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Normal vs cancer thyroid stem cells: the road to

transformation

M Zane'?* E Scavo'?, V Catalano', M Bonanno', M Todaro', R De Maria® and G Stassi’

Recent investigations in thyroid carcinogenesis have led to the isolation and characterisation of a subpopulation of stem-like cells,
responsible for tumour initiation, progression and metastasis. Nevertheless, the cellular origin of thyroid cancer stem cells (SCs)
remains unknown and it is still necessary to define the process and the target population that sustain malignant transformation of
tissue-resident SCs or the reprogramming of a more differentiated cell. Here, we will critically discuss new insights into thyroid SCs
as a potential source of cancer formation in light of the available information on the oncogenic role of genetic modifications that
occur during thyroid cancer development. Understanding the fine mechanisms that regulate tumour transformation may provide
new ground for clinical intervention in terms of prevention, diagnosis and therapy.
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INTRODUCTION

Thyroid cancer (TC) accounts for 96% of endocrine malignancies
with 62980 new cases expected to be diagnosed in the US in
2014, where it represents the second most common cancer
among adolescents ages 15-19 (www.cancer.org). Despite of a
global increase in incidence over the past three decades, the
mortality rate remains low. This is a consequence of a favourable
prognosis for the more frequent well-differentiated forms,
subdivided into papillary (PTC) and follicular TC (FTC).! By
retaining the differentiated features of normal thyrocytes, includ-
ing the ability to concentrate iodine, in most cases these tumours
can be treated successfully by surgical resection, followed by
radioactive-iodine administration.? In contrast, the rare undiffer-
entiated anaplastic TCs (ATCs), have a very-poor prognosis
because of their invasiveness and metastatic behaviour
(Figure 1) as well as their insensitivity to radioactive-iodine
treatment for lack of an iodine symporter.?

Alterations in key signalling pathways are proposed for distinct
forms of thyroid transformation. Gain-of-function mutations in the
thyrotropin receptor (TSH-R) or Gsa encoding genes, result in
increased cAMP accumulation and TSH-independent proliferation,
which in turn account for hyperfunctional adenomas, benign
lesions without propensity towards malignant progression.
Constitutive activation of the MAPK pathway seems to be the
hallmark of different forms of TC.> Genomic alterations of the
proto-oncogene tyrosine-protein kinase receptor Ret, the neuro-
trophic tyrosine kinase receptor, as well as the intracellular signal
transducer Ras and the serine/threonine-protein kinase B-Raf,
have clearly been implicated in the pathogenesis of PTCs.*
Similarly, the chromosomal translocation t(2;3)(q13;p25), which
fuses the transcription factor paired box protein Pax-8 (Pax-8) and
peroxisome proliferator-activated receptor gamma (PPAR-y)
encoding genes, has been identified in significant proportions in
FTCs> In addition to RAS mutations, another common event of

these tumours is the PI3K pathway aberrant activation through
mutation of the catalytic subunit p110 (PI3KCA) and loss of PTEN
(Figure 2)8

The multistep carcinogenesis model suggests that ATCs arise by
way of a dedifferentiation process from pre-existing FTC or PTC
(Figure 3).” The additional genetic events involved in the
progression towards tumour dedifferentiation are (i) the inactivat-
ing point mutation in the TP53 gene®'° and (i) the activating
mutation in the B-catenin encoding gene CTNNB1.'"'2 Evidence in
favour of this multistep carcinogenesis model includes, the
presence of well-differentiated TC within ATC specimens and the
coexistence of BRAF gene and TP53 gene mutations in both
undifferentiated and differentiated carcinomas.'*'* However, this
model is not in accordance with the rare occurrence of RET/PTC
and PAX8/PPARG rearrangements in ATC'® and the low turnover
rate of thyroid follicular cells (about five renewals per lifetime) that
reduces the possibility of accumulating the mutations needed for
transformation ®'67'®

The existence of several differentiation degrees has led to the
assumption that TC cells are derived from remnants of fetal
thyroid cells, such as stem cells (SCs) or precursors, rather than
mature follicular cells.”'®?° According to this fetal cell carcinogen-
esis model supported by gene expression profiling data, ATC
arises from fetal thyroid SCs, marked by the onco-fetal fibronectin
expression and lack of differentiation markers. Thyroblasts are
hypothesised to be at the origin of PTC and are characterised by
the concomitant expression of onco-fetal fibronectin, and the
more differentiated marker thyroglobulin (Tg). Remnants of pro-
thyrocytes, which represent a more differentiated cell type
not expressing onco-fetal fibronectin, would result in FTC
(Figure 3).”%° Genomic alterations, including mutations in TP53
and BRAF genes, as well as RET/PTC and PAX8/PPARG rearrange-
ments, have an oncogenic role by conferring proliferative
advantages and preventing fetal thyroid cells from differentiating.

"Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy; 2Department of Surgical, Oncological and Gastroenterological Sciences, University of
Padua, Padua, Italy and Regina Elena National Cancer Institute, Rome, Italy. Correspondence: R De Maria, Regina Elena National Cancer Institute, Rome, Italy or Professor G Stassi,
Department of Surgical and Oncological Sciences, University of Palermo, Via del Vespro, 131, Palermo 90127, Italy.

E-mail: demaria@ifo.it or giorgio.stassi@unipa.it
“These authors contributed equally to this work
Received 1 February 2015; revised 24 March 2015; accepted 30 March 2015


http://dx.doi.org/10.1038/onc.2015.138
www.cancer.org
mailto:demaria@ifo.it
mailto:giorgio.stassi@unipa.it
http://www.nature.com/onc

New insights into the thyroid cancer origin
M Zane et al

N

Figure 1. Epithelial thyroid cancer histotypes. Histochemical analysis
on paraffin-embedded sections of human thyroid gland control
(Control), FTC, PTC and ATC.

This model is sustained by several lines of evidence. Exposure to
the radioactive-iodine released after the Chernobyl nuclear
accident resulted in a higher incidence of PTCs among infants
and young children rather than adults.?’ Furthermore, thyroid-
targeted transgenic RET/PTCT mice developed PTC and hypothyr-
oidism following the inhibition of thyroid cell differentiation.”*

The third model concerns the so-called cancer SCs (CSCs), a
minute population at the apex of a hierarchical pyramid including
increasing numbers of progenitors and more differentiated cells.
This CSC model is based on the assumption that only a small
subset of cells possesses the ability to initiate and spread the
tumour. These cells can arise after genetic and epigenetic
alterations occurring either in normal SCs or in progenitor/
precursor cells that could acquire self-renewal potential in a sort of
reprogramming process.”>

Here, we describe the potential role of SCs in thyroid
pathogenesis in detail and we address the hypothesis of their
possible involvement in metastasis development.

NORMAL THYROID STEM CELLS

SCs are undifferentiated cells characterised by the extraordinary
ability to self-renew and give rise to many types of specialised
cells®* They mostly divide asymmetrically to generate two
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different daughter cells, one identical to the mother and one
more differentiated that will eventually give rise to specialised
cells. This mechanism allows to maintain control over the SC pool
preserving tissue homeostasis.?> The protective microenvironment
created by the SC niche provides the necessary stimulatory and
inhibitory signals for the maintenance of the stemness state.”®
Under particular circumstances requiring the expansion of the SC
pool, SCs undergo symmetric division, producing two identical
daughter cells able to self-renew and generate a differentiated
progeny.”’

SCs are usually classified into three major groups according to
their development potential: embryonic SCs (ESCs), adult SCs
(ASCs) and fetal SCs (FSCs).?* The fate of SCs is influenced by
specific signals coming from the microenvironment niche and can
be manipulated in vitro to form differentiated lineages. ESCs
represent a potential source of derived thyroid cells that have a
superior predilection to mutate and hence initiate thyroid
diseases. During the early stages of embryonic development,
visceral endoderm gives rise to extra-embryonic endoderm.
Whereas, anterior definitive endoderm migrates to form the
primitive gut (foregut, midgut and hindgut). Follicular cells
develop from the anterior foregut endoderm and are clearly
different from C cells of neuroectodermal origin. Therefore,
thyroid cell lineages formed by ESC-derived endoderm could be
considered an in vitro experimental model adopted for the study
of thyroid development.”®3° Thyroid growth requires a complex
network of transcription factors, including Pax-8, thyroid transcrip-
tion factors 1 (TTF-1, also known as homeobox protein Nkx-2.1)
and 2 (TTF-2, also known as forkhead box protein E1, Foxel), as
well as hematopoietically expressed homeobox protein HHEX
(Table 1). Each of these factors exhibits distinct roles within
different embryonic tissues, but their specific cooperation in
progenitor cells is fundamental to uniquely drive thyroid
organogenesis.®' Specifically, TTF-1 and Pax-8 are needed for
precursor survival, while TTF-2 promotes their migration. Mean-
while, HHEX works to maintain the expression of these three
factors and prevent differentiation.>® In addition, the surrounding
mesenchyme, contributes to expand the pool of thyroid cell
progenitors through the release of pro-epidermal growth factor
and basic fibroblast growth factor (bFGF, or FGF-2)3'32 As
discussed below, the co-expression of TTF-1 and Pax-8, is an
essential event for cell commitment towards follicular cell fate.3
While, FGF and bone morphogenetic protein (BMP) signalling
pathways act in the early stages of thyroid development®* before
TSH/TSH-R and IGF/insulin signalling that promote the full
differentiation of follicular cells (Figure 4 and Table 1).3°

In order to identify early and late markers of thyroid
development, several studies are being carried out using mouse
ESCs as a source of in vitro differentiating thyrocytes. Lin et al.>®
demonstrated that mouse ESCs formed embryoid bodies that
upon differentiation, express a set of thyroid-specific markers,
such as Pax-8, thyroid peroxidase (TPO), Tg, sodium/iodide
cotransporter (NIS) and TSH-R. In absence of serum, these
differentiated cells did not express Tg. TSH treatment was
necessary to maintain Pax-8 and TSH-R expression during
embryoid body differentiation, but it was not sufficient to express
Tg. This suggests that other factors, besides TSH, are required for
long-term maintenance and the maturation of thyrocytes.>® Later,
TSH and activin A, a transforming growth factor g (TGF-B) family
member, were proposed as important factors in endoderm
specification and thyrocyte differentiation, while insulin and
IGF-I promoted the long-term maturation of thyrocytes expressing
Tg, NIS and TSH-R3” According to these data, TTF-1, TTF-2, and Pax-8
can be considered specific markers of thyroid SC/progenitors, TSH-R
a marker of precursor cells, Tg, TPO and NIS markers of fully
differentiated thyroid follicles (Figure 4 and Table 1).

Recently, Antonica’s research group demonstrated the differ-
entiation of murine ESCs into the thyrocytic lineage, with the
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Figure 2. Thyroid follicular cell. The main regulators of thyroid function are TSH signalling through cAMP-dependent pathway, and growth
GFs, acting via MAPK and PI3K/Akt signalling pathways. Alterations in key factors of these pathways (indicated in red) could lead to thyroid
transformation: gain-of-function, mutations in TSH-R and Gsa encoding genes could result in benign lesions such as hyperfunctional
adenomas. RAS and BRAF mutations in MAPK pathway are frequently observed in PTC. Genetic alterations in genes associated with the PI3K/
Akt pathway, i.e., PAX8 (40%) and TP53, are involved in FTC and ATC, respectively. The frequency of BRAFV600E in thyroid carcinomas is 50%.
Thyroid tumours have been found to have mutations in NRAS (4.6%) and HRAS (1.2%) codon 61. Mutations in TP53 occur in 6% of all thyroid
tumours, whereas the frequency of PTEN and PI3K mutations is 3%. Genetic alterations and mutation frequency reported are referred to http://

www.mycancergenome.org and http://cancer.sanger.ac.uk.

formation of thyroid follicles, able to induce iodide
organification.®® In particular, the simultaneous ectopic expression
of TTF-1 and Pax-8 induced the in vitro differentiation of mouse
ESCs into follicular cells. After treatment with TSH, these cells
showed molecular, morphological and functional characteristics of
thyroid follicles and were able to fulfil thyroid hormone deficits
when transplanted orthotopically into an immunodeficient
mouse.>® Pax-8 and TTF-1 co-expression is therefore required for
assembling the follicular cells into becoming a follicle-like
structure, as recently confirmed.®®

Longmire et al. demonstrated that the presence of activin A led
ESCs to differentiate into definitive endoderm, expressing fork-
head box protein A2 (Foxa2™). At this stage, if exposed to BMP and
activin/TGF-B signalling inhibitors (Noggin and SB431542, respec-
tively) for a specific amount of time, definitive endoderm was
shown to be directed towards the lung/thyroid competent
definitive endoderm, negative for forkhead box protein A3
(Foxa2*/Foxa3~). Hence, induction of BMP and FGF signalling by
exposing cells to high doses of FGF-2 combined with specific
factors (that is, BMP-4, Wnt3a, FGF-10, FGF-7, epidermal growth
factor and heparin), may promote the initial lineage specification
of endodermal TTF-1" thyroid primordial progenitors. The efficient
induction of TTF1 into endodermal progenitors, is restricted by a
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stage-specific and time-dependent inhibition of BMP and activin/
TGF-B signalling, followed by BMP reactivation and combined with
FGF signalling.>*3*™*" D’Amour et al.** reported similar results
using human cells, observing that in the presence of FGF-2 high-
dose activin A induced a massive differentiation of ESCs into
transcription factor SOX-17*/Foxa2* definitive endodermal cells
(Figure 4 and Table 1). Interestingly, Onyshchenko et al.** used
two methods in order to differentiate human ESCs in thyroid
follicular cells: (i) an one-step protocol that aims at a direct
differentiation through TSH stimulation by avoiding the inter-
mediate endoderm formation and (ii) a two-step protocol with an
intermediate passage in endodermal cells, which foresees the TSH
stimulation in combination with activin A and FGF-2. In both cases,
we were unable to obtain an efficient generation of differentiated
cells that express specific thyroid markers. This suggests that,
molecular mechanisms involved in mouse and human differentia-
tion are different, and TSH by itself is not sufficient to induce
thyrocyte-like cell differentiation in vitro.

The thyroid is a low proliferating gland, known for its self-
renewal ability.27° It has been suggested that follicle regeneration
is maintained by a pool of SCs that reside in the adult gland. ASCs,
estimated to be ~0.1% of all thyroid cells, are undifferentiated in a
quiescent or slow-cycling state and could replicate themselves to
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Thyroid carcinogenesis model. The multistep carcinogenesis model suggests that undifferentiated thyroid carcinomas derive from

well-differentiated tumours via the sequential accumulation of genetic mutations and dedifferentiation process. According to the fetal cell
carcinogenesis model, thyroid cancer cells originate from the transformation of three types of fetal thyroid cells—thyroid stem cells,
thyroblasts and pro-thyrocytes, which would result in ATC, PTC and FTC. The CSC model assumes that only a small subset of cells possesses
the ability to trigger, reconstitute and sustain tumour growth.

Table 1.

Cell markers of thyroid development

Cell specialisation

Marker

Function References

progenitor

Thyrocyte

Thyroid competent
definitive endoderm

Thyroid primordial

Thyroid precursor

Solid cell nest

Transcription factor SOX-17
Forkhead box protein A2 (Foxa2)
Paired box protein Pax-8 (Pax-8)
TTF-1 or Homeobox protein Nkx-2.1
TTF-2 or Forkhead box protein E1

Hematopoietically expressed
homeobox protein HHEX

TSH-R

Tg

Sodium/iodide cotransporter
(NIS)

TPO

Tumour protein 63 (p63)

Transcription factor required for normal development of definitive 3237,39-43

gut endoderm

Transcription factor involved in endoderm-derived organ
development

Transcription factors that have a role in the regulation of thyroid-
specific genes (i.e,, TG, TPO, TSHR), needed for the maintenance of
thyroid differentiation phenotype. Their co-expression is essential
for the survival and the specification towards the thyroid cell type
Transcription factor involved in thyroid gland organogenesis,
promoting cell migration

Transcription repressor involved in thyroid development; it
maintains gene expression of PAX8, TTF1 and TTF2 in the thyroid
primordium

Central player in controlling thyroid cell metabolism through the
cAMP cascade

Precursor of the iodinated thyroid hormones T3 and T4
Symporter that regulates iodide uptake

32,34,37,39-43,52

18,29-34,36,38,41,55

18,29-34,38,40,45,49-51

29-33

30-32,34,4041

18,29,32-34,36-38,43,54,55

29,33,34,36-38,49,50,52-55
18,29,33,36-38,43,54,55

Enzyme acting in iodination and coupling of the tyrosine residues ~ '82936-3843.51.5455

in Tg to produce T3 and T4

Transcription factor implicated in epithelial morphogenesis
regulation; the ratio between AN/TA-type isoforms may regulate the
maintenance of the epithelial stem cell compartment

18,44-50,53

Abbreviations: Tg, thyroglobulin; TPO, thyroid peroxidase; TSH-R, thyrotropin receptor; thyroid transcription factor 1, TTF-1; thyroid transcription factor 2, TTF-2.
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In vitro differentiation of Thyroid Follicular Cells from ESC-derived endoderm
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SOX-17+ Foxa2+

In vitro differentiation of thyroid follicular cells from ESC-derived endoderm. Blastocyst-derived ESCs form in vitro embryoid bodies

able to generate derivatives of the three germ layers. The embryoid bodies differentiate into definitive endoderm in presence of activin A, and
into thyroid competent definitive endoderm after exposition to inhibitors of BMP and activin A/TGF-f signalling. At the later stage, the
concomitant induction of BMP and FGF signalling, and TTF-1 and Pax-8 co-expression, results in the generation of thyroid primordial
progenitors. Thyroid precursors, derived from progenitor cells after TSH treatment, differentiate into Tg-expressing thyrocytes in presence of

insulin and IGF-I.

preserve tissue turnover after damage.'” Embryonic remnants
have been identified in adult thyroid tissue as small clusters, the
solid cell nests (SCNs), which could represent a potential niche of
thyroid SCs defined by the expression of tumour protein 63 (p63,
Table 1).3° SNC is composed of centrally located undifferentiated
p63~ cells, and surrounded by p63* cells with a basal/SC
phenotype clustered or structured within a single layer.**™*¢
Indeed, some of its stemness features have been demonstrated:
the self-renewal capability conferred via telomerase activity and
the differentiation potential in more cell types, due to high p63
and Bcl-2 expression.”’”*® Reis-Filho et al.*® identified the SCNs as
structures composed of numerous main cells and rare C cells. Main
cells are notably characterised with basal/SC marker p63, basal
cytokeratins (excluding cytokeratin 20), and the carcinoembryonic
antigen. In contrast, C cells lack p63 and are immunoreactive to
differentiation markers, such as calcitonin and TTF-1.*° Hence, it
has been proposed that SCN main cells can be considered a pool
of multipotent SCs, involved in histogenesis and self-renewal of
both follicular and C cells.*” The potential stem role of SCN main
cells was supported by immunohistochemical profile studies.***°
Recently, Okamoto et al.>' supported the involvement of SCN in
thyroid regeneration, having observed a similar morphology in
irreqular shaped follicles generated after a partial thyroidectomy
in mice. These cells were characterised as SC antigen 1 (SCA1)*/
BrdU*/B-gal/TTF-17, and temporarily co-expressed cytokeratin
14.52 They evolve into functional follicles, which express TPO after
120 days, indicating that they consist of newly formed follicular
cells, but do not originate from differentiated thyrocytes.>'>?
Considering the SCN as a source for both follicular and C cells,
the presence of three cell types has been hypothesised:
(i) progenitors of follicular cells, arisen from the base of the
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foregut (endodermal origin); (ii) progenitors of C cells, which
originate from ultimobranchial bodies (neural crest origin); and (iii)
and the follicular and C bipotential progenitor cells.?

In 1992, Dumont et al.'’ first hypothesised the existence of ASCs
within the mature thyroid gland. Thomas et al. isolated a
population of ASCs from the goitre, characterised by the
co-expression of the octamer-binding protein 4 (Oct-4) stem
pluripotent marker, the transcription factor GATA-4 and hepato-
cyte nuclear factor 4-a (HNF-4-a) endodermal markers and Pax-8.
These SCs, negative for Tg, were not influenced by TSH
treatment.>® Fierabracci et al. obtained a CD34*/CD45~ subpopu-
lation of cells with self-replicative potential from different human
thyroid specimens, characterised by their expression of the
pluripotent Oct-4 markers and homeobox transcription factor
Nanog (hNanog). Under appropriate culture conditions, these cells
were able to generate follicles with thyroid hormonal
production.>

Hoshi et al. identified a side population (SP) able to efflux the
vital dye Hoechst 33342 in a thyroid murine. It ranged from 0.3 to
1.4% of the total population and was highly enriched with
stem/progenitor cell activity. According to the expression of
hematopoietic markers used to define SC populations, SP cells
were separated into two cellular subsets, SP1 (CD45 /c-kit™/
SCA-1*) and SP2 (CD45 /c-kit”/SCA-17). Both SP cells were
characterised by high expression levels of ATP-binding cassette
sub-family G member 2 and Oct-4, and by a low expression level
of thyroid differentiation markers. In particular, SP2 cells seem to
have progenitor characteristics because of their low TTF-1
and TSH-R expression that is in line with their involvement in
thyroid lineage commitment. Furthermore, the putative SC
marker nucleostemin was reported to be downregulated in
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undifferentiated thyroid cells.'® The SP selection method has also
been used to isolate ASCs in human thyroid. Lan et al. showed that
thyroid ASCs isolated from human goitres were able to
differentiate into thyroid cells and grow either in a monolayer or
embedded in collagen. Under the influence of TSH in a serum-
enriched medium, isolated ASCs differentiated into thyrocytes
expressing Pax-8, Tg, NIS and TPO. Moreover, when embedded in
collagen, they were able to uptake iodine in response to TSH.>
These results reinforce the reported observations regarding the
ability of goitre-derived ASCs, to differentiate into thyroid cells.

THYROID CANCER STEM CELLS

It is becoming increasingly evident that tumours are organised
hierarchically similarly to normal tissues, where a small subpopu-
lation named CSCs is responsible for cancer initiation and
progression. Assuming the involvement of SCs in thyroid
carcinogenesis, it is necessary to clarify the SCs’ dual role in the
initiation and propagation of a tumour. In cancer initiation, the
'cell-of-origin' concept explains how a normal cell acquires the first
mutation able to kick-start the tumour (tumour initiating cells,
TICs). TICs constitute a tumour cell subset that sustains tumour
growth, but does not necessarily originate from the transforma-
tion of normal SCs.>® However, SCs are able to live for a long time,
undergo self-renewal and possess the key features required for
the acquisition of genetic or epigenetic changes leading to cancer
development.>” To recognise the cell-of-origin of neoplastic
transformation, it is helpful to first enucleate the cellular hierarchy
present within the tumour tissue. Putative cells-of-origin are
committed progenitor or precursor cells, able to reacquire a SC-
like phenotype and functions upon genetic or epigenetic
reprogramming.”® Early progenitors, also known as transit
amplifying cells, are facilitated in the acquisition of modifications
that drive reprogramming, due to their elevated proliferative
capacity and undifferentiated state. Among the TIC population,
transit amplifying cells have a predominant role in primary tumour
formation, but only a small fraction of them shows detectable self-
renewal and metastasis-forming potential. However, initiation and
maintenance of the tumour seem to be dynamic processes,
characterised by the transition between the self-renewing and
transient amplifying phenotypes (Figure 5).°>¢° CSCs are identified
due to their ability to self-renew and are represented by: (i) long-
term TICs (LT-TICs) able to maintain tumour formation after serial
xeno-transplantations and involved in metastasis formation; (ii)
delayed contributing TICs (DC-TICs), active only in secondary or
tertiary tumour xenografts (Figure 5).>° The peculiar feature of
CSCs concerns the pronounced tendency to undergo symmetric
division as compared with normal SCs. This drift is driven by
major genetic and epigenetic events conferring unlimited
lifespan and to CSCs, which are ultimately responsible for
tumour growth and progression.®” In studying CSCs in the
thyroid, several research groups have developed specific
methods to isolate TICs from this gland (Table 2). In this
overview, we do not take into consideration those studies or
single results obtained using ARO, NPA and KAT-4 cell lines,
being that they were found not to be of thyroid origin.%?

Injecting putative CSCs into immunocompromised mouse
models®®*™*> and following the tumour development constitutes
an univocal way of testing their effective tumourigenicity.®® It has
been observed that serial transplantation led to an in vivo
selection of cells able to generate more aggressive tumours.” In
particular, transplantations of cells, isolated from secondary and
tertiary xenografts, permit to define their long-term tumourigenic
potential, as well as their self-renewing ability (Figure 5).

High level of aldehyde dehydrogenase (ALDH) activity is present
in stem and progenitor cells, thus it has been used as a functional
marker for CSCs isolation in tumours.>*®® Todaro et al. showed
that PTC, FTC and ATC contain a small population of tumourigenic
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cells with high ALDH activity and unlimited replication potential.
Expanded indefinitely in vitro as tumour spheres, these ALDHM9M
cells contain 25-60% of the clonogenic cells able to generate
serial tumour xenografts. Interestingly, the highest percentage
(60%) of clonogenic cells present in ATC, defined the cellular
subset endowed with a boosted self-renewal activity and a
tumourigenic and metastatic potential. This suggests that ATC
cells undergo multiple rounds of symmetric division.

In line with this, the injection of ALDH"9" cells derived from FTC
led to a moderately invasive tumour without distant metastasis.
Whereas, ALDH"" cells derived from ATC, are able to invade
adjacent tissues and produce lymph nodes and lung metastasis
because of a strong constitutive activation of c-Met/Akt
pathways.%® Elevated ALDH activity was also identified in ATC cell
lines: 17-38% of ATC-8505C*° and 8-13% of SW1736%° were
ALDH"9",

hNanog, Oct-4 and transcription factor SOX-2 (encoded by
NANOG, POU5F1 and SOX2 genes, respectively) are transcription
factors that establish SC features through a pluripotent regulatory
network.”® Detection of high levels of these transcription factors,
together with low or absent markers of thyroid differentiation, can
help identify putative thyroid CSCs (Figure 6).3%*¢*71-73 gych
identification can be supported by the analysis of biomarker
expression belonging to self-renewing control pathways, such as
Wnt/ f-catenin, Sonic hedgehog protein and Notch1 (classified
also as epithelial-mesenchymal transition (EMT)-inducing signal-
ling pathways).”* Malaguarnera et al.”® reported that the self-
renewal capacity of thyrospheres is also sustained by the over-
expression of the insulin receptor and IGF signalling pathway
genes (IGF-I receptor, IGF-I, IGF-Il) promoting their volume, growth
and survival. )

Recently, Ahn et al. identified a small percentage of CD44"9"/
CD24"" cells with tumourigenic capability in the papillary TPC1
cell line, in six human primary PTCs and in four metastatic lymph
node specimens, as well as in two PTC-derived ATC samples.
Notably, CD44"'9"/CD24'" cells showed a higher Oct-4 expression
and lower differentiation marker expression than CD44Migh/
CD24"9" cells, together with the ability to form thyrospheroids.
However, no tumour was detected after the inoculation of
CD44"9"/CD24"" human specimens into athymic Ncr-nu/nu
mice.®®

Different research groups reported controversial results regard-
ing CD133 (also known as Prominin-1) in TC. In anaplastic KAT18
and FRO cell lines, Zito et al.”® did not find CD133" cells; Friedman
et al”" identified CD133" in 6.32% FRO cells, but not in the
papillary TPC cell line. Recently, Ke et al.”” described < 5% CD133*
cells in papillary CG3 and follicular WRO and CGTH cell lines. B7y
using primary tumours, Malaguarnera et al.”> and Tseng et al.”?
identified a CD133" subpopulation in PTC samples, while it was
absent in thyroid spheres derived from PTC, FTC and ATC samples
analysed by Todaro’s research group.®® Immunohistochemical
examinations reported an elevated expression of CD133 in ATC
paraffin-embedded tissue sections,”"’® but only a low variable
expression in FTC and PTC adjacent to ATC samples.”® Besides the
inconsistencies in the reported results, another limit of this marker
is that its expression is greatly influenced by the cell cycle phase.”®

SCs are enriched in the SP compartment. However, dye efflux is
not a characteristic common to all SCs, and this feature is not
limited only to the SC phenotype. This method seems to be
associated with a toxic effect on cells.2° Mitsutake et al.”* found a
very small portion of the SP in follicular WRO (0.02%) and
anaplastic FRO (0.1%) human cell lines, but not in papillary TPCT.
After sorting, these cells showed a higher clonogenic ability than
those referred as main population (MP), and were tumourigenic
after being injected into nude mice. The two subpopulations
showed a different gene expression profile. Microarray experi-
ments revealed an upregulation of ABCG2, Wnt (MYC, JUN, FZD5)
and Notch1 pathway genes (HEST and JAGT) in SP cells. Following
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Initiation and propagation of thyroid cancer. Tumour bulk consists of tumourigenic and non-tumourigenic cells. Tumourigenic cells

include TICs able to start the tumour; among these, long-term (LT-TIC) and DC-TIC maintain tumour formation after xenograft-transplantation
and have characteristics of cancer stem-like cells. Although transit amplifying cells massively contribute to tumour formation, they lack in self-
renewal and metastasis-forming features. Some TICs, such as LT-TICs and DC-TICs, are also responsible for tumour dissemination, a mechanism
regulated by EMT, whereas the inverse MET drives metastatic colonisation.

10 days in vitro expansion, the SP cells reconstituted the full cell
population (both SP and MP). MP also generated a small SP, and
was tumourigenic in nude mice. This suggests that the SP subset
constitutes only a part of the entire CSC component. CSCs are
more numerous in the SP, but the two subsets are not identical.”*
Zheng et al. identified 0.41-0.83% of the SP in ATC cell lines
(SW1736, 0.41%; C643, 0.52%; HTh74, 0.83%) expressing ATP-
binding cassette sub-family G member 2 and multidrug resistance
protein 1 transporters, which survived a doxorubicin treatment.
These cells showed a 10-fold higher clonality and higher invasive
features in comparison to the MP. In a 6 months treatment,
doxorubicin gradually killed the MP, yet the SP, enriched with
Oct-4* CSCs, constituted 70% of resistant cells. The authors found
a composition of thyrospheres in 5% of the SP and >95% of the
MP by FACS analysis.”> The SP identified in TCs is then
characterised by an over-expression of stemness markers and
higher clonogenic ability, supported by thyrospheres formation
and reconstitution of the MP. Moreover, it displayed chemo-
resistance and tumourigenic potential when injected into
immunocompromised mice.

© 2015 Macmillan Publishers Limited

THYROID CSCs AND METASTASIS

As observed in the experimental xenograft assay described above,
CSCs possess the capacity to seed new tumours when implanted
in appropriate animal hosts. This is theoretically analogous to
tumour initiation by disseminating tumour cells (DTCs), whose
success depends on their ability to spawn an unlimited number of
daughter cells (Figure 4). In light of their motility, invasiveness and
resistance to apoptosis, CSCs are central players in tumour
recurrence and metastasis formation.2’~8 This model is supported
by the expression of EMT markers in CSCs and by the activation of
SC markers in EMT-induced cells.8*%°

DTCs are considered the major cause of metastatic disease,
chemo-resistance and recurrence, and are characterised by the
capacity to migrate from primary tumours to secondary sites.
Therefore, DTCs can exist for long time in a quiescent state called
dormancy, corresponding to the latent period between primary
tumour detection, treatment, recurrence and metastatic spread.®®
The molecular mechanism, responsible for the transition
of DTCs from a dormant to a proliferative state, involves a
cross-talk between DTCs and the extracellular matrix. Matrix
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Table 2.

Biological methods for thyroid CSCs isolation and characterisation

Isolation method Description

Integrative assay References

Sphere-forming assay

through a negative selection
Xenografts assay

tumours
ALDH activity
(ALDEFLUOR)
positive FACS selection

Stemness biomarkers  FACS positive selection based on:

v SC transcription factors: hNanog, Oct-4, transcriptor factor

SOX-2 protein

vEMT-inducing pathways: Wnt, Notch1, Sonic hedgehog protein

v (CD44*/CD24~ phenotype
v»(CD133
Side population

33342 inhibitor)

In serum-free non-adherent condition, it allows the purification of Clonogenic assay; limiting-diluting
CSC population from differentiated thyrocytes and fibroblast,

The injection of CSCs in immunodeficient mice (NOD/SCID,
NSG, nude) led to a tumour formation. Serial transplantations
permit the selection of CSCs able to generate more aggressive

Isolate CSCs based on their elevated ALDH activity: ALDHM"
cells metabolise their substrate in a fluorescent dye that permits a

Positive selection for drug-resistance based on ABCG2 and
ABCB1 activity; these transporters pump out the drug
rendering the dye efflux sensitive to verapamil (a Hoechst

55,63-65,69,72,73,75

assay; colony-forming assay;
proliferation and division assay
Lineage tracing; limiting-dilution
injections

63-65

30,63,69

FACS negative selection for 3063-65,69,71-75.77.78

differentiation markers: TPO, Tg,
NIS, TSH-R

18,72,74

Abbreviations: ALDH, aldehyde dehydrogenase; CSCs, cancer SCs; EMT, epithelial-mesenchymal transition; FACS, fluorescence activated cell sorting;
NOD/SCID, non-obese diabetic/severe combined immunodeficiency; NSG, NOD scid gamma; SC, stem cells; Tg, thyroglobulin; TPO, thyroid peroxidase;

TSH-R, thyrotropin receptor.

Control

ALDH1/2

hNanog

FTC

ATC

PTC

Figure 6. Thyroid CSCs markers. Immunofluorescence analysis of ALDH1/2 and hNanog in control, FTC, PTC and ATC. Arrow heads indicate

cells co-expressing ALDH1/2 and hNanog.

metalloproteinases, secreted by stromal cells, induce the switch
from tumour dormancy to metastatic growth and vice versa, in
some cases through a permissive niche generation. Moreover,
integrin signalling regulation directs this mechanism through the
extracellular signal-regulated kinase 2 (ERK-1/2) and p38a/(
pathways; in particular, high ERK-1/2:p38 signalling ratio promotes
primary tumour proliferation and metastatic disease, whereas the
opposite determines cellular dormancy.25%”

It has become evident that aberrant activation of B-catenin
and c-Met is involved in TC progression.?® Data reported by
Todaro et al. indicated that Akt, c-Met and B-catenin activation
correlates with invasive behaviour of ATC SCs, together with the
complete loss of E-cadherin expression. Interestingly, targeted
silencing of Akt and c-Met expression, reduced Twist and Snail
expression, and abrogated thyroid CSC invasiveness and meta-
static capacity.®®

Oncogene (2015) 1-11

Other studies identified EMT regulators in TC, with different
expression among histotypes. Hardy et al. showed decreased
E-cadherin expression in differentiated TCs when compared to
normal tissues. While SNAIT and SNAI2 were aberrantly
transcribed and expressed in follicular (FTC-133), papillary
(BCPAP, K1), and anaplastic (CAL-62, 8305C) cell lines, as well
as in human cancer samples, in line with the lack of close
cellular contact.?® Vasko et al.’® observed an over-expression of
the mesenchymal marker vimentin in PTC human samples,
associated with invasion and lymph node metastasis. Moreover,
Riesco-Eizaguirre et al.’' reported an over-expression of TGF-$
at the invasive front of PTC, suggesting that PTC cells
need to undergo EMT and subsequently mesenchymal-
epithelial transition (MET), to produce metastasis. In another
study, Liu et al. found an intense expression of nestin, CD133
and CD44 and an absence of E-cadherin expression in ATC.
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Contrarily, PTC and FTC samples showed variability in CD133
and CD44 detection, and were negative for nestin, but positive
for E-cadherin.”®

By tissue microarray analysis, Buehler et al. observed that only
ATC samples showed a high expression of Snail and Twist
associated to a lack of E-cadherin. Otherwise, PTC, FTC and
normal specimens were negative for Snail and Twist and, with
strong diffused immune reactivity to E-cadherin.’® Lan et al.
observed that HIF-1a induced invasive and metastatic properties
in follicular cells (FTC-133) through EMT, as confirmed by the
downregulation of E-cadherin and upregulation of vimentin.
Moreover, it was observed that cells with an over-expression of
HIF1a shared stem-like cell features highlighting that EMT induction
was directly associated with increased CSC populations.*

Several lines of evidence also supported the cross-talk between
Twist and ID proteins. Kebebew et al.”> observed over-expression
of the DNA-binding protein inhibitor ID-1 in ATC tissues, reporting
that the inhibition of IDT mMRNA expression results in decreased
growth and reduction of Tg and NIS expression. Moreover,
Ciarrocchi et al®* disclosed that in vivo ID-1 expression is
associated with aggressiveness and metastatic potential in non-
anaplastic tumours, whereas another member of the ID proteins,
ID-3 is downregulated in PTC and may be related to the TSH-
induced differentiating process.”

CONCLUSIONS AND FUTURE PERSPECTIVES

Evidence shows that many pathways underlying the properties
of SCs are involved in cancer initiation and progression. A defect
in DNA stability is the early event that occurs in tumour
transformation followed by a loss of tumour suppressor gene or
oncogene activation. Herewith, long-lived SCs rather than short-
lived differentiated cells could be the cell compartment in
which genetic alterations promote an advantage in clonal
propagation. Due to genetic alterations in thyroid cells bearing
embryogenesis-associated pathways, transformed SCs represent
the undisputed protagonists in the development of TC. In this
scenario, further insights into thyroid SC biology could bring to
light the molecular mechanisms driving transformation of
normal vs cancer SCs and may help design effective anti-
cancer strategies.
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