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Introduction 

1. Foodborne outbreaks and food safety  

Access to sufficient and safe food is a basic human necessity. Serious outbreaks of 

foodborne disease have been documented on every continent in the past decade, 

including Europe (Figure 1), illustrating the public health and social significance of 

these diseases. Foodborne diseases not only adversely affect people’s health and 

well-being, but also have negative economic consequences for individuals, families, 

communities, businesses and countries. It is noteworthy to report that foodborne and 

waterborne diarrheal diseases kill an estimated 2.2 million people annually, most of 

whom are children (WHO, 2014). Diarrhoea is the most common foodborne illness 

caused by foodborne pathogens, but other serious consequences include kidney and 

liver failure, brain and neural disorders, reactive arthritis and death.  

Figure 1. Distribution of foodborne outbreaks per causative agents in the EU (EFSA Journal, 2015). 
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The full spectrum of the burden of foodborne diseases has been never quantified on a 

global basis, since foodborne illnesses are often under-reported. Traditionally, the 

term “foodborne disease” has been used for illnesses caused by microorganisms, 

with often acute reactions.  

Nowadays, the term foodborne disease is often used in a wide, all-encompassing 

sense including different causative agents (such as bacteria, viral, fungal or parasitic 

nature) and as well, other risks associated with food along the entire food chain (as 

chemical or prionic, “PRoteinaceus Infective ONly” particle, contaminations). 

The past decade has seen new challenges to food safety. The integration and 

consolidation of agricultural and food industries, new dietary habits, the 

globalization of the food trade and human movements are modifying the patterns of 

food production, distribution and consumption. 

The globalization of the food trade offers many benefits to consumers, as it can bring 

to the market a wider variety of foods that are accessible, affordable and meet 

consumer demands. At the same time, these changes present new challenges to food 

safety and have widespread repercussions for health, for instance by creating an 

environment in which both known and new or emerging foodborne diseases may 

occur in greater magnitude. Other key challenges include increasing awareness of the 

health impact of antimicrobial resistance in foodborne pathogens; identifying and 

assessing the risks posed by newly identified pathogenic microorganisms in the food 

supply (WHO, 2014). 

Considering the increasing interest of the consumer towards natural products, 

essential oils may constitute effective alternatives or complements to synthetic 
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compounds, without showing resistance effects (Carson et al., 2001; Nostro et al., 

2004; Mulyaningsih et al., 2010). In this context, the hurdle technology, a 

conservation strategy for food based on the combination of different preservation 

techniques (Rico et al., 2007), seems to fulfil both consumer and industrial needs.   

Figure 2. Common hurdles used in food preservation technologies (adapted from Leistner, 1999). 

 

The control of temperature, water activity, acidity, redox potential and the use of 

preservatives, modified atmosphere and competitive microorganisms (e.g., lactic acid 

bacteria) represent the most important hurdles commonly used for food preservation 

(Figure 2; Leistner, 1999).  

By using hurdles, the intensity of a certain preservation technique can be kept 

relatively low, minimizing the loss of quality, while the overall impact on microbial 

growth may remain the same or be better (Rico et al., 2007). The most important 

factor to consider is the selection of hurdles; this choice should be done carefully on 

the basis of the quality attributes of a product (Gorris et al., 1999). According to 

Leistner (1999), there are more than 60 potential hurdles for foods that improve the 

stability and/or quality of minimally processed products. 

Food safety and food control systems need to adapt to today’s food production and 

distribution practices, moving their focus gradually from the end-product to the 

Temperature
aw,

water activity pH pression

Eh,
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process control throughout the food chain. Therefore, food safety must be 

systematically integrated into policies and interventions to improve nutrition and 

food security. 

 

2. Essential oils 

Essential oils (EOs) have been known since antiquity for their flavour properties and, 

therefore, used mainly as perfumes. EOs were extracted by distillation since more 

than 2000 years ago in Egypt, India and Persia and thereafter the Arabs improved the 

extraction method (Guenther, 1948). Undeniably, spices and related EOs have been 

also used for preservative and medical purposes since ancient times, but their trade 

began only in the 13
th

 century and they emerged widespread in Europe in the 16
th 

sold in pharmacies as medical preparations (Crosthwaite, 1998). Even though the 

bactericidal properties of EOs have been investigated since 1881 by De la Croix 

(Boyle, 1955), in the recent past their use was still as aroma and flavoring 

compounds principally (Guenther, 1948). 

Nowadays, in the European Union, EOs are mainly used in food as flavourings, in 

perfumes and in pharmaceuticals for their functional properties (Bauer et al., 2001; 

Van de Braak et al., 1999; Van Welie, 1997). As well, they are used in aromatherapy 

due to its psycho-emotional effect and they constitute approximately 2% of the total 

market (Van de Braak et al., 1999).      

Scientifically, EOs, also called volatile or ethereal oils, are defined as aromatic oily 

liquids obtained from plant material (flowers, buds, seeds, leaves, twigs, bark, herbs, 

wood, fruits and roots) (Guenther, 1948). They are produced by plants as secondary 
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metabolites and often accumulated in a glycosidic form in vacuoles or in secretory 

structures (Figueiredo et al., 2008). EOs play an important ecological role having 

antibacterials, antivirals, antifungals, insecticides properties and they also act against 

herbivores by reducing their appetite for such plant, resulting in a broad protection 

for the plant. For example, a recent research demonstrated that Penicillium infection 

on mandarin determines an increase in the EOs emission as volatile compounds, 

especially of haliphatic esters and alcohols, branched esters and α-farneseno, a linear 

sesquiterpen (Gurrea Martínez, 2014). Besides, they may also act as “favoring” 

compound, attracting insects to improve the dispersion of pollens and seeds 

(Palazzolo et al., 2013). These ecological properties have been confirmed after the 

extraction of the EOs from the plant. Indeed, antibacterial (Carson et al., 1995; 

Deans et al., 1987; Mourey et al., 2002), antiviral (Bishop, 1995; Elizaquível et al., 

2013), antitoxigenic (Akgül et al., 1991; Juglal et al., 2002; Ultee et al., 2001), 

antiparasitic (Pandey et al., 2000; Pessoa et al., 2002), and insecticidal (Karpouhtsis 

et al., 1998; Konstantopoulou et al., 1992) properties are possibly related to the 

function of these compounds in plants (Guenther, 1948; Mahmoud et al., 2002).  

Once extracted, they result in natural mixtures of lipophilic substances, containing 

about 20-60 components, whose only a few at high concentrations (20-70%) 

compared to others (Palazzolo et al., 2013).  

EOs can be extracted from plants using various methods as expression, fermentation, 

enfleurage, cold pressing or extraction (water, steam or organic solvent extraction) 

but the steam distillation is the most commonly used for commercial production of 

EOs (Van de Braak et al., 1999). Nowadays, other methods are available such as 
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supercritical CO2, by which EOs are extracted at lower temperature to avoid potential 

damage to desired compounds at high temperatures (Espinosa et al., 2000; Gao et al., 

2005; Mira et al., 1996). The method used to extract EOs greatly affects their 

chemical profile (number and stereo chemistry of extracted molecules). Hence, the 

choice of extraction method depends also on the purpose of the use (Palazzolo et al., 

2013). Therefore, EOs properties depend on their chemical composition (Lanciotti et 

al., 2004; Moreira et al., 2005; Espina et al., 2011) which is influenced by the raw 

plant material and extraction method (Burt, 2004). Genotype, part of the plant, 

geographical, ecological conditions and cultural techniques are other factors 

affecting the chemical composition of EOs and their properties.  

On a commercial point of view, the application of EOs fulfils consumers’ demand 

for naturally processed foods, with fewer synthetic additives and with a smaller 

impact on the environment. This trend of ‘green’ consumerism is being experiencing 

in Western industrialized countries (Burt, 2004). 

As a more serious health issue, there is a need for decreasing the foodborne health 

risks (WHO, 2014) by using new bactericides effective against food-related 

pathogens and as well the increasing number of resistant strains (Moreira et al., 

2005; Fisher et al., 2008; Ponce et al., 2011). Besides, the improvements in food 

production techniques and the global trade have revealed new foodborne health risks. 

It has been estimated that as many as 30% of people in industrialized countries suffer 

from a foodborne disease each year and in 2000 at least two million people died from 

diarrhoeal disease worldwide (WHO, 2002). Novel recommendations of the Codex 

Alimentarius provide guidance on the controls and associated tools that can be 
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adopted by regulators and industry to minimize the likelihood of illnesses arising 

from the consumption of ready-to-eat foods (CAC, 2007) and they converge on the 

reduction of the risk through safe food preparation, consumption and storage 

practices.  

Today, only a few food preservatives containing EOs are already commercially 

available. To our knowledge, DOMCA S.A. (Alhendín, Granada, Spain; (Mendoza-

Yepes et al., 1997)) and Bavaria Corp. (Apopka, FL, USA; (Cutter, 2000)) result the 

only companies producing generally recognized as safe (GRAS) food additives 

containing EOs.  

 

3. Composition of EOs 

Numerous publications have presented data on the composition of the various EOs. 

Bauer et al. (2001) summarized the major components of the economically 

interesting EOs. Detailed compositional analysis is achieved by gas chromatography 

and mass spectrometry of the EO or its headspace (Daferera et al., 2000; Delaquis et 

al., 2002). EOs can comprise more than sixty individual components (Russo et al., 

1998; Senatore, 1996). Major components can constitute up to 85 % of the EO 

whereas other components are present only in traces (Bauer et al., 2001; Senatore, 

1996). The phenolic components are chiefly responsible for the antibacterial 

properties of EOs (Cosentino et al., 1999). In Table 1 are reported the major 

components of Citrus EOs showing biological properties. 

Furthermore, there is some evidence that minor components of EOs have a critical 

role to play in their antimicrobial activity, possibly by producing a synergistic effect 
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between other components. This has been found to be the case for Citrus (Settanni et 

al., 2014), sage (Marino et al., 2001), certain species of Thymus (Lattaoui et al., 

1994; Marino et al., 1999; Paster et al., 1995) and oregano (Paster et al., 1995). 

Besides, the biological activity of an oil can be relate to the stereochemical 

configuration of its components, to the proportion in which they are present and to 

how they interact among them (Delaquis et al., 2002; Dorman et al., 2000; Marino et 

al., 2001). Some studies have concluded that whole EOs have a greater antibacterial 

activity than the major components mixed (Gill et al., 2002; Mourey et al., 2002), 

which suggests that the minor components are critical to the activity and may have a 

synergistic effect or potentiating influence. 

Moreover, as mentioned above, the composition of EOs from a particular species of 

plant can differ between harvesting seasons (Settanni et al., 2014) and between 

geographical sources (Arras et al., 1992; Cosentino et al., 1999; Faleiro et al., 2002; 

Juliano et al., 2000; Marino et al., 1999; McGimpsey et al., 1994). This can be 

explained, at least in part, by the formation of antimicrobial substances from their 

precursors. p-Cymene (1-methyl-4-(1-methylethyl)-benzene) and γ-terpinene (1-

methyl-4-(1-methylethyl)-1,4-cyclohexadiene) are the precursors of carvacrol (2-

methyl-5-(1-methylethyl) phenol) and thymol (5-methyl- 2-(1-methylethyl)phenol) 

in species of Origanum and Thymus (Cosentino et al., 1999; Jerkovic et al., 2001; 

Ultee et al., 2002).  

In Citrus Genus (Rutaceae family), the main EOs compounds are the monoterpenes 

and, among them, the limonene, a cyclic monoterpene, is the most abundant ranging 

up to 85% (Gurrea Martínez, 2014). On the other hand, the sesquiterpenes result to 
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show a large diversity among Citrus species. Citrus EOs are biosynthesized in 

spherical secretory cavities known as oil glands (Palazzolo et al., 2013), mainly 

diffused in primary tissues of the shoot (i.e. leaf, thorns, prophyllis, sepals, etc.) 

(Schneider, 1968) and, particularly, in flavedo. Even though the Citrus species show 

different oil glands density, as well at cultivar level, the amount of EOs produced 

was not related to the number of these secretory structures (Germanà et al., 1995), at 

least in lemon. Different results have been achieved comparing two mandarin clones, 

one of which (deg) was a mutant with decreased oil glands (Gurrea Martínez, 2014). 

In this case, significant quantitative differences were detected between clones 

regarding the amount of EOs produced, even if the released ones as volatile 

compounds did not.  

Enantiomers of EO components have been shown to exhibit antimicrobial activity to 

different extents (Lis-Balchin et al., 1999; Palazzolo et al., 2013).  

The EO components can be divided into two different classes based on biosynthetic 

origin (Croteau et al., 2000; Betts, 2001; Pichersky et al., 2006). The main group is 

composed of terpenes and terpenoids and the other of aromatic and aliphatic 

constituents, all characterized by low molecular weight (Bakkali et al., 2008) The 

terpenes have different classes from a structural and functional point of view. They 

are substances composed of isoprene (2-methylbutadiene) units. Terpenoids are 

terpenes that undergo biochemical modifications via enzymes that add oxygen 

molecules and move or remove methyl groups (Caballero et al., 2003). They can be 

hydrocarbons, alcohols, aldehydes, ketones, acids, acetals, esters, lactones, epoxides, 

ethers or phenols; they can also contain sulfur and nitrogen groups, can be saturated 
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or unsaturated, with a linear, branched, cyclic or heterocyclic structure, and with a 

greater or lesser number of carbon atoms. In general, only the hemiterpenoids (5 

carbon atoms), monoterpenoids (10 carbon atoms) and sesquiterpenoids (15 carbon 

atoms) are sufficiently volatile to be components of essential oils. Monoterpenoids 

are the most representative molecules constituting 90% of the essential oils and allow 

a great variety of structures, for example carbures, alcohols, aldehydes, ketone, 

esters, ethers, peroxides, phenols (Bakkali et al., 2008). When the molecule is 

optically active, the two enantiomers are very often present in different plants. 

The aromatic compounds, compared to terpenes and terpenoids, are derivatives of 

phenylpropane, which are less frequently than the terpenes in essential oils. The 

biosynthetic pathways concerning terpenes and phenylpropanic derivatives are 

generally separated in plants but they may coexist in some, with one major pathway 

taking over (Bakkali et al., 2008).  

 



Introduction 

13 

 

Table 1. Chemical compounds of Citrus EOs and their biological activities (adapted from Burt, 2004 

and Jing et al., 2014). 

# Name Class Plant source Bioactivity Reference 
1 α-pinene monoterpene Citrus species; 

Rosmarinus 

officinalis; Salvia 

officinalis 

antimicrobial 

antifungal 

Hosni et al., 2010; Lota et al., 

2002; Daferera et al., 2000; 

Daferera et al., 2003; Pintore et al., 

2002; Marino et al., 2001. 

2 α -thujene monoterpene Citrus species  Jabalpurwala et al., 2009; Lota et 

al., 2002. 

3 camphene monoterpene Citrus species  Lota et al., 2002; Bourgou et al., 

2012; Sawamura et al., 1991. 

4 β-pinene monoterpene Citrus species; 

Salvia officinalis 

antifungal 

antimicrobial 

Jabalpurwala et al., 2009; Lota et 

al., 2002; Hammer et al., 2003; 

Marino et al., 2001. 

5 sabinene monoterpene Citrus species antifungal Hosni et al., 2010; Lota et al., 

2002; Jabalpurwala et al., 2009; 

Espinosa-García et al., 1991. 

6 α-phellandrene monoterpene Citrus species insecticidal 

activity 

Hosni et al., 2010; Park et al., 

2003. 

7 δ-3-carene monoterpene Citrus species anti-

inflammatory 

Hosni et al., 2010; Lota et al., 

2002; Jabalpurwala et al., 2009; 

Ocete et al., 1989. 

8 α-myrcene monoterpene Citrus species  Hosni et al., 2010; Lota et al., 

2002. 

9 β-myrcene monoterpene Citrus species antifungal Lota et al., 2002;  Jabalpurwala et 

al., 2009; Tao et al., 2014. 

10 α-terpinene monoterpene Citrus species  Lota et al., 2002;  Jabalpurwala et 

al., 2009. 

11 γ-terpinene monoterpene Citrus species, 

Eucaliptus spp; 

Origanum vulgare; 

Thymus vulgaris  

antimicrobial 

antifungal 

antiviral 

Lota et al., 2002; Jabalpurwala et 

al., 2009; Sartorelli et al., 2007. 

Charai et al., 1996; Daferera et al., 

2000; Marino et al., 2001. 

12 limonene monoterpene Citrus species anti-

inflammatory, 

antioxidant, 

antimicrobial 

Hosni et al., 2010; Lota et al., 

2002; Jabalpurwala et al., 2009. 

13 1,8-cineole monoterpenic oxide Citrus limon; 

Rosmarinus 

officinalis; Salvia 

officinalis 

anti-

inflammatory 

Lota et al., 2002; Santos et al., 

2000;  Daferera et al., 2000; 

Marino et al., 2001. 

14 (Z)-ocimene monoterpene Citrus species  Hosni et al., 2010; Lota et al., 

2002;  Jabalpurwala et al., 2009. 

15 (E)-ocimene monoterpene Citrus species  Hosni et al., 2010; Lota et al., 

2002; Jabalpurwala et al., 2009. 

16 trans-sabinene monoterpene Citrus species  Hosni et al., 2010; Lota et al., 

2002; Vekiari et al., 2002. 

17 cis-sabinene monoterpene Citrus species  Hosni et al., 2010. 

18 p-cymene monoterpene Citrus species; 

Origanum vulgare; 

Thymus vulgaris 

antimicrobial 

antiviral 

Hosni et al., 2010; Lota et al., 

2002; Vekiari et al., 2002; 

Sartorelli et al., 2007; Daferera et 

al., 2000; Daferera et al., 2003; 

Marino et al., 2001. 

19 α-terpinolene monoterpene Citrus species  Hosni et al., 2010; Lota et al., 

2002; Jabalpurwala et al., 2009. 

20 linalool monoterpene 

alcohol 

Citrus species; 

Coriandrum 

sativum 

antimicrobial Hosni et al., 2010; Lota et al., 

2002; Jabalpurwala et al., 2009; 

Delaquis et al., 2002. 

21 trans-pinocarveol monoterpenoid Citrus species  Hosni et al., 2010. 

22 neo-allo-ocimene monoterpene Citrus species  Jabalpurwala et al., 2009. 

23 allo-ocimene monoterpene Citrus species  Jabalpurwala et al., 2009. 

24 (Z)-epoxy-ocimene  Citrus species  Jabalpurwala et al., 2009. 

25 terpinen-4-ol monoterpenic oxide Citrus species anti-

inflammatory 

Lota et al., 2002; Lahlou et al., 

2003. 

26 β-cyclocitral sesquiterpenoid Citrus species antimicrobial Hosni et al., 2010; Proszenyak et 

al., 2007. 

27 cis-linalool oxide monoterpenic oxide Citrus species  Lota et al., 2002. 
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28 α-p-dimethylstyrene  Citrus species  Jabalpurwala et al., 2009. 

29 sabinene hydrate monoterpene Citrus species  Jabalpurwala et al., 2009. 

30 trans-para-menth-2-

ene-1-ol 

monoterpene 

alcohol 

Citrus species  Hosni et al., 2010. 

31 carvacryl methyl 

oxide 

monoterpene 

phenol derivate 

Citrus species  Hosni et al., 2010. 

32 (Z)-limonene oxide monoterpenic oxide Citrus species  Jabalpurwala et al., 2009. 

33 δ-elemene sesquiterpene 

hydrocarbon 

Citrus species anticancer Jabalpurwala et al., 2009. 

34 β-elemene sesquiterpene 

hydrocarbon 

Citrus species  Lota et al., 2002; Jabalpurwala et 

al., 2009. 

35 α-copaene sesquiterpene 

hydrocarbon 

Citrus species attractant for 

male fruit flies 

Lota et al., 2002; Jabalpurwala et 

al., 2009; Nishida et al., 2000. 

36 β-copaene sesquiterpene 

hydrocarbon 

Citrus species  Hosni et al., 2010. 

37 (E)-(E)-2,4-

decadienal 

 Citrus species  Hosni et al., 2010. 

38 α-bergamotene sesquiterpene 

hydrocarbon 

Citrus limon  Jabalpurwala et al., 2009. 

39 trans carveol  monoterpenoid 

alcohol 

Citrus species  Hosni et al., 2010. 

40 (E)-caryophyllene sesquiterpene 

hydrocarbon 

Citrus species antimicrobial  Lota et al., 2002; Juliani et al., 

2002.  

41 β-caryophyllene sesquiterpene 

hydrocarbon 

Citrus species antioxidant, 

anticancer, 

antibiotic, anti-

inflammatory  

Jabalpurwala et al., 2009; Legault 

et al., 2007. 

42 trans  

α-bergamotene 

sesquiterpene 

hydrocarbon 

Citrus species  Hosni et al., 2010. 

43 β-ionone isoprenoid Citrus species antimicrobial  Hosni et al., 2010; Radulovic et al., 

2006. 

44 β-farnesene sesquiterpene Citrus species  Jabalpurwala et al., 2009. 

45 (E)-β-farnesene sesquiterpene Citrus limon kairomone for the 

ladybird 

Lota et al., 2002; Francis et al., 

2004. 

46 (E,E)-α-farnesene sesquiterpene Citrus limon attractant for 

lepidopteran 

Lota et al., 2002; Pechous  et al., 

2004. 

47 farnesol sesquiterpene Citrus species anticancer Jabalpurwala et al., 2009; Burke et 

al., 1997.  

48 α-humulene sesquiterpene Citrus species anticancer Lota et al., 2002; Hosni et al., 

2010; Legault et al., 2007. 

49 β-bisabolene sesquiterpene Citrus species  Lota et al., 2002; Jabalpurwala et 

al., 2009. 

50 geranial sesquiterpene 

aldeyde 

Citrus species antifungal Lota et al., 2002; Wuryatmo  et al., 

2003; Jabalpurwala et al., 2009. 

51 geraniol terpene alcohol  Citrus species antimicrobial, 

antioxidant, 

anticancer, anti-

inflammatory 

Lota et al., 2002; Chen et al., 2010; 

Jabalpurwala et al., 2009. 

52 α-citronellol monoterpene 

alcohol 

Citrus species  Lota et al., 2002; Jabalpurwala et 

al., 2009. 

53 β-citronellol monoterpene  

alcohol 

Citrus species  Lota et al., 2002; Jabalpurwala et 

al., 2009. 

54 curcumene sesquiterpene 

hydrocarbon 

Citrus species anti-

inflammatory 

Lota et al., 2002; Chavan et al., 

2010; Mujumdar  et al., 2004; 

Jabalpurwala et al., 2009. 

55 neral monoterpene  

alcohol 

Citrus limon antifungal Lota et al., 2002; Wuryatmo  et al., 

2003. 

56 nerol monoterpene  

aldehyde 

Citrus species antimicrobial Lota et al., 2002; Kotan  et al., 

2007; Jabalpurwala et al., 2009. 

57 calamenene sesquiterpene Citrus limon anticancer Dai  et al., 2012; Jabalpurwala et 

al., 2009. 

58 (Z)-jasmone  Citrus species insecticidal 

activity 

Birkett et al., 2000; Jabalpurwala et 

al., 2009. 

59 nerolidol sesquiterpene Citrus species insecticidal 

activity 

Lota et al., 2002; Arruda et al., 

2005; Jabalpurwala et al., 2009. 

60 thymol monoterpene  

phenol 

Citrus species; 

Origanum vulgare 

antimicrobial Jabalpurwala et al., 2009; Daferera 

et al., 2000; Daferera et al., 2003; 

Marino et al., 2001. 
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61 n-phenylformamide  Citrus species   

62 aromadendrene sesquiterpene Citrus species antifungal Hammer et al., 2003; Hosni et al., 

2010. 

63 α-terpinol monoterpene  

alcohol 

Citrus limon antifungal Lota et al., 2002; Hammer et al., 

2003. 

64 α-cyperone sesquiterpene Citrus species  Hosni et al., 2010. 

65 geranyl-α-terpinene  Citrus species  Hosni et al., 2010. 

66 δ-cadinene sesquiterpene Citrus species  Hosni et al., 2010. 

67 germacrene-B sesquiterpene 

hydrocarbon 

Citrus species  Hosni et al., 2010. 

68 germacrene-D sesquiterpene 

hydrocarbon 

Citrus species insecticidal 

activity 

Lota et al., 2002; Røstelien et al., 

2000; Hosni et al., 2010. 

69 α-sinensal sesquiterpene 

aldehyde 

Citrus species  Lota et al., 2002; Hosni et al., 

2010. 

70 β-sinensal sesquiterpene 

aldehyde 

Citrus species  Lota et al., 2002; Røstelien et al., 

2000; Hosni et al., 2010. 

71 γ-eudesmol sesquiterpenoid Citrus species  Hosni et al., 2010. 

72 τ-cadinol sesquiterpene Citrus species  Hosni et al., 2010. 

73 bicyclogermacrene sesquiterpene 

hydrocarbon 

Citrus species  Hosni et al., 2010. 

74 caryophyllene oxide sesquiterpene oxide Citrus limon antifungal 

activity 

Lota et al., 2002; Yang et al., 2000. 

75 α-caracorene sesquiterpene  Citrus species anti-

inflammatory 

Chavan et al., 2010; Hosni et al., 

2010. 

76 Eugenol phenol Syzygium 

aromaticum (clove) 

antibacterial Bauer et al., 2001. 

77 Eugenyl acetate  Syzygium 

aromaticum (clove) 

antibacterial Bauer et al., 2001. 
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4. Fungal spoilage of food  

Food are susceptible to many different contamination microorganisms (bacteria, 

fungi and enteric virus) and sources, such as seed, soil, irrigation water, animals, 

manure/sewage sludge use, harvesting, processing and packaging. Generally, the 

kind of spoilage depends from the composition of food and the proliferation of these 

microorganisms can lead to food losses (defects of texture and off-odors due to 

enzymes and metabolites release) or to human diseases (in case of contamination 

with pathogenic microorganisms and/or their toxins). 

In this context, food decay by spoilage fungi causes considerable economic losses 

and constitutes a health risk for consumers due to the potential for fungi to produce 

mycotoxins. The indiscriminate use of synthetic antifungals has led to the 

development of resistant strains, which need higher concentrations of compounds to 

be killed, with the consequent increase of toxic residues into food products.  

Molds are a large group of taxonomically diverse fungal species, which are able to 

colonize opportunistically a wide array of habitats including foods, especially fresh 

fruits, vegetables, and grains. Because of the high activity of their hydrolytic 

enzymes and the production of toxic metabolites such as mycotoxins, molds are 

responsible for the decay or deterioration of a wide variety of foods and cause 

quantitative and qualitative losses. Worldwide, post-harvest losses have been 

estimated at 50% and much of this is due to fungal and bacterial infections (Magro et 

al., 2006). Fruits and vegetables are highly susceptible to fungal spoilage, both in the 

field and during postharvest storage. Significant spoilage fungi genera include 

Pythium, Phytophthora, Aspergillus, Fusarium, Penicillium, Alternaria, Botrytis, 
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Geotrichum, Sclerotinia and Rhizoctonia spp. Mold growth mainly depends on 

abiotic factors such as pH, water activity (aw), solute concentration, temperature, 

atmosphere, time, etc. Although, the main variables determining the development of 

fungi are the temperature and the aw.  

In addition, many species of Fusarium, Aspergillus, Penicillium and Alternaria can 

synthesize mycotoxins, hazardous compounds since they are carcinogenic, 

mutagenic, teratogenic and immunosuppressant. Their activity depends on the type 

of toxin and their concentration in the food. Concern about these chemical hazards 

has been increasing due to the wide range of food types that may be affected and the 

variability in the severity of symptoms caused. Mycotoxins can be produced before 

and after harvest and levels may increase during postharvest handling and storage. 

Thus, prevention of fungal growth is an effect means of preventing mycotoxin 

accumulation. Mycotoxins may reach consumers either by direct contamination of 

plant materials or products thereof, or by ‘carry over’ of mycotoxins and their 

metabolites into animal tissues, milk and eggs after intake of contaminated feed. 

Furthermore, this hazard remains in processed food because these metabolites are not 

removed by standard industrial processing, and the risk could increase if moldy fruits 

or plants are used in processed byproducts.  

 

5. Pathogenic microorganisms in food 

Pathogens may be present on food originating from the raw materials or due to cross-

contamination during processing (Nguyen‐the et al., 1994; Beuchat, 1996; Seymour 
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et al., 2001). The incidence of foodborne outbreaks caused by contaminated food has 

increased in recent years (WHO, 2002; EFSA, 2015; Mukherjee et al., 2006).  

The pathogens most frequently linked to produce-related outbreaks include bacteria 

(Salmonella spp., Escherichia coli, Listeria monocytogenes), enteric viruses 

(noroviruses, hepatitis A virus), and parasites (Cryptosporidium, Cyclospora) (Tauxe 

et al., 1997), with Salmonella being the leading cause in the EU (EFSA, 2015). Fresh 

produce and sprouts have been implicated in a number of documented outbreaks of 

illness in countries such as Japan (Nat'l. Inst. Inf. Dis., 1997), USA (De Roever, 

1998) and EU (Emberland et al., 2007; Pezzoli et al., 2007; Abadias et al., 2008; 

Söderström et al., 2005; Rasko et al., 2011).  

Many pathogens have been isolated from different kind of food, although not all of 

them could be directly associated with foodborne outbreaks. The most important 

bacterial foodborne pathogens are discussed below.  

 

Salmonella species 

Salmonella is a rod Gram-negative, facultative anaerobic, mobile and nonspore 

forming bacteria. It is mesophilic fecal-associated pathogen. Its presence is mostly 

associated to meat, milk and dairy products, fish and fresh-cut vegetables and its 

growth on these products is generally associated to temperature abuse (T>10°C). On 

the contrary, the low pH is a limit for the pathogen growth. This pathogen has a very 

low infectious dose of less than 100 cells.  Salmonella is frequently present on raw 

vegetables and fruits (Doyle, 1990; Beuchat, 1996, Abadias et al., 2008). Normally 

its growth rate is reduced at less than 15°C and prevented at less than 7°C (ICMSF, 
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1996). Studies of fresh, unprocessed produce conducted in Minnesota and Wisconsin 

(Mukherjee et al., 2006), UK (Sagoo et al., 2003), in southern USA (Johnston et al., 

2005) and in USA with imported fresh produce (FDA, 2001) and Malaysia showed 

widely varying incidences of Salmonella: 0, 0.2%, 3.3%, 3.5% and 35%, 

respectively. 

Refrigeration is the best preservation method to prevent an outgrowth of this 

mesophilic pathogen. In the European regulation regarding criteria for foodstuffs 

(EU Regulation 2073/2005), it is generally recommended the absence of Salmonella 

in 25 g of product.  

 

Escherichia coli  

E. coli is a rod Gram-negative, mesophilic, facultative anaerobic, non-sporigen fecal-

associated pathogen. It belongs to Enterobacteriaceae family and it is commonly 

found in the intestines of warm-blooded animals (as further described in the 

paragraph below). Most types of E. coli are harmless, but some are pathogenic, being 

enterovirulent (EEC). The symptoms of E. coli O157:H7 infection, an 

enterohemorrhagic strain, include severe, sometimes bloody, diarrhea and abdominal 

cramps. The number of E. coli O157:H7 infections associated to food have increased 

in the last years (EFSA, 2015). Survival and growth patterns of E. coli O157:H7 are 

dependent on food type, package atmosphere and storage temperature (Francis et al., 

2001). Meat and cured meats, raw milk and fruit juices are commonly associated to 

this pathogen. E. coli can be present in raw material and in vegetables and fruits. E. 

coli has the capability to grow at high temperatures and to survive at refrigerated 
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temperatures. In addition, its low infectious dose (10 to 100 CFU/g) makes the 

presence of this pathogen a risk for public health (Chang et al., 2007). E.coli is used 

as hygiene indicator since it is a fecal-associated bacteria and its presence is linked to 

the possible presence of other fecal pathogens (Ragaert et al., 2011), such as L. 

monocytogenes.  

 

Listeria monocytogenes  

L. monocytogenes is a rod Gram-positive, non-sporigen, facultative anaerobic 

pathogen. It is widely distributed in natural environment including foodstuffs as, 

milk and dairy products, fermented and raw meat, fish, refrigerated food and raw 

vegetables (Carlin et al., 1994; Koseki et al., 2005; Beuchat, 1996). Its minimal 

growth temperatures are between 0 and 4°C, it is not affected by modified 

atmospheres applied for meat, fish, fresh-cut vegetables and fruits (Thomas et al., 

1999; Rodriguez et al., 2000). In Europe, the reported hospitalisation and case-

fatality rates due to L. monocytogenes in confirmed human cases accounted for 

0.56% of all the zoonoses registered in 2013 (EFSA, 2015). These data show an 

increasing trend of listeriosis in the EU over the period 2009-2013. 

As food safety criteria for ready-to-eat foods intended for infants and for special 

medical purposes the EU Regulation 2073/2005 establishes the absence of L. 

monocytogenes in 25 g of products (following the analytical reference method 

EN/ISO 11290-1). For ready-to-eat foods able to support the growth of the pathogen, 

the limit is 100 cfu/g for products placed on the market during their shelf-life, while 

the absence in 25 g is established before the food has left the immediate control of 
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the food business operator, who has produced it. For ready-to-eat foods unable to 

support the growth the limit is 100 cfu/g.  

Outside Europe, there are often different criteria regarding the presence of L. 

monocytogenes in food. For example, USA and Canada introduced a zero tolerance 

for some foods (absence of L. monocytogenes in 25 g), especially foods that are 

supportive of growth and have extended shelf-life. In these countries, 

decontamination techniques are often allowed in the production chain in order to 

reduce the bacterial load and avoid the presence of pathogens.  

 

Staphylococcus aureus 

S. aureus is a Gram-positive, facultative anaerobic, coccal bacterium frequently 

found in the respiratory tract and on the skin. It is mesophilic, not mobile and not 

sporigen. 

Although S. aureus is not always pathogenic since it may occur as a commensal, it is 

a common cause of skin infections and food poisoning. Pathogenic strains often 

promote infections by producing potent protein toxins, and expressing cell-surface 

proteins that bind and inactivate antibodies. The emergence of antibiotic-

resistant forms of S. aureus such as MRSA (methicillin-resistant Staphylococcus 

aureus) is a worldwide problem in clinical field. 

The intoxication from contaminated food is due to its toxins. More than 60% of 

strains result enterotoxigenic producing enterotoxins. In those cases the severity of 

illness is related to the amount of toxin taken in. It is often associated to meat 

products, eggs, tuna, vegetables, milk and cheeses.  
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Enterobacteriaceae 

The Enterobacteriaceae is a family of common Gram-negative, facultative 

anaerobic, rod-shaped, non-spore-forming bacteria. The strains related to food 

contaminations may be pathogenic, opportunistic pathogens or hygiene and safety 

indicators. Since they are a normal part of the gut microbiota found in 

the intestines of humans and other animals, they can contaminate almost all kind of 

food matrices. In meat and fish, their decarbossilation activity could result in 

biogenic ammine production as putrescine, cadaverine and histamine. Common 

species that belong to Enterobacteriaceae family are Enterobacter aerogenes, E. 

cloacae, E. agglomerans, Escherichia coli, Citrobacter freundii, Erwinia erbicola, 

Erwinia carotovora, Serratia spp. and Proteus spp. 

 

6. Tests to evaluate the antibacterial and antifungal activity of EOs 

In vitro tests to evaluate the antibacterial and antifungal activity of compunds can be 

classified as diffusion, dilution, vapor phase or bioautographic methods (Rios et al., 

1988). So far standardized test has not been developed at least for evaluating the 

efficacy of natural compounds, such EOs. The NCCLS method (NCCLS, 2000) for 

antibacterial susceptibility testing, which is principally aimed at the evaluation of 

antibiotics for clinical purposes, was modified for the evaluation of EOs (Hammer et 

al., 1999). Moreover, researchers adapt experimental methods to better represent 

possible future applications in their particular field. However, since many factors 

may affect the result of the test, it is recommended to specify the extraction method 
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of EO, the plant material, the volume of inoculum, the culture medium used and the 

incubation time and temperature (Rios et al., 1988). All these variables really 

complicates comparisons among published studies (Friedman et al., 2002; Janssen et 

al., 1987). Generally, a preliminary screening of EOs for antibacterial and antifungal 

activity is often done by the disk diffusion method, in which a paper disk soaked 

with EO is laid on top of an inoculated agar plate. The well diffusion method is a 

similar test in which EOs are added into wells performed directly into the agar layer 

of the plate.  

Since EOs are constituted by volatile compounds, a vapor phase test is used to assess 

their antimicrobial activity. In this case, seeded plates are left to incubate upside 

down with a paper disk spotted with EO put onto the upper lid of the Petri dish.  In 

all of these tests, the generated inhibition zone (or halo) is considered a criterion to 

evaluate the antimicrobial activity. Another test widely used for antifungal activity 

evaluations is the poisoned food technique. The fungicidal action is expressed in 

terms of percentage of mycelia growth inhibition respect to an untreated control. 

Generally, the results are picked up by the evaluation of the growth of the organism 

by visual inspection, by measuring the optical density (OD) or by viable counts.  

The minimum inhibitory concentration (MIC) is cited by most researchers as a 

measure of the antibacterial performance of EOs, although many definitions have 

been indicated. MIC is referred to as: (i) the lowest concentration resulting in 

maintenance or reduction of inoculum viability (Carson et al., 1995); (ii) the lowest 

concentration required for the complete inhibition of test organism up to 48 h 

incubation (Canillac et al., 2001; Wan et al., 1998); (iii) the lowest concentration 
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inhibiting visible growth of test organism (Delaquis et al., 2002; Hammer et al., 

1999; Karapinar et al., 1987; Onawunmi, 1989); (iv) the lowest concentration 

resulting in a significant decrease in inoculum viability (>90%) (Cosentino et al., 

1999). Others terms used for testing antimicrobial activity are: minimum bactericidal 

concentration (MBC) defined as the concentration where 99.9% or more of the initial 

inoculum is killed (Canillac et al., 2001;  Carson et al., 1995; Cosentino et al., 1999) 

or as the lowest concentration at which no growth is observed after sub culturing into 

fresh broth (Onawunmi, 1989); bacteriostatic concentration cited as the lowest 

concentration at which bacteria fail to grow in broth, but are cultured when broth is 

plated onto agar (Smith-Palmer et al., 1998); bactericidal concentration used to 

indicate the lowest concentration at which bacteria fail to grow in broth, and are not 

cultured when broth is plated onto agar. Viability assays, such as time-kill analysis, 

are commonly used to assess the rapidity of an antimicrobial effect or the duration of 

a bacteriostatic effect. The result of viable cells is expressed by plotting viable cells 

remaining in broth after a defined contact time with an EO against time (survival 

curve plot).  

Nowadays, molecular methods are available to rapidly and accurately detect viable 

and dead cells after a given treatment, including EOs exposure. When applied in food 

industry, these PCR-based techniques can be a usefull tool to control and prevent 

pathogen contaminations (O’Grady et al., 2009). In fact, it is possible to detect 

bacteria in different food matrices and the results can be obtained more rapidly 

comparing with the standard culture methods (De Boer et al., 1999; Malorny et al., 

2003). This is particularly important for minimally processed vegetable and fruit 
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since they enjoy a short shelf-life. In addition, the evaluations by using traditional 

culture methods show the lack of sensitivity regarding viable but not culturable cells 

(VBNC) (Randazzo et al., 2016; Kramer et al., 2009).  

The main drawback when applying PCR for pathogen detection in food is how to 

distinguish between DNA from dead and live cells (Rudi et al., 2002). In fact, DNA 

from dead cells, killed by processing procedures or other factors such as EO, can 

serve as a template during PCR amplification (Nogva et al., 2003). This is 

particularly relevant for processed foods resulting in false positive results. A 

promising strategy to avoid this issue relies on the use of nucleic acid intercalating 

dyes, such as propidium monoazide (PMA) or ethidium monoazide (EMA) as a 

sample pre-treatment before the qPCR. This procedure is based on the integrity of 

bacterial cells since these dyes penetrate only into damaged membrane or dead cells 

(Nocker et al., 2006). PMA proved to be more selective compared to EMA because 

of the higher charge of the molecule (Nocker et al., 2006) and only penetrates into 

membrane-compromised or dead cells. PMA action is based on the presence of an 

azide group that allows cross-linking of the dye to DNA after exposure to strong 

visible light. The light leads to the formation of a highly reactive nitrene radical that 

strongly inhibits DNA amplification. PMA treatment combined with qPCR has been 

successfully tested on bacterial pathogens such as L. monocytogenes (Pan et al., 

2007), E. coli O157:H7 (Elizaquível et al., 2011; Nocker et al., 2009) and 

Campylobacter jejuni (Josefsen et al., 2010) among others.  

Regarding the tests assessed for evaluating the antimicrobial activity of EOs in food, 

viable direct counts of intentionally contaminated food after EO addiction/treatment 
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have been widely used. It is generally supposed that higher amount of EOs are 

needed in food to achieve results similar to the in vitro tests. This could be explained 

by the lesser efficacy of EOs in damaging microbial cells and their faster ability in 

self-repairing. Indeed, the greater availability of nutrients in foods compared to 

laboratory media may enable bacteria to better repair damaged cells (Gill et al., 

2002).  On the other hand, the intrinsic properties of the food (fat, protein, water 

content, antioxidants, preservatives, pH, salt and other additives) can influence both 

the microbial sensitivity (Shelef, 1983; Tassou et al., 1995) and the efficacy of EO, 

due to its lower availability. For example, at low pH the hydrophobicity of an EO 

increases, enabling it to more easily dissolve in the lipids of the cell membrane of 

target bacteria (Juven et al., 1994). As well, high levels of fat and/or protein in 

foodstuffs protect the bacteria from the action of the EO (Aureli et al., 1992;  Pandit 

et al., 1994;  Tassou et al., 1995). The physical structure of a food may also limit the 

antimicrobial activity of EO due to the limitation of diffusion (Skandamis et al., 

2000a). The extrinsic characteristics of a food, such as temperature, packaging 

system (in vacuum, gas, air) and traits of microorganisms also affect EOs activity. 

For example, the antimicrobial activity of EOs in vegetables increases with a 

decrease in storage temperature (Skandamis et al., 2000b). 

 

7. Mode of antibacterial and antifungal action 

The mechanism of action of EOs has not been elucidated in detail (Lambert et al., 

2001). Considering the large number of different groups of chemical compounds 

present in EOs, it is most likely that their antibacterial and antifungal activity is not 
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attributable to one specific mechanism but that there are several targets in the cell 

(Carson et al., 2002; Skandamis et al., 2001). Anyway, all the mechanisms involved 

in bacterial cells inhibition by EOs can be summarized as the degradation of the cell 

wall (Helander et al., 1998; Thoroski et al., 1989); the damage of cytoplasmic 

membrane (Knobloch et al., 1989; Oosterhaven et al., 1995; Sikkema et al., 1994;  

Ultee et al., 2002; Ultee et al., 2000); the damage of membrane proteins (Juven et al., 

1994; Ultee et al., 1999); the leakage of cell contents (Cox et al., 2000; Gustafson et 

al., 1998; Helander et al., 1998; Lambert et al., 2001; Oosterhaven et al., 1995); the 

coagulation of cytoplasm (Gustafson et al., 1998) and the depletion of the proton 

motive force (Ultee et al., 1999; Ultee et al., 2001). Some of these targets are 

affected because of another mechanism being targeted. 

An important characteristic of EOs and their components is their hydrophobicity, 

which enables them to partition in the lipids of the cell membrane, disturbing the 

structures and rendering them more permeable (Knobloch et al., 1986; Sikkema et 

al., 1994).  Leakage of ions and other cell contents can then occur (Cox et al., 2000; 

Gustafson et al., 1998; Helander et al., 1998; Lambert et al., 2001; Oosterhaven et 

al., 1995; Skandamis et al., 2001; Ultee et al., 2002). 

Although a certain amount of leakage from bacterial cells may be tolerated without 

loss of viability, extensive loss of cell contents or the exit of critical molecules and 

ions will lead to death (Denyer et al., 1991). There is some evidence from studies 

with tea tree oil and E. coli that cell death may occur before lysis (Gustafson et al., 

1998). 
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Figure 3. Sites of action of essential oils or their compounds at the bacteria cellular level: cell wall 
degradation; damage of the cytoplasmic membrane; damage of membrane proteins; loss of cell 

contents; coagulation of cytoplasm and depletion of the proton motive force (Burt, 2004).  

 

EOs are slightly more active against Gram-positive than Gram-negative bacteria 

(Canillac et al., 2001;  Cimanga et al., 2002; Delaquis et al., 2002; Lambert et al., 

2001; Pintore et al., 2002; Settanni et al., 2014). Gram-negative organisms are less 

susceptible to the action of antibacterials since they possess an outer membrane 

surrounding the cell wall (Ratledge et al., 1988) which restricts diffusion of 

hydrophobic compounds through its lipopolysaccharide covering (Vaara, 1992).  

However, not all studies on EOs have concluded that Gram-positives are more 

susceptible (Wilkinson et al., 2003).  

The chemical structure of the individual EO components affects their precise mode 

of action and its antibacterial activity (Dorman et al., 2000). The importance of the 

presence of the hydroxyl group in phenolic compounds such as carvacrol and thymol 

has been confirmed (Dorman et al., 2000; Knobloch et al., 1986; Ultee et al., 2002).  
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Lipophilic hydrocarbon molecules could accumulate in the lipid bilayer and distort 

the lipid-protein interaction; alternatively, direct interaction of the lipophilic 

compounds with hydrophobic parts of the protein is possible (Juven et al., 1994). 

Carvacrol and thymol appear to make the cell membrane permeable (Lambert et al., 

2001) and both compounds are able to disintegrate the outer membrane of Gram-

negative bacteria, releasing lipopolysaccharides and increasing the permeability of 

the cytoplasmic membrane to ATP.  

The biological precursor of carvacrol, p-cymene is hydrophobic and causes swelling 

of the cytoplasmic membrane to a greater extent than does carvacrol (Ultee et al., 

2002). p-Cymene is not an effective antibacterial when used alone (Dorman et al., 

2000, Juven et al., 1994; Ultee et al., 2000), but when combined with carvacrol, 

synergism has been observed against B. cereus in vitro and in rice (Ultee et al., 

2000).  Although cinnamaldehyde (3-phenyl-2-propenal) is known to be inhibitive to 

growth of E. coli O157:H7 and S. typhimurium at similar concentrations to carvacrol 

and thymol, it did not disintegrate the outer membrane or deplete the intracellular 

ATP pool (Helander et al., 1998). The carbonyl group is thought to bind to proteins, 

preventing the action of amino acid decarboxylases in E. aerogenes (Wendakoon et 

al., 1995). 

Regarding the mechanism of action of EOs against fungal species, it still remains 

poorly understood due to the difficulties already summarized by Lanciotti et al. 

(2004) and Prudent et al. (1995). As occur for bacteria cells, it has suggested that the 

cell membrane is the possible target of bioactive volatile compounds because of the 

fact that EOs are mixtures of molecules characterized by their poor solubility in 



Introduction 

 

30  

 

water and high hydrophobicity (Akgül et al., 1988; Kim et al., 1995; Lattaoui et al., 

1994).  

Several studies have showed that terpenes and phenolic compounds can disrupt the 

membrane of both fungi and bacteria (Ratledge et al., 1988; Rees et al., 1995). 

Monoterpenes act by disrupting the microbial cytoplasmic membrane, resulting in 

the loss of membrane impermeability. If the disturbance of membrane integrity 

occurs, then its functions are compromised not only as a barrier but also as a matrix 

for enzymes and as an energy transducer (Rees et al., 1995; Renzini et al., 1999). 

In a more recent study by Tao et al. (2014), the antifungal activity of mandarin EOs 

against P. italicum and P. digitatum was attributed to the monoterpenes in the oils, 

such as limonene, octanal and citral. They also suggested that mandarin EOs 

generated cytotoxicity by disrupting cell membrane integrity, causing the leakage of 

cell components. 

Concluding, the antifungal mechanism of action of the bioactive compounds of EOs 

can be explained by the same mechanism of action of bacterial one. 

 

8. Organoleptic, safety and legal aspects of the use of EOs and their components 

in foods 

The application of EOs in food may result in a strong organoleptic impact depending 

on the doses applied. Since the antimicrobial activity of EOs have been shown to be 

dose-dependent, the amount to be applied in a specific food to obtain a desired 

antimicrobial effect can vary at a large extent, finally resulting in altering 

organoleptic profile of food when high doses are needed. In fact, the reduction of the 
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doses to be applied to food matrixes is the clue to be pursued to apply EOs 

extensively. While some foods are already associated by consumers with herbs and 

spices giving a defined and pleasant aroma (e.g. fish and meat), some others are not, 

such as the case of fruits or vegetables. In all cases when EOs are added to food, 

sensory analyses must be performed to ascertain their effects on the sensory 

characteristics of food. Many studies support the final acceptability of meat 

(Tsigarida et al., 2000; Skandamis et al., 2001) and fish (Mejlholm et al., 2002; 

Harpaz et al., 2003) preparations added with EOs, even if differences are usually 

detected by the panel test. In addition, EO compounds have been used to treat fruits 

such as kiwifruit and honeydew melon without causing adverse organoleptic changes 

(Roller et al., 2002). 

A rising trend to avoid the direct organoleptic impact of EOs, moreover associated 

with their prolonged dispersion and longer antimicrobial effect, is their inclusion in 

food packaging materials. As a matter of facts, the use of edible coatings as carriers 

of antimicrobial compounds could be an alternative tool to combact food spoilage 

and/or pathogen agents (Aider, 2010; Bakkali et al., 2008; Burt, 2004; Sánchez-

González et al., 2011) and, at the same time, to reduce the amount of EOs to be 

applied in  food. In this way, the chemico-physical properties of the polymer 

constituting the film and acting as a selective barrier to gas transport (Vargas et al., 

2008), together with the antimicrobial properties of EOs included, can be the goal of 

an hurdle technology applied to food to extend its commercial shelf-life (Park, 1999; 

Perdones, et al., 2012).  
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All the above considerations must take as well into account the irritation and toxicity 

of EOs to eukaryotic cells, and then to human epithelia. Even if some EOs are 

considerate as GRAS and approved as food flavourings, cytotoxicity studies showed 

that eugenol, menthol and thymol, applied in root canal treatments caused irritation 

of mouth tissues (Manabe et al., 1987). Moreover, they may cause spasmogenic 

effects (Lis-Balchin et al., 1999) or allergic contact dermatitis in people who use 

them frequently (Bleasel et al., 2002; Carson et al., 2001). Then, more safety studies 

should be carried out before EOs become more widely used or at greater 

concentrations in foods that at present. 

In contrast, a number of EO components have been registered by the European 

Commission for use as flavourings in foodstuffs. The flavourings registered are 

considered to present no risk to the health of the consumer and include amongst 

others carvacrol, carvone, cinnamaldehyde, citral, p-cymene, eugenol, limonene, 

menthol and thymol. The EU registered flavourings listed above also appear on the 

'Everything Added to Food in the US' (EAFUS) list (http://www.fda.gov/), which 

means that the United States Food and Drug Administration (FDA) has classified the 

substances as GRAS or as approved food additives.  

In conclusion, the approval of EOs as food additives should involve a deeper 

knowledge of their antimicrobial effect, as well as their biological toxicity against 

gastro-intestinal cells and, finally, their impact onto the sensorial food profile.  

http://www.fda.gov/
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The aims of the Ph.D. research thesis  

This research work has been developed in the context of the potencial applications of 

essential oils as multi-target compounds for novel food safety strategies, such as 

active packaging technologies.   

Essential oils are aromatic oils derived from plants and usually extracted by 

hydrodistillation when intended to be used in food. There is an increasing interest in 

the antimicrobial properties of essential oils due to the possibility of using them to 

replace ‘synthetic’ preservatives in food or, in general, to reduce viable numbers of 

pathogens along the food chain. 

With this perspective, the first aim of the present research thesis was to study the 

antibacterial effectiveness of Citrus EOs against common pathogens associated to 

foodborne outbreaks (Listeria monocytogenes, Staphylococcus aureus, Salmonella 

enterica, Enterobacter spp., Escherichia coli) (Chapter 1; Chapter 2; Chapter 3; 

Chapter 4). Moreover, the influence of the harvesting stages on both chemical 

compositions and antimicrobial activity has also been taken into account (Chapter 1). 

Since strain-dependent responses to EOs exposure have been reported, a further 

study has been carried out to evaluate the effect of Citrus EOs against a collection of 

Listeria monocytogenes strains and, thereafter, the antimicrobial properties have been 

assessed in different edible film formulations (chitosan and methylcellulose coatings) 

(Chapter 2).  

Nowadays, the pathogen detection can be rapidly evaluated by applying PCR 

techniques, but the lack in distinguishing between DNA from dead and live cells is 

one of the mayor drawbacks of these techniques. A promising strategy to avoid this 
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issue relies on the use of DNA intercalating dyes, such as propidium monoazide 

(PMA) as a sample pretreatment previous to the real-time PCR. On the base of these 

considerations, the second aim of this research was the evaluation of the 

applicability of PMA-qPCR technique for the detection and quantification of viable 

E. coli O157:H7 cells after inactivation by Citrus EOs (Chapter 4).  

The third aim of this research thesis focused on the determination of the antifungal 

activity of the Citrus EOs, previously assessed for their antibacterial activities. The 

inhibition has been evaluated against forty-seven foodborne filamentous fungal 

strains of different species and origin. Furthermore, for these experiments activity of 

the EOs has been correlated to their chemical composition (Chapter 5). 
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1.1. Materials and Methods 

1.1.1. Citrus samples and EOs extraction 

The EOs analyzed in this study were obtained from peels of the following three 

cultivars of Citrus limon L. Burm.: Femminello Santa Teresa, Monachello and 

Femminello Continella, selected as the best producers of inhibition activity among 

previously tested Citrus EOs (Settanni et al., 2012). 

Lemon fruits were collected in the orchard “Parco d’Orleans” of the Agricultural and 

Forest Science Department – University of Palermo (Palermo, Italy) at 6-week 

intervals for a total of 4 harvests (A, December 2012; B, January 2013; C, February 

2013; D, April 2013). After the harvest, lemon peels were immediately subjected to 

hydro-distillation for 3 h using a Clevenger-type apparatus (Comandè, Palermo, Italy) 

collecting the oil in hexane. EOs were dried over anhydrous sodium sulphate and 

stored at 4°C in air-tight sealed glass vials covered with aluminum foil prior to be 

used in chemical and microbiological analysis. 

 

1.1.2. Bacterial strains 

Ninety-eight pathogen strains were tested for their sensitivity to EOs. The strains 

were provided by the Department of Sciences for Health Promotion and Mother-

Child Care “G. D’Alessandro” – University of Palermo (Palermo, Italy) and belonged 

to Listeria monocytogenes (20 strains; Table 1.1), Staphylococcus aureus (26 strains; 

Table 1.2), Salmonella enterica (14 strains; Table 1.3) and Enterobacter spp. (38 

strains; Table 1.4). Bacterial strains were sub-cultured in Brain Heart Infusion (BHI) 

agar (Oxoid, Milan, Italy) and incubated overnight at 37°C. 
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1.1.3. Evaluation of the antibacterial activity 

A modified paper disc diffusion method (Militello et al., 2011) was applied to test the 

antibacterial activity of the lemon EOs. Bacterial cells were grown overnight before 

tests. The cells were centrifuged at 10.000 × g for 5 min, washed in Ringer’s solution 

(Sigma-Aldrich, Milan, Italy) and re-suspended in the same solution until the optical 

density (OD) of ca. 1.00, measured by 6400 Spectrophotometer (Jenway Ltd. Felsted 

Dunmow, UK) at 600 nm, which approximately corresponds to a concentration of 10
9
 

CFU ml
-1

 as estimated by plate count in Nutrient Agar (NA) incubated 24 h at 28°C. 

A final concentration of approximately 10
7
 CFU ml

-1
 of each strain was inoculated 

into 7 ml of BHI soft agar (0.7% w/v) and poured onto NA. 

Sterile filter paper discs (Whatman No. 1) of 6 mm diameter were placed onto the 

surface of the double agar layer and soaked with 10 µL of EO. Sterile water and 

streptomycin (10%, w/v) were used as negative and positive control, respectively. 

Incubation was at 37°C for 24 h. Antibacterial activity was scored positive when a 

definite halo of inhibition, whose width could be clearly measured, was detected 

around the paper disc. Each test was performed in duplicate and the experiments were 

repeated twice in two consecutive days. 

 

1.1.4. EOs chemical composition 

For analysis of the EOs samples, 1.0 ml of solution (1:10 v/v, essential oil/hexane) 

was placed in injection port. The extraction of volatile aroma compound was carried 

out using the gas chromatography/mass spectrometry (GC/MS) (EI) on a GCMS-

QP2010 (Shimadzu, Milan, Italy). 



Chapter 1 

41 

 

GC condition: Gas chromatography equipped with a fused silica capillary column 

SLB-5MS (5% diphenyl:95% methylsiloxane) 30 m x 0.25 i.d. x 0.25 mm film 

thickness (Supelco, Milan, Italy); carrier gas He at a constant linear rate 30 cm s
-1 

(30.6 kPa); split/splitless injector port; injector temperature 250°C; injection mode 

split (split ratio 100:1). The oven temperature program: 50°C, hold 3 min
-1

; 3°C min
-

1
 to 240°C; 15°C min

-1
 to 280°C, hold 1 min. MS scan conditions: source 

temperature 200°C, interface temperature 250°C, EI energy 70 eV; mass scan range 

40-400 amu. Data were handled through the use of GCMS-Solution software and the 

peak identification was carried out with NIST21,107,147 Library according to a 

similarity larger than 90% and other published mass spectra. Identification of 

components was confirmed by comparison of experimental linear retention indexes 

with those available in literature. GC/MS analysis was carried out in duplicate. 

 

1.1.5. Statistical analysis 

Data of inhibitory activities and concentration of chemicals were statistically 

analysed using the generalised linear model (GLM) procedure, including the effects 

of EO and ripening stage and their interaction, with the program SAS 2008 – version 

9.2 (Statistical Analysis System Institute Inc., Cary, NC, USA). The Student “t” test 

was used for mean comparison. The post-hoc Tukey method was applied for pairwise 

comparison.  
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1.2. Results and Discussion 

1.2.1. Inhibition of bacterial growth 

In this study, the inhibitory spectra of the EOs extracted from the peel of the fruits of 

three cultivars of Citrus limon L. Burm. harvested at four times were evaluated 

against 98 strains of S. aureus, L. monocytogenes, Salmonella enterica and 

Enterobacter spp. of different origin which are reported to be responsible for human 

diseases commonly associated with the consumption of contaminated food items 

(Wilson et al., 2000; Swaminathan et al., 2007; Crum-Cianflone, 2008; Healy et al., 

2010). They may contaminate the final foods starting from the raw materials or 

during manufacturing and/or during storage and handling steps (Adams et al., 2002). 

In particular, S. aureus has been reported as the most common pathogen isolated from 

domestic refrigerators (Jackson et al., 2007). For these reasons, it is evident the 

importance of keeping the growth of the above species under control.  

Inhibitory activities of lemon EOs against the food-borne pathogens are reported in 

Tables 1.1-1.4. In general, the different cultivars and the different times of lemon 

collection affected significantly the inhibitory efficacy of EOs and the statistical 

differences were often consistent (P≤ 0.001). However, this behavior was not 

observed against L. monocytogenes 135 and 14BO, S. aureus E36GIMRSA, E. 

hormaechei 13, E. cloacae 24 and 32A and Enterobacter spp. 8UTIN (P>0.05).   

The inhibitory power of EOs was found to be strain-dependent because the 

differences registered among the different strains were statistically significant. It was 

not directly correlated with the lemon maturation for some strains (P>0.05), but, on 

the contrary, it increased with time for some others (P≤0.05 – P≤ 0.001). Furthermore, 
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the intermediate harvests of lemons (January and February) did not show antibacterial 

activity of the resulting EOs for some strains, while an opposite trend was observed 

vs other strains which were inhibited only by the EOs of the intermediate harvests.     

Femminello Santa Teresa EO inhibited all L. monocytogenes except the strains 1BO 

in the February production, the strain 20BO in December and the strain 24BO in 

January and February (Table 1.1). L. monocytogenes 1BO was not inhibited even by 

the February production of Monachello and Femminello Continella EOs. The EO 

showing the lowest efficacy, both in terms of number of strains inhibited and diameter 

of the inhibition halos, against L. monocytogenes was that extracted from the cultivar 

Femminello Continella. 

Almost all strains of S. aureus were inhibited by EOs of Femminello Santa Teresa and 

Monachello at the different times of harvest, while several strains were not inhibited 

(P>0.05) by at least one harvest of Femminello Continella (Table 1.2).  

Within the Gram-negative strains, Salmonella (Table 1.3) showed a lowest sensitivity 

than Enterobacter (Table 1.4). Also against these strains, EO from the cultivar 

Femminello Continella showed a lesser activity than the other two EOs at the 

different harvest stages. However, the inhibition areas detected for several 

Enterobacter isolates were significantly larger (P≤0.05 – P≤ 0.001) than those 

measured for L. monocytogenes and S. aureus. All E. hormaechei isolates were 

inhibited by the EO of all harvests of the cultivar Femminello Santa Teresa. 

All EOs tested were more effective, in terms of percentage of the strains inhibited, 

against the Gram-positive rather than Gram-negative bacteria. This finding is not 

surprising, since also other studies showed that Gram-positive bacteria were more 
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susceptible to EOs of different origin, including citrus, than Gram-negative bacteria 

(Davidson et al., 2000; Burt, 2004; Calsamiglia et al., 2007; Al-Reza et al., 2010). 

These findings have been related to the presence of the outer membrane in Gram-

negative bacteria, which provides a strong impermeable barrier (Nikaido, 1994). 
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Table 1.1. Inhibitory activitya of lemon EOs extracted from fruits harvested at different collection 

times
b
 against Listeria monocytogenes. 

a EO activity is indicated by the width of the inhibition zone (cm) around the paper disc; b A, 

December 2012; B, January 2013; C, February 2013; D, April 2013. Results indicate mean values of 

four replicates (carried out in duplicate and repeated twice). 

Abbreviations: SEM, standard error of means; CV, cultivar; CT, collection time. P value: *, P≤0.05; 

**, P≤0.01; ***, P≤0.001; ns = not significant. 

 

Strain 

Citrus limon L. Burm. spp. cultivars 

SEM 
Statistical significance

a
 

Femminello Santa Teresa Monachello Femminello Continella 

A B C D A B C D A B C D CV CT CV*CT 

129 1.00 0.90 0.90 0.90 0.75 0.90 1.30 0.90 0.00 0.00 0.95 0.85 0.08 *** *** *** 

133 0.90 0.80 1.05 0.75 0.85 1.10 1.50 0.85 0.00 0.75 1.10 0.70 0.07 *** *** *** 

134 1.05 0.90 1.20 1.10 1.20 0.95 1.20 1.05 0.90 0.90 0.00 0.95 0.07 *** *** *** 

135 0.90 0.80 1.05 0.70 1.10 0.90 0.90 0.70 0.85 0.75 0.85 0.80 0.08 ns ns ns 

140 1.05 0.70 0.95 0.90 0.85 0.85 1.30 1.00 0.00 0.75 1.05 0.70 0.07 *** *** *** 

180 1.15 0.95 1.00 0.95 0.75 1.10 1.50 0.70 0.70 0.85 0.95 0.90 0.07 * ** *** 

182 0.95 0.95 1.65 1.10 0.80 1.20 1.70 0.80 0.00 0.85 1.00 0.85 0.05 *** *** *** 

184 0.95 1.05 1.00 1.20 0.85 1.00 1.10 1.25 0.85 0.75 0.70 1.00 0.05 *** *** ns 

185 0.85 1.05 1.20 1.10 0.00 0.90 1.40 1.20 0.00 0.90 1.00 1.15 0.06 *** *** *** 

186 1.45 0.75 1.10 1.10 0.80 0.90 1.25 0.90 0.80 0.70 0.90 0.90 0.08 ** ** ** 

187 1.30 0.85 1.15 0.90 0.90 0.70 1.10 1.00 0.80 0.85 0.85 0.80 0.06 ** ** ** 

188 0.95 0.75 0.70 0.90 0.75 0.90 0.75 0.90 0.85 0.90 0.00 0.90 0.90 * *** *** 

1 BO 1.05 1.05 0.00 0.90 0.85 0.85 0.00 0.80 0.80 0.80 0.00 0.90 0.05 ** *** ns 

3 BO 1.35 1.10 0.85 1.00 0.75 0.90 0.95 1.05 0.80 0.80 0.90 0.00 0.07 *** *** *** 

4 BO 0.85 1.10 1.25 0.90 0.00 0.70 1.35 0.95 0.90 0.00 0.95 0.80 0.07 *** *** *** 

13 BO 0.90 1.30 0.95 0.95 0.00 0.70 1.10 0.80 0.90 0.75 1.00 0.90 0.07 *** *** *** 

14 BO 1.10 1.10 1.20 1.30 1.60 1.20 1.45 1.10 0.70 0.75 0.90 1.00 0.08 *** ns ** 

17 BO 1.00 0.90 1.25 1.10 0.70 0.90 0.90 0.70 0.70 1.00 0.90 0.85 0.08 ** ** ns 

20 BO 0.00 0.75 0.85 1.05 0.00 1.10 1.35 1.10 0.00 0.00 0.00 0.85 0.05 *** *** *** 

24 BO 0.85 0.00 0.00 1.20 0.75 0.00 1.10 1.10 0.00 0.00 0.00 0.75 0.05 *** *** *** 
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Table 1.2. Inhibitory activitya of lemon EOs extracted from fruits harvested at different collection 

times
b
 against Staphylococcus aureus. 

 

Strain 

Citrus limon L. Burm. spp. cultivars 

SEM 
Statistical significance

a
 

Femminello Santa Teresa Monachello Femminello Continella 

A B C D A B C D A B C D CV CT CV*CT 

C1/5634-MSSA 1.05 0.75 1.15 0.90 0.90 0.80 1.35 1.15 1.00 0.85 0.00 1.10 1.15 *** *** *** 

C4/6561,1-MSSA 1.10 1.15 0.95 1.30 1.30 1.30 1.30 1.00 1.10 0.75 0.70 1.10 0.06 *** *** *** 

C38/249,1-MSSA 1.10 1.20 1.55 1.20 1.10 0.95 1.50 0.80 0.70 0.00 0.00 0.75 0.06 *** *** *** 

C45/12425-MSSA 1.10 1.35 1.15 0.80 1.10 1.50 1.10 1.30 0.85 0.00 0.00 0.85 0.07 *** ** *** 

195-MRSA 0.95 0.00 1.00 0.90 1.00 0.90 1.15 1.50 0.90 0.00 0.70 0.70 0.07 *** *** *** 

1313-MRSA 1.00 0.70 1.05 0.90 1.10 0.90 1.30 1.40 0.85 0.00 0.85 0.85 0.07 *** *** ** 

581-MRSA 0.90 0.85 1.05 1.15 0.95 0.80 1.30 1.10 0.80 0.80 0.85 0.00 0.06 *** *** *** 

340-MRSA 1.00 0.90 1.70 1.45 0.90 0.90 1.60 1.10 0.70 0.75 0.00 1.15 0.07 *** *** *** 

4ADI MRSA 1.00 0.85 1.65 1.20 0.70 0.75 1.15 1.20 0.90 0.70 0.85 0.00 0.06 *** *** *** 

7ADI MSSA 0.70 0.70 1.10 1.40 0.85 0.80 1.20 1.10 0.85 0.90 0.00 0.80 0.07 *** *** *** 

14LU MRSA 1.00 1.00 0.90 1.15 1.00 0.90 1.00 1.45 0.85 0.75 0.75 0.85 0.07 *** * ns 

16 MSSA 1.10 0.70 1.45 0.95 0.90 0.75 1.15 1.25 0.85 0.00 0.70 1.30 0.07 *** *** *** 

20 ADI MRSA 1.00 0.75 1.40 1.10 0.90 0.85 1.50 0.70 0.75 0.00 0.75 0.80 0.06 *** *** *** 

21 ADI MRSA 0.90 0.75 0.85 0.95 0.90 0.90 1.45 1.00 0.75 0.75 0.90 0.85 0.07 *** ** ** 

62 MRSA 0.95 1.10 1.40 1.15 0.85 0.90 1.15 1.00 0.85 0.90 0.00 0.00 0.07 *** ** *** 

68 MRSA 0.80 0.95 1.25 1.10 0.75 0.95 1.55 1.55 0.70 0.75 0.00 1.90 0.07 *** *** *** 

106 MRSA 0.85 0.95 1.10 1.05 0.80 1.00 1.50 0.70 0.70 0.00 0.70 1.05 0.08 *** *** *** 

109 MRSA 0.80 0.85 1.10 0.90 1.05 0.70 1.50 1.05 0.65 0.00 0.80 0.90 0.07 *** *** *** 

156 MRSA 0.95 0.85 1.20 1.50 1.00 0.90 1.35 1.60 0.70 0.90 0.85 1.00 0.06 *** *** ns 

168 MRSA 0.90 0.90 0.90 1.15 0.95 0.85 1.10 1.15 0.85 0.00 0.90 0.90 0.07 *** *** *** 

473 MRSA 0.85 0.90 1.30 0.00 1.10 0.85 1.50 0.00 0.85 0.75 1.05 1.00 0.07 * *** *** 

493 MRSA 0.90 0.95 1.50 1.05 0.80 0.95 1.50 1.10 0.90 0.80 0.85 0.90 0.08 ** *** ** 

637 MRSA 0.95 0.90 1.00 1.40 0.75 1.05 1.00 1.50 0.75 0.70 0.00 2.40 0.06 * *** *** 

734 MSSA 0.90 0.80 1.40 1.20 0.85 0.70 1.30 0.95 0.85 0.75 0.00 1.15 0.06 *** *** *** 

750 MSSA 1.05 0.85 0.90 1.35 0.75 0.85 1.60 1.25 0.90 0.80 0.80 1.40 0.05 * *** *** 

E36GI MRSA 1.00 0.70 0.95 1.70 0.70 0.70 1.00 1.40 0.80 0.90 0.80 1.45 0.07 ns *** * 

 
 

a EO activity is indicated by the width of the inhibition zone (cm) around the paper disc; b A, 
December 2012; B, January 2013; C, February 2013; D, April 2013. Results indicate mean values of 

four replicates (carried out in duplicate and repeated twice). 

Abbreviations: SEM, standard error of means; CV, cultivar; CT, collection time. P value: *, P≤0.05; 

**, P≤0.01; ***, P≤0.001; ns = not significant. 
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Table 1.3. Inhibitory activitya of lemon EOs extracted from fruits harvested at different collection 

times
b
 against Salmonella enterica. 

Strain 

Citrus limon L. Burm. spp. cultivars 

SEM 
Statistical significance

a
 

Femminello Santa Teresa Monachello Femminello Continella 

A B C D A B C D A B C D CV CT CV*CT 

S. Abony 50398 0.00 1.50 0.00 0.00 0.00 1.30 0.00 0.00 0.00 1.10 0.00 0.00 0.05 * *** * 

S. Agona 50360 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 *** *** *** 

S. Blockley 50314 1.10 0.00 1.10 0.00 0.00 1.10 0.00 0.00 0.00 0.00 0.00 0.00 0.05 *** *** *** 

S. Bredeney 50374 1.15 1.50 0.00 0.00 0.00 1.30 0.00 0.00 0.00 0.00 0.00 0.00 0.04 *** *** *** 

S. Derby 50399 0.95 1.10 0.00 1.50 0.00 1.50 0.00 1.10 0.00 0.00 0.00 1.70 0.07 *** *** *** 

S. Enteritidis 50339 0.90 1.00 1.40 1.60 1.30 1.40 1.50 1.50 0.00 1.10 0.00 1.30 0.07 *** *** *** 

S. Hadar 50272 1.10 1.10 1.45 1.50 1.20 1.30 1.55 1.50 1.10 0.00 1.10 1.10 0.08 *** *** *** 

S. Infantis 50270 0.70 0.00 0.00 1.45 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.50 0.04 *** *** *** 

S. Muenchen 50393 0.70 0.00 0.00 1.10 0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.05 *** *** *** 

S. Napoli 50376 0.90 0.00 1.30 1.30 0.00 1.30 0.00 0.80 0.00 0.00 0.00 0.00 0.15 *** * *** 

S. Newport 50404 0.90 1.30 1.30 1.10 0.00 1.30 1.30 1.10 0.00 0.00 1.30 1.10 0.09 *** *** *** 

S. Panama 50347 0.00 0.00 0.00 1.10 0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.04 *** *** *** 

S. Saintpaul 50415 0.00 0.00 0.00 0.00 0.00 0.00 1.35 0.00 0.00 0.00 0.00 0.00 0.04 *** *** *** 

S. Thompson 50280 0.00 0.90 0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.05 *** *** *** 

  
a EO activity is indicated by the width of the inhibition zone (cm) around the paper disc; b A, December 

2012; B, January 2013; C, February 2013; D, April 2013. Results indicate mean values of four 

replicates (carried out in duplicate and repeated twice). 

Abbreviations: SEM, standard error of means; CV, cultivar; CT, collection time. P value: *, P≤0.05; 

***, P≤0.001. 
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Table 1.4. Inhibitory activitya of lemon EOs extracted from fruits harvested at different collection 

times
b
 against Enterobacter spp.. 

Strain 

Citrus limon L. Burm. spp. cultivars 

SEM 
Statistical significance

a
 

Femminello Santa Teresa Monachello Femminello Continella 

A B C D A B C D A B C D CV CT CV*CT 

1435 UTIN 1.30 0.00 1.40 1.85 1.50 1.25 1.05 1.70 1.10 0.00 0.95 0.90 0.06 *** *** *** 

4 UTIN 1.40 1.45 1.45 1.05 1.40 1.10 1.50 1.15 0.00 1.05 0.90 1.00 0.07 *** *** *** 

5UTIN 1.55 1.35 1.30 1.60 1.25 1.35 1.35 1.65 1.00 1.15 1.00 1.30 0.06 *** *** * 

7UTIN 1.25 0.00 0.00 1.65 1.10 0.00 0.00 1.65 1.20 0.00 0.00 0.85 0.04 *** *** *** 

8UTIN 0.00 1.10 1.20 1.50 0.00 1.20 1.30 1.25 0.00 1.10 1.20 1.45 0.06 ns *** ns 

9UTIN 0.90 1.65 1.25 1.50 0.80 1.50 1.10 1.10 0.70 0.90 0.90 1.35 0.09 *** *** ** 

10UTIN 0.80 1.40 1.00 1.20 1.00 1.55 1.20 1.40 0.80 1.10 1.15 1.30 0.05 *** *** ** 

12UTIN 1.30 1.50 1.45 1.40 0.70 1.65 1.50 1.90 0.00 1.45 1.25 1.15 0.07 *** *** *** 

17UTIN 0.00 1.30 0.00 1.40 0.00 1.60 0.90 1.90 0.00 1.25 1.05 1.20 0.05 *** *** *** 

19UTIN 0.95 1.30 0.00 1.35 1.00 1.20 0.00 1.60 1.05 1.25 0.00 0.95 0.04 ** *** *** 

20UTIN 1.60 1.15 0.80 1.00 1.50 1.45 0.80 0.00 1.50 1.00 0.00 0.00 0.04 *** *** *** 

28UTIN 1.55 1.45 0.80 1.50 0.90 1.45 0.80 1.90 0.00 1.30 0.80 1.00 0.06 *** *** *** 

29UTIN 0.90 1.30 0.80 1.50 1.10 1.30 0.80 1.90 0.90 1.45 0.80 1.25 0.08 * *** ** 

30UTIN 1.10 0.95 0.80 1.50 1.45 1.25 0.80 1.00 0.00 0.95 0.80 1.05 0.05 *** *** *** 

31UTIN 1.40 1.40 0.80 1.60 1.80 1.40 0.80 1.25 0.00 1.50 0.80 1.05 0.05 *** *** *** 

33UTIN 1.90 1.20 0.80 1.25 1.40 1.40 0.80 1.45 0.90 0.95 0.80 1.30 0.06 *** *** *** 

35UTIN 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 *** *** *** 

36UTIN 0.95 0.00 0.90 1.60 1.10 0.00 1.05 1.35 0.95 0.00 1.00 1.15 0.05 * *** ** 

E. hormaechei 1 1.55 1.65 1.45 1.60 1.60 1.45 1.10 1.45 1.45 1.40 1.00 1.50 0.06 *** *** ns 

E. hormaechei 2 1.45 0.90 1.40 1.90 1.15 1.30 1.10 1.50 0.00 1.10 1.00 1.65 0.08 *** *** *** 

E. hormaechei 6 1.45 0.95 1.00 1.40 1.55 1.20 1.70 1.30 1.20 0.95 1.10 1.50 0.06 *** *** *** 

E. hormaechei 7 1.40 0.95 1.65 1.40 1.10 1.10 1.35 1.40 0.00 1.10 0.95 1.20 0.06 *** *** *** 

E. hormaechei 8 1.70 1.10 1.70 1.35 1.90 0.70 1.40 1.80 0.80 0.95 1.50 1.10 0.08 *** *** *** 

E. hormaechei 11 1.65 1.50 1.55 2.10 1.90 1.10 1.30 1.85 1.55 1.40 1.00 1.30 0.08 *** *** *** 

E. hormaechei 13 1.60 0.90 1.50 1.50 1.60 1.30 1.70 1.25 1.60 1.00 1.05 1.90 0.09 ns *** *** 

E. hormaechei 19 1.60 1.40 1.50 1.35 1.40 1.30 1.60 1.65 1.15 1.00 1.50 1.70 0.08 * *** ** 

E. hormaechei 20 1.45 1.10 1.10 1.50 1.80 1.25 1.10 1.15 0.00 0.00 1.10 0.00 0.07 *** *** *** 

E. hormaechei 31 1.35 1.30 1.45 1.40 1.40 1.25 1.10 1.45 1.30 0.90 1.10 1.45 0.08 * ** * 

E. cloacae 24 1.50 1.15 1.50 1.20 1.25 1.30 1.50 1.45 0.70 1.30 1.05 1.10 0.08 *** ns ** 

E. cloacae 25 1.50 1.40 1.55 1.45 1.40 1.45 2.10 0.90 1.20 1.15 1.50 0.00 0.06 *** *** *** 

E. cloacae 13A 1.05 1.20 1.45 1.70 0.70 1.15 1.40 1.90 1.30 1.20 0.00 1.60 0.06 *** *** *** 

E. cloacae 62A 1.00 1.30 1.20 1.30 1.05 1.10 1.30 1.40 0.00 1.05 1.30 1.30 0.07 *** *** *** 

E. cloacae 32A 1.00 1.10 1.50 1.25 1.50 1.40 1.50 1.50 1.25 1.40 1.00 0.80 0.07 *** ns *** 

E. cloacae 43B1 11.00 1.65 1.45 1.70 1.15 1.60 1.15 1.45 1.00 1.70 1.35 1.10 0.07 ** *** ** 

E. sakazaki 2B 2.65 0.90 0.80 0.80 2.55 1.40 0.80 1.20 1.50 1.20 1.20 0.90 0.05 *** *** *** 

E. sakazaki 23A 1.80 0.70 0.80 0.80 1.45 1.40 0.80 1.20 1.20 1.15 1.20 0.90 0.05 *** *** *** 

E. amnigenus 70B3 1.05 1.45 0.80 1.70 0.95 1.30 0.80 1.25 0.00 1.10 1.20 0.95 0.06 *** *** *** 

E. amnigenus 60A2 0.80 1.10 1.50 0.90 0.90 1.05 1.20 1.25 0.00 0.85 1.05 0.00 0.06 *** *** *** 

 
 

a EO activity is indicated by the width of the inhibition zone (cm) around the paper disc; b A, December 

2012; B, January 2013; C, February 2013; D, April 2013. Results indicate mean values of four 

replicates (carried out in duplicate and repeated twice). 
Abbreviations: SEM, standard error of means; CV, cultivar; CT, collection time. P value: *, P≤0.05; **, 

P≤0.01; ***, P≤0.001; ns = not significant.  
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1.2.2. Chemical composition of lemon EOs 

In order to determine the seasonal and cultivar variability of EOs, the chemical 

composition was analyzed by GC/MS (Table 1.5). A total of 42 chemicals were 

clearly identified among the three cultivars at four collection times. Three main 

classes of compounds were found: monoterpene hydrocarbons, oxygenated 

monoterpenes and sesquiterpene hydrocarbons. In general, EOs contain about 20–60 

components at different concentrations (Bakkali et al., 2008).  

The monoterpene hydrocarbon fraction dominated all EOs, while sesquiterpene 

hydrocarbons constituted the quantitative percentage less relevant. Camphene was 

only detected in February EO of the cultivar Femminello Continella, 1-nonanol was 

not found for any collection time of Monachello, while β-citronellale was not 

identified in EOs of Femminello Santa Teresa and Femminello Continella. The 

chemicals quantitatively dominant in all EOs were D-limonene, γ-Terpinene and β-

pinene among the monoterpene hydrocarbons, whereas trans-geraniol, cis-geraniol, 4-

terpineol and α-citral were the oxygenated monoterpens found at consistent levels. 

The compound quantitatively dominant in all EOs was D-limonene, which is reported 

to represent until the 70% of citrus EOs (Bakkali et al., 2008). 

No statistical differences (P>0.05) were found regarding EO and ripening stage for 

camphene, fenchol, borneol, α–citronellol, β-citronellale, 2-octen-1-ol,3,7-dimethyl 

and bicyclo[3.1.1]hept-2-ene,2,6,6-trimethyl. α–phellandrene and 1-nonanol were not 

significantly different among seasons (P>0.05), while β-ocimene, β-citronellol, β-

farnesene and cis-α-bisabolene were not significantly different among EOs (P>0.05). 

All other compounds resulted quantitatively different among samples and collection 
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times (P≤0.05 – P≤ 0.001) and these differences may be responsible for the diverse 

sensitivity of the strains to the EOs. Other studies evidenced seasonal variations in the 

amounts of many components in lemon EOs (Staroscik et al., 1982; Vekiari et al., 

2002) and also in other citrus than lemon EOs (Frizzo et al., 2004). However, our 

results did not agree with the previous studies for some main components of EOs 

which, in our study, were more concentrated in later collection times.  

The comparison of the chemical composition of the EOs analysed suggested that the 

compounds mainly implicated in the process of bacterial inhibition could be the 

oxygenated monoterpenes. Our results confirmed previous observations regarding 

this class of chemicals, especially phenolic substances, that exhibits a stronger 

antimicrobial activity than monoterpenes hydrocarbon (Knobloch et al., 1986; 

Soković et al. 2002; Soković et al., 2006). The last hydrocarbon compounds are 

characterised by a low water solubility which limits their diffusion through the 

medium. Furthermore, their inactivity is closely related to their limited hydrogen 

bound capacity (Griffin et al., 2000). The oxygenated monoterpenes have been found 

at lower amounts than hydrocarbon monoterpenes. Burt (2004) stated that the minor 

components of EOs are more effective in the inhibitory process than the compounds 

present at higher concentrations. 
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Table 1.5. Chemical composition of lemon EOs (LSM) at foura different seasonal harvesting times. 
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Table 1.5. Continue. 

a A, December 2012; B, January 2013; C, February 2013; D, April 2013. b Linear retention index on 

SLB-5MS column. c P value: *, P≤0.05; **, P≤0.01; ***, P≤0.001; ns = not significant. Abbreviations: 

LSM, least square means; SEM, standard error of means. 
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1.3. Conclusions 

The ecological role of EOs is mainly to protect the plants, other than interact with 

other organisms. Due to their antimicrobial properties, they could find several 

applications as alternatives to synthetic chemical products to pursue biopreservation 

objectives (Settanni et al., 2012).  

Citrus essential oils have been object of many studies because of the economic 

importance of their production. Moreover, the antibacterial properties of citrus EOs 

have been long recognized, but the recent interest in alternative naturally derived 

antimicrobials, requested not only by consumers but also by legal authorities, has 

determined a “renewal of interest” of their application in the preservation of foods.  

In this study, the inhibitory spectra of the EOs extracted from the peel of the fruits of 

three cultivars of Citrus limon L. Burm. was affected significantly by the time of 

collection. However, the inhibitory power of EOs was found to be strain-dependent. 

In general, all EOs tested were more effective against the Gram-positive rather than 

Gram-negative bacteria.  

Chemical analyses revealed that monoterpene hydrocarbons, oxygenated 

monoterpenes and sesquiterpene hydrocarbons were the main components of all EOs. 

Forty-two compounds were identified and their quantitative differences among 

samples and collection times may be responsible for the diverse sensitivity of the 

strains to the EOs. 
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2.1. Materials and Methods 

2.1.1. Listeria monocytogenes strains 

Seventy-six strains of L. monocytogenes were used in this study. All strains, 

belonging to the Department of Biotechnology ‒ Microbiology Area, ETSIAMN 

(Universitat Politecnica de Valencia, Spain), were previously isolated from food 

matrices including dairy products, fish, meat and vegetables, following the ISO 

method 11290‒1:1996 (ISO 11290-1:1996). Bacterial strains were stored in cryovials 

(Microbank™ Prolab Diagnostics, Austin, USA) at ‒80°C. The strains were 

reactivated and sub-cultured onto Tryptic Soy Agar (TSA, Merck Millipore, 

Darmstadt, Germany) incubated overnight at 37°C. 

 

2.1.2. Citrus samples and extraction of EOs 

The EOs analyzed in this study were obtained from the peels of eight different citrus 

fruits cultivated in Sicily (Table 2.1) and collected during March 2014.  

Samples EO M1 and EO L2 derived from mature trees cultivated in the collection 

orchard “Parco d’Orleans” of the Agricultural Faculty of Palermo, while samples EO 

O3, EO O4, EO O5, EO O6, EO M7 and EO L8 from the “Azienda Sperimentale 

Palazzelli C.R.A. e Centro di ricerca per l'agrumicoltura e le colture mediterranee 

Contrada Palazzelli Scordia” (CT, Italy). 

After peeling, the peels were immediately subjected to hydrodistillation for 3 h using 

a Clevenger-type apparatus (Comande, Palermo, Italy) collecting the oil in hexane. 

EOs were dried over anhydrous sodium sulfate and stored at 4°C in air-tight sealed 

glass vials covered with aluminum foil. 
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Table 2.1. Sicilian EOs used in the antilisterial screening. 

EO Species Variety 
Sperimental 

Orchard 

M1 Mandarin  
(Citrus reticulata Blanco) 

Mandarino Tardivo di 
Ciaculli 

Campo dei Tigli 
(Palermo) 

L2 Lemon  

(Citrus limon L. Burm.) 

Femminello Santa 

Teresa 

Campo dei Tigli 

(Palermo) 

O3 Sweet Orange  

(Citrus sinensis L. Osbeck) 

Moro Nucellare Campo Palazzelli 

(Acireale) 

O4 Sweet Orange  

(Citrus sinensis L. Osbeck) 

Lane Late  Campo Palazzelli 

(Acireale) 

O5 Sweet Orange  

(Citrus sinensis L. Osbeck) 

Tarocco Tardivo Campo Palazzelli 

(Acireale) 

O6 Sweet Orange  

(Citrus sinensis L. Osbeck) 

Sanguinello Nucellare  Campo Palazzelli 

(Acireale) 

M7 Hybrid  
(Horoval clementine x Tarocco orange)  

Alkantara  mandarin ®  Campo Palazzelli 
(Acireale) 

L8 Lemon  

(Citrus limon L. Burm.) 

Limone KR 

(Siracusano) 

Campo Palazzelli 

(Acireale) 

 

2.1.3. Chemical characterization  

GC/MS analysis of the EOs was performed by gas chromatography couple with mass 

spectrometry (GC/MS) (EI) on a GCMSQP2010 (Shimadzu, Milan, Italy). NIST 

21,107,147 library was used for data acquisition. The analysis was carried out 

through a fused silica capillary column SLB-5MS (5% diphenyl:95% 

methylsiloxane) 30 m х 0.25 i.d. x 0.25 mm film thickness (Supelco, Milan, Italy); 

helium gas was used as the carrier gas at a constant linear rate 30 cm s
-1

 (30.6 kPa); 

split/splitless injector port; injector temperature 250°C; injection mode split (split 

ratio 100:1). The oven temperature was programmed as follows: 50°C, hold 3 min; 

3°C/ min to 240°C; 15°C/min to 280°C, hold 1 min. MS scan conditions were: 

source temperature 200°C, interface temperature 250°C, EI energy 70 eV; mass scan 

range 40e400 amu. GC/MS analysis was carried out in duplicate. 
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2.1.4. Screening of antilisterial activity 

The antibacterial activity of the eight EOs against L. monocytogenes strains was 

tested by the paper disc diffusion method applied by Kelmanson et al. (2000) and 

with the modifications of Militello et al. (2011). Bacterial cells were grown at 37°C 

overnight before tests on tryptone soy broth (TSB). A concentration of about 10
7
 

CFU/ml of each strain was inoculated into 7 ml of TSA soft agar (0.7%, w/v) and 

poured onto TSA. Sterile filter paper discs (Filter-Lab Anoia, Spain) of 6 mm 

diameter were placed onto the surface of the double agar layer and soaked with 10 ml 

of each undiluted EO. Sterile water was used as negative control. Antibacterial 

activity was positive when a definite halo of inhibition (in cm) was detected around 

the paper disc. Each test was performed in duplicate and the experiments were 

repeated twice. Resulting data were subjected to statistical analysis using the 

ANOVA procedure with Statistica 10 (Statsoft, USA) software. Differences between 

means were determined by Tukey's multiplerange test. 

 

2.1.5. Determination of the minimum inhibitory concentration (MIC) 

The minimum inhibitory concentration (MIC) was used to measure the antibacterial 

activity, since it represents a common method to express the EO antibacterial 

performances (Burt, 2004). MIC is defined as the lowest concentration of an active 

compound inhibiting visible growth of the tested organisms (Karapinar et al., 1987). 

The strength of the antibacterial activity is determined using dilutions of EO in order 

to determine the end-point by means of the disc diffusion assay. Each L. 

monocytogenes strain was inoculated into TSA at 10
6
 CFU/ml, the paper discs were 
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disposed onto the agar surface, soaked with 10 ml of the serial dilutions of EOs and 

incubated O/N at 37°C. Serial dilutions (dilution factor = 2) were obtained with 

dimethyl sulfoxide (DMSO, SigmaeAldrich, Milan, Italy). DMSO alone was used as 

negative control. Each test was performed in duplicate and the experiments were 

repeated twice. 

 

2.1.6. Viability of L. monocytogenes strains by fluorescence microscopy 

The viability of the most sensitive L. monocytogenes strains after treatment with EOs 

was evaluated by Viability Kit LIVE/DEAD® BacLight™(Molecular Probes Inc. 

Eugene Oregon) and plate counts onto TSA. The viability test was carried out with 

the strains inoculated at a final density of 10
4
 CFU/ml in broth containing 0.125% 

(v/v) EO. Cells were counted as follows: 500 ml of each broth collected at 0, 1, 2, 4 

and 6 h of treatment with EO was added with 0.8 ml of the fluorochromes mix (1:1 

v/v, EO/mix) and incubated in darkness at room temperature for 15 min. Five 

microliters of the resulting mixture were placed onto a poly-L-lisina slide (Poly-

Prep® slides, Sigma Diagnostics, U.S.A.). After 10 min of incubation at room 

temperature, the counts were carried out by the epifluorescence microscope Olympus 

BX 50 (with a mercury bulb of 100W) equipped with a double filter (XF 53, Omega) 

(Olympus Optial Co., Hamburg, Germany). Digital colored photos were taken with 

Olympus DP10 digital camera (Figure 2.2). 
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2.1.7. Antilisterial effect of edible EOs-based films 

Chitosan-based (CH) and methylcellulose-based (MC) films were used to perform 

the antilisterial assay (Figure 2.1). High molecular weight chitosan (1.2 Pa s viscosity 

at 1% w/w in 1% w/w glacial acetic acid, acetylation degree: 4.2%, SigmaeAldrich, 

USA) was dispersed at 1% w/w in an aqueous solution of acetic acid (1% v/w) and 

stirred overnight at room temperature. Methylcellulose (0.3‒5.6 Pa s viscosity at 1% 

w/w in water solution, VWR BDH ProLabo, Spain) was dispersed in distilled water 

(1% w/w) and heated up to 80°C to promote solubilization. Once the polymer 

solutions were obtained, each EO was added at a concentration of 0.5% (polymer: 

EO ratio 2:1) and stirred for 10 min. The mixtures were then sonicated by the Vibra 

Cell VCX750 sonicator (Sonics & Materials, Inc., USA) at 20 kHz and 40% power 

for 480 s (1 s on and 1 s off) in order to obtain the film forming dispersions (FFD). 

FFDs were casted in plates (diameter 53 mm), weighted up to 6.7 g, to keep polymer 

amount constant in dry films (30 g polymer/m2). The films were dried at room 

temperature and 60% relative humidity (RH).  

The surface of TSA plates (10 g) was seeded with 0.35 ml of cell suspensions (10
4
 

CFU/ml) and covered with CH and MC films. Inoculated coated TSA and inoculated 

non-coated TSA dishes were used as controls. Plates were then sealed with parafilm 

to avoid dehydration and incubated at 37°C for 0, 8 and 24 h and at 8°C for 0,1, 3 

and 7 d. The two temperatures were chosen to investigate the effect of the EOs at the 

optimal growth temperature for the test strains (37°C) and simulating the conditions 

of a domestic refrigerator (8°C). 
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Figure 2.1. Casted FFDs with and without experimental EOs. 

 

The agar layer was then aseptically removed from each Petri dish and placed into a 

sterile stomacher bag with 90 ml of Peptone Water (Merck Millipore, Darmstadt, 

Germany) and homogenized for 60 s in the stomacher Bag Mixer 400 (Interscience, 

Saint Nom, France). 

Serial dilutions were set up with Ringer's solution (SigmaeAldrich, Milan, Italy) and 

0.1 ml of cell suspensions were spread plated onto TSA plates. Colonies were 

enumerated after 24 h at 37°C. The experiment was carried in duplicate. 

 

2.1.8. Microstructure 

Film microstructure was observed by Scanning Electron Microscopy in cross-

sectioned cryofractured specimens, using a JEOL JSM-5410 (Tokyo, Japan) electron 

microscope in order to qualitatively assess the EOs incorporation into the polymeric 
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matrix (Figure 2.3). The films (3 samples per formulation) were equilibrated in P2O5 

to eliminate water prior cryofracturing them by immersion in liquid nitrogen. 

Afterwards, cryo-fractured samples were mounted on copper stubs. After gold 

coating, the images were captured using an accelerating voltage of 10 kV. 

 

2.2. Results and discussion 

2.2.1. Screening of the antilisterial activity 

The results of the disc diffusion assay are shown in Table 2.2. All EOs resulted 

statistically different (P < 0.001) in inhibiting the strains tested, confirming previous 

statements that the sensitivity to natural antimicrobial compounds is strain-dependent 

(Settanni et al., 2014). EO L2 and EO L8 showed the widest spectra of inhibitory 

activity.  

In particular, EO L2 inhibited all tested strains and for thirty-five of them the clear 

halos were larger than 10 mm. Except L. monocytogenes LM68, all other strains 

were sensitive to EO L8 and the halos were registered at diameters larger than 10 

mm for twenty-nine indicator strains. 

Regarding the inhibition by the other EOs, only L. monocytogenes LM10, LM16, 

LM35 and LM69 were particularly sensitive. On the contrary, strains LM09, LM29, 

LM63, LM66, LM68 were not inhibited by at least three EOs. EOs O3 and M7 did 

not show interesting antilisterial activities.  
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Table 2.2. Inhibitory activitya of citrus EOs against Listeria monocytogenes isolated from food tested 

by disc diffusion assay. 

a Results indicate mean value of four determinations (carried out in duplicate and repeated twice). The 

values are expressed in cm. bP value: *, P≤0.05; **, P≤0.01; ***, P≤0.001. 
c M, Meat; D, Dairy; F, Fish; V, Vegetable; PF, Packaged food; CECT, Colección Española de 

Cultivos Tipo (http://www.cect.org/). 

 

Strain 

code 

EO 

M1 

EO 

L2 

EO 

O3 

EO 

O4 

EO 

O5 

EO 

O6 

EO 

M7 

EO 

L8 

Statistical 

significance
b
 

Source of 

isolation
c 

LM01 0.6 0.8 0.6 0.6 0.6 0.6 0.7 1 *** M 

LM02 0.7 0.8 0 0.6 1 0.8 0.8 1 *** M 

LM03 0.8 0.8 0 0 0.8 1 0.6 0.8 ** M 

LM04 1 1 0.6 0.6 0.6 0.6 0.6 0.6 *** D 

LM05 0 0.8 0 0.8 0.6 1 0.6 1.4 ** D 

LM06 0.7 0.8 0.6 0.6 0.6 0.8 0.7 0.8 *** M 

LM07 0.6 0.8 0.7 0.6 0.6 0.6 0.7 0.8 *** D 

LM08 0.6 0.6 0.8 0.6 0.7 0.8 0.6 1.1 *** F 

LM09 0.6 0.8 0 0.8 0 0.8 0 0.8 * F 

LM10 0.8 0.8 1 0.8 1.4 1 1 1 *** D 

LM11 0.6 1 0.6 0 0.8 0.8 0.8 0.8 *** F 

LM12 0.8 0.9 0.6 0.6 0.6 0.8 0.6 0.8 *** M 

LM13 0.8 1 0.6 0.6 0.6 0.8 0.8 1.2 *** D 

LM14 0.6 0.8 0 0.6 0.6 0.8 0.6 0.8 *** F 

LM15 0.6 1 0 0.8 0.6 0.8 0 0.8 ** D 

LM16 0 1 0 1 0.6 1 0.8 1 ** F 

LM17 0.8 1.2 0.6 0.8 0.7 0.7 0.6 0.8 *** D 

LM18 0.7 1 0.6 0.8 0.6 0.6 0.8 0.8 *** F 

LM19 0.6 0.9 0.6 0.6 0.8 0.8 0.7 0.8 *** F 

LM20 0.7 1.1 0.6 0.8 0.6 0.8 0.6 1 *** F 

LM21 0.7 0.8 0.7 0.7 1 1 0.6 0.8 *** M 

LM22 0.6 0.8 0.6 0.6 0.8 1 0.8 1 *** F 

LM23 0.7 1 0.6 0.8 0.6 0.6 0 0.7 *** D 

LM24 0.6 0.9 0.8 0.8 0.6 0.6 0.6 0.8 *** F 

LM25 0.6 0.8 0.6 1 0.8 0.7 0 1 *** F 

LM26 0.7 0.8 0.6 0.7 0.8 0.6 0.7 1 *** M 

LM27 0.8 1.3 0.8 0.8 0.6 0.8 0.6 1 *** D 

LM28 0.7 0.8 0.6 0.6 0.6 0.7 0.6 0.8 *** M 

LM29 0 0.8 0 0.6 0.6 0.8 0 1 * M 

LM30 0.6 1 0.6 0.8 0.6 0.6 0.6 1 *** PF 

LM31 0.6 0.8 0.6 0.7 0.6 0.6 0.6 0.8 *** M 

LM32 0.6 1 0 0.6 0.6 0.6 0.6 0.8 *** F 

LM33 0 1 0.6 0.8 0.6 0.8 0.6 1 *** F 

LM34 0.6 0.6 0.6 0.6 0.6 0.8 0.6 0.8 *** F 

LM35 1 1 0 0.8 0.8 1.2 1 1.4 *** V 

LM36 0.8 1 0.8 0.8 0 0.8 0.8 1 *** F 

LM37 0.6 1.2 0.6 0.6 0.6 0.6 0.6 0.8 *** F 

LM38 1.2 1 0.7 0.7 0.6 0 0 0.8 ** D 

LM39 0.8 0.8 0.7 0.7 0.8 0.8 0.6 1 *** D 

LM40 0.6 1 0 0.6 0.6 0.6 0.6 1 *** D 

LM41 0.7 1.2 0.8 0.6 0.6 0 0.7 1 *** F 

LM42 0 0.6 0.6 0.6 0.6 0.8 0 0.8 ** M 

LM43 0.6 1.2 0.6 0.8 0.6 0.6 0 0.8 *** D 

LM44 0.6 0.8 0.6 0.6 0.6 0.8 0.7 1 *** M 

LM45 0.8 0.6 0.6 0.6 0.6 0.6 0.6 0.8 *** PF 

LM46 0.7 1 0.6 0.7 0.6 0.8 0.6 1 *** F 

LM47 0.6 1.2 0.6 0.8 0.6 0.8 0.6 1 *** M 

LM48 0.6 1.2 0.6 0.6 0.8 0.8 0.8 1 *** D 

LM49 0.6 1 0.6 0.6 0.7 0.8 0.6 0.8 *** M 

LM50 0.6 0.8 0.6 0.6 0.6 0.6 0.6 0.8 *** F 

LM51 1.2 1.3 0.8 0.8 0.6 0.6 0.6 0.8 *** M 

LM52 0.6 1 0.6 0.6 0 0.6 0.6 0.7 *** F 

LM53 0.6 0.9 0.6 0.6 0.6 0.6 0.6 0.8 *** D 

LM54 0.9 1 0.6 0.6 0.6 0.8 0 0.8 *** M 

LM55 0.6 0.8 0.7 0.6 0.6 0.6 0.6 0.8 *** M 

LM56 0.6 0.8 0.6 0.6 0 0.6 0 0.8 ** D 

LM57 1 1 0.7 0.6 0.6 0.8 0 1.1 *** D 

LM58 0.6 0.8 0.6 0.7 0.7 0.6 0.6 0.8 *** M 

LM59 0.6 0.8 0.6 0.6 0.6 0.6 0.6 0.8 *** D 

LM60 0.6 1 0.6 0.6 0.6 0.6 0.6 0.8 *** M 

LM61 0.9 1 0.9 0.6 0.6 0.6 0.6 0.9 *** PF 

LM62 0.6 0.6 0.8 1 0.6 0.6 0.6 1.2 *** D 

LM63 0.6 1 0.6 0.6 0 0 0 1 * F 

LM64 0.6 1 0.8 08 0.8 0 0 0.9 ** F 

LM65 0.6 1 0.6 0 0.6 0.6 0 0.8 ** PF 

LM66 0.6 0.8 0.6 0.6 0 0 0 0.8 * F 

LM67 0.6 0.6 0.6 0.6 0.6 0.7 0.6 0.9 *** F 

LM68 0.6 0.6 0 0.6 0 0 0 0 ns F 

LM69 1 1.2 0.8 1 1 1.1 0.8 1.4 *** D 

LM70 0.8 0.6 0.8 0.6 0.6 0.8 0.6 1 *** V 

LM71 0.6 0.7 0.6 0.6 0.6 0.6 0.6 0.8 *** M 

LM72 0.6 0.8 0.6 0.6 0.6 0.6 0.6 0.8 *** M 

LM73 0.8 0.8 0.8 0.8 0.6 0.6 0.6 0.8 *** F 

LM74 0.9 1.1 0.8 0.8 0.8 0.8 0.6 0.8 *** D 

http://www.cect.org/
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In general, the antibacterial effects of citrus EOs depend on the compounds and the 

species/isolate under study (Fisher et al., 2008) and similar results, in terms of 

number of strains inhibited and inhibition areas, were previously registered for EOs 

extracted from Citrus in Sicily (south Italy) (Settanni et al., 2012 and 2014). It is 

worth noting that in those previous studies, L. monocytogenes resulted the species 

most sensitive among the bacteria tested which included Gram-positive 

(Staphylococcus aureus), as well as Gram-negative (Salmonella spp. and 

Enterobacter spp.) strains. 

MICs were calculated only for the most effective EOs (EO L2 and EO L8) against L. 

monocytogenes LM35 and LM69, which were registered as the most sensitive 

strains. Both strains were equally inhibited and the values registered were 0.625 

µL/ml for EO L2 and 1.25 µL/ml for EO L8. The two strains LM35 and LM69 were 

chosen to be better characterized and then used to register their behavior in edible 

film formulations. In our opinion, the best strategy to evaluate the efficacy of the 

incorporation of a given EO in films should be based on the use of the most sensitive 

strains. In fact, the in situ activity can be strongly reduced by the interaction of the 

EOs with the films and the inhibitory effect on the test strains masked. 

 

2.2.2. Characterization of EOs by GC/MS 

Analysis of volatile compounds was carried out after extraction of EOs. Based on the 

antilisterial activity, EO L2 and EO L8, as most effective, and EO O3 and EO M7, as 

less effective oils, were chemically analyzed by GC/MS.  
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The identified volatile compounds and their relative amounts are given in Table 2.3. 

A total of 36 compounds were characterized among the four EOs. The phytochemical 

groups included monoterpene hydrocarbons, oxygenated monoterpenes and 

sesquiterpene hydrocarbons. 

Table 2.3. Chemical compositiona of citrus EOs. 

Compound RT 
EO 

L2  

EO 

O3  

EO 

M7  

EO 

L8  

Statistical 

significance
b
 

Monoterpene hydrocarbons 
 

88.35 
 

98.07 
 

97.81 
 

90.93 
  

α-Thujene 9.801 0.215 B n.d. A n.d. A 0.305 C *** 

α-Pinene 10.129 1.290 B 0.340 A 0.410 A 1.325 B *** 

Sabinene 11.900 1.105 B 0.210 A 0.220 A 1.135 B *** 

β-Pinene 12.155 9.890 C 0.025 A 0.025 A 9.125 B *** 

β-Myrcene 12.666 1.105 A 1.695 C 1.890 D 1.425 B *** 

α-Phellandrene 13.467 0.185 C 0.105 B 0.055 A 0.065 A *** 

3-Carene 13.560 n.d. ns 0.090 ns 0.040 ns n.d. ns ns 

α-Terpinene 13.944 n.d. ns 0.040 ns 0.040 ns 0.340 ns ns 

p-Cymene 14.275 11.515 C n.d. A n.d. A 0.440 B *** 

D-Limonene 14.854 62.780 A 95.445 C 94.910 C 64.505 B *** 

ϒ-Terpinene 16.080 0.025 A 0.075 A 0.180 B 9.525 C *** 

(+)-2-Caren 17.315 n.d. A 0.045 B 0.035 B 0.510 C *** 

cis-2,6-Dimethyl-2,6-octadiene 29.716 0.240 B n.d. A n.d. A 2.225 C *** 

Oxygenated monoterpenes 
 

10.770 
 

1.930 
 

2.175 
 

8.275 
  

1-Octanol 16.736 0.065 C n.d. A n.d. A 0.050 B *** 

Linalol 18.024 0.425 A 1.005 B 1.555 C 0.410 A *** 

Nonanal 18.252 0.190 B 0.040 A 0.020 A 0.135 B ** 

Fenchol 18.972 0.030 B n.d. A n.d. A 0.015 B ** 

Limonene epoxide 19.608 0.815 B n.d. A n.d. A n.d. A *** 

Limonene oxide, trans 19.820 1.000 ns n.d. ns n.d. ns n.d. ns ns 

β-Terpinol 20.507 n.d. A 0.035 C 0.020 B n.d. A ** 

Citronellal  20.556 0.065 B n.d. A n.d. A 0.095 C *** 

4-Terpineol 21.971 0.630 B 0.235 A 0.225 A 1.010 C *** 

α-Terpineol 22.705 1.445 D 0.415 B 0.265 A 1.100 C *** 

Decanal 23.157 0.085 A 0.200 A.C 0.090 A 0.040 A,B * 

trans-Carveol  23.801 0.180 B n.d. A n.d. A n.d. A *** 

cis-Geraniol 24.087 0.175 B n.d. A n.d. A 1.245 C *** 

α-Citronellol 24.200 0.070 A n.d. A n.d. A 0.325 B ** 

β-Citral 24.704 1.550 C n.d. A n.d. A 1.355 B *** 

(-)-Carvone  24.947 0.165 B n.d. A n.d. A n.d. A *** 

cis-p-Mentha-2,8-dien-1-ol  26.058 0.220 B n.d. A n.d. A 1.790 C *** 

α-Citral 26.090 1.980 B n.d. A n.d. A n.d. A *** 

Geranyl acetate 30.116 0.980 C n.d. A n.d. A 0.325 B *** 

Neryl acetate 30.979 0.700 C n.d. A n.d. A 0.380 B *** 

Sesquiterpene hydrocarbons 
 

0.880 
 

n.d. 
 

0.020 
 

0.800 
  

α-Bergamotene 33.375 0.315 C n.d. A n.d. A 0.275 B *** 

β-Bisabolene 36.474 0.480 C n.d. A n.d. A 0.385 B *** 

Caryophyllene oxide 39.463 0.085 C n.d. A 0.020 B 0.140 D *** 
a Data are means of two replicates expressed as percent area.b P value: *, P≤0.05; **, P≤0.01; ***, 

P≤0.001.  Abbreviations: RT, retention time on SLB-5MS column; ns, not significant; n.d., not 

detectable. 
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Monoterpene hydrocarbons were quantitatively relevant, ranging from 88.35% (EO 

L2) to 98.07% (EO O3). Limonene accounted for the major proportion by quantity in 

all samples. The oxygenated monoterpenes of lemon EOs were four/five folds those 

of EO O3 and EO M7, indicating a direct role in the mechanisms of inhibition. 

Sesquiterpene hydrocarbons were detected in minimal percentages in lemon EOs, 

only traces were found in EO M7 while they were absent in EO O3. 

Monoterpene hydrocarbons such as a-Thujene, p-Cymene and cis-2,6-Dimethyl-2,6-

octadiene were found only in lemon EOs. Among the oxygenated monoterpenes, 1-

Octanol, Fenchol, Citronellal, cis-Geraniol, a-Citronellol, b-Citral, cis-p-Mentha-2,8-

dien-1-ol, Geranyl acetate and Neryl acetate were identified only in EO L2 and EO 

L8. On the contrary, b-Terpinol was only found in EO O3 and EO M7. Almost all 

compounds showed statistical differences in quantitative terms among EOs. The 

higher presence of oxygenated monoterpenes in volatile composition profile of EO 

L2 and EO L8 could explain the greater inhibitory activity than the EO O3 and EO 

M7. 

 

2.2.3. Viability assay 

Dead and viable cells were detected and counted using epifluorescence microscopy. 

Some pictures of live and dead cell exposed to the EOs are reported in Figure 2.2. 

Plate counts of the untreated samples showed an increase of 10
3
 CFU/ml for both 

strains within the six hours of treatment. Divergent results were obtained comparing 

the counts assessed by epifluorescence microscopy and plate counts. Based on 

epifluorescence microscopy, viable cells amounted to 10
3-4

 CFU/ml for LM35 and 
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10
4-5

 CFU/ml for LM69, while dead cells reached up to 3 and 4 log CFU/ml in case 

of LM35 and LM69, respectively. These results are in contrast with those of direct 

plate counts, where no cultivable cells were detected after 1 h (or 2 h in case of 

LM35 added with EO L8) of incubation. This could be explained by an active but 

non-culturable (ABNC) state of cells stressed by EOs (Boulos et al., 1999). This was 

confirmed by Nexmann et al. (1997) who registered significantly fewer viable L. 

monocytogenes cells counted by culture-based techniques compared to the active 

bacteria detected using fluorescent direct counts. Similar results were achieved with 

lactic acid bacteria (Moreno et al., 2006) using fluorescent flow cytometric 

measurements (Boulos et al., 1999). 

According to Joux et al. (2000), bacterial cells cannot be necessarily considered 

active if they show intact membranes, but it would seem to be more accurate to 

assume that membrane‒compromised cells are dead (Berney et al., 2006). The EOs 

antimicrobial activity is due to their hydrophobic nature affecting the lipid bilayer of 

microbial cells, as confirmed by the evidences of this assays, since the kit used 

enables differentiation only between bacteria with intact and damaged cytoplasmic 

membranes, differentiating between active and dead cells (Sachidanandha et al., 

2005).  
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Figure 2.2. Live (green) and dead (red) cells observed by fluorescence microscopy. A, Control, live 

cells; B, EO , dying cell; C, EO, dead and live cells; D, live cell. 

 

2.2.4. Antilisterial effect of edible EOs-based films and film microstructure 

Antilisterial performances of CH- and MC-based edible films determined on TSA, 

alone and in combination with EO L2 and EO L8, are shown in Figure 2.4. The 

overall effect of CH- and MC-based films, in terms of trend, was similar for both 

strains tested. The addiction of the EOs into the films enhanced their bactericidal 

activity. The highest antimicrobial effect was obtained for CH films at 8°C (Fig. 2.4 

E and G). When sample EO L2 was added to the films, a reduction in the range of 

2‒3 Log CFU/cm
2
 was obtained as compared to control plates (Fig. 2.4 A and E). 

1 µm 
D 

1 µm 
C 

B 
1 µm 

B A 
1 µm 
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This oil sample determined the lowest Listeria counts in both film matrices (CH or 

MC). In general, the EO L2-based films showed the best inhibition activity compared 

with the CH or MC control films, and also, compared to EO L8-based films. 

After a storage period of 24 h at 37°C and 7 days at 8°C, pure MC films showed no 

significant effect on the growth of both strains. MC films incorporating EO L2 

promoted a slight reduction in Listeria counts at 37°C after 8 h of incubation (<1‒2 

log CFU/cm
2
) (Fig. 2.4 B). A stronger antilisterial effect was evidenced for the CH-

based films, alone and in combination with EOs. Specifically, CH-films were more 

effective in reducing the microbial growth at 8°C rather than 37°C. In fact, CH-films 

added with EOs led to a reduction up to 3 and 6 log CFU/cm
2
, in the case of LM35 

and LM69, respectively, when incubated at 8°C for 7 days (Fig. 2.4 E and G). The 

highest significant antibacterial effect evidenced in case of the incubation at 8°C may 

be related to the influence of the temperature in promoting the permeability of cell 

membranes and, thus, dissolving more easily EOs in the lipid bilayer when low 

temperatures occur (Sanchez-Gonzalez et al., 2011). Fig. 2.2 shows the SEM 

microstructures of the cross-sections of CH and MC films. Pure MC and CH films 

(Fig. 2.4 A and D) exhibited a homogeneous and continued microstructure in line to 

that observed in previous studies (Vargas et al., 2011). The addition of the lemon 

EOs to the film matrix promoted discontinuities (Fig. 2.4 B, C, E and F), in 

agreement with the results reported by Perdones et al. (2012) in CH-based films 

containing essential oil. The presence of EO droplets is more noticeable in CH-based 

films (Fig. 2.4 B and C), and especially in films containing EO L2 (droplets size 1‒8 

mm).  
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Figure 2.3. SEM microstructure of cross sections of chitosan and methylcellulose films with essential 

oils. Magnification is x3500. A, chitosan films; B, chitosan film with EO L2; C, chitosan film with 

EO L8; D, methylcellulose film; E, methylcellulose film with EO L2; F, methylcellulose film with EO 

L8. 

 

The observations pointed to a better incorporation of the EOs in CH matrix, where a 

higher amount of oil droplets was distinguished. Furthermore, the higher inhibition 

activity recorded for EO L2 included into CH matrix can be due not only to the better 

incorporation, but also to the subsequent release of the active compounds. 

A good incorporation of EO into the films slows down the diffusion rate of the 

antimicrobial compounds, keeping high concentrations of EOs for extended period of 

time and reducing the levels of microorganisms on the surface. 

The two strains LM35 and LM69 chosen to evaluate the efficacy of the inclusion of 

EOs in films had different food origin, specifically vegetable and dairy products, 

respectively. Thus, this study demonstrated the potential application of the EOs to 

inhibit L. monocytogenes from different sources. Although the resistant strains will 
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not be inhibited by this strategy, a strong reduction of this pathogen can be obtained 

in terms of sensitive strains. 

Figure 2.4. Effect of incorporation of EOs in chitosan and methylcellulose films on the growth of L. 

monocytogenes at 37°C for 24 h (A, B, C and D) and 8°C for 7 d (E, F, G and H).  

Symbols:—, strain LM35; ‒ ‒,  strain LM69; black marks indicate chitosan films; empty marks 

indicate methylcellulose films; unmarked lines indicate control strains; ●,○,  indicate control films; 

▲, ∆, indicate films with EO L2; ■, □, indicate films with EO L8. A and E, chitosan films with EO 
L2; B and F, methylcellulose films with EO L2; C and G, chitosan films with EO L8; D and H, 

methylcellulose films with EO L8.  
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2.3. Conclusions 

Citrus EOs showed bioactive properties against L. monocytogenes. The efficacy of 

the inclusion of EOs in films was tested against the most sensitive strains, in order to 

better evaluate their suitability. A masking effect of the film matrices on the 

inhibitory properties of the active substances cannot be excluded and could be 

relevant determining negative results in presence of low sensitive strains. The 

antibacterial effect of the EOs showing the highest inhibitory power was maintained 

when they were incorporated into biodegradable films based on chitosan or 

methylcellulose. 

Chitosan films containing EO L2 were the most effective in reducing L. 

monocytogenes counts. Chitosan edible films enriched with lemon oils represent an 

alternative tool to control surface contaminations of L. monocytogenes, especially in 

refrigerated conditions. The reduction in EO concentration needed for film 

applications, as compared to direct contact treatments, can reduce the possible 

sensory impact on food. Works are being prepared to refine the technology for the 

production of EO-based films, to evaluate the suitability of the films tested in this 

study on food matrices, as well as the impact of the EO released on the sensory 

quality. Hence, the foreseeable potential practical application of this study is to 

reduce the presence of L. monocytogenes in foods, but also to valorise citrus fruit 

peel that basically constitutes awaste of the fruit juice industry in Sicily. 
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Chemical composition and antimicrobial activity of essential 

oil extracted from the peel of a Sicilian mandarin  
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3.2. Materials and Methods 

3.2.1. EO extraction and characterization 

The EO analyzed in this study was obtained from peels of Tardivo di Ciaculli 

mandarin (Figure 3.1). Peels were immediately subjected to hydro-distillation for 3 h 

using a Clevenger-type apparatus (Comandè, Palermo, Italy) collecting the oil in 

hexane. EO was dried over anhydrous sodium sulphate and stored at 4°C in air-tight 

sealed glass vials covered with aluminum foil prior to be used in chemical and 

microbiological analysis.  

Figure 3.1. Peeling, hydro-distillation and gas chromatography/mass spectrometry characterization of 

Tardivo di Ciaculli mandarin EO. 

 

EOs chemical characterization was carried out by gas chromatography/mass 

spectrometry (GC/MS) (EI) using a a GCMS-QP2010 (Shimadzu, Milan, Italy). For 

analysis of the EOs samples, 1.0 ml of solution (1:10 v/v, essential oil/hexane) was 

placed in injection port. GC and MS scan conditions are previously reported in detail 
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(Settanni et al., 2014). Data were handled through the use of GCMS-Solution 

software and the peak identification was carried out with NIST21,107,147 Library 

according to a similarity larger than 90% and other published mass spectra. GC/MS 

analysis was carried out in duplicate. A commercial mandarin EO was included in 

the characterization for comparison. 

 

3.2.2. Bacterial strains 

Twenty different foodborne pathogen strains were tested for their sensitivity to EO. 

All the strains were provided by the Department of Sciences for Health Promotion 

and Mother-Child Care “G. D’Alessandro” – University of Palermo (Palermo, Italy) 

and belonged to Listeria monocytogenes (5 strains), Staphylococcus aureus (5 

strains), Salmonella enterica (5 strains) and Enterobacter spp. (5 strains). Bacterial 

strains were sub-cultured in Brain Heart Infusion (BHI) agar (Oxoid, Milan, Italy) 

and incubated overnight at 37°C. 

 

3.2.3. Antibacterial activity 

A modified paper disc diffusion method (Militello et al., 2011) was applied to test 

the antibacterial activity of the mandarin EOs. It is described in deteails in Chapter 1. 

Each test was performed in duplicate and the experiments were repeated twice in two 

consecutive days. 
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3.3. Results and discussion 

The GC-MS analysis identified compunds belonging to monoterpene hydrocarbons, 

oxygenated monoterpenes and sesquiterpene hydrocarbons. 

The analysis showed only quantitative differences between the commercial and 

Tardivo di Ciaculli mandarin EOs (Table 3.1).  

 

Table 3.1. Percentage contribution of the main chemical classes characterizing mandarin EO extracted 

from peels. 

 
Commercial EO Tardivo di Ciaculli EO 

Monoterpene hydrocarbons 95.37  94.52  

Oxygenated monoterpenes 1.39  3.66  

Sesquiterpene hydrocarbons 0.26  0.15  

Others 0.55  1.67  

 

Among the monoterpene hydrocarbons, representing about the 95% of the EOs, the 

main compounds were D-limonene, γ-terpinene, terpinolene, β-pinene and β-

mircene. D-limonene was the compound at highest concentration in both the EOs 

analized (Figure 3.2 A).  

α-terpineol, 4-terpineol, thymol, geranial and linalool were the main compounds 

among the oxygenated monoterpenes that showed a variable concentration between 1 

and 4% (Figure 3.2 B). These compunds have been already indicated as responsible 

of antimicrobial activity, even if at different extent (Settanni et al., 2012 and 2014).  

Regarding the bacterial inhibition, both EOs showed higher activity against Gram-

positive, such as Listeria monocytogenes and Staphylococcus aureus, than Gram-

negative, as Salmonella enterica and Enterobacter spp (Table 3.2).  
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Table 3.2. Antimicrobial activity of commercial and Tardivo di Ciaculli EOs. 

 
Strain 

Commercial 

EO 

Tardivo di 

Ciaculli EO 

Gram + Listeria monocytogenes  133 ± - 

Listeria monocytogenes  140 - ± 
Listeria monocytogenes  180 - ++ 

Listeria monocytogenes  182 - +++ 

Listeria monocytogenes  14 BO - ± 

Staphylococcus aureus  C38/249,1-MSSA - + 

Staphylococcus aureus 340-MRSA - + 

Staphylococcus aureus  68 MRSA - ± 

Staphylococcus aureus 156 MRSA - +++ 

Staphylococcus aureus  637 MRSA - + 

Gram - Salmonella enterica 50398 - - 

Salmonella enterica 50374 - - 

Salmonella enterica 50399 + - 
Salmonella enterica 50339 + + 

Salmonella enterica 50272 ++ ± 

Enterobacter hormaechei 2 ± - 

Enterobacter hormaechei 11 ± ± 

Enterobacter hormaechei 19 ± + 

Enterobacter cloacae 24 - + 

Enterobacter cloacae  13A - + 

 

 

Figure 3.2. Quantitative differences of monoterpene hydrocarbons (A) and oxygenated monoterpenes 

(B) between commercial (dark grey) and Tardivo di Ciaculli EOs (light grey) (expressed as percentage 

of area resulting from GC-MS analysis).  

 

 

A 
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Figure 3.2. Continue.  

 

The higher amount of oxygenated monoterpenes in Tardivo di Ciaculli EOs could 

explain the higher antibacterial activity compared to the commercial one. 

The Tardivo di Ciaculli EO could represent a possible option for food preservation 

purposes.  

  

B 



 

 



 

 

 

 

Chapter 4 

Quantitative detection of viable foodborne E. coli O157:H7 

combining propidium monoazide and real-time PCR after 

inactivation by Citrus essential oils
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4.2. Materials and Methods 

4.2.1. Bacterial strains, culture conditions and DNA isolation  

The E. coli O157:H7 CECT 5947 (non-toxigenic) supplied by the Spanish Type 

Culture Collection (CECT, http://www.cect.org/) was used in this study. This strain 

is recommended for food control since gene stx2 (virulence factor) has been replaced 

with gene cat. E. coli was routinely grown on Tryptic Soy Broth (TSB) at 37°C for 

18h, and enumerated by plate count on Trypticasein Soy Agar (TSA), at the same 

incubation conditions. Inocula for antibacterial tests were prepared by transferring 

100 μl of the overnight culture to 10 ml of TSB and incubated at 37°C for 2 h (ca. 

10
8
 CFU/ml). Thereafter cultures were serially diluted in Phosphate Buffered Saline 

(PBS) to obtain a final desired cell density. DNA was purified using the NucleoSpin 

Tissue kit (Macherey-Nagel GmbH & Co., Duren, Germany) according to the 

manufacturer's instructions. 

 

4.2.2. Essential oils 

Two EOs were extracted by hydrodistillation from the peels of two Sicilian lemon 

cultivars: EOL2 derived from cv. Femminello Santa Teresa while EOL8 derived 

from cv. Limone KR Siracusano. They were previously chemically characterized by 

GC/MS and tested for their antimicrobial activity (Settanni et al., 2014; Randazzo et 

al., 2016).  

 

 

 

http://www.cect.org/
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4.2.3. MIC determination and kinetics of inactivation  

The antibacterial activity of the EOs against E. coli O157:H7 CECT 5947 strain was 

firstly confirmed by the paper disc diffusion method applied by Militello et al. 

(2011). To determine the MIC, serial dilutions of each EO (dilution factor = 2) were 

obtained with dimethyl sulfoxide (DMSO, SigmaeAldrich, Milan, Italy). 10
5
 CFU/ml 

of E. coli broth cultures were added with EOs serial dilutions. The evaluation of 

inhibition was perfomed by visual inspection after 24 h and confirmed after 48 h. To 

evaluate the kinetics of inactivation, E. coli cultures of ca. 10
8
 CFU/ml were 

prepared by diluting a 2 h culture on TSB. EOs were then added to culture broths at a 

concentration of 5 µl\ml, the same as resulting from MIC determination. They were 

further incubated at 37°C in a shaker and samples were taken at 0, 30 min, 1 h, 2 h 

and 4 h. Samples were spread on TSA plates for plate counts and the optical density 

was as well measured. All experiments were independently repeated three times.  

 

4.2.4. PMA cross-linking 

Detection of live cells was carried out using a PMA treatment as described by 

Elizaquivel et al. (2012). Briefly, 20mM PMA stock solution were added to 500 μl of 

either viable or EO-treated cells at a final concentration of 100 μM that had proved 

non-toxic for live cells (Elizaquivel et al., 2012). Each sample was treated in 

triplicate to ensure reproducibility of results. After the addition of PMA, samples 

were incubated for 5 min in the dark, at room temperature, with occasional mixing to 

allow reagent penetration. Thereafter, samples were exposed to light for 15 min 

using a photo-activation system (Led-Active Blue, Geniul, Barcelona, Spain). After 
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photoinduced cross-linking, cells were centrifuged at 7000 rpm for 5 min and 

supernatant was removed. The resulting pellets were used for DNA isolation.  

 

4.2.5. Real-time PCR quantification    

Primer sequences were uidAR383-ACC AGA CGT TGC CCA CAT AAT T and 

uidAF241-CAG TCT GGA TCG CGA AAA CTG and the probe uidAP266-NED-

ATT GAG CAG CGT TGG-NFQ. PCR reactions were performed in a final volume 

of 20 μl, containing 10 μl of 2× Brilliant® II QPCR Master Mix with high ROX 

(Stratagene, Madrid, Spain) and 5 μl of template DNA. Concentrations of primers 

and probe were 250 nM of each primer and 25 nM of the uidA probe. All 

amplifications were performed on the LightCycler 480 System (Roche Diagnostics, 

Mannheim, Germany). The standard protocol included one cycle at 95°C for 15min, 

followed by 40 cycles at 95°C for 15 s, and 63°C for 1 min. Fluorescence was 

measured at the end of each extension step. Reactions were done in duplicate. In all 

cases a negative control of amplification was included using 5 μl of water instead of 

DNA template. 

Standard curve was generated using 10-fold serial dilutions of DNA extracted from 

E. coli O157:H7 CECT 5947 covering the range from 10
0
 to 10

4
 cfu/ml per reaction, 

calculated on the basis of the genome size of this pathogen (Hayashi et al., 2001). 

The crossing point (Cp) values obtained from the assay of each dilution 

were used to plot a standard curve by assigning the corresponding concentration 

values by using Roche LightCycler® 480 SW 1.5 software. 
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4.3. Results 

4.3.1. MIC determination and kinetics of inactivation  

EO L2 and EO L8 inhibited E.coli O157:H7 CECT 5947 by the paper disc diffusion 

since halos of inhibition were detected. The MIC resulted of 5 µl\ml for both EOs. 

The kinetics of inactivation of EOs tested for killing E. coli O157:H7 as determined 

by plate count is shown in Figure 4.1. For both EOs, a decrease in bacterial counts 

was observed after 30 min and still up to 4 h. After 6 h of incubation, the remaining 

population grew raising the bacterial counts. The highest reductions registered were 

for EO L8 reaching 7 log of reduction after 4 h of incubation.  

Figure 4.1. Kinetics of inactivation of EO L2 (black) and EO L8 (grey) against E. coli. Untreated 

sample represent the control (dotted black line). 

 

4.3.2. PMA cross-linking and real-time PCR quantification    

In order to test the ability of the PMA-qPCR procedure to monitor E. coli O157:H7 

inactivation by EOs, cultures of 10
9
 CFU/ml were treated 4 h with 10µL/ml of each 
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of the two EOs. Following, they were quantified by qPCR with and without previous 

PMA treatment by using the standard curve obtained from purified E. coli O157:H7 

DNA (y=−3.545×+26.26; efficiency=1.914). Quantification derived from qPCR 

determination of PMA-treated and non-treated samples showed that population 

decreased 2 log orders (Table 4.1), while comparing live and EOs+PMA treated cells 

4 log of reduction were reported. These last results showed 1 log discrepancy if 

compared with those achieved by plate counts. 

 

Table 4.1. Comparison between qPCR and direct counts obtained from E. coli O157:H7 treated with 

EOs.  

Sample 
qPCR quantification Plate counts 

(Log CFU/ml) 
Cp value Log CFU/ml 

E.coli live 18.83±0.62 9.15 9.13 

E.coli live + PMA 18.61±0.03 9.19 - 
E.coli EO2 treat 24.92±0.24 7.41 4.40 

E.coli EO2 + PMA treats 32.19±0.33 5.37 - 

E.coli EO8 treat 25.88±0.01 7.14 4.33 

E.coli EO8 + PMA treats 33.36±0.59 5.05 - 

 

 

4.4. Discussion  

Enterohemorrhagic E. coli (EHEC) particularly O157:H7 is one of the most 

investigated foodborne pathogens due to the severity of the disease. Outbreaks can 

infect thousands of people causing bloody diarrhea and hemolytic uremic syndrome 

(HUS) that can result in severe illness or even death (Chattaway et al., 2011). In 

verified outbreaks, where the causative agent was known, pathogenic E. coli 

accounted for 1.92% of the outbreaks (EFSA, 2015). It is commonly found in the 

intestines of warm-blooded animals and its presence in food is considered as a 
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possible faecal contamination and\or as an inadequate hygiene practices (Ragaert et 

al., 2011), involving meat, fish, vegetable and fruit preparations.  

In this work, two lemon EOs (EO L2 and EO L8) were effective in inhibiting E. coli 

O157:H7, showing MIC of 0.5%. Further on, we assessed this inhibition activity by 

using a novel quantitative method based on qPCR coupled with a PMA treatment. 

This procedure was able to discriminate between live and dead cells resulting after 

EOs treatments. PMA treated live cells showed amplification levels similar to those 

obtained from non-treated cells (9.15 and 9.19 Log CFU/ml, respectively) 

demonstrating that PMA treatment did not affect live cells nor the efficiency of DNA 

amplification in the reaction. Moreover, these results are in line with those detected 

by plate count (9.13 Log CFU/ml).  

Different quantification values were detected for live and EOs-exposed cells without 

PMA pre-treatment (9.15, 7.41 and 7.14 Log CFU/ml E. coli live, E. coli EO2 treated 

and E. coli EO8 treated, respectively). This indicates the loss of DNA from dead cells 

during the extraction procedure.  

Comparing the quantification results of PMA-treated EOs exposed cells (5.37 and 

5.05 log CFU/ml corresponding to E. coli EO2+PMA and E. coli EO8+PMA, 

respectively) with those of untreated EOs exposed cells (7.41 and 7.14 log CFU/ml E. 

coli EO2 and E. coli EO8, respectively), differences of about 2 log CFU/ml were 

reported. Previous studies suggested that treatment with EOs might stress bacterial 

cell in a sub-lethal manner, leading to a non-cultivable state that may be reversible 

(Randazzo et al., 2016; Blatchley et al., 2007). The cell membranes of these 

organisms may still be impermeable to penetration by PMA and thus not allow 
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inactivation of their genomic DNA. All above considerations could explain the 

discrepancies between E. coli qPCR quantifications with and without PMA pre-

treatment. 

When samples were tested by PMA-qPCR, quantification values (5.37 and 5.05 log 

CFU/ml for E. coli EO2+PMA treatment and E. coli EO8+PMA treatment) were 

slightly higher than the expected  (4.40 and 4.33 Log CFU/ml for E. coli EO2 

treatment and E. coli EO8 treatment). These quantification discrepancies suggest that 

DNA from dead cells was not completely removed by PMA treatment. This was also 

observed by Elizaquível et al. (2012) and Varma et al. (2009) when high levels of 

biomass were used. Thus, high cell concentrations interfere with the ability of the 

PMA-qPCR method to detect live cells specifically. In fact, the effectiveness of PMA 

activity may be saturated by increasing cell numbers, at least under the treatment 

conditions employed in this study. 

However, it is noteworthy to comment that such high bacterial pathogen 

concentrations are not usually found in naturally contaminated food products. 

In addition, all these results achieved by PMA-qPCR confirm that the damage to E. 

coli cells due to EOs exposure occurs at a cell membrane level, since PMA is capable 

of penetrating only the compromised cell membranes of EOs treated cells.  

Moreover, PMA pre-treatment of DNA extracts is effective in substantially reducing 

qPCR detectable target sequences from membrane-compromised cells of E. coli. 

Therefore, the PMA-qPCR procedure has the potential to specifically detect the 

presence of live cells among those exposed to EOs. 



 

 



 

 

 

 

Chapter 5 

Chemical compositions and antifungal activity of essential 

oils extracted from Citrus fruits cultivated in Sicily  
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5.2. Material and Methods 

5.2.1. Fruit collection, EOs extraction and characterization 

The EOs analyzed in this study were obtained from the peels of eight different citrus 

fruits cultivated in Sicily (Table 5.1). Fruits were collected on March 2014 from the 

“Parco d’Orleans” orchard of the Department of Agricultural and Forestry Science 

(Palermo, Italy) and from the “Azienda Sperimentale Palazzelli” C.R.A.-A.C.M. 

(Acireale, Italy). Citrus fruit peels were immediately subjected to hydrodistillation 

using a Clevenger-type apparatus. The EOs showing the highest (EO L1 and EO L2) 

and lowest (EO AM and EO MA) antifungal activities were analysed by gas 

chromatography/mass spectrometry (GC/MS), identifying the peaks according to  

 NIST21,107,147 Library with a similarity of 90%, at least.  

Table 5.1. Sicilian EOs used in antifungal screening. 

 

5.2.2. Antifungal activity  

Forty-seven foodborne filamentous fungal strains of different species and origin 

(Table 5.2) were considered for preliminary antifungal assays. All strains, belonging 

EO Species  Variety  
Sperimental 

Orchard 

MC Mandarin  

(Citrus reticulata Blanco) 

Mandarino Tardivo di Ciaculli Campo dei Tigli  

(Palermo) 
L1 Lemon  

(Citrus limon L. Burm.) 

Femminello Santa Teresa Campo dei Tigli 

(Palermo) 

AM Sweet Orange  

(Citrus sinensis L. Osbeck) 

Moro Nucellare Campo Palazzelli 

(Acireale) 

AL Sweet Orange 

(Citrus sinensis L. Osbeck) 

Lane Late  Campo Palazzelli 

(Acireale) 

AT Sweet Orange  

(Citrus sinensis L. Osbeck) 

Tarocco Tardivo Campo Palazzelli 

(Acireale) 

AS Sweet Orange  

(Citrus sinensis L. Osbeck) 

Sanguinello Nucellare  Campo Palazzelli 

(Acireale) 

MA Hybrid of Horoval clementine x  
Tarocco orange  

Alkantara  mandarin ®  Campo Palazzelli 
(Acireale) 

L2 Lemon  

(Citrus limon L. Burm.) 

Limone KR (Siracusano) Campo Palazzelli 

(Acireale) 
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to the Dipartimento Scienze Agrarie e Forestali (Università di Palermo, Italy), were 

previously isolated from food matrices, mainly from honey (Sinacori et al., 2014) and 

strawberries (La Scalia et al., 2015). All the strains were sub-cultured onto Malt 

Extract Agar (MEA, Sigma-Aldrich) at 25°C for 5 or more days depending on 

strains’ characteristics.   

Antifungal activity was assayed by agar diffusion test (Lang et al., 2012). Briefly, 

MEA plates were inoculated with approximately 10
4
 spores/ml and a well for each 

plate was punched into the center of the agar layer. 20µl of EO was directly applied 

to the well and plates were left to incubate at 25°C. Halos, indicating fungal 

inhibition, were recorded dairy for up to 10 days, depending on the strain.  

 

5.3. Results and Discussion 

Based on the well diffusion assay, EO L1 and EO L2 showed a wide spectrum of 

activity, inhibiting 39 and 41 isolates, respectively, with halos of at least 10 mm of 

diameter. The EO AM and EO MA showed the lowest antifungal activity among the 

EOs tested in this study: their inhibition was <10 mm against 46 and 47 strains, 

respectively (Table 5.2).  

Regarding the GC-MS analysis, a total of 36 compounds were identified and belong 

to three phytochemical groups: monoterpene hydrocarbons, oxygenated 

monoterpenes and sesquiterpenes hydrocarbons (Figure 5.1). 
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Table 5.2. Antifungal activity of Sicilian EOs assessed by well diffusion assay (inhibition halos in 

cm). 

Fungal specie Strain 
OE 

MC  

OE 

L1 

OE 

AM 

OE 

AL 

OE 

AT 

OE 

AS 

OE 

MA 

OE 

L2 

Alternaria alternata F 2.31 0.8 1 0.5 0.5 - 0.5 - 1 

Alternaria tenuissima F 1.8 0.5 0.8 - - - 0.5 - 1 

Aspergillus niger ML 111 B 1 3.5 - 1.2 0.8 1.2 - 4 

Aspergillus niger ML 113 0.8 2.5 - 1 0.5 0.8 - 1.8 

Aspergillus niger  ML 168 A - 1.4 - - - 0.5 - 0.8 

Aspergillus niger  ML 168 - 1.5 - 0.5 - 0.5 - 1.4 

Aspergillus niger ML 168 B 0.8 2.5 - 1.4 0.5 1.5 - 2 

Aspergillus niger CC22A1 0.5 3 0.5 1 - 0.8 - 3 

Aspergillus proliferans ML 280 1 3 1 1.2 - 0.5 0.5 2.5 

Aspergillus spelunceus ML 442 0.5 1 - 0.5 0.5 0.5 - 1.6 

Botritis cinerea SANDRA01 1 2.5 0.5 1 1 1 - 2.5 
Botryotinia fuckeliana  F 1.10 0.5 1.5 - 0.5 1 1 0.5 1.2 

Chaetomium globosum ML 176 0.5 0.8 0.5 0.5 0.5 - - 1.4 

Cladosporium cladosporioides F 2.11 1.5 2 0.5 0.5 0.5 0.5 - 1.6 

Daldinia concentrica ML 286 - 2.5 0.5 - - - -  

Daldinia concentrica ML 287 - 1.5 - 1.2 - 0.5 - 1.8 

Emericella discophora  ML 297  - 0.5 - - - 0.5 - 1 

Emericella quinquixiani ML 514 - 1 - - 0.5 0.8 0.5 1.5 

Emericella spectabilis ML 488 0.5 1.5 0.5 1 0.5 0.8 - 1.5 

Fusarium oxysporum F 2.27 1 1.5 0.5 0.5 - 1.6 -  

Geotricum conidium F 2.8 0.5 1.6 - 0.5 - 0.5 - 1.8 

Penicillum corylophilum   ML 457 - 1 - - - - - 1.2 
Penicillum corylophilum   ML 369 - 0.8 - - - - - 1 

Penicillum corylophilum   ML 107 0.5 1.5 - 0.5 - 0.5 - 1 

Penicillum decumbens ML 109  0.5 1.2 - - 0.5 0.8 0.5 1.4 

Penicillum decumbens ML 159 - 1.2 - 0.5 - - - 1 

Penicillum decumbens ML 155 0.5 1.2 - 0.5 - - - 1 

Penicillum echinoulatum ML 291 - - - - - - - - 

Penicillum italicum ML 332 - 0.8 - 0.5 - - - 1 

Penicillum italicum ML 319 0.5 0.5 - 0.5 - - - 0.8 

Penicillum minioletum  ML 172 A 0.5 1.3 - 0.5 - 0.5 - 2.1 

Penicillum minioletum  ML 172 B 0.5 1.2 - 0.5 - 0.5 - 1.2 

Penicillum polonicum ML 329 0.5 2 0.5 0.5 0.5 1 0.5 1.5 

Penicillum adametzioides F 2.30 0.5 1 0.5 0.5 0.5 0.8 - 1.5 
Penicillum brevicompactum F 2.29 0.5 1.2 - - - - - 1.2 

Penicillum brevicompactum F 2.5 0.5 1.5 - 0.5 - 0.5 - 1.2 

Penicillum echinolatum F 1.5 - 1.5 0.5 - 0.5 - - 2.2 

Penicillum echinolatum F 1.4 1.2 1.6 0.5 0.5 - 0.5 - 1.2 

Penicillum olsonii F 1.17 - 1.8 - 0.8 0.5 - - 2 

Penicillum olsonii F 1.9 1 1.5 - - - 0.5 - 0.8 

Penicillum sclerotiorum F 2.26 0.5 1.8 - 1.5 1 1.5 0.8 2 

Penicillum sclerotiorum F 2.28 1 1 - 0.5 - 0.5 - 1.5 

Rhizomucor ML 296 0.5 1 - 0.5 - - - 1.3 

Rhizomucor ML 295 - 1 - 0.5 - - - 2 

Rizophus stolonifer F 2.18 - 1.2 - 0.5 1 0.5 - 1.5 
Rizophus stolonifer F 2.19 - 1.8 - - - 0.5 - 1 

Rizophus stolonifer F 2.23 - 0.5 - 0.5 0.8 0.5 - 1.5 
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The chemicals most relevant were the monoterpene hydrocarbons, ranging from 

88.35% (EO L1) to 98.07% (EO AM). The oxygenated monoterpenes ranged 

between 11 and 1.9%. The oxygenated monoterpenes of lemon EOs were four/five 

times of those EO AM and EO MA, the less active among all the EOs tested in this 

study. Sesquiterpene hydrocarbons were detected in minimal percentages in lemon 

EOs (detected at 0.79% as maximum concentration), while only traces were detected 

in EO MA and none in EO AM. D-limonene resulted to be the major component (95-

62%). α-Pinene, β-pinene and sabinene were quantitatively appreciable in lemon 

EOs, while traces were found in the others EOs. Among oxygenated monoterpenes, 

terpineol, citral and geraniol were in greater amounts in the EOs with higher 

antifungal activity.  

Figure 5.1. Quantitative differences of monoterpene hydrocarbons, D-limonene and oxygenated 

monoterpenes among EO L1 (purple), EO L2 (blue), EO AM (green) and EO MA (red). Values 

represent percentage of area of picks resulting from GC-MS analysis. 
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In conclusion, lemon EOs (EO L1 and EO L2) showed an in vitro antifungal activity 

clearly higher respect to both oranges and citrus hybrid EOs. The differences in the 

chemical composition might be imputable to the different antifungal activity.   

In particular, the higher presence of oxygenated monoterpenes in the EOs with higher 

antifungal activity suggests that this group of compounds might be responsible of the 

fungal inhibition.  

These results confirm previous studies showing antimicrobial activity due to 

oxygenated monoterpenes (Fisher et al., 2008; Settanni et al., 2014), besides 

monoterpene and sesquiterpene hydrocarbons could act sinergically in inhibiting 

microbial growth (Burt, 2004).  

In conclusion, the higher antifungal activity was registered in presence of lemon peel 

EOs, which are indicated as an effective tool to control fungal decay in foods, even if 

further studies are necessary for their application in food matrices. 
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This chapter discusses the main findings of this research thesis in the context of the 

applications of essential oils as multi-target compounds for novel food safety 

strategies, such as active packaging technologies.   

The main findings concern foodborne bacteria and molds inhibition by EOs, their 

chemical characterizations and application in packaging materials.   

On a microbiological point of view, S. aureus, L. monocytogenes, Salmonella 

enterica, Enterobacter spp. and E. coli were all inhibited by Citrus EOs (lemon and 

mandarin EOs), even if to different extent. Moreover, the inhibitions registered were 

found to be strain-dependent.   

In general, EOs were more effective against Gram-positive than Gram-negative 

bacteria. These findings might be related to the presence of the outer membrane in 

Gram-negative bacteria, which provides a strong impermeable barrier. Within the 

Gram-negative strains, Salmonella showed a lower sensitivity than Enterobacter.  

The results achieved by fluorescence viability tests and PMA-qPCR indirectly 

confirmed the mode of action of EOs at the membrane level. The hydrophobicity of 

EOs affects the lipid bilayer of microbial cells, compromising the cell membrane, 

and resulting in a viable but not cultivable state of cells when sub-lethal doses are 

used. 

A novel method based on PMA-qPCR was applied and resulted to be able to 

discriminate between live and dead cells after EO treatments. It does not affect live 

cells neither the efficiency of DNA amplification, even if the effectiveness of PMA 

in detecting only live cells may be saturated by increasing cell numbers.  
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The antimicrobial activity was assessed as well against foodborne moulds, showing a 

wider spectrum of inhibition of lemon EOs compared to both oranges and citrus 

hybrid EOs.  

Regarding the chemical characterization of Citrus EOs all the compounds identified 

by GC-MS (42-36 varying among the different EOs) belonged to monoterpene 

hydrocarbons, oxygenated monoterpenes and sesquiterpene hydrocarbons. 

In all cases, the monoterpene hydrocarbon fraction dominated all EOs, while 

sesquiterpene hydrocarbons constituted the quantitative percentage less relevant. D-

limonene was the compound at the higher concentration, characterizing Citrus EOs.  

Qualitative and quantitative differences in the EOs composition have been reported 

among different harvest stages of lemon fruits and among experimental and 

commercially extracted samples, in case of mandarin. These factors influence the 

chemical composition and then deeply affect the antimicrobial performance of EOs.  

The comparison of the chemical composition of EOs suggested that the compounds 

mainly implicated in the process of bacterial inhibition could be the oxygenated 

monoterpenes, since they have been detected in effective EOs in concentrations 

four/five folds higher than ineffective EOs.  

Furthermore, the antibacterial effect of the EOs was maintained when they were 

incorporated into active films of interest in food packaging. This behavior was 

confirmed for chitosan (CH) based films. 

The highest significant antibacterial effect evidenced in case of the incubation at 8°C 

may be related to the influence of the temperature in promoting the permeability of 

cell membranes and, thus, dissolving more easily EOs in the lipid bilayer when low 
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temperatures occur. This consideration opens new good perspectives for refrigerated 

shelf-life applications.  

Considering further food-applications, it seems that the greatest limitation to the 

extensive use of EOs and their components will be the interactions with food 

components and the strong flavor and aroma.   

In this way, inactivation of EOs by lipids and proteins could be reduced by 

technological means, such as packaging material by which a controlled release can 

be obtained. Thus, the use of essential oils for packaging technologies may be 

promising for certain niches in the food industry to prevent growth of spoilage 

organisms or to reduce viable numbers of pathogens.  

In this way, the antibacterial and antifungal properties of EOs, together with the 

chemico-physical properties of the material constituting the packaging material and 

acting as a selective barrier to gas transport, can be the goal of a hurdle technology 

applied to food to extend its food safety and commercial shelf-life.
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Røstelien, T., Borg-Karlson, A. K., Fäldt, J., Jacobsson, U., Mustaparta, H. (2000). The plant 

sesquiterpene germacrene D specifically activates a major type of antennal receptor neuron of 

the tobacco budworm moth Heliothis virescens. Chemical Senses, 25, 141-148. 

Rudi, K., Nogva, H. K., Moen, B., Nissen, H., Bredholt, S., Møretrø, T. (2002). Development and 

application of new nucleic acid-based technologies for microbial community analyses in 

foods. International Journal of Food Microbiology, 78, 171-180. 

Russo, M., Galletti, G. C., Bocchini, P., Carnacini, A. (1998). Essential oil chemical composition of 

wild populations of Italian oregano spice (Origanum vulgare ssp. Hirtum (Link) Ietswaart): a 

preliminary evaluation of their use in chemotaxonomy by cluster analysis. 1. Inflorescences. 

Journal of Agricultural and Food Chemistry, 46, 3741-3746. 

Sachidanandham, R., Yew‐Hoong Gin, K., Laa Poh, C. (2005). Monitoring of active but 

non‐culturable bacterial cells by flow cytometry. Biotechnology and bioengineering, 89, 24-

31. 



References  

123 

 

Sagoo, S.K., Little, C.L., Ward, L., Gillespie, I.A., Mitchell, R.T., (2003). Microbiological study of 

ready-to-eat salad vegetables from retail establishments uncovers a national outbreak of 

salmonellosis. Journal of Food Protection, 66, 403-409. 

Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., Cháfer, M. (2011). Use of 

essential oils in bioactive edible coatings: a review. Food Engineering Reviews, 3, 1-16. 

Santos, F., Rao, V. (2000). Antiinflammatory and antinociceptive effects of 1,8-cineole a terpenoid 

oxide present in many plant essential oils. Phytotherapy Research, 14, 240-244. 

Sartorelli, P., Marquioreto, A. D., Amaral-Baroli, A., Lima, M. E. L., Moreno, P. R. H. (2007). 

Chemical composition and antimicrobial activity of the essential oils from two species of 

Eucalyptus. Phytotherapy Research, 21, 231-233. 

Sawamura, M., Shichiri, K., Ootani, Y., Zheng, S. H. (1991). Volatile constituents of several 

varieties of pummelos and characteristics among Citrus species (food & nutrition). 

Agricultural and biological chemistry, 55, 2571−2578. 

Schneider, H. In: The citrus industry, Vol. II.; Reuther, W.; Batchelor, L.D.; Webber H.J., Eds.; 

Berkeley, 1968, pp. 1-85. 

Senatore, F. (1996). Influence of harvesting time on yield and composition of the essential oil of a 

thyme (Thymus pulegioides L.) growing wild in Campania (Southern Italy). Journal of 

Agricultural and Food Chemistry, 44,1327-1332. 

Settanni, L., Palazzolo, E., Guarrasi, V., Aleo, A., Mammina, C., Moschetti, G., Germanà, M.A. 

(2012). Inhibition of foodborne pathogen bacteria by essential oils extracted from citrus fruits 

cultivated in Sicily. Food Control, 26, 326-330. 

Settanni, L., Randazzo, W., Palazzolo, E., Moschetti, M., Aleo, A., Guarrasi, V., Mammina, C., San 

Biagio, P.L., Marra, F.P., Moschetti, G., Germanà, M. A. (2014). Seasonal variations of 

antimicrobial activity and chemical composition of essential oils extracted from three Citrus 

limon L. Burm. cultivars. Natural product research, 28, 383-391. 

Seymour, I. J., Appleton, H. (2001). Foodborne viruses and fresh produce. Journal of Applied 

Microbiology, 91, 759-773. 

Shelef, L. A. (1983). Antimicrobial effects of spices. Journal of Food Safety, 6, 29-44.  

Sikkema, J., De Bont, J. A. M., Poolman, B. (1994). Interactions of cyclic hydrocarbons with 

biological membranes. Journal of Biological Chemistry, 269, 8022-8028. 

Sinacori, M., Francesca, N., Alfonzo, A., Cruciata, M., Sannino, C., Settanni, L., Moschetti, G. 

(2014). Cultivable microorganisms associated with honeys of different geographical and 

botanical origin. Food microbiology, 38, 284-294. 

Skandamis, P. N., Nychas, G.-J. E. (2000b). Development and evaluation of a model predicting the 

survival of Escherichia coli O157:H7 NCTC 12900 in homemade eggplant salad at various 



References  

 

124 

 

temperatures, pHs and oregano essential oil concentrations. Applied and Environmental 

Microbiology, 66,1646-1653. 

Skandamis, P. N., Nychas, G.-J. E.. (2001b). Effect of oregano essential oil on microbiological and 

physico-chemical attributes of minced meat stored in air and modified atmospheres. Journal 

of Applied Microbiology 91:1011-1022. 

Skandamis, P., Tsigarida, E., Nychas, G.-J. E. (2000a). Ecophysiological attributes of Salmonella 

typhimurium in liquid culture and within a gelatin gel with or without the addition of oregano 

essential oil. World Journal of Microbiology and Biotechnology, 16, 31- 35. 

Skandamis, P., Koutsoumanis, K., Fasseas, K., Nychas, G.-J. E. (2001a). Inhibition of oregano 

essential oil and EDTA on Escherichia coli O157:H7. Italian Journal of Food Science, 13, 

65-75. 

Smith-Palmer, A., Stewart, J., Fyfe, L. (1998). Antimicrobial properties of plant essential oils and 

essences against five important food-borne pathogens. Letters in Food Microbiology, 26,118-

122. 

Söderström, A., Lindberg, A., Andersson, Y. (2005). EHEC O157 outbreak in Sweden from locally 

produced lettuce, August–September 2005. Euro Surveill, 10. 

Soković, M., Tzakou, O., Pitarokili, D., Couladis, M. (2002). Antifungal activities of selected 

aromatic plants growing wild in Greece. Nahrung, 46, 317-320. 

Soković, M., van Griensven, L.J.L.D. (2006). Antimicrobial activity of essential oils and their 

components against the three major pathogens of the cultivated button mushroom, Agaricus 

bisporus. European Journal Plant Pathology,116, 211-224. 

Staroscik, A.J., Wilson, A.A. (1982). Seasonal and regional variation in the quantitative composition 

of cold-pressed lemon oil from California and Arizona. Journal Agriculture Food Chemitry, 

30, 835-837 

Swaminathan, B., Gerner-Smidt, P. (2007). The epidemiology of human listeriosis. Microbes and 

Infections, 9, 1236-1243. 

Tao, N., Jia, L., Zhou, H. (2014). Anti-fungal activity of Citrus reticulata Blanco essential oil 

against Penicillium italicum and Penicillium digitatum. Food chemistry, 153, 265-271. 

Tassou, C., Drosinos, E. H., Nychas, G.-J. E. (1995). Effects of essential oil from mint (Mentha 

piperita) on Salmonella enteritidis and Listeria monocytogenes in model food systems at 4°C 

and 10°C. Journal of Applied Bacteriology, 78, 593-600. 

Tauxe, R. V. (1997). Emerging foodborne diseases: an evolving public health challenge. Emerging 

infectious diseases, 3, 425. 

Thomas, C., Prior, O., O’Beirne, D. (1999). Survival and growth of Listeria species in a model 

ready-to-use vegetable product containing raw and cooked ingredients as affected by storage 



References  

125 

 

temperature and acidification. International Journal of Food Science and Technology, 34, 

317-324. 

Thoroski, J., Blank, G., Biliaderis, C. (1989). Eugenol induced inhibition of extracellular enzyme 

production by Bacillus cereus. Journal of Food Protection, 52, 399-403. 

Tsigarida, E., Skandamis, P., Nychas, G.-J. E. (2000). Behaviour of Listeria monocytogenes and 

autochthonous flora on meat stored under aerobic, vacuum and modified atmosphere 

packaging conditions with or without the presence of oregano essential oil at 5°C. Journal of 

Applied Microbiology, 89, 901-909. 

Ultee, A., Smid, E. J. (2001). Influence of carvacrol on growth and toxin production by Bacillus 

cereus. International Journal of Food Microbiology, 64, 373-378. 

Ultee, A., Kets, E. P. W., Smid, E. J. (1999). Mechanisms of action of carvacrol on the food-borne 

pathogen Bacillus cereus. Applied and Environmental Microbiology, 65, 4606-4610. 

Ultee, A., Kets, E. P. W., Alberda, M., Hoekstra, F. A., Smid, E. J. (2000). Adaptation of the food-

borne pathogen Bacillus cereus to carvacrol. Archives of Microbiology, 174, 233-238. 

Ultee, A., Bennink, M. H. J., Moezelaar, R. (2002). The phenolic hydroxyl group of carvacrol is 

essential for action against the food-borne pathogen Bacillus cereus. Applied and 

Environmental Microbiology, 68, 1561-1568. 

Vaara, M. (1992). Agents that increase the permeability of the outer membrane. Microbiological 

Reviews, 56, 395-411. 

Van de Braak, S. A. A. J., Leijten, G. C. J. J. (1999). Essential oils and oleoresins: a survey in the 

Netherlands and other major markets in the European Union. Ed. CBI, Centre for the 

Promotion of Imports from Developing Countries, Rotterdam. 

Van Welie, R. T. H. (1997). Alle cosmetica ingrediënten en hun functies. Ed. Nederlandse 

Cosmetica Vereniging, Nieuwegein. 

Vargas, M., Albors, A., Chiralt, A., González-Martínez, C. (2011). Water interactions and 

microstructure of chitosan-methylcellulose composite films as affected by ionic 

concentration. LWT-Food Science and Technology, 44, 2290-2295. 

Vargas, M., Pastor, C., Chiralt, A., McClements, D. J., González-Martínez, C. (2008). Recent 

advances in edible coatings for fresh and minimally processed fruits. Critical Reviews in 

Food Science and Nutrition, 48, 496-511. 

Varma, M., Field, R., Stinson, M., Rukovets, B., Wymer, L., Haugland, R. (2009). Quantitative real-

time PCR analysis of total and propidium monoazide-resistant fecal indicator bacteria in 

wastewater. Water Research, 43, 4790-4801. 

Vekiari, S.A., Protopapadakis, E.E., Papadopoulou, P., Papanicolaou, D., Panou, C., Vamvakias,  M. 

(2002). Composition and seasonal variation of the essential oil from leaves and peel of a 

Cretan lemon variety. Journal Agricultural and Food Chemistry, 50,147–153. 



References  

 

126 

 

Wan, J., Wilcock, A., Coventry, M. J. (1998). The effect of essential oils of basil on the growth of 

Aeromonas hydrophila and Pseudomonas fluorescens. Journal of Applied Microbiology, 84, 

152-158. 

Wendakoon, C. N., Sakaguchi, M. (1995). Inhibition of amino acid decarboxylase activity of 

Enterobacter aerogenes by active components in spices. Journal of Food Protection, 58, 

280-283. 

WHO, (2002). (World Health Organization). Food safety and foodborne illness, World Health 

Organization Fact sheet 237, revised January 2002, Geneva.  

WHO, (2014). (World Health Organization). Advancing food safety initiatives: strategic plan for 

food safety including foodborne zoonoses 2013-2022. 

(http://www.who.int/foodsafety/publications/strategic-plan/en/). 

Wilkinson, J. M., Hipwell, M., Ryan, T., Cavanagh, H. M. A. (2003). Bioactivity of Backhousia 

citriodora: Antibacterial and antifungal activity. Journal of Agricultural and Food 

Chemistry,51,76-81. 

Wilson, C.L., Droby, G.G. (2000). Microbial Food Contamination, pp. 149-171. Boca Raton (FL): 

CRC Press. 

Wuryatmo, E., Klieber, A., Scott, E. S. (2003). Inhibition of citrus postharvest pathogens by vapor 

of citral and related compounds in culture. Journal Agricultural and Food Chemistry, 51, 

2637-2640. 

Yang, D., Michel, L., Chaumont, J. P., Millet-Clerc, J. (2000). Use of caryophyllene oxide as an 

antifungal agent in an in vitro experimental model of onychomycosis. Mycopathologia, 148, 

79-82. 



 

 



 

 



 

129 

 

Scientific production during Ph.D. 

Publications: 

Settanni, L., Randazzo, W., Palazzolo, E., Moschetti, M., Aleo, A., Guarrasi, V., Mammina, C., P.L. 

San Biagio, F.P. Marra, G. Moschetti & Germanà, M. A. (2014). Seasonal variations of 

antimicrobial activity and chemical composition of essential oils extracted from three Citrus 

limon L. Burm. cultivars. Natural product research, 28(6), 383-391. 

Mahony, J., Randazzo, W., Neve, H., Settanni, L., & van Sinderen, D. (2015). Lactococcal 949 group 

phages recognize a carbohydrate receptor on the host cell surface. Applied and Environmental 

Microbiology, 81(10), 3299-3305.  

Scatassa, M. L., Gaglio, R., Macaluso, G., Francesca, N., Randazzo, W., Cardamone, C., Di Grigoli, 

A., Moschetti, G., & Settanni, L. (2015). Transfer, composition and technological 

characterization of the lactic acid bacterial populations of the wooden vats used to produce 

traditional stretched cheeses. Food Microbiology,52, 31-41. 

Randazzo, W., Jiménez-Belenguer, A., Settanni, L., Perdones, A., Moschetti, M., Palazzolo, E., 

Guarrasi V., Vargas M. Germanà M.A., & Moschetti, G. (2016). Antilisterial effect of citrus 

essential oils and their performance in edible film formulations. Food Control,59, 750-758. 

Randazzo, W., Corona, O., Guarcello, R., Francesca, N., Germanà, M.A., Erten, H., Moschetti, G., 

Settanni, L. Development of new non-dairy beverages from Mediterranean fruit juices fermented 

with water kefir microorganisms. Food Microbiology (accepted).  

Corona, O., Randazzo, W.,  Miceli, A., Guarcello, R., Francesca, N., Erten, H., Moschetti, G., 

Settanni, L. (2016). Characterization of kefir-like beverages produced from vegetable juices. 

LWT Food Science and Technology, 66, 572-581. 

 

Conference papers: 

Planeta D., Aiello S., Giammanco M., Randazzo W. and Mineo V. (2012). Qualitative comparison of 

mediterranean olive oils. Conference paper presented at 85° Congresso Società Italiana di 

Biologia Sperimentale (SIBS), 29-30 Novembre 2012, Parma. 

Randazzo, W., Guarrasi, V., Aleo, A.,  Settanni, L., Moschetti, M., Mammina, C., Palazzolo, E., 

Germanà, M.A., San Biagio, P.L. and Moschetti, G. (2013). Seasonal variations of antimicrobial 

activity and chemical composition of Citrus limon L. Burm. spp. essential oils. Conference paper 

presented at EFFoST Annual Meeting 2013, 12-15 Novembre 2013, Bologna. 

Moschetti, M., Guarrasi, V., Randazzo, W., Aleo, A., Settanni, L., Moschetti, G., Mammina, C., 

Barone, F. and P. L. San Biagio. (2013). Chemical composition and antimicrobial activity of 

essential oil estracted from the peel of a Sicilian mandarin cv. Tardivo di Ciaculli. Conference 

paper presented at I° Congresso Nazionale della Società Italiana per la Ricerca sugli Oli 

Essenziali (S.I.R.O.E.). Roma 15-17 Novembre 2013 – Natural1, 127 – 2013. 



 

130 

 

Randazzo, W., Moschetti, M., Alfonzo, A., Guarrasi, V., Germanà, M.A., Palazzolo, E., Settanni, L., 

San Biagio, P.L. and Moschetti, G. (2014). Chemical compositions and antifungal activity of 

essential oils extracted from Citrus fruits cultivated in Sicily. Conference paper presented at II° 

Congresso Nazionale della Società Italiana per la Ricerca sugli Oli Essenziali (S.I.R.O.E.). 

Roma 14-16 Novembre 2014 – Natural1, 138 – 2014. 

Moschetti M., Guarrasi V., Randazzo W., Aleo A., Settanni L., Moschetti G., Mammina C., Barone 

F., San Biagio P. L. (2013). Effetto antimicrobico della componente volatile dell’olio essenziale 

di mandarino. Conference paper presented at Meeting Biotecnologie IBIM-STEBICEF 2013, 27-

28 Giugno 2013, Palermo.  



 

 

 

 

Acknowledgements 

 



 

 



 

133 

 

“The most beautiful thing we can experience is the mysterious. It is the source of all 

true art and all science. He to whom this emotion is a stranger, who can no longer 

pause to wonder and stand rapt in awe is as good as dead: his eyes are closed.” 

(A. Einstein) 

 

Beside this citation, I see the example of my father, Rosario, who raised on me the desire of 

experiencing and knowing. Thanks to this stimulating and positive perspective he passed on 

me, I crossed over all the challenges of my life, including the ones of my Ph.D. 

Therefore, my first, deep, sincere and full of love though goes to him. 

 

 

No one of the results of this thesis would have been possible without the support and the help 

received from several persons.  

Firstly, I am deeply grateful to all of the Microbiology Unit of the Dipartimento di Scienze 

Agrarie e Forestali dell’Università di Palermo, especially to my supervisor, Prof. Giancarlo 

Moschetti, and to my co-tutor Dr. Nicola Francesca. A special thank goes to Prof. 

Luca Settanni that supported me since my degree thesis. I am grateful to my colleagues 

Antonio Alfonzo, Ciro Sannino, Raimondo Gaglio, Rosa Guarcello, Alessandra 

Martorana, Marcella Barbera, Margherita Cruciata, Milko Sinacori, Anna Nasca, Giusi 

Ventimigia, Selene Giambra and Gaetano Conigliaro, with whom I daily shared happiness, 

sorrow and many coffees during these years. All of them have helped me at different extent, 

making my work at lab always pleasant and fruitful.    

I want to thank as well all the research groups I collaborated with during my Ph.D. Firstly, 

all the ones of my department, Dipartimento di Scienze Agrarie e Forestali dell’Università di 

Palermo, in particular Prof. Maria Antonietta Germanà, Prof. Eristanna Palazzolo, Dr. 

Onofrio Corona, Dr. Michele Panno, Prof. Franca Barone and Dr. Vittorio Farina.    

I am deeply grateful to Dr. Valeria Guarrasi (Istituto di Biofisica – Consiglio Nazionale 

della Ricerca of Palermo) for helping me in exceeding of research difficulties. I thank Marta 

Moschetti for the analyses she did and Prof. Pier Luigi San Biagio.  

I thank Prof. Caterina Mammina and Dr. Aurora Aleo for their warm welcome in their lab 

at Dipartimento di Scienze per la Promozione della Salute e Materno Infantile 

"G.D'Alessandro" (Palermo) during some experimental steps. 



 

134 

 

I want to thank Prof. Ana Jiménez Belenguer of the Departmento de Biotecnologia, Área 

Microbiologia, E.T.S.I.A.M., Universitat Politècnica de València, for supporting me 

throughout my first staying in Spain and for the stimulating discussions we had. I would like 

to thank Prof. Maria Vargas and Angela Perdones (Instituto Universitario de Ingeniería de 

Alimentos para el Desarrollo, Departamento de Tecnología de Alimentos, Universitat 

Politècnica de València) for the prolific collaborations concerning food coatings.  

I am deeply grateful to Dr. Gloria Sanchez Moragas (Biotechnology Department, IATA-

CSIC, Spain) for her kindness, for teaching me about novel viral and bacterial technics, for 

supporting me throughout my last staying in Spain, always showing patience and positive 

point of view. Thanks to Prof. Rosa Aznar Novella for welcoming me in her laboratory. 

A special thank goes to all the ones of the Instituto Agroforestal Mediterráneo, Univeritat 

Politecnica de Valencia. Thanks to Manolo, Carlos, Carmina, Amparo that supported me 

during my staying at Valencia on both personal and scientific point of view. Thanks to 

Mercedes for her kindness, her advices and fruitful collaborations concerning essential oils.    

Finally, I want to thank my collegues at IATA-CSIC, Alba, Javier, Sara, Anto, Fani, Jiri, 

Lucia, Aurora, Ceci, Adri, Irene and Carol for sharing protocols, 

making pleasant my staying and for your willingness to nights out. 

A special thanks to all of my friends of Palermo for supporting me during these years: Ivan, 

Pinus, Ana, Andrea, Eliana, Giulia, Oscar, Andrea, Giulia, Mario, Laura, Mariella, 

Dana, Marco, Vivi, Carlo, Chicca. A special  deep thought goes to Natalia that always 

give to me positive vibrations. 

Finally, a gratefully hug to my lovely family, firstly to my mom, Marinita, my brother, 

Dario, my grand-mother, Raimonda, and my father-in-law, Rosario, for caring me all the 

time and for supporting me in that professional experience even when I was abroad.   

 

 

I wish you all to always experience the mysterious,  

to pause to wonder and to stand rapt in awe!!! 

 

A huge thank to all of you that make this experience such outstanding!!! 

 

 


