
Experimental Evaluation of Privacy-Preserving
Aggregation Schemes on PlanetLab

Francesco Randazzo†, Daniele Croce∗, Ilenia Tinnirello∗, Cettina Barcellona∗, Maria Luisa Merani‡,
†∗Dipartimento Energia, Ingegneria dell’Informazione e Modelli Matematici, University of Palermo, Palermo, Italy

E-mail: † francesco.randazzo05@community.unipa.it - ∗ name.surname@unipa.it
‡Dipartimento di Ingegneria “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena, Italy

E-mail: marialuisa.merani@unimore.it

Abstract—New pervasive technologies often reveal many sen-
sitive information about users’ habits, seriously compromising
the privacy and sometimes even the personal security of people.
To cope with this problem, researchers have developed the
idea of privacy-preserving data mining which refers to the
possibility of releasing aggregate information about the data
provided by multiple users, without any information leakage
about individual data. These techniques have different privacy
levels and communication costs, but all of them can suffer when
some users’ data becomes inaccessible during the operation of
the privacy preserving protocols. It is thus interesting to validate
the applicability of such architectures in real-world scenarios.
In this paper we experimentally evaluate two promising privacy-
preserving techniques on PlanetLab, analyzing the execution time
and the failure rate that each scheme exhibits.

Index Terms—secret sharing, privacy, data mining, secure
multi-party computation.

I. INTRODUCTION

Privacy-preserving data mining refers to the possibility to

release aggregate information about the data provided by mul-

tiple users, without any information leakage about individual

data [1]. This possibility is particularly significant in the

emerging scenario of pervasive technologies that constantly

track users’ location, energy consumption, visited web sites,

music and movie downloads: undoubtedly, data correlation can

reveal many sensitive information about users’ habits.

Two main approaches have been proposed so far for privacy-

preserving data mining: altering the data before delivering

them to the data miner in such a way that the aggregation

results are not compromised, or relying upon more sites that

have to cooperate to get the mining results. Data alteration

solutions may introduce mining errors, if the alteration is based

on random noise [2], and may result extremely complex when

homomorphic data encryption is employed [3]. We therefore

choose to follow the second approach, exploiting multi-party

computation protocols.

Multi-party computation protocols have been designed to

compute a function of the data collected from multiple users,

without revealing any information except for the final value of

the function. Typical architectures for multi-party computation

This work has been partially supported by the Italian national research
project PON 04 i-NEXT.

rely on multiple (independent) computation sites, which pro-

cess randomized versions of the users’ data provided by the

so called input peers. Different solutions for distributing data

among the computation sites exist, based on logic circuits [4],

arithmetic circuits [5], or linear secret sharing schemes [6].

Solutions based on linear secret shares computed over small

fields, such as Sharemind [7], SEPIA [8], P4P [9] and [10],

have been recently demonstrated to effectively scale to large

numbers of users. In [11] we put forth two promising secure

sum protocols for privacy preserving data mining and analyt-

ically quantified the privacy degree and the communication

cost that they achieve, as well as their reliability in unstable

scenarios, that is, when users unpredictably depart and their

data are no longer available. The examined architecture was

based on a central data mining server and on users grouped in

logical clouds where their data are preliminarily aggregated.

The current contribution complements the previous theoretical

work, exploring the performance of the proposed schemes in

the real testbed environment of PlanetLab.

II. SCENARIO AND PROPOSAL

A. Background

To protect the users’ sensitive data during the data mining

process, we rely upon the Shamir’s secret sharing (SSS)

scheme [13]. For this scheme the dealer, who owns a secret

s, splits it into n pieces, called shares: the knowledge of any

k, with k ≤ n, or more shares allows the reconstruction of s,
whereas the knowledge of fewer than k shares leaves the secret

undetermined. This is a typical (k, n)-threshold scheme. To

generate the shares, the dealer randomly selects the (k−1) co-
efficients of a polynomial p(x) whose degree is k−1 and sets

the known term p(0) equal to the secret itself; then the n shares

are determined as: sh1(s) = [x1, p(x1) mod q], sh2(s) =
[x2, p(x2) mod q], · · · , shn(s) = [xn, p(xn) mod q], where
x1, x2, ..., xn are arbitrary integers, or seeds, and q is a prime

number larger than both s and n. Interpolating k or more

shares it is possible to reconstruct the polynomial coefficients

and then obtain s as p(0).
Note that when k = n, the shares can be created in a much

simpler way, following the so-called trivial secret sharing

scheme: in this case the first (n − 1) shares are randomly

picked in [0, q] in accordance to a uniform distribution, then

978-1-4799-5344-8/15/$31.00 ©2015 IEEE 379

Data

Miner

k

1

2

Ncloud

Fig. 1. Multi-Cloud Scenario

the last share is computed as (s − sh1(s) − sh2(s) − · · · −
shn−1(s)) mod q.
Both schemes exhibit the homomorphic property: when two

(or more) secrets are considered, e.g., s1 and s2, the sum of

two shares of s1 and s2 is a share of s1 + s2, the sum of the

secrets. In the specific case of SSS, for this property to hold

it is required that the shares of different secrets be evaluated

for the same seed y: so, given shares sh(s1) = [y, p1(y)] and
sh(s2) = [y, p2(y)], sh(s1) + sh(s2) is a share of s1 + s2.

B. Framework and Hypotheses

We next describe the partly distributed, privacy preserving

architecture proposed to mine the data of a group of users

respecting their privacy. We focus on those statistical learning

strategies whose update laws require linear operations such

as vector addition: on one hand, this allows to exploit the

homomorphic property that the previously introduced secret

sharing strategies display; on the other, the linear feature

is exhibited by several popular data mining algorithms, and

therefore does not represent a severe restriction.

We assume that a central unit is interested in knowing the

aggregate behaviour of the users, grouped in proper clusters,

and that this knowledge has to be acquired without disclosing

the single user data. The output of the privacy-preserving data

mining process will therefore turn out very useful for both

the data miner and the users whose data are being mined;

no privacy leakage will occur, an attractive feature given the

mining technique typically collects personal, sensitive data.

Rather than the large field operations required by public-key

cryptography or homomorphic encryption, we will rely upon

SSS scheme to protect users’ data from external and internal

attackers. Although SSS natively supports both secure addition

and multiplication, we limit our analysis to secure sums

because a large number of popular data mining and machine

learning algorithms can be decomposed and parallelized in

simple additions [9].

Let us therefore refer to a multi-cloud scenario where, as

depicted in Fig. 1, we have:

• one central unit, also called profiling server, that acts

as the data miner and takes on the role of clocking the

mining protocol;

• N users (interchangeably termed nodes in what follows)

grouped in multiple clouds on the basis of their geograph-

ical location: we will denote by Ncloud the number of

clouds and by Nnode = N/Ncloud the number of nodes

in each cloud (with no loss in generality, N is assumed

to be a multiple of Ncloud).

In this model the profiling server is honest-but-curious, so it

follows the protocol without cheating, but it is not totally

trusted: it might want to access the users’ data for its own

purposes. Users will be modeled as honest-but-curious parties

too: each of them can collude with other nodes within the

same cloud and/or with the server, against one or more

victims. Moreover, nodes are not permanently connected to

the network: there is a non-null probability p that the node

status be off, due to either intermittent network connectivity

or sudden departure of the user from the network; finally, users

independently fail. Examples are wireless users, or users of a

peer-to-peer overlay.

The unstable network scenario we just depicted can severely

impair the effectiveness of the proposed architectures: we

therefore evaluate not only the time needed for each scheme

to be completed, but also their robustness against host failures

and loss of users’ data.

Note that compared to other solutions, we do not rely on

trusted third parties or “privacy peers” (as in SEPIA), thus

completely eliminating the risk of third party collusion. As

we will show, this property comes at the cost of slower

performance because the secure protocol involves generic

peers in the network without any control on their computing

capacity or load. This is the price to be paid to guarantee this

desired privacy degree.

C. Base Scheme

In this scheme we propose to employ SSS technique and

take advantage of its homomorphic property separately in each

cloud. During the distribution phase (DP), shares are created

and distributed among the users belonging to the same cloud;

during the collection phase (CP), k sums of shares will be

delivered to the server, as detailed below. The DP starts when

the server randomly triggers a node within each cloud: let us

denote this node as node i. Node i of a generic cloud:

1) makes Nnode shares of its secret data di following

Shamir (k,Nnode)-threshold scheme, using the nodes

identifiers, j = 0, 1, . . . , i, · · · , (Nnode − 1), as seeds;
2) keeps for itself share shi(di) = [i, pi(i) mod q];
3) sends share shj(di) = [j, pi(j) mod q] to node j of its

cloud, j = 0, 1, . . . , (Nnode − 1), j 6= i.

When receiving node i share, every node in the cloud learns

that it is time to compute the shares of its secret: it therefore

behaves as node i, retaining the share computed with its

identifier as seed and sending all other shares to the proper

node within the cloud.

Once node i has received the (Nnode − 1) shares from the

nodes within its same cloud, it sums them up and determines

380

sh0(d0) sh1(d1) sh1(d6)sh1(d0)

sh1(d7) sh1(d8)

sh2(d2) sh2(d0)

sh2(d1)

sh2(d7) sh2(d8)

sh3(d3) sh3(d0)

sh3(d1)

sh3(d2) sh3(d8)

sh0(d4) sh0(d1)

sh0(d2) sh0(d3)

sh1(d5) sh1(d2)

sh1(d3) sh1(d4)

sh2(d6) sh2(d3)

sh2(d4) sh2(d5)

sh3(d7) sh3(d4)

sh3(d5) sh3(d6)

sh0(d8) sh0(d5)

sh0(d6) sh0(d7)
1

2

0

3

45

6

7

8

Fig. 2. Distribution Phase example with Nnode = 9 and z = 4

Si =
∑Nnode

j=0
shi(dj) = [i,

∑Nnode−1

j=0
pj(i) mod q], which

owing to the homomorphic property, is a share of the sum of

the secrets. Now the CP begins: during this phase k uniformly

randomly designated nodes within each cloud send the server

the partial sum they computed along with their identifier: in

detail, node h sends the (h, Sh) pair, the server collects k of

such contributions, by interpolation finds the polynomial and

then the sum of the secrets for that cloud, Scloud =
∑Nnode

i=1
di.

Summing together the contributions from all clouds, the server

obtains the sum of all users’ secrets, as desired.

Note that during the DP and CP each user owns Nnode

shares of Nnode different secrets: not enough to recover any

valuable information about other users. The server only knows

partial sums and cannot recover the data of the single user

either. However, if k nodes in a cloud are corrupted and form

a coalition, they can collect k shares of the other users in the

cloud and disclose their secret data: it is therefore important

to properly set k ·Nnode to a sufficiently high value.

D. Enhanced Scheme

When the number of nodes within each cloud grows, the

distribution phase of the base scheme becomes considerably

burdensome. To relieve it, we observe that it is not necessary

that in each cloud the generic node sends its secret data shares

to every other node.

Accordingly, we modify the previous proposal and employ

a (k′, z)-threshold scheme, with z < Nnode and k′ ≤ z, as
better detailed next.

Within each cloud, we divide all nodes in z different sets

Ir , r = 0, 1, . . . , (z − 1), based on the node identifier, j, so
that set Ir includes all nodes such that their identifier satisfies

the condition

Ir = {all nodes with identifier j | j mod z = r} (1)

As an example, with Nnode = 9 and z = 4, we have I0 =
{0, 4, 8}, I1 = {1, 5}, I2 = {2, 6} and I3 = {3, 7}. Now we

require node i to interact with a reduced number of nodes,

namely, node i

1) makes z shares based on the (k′, z)-threshold scheme,

using 0 ≤ r ≤ (z − 1) as seed: shr(di) =
[r, pi(r) mod q];

Data

Miner

trigger

1

2

0

3

4

5

6

7

8

SI0

SI3

S0 S4 S8

S3 S7+

++

=

=

Fig. 3. Collecting Phase example with Nnode = 9, z = 4 and k′ = 2

2) keeps the share evaluated in r = i mod z;
3) sends shr(di) to a randomly selected node within set

Ir, ∀r ∈ [0, (z − 1)] and r 6= i mod z;

Resuming the previous example, node 1 of Fig. 2 keeps

for itself sh1(d1) and might choose to send the remaining

z − 1 = 3 shares as follows: share sh0(d1) to node 4 in I0,
share sh2(d1) to node 2 in I2 and share sh3(d1) to node 3
in I3, as the red lines in Fig. 2 indicate; this is simply an

example, any combination fulfilling the previous constraints

is equally acceptable. At the end of the DP, nodes within the

same set Ir will possess only shares evaluated in r = i mod z:
note that not all the nodes within a set might receive shares (as

it happens for node 0 in Fig. 2). Next, the CP begins: within

set Ir, each node sums to the share it kept for itself the shares

that it might have received, to compute a partial sum, Si for

node i. Then such partial sums Si’s are collected, in order to

determine SIr =
∑

i∈Ir
Si =

∑Nnode−1

i=0
shr(di): a possible

choice is to accumulate them in a round robin manner, starting

from a specific node triggered by the server, that transmits

its contribution to the next downstream node, and gradually

covering all other nodes within the set. For the toy example

we introduced earlier (see Fig. 3), given that within set I0
node 0 is triggered, this node sends S0 (which is the sum of

its share sh0(d0) plus the shares that it might have received

during the previous DP) to node 4; node 4 then adds S4 and

forwards everything to node 8, that adds S8. It is up to node

8 to deliver SI0 that it just completed to the server. Now it is

sufficient that any k
′

of such sums of shares computed in k
′

distinct sets of the same cloud be transferred to the server for

it to recover Scloud, the sum of the data for the Nnode users

belonging to the examined cloud:

Scloud =

Nnode−1∑

i=0

di , (2)

where, as for the previous scheme, last equality stems from

the application of the homomorphic property to the partial

sum provided by the single cloud; as desired, the sum of

the users’ data is recovered, without disclosing any of the

single contributions to the data miner. Taking into account

the presence of more clouds is rather straightforward: the

381

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number

C
D

F

Participating Hosts

Received Shares

Collected Sums

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number

C
D

F

Participating Hosts

Received Shares

Collected Sums

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number

C
D

F

Participating Hosts

Received Shares

Collected Sums

Fig. 4. Performance of the base scheme with 30, 60 and 90 nodes respectively.

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Duration (s)

C
D

F

Collection Phase

Distribution Phase

Total (incl. waiting)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Duration (s)

C
D

F

Collection Phase

Distribution Phase

Total (incl. waiting)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Duration (s)

C
D

F

Collection Phase

Distribution Phase

Total (incl. waiting)

Fig. 5. CDF of the duration of the DP and CP periods for the base scheme with Nnode = 30, 60 and 90 nodes.

contributions of all clouds have to be gathered, where each

of them is in the form of (2), so that the sum S of all users’

data is finally available to the server.

III. EXPERIMENTAL RESULTS

Since secret sharing protocols are sensitive to node failures

and data losses, it is important to validate the applicability of

the proposed schemes in real-world scenarios. For this reason,

we developed both architectures in Java and run over 5000

experiments on a PlanetLab testbed. The schemes have been

implemented as described in Section II, activating two server

sockets in each node, responsible of managing the distribution

phase DP and the collection phase CP. Connections towards

the peer nodes are established and closed run-time by each

node, for disseminating the shares in the cloud, and for col-

lecting the sum of the shares aggregated by each participating

node.

Configuration. For each experiment, we build clouds us-

ing Nnode PlanetLab nodes, which have been organized in

geographically close sets (grouping them by country) to op-

timize the performance of the communication rings. For the

base scheme, we consider different values of Nnode (namely,

Nnode = 30, 60, 90), while for the enhanced scheme we

choose Nnode = 90 and vary the number of sets z = 3, 5, 10
(resulting in |Ir| = 30, 18, 9 nodes per set). For each scenario,

we repeat the experiments at least 100 times, monitoring

the duration of the share distribution phase and collection

phase, as well as the failure rate of the nodes, that is, the

probability that it is not possible to recover the data of the

nodes belonging to the same cloud during the experiment.

Indeed, we constantly monitor the state of the nodes in order

to exclude nodes which are down at the beginning of the

experiment, but once the experiment starts, failures cannot be

recovered. It is also interesting to monitor the number of partial

sums eventually recovered by the first node in the ring (which

in our implementation is responsible for collecting all the sums

of shares), from which an optimal tuning of k can be obtained

for achieving a desired success probability.

Base Scheme. Figure 4 summarizes the results obtained for

the base scheme, when k is equal to the number of nodes in

the ring, i.e. the number of shares generated by each node

is equal to Nnode. The three distinct figures report the CDF

(Cumulative Distribution Function) of the number of hosts

participating in the experiments1 (black line), the number of

shares received by node 1 during the DP (red line) and the

number of sums of shares collected during the CP (green line),

for different Nnode values. These figures reveal that the base

scheme exhibits a good performance in those setups where

Nnode = 30 or 60: here the number of collected sums is

typically coincident with the number of participating hosts

minus 1 (the collecting node is not counted). However, as the

number of nodes increases, the probability of collecting no

data (because node 1 fails or the CP experiences a timeout)

increases: it is equal to 0.2 when Nnode = 90.
Figure 5 depicts the CDF of the duration for the DP and CP

phase measured at node 1, which is also the node responsible

for the ignition of the CP. It clearly emerges that large rings

result in long running times (especially during the DP), which

1Note that some PlanetLab hosts were temporarily down or unreachable
already before the beginning of the experiments so the number of hosts
participating to the scheme was slightly below the corresponding Nnode

value.

382

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distribution Fase Duration (s)

C
D

F

30 hosts

60 hosts

90 hosts

Fig. 6. CDF of the DP period duration for the base scheme with 30, 60 and
90 nodes.

in turn increases the probability of experiencing node failures

during the scheme execution. Since the CP is meaningful only

when all the nodes complete the dissemination of their shares,

it is necessary to consider a waiting time before starting the

CP (which we set to 300s). Moreover, to avoid nodes being

blocked into the distribution phase while some nodes of the

rings are not available, we also set-up a timeout equal to

600s to interrupt the distribution towards the inactive nodes.

The effects of this timer are clearly visible from the figure:

as the ring size increases, an increasing percentage of nodes

experiences a timeout during the DP (from about 5% when

Nnode = 30 to about 20% when Nnode = 90), which is

reflected into the total time required for completing the DP

and CP (green curves).

Analyzing the root cause of these delays in greater detail,

figure 6 shows the duration of the DP for each node across

all experiments (note that the CP duration can be measured

only by node 1 and it is shown in figure 5). While for the

Nnode = 30 case the delay is almost constant for all the

nodes and lower than 100s, as the ring size gets larger, a

significant fraction of nodes has a DP with random distribution

in the [100s − 500s] range, while about 5% of the nodes

terminate the DP because of the timeout expiration. As we will

explain shortly, these high and variable running times are not

due to failures but to overloaded PlanetLab hosts which react

very slowly to communications. However, since the aggregated

data can be recovered when k secret sums are available, by

opportunistically limiting the k value to the fraction of nodes

which complete the DP in a reasonable time, it is possible to

limit the latency of the privacy-preserving aggregation process.

For example, for Nnode = 60, when k = Nnode/2 a sufficient

number of sums can be available within 200s. In the basic

scheme, the reason for such high delays is due to the fact the

the DP involves all the nodes in the cloud and requires the

exchange of Nnode(Nnode − 1) messages. Still, depending on

the use case, such running times are acceptable for the well

functioning of the application, and guarantees privacy without

relying on third parties.

Figure 7 shows the distribution of the failures seen across

the participating nodes. The figure shows that the probability

of the single nodes failing during the experiments is overall

quite low, with almost all of the nodes failing less than 10% of

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Failure probability (%)

C
D

F

30 hosts

60 hosts

90 hosts

Fig. 7. CDF of the node failure probability for the base scheme with 30, 60
and 90 nodes.

the times. This relatively small failure probability still can have

a non negligible impact when the basic scheme is employed,

especially in scenarios where the running time is quite long,

i.e., when the number of involved nodes is large. In such cases,

the enhanced scheme provides much higher performances, as

we will show next.

Enhanced Scheme. The enhanced scheme has been designed

for mitigating the impact of slow hosts in the dissemination of

the shares. Indeed, nodes are organized into sets and the total

number of shares to be distributed is equal to the number of

sets. Figure 8 summarizes the overall results achieved by this

scheme with Nnode = 90 and with an increasing number of

sets (z = 3, 5 and 10). In this experiment, for each set, shares

are sent to a randomly selected nodes. The figure shows the

number of hosts active during the experiments, the number

of shares received by each host (random with average z), the
number of partial sums received by node 1 of each set (close

to |Ir|) and the total number of shares collected in each set

(ideally equal to the number of nodes). The figure shows that

the total number of shares collected by node 1 of each set

closely follows the number of participating nodes and that the

best performance is achieved when z = 3. Indeed, when z
is small the number of shares to be sent is small as well,

with lower delays and higher probability of success, while

with large values of z the enhanced scheme tends to the basic

scheme and the total number of shares collected deviates from

the desired result.

Finally, figure 9 shows that the enhanced scheme dramat-

ically reduces the duration of both DP and CP, resulting in

a much shorter time needed to complete the gathering of the

data. Interestingly, the running time is almost insensitive with

respect to the number of sets and overall over 80% of the

experiments lasted less than 200 seconds, which results into a

time reduction equal to 67% compared to the equivalent basic

scheme.

IV. CONCLUSION

In this paper we have experimentally investigated the

performance of two partly distributed multi-cloud, privacy-

preserving schemes suitable for data mining algorithms based

on linear operations. Two different approaches have been

considered, a basic and an enhanced scheme: their behavior

has been experimentally assessed on PlanetLab for validating

383

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number

C
D

F

Participating Hosts

Received Shares

Received Partial Sums

Total Collected Shares

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number

C
D

F

Participating Hosts

Received Shares

Received Partial Sums

Total Collected Shares

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number

C
D

F

Participating Hosts

Received Shares

Received Partial Sums

Total Collected Shares

Fig. 8. Performance of the enhanced scheme with 90 nodes and z = 3, z = 5 and z = 10.

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Duration (s)

C
D

F

Collection Phase

Distribution Phase

Total (incl. waiting)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Duration (s)

C
D

F

Collection Phase

Distribution Phase

Total (incl. waiting)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Duration (s)

C
D

F

Collection Phase

Distribution Phase

Total (incl. waiting)

Fig. 9. CDF of the duration for the enhanced scheme with Nnode = 90 nodes and z = 3, z = 5 and z = 10

the feasibility of the approach and for providing some insights

useful for the tuning of the scheme operational parameters. Ex-

perimental results show that unexpected latencies may emerge,

especially during the distribution of the shares, because of

the time-varying load of PlanetLab nodes. To mitigate the

effects of these latencies on the overall time required for data

aggregation, it is possible to select a secret sharing scheme

with a threshold value much lower than the total number of

shares (e.g. k = Nnode/2) for the basic scheme case or to

opportunistically choose the number of sets for the enhanced

scheme.

Although, overall, the enhanced scheme offers a reduced

latency, it is important to observe that there are also some

potential complications in its implementation. Indeed, for the

basic scheme, each node can independently verify that it has

collected the total number of expected shares (i.e. Nnode− 1)
and drop the sum of the received shares whenever this number

is lower than expected. This means that each sum received

by the server is a useful data and that the reception of k
sums guarantees the reconstruction of the aggregated data.

Conversely, for the enhanced scheme, a share of the aggregated

data is not available at a single node, but only collecting the

shares received by each node of a set. Therefore, it is necessary

to consider a mechanism to track the total number of shares

collected in each set.

REFERENCES

[1] V. S. Verykios, E. Bertino, I. N. Fovino, L. P. Provenza, Y. Saygin,
and Y. Theodoridis, “State-of-the-art in privacy preserving data mining,”
SIGMOD Rec., vol. 33, no. 1, pp. 50–57, Mar. 2004.

[2] R. Agrawal and R. Srikant, “Privacy-preserving data mining,” in Proceed-

ings of the 2000 ACM SIGMOD International Conference on Management

of Data, ser. SIGMOD ’00. New York, NY, USA: ACM, 2000, pp. 439–
450. [Online]. Available: {http://doi.acm.org/10.1145/342009.335438}

[3] Z. Erkin, T. Veugen, T. Toft, and R. Lagendijk, “Privacy-preserving user
clustering in a social network,” in Information Forensics and Security,

2009. WIFS 2009. First IEEE Int. Workshop on, Dec 2009, pp. 96–100.
[4] A. C. C. Yao, “How to generate and exchange secrets,” in 27th Founda-

tions of Computer Science (FOCS), 1986, pp. 162–167.
[5] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems

for non-cryptographic fault-tolerant distributed computation,” in 20th
ACM symposium on Theory of computing (STOC), 1988, pp. 1–10.

[6] R. Cramer, I. Damgard, and U. Maurer, “Multiparty computations from
any linear secret sharing scheme,” in Int. Conference on the Theory and
Application of Cryptographic Techniques (EUROCRYPT), 2000.

[7] S. Bogdanov, D. Laur and J. Willemson, “Sharemind: A framework for
fast privacy-preserving computations,” in 13th European Symposium on

Research in Computer Security (ESORICS), vol. 5283, Oct 2008, pp.
192–206.

[8] M. M. D. Burkhart, M. Strasser and X. Dimitropoulos, “Sepia: Privacy-
preserving aggregation of multi-domain network events and statistics,” in
19th USENIX Security Symposium (USENIX), 2010, pp. 223–240.

[9] Y. Duan, J. Canny, and J. Zhan, “P4p: practical large-scale privacy-
preserving distributed computation robust against malicious users,” in
USENIX Security Symposium, Aug. 2010.

[10] A. Iacovazzi, A. D’Alconzo, F. Ricciato, and M. Burkhart. Elementary
secure-multiparty computation for massive-scale collaborative network
monitoring. Comput. Netw. vol. 57, no. 17 (Dec. 2013), pp. 3728–3742.

[11] M.L. Merani, C. Barcellona, I. Tinnirello,“Multi-Cloud Privacy Preserv-
ing Schemes for Linear Data Mining,” in IEEE ICC 2015, June 2015.

[12] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu, “Tools
for privacy preserving distributed data mining,” in SIGKDD Explorations,
2002, pp. 28–24.

[13] A. Shamir, “How to share a secret,” in Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[14] J. Dun, “A fuzzy relative of the ISODATA process and its use in
detecting compact well-separated clusters,” in Journal of Cybernetics,
pp. 32-57, 1973.

384

