY (LFY), APETALLA1 (AP1) and TERMINAL FLOWER 1 (TFL1) 

regulate the transition of the meristem.  

Work in Arabidopsis has provided evidence that the small FT protein is (at least 

a component of) the floral signal (Florigen) transferred from the leaf to the meristem, 

and work in other species has strengthened this conclusion. FT gene expression is 

activated in the leaf and the derived protein is transported to the meristem (Kobayashi et 

al., 1999; Michaels et al., 2005; Teper-Bamnolker and Samach, 2005; Corbesier at al., 

2007; Giakountis and Coupland, 2008; Jang et al., 2009). The FT protein is a member 

of the CETS (CEN1; TFL1; FT) family (Pnueli et al., 2001) and is related to 

phosphatidylethanolamine binding proteins (PEBP) family (Kardailsky et al., 1999; 

Kobayashi et al., 1999). In angiosperms, PEBP homologues are divided into three 

groups: MOTHER OF FT (MFT), FT, and TFL1 (Kobayashi et al., 1999). In 

Arabidopsis, MFT and FT gene families function promoting flowering, whereas the 

TFL1 family delays flowering. Activation of the transcription of FT-like genes in leaves 

has been observed in other species, and appears to be a highly conserved aspect of floral 

induction. Expression of such genes has been shown in rice (Komiya et al., 2008), 

barley (Faure et al., 2007), poplar (Böhlenius et al., 2006; Hsu et al., 2011) Ipomea nil 

(Japanese morning glory) (Hayama et al., 2007), tomato (Lifschitz et al., 2006), apple 

(Kotoda et al., 2010) and citrus (Nishikawa et al., 2007; Muñoz-Fambuena et al., 2011). 

But FT protein is also reported to have nonflowering-related functions in some other 

species, namely tuberization in potato, and bud set in poplar and conifers (Böhlenius et 

al., 2006; Rodriguez-Falcon et al., 2006; Gyllenstrand et al., 2007).  

The transport of the FT protein from the leaf to the shoot apex is thought to be 

through the phloem (Corbesier et al., 2007) (Figure 2). The evidence for FT protein 

movement from the vascular tissue to the meristem comes from several experiments 
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achieved in different species. Experiments of fusion proteins such as FT::GFP 

expressed in phloem companion cells of Arabidopsis or rice were detected at the 

meristem, demonstrating their capacity for long-distance movement (Corbesier et al., 

2007; Tamaki et al., 2007). Two mechanisms are proposed to elucidate as FT proteins 

enter the phloem sieve elements from the companions cells: diffusion of the FT proteins 

or active transport. Giakountis and Coupland (2008) proposed that the sieve elements of 

the phloem are made up of enucleate cells that are connected to each other at their end 

walls. When maturity is acquire, the sieve elements connect the photosynthetically 

active leaves to the growing parts of the plant (Oparka and Santa-Cruz, 2000; 

Zambryski, 2008). The sieve elements are closely connected to companion cells, which 

are nucleate. FT-mRNA is induced in these cells (Mathieu et al., 2007). The companion 

cells are connected to the sieve elements by specialized branched plasmodesmata 

(Oparka and Santa-Cruz, 2000). Plasmodesmata act to facilitate the entry of 

macromolecules such as sugars, RNA, and proteins into the sieve elements. FT is 

smaller than the size exclusion limit of these plasmodesmata, and therefore could move 

into the sieve elements by diffusion. However, Giakountis and Coupland (2008) thought 

that since the protein is expressed at extremely low level in wild-type plants, a specific 

mechanism that permits the movement of FT into the sieve elements may be responsible 

for the movement of FT. Moreover, other authors observed that in C.moschata the 

movement of FT-like proteins into the sieve elements seems to be regulated by 

photoperiod, suggesting the involvement of a specific mechanism that can be influenced 

by photoperiod rather than diffusion (Lin et al., 2007).  
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Figure 2. FLOWERING LOCUS T (FT) as a systemic signal. (a) CONSTANS (CO) protein allows for 

the transcription of FT and TWIN SISTER OF FT (TSF) in the phloem companion cells. FT protein is 

uploaded into the sieve elements either by diffusion through plasmodesmata or by an unidentified active 

transport mechanism (white circle). The similarity between FT and TSF proteins suggests they behave 

similarly. (b) Long-distance transport of FT toward sink tissues occurs in the phloem translocation 

stream. FT may associate with other as yet unknown factors (X) during this step. (c) FT unloading from 

the phloem and transport within the apex probably involves cell-to-cell transport through plasmodesmata. 

The yellow area indicates a possible gradient of FT and TSF protein distribution in the shoot apical 

meristem (SAM). Induction of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS (SOC1) is the 

first detectable event in the inflorescence meristem (IM) and it depends on the presence of FT and 

FLOWERING LOCUS D (FD). FT and FD interact physically and the complex is directly involved in 

APETALA 1 (AP1) transcriptional activation, which occurs during the formation of the first floral bud. 

AP1 directly represses SOC1 in the floral meristem (FM). CC, companion cells; SE, sieve elements; 

boxes, mRNA; circles, protein; solid black arrows, experimentally confirmed interconnection; broken 

arrows, inferred interconnection. (From Turck et al., 2008). 

 

The photoperiod flowering pathway is mainly directed via the expression of 

the gene CO. Exposure of plants to long day conditions results in a higher accumulation 

of the protein CO. Thus, the leaves should previously synthetize the RNAm of CO but it 

is only synthetized during the night and late afternoon. In fact, more RNA means more 
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protein, but this protein is stable only with light. For this reason the flowering in this 

type of plants is produced in spring-summer, when the high level of RNAm is formed, 

this moment coinciding with the maximum stabilization of the protein (Blázquez et al., 

2011). At when CO reaches this level, CO works as a transcription factor of the FT 

gene, and the related gene TWIN SISTER OF FT (TSF), which are activated in the leaf 

by CO (Kobayashi et al., 1999; Samach et al., 2000; Michaels et al., 2005; Teper-

Bamnolker and Samach, 2005; Jang et al., 2009). Fusions of the promoters of CO and 

FT to marker genes are expressed in the phloem, whereas the FLAVIN-BINDING, 

KELCH REPEAT, F-BOX 1 (FKF1) and CYCLING DOF FACTOR 1 (CDF1) genes, 

which encode regulators of CO, are also expressed mainly in this vascular tissue. 

Besides CO, FHA and GIGANTEA (GI) are activated in the rosette leaves of 

Arabidopsis in a circadian rhythm (Soltis et al., 2002) under long day conditions.  

The vernalization pathway of FT transcription is negatively modulated by 

other transcription factors. The MADS box transcription factors FLC and SHORT 

VEGETATIVE PHASE (SVP) directly bind to FT and repress its transcription (Searle et 

al., 2006; Lee et al., 2007). The FLC and SVP mRNAs are both expressed in the SAM 

as direct repressors of SOC1 transcription (Lee et al., 2000; Jang et al., 2009; Liu et al., 

2009). FLC blocks FT transcription until the plant is exposed to low temperatures that 

repress FLC transcription, allowing for the induction of FT the following spring as the 

photoperiod lengthens. Cold is perceived in the shoot apical meristem by activation of 

the cold-response genes VERNALISATION 1 (VRN1), VRN2 and VRN3 and by changes 

in DNA methylation (Finnegan et al., 1998). These factors suppress FLC expression; 

thus, vernalization promotes flowering by suppressing FLC.  The reduction in FLC 

expression in low temperatures involves expression of an antisense RNA (Swiezewski 

et al., 2009) and machinery that modifies the tails of histone 3 at the FLC gene, 

particularly trimethylation of lysine 27 (Finnegan and Dennis, 2007). These processes 

result in the diminished FLC mRNA expression in the cold and stable repression of 

FLC when plants are returned to normal growth temperatures. SVP expression is 

reduced during the floral transition as SOC1 mRNA starts to rise. So that soon after 

SOC1 is strongly expressed in the meristem, SVP mRNA is not detectable (Albani and 

Coupland, 2010). The mechanism by which SVP is repressed in the meristem is unclear. 

The GA pathway of flowering induction in Arabidopsis has little influence 

under LD conditions. But in SD, in the absence of the photoperiod flowering pathway, 

the GA pathway assumes a major role and becomes obligatory (Mutasa-Göttgens and 
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Hedden, 2009). GAs promote flowering in Arabidopsis through the activation of genes 

encoding the floral integrators SOC1, LFY, and FT in the inflorescence and floral 

meristems, and in leaves, respectively. In other LD species (i.e. Lolium temelentum) 

there is strong evidence that GA acts as a mobile signal to transmit the photoperiodic 

flowering stimulus (FT). While the role of GAs in flowering has become established for 

a limited number of species, GA is clearly not a universal flowering stimulus. In fact, it 

inhibits flowering in woody species. This paradoxical observation (GA acts positively 

in the switch to reproductive development in annual plants but negatively in woody 

species) was recently studied by Yamaguchi et al (2014). These authors found dual 

opposite roles of GA in Arabidopsis flowering promotion: GA promotes termination of 

vegetative development but it inhibits flower formation. To overcome this effect, the 

transcription factor LFY induces expression of a GA catabolism gene, and consequently, 

increases LFY activity causing reduced GA levels and flower formation. 

 

2.2 FT-FD in the meristem and floral initiation genes 

 

In the meristem, FT is believed to activate transcription of specific target genes 

by interacting with the bZIP transcription factor FD (Abe et al., 2005; Wigge et al., 

2005). Both FT and FD are required for the upregulation of SOC1, but it is still not 

known whether this is a direct or indirect effect (Albani and Coupland, 2010). SOC1 is 

an activator of floral initiation in the shoot apical meristem (SAM) and is upregulated 

soon after the shift from SD to LD (Giakountis and Coupland, 2008) or by GA (Moon 

et al., 2003). Searle et al. (2006) showed that SOC1 is expressed in leaves and shoot 

meristem, but it promotes flowering more powerfully when it is ectopically expressed in 

the meristem compared to the leaf. SOC1 transcription is repressed by FLC (Hepworth 

et al., 2002; Searle et al., 2006; Sheldon et al., 2006). Therefore, SOC1 acts as an 

integrator of the photoperiod, GA, and vernalization pathways (Albani and Coupland, 

2010). See Figure 3. 
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Figure 3. Spatial pattern of expression and molecular cascades associated with reprogramming of the 

floral meristem upon floral induction. (a) Vegetative meristem (no floral induction). FD mRNA (purple) 

is present in low amounts throughout the meristem while TFL1 mRNA (blue) is expressed at low 

abundance in the center of the meristem. (b) Transition meristem (floral induction has occurred but no 

floral primordia are visible). Upon arrival from the phloem to the apex, the FT protein (green) interacts 

with the FD protein (red). This results in the direct upregulation of SOC1 mRNA (yellow), one of the 

earliest known molecular markers of floral induction in the meristem. The FT–FD protein complex also 

upregulates, with a small delay compared to SOC1, AP1 mRNA expression in the flanks of the meristem, 

in a region which will develop into a floral primordium (dashed red circle). (c) Floral committed 

meristem, early stage (floral commitment has occurred but no floral primordia are visible). SOC1, 

together with a gene called AGL24 encoding another MADs box protein, participate in a positive 

feedback loop which eventually upregulates LFY expression in the flanks of the IM (Lee et al., 2008) 

with a small delay compared to AP1. (d) Floral committed meristem (floral primordia are visible) TFL1 

mRNA (blue) is now strongly expressed in the center of the IM while the protein (green) transports 

intercellularly (blue arrows) throughout the whole IM and represses LFY and AP1 transcription in the IM. 

At the same time both AP1 and LFY proteins (orange) ensure TFL1 does not accumulate in the floral 

primordia, separating these two features of the apical meristem. LFY and AP1 maintain their expression 

in the developing floral primordium through reciprocal upregulation. IM: inflorescence meristem. (From 

Giakountis and Coupland, 2008). 

 

Among the floral identity genes LFY and AP1 have the most significant 

influence. Both genes are expressed strongly in young floral primordia. Overexpression 



                                                                                                                        Introduction                                                                                                                       
s 

35 
 

of LFY or AP1 are sufficient to confer floral identity to the SAM (Mandel and 

Yanofsky, 1995; Weigel and Nilsson, 1995; Jack, 2004).  Strong LFY expression occurs 

rather late in the meristem during floral induction and is activated by several classes of 

transcription factors. Both SOC1 and SPL3 have been shown to bind directly to LFY in 

vivo using chromatin immunoprecipitation (Lee et al., 2008; Yamaguchi et al., 2009). 

Also, at least in vitro, the AtGAMYB AtMYB33 transcription factors from the GA 

pathway bind directly to LFY. Activation of LFY by these transcription factors can 

explain why LFY acts downstream from several flowering pathways (Blázquez and 

Weigel, 2000). LFY directly activates AP1 expression (Wagner et al., 1999), and AP1 

can also provide feedback to activate LFY (Ferrandiz et al., 2000). In this way LFY and 

AP1 enhance each other’s expression reinforcing floral identity and initiating floral 

organ specification and development. 

 

2.3 Epigenetic control of flowering 

 

Transcriptional control of a gene involved in flower induction is due, to a 

considerable extent, to histone modifications that are able to keep particular genes 

completely silent even in the presence of promoting signals. Floral induction in 

Arabidopsis has been studied in some detail with regard to histone modifications (Sung 

and Amasino, 2004). Nelissen et al. (2007) show that ATP-dependent modifications of 

core histones in the nuclei of cells have a great influence on the accessibility of the 

DNA of particular genes to transcription factors or the whole transcriptional complex. 

In brief, histones consist of four types of constitutively present proteins onto which the 

DNA is tightly-packed (heterochromatin). In this configuration, DNA is 

transcriptionally inactive and, therefore, non-accessible and not transcribed. However, 

signals reaching the cell surface can rapidly activate physiological mechanisms in the 

cells that covalently modify core histone tails, making DNA accessible (euchromatin) 

for the binding of transcriptional factors. These covalent modifications of core histone 

tails affect almost all aspects of plant development, including flower induction 

(Nelissen et al., 2007). The physiological mechanisms needed to accomplish these 

modifications are methylation, acetylation, phosphorylation, and ubiquitination, 

together with their respective enzymes, which modify particular amino acids in the 

“tail” of the histone, thus causing conformational changes resulting in a loosening or 

tightening of DNA-histone binding. These methylation or acetylation patterns among 
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the histone proteins are partially inherited and, due to changes in the former 

terminology, considered as epigenetic and as an additional order of regulation not 

involving the DNA code. 

While methylation of a particular histone tail often represses gene transcription, 

acetylation usually has the opposite effect and promotes DNA transcription. The 

acetylation and de-acetylation of histones are readily reversible enzymatic processes 

and enable increased transcription in addition to complete silencing of particular genes 

(Nelissen et al., 2007). Among the examples that have been investigated more 

intensively for floral induction is the cool treatment induced of Arabidopsis and other 

plants (vernalization) caused by an epigenetic silencing of the gene FLC. This silencing 

is due to the histone methylation of FLC, which reduces its repressing effect on 

downstream genes, leading to earlier flowering. However, more detailed studies have 

shown that this process is more complicated insofar as it is accompanied by the de-

acetylation of the histone H3, whose stable epigenetic repression is executed by the 

methylation of the histone HP1 (Bastow et al., 2004). This histone modifies another 

histone, H3K9, which is involved in heterochromatin formation and, thus, in the down-

regulation of FLC activity (Mylne et al., 2006). Vernalization considerably increases 

the activity of a number of genes (Bäurle and Dean, 2006), some of which are known to 

code for transcription factors involved in histone modifications and ultimately in floral 

induction. 

Aside from vernalization, light-dependent floral induction has been examined 

with regard to histone modifications and chromatin modeling/re-modeling. Studies into 

light duration effects in Arabidopsis demonstrated that light (similar to vernalization), 

gibberellins, and the autonomous pathways use the FLC gene to regulate floral 

induction (Takada and Goto, 2003; Boss et al., 2004; Deal et al., 2007). In these light 

processes histone modification and cromatin re-modeling were again involved. 

However, in contrast to vernalization, these histone modifications were different for all 

four of the previously mentioned floral induction pathways. 

An alternative regulatory possibility for the silencing of genes relevant to floral 

induction is the post-transcriptional action of microRNAs (miRNAs), which also seem 

to interfere with the action of genes like FLC (Schmid et al., 2003). 
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3. Flowering in fruit tree species 

 

Fruit tree species show two main characteristics in relation to flowering: 1) a 

long juvenile phase (juvenility) of trees propagated by seeds, during which all the 

meristems in the tree cannot be induced to flower and remain vegetative; and 2) 

flowering is a quantitative process during the mature stage, with a significant proportion 

of the aboveground meristems remaining vegetative or dormant. This mechanism 

guarantees a long life span for these plants. Very little is known about how a tree 

achieves this trait. 

The long juvenile phase is a major problem in breeding programs but not in fruit 

production, because fruit trees are propagated by grafting and thus are in their mature 

stage from planting. During the mature stage, fruit tree flowering seems to be rarely 

associated with photoperiod and vernalization (Wilkie et al., 2008). In many subtropical 

and tropical tree species, such as mango, lychee, macadamia, avocado, and orange, 

flowering is induced by cool temperatures. The temperature required for flowering in 

such trees is between 10ºC to 15ºC and are higher than those required for vernalization 

in herbaceous species. When cultivated under tropical conditions, water shortage also 

induces flowering. Unlike subtropical and tropical trees, flowering is regulated 

autonomously in many temperate deciduous tree species, such as apple.  

Kobel (1954) reported that specific factors inducing flower bud development are 

concentrated in the appropriate leaves attached to the bud. According to Bünning 

(1952), the developmental stage of the leaves is essential for the formation of flower 

organs. The role of leaves in the formation of flowers can be explained in three ways: 

1) the leaf, as an organ of assimilation, provides carbohydrates needed in flower 

induction, 2) the leaf is a major site of hormone synthesis and 3) the leaf is the receptor 

of environmental signals. In the post-genomic era when genes have been identified as 

controling floral development, it became evident that important floral-inducing genes 

are active in leaves. It should also be mentioned that defoliating leaves before flower 

induction can greatly inhibit flower formation in apple (Li et al., 1995) and citrus 

(Muñoz-Fambuena et al., 2012b). The stage of flower induction was studied by 

removing leaves at different times before and after full bloom in several species (Fatta 

del Bosco, 1961; Li et al., 1995). When defoliation has no inhibitory effect on 

flowering, the implication is that meristems have passed the flower induction period. 
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But the most outstanding point, and common to most fruit tree species, is the 

inhibitory effect of fruit on flower induction, even with the presence of exogenous 

flowering signals. In most species, fruit development coincides with the time of flower 

induction. Chan and Cain (1967) demonstrated that the presence of seeds is crucial in 

fruit inhibition of apple flower induction. But in parthenocarpic citrus species 

(Martínez-Fuentes et al., 2010; Muñoz-Fambuena et al., 2011), the fruit also inhibits 

flower induction, so the mechanism must not be exclusively attributed to seeds. The 

fruit inhibits flowering from the time it completes its growth, not before, and starts 

ripening. The process has been observed in orange (Martínez-Fuentes et al., 2010), 

mandarin (Muñoz-Fambuena et al., 2011), loquat (Reig et al., 2014), olive (Dag et al., 

2010) and avocado (Ziv et al., 2014).   

The inhibition of flowering induces alternate (biennial) bearing, a critical 

horticultural problem characterized by large yields of small-sized fruit in the “on-year”, 

and low yields of oversized fruit in the “off-year” (Handschack and Schmidt, 1990). 

This is caused by the adverse relationship between fruit development and flower bud 

induction or differentiation (Monselise and Goldschmidt, 1982). Genotype is probably 

the major cause for alternative bearing. Within a given species, there are regular bearing 

cultivars and cultivars whose trend is to be very biennial bearing (Fig. 4).  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Schematic representation of the vegetative and reproductive development of biennial bearing 

woody species  
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Besides, gravimorphism plays an essential role in fruit trees. Vegetative growth 

is affected negatively by gravity (Smith and Wareing, 1964). Shoot growth and flower 

bud formation is obviously affected by shoot orientation, namely placing shoots in a 

horizontal position increases flower-bud formation and reduces growth (Longman et al., 

1965). Tromp (1982) found that shoot growth was reduced and flowering was increased 

by shoot bending and by application of a chemical growth inhibitor. In all cases a 

promotion of shoot growth increases apical dominance and vice versa, an inhibition of 

shoot growth supports lateral flower-bud formation. 

The position of an axillary meristem on the plant, its age/size, and time of 

outgrowth might also determine its developmental fate. Vegetative development in 

apple and Arabis alpine is maintained by axillary meristems close to the SAM (Foster et 

al., 2003; Wang et al., 2009). Additionally, in kiwifruit the size of the meristem prior to 

bud break in the spring can determine the fate of the second-order axillary meristems 

(Walton et al., 1997). 

Flowering probability also depends on both shoot and tree age. In some pome 

fruit species, newly developed long shoots have a lower flowering ability than the older 

shoots. There is a decline corresponding to a growth reduction and an increase in the 

probability of flowering from the center of the tree towards the periphery. This 

centrifugal gradient has been found in certain tree species (Costes et al., 1992; Sabatier 

and Barthelemy, 2001). However, other species such as citrus, the younger shoots 

sprout and flower with a higher intensity than the older ones (Agustí, 2003).  

According to Bangerth (2009), two levels of flowering regulation act at once 

during flower induction in fruit trees: the qualitative molecular-genetic regulation and 

the quantitative long distance signal regulation.   

 

3.1 Qualitative molecular-genetic regulation of flower induction in trees 

 

In fruit tree species, the expression of flowering genes orthologous of 

Arabidopsis have been studied in relation to the specific signals which inhibit or 

promote flowering. A number of these have been identified in non-related species, 

which suggests a certain degree of evolutionary conservation. For instance, the 

expression of the FT gene has been identified in apple (Kotada et al., 2010), mango 

(Nakagawa et al., 2012), avocado (Ziv et al., 2014), orange (Muñoz-Fambuena et al., 

2012a), mandarin (Nishikawa et al., 2007), poplar (Böhlenius et al., 2006), etc. In this 
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Ph.D thesis, species from the genus Citrus were the model trees selected to study the 

inhibitory effect of fruit on flowering. Therefore, this section of the reviewed literature 

focuses on studies conducted with Citrus sp. 

In Citrus, the flowering-related genes characterized in Arabidopsis seem to be 

conserved (Dornelas et al., 2007). For this reason, on the basis of data from 

Arabidopsis, citrus homologues of FT, LFY, AP1, TFL1 and SOC1 have been identified 

and characterized (Kobayashi et al., 1999; Pilliteri et al., 2004a, 2004b; Endo et al., 

2005; Nishikawa et al., 2007; Tan and Swain, 2007). In Citrus clementina, there are 

three loci encoding FT-like proteins (Samach, 2013). Overexpression of CiFT, CsLFY, 

CsAP1, or CsSLs induces an early flowering phenotype in Arabidopsis (Kobayashi et 

al., 1999; Pilliteri et al., 2004b; Tan and Swain, 2007), whereas Arabidopsis plants 

ectopically expressing CsTFL shows late-flowering phenotypes (Pilliteri et al., 2004a). 

In addition, research by transformation with flowering-related genes has highlighted the 

long juvenile period in citrus (Peña et al., 2001; Endo et al., 2005). In these 

experiments, constitutive expression of Arabidopsis AP1 or LFY caused early flowering 

and fruiting in many of the transgenic citranges [Citrus sinensis (L.) Osb. x Poncirus 

trifoliate (L.) Raf.], which initiated flowering in spring, 12-20 months after their 

transfer to the greenhouse (Peña et al., 2001). The constitutive expression of CiFT 

started to flower as early as 12 weeks after transfer to a greenhouse, whereas wild-type 

plants usually have a long juvenile period of several years (Endo et al., 2005).  The fact 

that the flowering phenotype resulting from ectopic expression of CiFT is an early 

flowering, researchers have used this method for the rapid evaluation of transgenic 

citrus flowers and fruits (Endo et al., 2009). 

Nishikawa (2013) revised the flowering in Citrus. The genus Citrus is different 

from its close relatives, Poncirus and Fortunella. Both Citrus and Fortunella are 

evergreen, whereas Poncirus is deciduous. In satsuma mandarin, floral induction occurs 

during fall and winter, floral organs are first observable from January through a 

microscope, and the three different types of shoots in May (Iwasaki, 1959; Inoue, 1990). 

In respect to the Kumquat (genus Fortunella), the bloom is produced during summer 

and fall, and the floral organ development is observed just before flowering (Abbott, 

1935). In trifoliate orange (genus Poncirus), evocation happens during early summer 

(Reuther et al., 1967). The development of flower buds stops during fall and winter, 

then begins again and the tree different types of shoots are formed in spring. Changes in 

CiFT expression are associated with the seasonal periodicity of flowering (Nishikawa et 
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al., 2007, 2009, 2011; Muñoz-Fambuena et al., 2011, 2012b). In satsuma mandarin 

(Nishikawa et al., 2009) and ‘Moncada’ mandarin (Muñoz-Fambuena et al., 2011), 

CiFT expression increases during fall and winter, in which floral induction occurs. This 

increase results from the expression of CiFT2 which is also induced during fall and 

winter in murcott mandarin (Citrus reticulate Blanco) (Shalom et al., 2012). In kumquat 

and trifoliate orange, CiFT expression increases during early summer, in which period 

differentiation of flower organs has been initiated, or just before evocation. The mRNA 

levels of CsLFY remain low during floral induction (winter and fall) in ‘Moncada’ 

mandarin (Muñoz-Fambuena et al., 2011) and satsuma mandarin (Nishikawa, 2013); 

subsequently, levels increase in February and April, respectively, and during this period 

floral organs develop rapidly. In kumquat and trifoliate orange, mRNA levels of CsLFY 

increase during summer when floral induction and evocation is produced (Nishikawa, 

2013). Expression levels of CsAP1 are moderately high during spring and summer and 

low during winter (Nishikawa, 2013). In all of these genera, CsTFL relative expression 

was detected at high levels during late spring or early summer, then decreased to 

undetectable levels. Only CiFT showed a close correlation with floral induction in all 

genera (Nishikawa, 2013). 

In Citrus, the cool temperature is a decisive factor in floral induction. In some 

experiments related in satsuma mandarin trees, the plants were exposed to cool 

temperatures (15°C) and CiFT expression increased simultaneously with floral 

induction (Nishikawa et al., 2007). But when the trees were grown at high temperatures 

(25°C), vegetative growth was maintained and flowering was not induced (Nishikawa, 

2013). At the same time, CiFT expression remains at a low level. With these 

experiments Nishikawa (2013) showed that CiFT expression is regulated by 

temperature. Moreover the same authors showed that in other flowering-related genes, 

such as CsLFY, CsAP1, and CsTFL, the changes in mRNA levels showed no association 

with the period of floral induction in trees placed in a growth room at 15°C (Nishikawa, 

2013). In fact, CsLFY and CsAP1 relative expression levels increased during the period 

of evocation of flower buds in satsuma mandarin and sweet orange trees under 

prolonged 15°C treatment or a subsequent change to high temperature (Nishikawa et al., 

2007; Pillitteri et al., 2004b). Only CiFT expression showed an increase in response to 

cool temperature in adult trees and not in juvenile plants (Nishikawa et al., 2007; 

Nishikawa, 2013). On the other hand, CsTFL relative expression was detected at higher 

levels in young rather than adult plants in trees of satsuma mandarin and sweet orange 
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exposed to cool temperatures (Nishikawa et al., 2007; Pillitteri et al., 2004a). 

Nishikawa (2013) hypothesized that the suppression of flowering in young plants might 

correlate with low CiFT expression and high CsTFL expression under cool-temperature 

conditions. 

In the last years, changes in gene expression in response to fruit bearing have 

been reported in ‘Murcott’ (Shalom et al., 2012), ‘Moncada’ (Muñoz-Fambuena et al., 

2011; 2012b), and satsuma mandarin (Nishikawa et al., 2012). In these genotypes, the 

levels of CiFT expression appear to be high in light-loaded or without fruits “OFF” 

trees and low in fully-loaded “ON” trees during the floral inductive period. In satsuma 

mandarin, it was demonstrated that the total CiFT expression during fall shows a clear, 

strong correlation with fruit weight per leaf area (Nishikawa et al., 2012). In addition, 

the CiFT gene expression was associated with the timing of fruit harvest (Nishikawa, 

2013). Another experiment done by Nishikawa (2013) consisted in analyzing the CiFT 

relative expression in different branch of the same tree, and CiFT expression was high 

in the branch from which flowers were removed in May and low in the branch from 

which fruits were harvested in November. This indicated that CiFT expression is 

suppressed by a long fruit-bearing period, and the suppression of CiFT expression by 

fruit bearing is limited to the vicinity to the fruit-bearing portion of the tree. Moreover, 

the flower number in the following spring showed a positive and high correlation with 

CiFT expression levels during fall and winter in satsuma mandarin (Nishikawa et al., 

2012). Taken together, it is considered that excessive fruit amount, a longer period of 

fruit bearing, and the vicinity to the fruit bearing portion of the tree reduce CiFT 

expression in the stems of vegetative shoots during fall and winter, and correspond with 

flower number in the following spring (Muñoz-Fambuena et al., 2011, 2012b; 

Nishikawa, 2013). Given that the flower number and CiFT expression show a close 

correlation (Muñoz-Fambuena et al., 2011; 2012a; 2012b; Nishikawa et al., 2012) and 

CiFT has a function in the promotion of flowering (Endo et al., 2005; Kobayashi et al., 

1999), it is believed that fruit bearing suppresses flower number in the following spring 

via suppression of CiFT expression (Muñoz-Fambuena et al., 2011, 2012a, 2012b).  

Defoliation of the tree inhibits the flower formation in the following spring 

(Muñoz-Fambuena et al., 2012b). Moreover, experiments for satsuma mandarin that 

consisted in removing or decreasing the number of leaves suppressed CiFT expression 

in trees grown under a floral-inductive condition (15°C) (Nishikawa et al., 2013) and at 

the same time, floral induction was also suppressed in trees from which all leaves had 
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been previously removed (Muñoz-Fambuena et al., 2012b; Nishiwaka, 2013) or which 

carried fewer leaves (Niskikawa, 2013). Thus, defoliation suppresses both CiFT 

expression and floral induction. Gibberellin, an inhibitor of flowering in Citrus, reduces 

CiFT expression in buds of Orri mandarin (C. reticulata Blanco × C. temple Hort. ex Y. 

Tanaka) (Goldberg-Moeller et al., 2013) and leaves of sweet orange (Muñoz-Fambuena 

et al., 2012a). In sweet orange, paclobutrazol (PBZ), a GA biosynthesis inhibitor, 

increases flowering by improving CiFT relative expression (Muñoz-Fambuena et al., 

2012a), which indicates that endogenous GA or applications with GA3 can inhibit 

flowering via suppression of CiFT expression. 

With respect to FLC in citrus, a direct inhibitor of flowering, there is little 

information. FLC-like analyzed by Muñoz-Fambuena et al., (2011;2012a; 2012b) did 

not seem to be relationship with the inhibition of flowering induction in leaves and buds 

due to the expression initiated after of these period in leaves (Muñoz-Fambuena et al., 

2011). On the other hand, other authors analyzed other FLC-like, and this showed no 

differences of expression between treated and untreated buds with GA3 on OFF trees in 

the floral induction period (Goldberg-Moeller et al., 2013).  

 

3.2 Quantitative long distance signal regulation of flower induction 

 

The main function of the second level of regulation in perennial trees needs to be 

a physiological/molecular mechanism that protects/silences particular genes/meristems 

to be accessible to a floral promoter (Bangerth, 2009). Bangerth (2009) hypothesized 

that the regulation of flower induction in trees could be regulated far upstream to floral 

integrator genes, and that they are more similar to general repressor genes like the FLC 

gene or a even epigenetic in nature, which could control the expression of genes and 

would therefore be particularly appropriate to silence “floral genes”. Because the 

epigenetic mechanism is able to act over longer distances of time, its action could also 

explain phenomena like the flower induction inhibition by the fruit, although the fruit 

had been harvested long ago (Lavee, 1988). Otherwise, the degree of expression of 

genes of the first level may directly or indirectly be altered by the second level of 

regulation in a quantitative way, such as DNA methylation (Zemach and Grafi, 2007) or 

post-transcriptional modifications by particular non-coding RNA species, such as 

microRNAs (Schmid et al., 2003), which, in some cases, also have epigenetic 

characteristics. 
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Although there may be more than just one mechanism that could prevent part of 

the meristems of the tree from being induced to flower, the non-accessibility of 

meristems to floral-promoting signals, due to epigenetic control, seems to be an 

attractive hyphotesis to at least partially explain perenniality (Bangerth, 2009). 

Examples with Arabidopsis demonstrate that this kind of regulation may in fact be one 

explanation for differences between annual/biennial and perennial plants as well as for 

effects like shoot bending, girdling, or fruit inhibition on floral induction in trees.  

Plant hormones are most prominent amongst long-distance-signals and almost 

all of them are already extensively used by the plant to interfere with floral induction 

and other physiological processes such as vegetative growth, dominance phenomena, 

assimilate partitioning, fruit set and growth, or stress situations (Hoad et al., 1993; 

Bangerth, 2000). Endogenous as well as applied gibberellins have been shown to 

promote floral induction in some annual/biennial plants and, in addition, to indicate 

distinct relationships with the level one molecular genetic pathway (Zeevaart, 1976; 

Blázquez and Weigel, 2000; King and Evans, 2005). Comparisons of endogenous GA 

levels between rose plants exhibiting seasonal and perpetual flowering habits indicate 

that GAs might play a role in the duration of flowering season by regulating the return 

to vegetative development. In seasonal flowering plants, GA1 and GA4 levels increase 

in the shoot apices just after flower initiation, whereas in perpetual flowering plants GA 

levels are low throughout the year (Roberts et al., 1999). King and Evans (2005) 

demonstrated in detailed experiments with their “model plant” Lolium temulentum that 

GA5 is a “florigenic” signal, possibly intermediate between long-day perception and FT 

expression (King and Evans, 2005). In some species of gymnosperm trees, applied low 

polar GAs are able to induce precocious and profilic floral induction (Pharis and King, 

1985). However, in most angiosperm trees, GAs have the opposite effect, that is, they 

considerably inhibit floral induction applied exogenously (Guardiola et al., 1982; 

Tromp, 1982; Oliveira and Browning, 1993; Prang et al., 1997; Mutasa-Göttgens and 

Hedden, 2009), as evidenced in the assays appliying GA3 (Ayalon and Monselise, 

1960). When dealing with endogenous GAs, however, the situation becomes more 

complex (Oliveira and Browing, 1993; Bernier and Périlleux, 2005). The problems arise 

when considering GAs as directed long-distance signal to inhibit floral induction in 

trees. A better understanding of GAs as floral inhibiting long-distance-signals began 

with the findings of Chan and Cain (1967) who demonstrated that seeded but not 

seedless apple fruit inhibits floral induction for the next season. This finding was 



                                                                                                                        Introduction                                                                                                                       
s 

45 
 

understandable taking into account the high concentration of GAs in the seeds of apple 

and other fruit (Hedden et al., 1993). The same result was obtained in pears (Griggs et 

al., 1970) and citrus (Monselise and Goldschmidt, 1982). 

In experiments with apple, inhibition of floral induction by fruit/seeds was 

generally mediated mainly to nearby meristems. The effect of GAs on floral induction is 

confused by a number of tree-specific interfering factors, like vegetative growth in 

apple (Neilsen and Dennis, 1999) and citrus (Krawjewski and Rabe, 1995), the number 

of leaves in pears (Huet, 1972). Exogenous treatments usually reduced floral induction 

in a number of tree species (Goldschmidt and Monselise, 1970). However, the results 

were often variable and the concentrations needed to obtain significant effects were 

generally high and not of normal physiological concentrations. In addition, there are 

considerable structural differences in GAs which greatly affect their inhibiting action 

(Tromp, 1982; Oliveira and Browing, 1993). The most significant effect in GA-

efficiency in this respect is the way GAs are applied to the plant. Goldschmidt and 

Monselise (1970) treated single buds of orange shoots with GA3 and obtained a 75% 

reduction in the average number of flowers/shoot, with higher concentrations causing a 

complete inhibition of floral induction. Bertling and Bangerth (1995) injected either 

GA3 or GA4/7 into the trunk of numerous fruit tree species and cvs. and obtained a 

considerable reduction of the floral induction. This method confirmed that when 

spraying GAs an obviously high proportion of the hormone is conjugated and/or 

metabolized or does not reach the intended target, which could explain the low or 

variable efficiency of spraying. When applications are done in a more appropriate 

physiological way, GAs are able to keep many above-ground buds in a vegetative non-

accessible state even if applied at physiological concentrations. The way in which this 

non-accessibility is maintained is presently not known but may involve chromatin as 

well as rejuvenation effects. 

A “directed” transport of GAs from a defined source such as fruit/seed or shoot 

tips to a specific target has not yet been clearly demonstrated. In fact, it would be 

difficult to assume transport from a fruit, a strong sink, to the apical bud of an apple 

bourse shoot, which is a weak sink. Nonetheless, Prang et al. (1997) reported an export 

of GAs out of apple fruit as well as shoot tips with a peak occurring at the time 

presumed floral induction does occur, but there was little correlation between the 

regular and the alternate-bearing cvs. Due to the techniques applied, the destination of 

these GA-signals could not be determined. Using the same cvs. in the same years, 
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Stephan et al. (2001) used LC-ESI-MS and internal standards to investigate the export 

and metabolism of GAs out of these fruits. In fruit exudates of the regular bearing 

cv.,they found six different GAs with GA4 prevailing over GA3. In the biennial bearing 

cv. ‘Elstar’, however, GA3 was the predominant signal. When radioactive labelled GAs 

were injected into the core of the fruit and their export and metabolism in the pedicel 

and spur followed, the same authors found a high proportion of GA-metabolites or 

glycosylated conjugated, both of which are biologically inactive (Stephan et al., 2001). 

No intact GA-molecules could be found in the apical bud of the shoot which is usually 

induced to flower. Seeds are not the only source of GAs relevant for floral induction in 

trees. Shoot tips are also rich in bioactive GAs, particularly GA1, and these may be 

involved in the floral inhibition of lateral buds of long shoots, for example, during 

strong vegetative growth (Forshey and Elving, 1989). Boss et al., (2004) showed that a 

mutant of Vitis vinifera, deficient in its response to GAs, only produced inflorescences 

and no tendrils, whereas the wild type, which showed full GA-sensitivity produced only 

tendrils. 

In citrus, there are two key moments in which the exogenous application of GAs 

has the maximum efficiency on the inhibition: during translocation of the flowering 

signal of leaves to buds (the end of November to early December) and the beginning of 

the morphologic differentiation of flowers (Monselise and Halevy, 1964; Guardiola et 

al., 1982). As the effect of the exogenous application of GAs is similar to that produced 

by the fruit, Goldschmidt and Monselise (1970) suggested that the mechanism by the 

fruit inhibit the flowering is through the synthesis of GAs. In fact, in the Satsuma 

mandarin, the GAs concentration (GA1 / 3) is higher in the leaves of ON shoots in 

October (Koshita et al., 1999). But its concentration decreased to a similar level in both 

types of shoots in December, coinciding with the flowering induction in this genotype 

(December-January). Therefore, their relationship with the inhibition of floral induction 

cannot be determined.  

Bangerth (2009) suggested that polar IAA transport, a long-distance-signal, 

could act as a secondary messenger to GAs. IAA is the only plant hormone with a 

strictly polar, highly-regulated transport pathway (Muday and DeLong, 2001), and IAA 

signals are therefore independent of sink or transpiration driven transport. Further, by 

some kind of “auxin transport auto-inhibition”, this hormone transport is able to affect a 

particular organ, for example, a bud/meristem, without entering it (Bangerth, 2000). The 

most prominent example of this is apical dominance. There are indications which seem 
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to support a role for IAA transport in floral induction and its function as second 

messenger. The application of the gibberellins GA3, GA4 and GA7 to apple trees 

considerably stimulated IAA-export of fruit as well as of shoot tips (Callejas and 

Bangerth, 1997), which would be in line with a second messenger role for IAA. A 

particular class of IAA-transport inhibitors (morphactin and TIBA) stimulates floral 

induction in a number of fruit trees (Luckwill, 1969; Ito et al., 2001; Bangerth, 2009) 

and a number of horticultural procedures are used to increase floral induction, like 

bending, girdling, shoot tip removal or damage, these considerably reducing polar IAA 

transport (Blaikie et al., 2004). Lastly, application of an auxin to a decapitated shoot tip 

is also reported to inhibit floral induction (Tamim, 1996).  

In contrast to GAs and to polar IAA transport, it has been shown that the 

application of cytokinins (CKs) promotes floral induction in monocarpic and 

polycarpic plants (Ramirez and Hoad, 1981; Bernier and Périlleux, 2005). Applications 

of low concentration of CKs had no effect on floral induction (Bernier and Périlleux, 

2005) while transgenic CK-deficient Arabidopsis plants never flowered (Werner et al., 

2003), hence the essential role of CKs in floral induction. At medium CK 

concentrations, floral induction occurs, but high concentrations promote only vegetative 

development; these positive effects are seen in Sinapis alba (Bernier and Périlleux, 

2005), Vitis vinifera (Srinivasan and Mullins, 1981) and Malus domestica (Bangerth, 

2009). Other experiments, (Stern et al., 2003) focusing on the effect of water stress to 

increase the concentration of xylem CKs, found a concomitant quantitative increase in 

floral induction. Application of other, non-CK compounds, like maleic-hydrazide and 

triidobenzoic acid (TIBA), have also significantly increased floral induction of apple, 

pear, olive and mango trees (Luckwill, 1969; Ben-Tal and Lavee, 1985; Ito et al., 2001; 

Blaikie et al., 2004). Ito et al. (2001) reported considerable increases in the endogenous 

CK concentrations of lateral and terminal buds on trees treated with these substances. 

Both maleic-hydrazide and TIBA are potential inhibitors of the IAA polar transport 

and/or metabolism, the CK increase may be the result of a reduced IAA concentration 

either in the buds themselves or in the roots (Bangerth, 2000) so that CKs may be the 

cause for the increased floral induction rather than the IAA transport.  

Another important hormone is ABA, which is transported acropetally as 

basipetally (Davies, 2010). In assays with citrus Shalom et al. (2014) identified a 

transport of ABA from fruit to buds. The content of ABA was higher in ON. However, 

the NCED3 genes, which determine synthesis of ABA, had presented a higher 
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expression in OFF buds. Therefore researchers suggest that the content of ABA in ON 

buds is produced in other part of the tree, particularly, the fruit (Shalom et al., 2014). In 

early studies relating ABA with the inhibition of flowering, Goldschmidt and Golomb 

(1982) observed a higher ABA concentration and its isomer t-ABA in leaves, stems and 

buds of ON trees in December, suggesting their relationship with dormancy and the 

inhibition of flowering. On the other hand, exogenous ABA treatment to buds of Citrus 

unshiu reduced sprouting and flowering of these buds (García-Luis et al., 1986).  

Nevertheless, in stress conditions flowering is promoted (Koshita and Takahara, 2004), 

and this is coincident with an increase in ABA content in leaves (Gómez-Cadenas et al., 

2000; Koshita and Takahara, 2004) and an increase in CiFT expression (Chica and 

Albrigo, 2013). The relationship of ABA with flowering in citrus has yet to be clarified. 

Floral induction in annual/biennial plants has been linked to the induction and 

the release of dormancy (Horvath et al., 2005). It is generally agreed that dormancy of 

both bud and cambial meristems is largely controlled by plant hormones, mostly ABA, 

cytokinins and gibberellins (Powell, 1987; Lombard et al., 2006; Nieminen et al., 2008) 

and their interaction with DNA methylation/demethylation and histone/chromatin 

modifications. 
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4. Hypothesis and objectives 

 

4.1 Hypothesis 

 

In mature citrus trees, flowering is regulated by exogenous signals (i.e., low/high 

temperature, water shortage/water supply) that control flowering time, and by 

endogenous signals that control flower intensity. According to Martínez-Fuentes et al. 

(2004), three levels of flowering can be established depending in the promoter/inhibitor 

(P/I) ratio. The first is one of high flower intensity, defined by a high P/I ratio in which 

P reaches a high level and exogenous inhibitors cannot counteract the promoter. In 

contrast, a low flowering level is due to a low P/I ratio in which the inhibitor prevails 

over the promoter and the application of the latter cannot counteract the inhibitor. Only 

at a nearly balanced P/I ratio can flowering be exogenously inhibited by applying 

inhibitors (i.e. GA3), or promoted, by applying promoters (PBZ) (Fig. 5). The ratio of 

endogenous promoters to inhibitors is considered as responsible for flowering; however, 

there is evidence suggesting that the inhibitors and their metabolism are the sole factors 

controlling flowering in Citrus. According to Agustí (1980), all the meristems have the 

information and ability to flower unless a negative factor hampers the process. The 

main endogenous factor controlling flower intensity is the fruit. Bangerth (2009) 

proposed the existence of long-distance signals (hormonal in nature) needed to silent the 

transcription of genes involved in the floral process through epigenetic mechanisms. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Schematic diagram of the ratio of endogenous flowering inhibitors and promoters and 

exogenous flowering inhibitors and promoters and their effects on controlling flowering in Citrus 

(From Martínez-Fuentes et al., 2004). 
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In this PhD. thesis, the following hypothesis was tested: 

 

Fruit inhibits flowering when ripening begins by exporting hormones that 

induce epigenetic upregulation of flowering inhibitor genes in the leaves, and 

interfering in flower bud differentiation. 

 

4.2 Objectives 

 

Therefore, the following objectives were established: 

 

1. To correlate the endogenous content of GAs and ABA in the fruit, leaves and 

buds, and their biosynthesis, with the expression of flower induction and flower 

differentiation genes. 

 

2. To identify the effect of bud isolation from the fruit (girdling and in vitro 

culture) on sprouting and flowering. 

 

3. To determine the influence of the fruit in the proteome of buds and leaves. 

 

4. To characterize the effect of the fruit in DNA methylation of gene promoters 

and inhibitors of flower induction.  
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1. Plant material and experimental design 

 

1.1 Previous experiments 

 

1.1.1 Characterization of Flowering Locus C  

 

The material used as experimental model was Arabidopsis thaliana, concretely 

the seeds of the ecotypes Columbia 0 (Col-0) and Landsberg erecta (Ler). 

The culture was done in the greenhouse, in culture chambers and in fitotron under 

light conditions (16 hours of light and 8 hours of darkness), relative humidity (50-80%) 

and temperature (21-23ºC) controlled. As substrate, we used a mix of peat 

moss:perlite:vermiculite (2:1:1) arranged in each container of polyethylene; each 

container was irrigated with a mix of nutritive solutions (Hoagland, 1920).  

 

1.1.2 Determination of Flowering Locus T responsible for floral induction 

 

This study was conducted comparing ‘Cleopatra’ mandarin (Citrus reshni Hort. 

Ex Tan.) juvenile plants and adult ‘Moncada’ mandarin (Clementine Oroval [Citrus 

clementine Hort. ex Tan.] x ‘Kara’ mandarin [C. unshiu Marc. x C. nobilis Lou.]) trees, 

grafted onto Carrizo citrange (C. sinensis L. Osbeck x Poncirus trifoliata L.Raf.) 

rootstock, planted 5 m x 5 m apart in a loamy-clay soil, with drip irrigation. The 

experimental field was located in the IVIA Research Station (Moncada, Spain). Three 

trees were selected for homogeneity in diameter, canopy height, size and shape and a 

randomized complete-block design was employed. Three plants of ‘Cleopatra’ mandarin 

were selected for each cultivar in July (2012).  30 leaves per cultivar were sampled in 

September, November and February for RNA extraction and RT-PCR analysis for the 

study of Flowering Locus T (FTs) expression. Samples were immediately ground and 

stored at -80ºC for further analyze. 
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1.2 Section 1 

 

1.2.1 Experiment I 

 

In this experiment the ‘Moncada’ mandarin from IVIA was also used. From early 

September (2013) to the end of February (2014), 30 ON shoots and OFF shoots were 

collected. In the laboratory, these shoots were separated into developed mature adult 

leaves, buds and exocarp from ON (fully loaded) and OFF trees (without fruits). 

Previously, the fruits were measured for their diameter, color of exocarp, chlorophyll and 

carotenoid contents. At the same time in September a sample of fifteen OFF shoots was 

taken and the leaves of different sprouting were separated (spring+summer or fall). From 

these, half of the leaves and buds were collected for RNA extractions and RT-PCR 

analysis for the study of Flowering Locus T 2 (CiFT2), Flowering Locus C (CcFLC), 

Gibberellin 20 oxidase 1 (GA20ox1) and Gibberellin 3 oxidase 1 (GA3ox1) expression 

and the other half were used to sample the exocarp of fruits for GA and IAA concentration 

analysis by UPLC-MS/MS. All samples were immediately ground and stored at -80ºC 

until the time for analysis. 

 

1.2.2 Experiment II 

 

Experiments were carried out during 4 consecutive years (2012-2015) using adult 

trees (10–15 years old) of ‘Salustiana’ and ‘Navelina’ sweet oranges (Citrus sinensis L. 

Osb), ‘Hernandina’ Clementine (Citrus clementina Hort. ex Tan.) and the two hybrids 

‘Afourer’ (Citrus reticulata × C. sinensis L. Osb) and ‘Moncada’ mandarin. Oranges 

‘Salustiana’ and ‘Navelina’ were planted 5 m × 6 m apart and grown in a loamy–clay soil 

and sandy–loamy soil, in orchards located in Valencia (39.28ºN–0.22ºW, 30 m altitude) 

and Huelva (37.22ºN–6.58ºW, 26 m altitude), Spain, respectively. The ‘Hernandina’ 

Clementine and ‘Moncada’ mandarin trees were planted 5 m × 5 m apart in a loamy–clay 

soil in Valencia. The ‘Afourer’ mandarin trees were planted 4 m × 6.5 m apart in a sandy–

loamy soil in Huelva. All the orchards had drip irrigation, and fertilization, pest 

management and pruning were in accordance with normal commercial practice.   

Paclobutrazol (PBZ) was applied during either the floral bud inductive period 

(November 20–25) or the floral bud differentiation (February 20–24). PBZ was applied 

either to the soil, directly to the drip-line zone (1–10 g tree−1), or sprayed on the canopy 
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by handgun (6 l tree−1, 2500 mg l−1, i.e. 15 g tree−1). Early in the rest period (October 10–

15) treatments were also carried out for comparison. 

Gibberellic acid (GA3), at a concentration of 50 mg l−1, was sprayed on the canopy 

in the floral bud inductive period for comparison. Six to ten ON- and OFF-trees were 

randomly selected for each cultivar, orchard and treatment. Untreated ON- and OFF-trees 

were used as controls. Four homogeneous branches per tree containing spring, summer 

and fall flushes, with some 400 nodes per branch, and randomly distributed around the 

canopy, were selected on the treatment date for flowering evaluation in the following 

spring.  

In a separate experiment, the response of buds to PBZ was studied by placing a 

10 µl drop of a 2500 mg l−1 aqueous solution directly on buds of ON- and OFF-trees of 

‘Hernandina’ mandarin. This treatment was carried out during the floral bud inductive 

period. One hundred buds were randomly selected from 10 ON-trees and 10 OFF-trees 

for treatment, and another hundred served as control.  

In addition, another experiment was done to analyze the inhibitory effect of fruit 

on flowering. Only trees bearing moderate fruit loads (*80 kg tree-1) were selected of 

‘Salustiana’ sweet orange. In early December, 40 mg L-1 of GA3 and 2,000 mg L-1 of PBZ 

were sprayed onto the entire tree with a hand-gun sprayer. Untreated trees served as 

control. From the treatment date (11 December) to the onset of bud sprouting (late 

February), 30 fully developed, autumn flush (that is, nonbearing shoots), mature adult 

leaves per tree from control and another 30 from GA3- and 30 from PBZ-treated trees 

were randomly collected for RNA extraction. Samples were ground and stored at –80ºC 

for RNA extraction and RT-PCR analysis for the study of CiFT, FLC-like, GA20ox1 and 

LEAFY (CsLFY). Six trees were used for the extractions. All of these experiments were 

evaluated the yield, the sprouting and the flowering. 

 

1.2.3 Experiment III 

 

This experiment was done in ‘Afourer’ mandarin trees situated in Pedralba 

(Valencia) with normal drip irrigation, fertilization and culture. 100 leafy single flowered 

shoots (ON) were selected from 5-6 nodes long and 70 of vegetative shoots (OFF) from 

10 trees. In half of the ON shoots girdling was done for the peduncle at the end of August 

(25 August, 2014). Girdling was performed by removing a 2-mm ring of bark from the 

peduncle 1.0 cm from the calyx. Fruits from ON shoots that were not girdled served as 
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controls. At the end of summer and spring the sprouting and the flowering in 30 shoots 

per treatment were evaluated. In these periods the characteristics of the fruit were 

evaluated: weight (g), diameter (mm) and the color the peel and the pulp, the total soluble 

solids (TSS) and the length of the shoots formed. For the endogenous hormonal analysis, 

20 shoots were collected for each treatment before the onset of sprouting (11 days after 

girdling, September 5).In the laboratory OFF shoots were separated in different nodes 

(node 1 nearer of apex than node 5) and the same ON shoots. In ON shoots the peel of 

the pulp was also separated. In these samples GA1, GA4, IAA, Tz, ABA and JA 

concentration by UPLC-MS/MS were analyzed. All samples were immediately ground 

and stored at -80ºC until analyzed. Previously to analyze the samples were lyophilized. 

 

1.2.4 Experiment IV 

 

This study was conducted with 10-year-old field-grown trees of ‘Mandarino 

tardivo di Ciaculli’ mandarin (Citrus reticulata Blanco), grafted onto Citrus aurantium 

L. This experiment was done in an experimental field located at the Università degli Studi 

di Palermo (Palermo, Italy) with normal drip irrigation, fertilization and culture.  

In this experiment 20 vegetative shoots (OFF) and 20 leafy single flowered shoots 

were collected in the induction period (November, 2013) and in February. The 

microshoots from these shoots were selected to cultivate in vitro. The microshoots were 

1.0 cm long and each microshoot had a bud. The MS medium (Murashige and Skoog, 

1962) was used with and without zeatin. The percentage of sprouting was evaluated every 

7 days for 60 days. In the induction period (November 13) and in February the 

characteristics of the fruit were evaluated: weight (g), diameter (mm), the color the 

exocarp and number of seeds. Moreover, in spring, sprouting and flowering were 

evaluated in 30 shoots per treatment. 

 

1.3 Section 2 

 

‘Moncada’ mandarin trees located in the IVIA orchards were used in these 

experiments. Spring flush leaves and buds from 8 month old trees were used as biological 

material and were randomly collected from 12 trees (6 on-crop and 6 off-crop) in autumn, 

which is when the fruit affects floral induction (November 2010). All leaves and buds 
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were harvested the same day at 11:00 a.m. and were immediately frozen and stored at -

80ºC. These samples were collected by protein extraction and subsequent analysis.  

 In another experiment, 30 ON shoots and 30 OFF shoots were collected from early 

September to the end of January. In the laboratory, these shoots were separated into 

developed mature adult leaves, buds and exocarp from ON (fully loaded) and OFF trees 

(without fruits). Previously, the fruits were measured for the color of exocarp and the 

carotenoid content. The samples were collected for ABA and JA concentration analysis 

by UPLC-MS/MS. All samples were immediately ground and stored at -80ºC until 

analysis. 

  

1.4 Section 3 

 

In these experiments ‘Moncada’ mandarin trees located in the IVIA orchards and 

‘Afourer’ mandarin trees located in Pedralba were used.  

In all experiments flowering in spring was evaluated. In the first experiment, from 

early January (Year 1, 2014) to the end of February of the next year (Year 2, 2015), ON 

and OFF buds (January Year 1) and 10 ON leaves and 10 OFF leaves were collected for 

each sample (Year 2). In the second experiment a selection was made from 3 branches 

per tree, OFF, ON and defruiting (defruited in August 25, 2014) in 3 different trees. 10 

ON, 10 OFF and 10 defruiting leaves were collected at the induction period (November 

25, 2014). In the third experiment 100 ON shoots taken from 3 trees were selected. Half 

of the shoots were used as control. The other half of these leafy single flowered shoots 

were sprayed with a hand-gun sprayer containing 5-Azacytidine, 350 µM of solution. 

After the treatment, the samples were taken at 8, 24 and 48 hours. The leaves and buds of 

these samples were collected for RNA extractions and RT-PCR analysis for the study of 

CiFT2, FLC, SHORT VEGETATIVE PHASE (SVP), TEMPRANILLO 1 (TEM1), EARLY 

FLOWER 8 (ELF8), TRITHORAX 1,2 (12ATX), TRITHORAX 7 (7ATX), PROTEIN 

ARGININE METHYLTRANFERASE 5 (SKB1) and TRITHORAX 5 (5ATX) expression. 

Moreover, samples from OFF and ON leaves in May and November were used for DNA 

extraction and DNA methylation analysis of FLC in May and Flowering Locus T 1 

(CiFT1), CiFT2, FLC, SVP and TEM1 in November. All samples were immediately 

ground and stored at -80ºC until analysis. 
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2. Method 

 

2.1 Yield, sprouting and flowering evaluation 
 

Sprouted buds, developing shoots and flowers as well as leaves per shoot were 

counted and evaluated following to Guardiola et al. (1982). Unsprouted nodes were also 

recorded. The total number of flowers per branch was calculated using the number of 

flowers per shoot and the number of shoots developed per branch. The results are 

expressed in flowers per 100 nodes to compensate for the differences in the size of the 

branches selected for counting. Fruits were harvested at the appropriate commercial size 

and color standards, and yield (kg tree−1) was determined by weighing and counting all 

fruits harvested per tree. 

 

2.2 Fruit characteristics 

 

 Fruits were previously evaluated for weight (g), diameter (mm) with a caliper 

(Mitutoyo, Japan), the color of the exocarp and the endocarp by a colorimeter and by 

Minolta Chromameter CR-300 (Minolta, Japan) and the total soluble solids with a digital 

refractometer (Atago, Japan) and number of seeds.  

 Three measurements per fruit in the equatorial zone of the fruit were taken from 

October until January or March in Moncada (Valencia), Palermo (Sicily) and Pedralba 

(Valencia). The results are given as a, b and L Hunter coordinates. a Hunter is indicative 

of peel transition from green to orange in Citrus and because zero coincides with the onset 

of fruit color break. Color readings of a denote green or red when negative or positive, 

respectively. b Hunter denotes blue or yellow when negative or positive, respectively, and 

L Hunter denotes black or white when is 0 or 100, respectively.  

 In addition, pigment analysis chlorophylls and carotenoids were extracted from 

frozen exocarp as described in Rodrigo et al. (2003). Chlorophyll a, b and total (a + b) 

were determined by measuring absorbance at 644 and 662 nm. Calculations were 

performed following Smith and Benitez’s (1955) equations. After chlorophyll 

measurements, the pigment ethereal solution was dried and saponified with 10% 

methanolic KOH solution. Carotenoids were subsequently re-extracted with diethyl ether 

until the hypophase was colorless. Total carotenoid content in the ethereal extract was 

calculated measuring absorbance at 450 nm and using the extinction coefficient of β-
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carotene (ϵ = 2500; Davies, 1976). Three independent extractions were performed per 

sample. 

 

2.3 Culture  

 

2.3.1 Biological materials  

 

2.3.1.1 Seed preparation and sterilization of Arabidopsis thaliana 

 

For the sterilization of the seeds, two protocols were followed: 

a) Sterilization by chlorine atmosphere. Seeds were placed in an open 

microcentrifuge tube and after these seeds were placed in a desiccator which 

contained a beaker with 100 ml bleach. Next, 3 ml of 37% hydrochloric acid was 

added to the bleach and the desiccator was immediately closed. It was left standing 

between 1-4 hours. This sterilization was performed in a fume cupboard. 

b) Sterilization with ethanol. In a microcentrifuge tube containing the seeds 200 µl 

of 70% ethanol + 0.05% Triton X-100 was added. The tube was gently shaken for 

3 minutes to wash the seeds. The liquid was removed, and after that 200 µl of 96% 

ethanol was added and the tube was shaken for 1 minute. Next, the seeds were 

placed on sterile filter paper moistened with 96% ethanol and allowed to dry. 

For the sowing of the seeds two protocols were followed: 

a) Direct sowing in substrate. Pre-sterilization is not necessary. Seeds were 

immersed in culture tube with 0.05% agarose solution. The tube was shaken to 

distribute homogenously. The seeds were stratified after 3 days in darkness at 4ºC. 

Finally, the suspension was distributed in polyethylene containers with moistened 

substrate. 

b) Sowing in plates of MS. After sterilizing the seeds, they were distributed 

homogeneously in Petri plates with MS medium. The plates were closed with 

porous tape and they were stratified by treatment over 3 days in darkness at 4ºC. 

After 3 days, the plates were taken out and placed in a culture chamber. 

 To transfer the seedlings that were grown in vitro to soil, we used curved 

forceps. These seedlings were distributed in polyethylene containers with moistened 

substrate. 
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2.3.1.2 Transformation of Arabidopsis thaliana with Agrobacterium 

tumefaciens by FLC characterization 

 

 The method used for the transformation was immersion “floral dip”. The 

modified protocol of Clough and Bent was followed (Clough and Bent, 1998). First of 

all, the plants were cultured until flowering (4-5 weeks approximately) in individual 

containers with substrate. Secondly, the Agrobacterium tumefaciens C58 suspension was 

prepared with the correspondent construction. Next, 1 liter of the saturate culture was 

used for the transformation and this was centrifuged 10 minutes at 4000 rpm. After this, 

the pellet was resuspended in infiltration medium: 5% saccharose + 0.02% Silwett 

detergent. Finally, plants were immersed for 1 minute in Agrobacterium tumefaciens C58 

suspension. Then, the plants were placed on paper to remove excess of suspension. They 

were left in darkness for 24 hours. Subsequently, the plants were cultured under normal 

conditions of relative humidity, light and temperature until the seeds were collected. 

 

2.3.1.3 Microshoot sterilization and culture of ‘Mandarino Tardivo di Ciaculli’  

 

Sterilization and culture: 

 First of all, the leaves and fruits were removed. Then, the shoots were cut in 

microshoots of 1 cm with one bud. After that, the material was washed with water and 10 

ml detergent at the same time that the each shoot was cleaned with a toothbrush. Next, 

the material was placed in a vacuum pump for 20 minutes. Then microshoots were 

sumerged in fungicide 2g l-1 for 10 minutes (also in vacuum pump). Subsequently, the 

material was washed with water and they were placed in the laminar flow hood.. 

Under the laminar flow hood, the microshoots were immersed firstly for 5 min 

in 70% (v/v) ethyl alcohol (vacuum), then in 35% commercial bleach solution with few 

drops of Tween 20, for 15 min. (vacuum).  Finally, they were rinsed three times with 

sterile distilled water and immerged in left standing for 30 minutes with water and 

antibiotic (Cefotaxime 0.2 mg ml-1). Ten microshoots were put per each Petri dish 

containing 25 mL of medium before the incubation at 27±1 °C, under cool white 

fluorescent lamps (Philips TLM 30W/84) with a Photosynthetic Photon Flux Density of 

35 µmol m-2 s-1 and a 16 h light photoperiod. 

The culture were observed for 2 months, every week. 
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Medium composition: 

For the culture, MS basal salt medium was prepared (Murashige and Skoog, 

1962). The vitamin supplement consisted of 1 mg l−1 thiamine–HCl, 

1 mg l−1 pyridoxine–HCl, 1 mg l−1 nicotinic acid, 2 mg l−1 glycine, 5 mg l−1 calcium 

pentathenate and 100 mg l−1myo-inositol. The medium also contained 30 g l−1sucrose and 

8 g l−1agar (agar-agar/gum agar) (Sigma Chemical, St. Louis, MO). The medium was 

balanced to pH 5.85 with 1N KOH, and autoclaved at 121 °C and 1x105 Pa (1.1 kg/cm2) 

for 21 min. Two media were prepared. The first MS medium without growth regulator 

and the second MS medium with zeatin (1 mg ml-1). In addition, 1.5 ml PPM l-1 was added 

to each medium. 

 

2.3.2 Bacterial strain 

 

Two types of bacterial strain were used: 

1. DH5α strain of Escherichia coli by the production and maintenance of plasmids. 

2. C58 strain of Agrobacterium tumefaciens by transformation of Arabidopsis 

thaliana. 

Bacterial cells were grown in LB medium (yeast extract 0.5%, triptone 1% and 

NaCl 1%) liquid and solid (with agarose 1.5%) supplemented with the corresponding 

antibiotics to the resistance genes that the plasmids had. E.coli was cultivated for 1 day 

at 37ºC while A.tumefaciens was cultivated for 2 days at 28ºC, both under agitation. When 

the plasmid contained genes of selection by color, 40 µl of X-Gal (40 mg ml-1) was added 

to the medium.  

 The constructions produced were kept in a freezer at -80ºC in glycerin form. 

Next, 700 µl of a saturate liquid culture of the bacterial strain was mixed with 300 µl of 

50% glycerol. Finally, it was frozen in liquid nitrogen and stored until use. 

 

2.3.2.1 Transformation of Escherichia coli 

 

Two methods of transformation were used: 

a) Transformation by heat shock method. DNA sample was dialyzed (50 µg when is 

a ligation) before that it was introduced into the bacteria. The drop was situated 

on a nitrocellulose filter of 0.025 µm in form of disc of Millipore. It was placed 

in Petri dish with miliQ water for 10 minutes.  After that, DNA was collected and 
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mixed with chemically competent cells that were in ice at 4ºC. This mixture was 

left to stand for 30 minutes in ice. After this incubation in ice, a mixture of 

chemically competent bacteria and DNA was placed at 42°C for 1 minute (heat 

shock) and then placed back in ice. 500 µl of SOC media was added and the 

transformed cells were incubated at 37°C for 1 hour with agitation. Finally, the 

mix was poured into the Petri dish with the LB and the antibiotics. 

b) Transformation by electroporation. DNA sample was dialyzed and mixed with 

electro competent cells that were in ice at 4ºC.  The mixture was introduced in 

electroporation cuvettes, dry and cool. These cells were subjected to an electric 

pulse of 1500V for 5 ms. 250 µl of SOC media was added in the cuvette and this 

mix was transferred to a microcentrifuge tube. After that, the tube was incubated 

at 37°C for 1 hour with agitation. Finally, the mixture was poured into the Petri 

dish with the LB and the antibiotics. 

 

2.3.2.2 Transformation of Agrobacterium tumefaciens 

 

 For this, transformation by electroporation was used. The DNA sample was 

dialyzed and mixed with electro competent cells that were in ice at 4ºC.  The mixture was 

introduced in electroporation cuvettes, dry and cool. These cells were subjected to an 

electric pulse of 1440V for 5 ms. 1 ml of SOC media was added in the cuvette and this 

mixture was transferred to a microcentrifuge tube. After that, the tube was incubated at 

28°C for 2-3 hours with agitation. Finally, the mixture was poured into the Petri dish with 

the LB and the antibiotics. 

  

2.4 Molecular biology techniques 

 

2.4.1 Extractions 

 

2.4.1.1 Protein 

  

Frozen Moncada leaves and buds from each tree were separately pulverized in 

liquid nitrogen with 0.05% PVP (twelve samples). Then, samples were homogenized in 

an extraction buffer (50 mM Tris-HCl, pH 7.5, 1 mM PMSF, 0.2% β-mercaptoethanol) 

using a pestle and mortar. Homogenates were centrifuged for 20 min at 20,000 g. The 
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supernatants were mixed with an equal amount of cold 20% TCA. The mixtures were 

incubated for 1 h at 4ºC and centrifuged at 20,000 g for 15 min at 4ºC. The protein pellets 

were washed three times with acetone. After the last centrifugation at 20,000 g for 15 min 

at 4ºC, pellets were re-suspended in a lysis buffer (7 M urea, 2 M thiourea, 4% CHAPS). 

Protein aliquots analyzed by 2D electrophoresis were stripped of non-protein 

contaminants using a 2D Clean-Up Kit following the manufacturer’s instructions (GE 

Healthcare). The cleaned protein was re-solubilised in a lysis buffer the conventional 2D 

analysis or in a Tris-buffered solution (7 M urea, 2 M thiourea, 4% CHAPS, 20 mM Tris-

HCl pH 8.5) for 2D DIGE analysis. Protein concentration was determined with the Bio-

Rad protein assay using bovine serum albumin (BSA) as standard. 

 

2.4.1.2 RNA and genomic DNA 

 

 Total RNA was extracted from frozen tissues and subsequently treated with 

DNase I (RNase Free DNase Set, Qiagen, USA). The amount of RNA was measured by 

spectrophotometric analysis (NanoDrop NDB1000 spectrophotometer, Thermo Fisher, 

USA). The absence of DNA contamination was checked by performing a no reverse 

transcription assay which consisted of a PCR with each RNA sample using the Citrus 

actin primers (Supp. Table 1). No amplified products were detected, which confirmed 

the purity of the RNA extracts. RNA extracted was stored in a freezer at -80ºC until use. 

Genomic DNA was extracted from frozen tissues. DNA extracted was frozen at -20ºC 

until use. 

 

2.4.1.3 Extraction of plasmid DNA 

 

 For the plasmid DNA extraction of Escherichia coli 5 ml of the liquid culture was 

used and the system used for this was “Plasmid Mini Kit I (E.Z.N.A). 

 

2.4.2 Protein analysis and measurements 

 

2.4.2.1 Fluorescent labelling 

 

 Protein samples were labelled using the CyDyes DIGE fluors (Cy2, Cy3 and Cy5) 

according to the manufacturer’s instructions (GE, Healthcare). Three different protein 
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samples (internal standard, on and off samples) were labelled individually with the three 

dyes. The internal standard was created by pooling an aliquot of all biological samples 

analyzed in the experiment and it was always labelled with Cy2. Six biological replicates 

were analyzed in this experiment; thus, twelve biological samples were used to make the 

internal standard. The sample of each on-crop tree never was mixed with samples of other 

ON-crop trees (the same for OFF-crop samples). The ON sample and the OFF sample 

were labelled with Cy3 or Cy5, alternatively, depending on the biological replicate, thus 

avoiding the label effect. Equal amounts (50 mg) of ON (Cy3, for example), OFF (Cy5) 

and internal standard (Cy2) samples of the same biological replicate were pooled. A lysis 

buffer was added to make the volume up to 40 mL. Then, the sample was mixed with 40 

mL isoelectrofocusing (IEF) rehydration buffer (8 M urea, 4% CHAPS, 0.005% 

bromophenol blue) containing 65 mM DTT and 1% IPG buffer pH 3-11 and loaded into 

the gel (one gel for each biological replicate). 

 

2.4.2.2 2D electrophoresis 

 

 For 2D analysis, strips of 24 cm in length with immobilized pH gradient of 3-11 

were hydrated overnight at room temperature with 450 mL IEF rehydration buffer, 

containing the reagents Destreak and Pharmalyte pH 3-10, according to the 

manufacturer’s instructions (GE, Healthcare). CyDyes labelled samples (150 mg of 

protein) were loaded in hydrated strips. IEF was performed on an IPGphor unit (GE 

Healthcare) at 20ºC and a maximum current setting of 50 mA per strip, using the 

following settings: 300 V for 1 h, an increasing voltage gradient to 1000 V over 6 h, an 

increasing voltage gradient to 8000 V over 3 h, before finally holding at 8000 V for a 

total of 32,000 V h. After IEF, each strip was equilibrated separately for 15 min in 10 mL 

equilibration solution I (0.05MTris-HCl buffer, pH 8.8 containing 6 M urea, 30% 

glycerol, 2% SDS, 200 mg DTT per 10 mL buffer) followed by equilibration solution II 

(substituting DTT for 250 mg iodoacetamide per 10 mL buffer and adding 0.01% 

bromophenol blue) before being applied directly to the second dimension 12.5% SDS-

PAGE gels. Six gels were run simultaneously at 20ºC, applying 2 W/gel for 30 min and 

20 W/gel for the remaining 5-6 h, using an Ettan DALTsix unit (GE, Healthcare). A 

running buffer of 25 mM Tris pH 8.3, 192 mM glycine and 0.2% SDS was used. Each 

gel showed the differential protein expression between an ON sample (from a single ON-

crop tree) and an OFF sample (from a single OFF-crop tree). 
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2.4.2.3 Gel imaging and data analysis 

 

 After SDS-PAGE, CyDye-labelled proteins were visualized by scanning using a 

Typhoon Trio scanner (GE Healthcare) with the relevant wavelengths for each CyDye. 

Cy2 images were scanned using a blue laser (488 nm) and an emission filter of 520 nm 

band pass (BP) 40. Cy3 images were scanned using a green laser (532 nm) and a 580 nm 

BP 30 emission filter. Cy5 images were scanned using a red laser (633 nm) and a 670 nm 

BP 30 emission filter. All gels were scanned at 200 mm (pixel size) resolution. The 

photomultiplier tube (PMT) was set between 500 and 600 V using normal sensitivity. The 

scanned gels were then directly transferred to the ImageQuant V5.2 software package 

(GE, Healthcare). Image gel analysis was carried out using the DeCyder 2D Software 

V6.5 following the manufacturer’s instructions (GE Healthcare). The images were 

exported to the DeCyder Batch Processor module and DIA (Differential in-gel analysis) 

and BVA (Biological Variation analysis) modules were made automatically. The DIA 

module was used for spot detection, spot volume quantification, and volume ratio 

normalization of different samples in the same gel. The BVA module was used to match 

protein spots among different gels and to identify protein spots that exhibit significant 

difference. Manual editing was performed in the biological variation analysis module to 

ensure that spots were correctly matched between different gels and were not 

contaminated with artifacts, such as streaks or dust. The paired t-test was used for 

statistical analysis of the data. A false discovery rate (FDR) correction was applied to 

eliminate false positives. Protein spots that showed a statistically significant change in 

abundance between ON and OFF samples using a Student’s t-test (p < 0.05) were 

considered as being differentially expressed. 

 

2.4.2.4  Protein identification by mass spectrometry (MALDI, MS/MS) 

analysis 

 

 To select spots of interest, gels were first stained with Silver Staining Kit, Protein 

(GE, Healthcare). Proteins of interest were manually excised from analytical gels and 

were distained with two 5-min washes with acetonitrile (ACN)/water (1:1, v/v), followed 

by rehydration with 50 mM ammonium bicarbonate for 5 min and 25 mM ammonium 

bicarbonate in 50% (v/v) ACN for 15 min. Gel pieces were then digested with sequencing 

grade trypsin (Promega) as described elsewhere (Shevchenko et al., 1996), and subject to 
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PMF and/or LC/MS/MS analyses. The digestion mixture was dried in a vacuum 

centrifuge, resuspended in 7 mL of 0.1% TFA (trifluoroacetic acid, Sigma), and 1 mL 

was spotted onto the MALDI target plate. After air-drying the droplets at room 

temperature, 0.5 mL of matrix (5 mg/mL CHCA) (acyano-4-hydroxycinnamic acid, 

Sigma) in 0.1% TFA-ACN/H2O (1:1, v/v) was added and allowed to air-dry at room 

temperature. The resulting mixtures were analyzed in a 4700 Proteomics Analyzer 

(Applied Biosystems, Foster City, USA) in positive reflectron mode (2000 shots each 

position). Five of the most intense precursors (according to the threshold criteria: 

minimum signal-to-noise: 10, minimum cluster area: 500, maximum precursor gap: 200 

ppm, maximum fraction gap: 4) were selected for every position for the MS/MS analysis. 

And, MS/MS data were acquired using the default 1 kV MS/MS method. The MS and 

MS/MS information was sent to MASCOT via the Protein Pilot software (Applied 

Biosystems). Database searches on NCBI, Swiss-Prot, and HarvESTs: Citrus databases 

were performed using MASCOT search engine (Matrix-Science). HarvEST: Citrus 

contains best BLASTX hits from UniProt, the Arabidopsis genome and Phytozome 

version Poptr1.1 (http://harvest.ucr.edu). Searches were performed with tryptic 

specificity allowing one missed cleavage and a tolerance on the mass measurement of 

100 ppm in MS mode and 0.6 Da for MS/MS ions. Carbamidomethylation of Cys was 

used as a fixed modification factor, while oxidation of Met and deamidation of Asn and 

Gln as variable modifications. The samples without a positive identification were 

analyzed by LC/MS/MS. Peptide separation by LC-MS/MS was performed using an 

Ultimate nano-LC system (LC Packings) and a QSTAR XL Q-TOF hybrid mass 

spectrometer (AB Sciex). Samples (5 mL) were delivered to the system using a FAMOS 

autosampler (LC Packings) at 30 mL/min, and the peptides were trapped onto a PepMap 

C18 pre-column (5 mm & 300 mm i.d.; LC Packings). Peptides were then eluted onto the 

PepMap C18 analytical column (15 cm x 75 mm i.d.; LC Packings) at 300 nL/min and 

separated using a 30 min gradient of 5-45% ACN. The QSTAR XL was operated using 

an information dependent acquisition mode, in which a 1-s TOF MS scan from 400 to 

2000 m/z was performed, followed by 3-s product ion scans from 65 to 2000 m/z on the 

three most intense doubly or triply charged ions. The MS/MS information was sent to 

MASCOT via the MASCOT DAEMON software (MATRIX SCIENCE). The search 

parameters were defined as for MS-MS/MS analysis. 
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2.4.2.5 Starch analysis 

 

 Leaves (2 g) were dried in the oven (60ºC) and then were treated with 80% 

ethanol. The remaining pellets were gelatinized by autoclaving and then sodium-acetate 

buffer and amyloglucosidase were added to the gelatinized extracts, according to Schaffer 

et al. (1987). Enzymatic digestions were performed for 2 h at 55ºC. After filtration, 

released glucose was quantified with a Waters HPLC system equipped with a 

carbohydrate column (4.6 x 250 mm, 5 mm, Tracer Carbohydrat Tecknokroma, 

Barcelona, Spain) and a 2410 differential refractometer. A binary isocratic phase 

consisting in ACN:water 75:25 (v/v) was used and the retention time for glucose was 11.5 

min. Quantification was performed by external standard calibration. Starch content was 

expressed in mg g-1 dry weight. 

 

2.4.2.6 Catalase activity 

 

Leaves (2 g) were homogenized in a Polytron 3100 (Kinematica, Lucerne, 

Switzerland) using 10 mL of 50 mM phosphate buffer, ph 7.0, containing 2mM EDTA 

and 2% polyvinylpolypyrrolidone (PVPP, Sigma, Barcelona, Spain). The crude extract 

was centrifuged at 12,000 rpm at 4ºC for 30 min, and the supernatant was filtered (0.45 

mm; Nylon) and used for the catalase assay within 1 h. The protein concentration in the 

supernatant was determined in the TCA precipitate using bovine serum albumin as 

standard (Lowry et al., 1951). The reaction medium (2 mL) contained 100 mM phosphate 

buffer pH 7.0, and 100 mL of the supernatant. The reaction was started by adding 100 

mL of 10 mM H2O2. Catalase activity was spectrophotometrically determined by the 

decrease in hydrogen peroxide (Tewari et al., 2005). The reaction was monitored at 240 

nm in a spectrophotometer UV-1610 (Shimadzu Corp., Kyoto Japan), at room 

temperature. The molar extinction coefficient used was 43.6 M-1 cm-1. Catalase activity 

was expressed as mmol H2O2 consumed g-1 protein min-1 after 3 min reaction.  

 

2.4.2.7 Gene ontology analysis 

 

 Total amounts of isolated protein were analyzed separately in two groups, which 

were established according to the ratio expression using FatiGO 

(http://babelomics.bioinfo.cipf.es) (Dimmer et al., 2008). The database at 

http://babelomics.bioinfo.cipf.es/
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www.arabidopsis.orgs was used to search for the Arabidopsis proteins that were 

homologous to the proteins identified in this study. Establishing homologies enabled us 

to understand the main biological processes in which proteins are involved. 

 

2.4.3 Bisulphite treatment 

 

 450-750 ng genomic DNA was subjected to one treatment of sodium bisulphite 

conversion using the EpiTect Bisulphite kit (Qiagen) according to the manufacturer’s 

instructions. The reaction was then purified once more using the PCR purification kit 

(Qiagen, USA). 

 

2.4.4 Gene expression analysis by qRT-PCR 

 

 The transcripts present in 1 μg of total RNA were reverse-transcribed using the 

QuantiTect® Reverse Transcription Kit (Qiagen, USA) in a total volume of 20 μl. A 2.5 

μl aliquot of a 4-time diluted first-strand cDNA was used for each amplification reaction. 

Quantitative real-time PCR was carried out on a Rotor Gene Q 5-Plex (Qiagen, USA) 

using the QuantiTect® SYBR® Green PCR Kit (Qiagen, USA). The reaction mix and 

conditions followed the manufacturer’s instructions with certain modifications.  The PCR 

mix contained 2.5 μl of diluted cDNA, 12.5 μl of QuantiTect® SYBR Green PCR Master 

Mix (Qiagen, USA), 1.5 μl of 0.3 μM primer F, and 1.5 μl of 0.3 μM primer R, the final 

volume being 25 μl. The cycling protocol for the amplification consisted of 15 min at 

95ºC for pre-incubation, then 40 cycles of 15 s at 94ºC for denaturation, 30 s at 60ºC for 

annealing and 30 s at 72ºC for extension. RT-PCR reactions were repeated three times 

for each gene and monitored in real time with the Rotor Gene Detector. After 

amplification, the melting-curve analysis excluded artefactual amplifications. The 

relative expression of RNA transcripts was quantified with the threshold cycle values (Ct) 

obtained from each sample using the 2-DDCt method (Livak and Schmittgen, 2001). 

Expression levels were calculated relative to the constitutively expressed ACTIN gene 

(Table S1). The relative gene expression level is given by 2-DDCt. Normalization was 

performed to the lowest value between the samples for each experiment. Two or three 

independent biological samples under each experimental condition were evaluated in 

technical triplicates. 
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Table S1. Primer sequence used in RT-PCR amplification reactions. 

Annotation  CDS 5′ -Direct primer- 3′ Predicted product (bp) 
  5′ -Reverse primer- 3′  
ACTIN Ciclev10025866m TTAACCCCAAGGCCAACAGA 141 
  TCCCTCATAGATTGGTACAGTATGAGAC  
CiFT1 Ciclev10013731m GGGAGGCAGACTGTTTATGC 150 
  TCATCGTCTGACAGGCCTTC  
CiFT2  Ciclev10012905m 

 

TCTAGCAGGGACAGAGATCCT 53 
  AGAACATCACCAACAACGCG  
CiFT3 Ciclev10012629m GGCTGAGGGAGTACTTGCAT 

TGCCGGAACAACACGAAAAC 
139 

FLC    Ciclev10033420m GGCAACTTGAAGGTCCAAAC 124 
  GCCCAATGAGCATAGGAATG  
CsLFY   Ciclev10033942m TCTTGATCCAGGTCCAGAACATC 63 
  TAGTCACCTTGGTTGGGCATT  
GA20ox1 Ciclev10005157m ACCAAGTGGGTGGTCTTCAG 96 
  TGAAGGTGTCGCCAATGTTA  
GA3ox1 Ciclev10027153m CAACGCAAGATGTCAAATGG 85 
  CAGGCCGGGTAGTAATTCAA  
SVP Ciclev10026457m AGTGGCGGAGGTATCAAATG 119 
  TGAGGGAGGTGTCTGAGCTT  
TEM1 Ciclev10031846m GCAAATGTCTTGTGCTGGAA 104 
  TGTGCTTCCTCAGCATATCG  
ELF8 Ciclev10007295m TCTCGATCTCTGGCTCATCA 91 
  AGGACTAGACCCTTCCTCCAA  
SKB1 Ciclev10007631m GGGTTCGCTGGTTATTTTGA 67 
  CCGTTGATGGCTCAATACCT  
12ATX Ciclev10018602m TGTGTTGGCTGCCAGTTTAG 52 
  AATATCCCCAGGCTCGAGTT  
7ATX Ciclev10000043m CGAACACATTTATGCCAACG 70 
  GCACCCATTAGTGGAGCAAT  
5ATX Ciclev10018614m TAGGGTGAAAGGTTCCATGC 121 
  CTGCTTCCGCTCCTTCATAG  

  

2.4.5 Sequence analysis and phylogenetic trees 

 

 CiFT1-3 sequences (Nishiwaka et al., 2007; Samach, 2012) and CsLFY sequence 

(Pilliteri et al., 2004) were used for these studies. FLC (Supplementary data S1), GA20-

oxidase, GA3-oxidase, SVP, TEM, ELF8, SKB1 and ATXs amino acid sequences of 

A.thaliana and other annual plant species and woody evergreen and deciduous tree 

species were obtained from the NCBI database (www.ncbi.nlm.nih.gov). Sequences were 

aligned against the Citrus clementina genome using the TBLASTN tool of Phytozome 

v10.3 database (www.phytozome.net). Based on this sequence similarity, some putative 

homologs of these genes were identified in the Citrus clementina genome. The GA20ox 

study was based on the similarity to the characterized amino acid sequences of 

CcGA20ox1 and CcGA20ox2 from the citrus hybrid citrange Carrizo [(Poncirus trifoliata 

Raff. x Citrus sinensis (L.) Osb.)]. The GA3ox, FLC, SVP, TEM, ELF8, SKB1 and ATXs 

from A.thaliana. Phylogenetic trees are given in Supplementary figures at the end of 

http://www.ncbi.nlm.nih.gov/
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this chapter. Primers used for qRT-PCR analysis (http://frodo.wi.mit.edu/) are listed in 

Supplementary Table 1 and primers by PCR analysis (http://www.urogene.org/cgi-

bin/methprimer/methprimer.cgi) are listed in Supplementary Table 2. 

 

2.4.6 Generation of constructions in plasmid vectors 
 

2.4.6.1 Polymerase chain reaction (PCR) 

 

 The bisulphite treated DNA was amplified using Hot start Platinum® Taq DNA 

Polymerase (Invitrogen). The thermal cycling program was set at 95°C for 1 min followed 

by 40 cycles of 95°C for 30 s, annealing 50º for 30 s, and extension at 65-72°C for 30 s, 

ending with a 3 min extension at 65-72°C. 

 PCR products were analyzed in agarose gels of 1%. 

Forward (F) and reverse (R) primers for bisulphite sequencing PCR were designed 

using MethPrimer: designing primers for methylation PCRs, given in Supplementary 

Table 2. 

 
Table S2. Primer sequence used in PCR amplification reactions. 

Annotation  CDS 5′ -Direct primer- 3′ Predicted 
product 

(bp) 
  5′ -Reverse primer- 3′  
CiFT1 Ciclev10013731m TTATTTTTTTTATTTATGTTTATTTTTGGTTTTTTTG 112 
  TTTCTAATTAATCCAAAAAAAAAAAATAATCACTTAC  
  TTATATATGTATGTAGGTTAAGAGATTGTG 211 
  CCCTCTAACAATTAAAATAAACAAC  
  TTAATTGGTTGTGGTTAGTGATTTTT 355 
  TAAACAATCTACCTCCCAAATTACC  
CiFT2  Ciclev10012905m 

 

GTAGGAGGAGGAGGTTTTAGTATTG 278 
  AAAACAACCTCTCACCTCTAAACAT  
FLC    Ciclev10033420m TTGTTAGTATTGTTGTGTTTTATTTTATAT 387 
  AAAAAACCTAAATAATTATATTCTATTCAT  
  TTGGGATTATTTTTAAAATTTTGTA 386 
  AAATTCTCTACTTCTAACAAATCCA  
  GTTTTGATGAAATATTTTAAAAGTAA 340 
  ATAAAACTAATCACCTACAATACACC  
SVP Ciclev10026457m TGAGAGGAATAAAGTTTGAAGTAAT 363 
  AAAAAACACTACAACTCTCCTTAAC  
TEM1 Ciclev10031846m TGGGAAAAATTTAAGTTAAAATGTA 297 
  TTTAATAATTTTATTTTACCACCAC  

 

 

http://frodo.wi.mit.edu/
http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi
http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi
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2.4.6.2 Ligation in pGEM-T Easy I vector 

 

 PCR products have adenine over-hang that forms by Taq DNA polymerase 

activity and can bind with thymine sticky ends of the pGEM-T vector. Hence, directly 

from PCR reaction tubes 2 µl of amplified DNA fragment with 5 µl 2x Rapid ligation 

buffer for T4 DNA Ligase, 1 µl of linear pGEM-T vector and 1 µl T4 DNA ligase (3U/µl) 

(Promega) were mixed and then incubated at 37ºC for 1 hour (alternatively at 4ºC for 24 

hours).  

 

2.4.6.3 Blue-white screening 

 

 E.coli cells, which are transformed with pGEM-T vectors, have an ampicillin 

resistance gene and a LacZ operon which encodes a β-galactosidase. LacZ expression is 

induced by IPTG, a lactose analogue that cannot be metabolized by E.coli. LacZ releases 

indole from the substrate X-gal (a glycoside composed of galactoside and indole). Indole 

molecules form blue dimers. When pGEM-T vectors contain an insert in the cloning site, 

the LacZ gene is interrupted and no color will be produced. So blue colonies indicate re-

closure of plasmid DNA resulting in LacZ gene function, whereas white colonies indicate 

that the DNA of interest was inserted into the plasmid and caused interruption of the LacZ 

gene. For blue-white screening 1 ml of grown cells were poured on LB agar plates. Plates 

were surface dried in the laminar air flow and incubated at 37ºC over night. Then, the 

white colonies were collected and grown in 5 ml LB + Ampicillin over night at 37ºC. 

 

2.4.6.4 Digestions 

 

 DNA of interest with the plasmid was digested with EcoRI enzyme for 2-3 hours 

at 37ºC. Then 6-12 individual clones were sequenced. 

 

2.4.6.5 Cloning FLC into a plant cloning vector 

 

 FLC codification region was amplified by PCR. The cloned was obtained from 

IVIA1 library, IC0AAA56AF11. Subsequently, it was cloned in pCR8 and after that, all 

of this was introduced in pEarlygate 201 (kanamycin and glufosinate resistant). Next, this 

construction was introduced in Agrobacterium (gentamicine and rifampicin resistant).  

http://bioinfo.ibmcp.upv.es/genomics/cfgpDB/est.php?seq_name=IC0AAA56AF11RM1
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2.5 Hormone isolation, purification and quantification 

 

Material frozen in liquid nitrogen was ground into a fine powder. Aliquots (about 

50 mg fresh and dry weight) of material were extracted with 80% methanol containing 

1% acetic acid. Internal standards were added and mixed with the aliquots at 4°C for 1 

hour. The internal standards for quantification of each of the different plant hormones 

were the deuterium-labelled hormones. The extraction protocol used is that described in 

Seo et al. (2011) with certain modifications. In brief, for desalination, the extracts were 

passed through reverse phase columns HLB (Waters). The plant hormones were eluted 

with 80% methanol containing 1% acetic acid and consecutively applied to cation 

exchange MCX columns (Waters). The fraction containing the acidic ABA, GAs, IAA, 

IP, Tz and JA was applied through ion exchange WAX columns (Waters). The final 

residue was dissolved in 5% acetonitrile-1% acetic acid, and the hormones were separated 

using an auto sampler and reverse phase UPHL chromatography (2.6 μm Accucore RP-

MS column, 50 mm length x 2.1 mm i.d.; ThermoFisher Scientific) with a 5 to 50% 

acetonitrile gradient containing 0.05% acetic acid, at 400 μL/min for 14 min. The 

hormones were analyzed with a Q-Exactive mass spectrometer (Orbitrap detector; 

ThermoFisher Scientific) by targeted Selected Ion Monitoring (SIM). The concentrations 

of hormones in the extracts were determined using embedded calibration curves and the 

Xcalibur 2.2 SP1 build 48 and TraceFinder programs. 

 

2.6 Evaluation of leaf number  

 

 To evaluate the effect of citrus FLC. Three lines of Arabidopsis thaliana cv. 

Columbia were transformed. The first was control (col) and the second line was 

introduced the FLC of citrus (col-CcFLC). When all of these plants flowered the number 

of rosette and caulinar leaves was evaluated. 

 

2.7 Statistical analysis 

 

Parameters were statistically tested by analyses of variance (ANOVA), using the 

least significant differences (LSD) test for means separation. The experimental data were 

analyzed with Statgraphics Plus 5.1 software (Statistical Graphics, Englewood Cliffs, 

NJ). 
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2.8 Supplementary figures. Phylogenetic trees 

 
Figure S1. Phylogenetic analysis of GA20 oxidases in Citrus clementina. Only the CDS relationship with 

GA20 oxidase 1, Ciclev10005157m, was selected according to its similarity with citrange Carrizo. 

 

 
 

Figure S2. Phylogenetic analysis of GA3 oxidases in Citrus clementina. Only the CDS directly related with 

GA3 oxidase of Solanum lycopersicum and with the GA3 oxidase 1 of Arabidopsis thaliana, 

Ciclev10027153m was selected. 
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Figure S3. Phylogenetic analysis of FLC in Citrus clementina. Only the CDS inside the FLC/MAF branch 

was selected, it was directly related with FLC of Poncirus trifoliata and Vitis vinifera, Ciclev10033420m. 
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Figure S4. Phylogenetic analysis of SVP and TEM in Citrus clementina. Only the CDSs in the middle of 

the SVPs and TEMs, respectively, of each branch, Ciclev10026457m (SVP) and Ciclev10031846m (TEM) 

were selected. 

 

 
 

Figure S5. Phylogenetic analysis of ELF8 and SKB1 in Citrus clementina. Only the CDSs inside the branch 

of the ELF8 and SKB1, respectively, Ciclev10007295m (ELF8) and Ciclev10007631m (SKB1) were 

selected. 
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Figure S6. Phylogenetic analysis of 1, 2, 5 and 7ATX in Citrus clementina. Only the CDSs inside each 

branch of the 1, 2, 5 and 7ATX, respectively, Ciclev10018602m (1,2ATX), Ciclev10018614m (5ATX) and 

Ciclev10000043m (7ATX) were selected. 

 

 

 

2.9 Supplementary data. FLC sequence 

 
Data S1. Genomic sequence of FLC, obtained of IVIA1 library, IC0AAA56AF11 clone. In Phytozome 

v10.3, it corresponds with Ciclev10033420m.g. 

 
TTTATAATTTTATAATATATATGTAGATATATGAAATTTTATTAAATATAAAAATAATTATCACTATAAGATGTGATAATTTTATAAAAAGTAATTTATAAAAAATTTATCAAATATCAAAATTAACTTTTAACTTTTAAACATAATAATTGAGCTT
CTAAAAAATTAATTCCAAACGGCCTTAATGTATGAATAATTTTTTTTTTAATTACAAAATATATATTTTTATTAAATAATTCAATCATCAAAAAAGTTTTGCTGTCTTAGGAGAATTAATTTGTAGGACCCACAGGCGCGTACACGAAAAAAATG
ATAAAATGAGACTCAGGTCTATCTGCAGTAATAAACTAAGCTAACATGTTGACTTGCAAAAAGTTAATTTATTTGGTGTCGGCACTTAAGTGATTCCAGTAGAATAATTATACATCAAATTTGGAGGTTTGACGTGAGAAGACATTGGCTGGC
CTTGGCTGGTTAATCTGGTAACTTACTTTAATCATACAGTTTATCCACTAGCCACTGGGTCCTATCGCAACAAAATGTTGTTTTTATTTTTAAAAAAATAAACAAAAGGGTGTAAACAAGTTCACTCTTTCTAATTAGAGTAATTTATTTGTTTCT
AAAAAGAGTAATCTAATCTTTCTTCGAAATAAAATAATTAATAAATAAATAAATAAATAAATAAAACTAGGCGTGCCGAAAGTCCCCCAAAAAAAAAAAAACCTTAAAAATACGACAACAAATAACACGCACGGCACACGTAGCATTAAAAA
ACAAATAAAAAAGCAGCCGCAAGCCCGCAACAAAAGCACGAATGATGCCCGCGGAGACACGTGTCGAATTGTCAGGCGTCCTCGCCTCCGACTTTCGATTGATCGATTTATTCACACACTGTCAGCACTGCTGTGCTTTACTCTACATAAGT
ACCACCAAGCGACCCTAATTTCCGCCTTATCTGCTGTGCTCCTTTTCTCAATCTAGGGCGGCATTGGGTCAGAAAATGGGCCGGAAAAAGCTTCAACTGCAGCGAATCGAAAACAAAAGCCGATGTCAAGTAACGTTCTCAAAGCGGCGTAG

http://bioinfo.ibmcp.upv.es/genomics/cfgpDB/est.php?seq_name=IC0AAA56AF11RM1
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CGGATTGATCAAGAAGGCTCGTGAGCTCTCCGTCCTCTGCGACGTCGACTTGGCGCTCGTCATCTTCTCCAGCCGCGGTAGGCTTTACGAGTTCTGTAGCGCCGACAGGTGCGCCTTCCCCTCCTCCTTTTCTTTTCTTTTTTTCCCCCTTTCCA
AAAATGTTAATGTTGTATGAATAGAATACAATTATTTAGGCTCTCTACAGTAAACTGGGAAGGCAATTTAGTCGGTTTCTTGACTGCGTCATGGTCACGCGGTGTTCACTGATCAGTTTAAAATAAGTGTCATCTCAAAAAAGGAGAACTGTT
TGGTGATGTGATTGCTATCATCCGTGCGACAAAATTGCTCTCCACGTGTAATGTGGCAGCAGTAGCGCTAACCGACTTGATTTTGGGATAATTTCTGCTCACCTGCGATGGAAGTGATATTTCTTCATCCACAGTGCCCGCTCCTCTATCTAGT
TTCTTTTTTAATGTTGATTAATTAGGGAGCTCAGGACTGACCCTCTTTAGCTTCTTTATTAATTTTAAAGTTGCCGTAAGATTTAAGAAAGTAAGAATGATCATTGAAACGTGTCTAAAATAAATCTGGAATTTGAAAATTAATTTTTTGAAGCC
TTCTTATTAAGACAATTCTTCTTACAACCAGTTACTTTTATATGTTGGATTGAAATTTAATGGTTGGGAAATAATTTTTGGGAAGTGAGAATTAGTGGGCCACGAGCTGAATTAGTTTGGTATTATGGGCTGTACGTAAATGTTACTTACTAAA
ACGCTCTTATTAAAAGTATTTTATGAGATTTTGTTGCATTTCACGCTTTAAAAGGAAAAAATCTATTTTCAGATTGGGAACATGATCTAATGAGCACCTGAACATATGTTATGATTCTATGACAGCTTCCGAAGAGCACTGAAGTTGTGGATTA
GTCAGATAATGTCACGGGACGTTTGTTTTCACGTTCACTAGATCATTACTATATATGGCTAATGATCTAGGTGGTGACGGTGCTCACTGTCACATGTTGCTGTTTAGTTAATCCATTTCTTAAACATTATTGACACGAAGACATAAAATTCTGCC
ATGTGTCCCATGCCCACCATATGGTGGGTCTTGGTTCTCACTAGATCATCACCCGACATACATATTTCGAAATGTTTTTATAAGTTAGTTCAATGAGCTTGGAGGCCACAAATCATTTTATTACGAAAGATTAAATTTATTCTTTAATTTTTCTGT
CATATTCATTATTTTTATGAGTTCTTAAGTTTTCAAGGGATGTTTTCGAAGAAATCTAAGAAAATAAATTTTAGAAGGATAATGTGACTTCTAAGTGAGTTCTTTTGATTTAGATGATTCAATTCAATTGGTTTTTTTCAACACTGCTAGCTAGC
GAAGTATGAGCTTTGGATTTTCTATGTAAAAAAAATATTTTTAAACTAAGTAAATATGATTCTTAAATAATGATTTTGATAAAAATAGTAAAGATATTATAAATTTTTCATTATAGACGTAGTGAATCGAATTAATGTAGATTCTAATTTACAGT
AGTTAATAGTTATCAAACGCTGTAGTTTTTAAACTACAATCGTCCAACCTTAATATCAAATAGGGTCTAAATAGGGCTCGAAGAGCAGTCAGGACCACTCGTATCAATTTATATGACTTATTCCAAGTATTGATTATGCATCAAATAATTTGTA
GTACTCTAAGCAAAAAGTATTCGTATTTAGTAAAAAAGCAATAGTAATAGATATTAGATTAAGAATAAATTGGTTCTAAGTGTAATCGATACTTGTGGTTAGATTAATTTATATTTTAAAATAAACATGCTTATGTTTAGGAGAACTTGTATTC
CAAGGAAGAGTCTTCAATATACTTGTTTGTGTGAGAGGATTTAGGGCTAAATTAGAGCTGATTTTTATTGTTTGAATCAAAAGAAAGAACAATCCTGACCTACAATTCAAAAGATAAGTTAATCTTTTTTCAAAACTCATAATTACTCCTAATA
CTTGAGAAAAATGAGCATAAACGCTAAATGACTACTTAATCTCTTATTTATACCTGAACCCTAATTAGTGAATAAGTAAAATTACTAAATTGTCCCTCCCCTTTTATATTTGCACTTAAAATAAGTTTTCATTGGTCTAACATTACTCCCCTCCCA
AAAAGACACCTTGTCCTCTAGGTGAAATCCAAGAAATTACTGCCTCTTCTTCCTTGGCTTCCTCTTCGCCTTCCTCCTCATCACACACAGTCAGGACTTATAGCGATTTGTCCTTACATCGATGCCCCGATGAAAATTTCTCATCACATCAAAAAC
ACAACTCCTTTGCCCTTTTGTCCTGAATCTCTATCTCAGTGAGGCATTTGAAAGTCACCCTTGATCGTGCCTCACTAGCCCGATCGCTTTGGGAATCTCTTTGTAACTCCATCATTTACGTTTTCTGGCCTTCCGATGGTGTGCTTTGTGAACTCT
CACTGAAACCCCAAGGTCTGGGTTTTCTATCCTACCAATCGTGTGTTGTTTCGGTATGAAAAACCGACTGAATTGATCTTATTAACCTATTCTGCTGTTTTCTTATCCTCAATCATCTGTGCCAACTCCATTGTCTCCCGTAACCCTTTAGGCCTT

AGCAAGCGTAACGAGGCTCGGATATTTGGTTTCAGCCCTTCATAAAATCCCCTTCCAATACCGCCTCTGAGATTCCCCGTAAATGCCCCGATAGCAACTCAAACTTCTCCCTATACTCTATGACTGTTCTCTCTTAGGTCAGGGTAAAAAATTGT
TCATGCAAATCTCCCACTTGAGTGGCCCGAAACCTCTCTAACAGTCGGTCCTTAAATTCACCCTACGACCTCAATGGTTGTCGTTGTTCTCGCCATTGAAACCATGCAAGGGCTTTTCCCTCAAACACAACAGTGCCGCCATTAGTTTTTCCTTT
TCTGAGAGTCCATTGATGGCGAAATAACGCTCTACCCTATACACAACCATAGGAAATGGGCATTTTCAGTTTCTTTACCCTAGAATCCGCCCCAGATTGAGTTTACCTTTCGCGCCATTGGAGATCTCCAACCTCTTAAATCTACTCTAATTTCT
ACAAATCCCGAAGTCTCAGCCTAAAATTCTCCTTGCCCAGCTGCATTCAGGTTATAATTGCTTCATCTCTCACCGGAAACCCCTCTTCCCAACCATCCGCCGAGTTGCCAAGCCTAACCATCCCCAACTTCTATGCACCCATTTCAGTGCCGAAA
CGCCAATTCCTAACCTTAAGCTGCCTCCTCCAGCTGTGTAACCCTCACATCCACCACCCCCAGCCGCGACCCAGCCTTCTCCGCCACACCCGACGTCAGGAAAGGCTCCCCTAGGCCGCGAGTCCCCAAAACCGACCTCCCCGCCACCAAATCC
ACCATGACTCGTTGCCTTTGCCTGTGTGAGATTGGTGGTTTCGACCCTCTGCGCTGCTGCCGACCACGGGTTCTATACCGCCGGATCCTTCTCCTGCCATGTTGCCGTGGCCCGTCGATATTGCCGGTAGTGGGTTAAAGTGGAGTTTCGTCA
ATTTTAGCAACATGGTTTGATGGGATGAAAATTGTTGTTGAACAGTGTTAAATTGCTCGTTGATGGGTGGCCTTGAGCGATCCTTCGCTTCCAATTTCTCTTCAAGTGCGTCCACCTTCTTCGCTGCCATTGTCCCATAATTTTTGCTCTGATGC
CACTTTGATAGGATATAGGGCTAAATTAAGGCTGATTTTTATTGATTGAATAAAAGAAAGAACAATGCTGACATACAATTCGAGAGGTAGATCAATCTCTCCCAGAACTCCTAATTACTCATAATACTAGACAAAACTCAGTATAAACTCTAA
ATGATTCCTTAATCTCTTATTTTTACTTGAGCCCTAATTAGTGAATAAGTAAAATTACTAAACTGCCCCTACCTATTTCTATTTATGCCTAACATAAGTTTTCATTGGTCTAACATTGTGTACTTAAGAAACTCTACATTTTTATCCTAACCACACTT
AACAAGGTAGTACTTTATGCTTATGCATAAGATTTCTTTATCTTCTCTAACTTTACAAATTTTGATAGATAGTATAAGAATCACACACCTATGCTTTCACACATATTCTCTCCTTGAATTAAGGTGAGAATTTGTTTAATTGGAGAATGGATCTTG
GGATCCATTTGCTTTGATGTTTCACTAACATTTTGGTTGTTAGCTATTGCTGTTGTAATATTTTTTTTATTCTACTAAGTTAAATTTGATTTTTCTAAAACGATGTCCGTCTCTTGACTCCTTAAGTGACAAGAAAAACTTAAACTAAGGCTTGAAT
GACCATTTCTTTTAATATGTAGATGTGATACAAGACTTGGAACAAGCAACTAGAGAGTAAGGGAGTATTTTTCCTATTTCTTTTTATTTTTCTTTTTTTGTATCTCTGTTAGTAGGCTTATATAGGTCAACTATTGATCCCTAATGTATAACCACC
CAAGTATAGAACTAGGTGAAACCAATATTTATCTCCACAAAACTCTTTTACAAATTCTACTTCAAACTTGTTTGGAGGTCTCAAACAAACCTTAAAACCATTGGATGTACTTATACTTATGTCAAAAATTAAGAGGAAACTAGTTATATTAATAT
TGTAAACTATACTATTTATATTAATGCATGAAAACGGGATGAAGCTAAAGTACCTATTACACCAACCTTTGAATGTACTCCACAATCATCATCCTTCACTCATTATTTCTCGAGCTAGCCATCGTTTATCTACTTGGATTCATGGTCAAGTGTCCT
CTTAAGCCGGCCTTAGTAATTACTTTTATATTGTTGAAAGTCAGAAAGGACATTTAACTAAATGATTAGCCAAGCCTACAAAACCCTAGGACACCTTTACTTTGCGAAATGCATCCGCATCTAACTAATTGTAAATATTCTTATCAATAACAAA

GAAAATATATTCACTAAAGGGTTAACTCTTAATTGCCCCCTTCGTGAAATGATAATCTTCAAAATATCCCCTAAATTTTTGTGAACCTCAATTTGCCCCTTACTTTTGTTAAGAAGACAAAAAAAATTCATTAACCGCCCCATTATTCCTTATCTTT
TGAATAAAAATAAGGGTAAGTTCAAGTTTACAGTAGTTTAGGGGTATCTTGAAGAGTGTCATTTCATTAGGCGGTTATCTATAATTTACTCTTCAACACAATTAAATGTTTATGACACGAATATTAATTTGCCAATCTATCACATTTCATATTTT
GGATGAATTATTATTTATTAATTATTGTGTTGTAATAAATTTACATGATTAAATTTTTATCTTTGATTAGTTTAAGTTTGTATGTTGTTTATTATTTCTTAATCATATATTCTATTTTATTTTATCTTTAAAAGTTGAATTATGAAAGTATTTCAGTGT
TAATCAAGTTGTTAATCGTATTATCGTGTCTTAATCGTATAATTGTGTCTTAATTGTGTTATCATAATCATTTCATAATCGTGTAATTGTGTCAAATAGTAACATGTCAAATGTGTTGCGTCGTGACGTGTCACCTATTTATTAAATGGGTCGTAT
CTGTGTTTGAATTTTTTGACATGATTATAAATGTGTCGGATCCATATTTAGTAAAATTGGACATGACACGTTTATGACATGCCACAAATATAACATGATTACTTTTACACAAATTGCCACCTCTAATATTTAACATGATTTTTATGTTGTATATAA
CATTCATGTGATTAGTGAGATGTTATATCATGTTTGGATTTCTCTTAGCTTATTGGTTAATGCTAAATAATTAGTTAGTTAAATTTCTCAATGCGTTTAACTAATTTTCCTTTTACTTTACTCAATTGAATATTAATTCTCTATACCTTTAGTCGTCC
TCTTTTTTTCTCTTTCCCTCTTTTTTTTCCCCCAATGGCTTGTTCTGTGTAAGCTATAGATGGTTAGGCCATCTCCAATTTGACACCAAAACTAACACCAAACCACTTTTTACACTATTTTTGGTATAAAATGCTTCTCCAATGTAACACCAAAACTA
ACACCAAAATGGTGTTATGAAATAGTATTGCACCAAATATGGTGCAATACTATTCATTTGGTGTTAGGGAAAAAAAGTCACAAATATCCTTATTACTTTTTTTTATTTACATATATGTCCCATTTTATATAATATTTTAAGTTATTATTATTATTTT
TATTCATTTTTTAATTTTTGAATATTATACTAATATTTAAATAAAAATATTCAACACAAAAATTAATAATAAAAATAAAATGCCCAATAACATTAAATTACTACATTACATATTACAAAATTAAAAATACAAAATTAAATTAACACAAATTAAAAA
AGCTACTACTACTAGCATAAATTAGAACAATTATTTGATAATCTGGGAGATTATTATTAGATCTTCCAATATCATTAAAATATTGGCCAATATTATTGGAAGTATTTTGAGATGCTTGGCCTTGTTGAGATCTTCTCTGTAAAATCTTAATTTGTT
CATTTTGAAAATATTGATTTAGTTAATTAAATGCAAATTTAATAATTTTCTATATTTTTTTTGTTAATCGATATAAAATTACTTATTACTTAATTATCTATATTAATAGTAATATTTATTGTGTTAATTGAATTAATTCTTGAGAATTAAAAGAATAA
AAAGAAGAATATTCTTTTTTGTGTAAAATTTGGTGTAAATGGGTTGGAGATGAAATAGTAATTTTGGTGTGAAAAAAGTACATTTTTGGTGTTGGTGTTACACCAAAATGATATTAACCATCGGAGATGCCCTTAGTTATGGAAAGTTATAAA
TTAAAGAGTCCAAAATGAGAACAACTAAAGGGGACAAAAGCATTCTTAAAAAAGAGCAAGAAATTTATCAGAGTGGGATTGTAAGCTTGAGGTTATCGTTACACTTTACATATATAGAACTGCAATTAACAACATTTATGGATTTATAAAGC
AGAAATATATTGAAACAATTTATATATGTTTACATTTGTGTCGAAATAATTAATAAACAGTGACATCCGGTTTGAATTTTTTGTATATGAAAAAAATATCAAAATAAGATTAATTTAAAGCAATTCGAAGTTCATTAATTTATATTTGTTATCAC

ATCATAGAAAGTATAAGTCTAAGGTAATTATTGATGAAGACTTGGATAAATCTTTTAATTAGTAATATTTATAAATGATGTTGTAGTACTTTGAGAAGCATCTGTAGCTGTCATAGTTAAAGAGCTCCACATGAGAAATTGCACATGTTAATCA
ATTGATTACCAAATATCTATCTTATTCTAGCATTATATGATACGAACTCATTAAAACTTCTTTATATATGTGCATGTTCTATGTTTTGTTATATTTGTATGCATATAAATCTAATCATGGTTAGCTTGAACCTAGACTTCTACCTTGAAACATTTTTT
TCATTCTTTTGTGAAAAATGAGAAAATCTAGATTTGAGTCTTTTTCAAGCCTTTAGATCAAGTAATGAGTAAACTAAAAGCAAATGAGATGTTAAGAACTACAAATTTCTTTAATATTTTACCTAATTGCAGCTGAGTTGTTCTTTGTTTTTTTCT
TTTTGCTCCTCATGATTTATGGAGAAGATGATCTCCAAGCCTAAAAATAAATCATTTGATTATTCAATCATTTGCCTTTTTAAAAAAAATTATTCTTCAATCATAAAAGCAAATGAGATTTGAGGAACTCCAAATTTCTTTTAATATTTTACTTAA
TTACATCCATTTCTTTCTTGTCTTTATTTTTTCCTTCCTCGTGATCTTCTTCCCTTCCAACTAAAGAAATGGAGAAAATTAATCTTCAAAGGCTGAGCACCATAGTCTCCTCCACTATATGTAAATCTNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCCTGCATTACTCATAAAGCGTTCTATCCGTCCTCTCAAACAAGTCGAAATGCAAATACTCCGACTA
TTTTATCTCTCTTCATTCTCTTTCCGTAGCCTACCCACAAGGATATGATATTGGCCACTTTAAGCTAGCATAGGTTTGTTATTGGGACCATTTCTAAAACCTTGTATTATCTGTGAGACAACATGTAGATACGTGCCCTGGTTATATATGCTAACC
AAATATTGGCAGACTTCATTACATCGCTCACATCTCATCCCACTTTTGCCTTCTAACTTGCTTTATAGATGCAAGCGTGTTATTCATAAGTTTACTCATCTTAAAAACTATATCAAATATCCAACGGACTATACAATATCGGTCATCTTAGTCTAA
CTTCTAAAGTTGCTCTTATTATCCTCCATTCTAAAGGAACCACGCTTGATGACATTAGCCAAGCACAAATGATTATTTTACATTTACATGTAGGATTGATTTTTATTTTTGAAACATCATCTAGGTTTATTGGATTTGCTAGAAGCAGAGAACCT
ATTCGACTAAAATATATATATATACATTGGCAATAGACATCCCTAAATATAATAAGCAAGCTTTGATATAATCTTCCCAGAACCTCATTTGAAATAGACATAATGTTCGCTCTTTTCTTTTTTACCTCCTATTTAGTCGATGCTTTTCTTTTACATC
TTACTTTATTTTTCTCTTTTATTTTACTTTGTAGACTTTTACCAATAATACAAAGTCTCTGTCGGACTCATAATATTTTTATCTTCTTGGATCTTTACATTTGTACTTAACGCTCCTTTCTTCTCTATATTTATTCCTCATTCACTTAAATTATATTCCGT
TCGATGTATTGAAATGTTGCTCGTCTCCATCGATTCCCTCCTATTCAAACTCTTACACTCCTCGTATAACCTTCTCATGGTACAAGAATATATTTTTCTCAAATTTTCTTCTTTAAAATGCTTTGATGAAATATTCCAAAAGCAATACTGAATGGAA
TAAAATGTTCACGCTAATAGTTGTCCTAATATACAGCTTTTATAATTAGTCAAAATAGAACATACTCCTCAAAAAAATACACCATATCCTGACTTACGTAAACACAAAAGTAAATCAATTTTACAACATAGAGATCTAAGGAACAAGAAAAACT
ATTCAATCATCAAAGAGCTCATATAAACATCCTATAAACCCGAAAGAGCAGGGTGCACCCTAATTATAAATATATTTGTGCTTTGTGGGAGTAGTTGGTGTATTGGGAAATATTACTTCGGAGGTGTACTGCAGGTGATTAGTTTCACTTTGG
AAGTTTATCATTGATGCAAGTGTTGCATTATTAGTTGGTTGAAAATTTGGGAATGCCCATACTTTAGGGGAAACTCTTCCCAAATTTTTTGCAAGGACAAGGACATTGTTTTGAGTGATTGTTCCATTACAACCCAGGTTTAAGAATGAATTTT
TTGCCTCATGTTAGTCTCATTTTTACTTGGAAATTCTTTTTAGGTTTTGAATAAATTTCACTATTGCTGAATTCCCGCTAGAGATTCTTATGGTTGAATTTCTGTTTTGAAGTAATAGGAAGTGCAAAGCTAACTTTGAGTAGCCTACTATAGTAC
TATTGCATCTTCACGGACGATAGAAATGACCTTTTTGTACACTTGTGATAGAGCATTAGAACTGACTTTCTCAACAAATTCTCAAGACTGATATGGCTACATGACATATAGAATTGCTGAAGAAGAAGACGGCATTCTTTAATACCTTTTCAAG
GTCTGCGCCTCTGTTTTGGCATTTTAACTACCAAAAAGGGATGCTCATCCCTACTTTCTGCCGGCCTTCATAATTACCACTTTTCATTGTATTTTCCTCTTTCTAATATTTTGAAGAACCACCATATCTCCACAATCTAGAAAATTATTACATGATC
AAGAAATCTGAATAATTAATACTGATAATGCAGTTTGGCCAGCATCCTTGAGCGCTACCAGAGTCGCATTGCAGAGGAAGCTGTAGCTTCAGGAGCACCTAAGGCAGAGGTAAACTGTTCTCTCTCTATTTAGAACACATTAGCAATGGCTA
CGCTAGGTCTAAAGTCTAAACCTATCCTGTCTTCAGCATGCTCTCCATGAAGTGGATCAACTCCTAGGGATGAATTTATGCATCAAATTGTGAATAATCAATCTAAGTAAGACTAAGTAGTAGCTTTGACTTAATTTCCTATTATAGAGTGTTT
GGACGAGAACTGTAAGGGTAACTGATATTTTCAATATTATACTCTGCCCATACAATTTCGCATATAACTTTAATATCTAAAACCCTCTAACTGGAAGTATTCTAGGTTCTCCTGAATATGTCAACCAACTTGGTCTAACCTGGTTTATACACTCA
ATCAATCTATATGCTGACGAAGTTCTTTCTAAATGCCTATGGGATATGAAACCCAGTGAAAATGGCCAAAATTGGACTGTCATTGTGAATATGAGGACATGCTTGAGAGTGATGACCATTAAGTCACAGCCTCCTGCAGTATAATCCCTTAAT
TTATGTCTGAGTACTATCTCCATACATGTGCCAATACAACATATCTGGGAATTTTGTAGGTAAACATAATGTTGTGACTACTCCTAGCATGCCTGATAGAAAAACTTCATACAACCGCATCGATTTGAATCAATTTAGTACTATTGCTTGGCTCT
TACCTACCAACTTAAGTTATCAAGTCAGGCTTTAACTTAATATACTTTTGGAGCTTTTTTGATCAATAGGTCTAGTGTCCAAATCCTCCTGCGAGATTTTCCTCTGTAGTTGTTTCTATCTTCAATCTTCCTTTAGGCTCATCTCTATGTTTGGATTT
GTTTATAGCTTTCATCTTTGGTTGAGCTTCTTATGCAGGACAAGACCATTTGGTATGGCCTTTGCATGTGAAGAGCTCCGTTAGGGCTTACTATGATGTTCTAGGTTACGACCTAATAGCTTTAGGGTCAATTGGTAAAGTAACACAGTACCA
GAAACCTAGATATCCAGTGCTATTATACCCTGACATGGTTGCCTTTTGGGTTTGCCTTCTGTCTTCCATCTGTGGTTGGGCTTGGTCCACATAAAAGCTCATTTATACATCAGTCTTGGTCCACTTGACAAGCTGATTTATACATCGGTCTCGCT
GATATAAGGGGTTGTCAAAGGTTAATAGTATTGTTCAAGTCAGGCAGGCCAGAATTAACGTCATTTATCTATAATGCATTTGCGTACAAAACTTTTCTTTTCCTTTTTTTTTTTTGCCTGGGTGGTTGGGGGGCCTCCAGGGGTTGTTTCATGG
CTAACTTTCGGGATCTCTACACTGACAGGACCCTCAGGCTGGATATTCGAGCCTGCAACTGCTGAAAATAGTTCAAAGGCAATTTCTCCAAGTATTCTATACATTTTCCCAGAATGGCACATTATGTGTTTGTGTGTGTGTTTGTGTGTATTAC
TTTATTGATCTGTATTTTGCATCCACAGGCAACTTGAAGGTCCAAACTTTGAGCAGTTCACTGCAGCTGATCTTCTGCAGTTAGAGAATCTACTCAACGATACACTGACAGAAATTAGAGCTGTGAAGGTCAGGATTATAGTACTTTTGCAATT
GAAATCTCGAGTGTCTAAAAATAATAGGAATATGGTTATGAGATTACATATTGACTATCAAGAAGATAATGTTCATGTATTGTTGATGCCTTTGCCGCTTGCTCCTATATCTTGGTTCTCCTTTATTCAGACCTTTCCAAGAGATTATGATACTA
CAAATTCTTAGTCCCATGTTTGATCATCTTAAAATTCAACCAAGCCAACAAATACACAAACAATCTGCAACTTCCATCAATACTGGTTGCTGATTTTCACACGTTTACCTAACTGAGAATGCTTTAACCACTGATTGCTATATCACATTAATCTTT
TCTTTCCTGTCTATCCAAGCACTTCTTTTTGGTTTAGCAGCTTTTCACTAGGTTCAATTATCTGCAGCTGCTTACTGCTGAAACTATGGAGAAGACCTATGGTTGTGCGCGTGAACTATGAAGCGCACTTGAGTTTGCTTTCTGTAGCCCCTGTT
GTTGAAATACTCGTTTTGCCACCAAAAATACCTTACCTTAATAATAGATTCTGGCCACCTTAAAGTAAAACAGAGGATGCACCCCTGCTCTAGTTTGACCTGTTGTCTGTCACTTGATTATTTGAACTTGGAACTACTATTGCATTATCAATTAG
ATCCTGTATGCGCCTTTTTTTTGCGCCCTCCTTTGTGCCTGCTTGAGGCTTGTTATACTATCCATGAAGGTTCATTCCTATGCTCATTGGGCATCTTTGGTGCAGACACAACTGATGATGGGATCCATTAGAACACTCCAAGAGAAGGTACACTT
AATTAAATACTTTCCATACCTTACTCTGTGGAATTGTTTATTCCCGGTAAATCTTGAAGAAAAACCTAAGCTCCTAGCTGGATGCAAATTGCAAGTGTCAACTTTTATGTGGTTAAAATGACTGCAAATATTTCTGTTTCACTACGACAGGGTCG
TTTAACATTAGATATCATGGTTCCAATTTAGTTGGTGGAAAATTTTCTTCCTATTCATTAAAAAGCAGGATCTTATTGCAAGTGAAACTGTACAGCTGGCTGTGTCAACAGTAGGCTTTCAGAGTCTCCCGGGCTCATTTGTTTGCCATTTGCAT
GAAGTTTTATCCAATAGATCCTTTTTATTTTCCATGCCTTTAATTCCTGCCTTCTGAGAAACCTACAGCTTTCTATTTCACTACTTTCTAGTTGTGAGTGTCCTTTGTCCTTGAGAACCTACCAGCTTTAAGAATTTCCAAGCACCTCATAATTGAT
CAAAATCAGATTGGAAAAGGAAGAATGGAGATCTAATGCTGGTGAAACCATGTGATGATGCTGTCTTTTTGTGGCATAAAACCTTTGTACCTCCCTATATTAGGTAGCTAAGGTGGTAAAATGAAGGACCATATAGCACCTTAGTGCCGCTT
TGGTTAATTTGAACACTACTATTCGAGCTTCTAATATAGTACTCTAATCTTGGATTATCATGTAATCAAGTCTAGTCAACCATATTCATGCATTCCATTGTATTAGAAATACTTTCTCAAAGATTGATATATCTGATGAAGAATCTAAAGCACCG
GTGACATCTGGATAGCTAGACTTGTTTTCTAAGAGGGGAAAAAAAGGGTTGTTTTAGTTATTAGATTCATAATGAATCAGGGTTTGGCAGACGTTTAGTTTGTTGTCATGGTTACCTGAAAAACTCAATTTCTGCATTATCGCGACCACATCA
CCTAATTTTTTTCTCGGTAATTTGTACAGCATGTGTGTGTACAGACATGCATGTATCTAATGAACAAGCTGGATCCCATCTGTGGATGTTTCTGGTTTATCATTTCATATTTCTTCTATTTTAAACAGGAAAAGCTGCTGAGAGAAGAGAAAAA
GCTTCTAGAGGGAAAGGTAAAAGTATTACGTACTAAATGCATATCTTGTTCTTCAAAAGAGTCTAATAATTGTCAGTTGTCACTTACAGATTGCAGCAGGGGAGAAGAGTGGTAATGATACAACAGCAGCGTCTATGGCAACCCTCCCTTTG
CTTAGATAAGCTGAGGAGAGGCGCTTTTCCAAGTGTACTTTTCAGCCGCCCATCTGTTGTACTTGGTGAATATGTAAGTCTGTTATCAGTGGCTAATTCTACGTAGCGAATAAATTGTAATGCTCTGTACTACTATAAGGCGGCTAGATAATC
AGGGAGCGGCTTCTGTAGAAGTTCCCACTGACTACGTTTTTATCATCTGCCATCATCAAACTTGCAGAATGTTTTATTATTTTGTGATTTGTGTAACCATGCTTGAGCAGAAATGCAACAACATATGAGACAACAATTTATAAATAATGGCCTT
AAAAAACTGCACAAACTGGCAGGAGGTTAGATGAAATATTATATGAAGAGTAATGATACAGTTATAAATTTTTATATAAATTTATTTTGTACAAACTGATGTGGTATTAATTCATTGATTGAATTAAATATCTTTTGGTTTATATGATTTATTTT
TATTATTTTATATTTTTATTTAATTAATAAATTAATGTCACTTCAATTTGTACAAAATAAATTTATACAAGAATTTGTATTTGTATCATCACTCGTTATGAGACATAAAATAATAGCCTTGTTGACCAGGTGCCATGCCAATGAAGGTTCAGCTTG
GGGGCTATTTGCACCTGTCAAGCCGTGGGCCGTGCTTGGCAAGCAGCCTGTTGCTTTTTGCTTTTTCGGAATTGGGCTTCTTGTTCTAAAATAGAAAAAATATACATACATACATATATATATATATATATATATATATATTATTAGGGAAATTT
ACAAAAATAACCATTAATATTTTATTATTTTCGTAATTAACCCTCTCAACTTTTTTCTATCAACATTAGCCAAACACAAGCCTTTCTTCCCAAATTACCCTTCTTTACAGAACAAAACCAACATTGTTTCTCCCATCTCGCCAAACCAAAAGCAGCT

TTTCATTCTTGAATCATAAGCCAACGGCGACCGCAAAAGACAACTGTAAAAGTGATATCCGATCATAATCTATCCAAAT 
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Section 1. Hormonal inhibition of flower induction: Gibberellins  

 

In citrus, when it reaches its final size fruit inhibits flower induction by repressing 

the expression of flowering genes. But it is not known which long (or short) distance 

signal fruit sends produces to hamper the process. GAs have been thought to be this 

signal. But a “directed” transport of GAs from the fruit to the bud or the leaf has not yet 

been clearly demonstrated. Besides, the relationship between endogenous GA and flower 

induction it is not clearly known. The objective of this section is to discuss the effect of 

fruit in endogenous GA synthesis and transport and flowering. 

The ‘Moncada’ mandarin tree presents an absolutely natural 100% alternation 

between flowering and fruiting. Thus, it was selected as a model system to study the 

process. The tree produces up to 80-90 kg year-1 (ON-tree). The fruit ripens in January 

and harvest-time lasts until February. Thereafter, in spring, the tree is not able to flower 

and only develops vegetative shoots (Fig. 1.1). Therefore, the tree does not produce a 

fruit during a complete year (OFF-tree). Flowering is induced in autumn-winter, and the 

following spring the tree sprouts and flowers profusely, developing mostly generative 

shoots (inflorescences), but also vegetative shoots and mixed shoots with flowers and 

leaves (Fig. 1.1). A large number of these flowers set a fruit, the tree becoming ON again. 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 1.1 Flowering of ‘Moncada’ mandarin ON (with yield) and OFF (without yield) trees. A: flowering 

intensity. B: type of sprouted shoots. V: vegetative shoot; M: mixed-type shoot (flowers and leaves); G: 

generative shoots (inflorescences or single flowers). Data are means ± ES of 6 trees. *: indicate significant 

differences (p ≤ 0.05). 
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1.1 Fruit development and flower induction gene expression 

 

To study flower induction, FT gene expression (main promoter) and FLC gene 

expression (repressor) were determined. FT gene has been described as the “florigen” in 

several species, Citrus included (Nishikawa et al., 2007). But it has also been reported to 

regulate both vegetative and reproductive development in trees due to the presence of at 

least 2 paralogs (FT1 and FT2) (Hsu et al., 2011).  In Citrus, there are 3 paralogs encoding 

this type of protein, CiFT1, CiFT2, CiFT3. Their role regulating vegetative or 

reproductive development has not yet been demonstrated.  To determine which of these 

paralogs are related to flower induction, a preliminary experiment was performed 

comparing CiFT1, CiFT2 and CiFT3 expression in juvenile trees (without the ability to 

flower) and adult OFF-trees. The relative expression was studied in September, 

November and February, coinciding with the fall sprouting, the floral induction stage and 

spring sprouting, respectively (Fig. 1.2). CiFT1 did not differs significantly in the juvenile 

and adult trees, showing increased expression in fall and spring sprouting stages, and 

reduced expression in the floral induction stage. On the other hand, CiFT2 was not 

expressed in juvenile plants in the period studied, while in adult trees the relative 

expression of CiFT2 was increased 12-fold in the floral induction stage and 35-fold during 

flowering. The relative expression of the CiFT3 gene showed no variation in adult trees 

and a significant decrease over time in juvenile trees. In summary, only CiFT2 showed 

significant differences in the floral induction period between adult and juvenile plants, 

and, accordingly to this, it may regulate flower induction in Citrus. Additionally, CiFT1 

correlated with sprouting in juvenile and adult trees, suggesting a role in the control of 

vegetative growth, as occurs in poplar (Hsu et al., 2011).   

The citrus FLC gene has been sequenced (Supplementary data S1) and 

characterized. Thus, the FLC gene was introduced in Arabidopsis thaliana to study the 

delaying effect on flowering time. This was evaluated by counting the leaves at the 

moment of flowering (Fig. 1.3). Arabidopsis plants transformed with CcFLC had more 

leaves than the Arabidopsis control plant, which indicates that CcFLC-Arabidopsis plants 

presented delayed flowering. 
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Figure 1.2 CiFT, CiFT2 and CiFT3 expression in leaves of ‘Moncada’ mandarin adult trees and leaves of 

a juvenile plant of ‘Cleopatra’ mandarin. Data are means ± ES of 3 qRT-PCR replicates. *: indicate 

significant differences (p ≤ 0.05).  

 

 

 

 

  
Figure 1.3 Number of leaves before flowering of Arabidopsis thaliana cv. Columbia. Influence of the FLC 

gene expression. Data are means ± ES of 40 plants by column. *: indicate significant differences (p ≤ 0.05). 
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 From the beginning of July, ‘Moncada’ mandarin fruit underwent a phase of rapid 

development to reach its final size around mid-November. From the end of September 

until mid-November, the fruit grew to about 20% of its final size (Fig. 1.4A). This period 

still coincided with high temperatures (Fig. 1.4B) and in September and October the color 

of the peel remained dark green (Fig. 1.4A). Thereafter, the end of fruit growth coincided 

with the beginning of fruit degreening, and chlorophyll content significantly declined 

(from 350 mg/g PF in October to 110 mg/g PF in January) (Fig. 1.4C). The color of the 

peel changed progressively from pale green to orange a/b (Hunter) around the end of 

November (Fig. 1.4A) coinciding with a significant reduction in temperatures (Fig. 1.4B). 

The distinctive orange color of the fruit was gradually developed until late January (Fig. 

1.4A). This effect was produced by the increase in carotenoid contents (from 205 1000 

OD 440 at the end of November to 260 1000 OD 440 at the end of January) (Fig. 1.4D). 

 The end of fruit growth and the beginning of fruit ripening, due to the decrease 

in temperature, coincided with the upregulation of FLC and the inhibition of CiFT2 . On 

the other hand, CiFT2 was significantly upregulated and FLC downregulated in the leaves 

of the OFF trees (Fig. 1.4E and F).  
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Figure 1.4 Evolution of fruit diameter and the color of the peel (a/b Hunter) (A), air temperature (B), 

chlorophyll content in the peel (C), carotenoid content (D) and CiFT2 and FLC expression related to 

chilling hours (E-F) in ON and OFF trees of ‘Moncada’ mandarin. The data of fruit diameter and color are 

the means ± SD of 10 replicate samples. The data for chlorophyll contents are the means ± SD of two 

measurements. The data of gene expression are means ± ES of 3 qRT-PCR replicates. *: indicate significant 

differences (p ≤ 0.05). 
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1.2 Time-course of gibberellin metabolism in the exocarp, nodes and leaves from 

ON and OFF trees 

 

Higher concentrations were formed for gibberellins from the 13-hydroxilation 

pathway than gibberellins from the non-hydroxilation pathway in both ON and OFF trees 

(Figs. 1.5 and 1.6). In ON trees, the beginning of chlorophyll breakdown in the flavedo 

coincided with a significant reduction in GA12 GA19, GA20 and GA29. Concentrations of 

GA12, GA20 and GA29 rapidly reduced from 0.82 ng g-1, 0.88 ng g-1 and 0.81 ng g-1 in 

September to 0 in October. GA19 concentration dropped progressively from 2.47 ng g-1 

in September to 0 in January (Fig. 1.5). Neither GA1 or GA8 was found in the flavedo. 

Gambetta et al. (2012) suggested that citrus fruit might export GAs to change color, which 

is in agreement with these results. Concomitantly, GA20 and GA1 concentrations 

significantly increased (4-fold) in the leaves during November, as well as the GA20 

catabolite, GA29 . The GA20 precursor, GA44, also followed this trend although reaching 

a significantly lower concentration (Fig. 1.5). This increase in GAs concentration was not 

supported by a significant increase in GA synthesis, as deduced from the analysis of 

GA20ox1 (which catalyzes the GA52-GA44-GA19-GA20) or GA3ox1 gene expression in 

the ON-tree leaves during October and November (Fig. 1.7). Although these experiments 

do not demonstrate the transport of GA to the leaves, it might be suggested, according to 

the results. On the other hand, GA concentration in the leaves from the OFF trees was 

high in September and low in November. Specifically, in the youngest leaves (coming 

from the fall flush), GA12, GA19 and GA1 concentrations fell from 19 ng g-1, 2.1 ng g-1 

and 2.9 ng g-1 in September to 0 in October, being almost nil until the end of the study 

(Fig. 1.6). Accordingly, GA20ox1 and GA3ox1 gene expression also peaked in September 

and progressively diminished until the end of the study (Fig. 1.7). Leaves from the spring 

flush showed a similar trend for these GAs but at lower concentrations. The highest GA 

synthesis shown in September may be due to the development of the leaves of the fall 

flush. A detailed representation is shown in Figure 1.8. The growing leaves from the fall 

flush had higher GA1 and IAA concentrations than the adult leaves from the spring flush. 

Moreover, these adult leaves supported the growth of the young leaves, i.e the adult leaves 

of a node with a growing shoot had higher GA1 and IAA concentrations than the adult 

leaves of a node without a growing shoot (Fig. 1.8).       

In the nodes, GA1 concentration followed the same trend in ON and OFF trees 

being slightly higher in ON trees (1.71 ng g-1) compared to OFF trees (1.10 ng g-1) (Figs 
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1.5 and 1.6). No GA synthesis was found during the dormant period of the buds, which 

suggests that GA1 found in the node is the result of GA-synthesis and transport from other 

organs (i.e. leaf or fruit). On the other hand, GA20ox1 and GA3ox1 gene expression was 

triggered at the bud sprouting stage (Fig. 1.7)   

Although the non-hydroxilation pathway is quantitatively less important in Citrus, 

it is interesting to note the time-course of GA4 concentration in the fruits from ON trees. 

GA4 increased from September to October and remained constant at a concentration of 

2.3 ng g-1 until the fruit color was complete. When carotenoid synthesis was triggered, 

GA4 was depleted (Fig.1.5).    

 
 

In brief, in this experiment in fruiting shoots from ON trees, a peak in GAs was 

found in the leaves when FT gene expression was hampered. This also coincided with the 

moment the fruit reached its maximum size and began the ripening stage. GAs in the fruit 

were also depleted; GA1 was continuously found in the node and GA synthesis in the leaf 

did not increase. Therefore, results might suggest a short-distance transport from the fruit 

to the proximal nodes and leaves. Three major questions arise: 1) Is this GA increase 

responsible for FT inhibition in ON-trees? 2) If GA synthesis is inhibited, can the buds 

from ON-trees flower? 3) If transport between the fruit and buds is interrupted, can buds 

flower? 
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Figure 1.7 GA20ox1 and GA3ox1 expression in ‘Moncada’ mandarin leaves and buds from September to 

February. Data are means ± ES of 3 qRT-PCR replicates. *: indicate significant differences (p ≤ 0.05). 
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Figure 1.8 Endogenous gibberellin content of non-hydroxylation pathway, GA12, GA15, GA24, GA9, GA4, 

and catabolite GA51, and 13-hydroxylation pathway, GA53, GA44, GA19, GA20, GA1, and catabolites GA29, 

GA8, in OFF trees of ‘Moncada’ mandarin. GAs were measured in the spring (SP) adult leaves from nodes 

with and without new fall shoots, and in fall leaves. Dates are means ± ES of two sets of 10 vegetative 

shoots. *: indicate significant differences (p ≤ 0.05). 
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1.3 Exogenous control of flowering: Treatments with Paclobutrazol (PBZ) and 

GA3 

 

Medium-yield trees 

 

PBZ (1 g tree−1) applied at the flower induction period significantly increased 

flowering intensity (70%) in ‘Hernandina’ Clementine mandarin (70 flowers per 100 

nodes) as compared to untreated trees (40 flowers per 100 nodes) (Fig. 1.9). Doubling the 

amount of PBZ applied (2 g tree−1) did not improve the response. Gibberellic acid had the 

opposite effect as the number of flowers per 100 nodes dropped by 37%, from 40 

(untreated trees) to 25 flowers per 100 nodes (50 mg l−1 GA3 treated-trees) (Fig. 1.9); the 

effect of GA3 prevailed over that of PBZ when the two regulators were applied together 

(Fig. 1.9). 

 

 
Figure 1.9 Effect of paclobutrazol and gibberellic acid applied to ‘Hernandina’ Clementine mandarin. 

Values are the means of 10 trees per treatment. Standard errors are given as vertical bars.  

 

This effect does not depend on the species. Thus, the application of 40 mg L-1 of 

GA3 at the flower bud inductive period also reduced the number of flowers per 100 nodes 

of ‘Salustiana’ sweet orange by 72% (p ≤ 0.01) in comparison to control trees (Table 

1.1). This treatment also reduced bud sprouting by 40% (p ≤ 0.05) compared to the 

control. Leafless single-flowered shoots and leafless inflorescences were reduced on 

average from 3.6 to 1.3 and from 5.1 to 1.9 per 100 nodes, respectively, due to treatment, 

with differences being statistically significant (p ≤ 0.05). Among flowered leafy shoots, 

only inflorescences were significantly reduced by application GA3 from 5.6 to 1.2 per 

100 nodes (p ≤ 0.05). Conversely, GA3 significantly increased vegetative shoots from 3.8 

to 9.0 (p ≤ 0.05). PBZ applied at a concentration of 2,000 mg L-1 produced an opposite 
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trend. The number of flowers per 100 nodes and percentage of sprouted buds were 

increased by 123% and 74%, respectively, compared to the control (p ≤ 0.05). For leafy 

shoots, neither single-flowered nor inflorescences were significantly altered by this 

treatment. However, for the leafless shoots, both single-flowered and inflorescences were 

affected rising from 3.6 to 8.8 (p ≤ 0.05) and from 5.1 to 16.3 shoots per 100 nodes (p ≤ 

0.01), respectively. PBZ significantly reduced the number of vegetative shoots per 100 

nodes (0.8) compared to the control (3.8; p ≤ 0.05). 

Interestingly, the number of flowers per shoot of both leafy and leafless 

inflorescences was not significantly altered by GA3 in comparison to the control, with 3.9 

and 3.4 flowers per leafy inflorescence and 3.7 and 3.4 flowers per leafless inflorescence, 

respectively, whereas PBZ increased flower number significantly, up to 4.9 and 4.2 

flowers per shoot for leafy and leafless inflorescences, respectively (p ≤ 0.05). Neither 

GA3 nor PBZ changed the number of leaves per shoot in any case, even that of vegetative 

shoots (data not shown). 

The time course of the relative expression of CiFT in leaves throughout the study 

was significantly affected by GA3 (Fig. 1.10A). Significant differences in mRNA 

transcripts between GA3 treated trees and control trees were detected from 8 days after 

treatment (DAT) onward. The expression in control tree leaves increased progressively 

up to 32 DAT (mid-January), decreasing thereafter to almost the initial value (Fig. 

1.10A). Gene expression in leaves of GA3 treated trees paralleled that of control trees but 

was reduced by 16% on average, except for 80 DAT (late February) when no significant 

differences were found between control and treated trees (Fig. 1.10A). On the other hand, 

PBZ treatments trees significantly boosted the relative expression of CiFT in leaves (by 

30% on average) from 8 DAT up to the end of February, which is the onset of bud 

sprouting. In this case, leaf gene expression also paralleled that of control trees, but with 

significantly higher values throughout the entire period studied. Figure 1.10B shows the 

time course of the relative expression of the FLC-like gene in leaves from control and 

GA3 and PBZ treated trees. From early December to the onset of bud break, no differences 

in gene expression were found. Activity in leaves remained almost stationary between 

0.70 and 1.03, regardless of the treatment. 
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Table 1.1 Effect of GA3 (40 mg L-1) and PBZ (2.000 mg L-1) applied to entire tree during the floral bud 

inductive period (10 December) on bud sprouting and flowering of ‘Salustiana’ sweet orange trees.  

 

 
Each value is the mean of six trees ± SE. Different letters in the same line indicate significant differences 

(p ≤ 0.05). a Sprouted buds expressed as percent of total buds. b Number of shoots and flowers expressed 

per 100 nodes. 

 

 

 
Figure 1.10 Effect of gibberellic acid (GA3, 40 mg L-1) and PBZ (2.000 mg L-1) applied on December 10th 

on the time course of CiFT and FLC-like expression in the leaves of the ‘Salustiana’ sweet orange. Different 

letters for the same sampling date indicate significant differences (p ≤ 0.05). 

A 

B 
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Control and GA3-treated trees did not differ significantly in the relative expression 

of CsLFY in leaves, remaining almost constant between 0.66 and 1.21 throughout the 

study (Fig. 1.11). However, in PBZ-treated trees there was no treatment effect until late 

in January when mRNA transcripts in the leaf significantly increased 1.8-fold (1.94) 

compared to control (1.12). In spite of the subsequent decline, a significantly higher 

relative expression of CsLFY in comparison to control and GA3-treated trees was recorded 

in PBZ-treated leaves at bud break. This effect coincided with the significant inhibition 

of GA20ox1 activity, which was observed (Fig. 1.11).  

 

 
Figure 1.11 Effect of gibberellic acid (GA3, 40 mg L-1) and PBZ (2.000 mg L-1) applied on December 10th 

on the time course of CsLFY and GA20ox1 expression in the leaves of the ‘Salustiana’ sweet orange. 

Different letters for the same sampling date indicate significant differences (p≤ 0.05). 

 

Results suggest that, under medium-yield conditions, treatments that modify GA 

metabolism can quantitatively modify flowering, i.e. the number of flowering shoots 

produced, by interfering in either flower induction genes (FT) or flower differentiation 

genes (LFY). The inhibitory flowering effect of GA has been previously related with the 

leaf and flower induction (Guardiola et al., 1982) but also with the bud and flower 

differentiation (García-Luis et al., 1986; Goldberg-Moller et al., 2013).   
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ON and OFF trees 

 

Figure 1.12 shows the influence of fruit load on flowering in the following spring 

for untreated and PBZ-treated trees. A significant inverse relationship was found between 

fruit load and flowering intensity in control and PBZ-treated trees of ‘Salustiana’ sweet 

orange (A) and ‘Afourer’ mandarin (B). Results also suggest that PBZ increased 

flowering only in low- and medium-yield trees and not in those with a heavy fruit yield, 

the threshold value being about 100–125 kg tree−1 for ‘Salustiana’ and ‘Afourer’. For 

larger crop loads, no significant crop load – flowering intensity relationship was detected, 

whereas for lower crop loads a close relationship was observed. Thus, for instance, when 

PBZ was applied to both ‘Salustiana’ sweet orange and ‘Afourer’ mandarin trees bearing 

50 kg tree−1, the number of flowers per 100 nodes doubled from 33 to 64 and from 59 to 

110, respectively; this effect was not achieved when PBZ was applied to trees with a crop 

load ≥125 kg tree−1 (Fig. 1.12A and 1.12B). 

 

 
Figure 1.12 (A-B) Fruit load and flowering intensity relationship in ‘Salustiana’ sweet orange (A) and 

‘Afourer’ mandarin (B) control and PBZ-treated trees (n = 23). PBZ (1 g tree-1) was applied to the soil 

whereas GA3 (50 mg l-1) was applied as a foliar spray on November 25. Regressions [y = (a + b* ln x)2] are 

significant at p < 0.01. 

 

 Furthermore, under ON-tree conditions, PBZ failed to promote flowering 

regardless of the dose applied, date or method of treatment or cultivar (Fig. 1.13). There 

was a significant increase in flowering intensity the following spring in OFF-trees of 

‘Salustiana’ sweet orange and ‘Afourer’ mandarin receiving 1 g tree−1 or 10 g tree−1 to 

A B 
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the soil during the floral bud inductive period. However, ON-trees receiving the same 

doses flowered in proportions similar to untreated ON-trees, i.e. next to nothing (Fig. 

1.13A). A similar response was obtained with 15 g tree−1 PBZ sprayed onto the canopies 

of ON- and OFF-trees of ‘Moncada’ mandarin (Fig. 1.13A). Advancing the treatment 

date of PBZ (1 g tree−1) to earlier in the rest period (October) or delaying it until floral 

bud differentiation (February) did not counteract the effect of fruit load, nor did it produce 

the effect obtained when the same dose of PBZ was applied in the floral bud inductive 

period (November), regardless of the cultivar or method of treatment (Fig. 1.13B). 

 

 
Figure 1.13 (A) Effect of PBZ dose (0, 1, 10, 15 g tree-1) applied at floral bud inductive period (November 

20-25) and (B) treatment date (October 10-15, November 20-25, February 20-24) (1 g tree-1) (on flowering) 

in ON- and OFF-trees of ‘Salustiana’ sweet orange, ‘Hernandina’ clementine mandarin as well as ‘Afourer’ 

and ‘Moncada’ hybrid mandarins. PBZ was applied to the soil or as a foliar spray, and GA3 was applied as 

a foliar spray. Data are means of 6-10 trees per cultivar. Standard errors are given as vertical bars. Different 

letters for the same cultivar indicate significant differences (p ≤ 0.05). CT: control trees. 

 

Treatments were also applied directly to the bud to further demonstrate its inability 

to flower in the presence of fruit. Thus, 2.5 µg PBZ applied locally to the buds of OFF-

trees at the floral bud inductive period promoted flowering (113.5 flowers per 100 nodes) 

when compared to untreated buds (59.5 flowers per 100 nodes), but when PBZ was 

applied to the buds of ON-trees, it did not affect the number of flowers (7.6) compared to 

untreated ON-buds (7.8 flowers per 100 nodes). 

 

 

 

A B 
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1.4 Branch independence: the short-distance effect of the fruit. Fruit-shoot 

phloem transport interruption by peduncle girdling 

 

Trees of ‘Salustiana’ sweet orange that bear 50 kg tree-1 on average are considered 

medium-yield trees (Fig. 1.12). Under these conditions, the tree is able to flower in spring. 

However, the inhibitory effect of the fruit is also evident if ON and OFF branches in the 

same tree are studied separately. For this research sprouting and flowering were evaluated 

in spring attending to the position of the preceding yield in branches of about 250-300 

nodes, i.e, at least 2 years old. Results indicate a clear inverse relationship between fruit 

position and flowering, suggesting a short-distance effect of the fruit in flower induction 

inhibition (Fig. 1.14).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.14 Schematic representation of sprouting and flowering in spring of two branches (250-300 nodes, 

2 years old) from the same tree of ‘Salustiana’ sweet orange. Branches had 13 (A) and 4 (B) fruits and 

flowered very low and very high, respectively. An inverse relationship between fruit position and flowering 

is observed. 

A 

B 
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Therefore, in order to induce flowering in fruit bearing branches, an experiment 

was designed to interfere in this short distance dominance.  

Spring branches with 8 nodes and a fruit in terminal position were girdled in the 

fruit peduncle at the end of stage two of fruit development, i.e., end of summer (August 

25, 2014) (Fig. 1.15A). Ungirdled branches and OFF branches were selected for 

comparison. Girdling did not cause the abscission of the fruits, which remained on the 

branch until harvest. However, girdling significantly modified fruit development. At 

harvest, 7 months after girdling (March), girdled fruits were significantly smaller and 

their exocarps were greener than control fruits. The pulp changed color as did control 

fruit but the girdled fruit accumulated fewer TSS (total soluble solids) (Table 1.2). 

 
Table 1.2 Characteristics of fruits from ON and Girdled shoots (7 months after girdling) in ‘Afourer’ hybrid 

mandarin. Each value is the mean of 10 fruits ± SE. 

 

 Control Girdling Significance 

Weight (g) 92.8±23.3 32.5±8.7 * 

Diameter (mm) 57.5±4,8 43.2±2.9 * 

Exocarp color    

a 28.8±1.1 -1.03±0.89 * 

b 33.9±0.5 19.8±1.2 * 

a/b 0.9±0.0 -0.1±0.1 * 

Pulp color    

a 10.8±0.4 11.4±0.4 Ns 

b 19.6±0.3 21.3±0.3 Ns 

a/b 0.5±0.0 0.53±0.02 Ns 

TSS (ºBrix) 16.4±0.5 8.5±0.2 * 

 

 

Eleven days after girdling, the proximal buds sprouted in 15% of the girdled 

branches, and 22 days after girdling bud sprouting was achieved in 45% of the branches. 

In contrast, un-girdled branches (ON) did not sprout. Non-bearing branches (OFF) also 

sprouted naturally (fall flush) (Fig. 1.15).  

Bud sprouting occurred in the 4 nodes closest to the girdle. From node #5 to node 

#8, buds did not sprout (Fig. 1.16). All the sprouted buds produced only vegetative shoots, 

which were longer in the girdled branches than in the OFF branches (Fig. 1.17).     
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Figure 1.15 A. Representative figure of the type of shoots used for the experiment, vegetative shoots (OFF), 

single flowered leafy shoot (ON and Girdling). B. Evolution of the percentage of sprouting at the end of 

summer in single flowered leafy shoots (ON) and vegetative shoots (OFF) of ‘Afourer’ mandarin. Effect 

of girdling the peduncle of the fruit (Girdling). Each value is the mean of 50 shoots. Vertical bars represent 

the standard error. The blue bar shown on the left of the figure corresponds to LSD interval. 

Figure 1.16 Distribution of sprouting at the end of summer along the nodes in single flowered leafy shoots 

(ON) and vegetative shoots of ‘Afourer’ mandarin. Effect of girdling the peduncle of the fruit (Girdling). 

Each value is the mean of 50 shoots.  Node #1 corresponds to the node closest to the fruit/apex, while node 

#5 is the farthest. Vertical bars represent the standard error. The blue bar shown on the left of the figure 

corresponds to LSD interval. 

Girdling SAM 

A 

B 



                                                                                                                                 Results                                                                                                                                 
 

101 
 

 
Figure 1.17 Length of the shoots at the end of summer, along the nodes in single flowered leafy shoots 

(ON) vegetative shoots (OFF) of ‘Afourer’ mandarin. Effect of girdling the peduncle of the fruit (Girdling). 

Each value is the mean of 50 shoots.  Node #1 corresponds to node closest to the fruit/apex, while node #5 

is the farthest. Vertical bars represent the standard error. The blue bar shown on the left of the figure 

corresponds to LSD interval. 

 

Bud sprouting was related to changes in the hormonal balance in the nodes. In the 

un-girdled ON branches, the IAA content in the fruit was 7 ng g-1 in both the exocarp (ex) 

and the mesocarp+pulp (me+p) (Fig. 1.18). Further, the IAA content was significantly 

higher in the nodes than in the fruit. The third node showed the maximum IAA level (200 

ng g1). No GA1 was found in the fruit while in the nodes GA1 concentration was around 

1 ng g-1 (Fig. 1.18). Girdling modified the hormonal balance; thus, it significantly reduced 

IAA concentration in the pulp (2 ng g-1) and in the nodes (100 ng g-1 in the third node), 

and also t-Zeatin in the nodes compared to the ungirdled branch (Fig. 1.18). On the other 

hand, girdling significantly increased GA1 in the nodes (3.4 ng g-1). Other hormones 

(GA4, ABA and JA) were not modified by the treatment (Fig. 1.18).  

 Nonetheless, the most outstanding result is that girdling of fruit peduncle triggered 

flowering the next spring while the ON branches did not flower. The girdled branches 

produced 45 flowers per branch, on average (Fig. 1.19). But flowers were only produced 

on the girdled branches that sprouted in September, that is, on buds from the fall shoots 

(Fig. 1.19). Girdled branches that did not sprout in September did not flower in March 

(Fig. 1.19). This result suggests that flowering in the fruiting branches was not directly 

due to girdling but to sprouting. On the other hand, all the meristems from OFF branches 

had the ability to flower (even without fall shoots). In this case, fall sprouting also 

increased flowering (Fig. 1.19).  
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Figure 1.18 Effect of girdling on the endogenous GA1, GA4, IAA, TZ, ABA and JA content along the OFF, 

ON and Girdled shoots 11 days after girdling (August 25) in ‘Afourer’ hybrid mandarin. N1-N5: nodes 

next to the fruit; Girdling: of fruit peduncle. Data are means ± ES of 2 sets of 10 vegetative shoots/ leafy 

single flowered shoots/girdled leafy singleflowered shoots. The blue bar shown on the left of the figure 

corresponds to LSD interval. 
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Figure 1.19 Girdling (August 2014) influence on sprouting and flowering in spring (March 2015). 

Experiment performed in the ‘Afourer’ hybrid mandarin. Number of spring shoots (A and C) and flowers 

(B and D) per node, in ON shoots (A and B), control and girdled, and OFF shoots (C and D); with fall 

shoot: this shoot sprouted in autumn and the spring sprouting in 2015 was analyzed on spring and autumn 

nodes of 2014; without fall shoot: spring sprouting in 2015 was analyzed on spring nodes of 2014. Data are 

means of 10 shoots. Standard errors are given as vertical bars. *: indicate significant differences (p ≤ 0.05). 

 

 

This important result suggests that meristems beside a fruit must be restarted to 

activate have the flowering ability. If this renewed ability is due to the development of 

new leaves, new buds or both then it is worthy of further examination. The lack of 

flowering in un-sprouted buds could be due to a continuous inhibitory effect even after 

the fruit reaches its final size and ripens, and not only from the fruit located in the terminal 

position but also from other fruits on the branch. To test this hypothesis, buds (nodes) 

from ON and OFF branches, similar to those from the girdling experiment, were excised 

and cultured in vitro (without the effect of the tree) before and after the flower induction 

period. Sprouting and flowering were evaluated. 

 

 

 

 

 

 

* 

* 

* 

* 

* 
* 
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1.5 In vitro culture of excised buds from ON and OFF branches 

 

 As derived in Materials and method, the experiment was conducted with the seedy 

mandarin ‘Tardivo di Ciaculli’, which is similar to ‘Moncada’ mandarin. Both are late 

ripening cultivars related to the Clementine mandarin species. 

In spring, the OFF branches sprouted 22.5 shoots 100 nodes-1 while ON branches 

sprouted significantly fewer, 2 shoots 100 nodes-1. OFF branches had the ability to flower 

(producing 10 flowers 100 nodes-1)  while ON branches did not  (Fig. 1.20).  

 

 
Figure 1.20 Number of shoots and flowers per 100 nodes of vegetative shoots (OFF) and leafy single 

flowered shoots (ON) of 'Mandarino Tardivo di Ciaculli’ mandarin. Data are means ± ES of 30 shoots per 

treatment. *: indicate significant differences (p ≤ 0.05). 

 

Nodes from OFF and ON branches were cultured in vitro during (November) and 

after (February) the flower induction stage. At these dates, the fruit presented the 

characteristics described in the Table 1.5. 

 

 

 

 

 

   

 

 

* 

* 
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Table 1.5 Characteristics of fruits from leafy single flowered shoots in 'Mandarino Tardivo di Ciaculli' 

mandarin. Each value is the mean of 10 fruits ± SE. 

 

 
  

 

  

 

 

 

 

In November, bud sprouting was triggered in vitro during the first 2 weeks of the 

experiment (Fig. 1.21A and B). OFF-nodes sprouted up to 30% whereas only 5% of ON-

nodes sprouted. To stimulate bud sprouting, zeatin was added to the growing medium, 

which was based on carbohydrates, macronutrients and micronutrients. Zeatin increased 

bud sprouting significantly in both OFF-nodes (52%) and ON-nodes (12%) (Fig. 1.21B). 

No flowering was achieved in vitro. Sprouted buds only produced vegetative shoots in 

both OFF and ON nodes (Fig. 1.22). 

In order to ensure that the flowering signal (FT) had reached the bud due to winter 

low temperature, at least in OFF branches, a second set of nodes were harvested and 

cultured in vitro in February. At this time, bud sprouting was also triggered during the 

first 2 weeks, but a higher percentage of sprouted buds was found compared to November, 

particularly for that of ON-nodes (Fig. 1.21). Thus, 15 days after culture, ON-buds 

sprouted up to 33% and 55% in medium without and with zeatin, respectively, (6% and 

12% in November) (Fig. 1.21B and C). Sixty days after culture the ON-bud percentage 

of sprouting reached 51% and 71% in medium without and with zeatin, respectively (Fig. 

1.21B and C). In February, differences in bud sprouting between ON and OFF buds were 

significantly narrowed compared to November.  

Results suggest that OFF-buds are able to sprout when exogenous factors are 

favorable whereas ON-buds cannot sprout until the ‘fruit inhibitory signal’ disappears (as 

it seemed to occur in February).  

It is worth nothing that flowering was inhibited in both ON and OFF buds cultured 

in vitro. That is, ON buds could not flower as they did on the tree, and OFF buds also lost 

 November February  

Diameter (mm) 25.1 ± 0.7 39.0 ± 0.8 

Exocarp color   

a -14.5 ± 0.3 30.1 ± 0.7 

b 22.8 ± 0.8 32.0 ± 0.7 

a/b -0.65 ± 0.04 0.93± 0.05 

Number of seeds 7.2 ± 0.5 n.d 
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their ability to differentiate flowers when separated from the tree, even after the flower 

induction period.  

The fact that a meristem beside a fruit needs to be restarted to gain the flowering 

ability, and that the application of PBZ does not induce flowering under heavy ON-tree 

conditions, suggests that flowering is the result of complex interactions at the metabolic 

and molecular level, involving multiple endogenous mechanisms of regulation different 

from hormone concentration and transport. It is still unclear which main metabolic routes 

and biological processes are up-regulated and down-regulated in trees with contrasting 

ability to flower due to the presence of fruit. Therefore, to attempt to clarify these 

questions, a proteomic study of leaves and buds from ON and OFF trees was conducted 

during the flower induction period.  

 

 
Figure 1.21 Effect of the fruit and the medium composition (-GR/+GR) on the sprouting in vitro of 

microshoots with one bud in ‘Mandarino Tardivo di Ciaculli’. Each value is the mean of 10 dishes with 5 

microshoots. GR: growth regulator (zeatin (1 mg/ml)). *: indicate significant differences (p ≤ 0.05). 
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Figure 1.22 Growth of microshoots in the culture medium. Photographs taken after 7 (A), 14 (B) 21 (C), 

28 (D), 35 (E), 42 (F), 56 (G), 60 (H) days of culture. OFF microshoots.  
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Section 2. Proteomic analysis of “Moncada” mandarin leaves and buds with 

contrasting fruit load 

 

2.1 Comparative proteome analysis 

 

The protein spots were identified that were up- and down-regulated in OFF trees 

comparing with ON trees. Therefore, leaf and bud samples from OFF and ON trees 

were analyzed by 2D DIGE gel, two-dimensional difference gel electrophoresis. Gels 

were of high quality with reproducible protein patterns among replicates of the same 

samples (Fig. 2.1). 

Approximately 1436 and 1162 spots in gel images from samples were resolved 

in leaves and buds, respectively. To assess global differences in the expression levels 

between OFF and ON samples, gels were compared and quantified using the DeCyder 

Differential Analysis Software. Among the total proteins, 176 spots showed a 

significant quantitative differential accumulation (t-test < 0.05) between ON and OFF 

samples in leaves, while there were 350 spots in buds. 110 spots in leaves and 192 in 

buds were confirmed with a good match and a sufficient volume for subsequent 

identification by mass spectrometry. To reliably determine quantitative changes in 

protein expression and therefore overcome error imposed by technical and biological 

variations, proteins were identified as up-regulated in OFF or ON samples if they were 

found to have an average expression level at least 1.10 higher than the other ON or OFF 

samples, respectively. Among the 110 proteins in leaves, 43 had increased expression in 

the OFF samples compared to ON samples (Av ratio +), while 67 showed a decreased 

expression in the OFF samples (Av ratio -). In buds, 97 displayed an increased 

expression in the OFF samples as compared to the ON samples (Av ratio +), while 95 

exhibited a decreased expression in the OFF samples (Av ratio -). 
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Figure 2.1 Representative 2D DIGE gel of proteins extracted from ‘Moncada’ mandarin leaves (A-B) and 

buds (C-D). Equal amounts (50µg) of ON sample (Cy5, red), OFF sample (Cy3, green) and internal 

standard (Cy2, blue) were loaded in the same gel. (A-C) Proteins up-expressed in the OFF appear in 

green, those down-expressed in OFF appear in red and proteins unaffected appear in yellow. (B-D) 

Proteins selected for the analysis by mass spectrometry. Spot numbers correspond to those indicated in 

Tables 2.1 and 2.2. 

 
 
2.2 Identification of differentially expressed proteins 

 
 

The 110 proteins in leaves and 192 in buds were manually excised with a good 

match from a preparative 2DE gel to further identify 90 leaves and 88 buds by MALDI-

MS analysis, and the other 20 leaves and 104 bud proteins by LC-MS/MS analysis. 

Table 2.1 and Table 2.2 provide the spot number, the function of each protein together 

with the putative protein name, the accession code, the organism based on the protein 

identified, the homologue in C. clementina established by the database in 
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www.phytozome.net (Phytozome v9.1), the homologue in Arabidopsis thaliana 

established by the database in www.arabidopsis.orgs, the values for theoretical and 

experimental pI and molecular mass, the expression ratio and p-value, and the 

MASCOT score together with the sequence coverage and peptides matched. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.phytozome.net/
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2.3 Classification of identified proteins 

 
 The proteins identified in leaves can be classified into seven groups according to 

their biological function: (i) primary metabolism (33 spots: 26 spots being associated 

with photosynthesis and carbohydrate metabolism, 4 spots related to Krebs cycle, 1 spot 

related to pentose phosphate pathway, and 2 spots related to nutrient reservoir activity); 

(ii) oxidoreductase activity (8 spots: one of them, spot 79, up-regulated in OFF samples, 

presented the highest ratio among all spots, and 5 spots were catalase, all of them up-

regulated in ON-crop samples, with spots 381, 384, 386 and 394 matching the same 

EST sequence); (iii) stress responses (3 spots, all up-regulated in ON samples); (iv) 

signal transduction (1 spot); (v) protein synthesis and degradation (6 spots); (vi) 

expansins (1 spot); (vii) other proteins (58 spots: this is the largest group, most of these 

proteins with unknown functions). The relative percentages of proteins both in ON 

leaves and in OFF leaves are given in Fig. 2.2. 

On the one hand, some of these spots were identified as the same protein such as 

catalase, for spots 381, 384, 386 and 394 (oxidoreductase group); NADP-isocitrate 

dehydrogenase, for spots 515 and 516 (Krebs cycle subgroup, up-regulated in ON 

samples); RuBisCO large subunit-binding protein subunit beta chloroplast, for spots 

300, 301 and 307; granule-bound starch synthase Ib precursor, for spots 327 and 328 

(Fig. 2.3); putative cinnamoyl-CoA reductase, for spots 743, 744 and 748. The last three 

groups of proteins are related to primary metabolism and all of them are up-regulated in 

OFF samples. On the other hand, some of the spots were identified as the same protein, 

but displayed different pI and molecular mass values and might account for isoforms or 

post-translationally modified forms of these proteins. Examples of the these spots are 

miraculin-like protein 1 (spots 1016 and 1049) or NADP-dependent glyceraldehyde-3-

phosphate dehydrogenase (spots 420 and 437), both related to carbohydrate metabolism, 

or protein disulphide isomerase (spots 104 and 126, belonging to the protein synthesis 

and degradation group), all of them up-regulated in OFF samples. 

The proteins identified in buds were classified into 10 groups according to 

biological function involving each protein (Table 2.2): (i) primary metabolism (91 

spots: 70 spots associated with photosynthesis and carbohydrate metabolism, 7 spots 

related to Krebs cycle, and 14 spots related to respiration); (ii) oxidoreductase activity 

(17 spots); (iii) stress/defense responses (12 spots); (iv) signal transduction (1 spot); (v) 

amino acid metabolism (25 spots); (vi) protein metabolism (18 spots); (vii) the 
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mevalonate pathway (3 spots); (viii) flavonoid biosynthesis (1 spot); (ix) cell wall 

metabolism (2 spots); (x) other proteins (22 spots; these proteins are involved in 

unknown biological processes). The relative percentages of proteins in both the ON and 

the OFF buds are given in Fig. 2.2. 

 

 

 
 

Figure 2.2 Functional classification of the proteins identified and found to be upregulated in ON-crops or 

OFF-crop leaves and buds. The relative percentages of proteins in each category are shown. 
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Figure 2.3 Representative proteins analyzed using DeCyder Software (spots 327, 328, 381, 462, 784 and 

1018). Differential expression analysis in ON and OFF leaves of representative spots from Fig. 2.1A and 

2.1B. 

 

2.4 Species from which the identified proteins proceed 

 

Fifty-nine spots were identified in leaves when matched against Citrus 

sequences, the number of matched peptides being between 3 and 24, with 14-70% 

sequence coverage. Results of a similar order were found for the other 51 proteins, 

identified by homology to sequences from other species such as Arabidopsis thaliana 

(15 spots), Prunus persica (5 spots), Medicago truncatula (3 spots), Vitis vinifera (2 

spots), Phaseolus vulgaris (2 spots) or Solanum lycopersicum (2 spots). 

Ninety-nine spots were identified in buds by matching the Citrus sequences, and 

the number of matched peptides was between 1 and 21, with 5.2-68% sequence 

coverage (mean 32.44). Results of a similar order were found for the other 93 proteins, 
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identified by homology with sequences from other species such as Pinus strobes (14 

spots), Arabidopsis thaliana (13 spots), Oryza sativa (13 spots) and Glycine max (8 

spots). 

 

2.5 Gene ontology analysis 

 

Total amounts of protein isolated in leaves were analyzed separately in two 

groups established according to ratio expression, using the Web tool FatiGO 

(http://babelomics.bioinfo.cipf.es). The database in www.arabidopsis.orgs was used to 

search for Arabidopsis proteins homologous to proteins identified in this study (Table 

2.1 and Table 2.2). The establishment of these homologies allowed to know the main 

biological processes in which the identified proteins are involved. The largest groups of 

proteins with AV ratio + were composed of proteins involved in carbohydrate and 

starch biosynthesis, carbohydrate metabolism, protein folding and response to metal ion 

in the OFF-crop samples. The largest group of proteins with AV ratio - was composed 

of proteins involved in hydrogen peroxide catabolic process and in response to stress, 

but many other biological processes are related to the up-expressed proteins in the ON-

crop samples (Fig. 2.4 leaves). 

The ontology study for these proteins in buds revealed that the largest groups of 

proteins that were up-expressed in the OFF bud samples in November (AV ratio +), as 

compared to the ON bud samples (AV ratio -), were composed of the proteins not only 

involved in carbohydrate and amino acid metabolism, but also those expressed in 

response to stimuli, such as reactive oxygen species (Fig. 2.4 buds). The largest group 

of the proteins with an AV ratio - was made up of the proteins involved in carbohydrate 

metabolism and also those expressed mainly in response to oxidative stress.  
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2.6 Starch, ABA and JA contents and catalase activity in ON and OFF trees 

 

According to the main biological functions found to be different between ON 

and OFF trees (primary metabolism, oxidoreductase activity and stress response), starch 

concentration, catalase activity and ABA and JA concentrations were studied. 

The largest group of proteins up-expressed in the OFF-tree leaves compared to 

the ON-tree leaves, is involved in carbohydrate and starch biosynthesis, both of them 

related to primary metabolism. Among them, the following proteins may be highlighted: 

Granule-bound starch synthase Ib precursor (GBSS, spots 327 and 328), malate 

dehydrogenase glyoxysomal precursor (MD, spot 764) and ADP-glucose 

pyrophosphorylase small subunit (AGP, spot 462) (Fig. 2.3). The activation state of 

these proteins is correlated with the accumulation of starch and soluble sugar in several 

tissues from rice, wheat or tomato (Kawasaki et al., 1996; Smidansky et al., 2007; 

Centeno et al., 2011). In fact, the starch level was found to be significantly higher in 

OFF leaves than in ON leaves, being these results consistent with the up-expression of 

GBSS in OFF-tree leaves (Fig. 2.5A). 

For proteins up-expressed in the ON leaves, the largest groups are those 

involving a hydrogen peroxide catabolic process, such as catalase (spots 381, 382, 384, 

386 and 394) or monodehydroascorbate reductase (spot 474). This is consistent with 

studies in apple that showed how catalase activity remained high during stages of fruit 

growth (Abassi et al., 1998). To validate this in Citrus, the catalase activity was 

measured in ON and OFF leaves; the results of this measurement confirmed that 

catalase activity in ON samples was twice as high that in OFF samples (Fig. 2.5B). 

Although to a lower extent, the stress responses were also differentially 

expressed in ON and OFF trees. ABA and JA are related with stress. In fact, an Abscisic 

acid stress ripening-like protein (spot 802) was found to be up-regulated in ON buds. 

The quantification of ABA in OFF and ON tissues showed significant differences (Fig. 

2.6). The highest ABA content in the fruit exocarp was found at the end of November, 

coinciding with fruit color change, and then the ABA content significantly decreased 

(Fig. 1.3, Section 1). At the same time that the ABA content increased in the exocarp it 

also increased significantly in buds and leaves (Fig 2.6). On the other hand, the ABA 

content significantly decreased only in OFF leaves and was maintained almost constant 

in buds (Fig. 2.6).  

 



                                                                                                                                 Results                                                                                                                                                                                                                                                                       
 

129 
 

 

 
 

Figure 2.5 A. Starch concentration in ON and OFF leaves expressed in mg g-1 dry weight. B. Catalase 

activity in ON and OFF leaves expressed in µmol H2O2 consumed g-1 protein min-1. Data are means of 

six independent replicates (n = 6). There are significant differences between ON and OFF leaves (p ≤ 

0.05). *: indicate significant differences. 
 

 

 
 

Figure 2.6 Endogenous abscisic acid content in the ON and OFF trees of C. clementine cvs. ‘Moncada’. 

ABA was measured in the spring+summer (SP+S) leaves (ON and OFF), fall leaves (OFF), buds (ON and 

OFF) and exocarp (ON). Data are means ± ES of 2 sets of 10 shoots.  

  

* * 
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Miraculin-like proteins have been related with defense responses and JA 

(Maserti et al., 2011), and were up-regulated in ON buds (Table 2.2). The JA content 

showed significant differences between ON and OFF tissues (Fig. 2.7). ON shoots 

showed higher JA content in buds in October and in leaves at the end of November 

compared to the other tissues at the same time. In the case of the OFF shoots, the JA 

content showed significant differences between buds and leaves during the entire period 

of the study. But the highest differences were observed from September to November 

(2500 ng gDW-1 in buds and 1000-250 ng gDW-1 in leaves). After November JA 

content decreased in both tissues. The JA content was higher in OFF than in ON shoots.        

                                   

                                                                                                                      

 
Figure 2.7 Endogenous jasmonic acid content in ON and OFF ‘Moncada’ trees. JA was measured in the 

leaves, buds, and fruit exocarp. Data are means ± ES of 2 sets of 10 shoots.  
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Section 3: Epigenetic control of flowering 

 

3.1 Alternate bearing: biennial reproductive-vegetative development cycle 

 

Citrus alternate bearing trees repeat biennial cycles of reproductive-vegetative 

development (for more details, see Figure 4 in the introduction). Alternation of the 

reproductive development in the ‘Moncada’ mandarin is shown in Fig. 3.1. Twelve trees 

were selected in summer according to their fruit yield in the year 1: trees 1-6 were ON 

(red, Fig. 3.1 A) whereas trees 7-12 were OFF (blue, Fig. 3.1 B). The presence of fruit in 

the year 1 (red trees) drastically inhibited the number of flowers produced in spring (0.7 

flowers/100 nodes) in year 2 compared to OFF trees (blue) (Fig. 3.1 C and D). Blue trees 

flowered profusely (142 flowers/100 nodes) and set a high number of fruits in year 2 (Fig. 

3.1 B) which inhibited flowering in year 3 (Fig. 3.1 D). On the other hand, red trees were 

OFF in year 2, set a very low yield (Fig. 3.1 A), and developed 5300 vegetative shoots 

tree-1 (Fig. 3.2), thus producing a high number of new buds receptive to exogenous 

flowering signals. Accordingly, red trees flowered profusely in year 3 (145 flowers/100 

nodes) becoming ON trees again (Fig. 3.1 A and B). 

 The relative expression of the flowering promoters CiFT2, LFY and AP1, and the 

flowering inhibitors FLC, SVP and TEM1 also showed alternate bearing in ON and OFF 

trees, since they were strongly affected by the fruit (Fig. 3.3). In Year 1 just before bud 

sprouting (January), CiFT2 (Fig. 3.3 A), LFY and AP1 (Fig. 3.3 A, bar chart) relative 

expression was significantly higher in OFF buds than in ON buds. As a result, OFF trees 

sprouted and flowered profusely in spring (Year 2) (becoming ON) whereas ON trees 

sprouted less and did not flower (becoming OFF). Later, CiFT2 showed significant 

differences in leaves between ON and OFF trees from November onwards. In OFF-tree 

leaves, CiFT2 expression was up-regulated, becoming more than 15-fold higher than that 

of ON-tree leaves in January, and remaining almost constant up to late in February. CiFT2 

in ON-tree leaves did not vary significantly during the study period (Fig. 3.3 A). On the 

contrary, the fruit stimulated the FLC gene expression in ON-tree leaves from October to 

the end of February (Fig. 3.3 B). But what is more important, the expression of FLC in 

buds in January, and in leaves in May did not differ significantly between ON and OFF 

trees. This suggests a kind of mechanism that inhibits flower induction in the adult leaf 

(and CiFT2 protein is not transferred to the meristem), but allows the meristem to restart 

and develop new leaves without the inhibitory signal. Afterwards, when leaves and fruits 
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reach the adult stage, FLC is again expressed in ON-tree leaves. The SVP gene, which 

directly inhibits FT together with FLC, showed a similar trend to that of FLC. In Year 2 

the SVP relative expression was higher in ON than OFF leaves, but differences were only 

significant in December (Fig. 3.3 C). Finally, TEM1 relative expression was increased 

80-fold in ON-tree mature leaves in January (Fig. 3.3 D). 

In the ‘Moncada’ mandarin, alternate bearing is a natural process. A defruiting 

treatment in ON trees in year 1 only increased flowering in year 2. But the third year, 

trees began again the ON-OFF cycle (Fig. 3.1 E and F). Therefore, an 

endogenous/genetic mechanism may regulate the process.  

 

 

 

 
 

Figure 3.1 Alternation of the reproductive development of 24 ‘Moncada’ mandarin trees in 4 years. Trees 

1-6 (red, A: fruiting; C: flowering) and 7-12 (blue, B: fruiting; D: flowering) were ON (with fruits) and 

OFF (without fruits), respectively, in the first year (A and B). Trees 13-18 (green, E) and 19-24 (orange, 

F) were ON trees in year 1 defruited by hand (in summer) up to 33% and 66%, respectively. Year 3 were 

ON again as it did the red trees. 
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Figure 3.2 Vegetative growth in ‘Moncada’ mandarin ON (black) and OFF (white) trees. Data are means 

± ES of 6 trees. *: indicate significant differences (p ≤ 0.05). 

 

 

Figure 3.3 CiFT2, LFY and AP1 (A), and FLC (B), SVP (C) and TEM1 (D) relative expression in 

‘Moncada’ mandarin buds (Year 1) and leaves (Year 2) from January to February of the next year. Data are 

means ± ES of 3 qRT-PCR replicates. *: indicate significant differences (p ≤ 0.05). 
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Results suggest that flowering promoters might be up-regulated by exogenous 

cues (i.e. low temperature) whereas flowering inhibitors might be up-regulated by 

endogenous cues. The objective of this chapter is to determine the existence of DNA 

methylation marks that control expression of the genes that negatively regulate flowering 

(FLC, SVP and TEM1). Methylation of cytosine in DNA is a common epigenetic 

signaling tool that cells use to lock genes in the "OFF" position. Cytosine methylation 

occurs in three sequence contexts, cytosine-guanine (CG), the most abundant, but also in 

CHG and CHH (where H is any nucleotide except G). As a general rule, the more DNA 

methylation found near the promoter region the more gene silencing. Depending on the 

DNA methylation profile gene expression can be up-regulated or otherwise blocked. 

Histone methylation is another epigenetic mechanism that regulates gene expression. 

Several studies have indicated that DNA methylation and histone methylation at certain 

positions are connected. 

 

3.2 DNA methylation profiles 

 

3.2.1 During the flower induction period 

  

3.2.1.1 Flowering promoters  

 

DNA-methylation was studied in leaves sampled on November 30th (flower 

induction period), when a clear difference was found in CiFT2, FLC and SVP gene 

expression between ON and OFF trees (Fig. 3.3). 

DNA methylation was studied in both CiFT1 and CiFT2. In the CiFT1 gene 

sequence, three regions were found to present CG sites: promoter-intron (in 2 positions, 

1 and 2), intron (in 3 positions, 3, 4 and 5) and exon (in 6 positions, 6-11) (Fig. 3.4 A). 

However, no cytosine was found to be metilated in these CGs in ON and OFF leaves (Fig. 

3.4 B and C). Neither CHG nor CHH were found to be methylated in the CiFT1 gene. 

Thus, they were not represented in Fig. 3.4 A. On the other hand, only the promoter region 

in the CiFT2 gene was studied. This region presented 7 CG sites (Fig. 3.4 D). Only the 

first CG showed cytosine methylation in 4 (out of 10) analyzed sequences of the ON 

leaves (Fig. 3.4 E). This scarce DNA methylation profile suggests no relationship with 

CiFT2 silencing in ON-tree leaves. The CiFT2 gene showed no DNA methylation in 
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OFF-tree leaves (Fig. 3.4 F). Results suggest that differences in CiFT2 gene expression 

between ON and OFF trees (Fig. 3.3 A) are not regulated by DNA methylation.  

 

 

 
Figure 3.4 DNA methylation profiles of CiFT1 and CiFT2 in ON and OFF trees in the flower induction 

period (November). A and D: Scheme of the analyzed zone. Red numbers indicate CG sites in the sequence 

of the analyzed gene. B, C, E and F: results of the bisulphite sequencing analysis of at least 7 clones per 

tree. White bars indicate no cytosine methylation whereas black bars indicate cytosine methylation. DNA 

was collected from ON and OFF leaves during the floral bud inductive period (November) of ‘Moncada’ 

mandarin. 
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3.2.1.2  Flowering inhibitors 

 

The FLC gene presented 24 CG sites in the promoter region and 10 CG sites in 

the intron (Fig. 3.5 A). After the bisulfite treatment, 4 CHH sites (positions 20, 30, 32 

and 35) showed differences in cytosine methylation between ON and OFF leaves and thus 

were included in Figure 3.5. In the promoter region, CG sites showed no methylation in 

either ON or OFF trees, and only the position 20 (CHH) showed partial methylation (4 

out of 10 clones) in OFF leaves (Fig. 3.5 B and C). On the other hand, ON-tree leaves 

showed more cytosine methylation in the intron than OFF-tree leaves. ON-tree leaves 

showed methylation changes compared to OFF-tree leaves in the positions 27 (100% vs 

33% CG), 29 (0% vs 66% CG), 30 (33% vs 0% CHH), 31 (66% vs 33% CG), 32 (0% vs 

33% CHH), 35 (100% vs 0% CHH) and 37 (100% vs 0% CG). These significant 

differences in the methylation profile may explain the significant difference found in the 

FLC gene expression in November between ON and OFF trees (Fig. 3.3 B).  

The SVP and TEM1 methylation profiles did not show significant differences 

between the ON-tree and OFF-tree leaves. While SVP showed no methylation in either 

ON- or OFF-tree leaves (Fig. 3.5 E and F), TEM1 showed all the CG sites methylated 

(Fig. 3.5 H and I), which were found in the promoter region (Fig. 3.5 G). Epigenetic 

regulation of the TEM1 gene cannot be discarded since its relative gene expression did 

not differ between ON and OFF trees in November (Fig. 3.3 D). However, the temporal 

pattern of TEM1 gene expression in relation to CiFT2 suggests a secondary role of this 

gene negatively regulating flowering in citrus. On the other hand, FLC might play a key 

role regulating the process. To better relate the methylation profile of the FLC gene with 

its expression, the DNA-methylation study was repeated in young leaves sampled in May 

(before the flower induction period), when FLC gene expression did not differ between 

ON and OFF trees (Fig. 3.3 B).  

 

3.2.2 Before the flower induction period 

 

3.2.2.1 Flowering Locus C 

 

Before the flower induction period (May), the FLC methylation profile of ON- 

and OFF-tree leaves showed high similarity. Almost all the same sites showed DNA 

methylation. Only the position 34 showed an absolute difference (0% ON vs 100% OFF 
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CG), and the positions 29 (100% vs 54.5% CG) and 31 (18.2% vs 100% CG) showed 

partial methylation (Fig. 3.6).  

 

 
Figure 3.5 DNA methylation profiles of FLC, SVP and TEM1. Scheme of zone analyzed. Bisulphite 

sequencing of promoter and intron regions was performed on DNA collected from ON and OFF leaves 

during the floral bud inductive period (November 30) of ‘Moncada’ mandarin. 
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Figure 3.6 DNA methylation profile of FLC. Scheme of zone analyzed, and bisulphite sequencing of 

promoter and intron regions was performed on DNA collected from ON and OFF leaves (May 13) of 

‘Moncada’ mandarin. 

  

 

 It is worth nothing that while in May the FLC gene showed DNA methylation in 

the same positions for ON and OFF leaves (except position 34) (Fig. 3.7), and also the 

same relative expression (Fig. 3.3), in November, both DNA methylation and relative 

expression of the FLC gene differed significantly between ON-tree and OFF-tree leaves 

(Figs. 3.7 and 3.3). In November, DNA methylation increased in ON-tree leaves 

compared to May, whereas it decreased in OFF-tree leaves (Fig. 3.7). This result raises 

the question of which methyltransferases modify their activity in ON and OFF leaves 

between May and November coinciding with the up-regulation of FLC gene expression.    
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Figure 3.7 Schematic representation of the DNA methylated sites in the FLC gene in May (white) and 

November (black) in ON and OFF trees of the ‘Moncada’ mandarin. 

 

 

3.3 Time-course of methyltransferase gene expression 

 

Several methyltransferases have the ability to promote or repress FLC gene 

expression by directly methylating FLC DNA and indirectly, by inducing changes in the 

histones. 

 

3.3.1 Promoters of FLC expression  

 

Among the promoters, the methyltransferase ELF8 directly methylates FLC DNA 

whereas 12ATX and 7ATX are involved in histone methylation.  

The relative expression of ELF8 differed significantly in ON and OFF leaves in 

September and during the flower induction period (December) (1.2 ON vs 0.4 OFF and 

2.9 ON vs 0.6 OFF, respectively). Differences were maintained between ON and OFF 
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trees until the end of February (Fig. 3.6 A). The relative expression of 12ATX was 

significantly higher in buds from ON trees compared to buds from OFF trees (Year 1). 

After bud sprouting (Year 2), the 12ATX expression decreased and it did not differ 

between ON and OFF leaves until December, when it significantly increased in ON-tree 

leaves (14-fold). Significant differences were not found in January or in February between 

ON and OFF leaves (Fig. 3.6 B). Similar results were found for 7ATX gene expression 

(Fig. 3.6 C). 

These results are in concordance with the higher FLC relative expression found in 

ON-tree leaves compared to that of OFF-tree leaves during the flower induction period 

(Fig. 3.3 B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.6 ELF8 (A) 12ATX (B) and 7ATX (C) relative expression in ‘Moncada’ mandarin buds (Year 1) 

and leaves (Year 2) from January to February of the next year. Data are means ± ES of 3 qRT-PCR 

replicates. *: indicate significant differences (p ≤ 0.05). 
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3.3.2 Inhibitors of FLC expression 

 

Among the inhibitors, SKB1 directly methylates FLC DNA whereas 5ATX is 

involved in histone methylation. SKB1 relative expression was significantly upregulated 

in OFF-tree leaves at the beginning of the flower induction period (November); it differed 

significantly (2.6-fold) from the SKB1 expression found in ON-tree leaves (Fig. 3.7 A). 

On the other hand, the 5ATX gene expression was significantly higher in ON-tree leaves 

in December and January and in ON-tree buds in January compared to the OFF-trees (Fig. 

3.7 B).  

 

 

Figure 3.7 SKB1(A) and 5ATX (B) relative expression in ‘Moncada’ mandarin buds (Year 1) and leaves 

(Year 2) from January to February of the next year. Data are means ± ES of 3 qRT-PCR replicates. *: 

indicate significant differences (p ≤ 0.05). 
 

Results suggest a relationship between DNA methylation (and histone 

methylation) and FLC expression in citrus. To further characterize this relationship, the 

effect of 5-azazytidine on FLC and CiFT2 gene expression was studied. Azazytidine is a 

chemical analogue of the cytosine nucleoside that at low doses inhibits DNA 

methyltransferase causing hypomethylation of DNA. 

The treatment significantly increased FLC expression from 10 to 50 hours after 

treatment. Conversely, the CiFT2 gene expression was significantly reduced, probably 

due to the increase in FLC (Fig. 3.8). Results indicate a relationship between DNA 

methylation and FLC expression. However, the effect observed was unexpected: in the 

ON-OFF system the more DNA methylation the more FLC expression. But 5-azazytidine, 

which causes hypomethylation, also increased FLC expression, suggesting a complex 

relationship between methylation, FLC expression and flowering.   
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Figure 3.8 Effect of 5-Azacytidine (5-AzaC, 350µM) applied at floral bud inductive period (November 25) 

on the time course of CiFT2 and FLC relative expression in the leaves of the single flowered leafy shoots 

of ‘Afourer’ mandarin. Treatment was applied as a foliar spray. Data are means ± ES of 3 qRT-PCR 

replicates. *: indicate significant differences (p ≤ 0.05). 
 

Another important question that requires confirmation is the relationship between 

fruit, FLC methylation and FLC expression. Significant differences in the methylated 

positions of the FLC gene were found for ON and OFF trees when FLC expression was 

significantly different (November); moreover, DNA methylated positions did not differ 

when FLC expression was the same in ON and OFF trees. However, this relationship does 

not imply causality; therefore, further experiments were carried out to demonstrate the 

direct effect of fruit removal upon FLC methylation and gene expression. 

 

3.4 Effect of defruiting on flowering, methyltransferases and flowering gene 

expression and FLC-DNA methylation  

 

3.4.1 Effect of defruiting on flowering 

 

The effect of defruiting on flowering intensity is shown in Fig. 3.9. As expected, 

ON trees had the lowest number of flowers in spring (6 flowers/100 nodes) in comparison 

with OFF trees, which had the highest number of flowers (100 flowers/100 nodes). 

Defruited trees (in August) flowered in spring as did OFF trees (90 flowers/100 nodes), 

without differing significantly (Fig. 3.9).  

 

* * * * * 

* 
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Figure 3.9 Effect of defruiting on flowering intensity of ‘Afourer’ mandarin branches. Fruits were removed 

in August. ON: with fruits; OFF: without fruits. Data are the means of 3 trees ± standard error. *: indicate 

significant differences (p ≤ 0.05). 
 

3.4.2 Effect of defruiting on flowering gene and methyltransferases relative 

expression 

 

3.4.2.1 Flowering genes 

 

As expected, defruiting significantly increased the CiFT2 relative expression and 

reduced the FLC gene expression up to the OFF-tree level. ON trees showed significantly 

lower CiFT2 and higher FLC gene expressions (Fig. 3.10 A and B). On the other hand, 

defruiting did not significantly modify SVP or TEM1 gene expression (Fig. 3.10 C and 

D). 

 

Figure 3.10 Effect of fruit and defruiting on CiFT2 (A), FLC (B), SVP (C) and TEM1(D) relative 

expression in ‘Afourer’ mandarin leaves at floral bud inductive period (November 25). Fruits were removed 

in August. ON (black): with fruits; OFF (white): without fruits. Data are means ± ES of 3 qRT-PCR 

replicates. *: indicate significant differences (p ≤ 0.05). 

* 

* * 
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3.4.2.2 Methylation genes 

 

Compared to the ON trees defruited trees had a significant reduction in (6-fold) 

the expression of the FLC promoters 12ATX and 7ATX, and it did not significantly differ 

from that of the OFF trees. No significant differences were found in the ELF8 gene 

expression (Fig. 3.11 A, B and C). Similarly, defruiting did not modify the relative 

expression of the FLC inhibitors SKB1 and 5ATX, which showed the highest value in OFF 

trees (34x compared to ON trees) (Fig. 3.11 D and E). 

 

 

 
Figure 3.11 Effect of fruit and defruiting on  ELF8 (A), 12ATX (B), 7ATX (C), SKB1 (D) and 5ATX (E) 

relative expression in ‘Afourer’ mandarin leaves at floral bud inductive period (November 25). Fruits were 

removed in August. ON (black): with fruits; OFF (white): without fruits. Data are means ± ES of 3 qRT-

PCR replicates. *: indicate significant differences (p ≤ 0.05). 
 

 

 

* * 

* 
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3.4.3 DNA methylation profile 

 

To analyze the effect of defruiting on FLC methylation, the intron region was 

studied (Fig. 3.12 A). FLC DNA profile was analyzed in November, i.e during the flower 

induction period. Defruited and OFF trees showed DNA methylation in the same sites 

except for position 29, which was partially methylated in OFF trees (45.5% OFF vs 0% 

DEF CG). On the other hand, ON tree methylation profiles significantly differed from 

Defruited and OFF trees in the positions 26a (45.5% ON vs 0% OFF and DEF CHH), 27a 

(100% ON vs 0% OFF and DEF CHH), 29 (100% ON vs 45.5% OFF and 0% DEF CG), 

and 31 (0% ON vs 100% OFF and 45.5% DEF CG) (Fig. 3.12). The differences and 

similarities between these profiles can be observed in Fig. 3.13. Results suggest a clear 

relationship between fruit, FLC methylation, FLC expression, CiFT2 expression and, 

therefore, flowering.  

 

 
Figure 3.12 DNA methylation profile of FLC. Scheme of zone analyzed. Bisulphite sequencing of 

promoter and intron regions was performed on DNA collected from leaves at floral bud inductive period 

(November 25) of ‘Afourer’ mandarin. 
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Figure 3.13 Schematic representation of the DNA methylated sites in the FLC gene in ON (white), OFF 

(black) and Defruiting (green) trees of the ‘Afourer’ mandarin. 
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 Alternate bearing in adult trees has been associated primarily with the presence 

of fruit (Verreynne and Lovatt, 2009; Martínez-Fuentes et al., 2010). In most tree 

species, bud development and flower induction overlap with the end of fruit 

development and, according to the literature, it is assumed that fruit alters both flower 

induction and floral bud differentiation, and thus inhibits flowering (Valiente and 

Albrigo, 2004). The mechanisms regulating this process are not fully understood. The 

traditional explanation points to the GAs produced by the fruit (in developing seeds or 

other tissues), which are supposed to be exported and inhibit flower bud development. 

This Ph.D research suggests that the fruit-governed hormonal regulation of flower bud 

induction is coordinated with a molecular regulatory system that controls the expression 

of flowering inhibitor genes (i.e. FLC gene).  

This research demonstrats that every bud beside a fruit does not have the ability 

to produce a flower or inflorescence, and needs to restart vegetative growth developing 

new buds that will flower or not (Figs. 1.1 and 1.14). These new buds are usually 

produced during the fruit growth stage (i.e. summer and fall flush, Fig. 3.2), and they 

will flower in spring only if they are away from fruit-developing signals (Fig. 1.14). 

This was indirectly demonstrated with the girdling experiment (Fig. 1.19) and it is what 

is usually observed in medium-yield trees (Figs. 1.12 and 1.14). In ON-trees, the new 

buds from summer and fall flushes (Fig. 3.2) are also under the influence of fruit-

developing signals, and do not flower in spring (Figs. 1.1, 1.12 and 3.1).  

Conversely, in OFF-trees, a considerable number of new buds are developed in 

vegetative shoots from spring, summer and fall flushes (Fig. 3.2), and almost all (80%) 

are induced to flower (Fig. 1.1). The presence of flowering promoters, produced in the 

leaves, is needed for flowering. In fact, ON-tree buds flowered when they were partially 

isolated from the fruit influence (girdling experiment, Fig. 1.19), but they did not flower 

when they were totally isolated from the fruit and the tree (in vitro experiment). Further, 

OFF buds induced to flower lost their ability when cultured in vitro.    

Particularly, in citrus grown in Mediterranean climates flower induction occurs 

late in autumn (due to low temperatures), whereas differentiation occurs in late winter 

or spring when temperatures rise (Agustí, 2003). The regulatory role of the 

FLOWERING LOCUS T (FT) gene has been identified in numerous species (Bangerth, 

2009; Wilkie et al., 2008) including Citrus (Endo et al., 2005; Nishikawa et al., 2007, 

2009; Muñoz-Fambuena et al., 2011, 2012a, 2012b). Under floral bud inductive 

conditions (low temperatures and low fruit loads), CiFT expression starts in October 
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and November, for ‘Moncada’ mandarin (Muñoz-Fambuena et al., 2011) and ‘Satsuma’ 

mandarin (Nishikawa et al., 2007), respectively. Results for the ‘Moncada’ mandarin 

are confirmed here (for the CiFT2 paralog), but also for other species such as 

‘Salustiana’ sweet orange and ‘Afourer’ hybrid mandarin.  

In this Ph.D. Thesis the FLC gene has been characterized in Citrus clementina 

and its function in the induction process. The different studies in Arabidopsis thaliana 

have related this gene with the inhibition of the flowering (Blazquez et al., 2011), and in 

this research the same function has been confirmed in Citrus. 

  

Fruit-derived signals (GAs and ABA) overlap with CiFT2 and FLC gene expression 

 

Martínez-Fuentes et al. (2010) demonstrated that the fruit exerts its inhibitory 

effect on flowering from the time it is close to reaching its maximum weight, namely 

90% of its final size (November, in ‘Valencia’ sweet orange), and Muñoz-Fambuena et 

al. (2011) correlated this with the expression of the CiFT gene. At this stage, fruit cell 

enlargement is almost complete and fruit begins the ripening stage (Agustí, 2003). 

During the cell enlargement stage, the fruit produces auxin and GAs in the peel and the 

pulp (≈ 7 ng g-1 IAA and 2 ng g-1 GA4, Fig. 1.18). Auxins are basipetally transported 

through the peduncle (Bangerth, 2000). Several experiments related to fruit abscission 

demonstrated that when the fruit reaches its final size, the basipetal auxin flow through 

the peduncle is progressively diminished (Estornell et al., 2013).  

On the other hand, Alquezar et al. (2008, 2009) showed that the peel (mainly) 

and the pulp are rich in chloroplasts that are converted into chromoplasts. This process 

is inversely related to GAs (Gambetta et al., 2012), and as a consequence of carotenoid 

synthesis, ABA is also produced (Rodrigo et al., 2003).  In ‘Moncada’ mandarin ON-

trees, the start of chlorophyll degradation in the exocarp (October) coincided with a 

decrease in the GAs content (Figs. 1.4 and 1.5), whereas the increase in the yellow 

color (b, Hunter, Fig. 1.4) during degreening coincided with a significant increase in the 

ABA content (Fig. 2.6). In Citrus, pigments that produce yellow coloring are 

violaxantin and neoxantin, which are the precursors of the ABA synthesis (Alquezar et 

al., 2008; Davies, 2010). At the same time 1) both ABA and GAs (GA20 and GA1) 

significantly increased in the leaves adjacent to the fruits (Figs. 1.5 and 2.6) whereas 

they decreased or were not modified in the OFF-tree leaves (Figs 1.6 and 2.6); 2) FLC 
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gene expression was upregulated in ON-tree leaves whereas CiFT2 gene expression was 

upregulated in OFF-tree leaves.  

 The increase in the ABA content coincides with previous results reported by 

Shalom et al. (2014). However, this increase is not produced by the endogenous 

synthesis in buds as Shalom et al. (2014) indicated. Since ABA transport is produced in 

both basipetal and acropetal directions, it is possible that this increase in buds and 

leaves is due to color change of the adjacent fruits. In Arabidopsis, ABA inhibits 

flowering through the activation of FLC expression as indicated by Wang et al. (2013). 

In fact, the mutation of the transcription factor ABI5 (ABSCISIC ACID INSENSITIVE 

MUTANT 5) promotes flowering, while the overexpression of ABI5 activates FLC 

expression. When ABA concentration increases ABI5 increases too, and, at the same 

time, these activate the FLC relative expression inhibiting flowering. In the ‘Moncada’ 

mandarin, the highest increase in FLC expression (November) was not followed by a 

high content of ABA in leaves. Thus, more investigation is needed to clarify the effect 

of fruit on the relationship between ABA and FLC upregulation in citrus. 

Regarding GAs, Bangerth (2009) advocated considering endogenous GAs as 

‘‘directed’’ long-distance signals to inhibit flower induction in trees, although GA 

treatments inhibit flowering in most fruit tree species. Specifically, Bangerth (2009) 

stated “it would be difficult to assume transport from a fruit, a strong sink, to the apical 

or axillary bud, a weak sink”. Nonetheless, Prang et al. (1998) demonstrated an export 

of GAs from apple fruit as well as from shoot tips with a peak occurring at the time 

presumed flower induction occurs. Moreover, in citrus, Gambetta et al. (2012) 

highlighted the need for GA export to initiate change color. Since the fruit sink strength 

is significantly diminished at the ripening stage, results in the ‘Moncada’ mandarin 

might be taken in consideration. Further, the fruit-to-adjacent leaves GA transport 

hypothesis, at the ripening stage, is reinforced by 1) the reduced GA20ox and GA3ox 

activity found in the leaves (Fig. 1.7) when GA20 and GA1 are significantly higher (Fig. 

1.5); and 2) the absence of GA1 and the catabolites GA8 and GA29 in the fruit (Fig. 1.5). 

Regnault et al., (2015) recently demonstrated that the long-distance GA transport in the 

plant is manly produced through the precursor GA12. However, these authors do not 

discard the transport of others precursors apart from GA12. The significant differences in 

GA biosynthesis and content in ON and OFF trees in September are due to the different 

developmental stages. Leaves from OFF trees belonging to the summer and fall flushes 

are young developing leaves, compared to mature leaves from the spring flush in ON 
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trees, and, therefore, GAs and also IAA concentrations are significantly high (Fig. 1.8). 

GAs and IAA directly regulate cell division and elongation in the leaf (Nelissen et al., 

2012).  

 

GA regulation of flowering 

 

Guardiola et al. (1982) established two periods of sensibility to GA treatments 

for flowering inhibition in Citrus. These authors suggested that GA might interfere with 

the flowering signal during the first period (i.e. November-December). Moreover, they 

identified a direct effect of GAs on the bud during the second period of sensibility, 

coinciding with the onset of morphological differentiation in the flower (i.e. February) 

(Guardiola et al., 1982; García-Luís et al., 1986). The effect of GA and PBZ reducing 

and increasing, respectively, CiFT expression when applied at the end of November 

(Fig. 1.10) might explain the mechanism in the first period of sensibility. The second 

period of sensibility was not contemplated in this Ph.D. research. However, in the last 

experiment, PBZ significantly increased LFY expression (two months after the 

treatment, i.e. February), which is related to flower differentiation. This delayed effect 

might be due to the high persistence of the PBZ molecule. A future experiment design 

to elucidate the molecular mechanism of the GAs effect in flower differentiation is 

needed (GA3 and PBZ applied to the bud). Nevertheless, some clues might be 

highlighted. Goldschmidt and Samach (2001) analyzed the inverse relationship between 

flowering and stem elongation, and compared herbaceous annual plants to trees. In 

Arabidopsis, flowering takes place just after elongation of the inflorescence axis. In 

fruit trees, an antagonism between flowering and stem elongation is also observed. In 

Citrus, flowers are borne in short generative shoots whereas vegetative shoots are long. 

GA3 treatment selectively reduced the number of flowering shoots but not the number 

of flowers per shoot (Table 1.1). Thus, GAs limit the ability of the meristem to produce 

an inflorescence. Recently, this has also been shown in Arabidopsis. GAs have a dual 

opposite role promoting termination of vegetative development but inhibiting flower 

formation in the meristem. To overcome this effect, LFY induces the expression of GA 

catabolism genes (Yamaguchi et al., 2014). In transgenic Citrus juvenile plants, 

overexpression of FLY produces extremely short plants without thorns that develop a 

flower in the apical meristem (Peña et al., 2001), and the application of PBZ to adult 

trees increases LFY expression, the number of flowering leafless shoots and the number 
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of flowers per inflorescence (Table 1.1). The relationship between GAs-LFY-shoot 

development in citrus deserves further analysis. 

 PBZ and other growth retardants have been used successfully to promote 

flowering in fruit tree species such as mango (Blaikie et al., 2004), pear (Asín et al., 

2007) and citrus (Delgado et al., 1986; Harty and Van Staden, 1988; Martínez-Fuentes 

et al., 2004; Monteiro da Cruz et al., 2008; Ogata et al., 1996). However, it is not 

possible to use growth retardants to promote flowering in ON-trees (Martínez-Fuentes 

et al., 2004; Monselise and Goldschmidt, 1982; Monteiro da Cruz et al., 2008). 

Monselise and Halevy (1964) increased flowering in ‘Eureka’ lemon by spraying the 

growth retardants CCC, B-Nine, and BTOA during summer, but the results have never 

been consistent for sweet orange (Agustí, 1980; Moss, 1970), mandarins (Agustí, 1980), 

limes (Davenport, 1983) or for lemon lateral buds cultured in vitro (Tisserat et al., 

1990). PBZ applied to the soil increased flowering in acid lime ‘Tahiti’ trees subjected 

to low inductive temperatures (16 ºC), but failed to do so in trees grown under high 

day/night temperatures (25 ºC/20 ºC) (Monteiro da Cruz et al., 2008). Monselise and 

Goldschmidt (1982) suggested that these erratic effects might be due to the fact that 

antagonists of GA synthesis should reach the site of synthesis before GAs are produced, 

the effect depending, therefore, on the timing and method of treatment. In the 

experiments described in this Ph.D. thesis, PBZ failed to promote flowering under 

heavy cropping conditions, in agreement with previous reports (El-Otmani et al., 2004), 

even when modifying the date of treatment (floral bud inductive period or bud 

differentiation), the method of treatment (applied to the soil or spraying the canopy) or 

the dose applied (1, 10 or 15 g tree−1) (Fig. 1.13). Martínez-Fuentes et al. (2004) 

suggested that endogenous inhibitors (i.e. GA synthesized in the fruit) prevail over 

exogenous promoters, which cannot counteract their inhibitory effect. In the 

experiments described here, increasing the PBZ dose from 1 g tree−1 up to 10 g tree−1 

did not improve the response obtained in either OFF-trees or ON-trees, meaning that 1 g 

tree−1 is enough to promote flowering, in agreement with Monteiro da Cruz et al. (2008) 

who reported a saturating response at 0.8 g tree−1. Moreover, fruit load also nullifies the 

inductive effects of autumn girdling on flowering (Goldschmidt and Golomb, 1982), 

which is known to effectively increase flowering in sweet orange, Satsuma mandarin, 

and hybrids (Agustí et al., 1992; Erner, 1988). The present results also reveal a fruit-

load threshold value above which PBZ is ineffective to promote flowering. This 

threshold value varied in these experiments depending on the cultivar (Fig. 1.12).  
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Therefore, the fruit might switch on other flowering gene inhibitors through 

other metabolic routes apart from GAs. This hypothesis is also supported by the lack of 

effect of GA3 and PBZ on FLC-like gene expression applied to medium-yield trees (Fig. 

1.10). At this point, two questions arise: 1) which metabolic routes are up/down 

regulated in ON and OFF leaves and buds? and 2) how are flowering gene inhibitors 

activated? 

 

Fruit upregulates stress responses and oxidoreductase activity in leaves and buds 

during the flower induction period 

 

Significant changes in the leaves and bud proteome of the ‘Moncada’ mandarin 

ON and OFF trees were found. The study was conducted in November, during the onset 

of low temperature flowering induction. Since the OFF-crop buds flowered in the spring 

following the sample collection year, and the ON buds hardly flowered at all (Muñoz-

Fambuena et al., 2011, 2012), knowing how proteins are expressed in each type of 

leaves and buds (OFF and ON) allows a better understanding of the relationship 

between alternated bearing and flowering. 

 

Proteins up-expressed in the OFF samples 

 

Proteins related to primary metabolism 

 

The findings indicate that the starch level was significantly higher in leaves of 

OFF trees than in leaves of ON trees (Fig. 2.5), being these results consistent with the 

up-expression of GBSS in OFF leaves. The same behavior has been described for other 

biennial-bearing species. For example, in pistachio, during nut development, various 

organs of OFF trees began to accumulate greater concentrations of soluble sugars and 

starch, surpassing the amounts measured in organs of ON trees (Banisabab and Rahemi, 

2006). Also, in biennial bearing mango trees, the ON trees had a lower starch content in 

the shoots than OFF trees, during the floral inductive period (Nakagawa et al., 2012). 

Since starch accumulation in the Citrus shoots seems to parallel flower induction 

(Yahata et al., 2006), the carbohydrate reserves in leaves in ‘Moncada’ mandarin OFF 

trees may act like an active sink (Goldschmidt and Golomb, 1982). Moreover, in olive 

(Olea europaea) another study suggested a strong correlation between flower starch 
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content and functional pistil development (Reale et al., 2009). However, a regulatory 

role of the leaf carbohydrates in alternate bearing could not be observed (Martínez-

Fuentes et al., 2010; Monerri et al., 2011). 

 The main enzymes related to photosynthesis were also up-expressed in OFF 

samples in general. Among them, of particular interest is the RuBisCO large subunit-

binding protein subunit beta (spots 300, 301, 306 and 307; Tables 2.1 and 2.2) or 

NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (spots 420 and 437). 

Both of these are involved in the photosynthetic Calvin cycle (Leegood, 1996). This 

suggests that the light-independent reactions for photosynthesis are stronger in the OFF 

samples than the ON samples. Another notable up-expressed protein in the OFF 

samples related to primary metabolism was 6-phosphogluconate dehydrogenase (6PGD; 

spot 454). This protein is a key enzyme of the pentose phosphate pathway, a part of the 

central metabolism. Likewise, 6PGD is able to co-operate between the cytosolic and 

plastidic oxidative pentose phosphate pathways in the provision of NADPH for 

biosynthesis (Averill et al., 1998).  

Among the proteins up-expressed in the OFF buds, certain proteins relating to 

the carbohydrate metabolism may be highlighted: class III HD-Zip protein HDZ31 

(homeodomain-leucine zipper; spot 91); glyceraldehyde-3-phosphate dehydrogenase 

(G-3-PD, spots 164 and 519); pyruvate kinase (PK, spots 321 and 339); 6-

phosphogluconate dehydrogenase (6-PGD, spots 398, 406 and 427) and fructose-

bisphosphate aldolase (spots 571 and 1227). The first protein listed, namely HD-Zip 

protein HDZ31, is involved in the initiation and function of shoot apical meristems 

(Robischon et al., 2011). The second protein, namely G-3-PD, is involved in the 

photosynthetic Calvin cycle (Leegood, 1996) and its increased expression was also 

noted in the ‘Moncada’ OFF leaves. Other studies have also demonstrated that the genes 

related to the Calvin cycle in Citrus buds (Murcott mandarin) in May are more highly 

induced in OFF buds than in ON buds (Shalom et al., 2012). The third protein, namely 

PK, catalyses the synthesis of pyruvate and ATP from phosphoenolpyruvate and ADP, 

and represents an important control point for plant glycolysis (Knowles et al., 1998). 

Grodzinski et al. (1999) demonstrated that plants deficient in leaf cytosolic PK 

cultivated under low light intensity exhibit delayed shoot and flower development as 

compared to plants with wild-type levels of PKc; this deficiency seems to jeopardize the 

ability of the PK leaf tissue to mobilize carbohydrate reserves at night. Accordingly, the 

lower PK expression in ON buds may partly contribute to their reduced flowering in the 
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following spring as compared to the OFF ‘Moncada’ buds. The fourth protein, 6-PGD, 

is a key enzyme of the oxidative pentose phosphate pathway (oxPPP), which forms a 

part of the central metabolism and plays an essential role in the response to 

environmental stress (Juhnke et al., 1996; Averill et al., 1998; Dennis and Blakeley, 

2000). The 6-PGD expression is also increased in OFF leaves, as seen for G-3-PD. It 

has been found that 6-PGD activity also increased in Dioscorea esculenta tubers and 

Curcuma longa rhizomes prior to the visible appearance of sprouting and that it is most 

active during sprouting (Panneerselvam et al., 2007). The last protein, namely 

fructosebisphosphate aldolase, catalyses the reaction of fructose-1,6-bisphosphate to 

dihydroxyacetone-phosphate and glyceraldehyde 3-phosphate. This enzyme is involved 

in the photoperiodic control of flowering in rice and its expression is also circadian-

regulated in Arabidopsis. These data suggest that fructose-bisphosphate aldolase may 

prove to be a link between sugar metabolism and the flowering process (Matsumoto, 

2006). Therefore, a direct relation between the up-expression of fructose-bisphosphate 

aldolase in the Citrus OFF buds and increased flowering in the following spring is 

feasible. 

 

Proteins related to amino acid and protein metabolism 

 

Other up-expressed proteins in the OFF-crop buds are those related to amino 

acid and protein metabolism, such as leucine-rich repeat transmembrane protein kinase 

(LRRP; spot 301); wheat adenosylhomocysteinase-like protein (spots 381 and 392); 

chaperonin (spots 274, 283 and 284); peptidyl-prolyl cis-trans isomerase (PPIase; spots 

1079 and 1112). It is important to note that a member of the plant-specific LRRP 

(leucine-rich repeat transmembrane protein kinase) subfamily, FLOR1 is up-expressed 

in the inflorescence meristem of Arabidopsis within 3 days of flowering induction. 

FLOR1 seems to promote flowering by interacting with proteins, such as SOC1, 

which are expressed in the inflorescence meristem (Torti et al., 2012). Thus, based on 

its up-regulation in the OFF-bud samples, the protein corresponding to spot 301 might 

act as FLOR1. Regarding the adenosylhomocysteinase-like protein, some plants are 

particularly sensitive to SAH-hydrolase (S-adenosylhomocysteinase-hydrolase) 

inhibition, which leads to the deregulation of flowering genes and alters flower 

morphology (Fulnecek et al., 2011). Chaperonin is also of interest because Maeda et al. 

(2006) showed that in plumules of Pharbitis nil the up-regulation of a 60 kDa 
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chaperonin b-subunit may have a role in modulating other proteins during flower 

evocation; also, Zabaleta et al. (1994) observed that in tobacco plant with anti-sense 

Chaperonin 60 b, flowering was inhibited. Its expression is also higher in the ‘Moncada’ 

OFF-crop leaves (spot 358). Chaperonins are a type of molecular chaperones that occur 

in prokaryotes and in the mitochondria and plastids of eukaryotes (Hartl, 1996).  Lastly, 

PPIase should also be noted because genes encoding a peptidy-prolyl cis/trans 

isomerase regulate the flowering time in Arabidopsis (Wang et al., 2010). 

 

Proteins related to oxidoreductase activity 

 

Among these proteins up-expressed in OFF buds, multicopper oxidase (spot 

251) and d-1-pyrroline-5-carboxylate reductase (spot 841) are highlighted. Regarding 

the former, the monocopper oxidase protein was also up-expressed in OFF leaves; 

copper oxidases are involved in plant growth processes, such as cell wall lignification or 

cotyledon vascular patterning (Jacobs and Roe, 2005). Lastly, d-1-pyrroline-5-

carboxylate reductase seems to play a specific role in proline biosynthesis control 

(Nanjo et al., 1999; Székely et al., 2008); proline has been known to act as an 

osmoprotective molecule involved in maintaining the redox balance, ROS 

detoxification and the protection of protein structures (Hong et al., 2000). The inhibition 

of proline biosynthesis by antisense d-1-pyrroline-5-carboxylate reductase causes severe 

abnormalities in flower development and vascular differentiation (Nanjo et al., 1999; 

Székely et al., 2008). 

 

Other noteworthy up-expressed proteins in the off-crop samples 

 

Up-expressed proteins found in OFF leaves and buds are adenylate 

isopentenyltransferase 8, chloroplastic (spot 1264 leaves), putative thiolase (spots 517 

and 518 buds) in relation to the mevalonate pathway (Group [vii]), and both pectin 

methylesterase inhibitor PPE8B (spot 466 buds) and pectinesterase (spot 545 leaves and 

spot 625 buds), which are related to cell wall metabolism (Group [ix]). On the one hand, 

adenylate isopentenyltransferase catalyzes the initial step in the biosynthesis of 

cytokinin in higher plants (Takei et al., 2001). Several recent studies highlight the 

importance of cytokinin content in primordial organs to control the progression of floral 

meristem development (Crane et al., 2012; Kollmer et al., 2011; Holst et al., 2011). On 
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the other hand, the thiolase enzymes are involved in flowering because it is known that 

a mutant of 3-ketoacyl-CoA thiolase causes an alteration in the b-oxidation pathway in 

Arabidopsis thaliana, which prevents the initiation of floral meristems (Footitt et al., 

2007). Regarding the proteins related to cell wall metabolism, both pectin metylesterase 

(PME) and PME intracellular inhibitor, the up-expression in OFF samples can be 

explained by their implication in major physiological processes associated with 

reproductive plant development, including microsporogenesis and pollen tube growth 

(Bosch et al., 2005; Jolie et al., 2010). 

 

Proteins up-expressed in the ON samples 

 

Proteins related to primary metabolism 

 

The largest group of proteins up-expressed in the ON buds are those related to 

carbohydrate metabolism and respiration. Among these, we stress the NADP-dependent 

malic enzyme (NADP-ME, spot 248) is interesting because it is also up-expressed in the 

ON-crop leaves (spots 515 and 516), and putative cytochrome c oxidase subunit II PS17 

(COX II; spots 933, 967, 973, 998, 991, 1015, 1034, 1042, 1054, 1076, 1090, 1152, 

1172 and 1214). The latter protein is the terminal enzyme of the mitochondrial electron 

transport chain, whose structure is still being defined (Millar et al., 2004). The high 

level of COX II in the ON buds indicates that their respiratory capacity is greater as 

compared to the OFF buds (Lehtimäki et al., 2011). Actively respiring plant 

mitochondria may produce ROS at high rates, although the accumulation of ROS and 

the induction of the ROS scavenging network enable the plant to survive upon toxin 

exposure; the up-regulation of the enzymatic defence system is likely to increase energy 

costs, reduced growth and ensure ultimate plant fitness.  

 

Proteins with oxidoreductase activity 

 

Contrary to what is observed in the ON samples, in the OFF samples, proteins 

with oxidoreductase activity are generally, down-regulated. Since in the spring 

following the collection of these samples, the flowering for OFF “Moncada” trees was 

significantly higher than for ON “Moncada” trees (Muñoz-Fambuena et al., 2011), it is 

possible to establish a correlation between flower induction and a decline in 
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oxidoreductase activity in leaves. This possible correlation is based on the association 

observed in Arabidopsis between the developmental transition to flowering with a 

decline in the activity of its leaf ascorbate peroxidase (Banuelos et al., 2008). Only the 

putative monocopper oxidase precursor was up-expressed in OFF samples. Copper 

oxidase genes belong to a large family and the main subgroups are ferroxidase, 

ascorbate oxidase and laccases. These proteins are involved in plant growth processes 

such as cell wall lignification or cotyledon vascular patterning (Jacobs and Roe, 2005).  

 

Proteins related to stress/defense responses  

 

Among these proteins, two should be highlighted: abscisic stress ripening-like 

protein (spot 812) and miraculin like protein (spots 837, 838, 850, 855, 890, 892, 913, 

961, 981, 1151 and 1178). It should be noted that the abscisic stress ripening-like 

protein seems to play a role in flowering reversion (Chen et al., 2009). Miraculin-like 

proteins are expressed abundantly in young mandarin fruits (Boo et al., 2007) and are 

likely to be involved in the defense response (this miraculin-like protein is also up-

expressed in the ON leaves) (Tsukuda et al., 2006).  

 

Other noteworthy proteins up-expressed in the on-crop samples 

 

Citrate synthase (spot 500) is particularly as it remarkable, is responsible for 

fruit acidity during its growth, increasing and then reaching a peak prior to ripening (Liu 

et al., 2007; Sadka et al., 2000). Another important protein up-expressed in the ON-crop 

sample is the cysteine proteinase-like protein (spot 1018), which plays a vital role in 

plant senescence and programming cell death; its inhibition is related to an increased 

number of flowers and seeds (Guerrero et al., 1998; Solomon et al., 1999). The down-

expression of cysteine proteinase in OFF leaves samples may promote the flower 

development the following year.  

In buds, chalcone-flavone isomerase (CFI), related to flavonoid biosynthesis 

(spot 882), is also remarkable. Some genes involved in flavonoid biosynthesis, 

including CFI, are rapidly down-regulated upon loss of paradormancy (Horvath et al., 

2005). This would explain why protein CFI is down-expressed in the OFF buds, which 

develop many more flowers than the ON buds in the following spring. Other authors 

have noted that six genes of the flavonoid metabolic pathway of the variety ‘Murcott’ 
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(also very late mandarin), including chalcone isomerase, are induced in the OFF buds in 

May (Shalom et al., 2012). It is possible that flavonoids in the bud serve as “sink” 

molecules for excess photoassimilates and for other carbon molecules that accumulate 

in trees in OFF years. Hence the present results seem to indicate that this behavior of 

flavonoids in the OFF buds reversed in November, at least in the ‘Moncada’ variety.  

Proteins with unknown biological processes involved in (Group [x] in buds)  

In this group, 9 up-expressed proteins in the OFF buds and 13 up-expressed 

proteins in the ON buds were identified. Some of these proteins have been previously 

isolated in GA-treated buds at the flowering induction time, such as spot 1041. None of 

these proteins was up-expressed in the ‘Moncada’ OFF or ON leaves. 

In conclusion, many different proteins seem to be involved in alternate bearing. 

As far as this study shows, in the period of flowering induction, the primary metabolism 

is more active in OFF trees than in ON trees, depending on the proteins up-expressed in 

OFF leaves and buds. In contrast, in this same period the proteins up-expressed in ON 

samples compared to OFF samples are more closely related to the oxidoreductase 

activity and stress responses (either biotic and abiotic). However, these differences in 

the general metabolism of the plant may only be the consequence of the presence of 

fruits but not the cause of flowering inhibition. It seems logical that the tree accumulates 

starch reserves when the main sink (fruit) is not present in the tree (OFF-tree primary 

metabolism upregulation). On the other hand, the functional classification of stress 

responses is still imprecise. It is true that the fruit activates several proteins that are also 

activated during biotic or abiotic stress. However, to what extent can we consider the 

presence of fruits as a stress for the tree? The activation of these stress-related proteins 

(some of them related to ABA and JA) together with oxidoreductase activity (some of 

them related to ROS) might be the consequence of signalling mechanisms that the fruit 

imposes on the tree. Production of ROS, ABA ACC, and jasmonate are related to cell 

growth inhibition (Wolf et al., 2012). This might be related to the main effect of the 

fruit in the tree as the most powerful sink, which is to regulate/inhibit vegetative growth 

(Fig. 3.2) (Martínez-Alcántara et al., 2015). Further studies are needed to elucidate 

these relationships. 

The activation of flowering gene inhibitors in ON-trees may be regulated by 

other mechanisms connected with these signalling processes. DNA methylation alters 

the interactions between proteins and DNA. Histone modification can alter the 

chromatin state by adding or removing methyl, acetyl, ubiquitin, or phosphate 
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modifications on histone tails (Strahl and Allis, 2000; Martinowich et al., 2003). These 

epigenetic modifications are associated with gene expression regulation, providing plant 

cells with a mechanism to respond to developmental transitions.  

 

Fruit influences DNA methylation and histone methyltranferases which trigger FLC 

gene expression in leaves during the flower induction period 

 

 The hypothesis studied is that the inhibition of flowering induction by the fruit is 

mediated by DNA methylation, as other authors have show that the promotion of 

flowering by prolonged exposure to low temperatures (vernalization) is mediated by 

DNA demethylation in Arabidopsis thaliana (Burn et al., 1993; Finnegan et al., 1998). 

The main conclusion found in this research is that methylation is observed in flowering 

inhibitors (to promote or silence its expression) but not in flowering promoters (CiFT2) 

which are regulated by flowering inhibitors and other endogenous mechanisms (i.e. 

hormones, see section 1). 

During the flower induction period (November to January), the relative 

expression of CiFT2 was higher in OFF leaves than in ON leaves (Muñoz-Fambuena et 

al., 2011). On the contrary, all flowering inhibitors (FLC, SVP and TEM1; Lee et al., 

2007; Li et al., 2008; Castillejo and Pelaz, 2008) showed higher relative expression in 

ON than in OFF leaves in September, before the induction period (November), and 

during the induction period (Fig. 3.3). In January, buds followed the same trend. 

However, two months later (May), after bud sprouting, the new shoots did not show 

significant differences in CiFT2, FLC, SVP and TEM1 gene expressions. That is, buds 

and new leaves were restarted without any inhibitory mark. Consequently, DNA 

methylation profile was analyzed in the induction period (November) to explain 

differences between gene expression in ON and OFF leaves.  

In plants, cytosine can be methylated at CG, CHG and CHH sites, where H 

represents any nucleotide but guanine (Capuano et al., 2014). The promotor zone of 

each gene (CiFT, FLC, SVP and TEM1) was studied because the CG island (zone rich in 

CGs) in gene promoters acquires abnormal hypermethylation, which results 

in transcriptional silencing (Ehrlich et al., 1982). This was mainly observed in the 

TEM1 gene (Fig. 3.5).  However, no differences were found in the methylated positions 

between ON and OFF leaves, which also showed the same gene expression in 

November (Fig. 3.3). TEM orthologs were isolated from antirrhinum (AmTEM) and 

https://en.wikipedia.org/wiki/Transcriptional_silencing
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olive (OeTEM) and were expressed at their highest during their juvenile phase. These 

authors (Sgamma et al., 2014) proposed that TEM might have a general role in 

regulating the juvenile vegetative phase in herbaceous and woody species. 

In Arabidopsis the interaction between SVP and FLC mediated by various 

flowering genetic pathways governs the integration of flowering signals (Li et al., 

2008). Therefore, the promoter region of SVP was analyzed, and the result was that the 

presence of the fruit did not modify the DNA profile. SVP in the induction period 

showed demethylation in both ON and OFF leaves. 

No methylation was found in the CiFT1 gene in either ON or OFF leaves, 

whereas in CiFT2 only one CG site showed partial methylation. In particular, in ON 

leaves, the CiFT2 gene showed partial methylation (40%) in the first CG of the 

promoter region. This result seems not to be significant enough to determine the 

inhibition of the CiFT2 expression in ON leaves, although DNA-methylation is a 

process of gene silencing (Matzke et al., 2004). On the other hand, the FLC gene 

showed CG and CHH methylation in both ON and OFF leaves, indicating the existence 

of a fine-tuning mechanism that regulates protein accessibility to this gene (Zilberman 

et al., 2006; Zhang et al., 2006). In particular, FLC OFF leaves showed a CHH site 

partially methylated in the promoter zone, whereas ON leaves did not (Fig. 3.5). 

However, the main differences were found in the intron region: 7 CG sites were 

differentially methylated in ON and OFF leaves in November, when significant 

differences in FLC gene expression are observed (Fig. 3.3). On the other hand, in May, 

the same CG sites are equally methylated (or not) in ON and OFF leaves (except for the 

first CG site), and no differences are found in FLC gene expression. Therefore, it is 

thought that the fruit modifies DNA-methylation in FLC gene regulating its expression. 

Previously, other authors related changes in the methylation of FLC, either by 

vernalization (Finnegan et al., 1998) or by the MAF gene family (Finnegan et al., 2005), 

with the control of flowering in Arabidopsis. 

The hypothesis for this research relating fruit induced DNA methylation and 

FLC expression is supported by the fact that DNA methyltransferase ELF8 and histone 

methyltransferases 12ATX and 7ATX which activate FLC expression (He et al., 2004; 

Tamada et al., 2009) are significantly up-regulated in ON leaves in November. 

Promoters of the FLC expression by methylation activity, such as ELF8, are required to 

enhance histone 3 trimethylation at Lys 4 in FLC chromatin. This modification 

of FLC chromatin appears to be required to elevate FLC expression to levels that can 
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delay flowering in plants that have not been vernalized in Arabidopsis (He et al., 2004); 

ATX1 is involved in trimethylating histone H3-lysine 4 and it has been related with the 

activation of FLC (Pien et al., 2008); ATX2 is involved in dimethylating of histone H3-

lysine 4. In the present study, only one candidate (12ATX) for these two genes was 

found, probably because the function is partially redundant (Saleh et al., 2008). Finally, 

the gene 7ATX is associated with increased FLC expression and H3K4 methylation in 

Arabidopsis thaliana (Tamada et al., 2009).  Based on the results described herein, only 

ELF8 initiated its expression before FLC. 12ATX and 7ATX expression were also higher 

in ON than OFF leaves, but they were up-regulated after FLC. These results indicate 

that ELF8 might activate the FLC expression and 12ATX and 7ATX might increase its 

expression. 

On the other hand, inhibitors of FLC expression by methylation activity were 

also studied:  SKB1 and 5ATX are required for epigenetic silencing of FLC (Wang et al., 

2007; Jacob et al., 2009). In the experiments for this research SKB1 relative expression 

was higher in OFF than ON trees in the induction period (November), this correlating 

with FLC inhibition. 

Finally, this research’s hypothesis is also supported by the defruiting 

experiment: 1) defruiting significantly reduced both FLC and methyltransferases, and 

promoted CiFT2 and flowering; and 2) DNA methylation profile in defruited trees did 

not differ from the methylation profile in OFF trees. 
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In conclusion, flowering intensity in fruit trees is regulated by qualitative and 

quantitative coordinated mechanisms. In the ON-tree, hormones produced by the fruit 

(AUX, GA) act as signals in the leaves to demand a great amount of carbohydrates 

allowing for fruit development, and hampering vegetative growth. This signaling is 

constant throughout fruit development, and to a certain extent it might be accumulative. 

Thus, when the fruit reaches its final size, neighboring buds lose their ability to flower 

through an epigenetic mechanism (switch-on, switch-off): DNA-methylation of the FLC 

gene activates its expression, this reducing CiFT2 gene expression and flowering 

regardless of exogenous promoting cues (i.e. low temperature). CiFT2 gene expression 

is reduced but not completely switch-off (Figure 6). 

In medium-yield trees, hormonal signaling does not arrive to many buds (branch 

independence). Therefore, some are able to flower although less than OFF-trees. In 

these medium-yield trees, flowering can be exogenously modified by hormonal 

treatments, either increasing flowering (with PBZ) or reducing it (with GA3). 

 

 

Figure 6. Flowering control in 

Citrus is regulated by fruit 

load, epigenetic control and 

hormonal (GA) control. 

CT: control trees; PBZ: 

paclobutrazol-treated trees; 

GA: GA3-treated trees; ON: 

heavy fruit-yield trees; OFF: 

low fruit-yield trees. FLC: 

FLOWERING LOCUS C. 
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Attending to the tested hypothesis and the objectives of this PhD Thesis, the main 

findings are: 

 

 

1. The increase in FLC gene expression in ON-tree leaves coincides with fruit 

color change and low temperatures in the flower induction period. CiFT2 is 

expressed in OFF-tree but not in ON-tree leaves. 

 

2. The fruit produces and exports GAs and ABA to the leaves overlapping flower 

induction inhibition whereas these hormones decrease in OFF-tree leaves. GA3 

treatment reduces CiFT2 gene expression but not FLC gene expression.  

 

3. After bud sprouting, the inhibitory signals (FLC, TEM1, SVP) are not expressed 

in the new leaves. Every bud beside a fruit needs to restart vegetative growth to 

gain the flowering ability.  

 

4. The fruit activates proteins from the stress responses and the oxidoreductase 

activity while in OFF-tree the primary metabolism and synthesis of starch is 

upregulated.  

 

5. During the flower induction period, the fruit modifies the DNA-methylation 

profile of the FLC gene and increases the expression of methyltransferases that 

increase FLC gene expression. In defruited trees the process is reverted to the 

OFF-tree state.    
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