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1 Introduction and preliminaries
The theoretical framework of fixed point theory has been an active research field over the
last three decades. Of course, the Banach contraction mapping principle [] is the first im-
portant result on fixed points for contractive-type mappings. This well-known theorem,
which is an essential tool in many branches of mathematical analysis, first appeared in an
explicit form in Banach’s thesis in , where it was used to establish the existence of a
solution for an integral equation. So far, according to its importance and simplicity, sev-
eral authors have obtained many interesting extensions and generalizations of the Banach
contraction principle (see [–] and the references therein). Some of such generalizations
are obtained by contraction conditions described by rational expressions (see [–]).

Throughout this paper, X is assumed to be a nonempty set. Then, the concepts of
T-contraction and C-contraction have been introduced, respectively, by Kannan [] and
Chatterjea [] as follows.

Definition . Let (X, d) be a metric space. A mapping f : X → X is said to be:
(i) a C-contraction (see []) if there exists α ∈ (, 

 ) such that for all x, y ∈ X the
following inequality holds:

d(fx, fy) ≤ α
[
d(x, fy) + d(y, fx)

]
;

(ii) a K-contraction (see []) if there exists α ∈ (, 
 ) such that for all x, y ∈ X the

following inequality holds:

d(fx, fy) ≤ α
[
d(x, fx) + d(y, fy)

]
;
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(iii) a Reich contraction (see []) iff for all x, y ∈ X there exist nonnegative numbers q, r,
s such that q + r + s <  and

d(fx, fy) ≤ qd(x, y) + rd(x, fx) + sd(y, fy);

(iv) a Ćirić contraction (see []) iff for all x, y ∈ X there exist nonnegative numbers q, r,
s and t such that q + r + s + t <  and

d(fx, fy) ≤ qd(x, y) + rd(x, fx) + sd(y, fy) + t
[
d(x, fy) + d(y, fx)

]
.

In  Kannan (see []) established a fixed point theorem for a K-contraction. Also,
in  Chatterjea (see []) proved that if (X, d) is a complete metric space, then every
C-contraction on X has a unique fixed point.

Let S denote the class of all real functions β : [,∞) → [, ) satisfying the condition

β(tn) →  implies that tn →  as n → ∞.

One of the interesting results which generalizes the Banach contraction principle was
given by Samet et al. [] by defining α-ψ-contractive mappings.

Definition . (see []) Let f : X → X be a mapping, and let α : X × X → [,∞) be a
function. We say that f is an α-admissible mapping if

x, y ∈ X, α(x, y) ≥  �⇒ α(fx, fy) ≥ .

Denote by � ′ the family of all nondecreasing functions ψ : [,∞) → [,∞) such that
∑∞

n= ψn(t) < ∞ for all t > , where ψn is the nth iterate of ψ .

Theorem . (see []) Let (X, d) be a complete metric space, and let f be an α-admissible
mapping. Assume that

α(x, y)d(fx, fy) ≤ ψ
(
d(x, y)

)
,

where ψ ∈ � ′. Also, suppose that the following assertions hold:
(i) there exists x ∈ X such that α(x, fx) ≥ ;

(ii) either f is continuous, or, for any sequence {xn} in X with α(xn, xn+) ≥  for all
n ∈N∪ {} such that xn → x as n → ∞, we have α(xn, x) ≥  for all n ∈ N∪ {}.

Then f has a fixed point.

Definition . (see []) Let f : X → X and α : X × X → [, +∞). We say that f is a trian-
gular α-admissible mapping if

(T) α(x, y) ≥  implies α(fx, fy) ≥ , x, y ∈ X ;
(T)

{
α(x, z) ≥ ,
α(z, y) ≥  implies α(x, y) ≥ , x, y, z ∈ X .

Lemma . (see []) Let f be a triangular α-admissible mapping. Assume that there exists
x ∈ X such that α(x, fx) ≥ . Define a sequence {xn} by xn = f nx. Then

α(xm, xn) ≥  for all m, n ∈N with m < n.
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In this paper, we introduce new concepts of generalized contractive and generalized
α-Suzuki type contractive mappings. Then, we obtain sufficient conditions for the ex-
istence of a fixed point of these classes of mappings on complete metric spaces and
b-complete b-metric spaces. In particular, our results extend the theorems of Ćirić,
Chatterjea, Kannan and Reich.

2 Generalization of Ćirić, Chatterjea, Kannan and Reich contractions
In [], Jleli and Samet introduced a new type of contractive mappings and established a
new fixed point theorem for such mappings in the setting of generalized metric spaces.

Consistent with [], we denote by � the set of all functions ψ : [,∞) → [,∞) satis-
fying the following conditions:

(ψ) ψ is nondecreasing and ψ(t) =  if and only if t = ;
(ψ) for each sequence {tn} ⊆ (,∞), limn→∞ ψ(tn) =  if and only if limn→∞ tn = ;
(ψ) there exist r ∈ (, ) and � ∈ (,∞] such that limt→+

ψ(t)–
tr = �;

(ψ) ψ(a + b) ≤ ψ(a)ψ(b) for all a, b > .

Theorem . (see [], Corollary .) Let (X, d) be a complete metric space and f : X → X
be a mapping. Suppose that there exist ψ ∈ � and k ∈ (, ) such that

x, y ∈ X, d(fx, fy) �=  �⇒ ψ
(
d(fx, fy)

) ≤ [
ψ

(
d(x, y)

)]k .

Then f has a unique fixed point.

Observe that the Banach contraction principle follows immediately from the above the-
orem.

By introducing the following new concept, first we extend the result of Jleli and Samet,
then we obtain some new generalizations of the Banach contraction principle.

Definition . Let (X, d) be a metric space, and let f : X → X be a mapping.
f is said to be a JS-contraction whenever there are a function ψ ∈ � and positive real

numbers k, k, k, k with  ≤ k + k + k + k <  such that

ψ
(
d(fx, fy)

) ≤ [
ψ

(
d(x, y)

)]k[
ψ

(
d(x, fx)

)]k[
ψ

(
d(y, fy)

)]k

× [
ψ

(
d(x, fy) + d(y, fx)

)]k (.)

for all x, y ∈ X.

Our first result is the following.

Theorem . Let (X, d) be a complete metric space and f : X → X be a continuous JS-
contraction. Then f has a unique fixed point.

Proof Let x ∈ X be arbitrary. For x ∈ X, we define the sequence {xn} by xn = f nx = fxn–.
Also, if there exists n ∈N such that xn = xn+, then xn is a fixed point of f , and we have
nothing to prove. Thus, we assume that xn �= xn+, i.e., d(fxn–, fxn) >  for all n ∈ N∪ {}.
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Now, we will prove that

lim
n→∞ d(xn, xn+) = .

Since f is a JS-contraction, then, by using condition (.), we obtain that

ψ
(
d(xn+, xn)

)

= ψ
(
d(fxn, fxn–)

)

≤ [
ψ

(
d(xn, xn–)

)]k[
ψ

(
d(xn, fxn)

)]k[
ψ

(
d(xn–, fxn–)

)]k

× [
ψ

(
d(xn, fxn–) + d(xn–, fxn)

)]k

≤ [
ψ

(
d(xn, xn–)

)]k[
ψ

(
d(xn, xn+)

)]k[
ψ

(
d(xn–, xn)

)]k[
ψ

(
d(xn–, xn+)

)]k

≤ [
ψ

(
d(xn, xn–)

)]k+k[
ψ

(
d(xn, xn+)

)]k[
ψ

(
d(xn–, xn)

)]k[
ψ

(
d(xn, xn+)

)]k .

Therefore, we write

 < ψ
(
d(xn+, xn)

) ≤ [
ψ

(
d(xn, xn–)

)] k+k+k
–k–k ≤ [

ψ
(
d(x, x)

)]( k+k+k
–k–k

)n
.

This gives us that

lim
n→∞ d(xn, xn+) = 

by our assumptions about the function ψ . From similar arguments as in the proof of The-
orem . of [] it follows that there exists n ∈N such that

d(xn, xn+) ≤ 
n 

r

for all n ≥ n.
Now, for m > n > n, we have

d(xn, xm) ≤
m–∑

i=n

d(xi, xi+) ≤
m–∑

i=n


i 

r
.

Since  < r < , then
∑∞

i=n


i

r

converges and hence d(xn, xm) →  as m, n → ∞. Thus, we
proved that {xn} is a Cauchy sequence. Completeness of (X, d) ensures that there exists
x∗ ∈ X such that xn → x∗ as n → ∞. Next, since f is a continuous mapping, then xn+ =
fxn → fx∗ as n → ∞, i.e., x∗ = fx∗. Thus, f has a fixed point.

Finally, suppose that there exists z �= x∗ such that z = fz. Clearly, d(z, x∗) = d(fz, fx∗) �= 
and so we can apply condition (.) for the pair (z, x∗). Now, by (.) we get

 < ψ
(
d
(
z, x∗)) = ψ

(
d
(
fz, fx∗)) ≤ [

ψ
(
d
(
z, x∗))]k+k < ψ

(
d
(
z, x∗)),

which leads to contradiction. Thus, we have a unique fixed point of f in X. �

For specific choices of function ψ , we obtain some significant results. First, by taking
ψ(t) = e

√
t in (.), we state a generalization of Ćirić result in [].
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Theorem . Let (X, d) be a complete metric space and f : X → X be a continuous map-
ping. Suppose that there exist positive real numbers k, k, k, k, with  ≤ k +k +k +k <
, such that

√
d(fx, fy) ≤ k

√
d(x, y) + k

√
d(x, fx) + k

√
d(y, fy) + k

√
d(x, fy) + d(y, fx) (.)

for all x, y ∈ X. Then f has a unique fixed point.

Remark . Notice that condition (.) is equivalent to

d(fx, fy) ≤ k
d(x, y) + k

d(x, fx) + k
d(y, fy) + k

[d(x, fy) + d(y, fx)
]

+ kk
√

d(x, y)d(x, fx) + kk
√

d(x, y)d(y, fy)

+ kk

√
d(x, y)

[
d(x, fy) + d(y, fx)

]
+ kk

√
d(x, fx)d(y, fy)

+ kk

√
d(x, fx)

[
d(x, fy) + d(y, fx)

]
+ kk

√
d(y, fy)

[
d(x, fy) + d(y, fx)

]
.

Next, in view of Remark ., by taking k = k =  in Theorem ., we obtain the follow-
ing extension of Kannan result.

Theorem . Let (X, d) be a complete metric space and f : X → X be a continuous map-
ping. Suppose that there exist positive real numbers k, k, with  ≤ k + k < , such that

d(fx, fy) ≤ k
d(x, fx) + k

d(y, fy) + kk
√

d(x, fx)d(y, fy) (.)

for all x, y ∈ X. Then f has a unique fixed point.

On the other hand, by taking k = k = k =  in Theorem ., we obtain the following
Chatterjea type result.

Theorem . Let (X, d) be a complete metric space and f : X → X be a continuous map-
ping. Suppose that there exists k ∈ [, 

 ) such that

d(fx, fy) ≤ k
[d(x, fy) + d(y, fx)

]

for all x, y ∈ X. Then f has a unique fixed point.

From Theorem ., by taking k = , we obtain the extension of Reich contraction.

Theorem . Let (X, d) be a complete metric space and f : X → X be a continuous map-
ping. Suppose that there exist positive real numbers k, k, k, with  ≤ k + k + k < , such
that

d(fx, fy) ≤ k
d(x, y) + k

d(x, fx) + k
d(y, fy)

+ kk
√

d(x, y)d(x, fx) + kk
√

d(x, y)d(y, fy) + kk
√

d(x, fx)d(y, fy)

for all x, y ∈ X. Then f has a unique fixed point.

Finally, by taking ψ(t) = e n√t in (.), we have the following corollary.
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Corollary . Let (X, d) be a complete metric space and f : X → X be a continuous map-
ping. Suppose that there exist positive real numbers k, k, k, k, with  ≤ k +k +k +k <
, such that

n
√

d(fx, fy) ≤ k
n
√

d(x, y) + k
n
√

d(x, fx) + k
n
√

d(y, fy) + k
n
√

d(x, fy) + d(y, fx)

for all x, y ∈ X. Then f has a unique fixed point.

3 Generalized α-Suzuki type contractions
Czerwik in [] introduced the concept of b-metric space. Since then, several papers dis-
cussed fixed point results for single-valued and multi-valued operators in b-metric spaces
(see, e.g., [, ]).

Definition . Let X be a (nonempty) set and s ≥  be a given real number. A function
d : X × X →R

+ is a b-metric if, for all x, y, z ∈ X, the following conditions are satisfied:

(b) d(x, y) =  iff x = y,
(b) d(x, y) = d(y, x),
(b) d(x, z) ≤ s[d(x, y) + d(y, z)].

In this case, the pair (X, d) is called a b-metric space.

Definition . (see []) Let (X, d) be a b-metric space.
(i) A sequence {xn} in X is called b-convergent if and only if there exists x ∈ X such

that d(xn, x) →  as n → ∞. In this case, we write limn→∞ xn = x.
(ii) A sequence {xn} in X is said to be b-Cauchy if and only if d(xn, xm) →  as

n, m → ∞.
(iii) The b-metric space (X, d) is b-complete if every b-Cauchy sequence in X is

b-convergent.

Note that a b-metric need not be a continuous function. The following example (cor-
rected from []) illustrates this fact.

Example . Let X = N∪ {∞} and let d : X × X →R be defined by

d(m, n) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

 if m = n,

| 
m – 

n | if one of m, n is even and the other is even or ∞,

 if one of m, n is odd and the other is odd (and m �= n) or ∞,

, otherwise.

It can be checked that for all m, n, p ∈ X, we have

d(m, p) ≤ 

[
d(m, n) + d(n, p)

]
.

Thus, (X, d) is a b-metric space (with s = /). Let xn = n for each n ∈ N. Then

d(n,∞) =


n
→  as n → ∞,

i.e., xn → ∞, but d(xn, ) =  �  = d(∞, ) as n → ∞.
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It is easy to prove the following lemma.

Lemma . Let (X, d) be a b-metric space with s ≥ . If a sequence {xn} ⊆ X is b-con-
vergent, then it admits a unique limit.

Now, we consider a new set of real functions, say �. Precisely, we modify the set � by
substituting the condition ψ by another condition. Applying this condition we can have a
wide range of functions. Thus, we denote by � the set of all functions θ : (,∞) → (,∞)
satisfying the following conditions:

(θ) θ is nondecreasing;
(θ) for each sequence {tn} ⊆ (,∞), limn→∞ θ (tn) =  if and only if limn→∞ tn = ;
(θ) θ is continuous.

Remark . It is clear that f (t) = et does not belong to � , but f (t) = et ∈ �. Another
examples are f (t) = cosh t and f (t) =  + ln( + t) for all t > .

In , Edelstein (see []) proved an interesting version of the Banach contraction
principle. In , Suzuki (see []) proved certain remarkable results to improve the
results of Banach and Edelstein (see also [, –]).

Now, we are ready to prove the following Suzuki-Edelstein type theorem. The values
of M(x, y) in the sequel appeared recently in []. Also, we assume that α : X × X →
(,∞).

Theorem . Let (X, d) be a b-complete b-metric space with s > , and let f be a triangular
α-admissible mapping. Suppose that there exist θ ∈ � and k ∈ (, ) such that


s

d(x, fx) ≤ d(x, y) �⇒ α(x, y)θ
(
sd(fx, fy)

) ≤ [
θ
(
M(x, y)

)]k (.)

for all x, y ∈ X with fx �= fy, where

M(x, y) = max

{
d(x, y),

d(x, fx)d(x, fy) + d(y, fy)d(y, fx)
 + s[d(x, fx) + d(y, fy)]

,

d(x, fx)d(x, fy) + d(y, fy)d(y, fx)
 + d(x, fy) + d(y, fx)

}
.

Also, suppose that the following assertions hold:
(i) there exists x ∈ X such that α(x, fx) ≥ ;

(ii) for any sequence {xn} in X with α(xn, xn+) ≥ , for all n ∈N∪ {}, such that xn → x
as n → ∞, we have α(xn, x) ≥  for all n ∈N∪ {}.

Then f has a fixed point.

Proof Let x ∈ X be such that α(x, fx) ≥ . Define a sequence {xn} by xn = f nx for all
n ∈ N. Since f is an α-admissible mapping and α(x, x) = α(x, fx) ≥ , we deduce that
α(x, x) = α(fx, fx) ≥ . Continuing this process, we get that α(xn, xn+) ≥  for all n ∈
N ∪ {}. Without loss of generality, we suppose that xn �= xn+ for all N ∪ {}. We will do
the proof in the following steps.
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Step I: We will show that limn→∞ d(xn, xn+) = . Since α(xn, xn+) ≥  for each n ∈N, and

s d(xn–, fxn–) ≤ d(xn–, xn) then by (.) we have

θ
(
d(xn, xn+)

)
= θ

(
d(fxn–, fxn)

)

≤ α(xn–, xn)θ
(
sd(fxn–, fxn)

)

≤ [
θ
(
M(xn–, xn)

)]k

=
[
θ
(
d(xn–, xn)

)]k

< θ
(
d(xn–, xn)

)
(.)

because

M(xn–, xn) = max

{
d(xn–, xn),

d(xn–, fxn–)d(xn–, fxn) + d(xn, fxn)d(xn, fxn–)
 + s[d(xn–, fxn–) + d(fxn–, fxn)]

,

d(xn–, fxn–)d(xn–, fxn) + d(xn, fxn)d(xn, fxn–)
 + d(xn–, fxn) + d(xn, fxn–)

}

= max

{
d(xn–, xn),

d(xn–, xn)d(xn–, xn+) + d(xn, xn+)d(xn, xn)
 + s[d(xn–, xn) + d(xn, xn+)]

,

d(xn–, xn)d(xn–, xn+) + d(xn, xn+)d(xn, xn)
 + d(xn–, xn+) + d(xn, xn)

}

= d(xn–, xn).

Therefore, we have

 < θ
(
d(xn+, xn)

) ≤ [
θ
(
d(xn, xn–)

)]k ≤ [
θ
(
d(x, x)

)]kn
.

This gives us that

lim
n→∞ d(xn, xn+) = 

by our assumptions about function θ .
Step II: Now, we prove that the sequence {xn} is a b-Cauchy sequence. Suppose the con-

trary, i.e., {xn} is not a b-Cauchy sequence. Then there exists ε >  for which we can find
two subsequences {xmi} and {xni} of {xn} such that ni is the smallest index for which

ni > mi > i and d(xmi , xni ) ≥ ε. (.)

This means that

d(xmi , xni–) < ε.

From (.) and using (b), we get

ε ≤ d(xmi , xni ) ≤ sd(xmi , xmi+) + sd(xmi+, xni ).
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Taking the upper limit as i → ∞, we get

ε

s
≤ lim sup

i→∞
d(xmi+, xni ). (.)

Remember that from (.) and (θ) we get

d(xn, xn+) ≤ d(xn–, xn) (.)

for all n ∈N. Suppose that there exists i ∈N such that


s

d(xmi
, fxmi

) > d(xmi
, xni –)

and


s

d(xmi +, fxmi +) > d(xmi +, xni –).

Then, from (.), we have

d(xmi
, xmi +) ≤ s

[
d(xmi

, xni –) + d(xmi +, xni –)
]

< s
[


s

d(xmi
, fxmi

) +

s

d(xmi +, fxmi +)
]

=


[
d(xmi

, xmi +) + d(xmi +, xmi +)
]

≤ 

[
d(xmi

, xmi +) + d(xmi
, xmi +)

]
= d(xmi

, xmi +),

which is a contradiction. Hence, either


s

d(xmi , fxmi ) ≤ d(xmi , xni–)

or


s

d(xmi+, fxmi+) ≤ d(xmi+, xni–)

holds for all i ∈N.
First suppose that


s

d(xmi , fxmi ) ≤ d(xmi , xni–) (.)

holds for all i ∈ J , where J is an infinite set. As from Lemma ., α(xmi , xni–) ≥ , according
to (θ) we obtain that

θ

(
s · ε

s

)
≤ θ

(
s · lim sup

i→∞,i∈J
d(xmi+, xni )

)

≤
[
θ
(

lim sup
i→∞,i∈J

M(xmi , xni–)
)]k ≤ [

θ (ε)
]k
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because, from the definition of M(x, y) and the above limits, we have

lim sup
i→∞,i∈J

M(xmi , xni–)

= lim sup
i→∞,i∈J

max

{
d(xmi , xni–),

d(xmi , fxmi )d(xmi , fxni–) + d(xni–, fxni–)d(xni–, fxmi )
 + s[d(xmi , xni–) + d(fxmi , fxni–)]

,

d(xmi , fxmi )d(xmi , fxni–) + d(xni–, fxni–)d(xni–, fxmi )
 + d(xmi , fxni–) + d(xni–, fxmi )

}

= lim sup
i→∞,i∈J

max

{
d(xmi , xni–),

d(xmi , xmi+)d(xmi , xni ) + d(xni–, xni )d(xni–, xmi+)
 + s[d(xmi , xni–) + d(xmi+, xni )]

,

d(xmi , xmi+)d(xmi , xni ) + d(xni–, xni )d(xni–, xmi+)
 + d(xmi , xni ) + d(xni–, xmi+)

}

≤ ε,

which implies that θ (s · ε
s ) ≤ [θ (ε)]k , a contradiction.

Now, if J is a finite set, then we can assume that


s

d(xmi+, fxmi+) ≤ d(xmi+, xni–)

holds for all i ∈N. Further, from (.) and using (b), we get

ε ≤ d(xmi , xni ) ≤ sd(xmi , xmi+) + sd(xmi+, xni ).

Taking the upper limit as i → ∞, we get

ε

s
≤ lim sup

i→∞
d(xmi+, xni ).

Also, from (.) and using (b), we get

d(xmi+, xni–) ≤ sd(xmi+, xni ) + sd(xni , xni–).

Taking the upper limit as i → ∞, we get

lim sup
i→∞

d(xmi+, xni–) ≤ sε.

From Lemma ., α(xmi+, xni–) ≥ , and so we have

θ

(
s · ε

s

)
≤ θ

(
s · lim sup

i→∞
d(xmi+, xni )

)

≤
[
θ
(

lim sup
i→∞

M(xmi+, xni–)
)]k ≤ [

θ (sε)
]k

because

lim sup
i→∞

M(xmi+, xni–)

= lim sup
i→∞

max

{
d(xmi+, xni–),
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d(xmi+, fxmi+)d(xmi+, fxni–) + d(xni–, fxni–)d(xni–, fxmi+)
 + s[d(xmi+, xni–) + d(fxmi+, fxni–)]

,

d(xmi+, fxmi+)d(xmi+, fxni–) + d(xni–, fxni–)d(xni–, fxmi+)
 + d(xmi+, fxni–) + d(xni–, fxmi+)

}

= lim sup
i→∞

max

{
d(xmi+, xni–),

d(xmi+, xmi+)d(xmi+, xni ) + d(xni–, xni )d(xni–, xmi+)
 + s[d(xmi+, xni–) + d(xmi+, xni )]

,

d(xmi+, xmi+)d(xmi+, xni ) + d(xni–, xni )d(xni–, xmi+)
 + d(xmi+, xni ) + d(xni–, xmi+)

}

≤ sε,

a contradiction. Therefore, in all cases {xn} is a b-Cauchy sequence, and hence b-com-
pleteness of X yields that {xn} b-converges to a point x∗ ∈ X.

Remember that from (.) we get

d(xn, xn+) ≤ d(xn–, xn) (.)

for all n ∈N. Suppose that there exists n ∈N such that


s

d(xn , fxn ) > d
(
xn , x∗)

and


s

d(xn+, fxn+) > d
(
xn+, x∗).

Then from (.) we have

d(xn , xn+) ≤ s
[
d
(
xn , x∗) + d

(
xn+, x∗)]

< s
[


s

d(xn , fxn ) +

s

d(xn+, fxn+)
]

=


[
d(xn , xn+) + d(xn+, xn+)

]

≤ 

[
d(xn , xn+) + d(xn , xn+)

]
= d(xn , xn+),

which is a contradiction. Hence, either


s

d(xn, fxn) ≤ d
(
xn, x∗)

or


s

d(xn+, fxn+) ≤ d
(
xn+, x∗)

holds for all n ∈N. First, suppose that


s

d(xn, fxn) ≤ d
(
xn, x∗)
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holds for infinitely many values of n, say n ∈ J . Then, from (.), we have

θ
(
d
(
fx∗, fxn

)) ≤ [
θ
(
M

(
x∗, xn

))]k

for all n ∈ J because

M
(
x∗, xn

)
= max

{
d
(
x∗, xn

)
,

d(x∗, fx∗)d(x∗, fxn) + d(xn, fxn)d(xn, fx∗)
 + s[d(x∗, xn) + d(fx∗, fxn)]

,

d(x∗, fx∗)d(x∗, fxn) + d(xn, fxn)d(xn, fx∗)
 + d(x∗, fxn) + d(xn, fx∗)

}

for all n ∈N. Taking the limit as n → ∞, with n ∈ J , in the above inequality we get that

lim
n→∞,n∈J

θ
(
d
(
fx∗, fxn

))
= .

This implies that limn→∞,n∈J d(fx∗, fxn) = . Applying Lemma ., we deduce that

fx∗ = x∗.

By a similar method we can obtain fx∗ = x∗ when




d(xn+, fxn+) ≤ d
(
xn+, x∗)

holds for infinitely many values of n. Hence, we proved that x∗ is a fixed point of f . �

Analogously, we can prove the following theorems.

Theorem . Let (X, d) be a b-complete b-metric space with s > , and let f be a triangular
α-admissible mapping. Suppose that there exist θ ∈ � and k ∈ (, ) such that


s

d(x, fx) ≤ d(x, y) �⇒ α(x, y)θ
(
sd(fx, fy)

) ≤ [
θ
(
M(x, y)

)]k

for all x, y ∈ X with fx �= fy, where

M(x, y) = max

{
d(x, y),

d(x, fx)d(y, fy)
 + d(x, y)

,
d(x, fx)d(y, fy)

 + d(fx, fy)

}
.

Also, suppose that the following assertions hold:
(i) there exists x ∈ X such that α(x, fx) ≥ ;

(ii) for any sequence {xn} in X with α(xn, xn+) ≥ , for all n ∈N∪ {}, such that xn → x
as n → ∞, we have α(xn, x) ≥  for all n ∈N∪ {}.

Then f has a fixed point.

Theorem . Let (X, d) be a b-complete b-metric space with s > , and let f be a triangular
α-admissible mapping. Suppose that there exist θ ∈ � and k ∈ (, ) such that


s

d(x, fx) ≤ d(x, y) �⇒ α(x, y)θ
(
sd(fx, fy)

) ≤ [
θ
(
M(x, y)

)]k
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for all x, y ∈ X with fx �= fy, where

M(x, y) = max

{
d(x, y),

d(x, fx)d(y, fy)
 + s[d(x, y) + d(x, fy) + d(y, fx)]

,

d(x, fy)d(x, y)
 + sd(x, fx) + s[d(y, fx) + d(y, fy)]

}
.

Also, suppose that the following assertions hold:
(i) there exists x ∈ X such that α(x, fx) ≥ ;

(ii) for any sequence {xn} in X with α(xn, xn+) ≥ , for all n ∈N∪ {}, such that xn → x
as n → ∞, we have α(xn, x) ≥  for all n ∈N∪ {}.

Then f has a fixed point.

The following corollaries are immediate consequences of the obtained theorems.

Corollary . Let (X, d) be a b-complete b-metric space with s > , and let f be a triangular
α-admissible mapping. Suppose that there exist θ ∈ �, k ∈ (, ) and α,β ,γ ∈ [, ) with
α + β + γ <  such that


s

d(x, fx) ≤ d(x, y)

�⇒ α(x, y)θ
(
sd(fx, fy)

) ≤
[
θ

(
αd(x, y) + β

d(x, fx)d(y, fy)
 + d(x, y)

+ γ
d(x, fx)d(y, fy)

 + d(fx, fy)

)]k

for all x, y ∈ X with fx �= fy. Also, suppose that the following assertions hold:
(i) there exists x ∈ X such that α(x, fx) ≥ ;

(ii) for any sequence {xn} in X with α(xn, xn+) ≥ , for all n ∈N∪ {}, such that xn → x
as n → ∞, we have α(xn, x) ≥  for all n ∈N∪ {}.

Then f has a fixed point.

Corollary . Let (X, d) be a b-complete b-metric space with s > , and let f be a trian-
gular α-admissible mapping. Suppose that there exist θ ∈ �, k ∈ (, ) and α,β ,γ ∈ [, )
with α + β + γ <  such that


s

d(x, fx) ≤ d(x, y)

�⇒ α(x, y)θ
(
sd(fx, fy)

) ≤
[
θ

(
αd(x, y) + β

d(x, fx)d(x, fy) + d(y, fy)d(y, fx)
 + s[d(x, fx) + d(y, fy)]

+ γ
d(x, fx)d(x, fy) + d(y, fy)d(y, fx)

 + d(x, fy) + d(y, fx)

)]k

for all x, y ∈ X with fx �= fy. Also, suppose that the following assertions hold:
(i) there exists x ∈ X such that α(x, fx) ≥ ;

(ii) for any sequence {xn} in X with α(xn, xn+) ≥ , for all n ∈N∪ {}, such that xn → x
as n → ∞, we have α(xn, x) ≥  for all n ∈N∪ {}.

Then f has a fixed point.

Corollary . Let (X, d) be a b-complete b-metric space with s > , and let f be a trian-
gular α-admissible mapping. Suppose that there exist θ ∈ �, k ∈ (, ) and α,β ,γ ∈ [, )
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with α + β + γ <  such that


s

d(x, fx) ≤ d(x, y)

�⇒ α(x, y)θ
(
sd(fx, fy)

) ≤
[
θ

(
αd(x, y) + β

d(x, fx)d(y, fy)
 + s[d(x, y) + d(x, fy) + d(y, fx)]

+ γ
d(x, fy)d(x, y)

 + sd(x, fx) + s[d(y, fx) + d(y, fy)]

)]k

for all x, y ∈ X with fx �= fy. Also, suppose that the following assertions hold:
(i) there exists x ∈ X such that α(x, fx) ≥ ;

(ii) for any sequence {xn} in X with α(xn, xn+) ≥ , for all n ∈N∪ {}, such that xn → x
as n → ∞, we have α(xn, x) ≥  for all n ∈N∪ {}.

Then f has a fixed point.

Taking θ (t) = et for all t > , in the above corollaries we obtain the following new results.

Corollary . Let (X, d) be a b-complete b-metric space (with parameter s > ), and let
f be a triangular α-admissible mapping. Suppose that there exist θ ∈ �, k ∈ (, ) and
α,β ,γ ∈ [, ) with α + β + γ <  such that


s

d(x, fx) ≤ d(x, y)

�⇒ lnα(x, y) + sd(fx, fy) ≤ k
[
αd(x, y) + β

d(x, fx)d(y, fy)
 + d(x, y)

+ γ
d(x, fx)d(y, fy)

 + d(fx, fy)

]

for all x, y ∈ X with fx �= fy. Also, suppose that the following assertions hold:
(i) there exists x ∈ X such that α(x, fx) ≥ ;

(ii) for any sequence {xn} in X with α(xn, xn+) ≥ , for all n ∈N∪ {}, such that xn → x
as n → ∞, we have α(xn, x) ≥  for all n ∈N∪ {}.

Then f has a fixed point.

Corollary . Let (X, d) be a b-complete b-metric space (with parameter s > ), and let
f be a triangular α-admissible mapping. Suppose that there exist θ ∈ �, k ∈ (, ) and
α,β ,γ ∈ [, ) with α + β + γ <  such that


s

d(x, fx) ≤ d(x, y)

�⇒ lnα(x, y) + sd(fx, fy) ≤ k
[
αd(x, y) + β

d(x, fx)d(x, fy) + d(y, fy)d(y, fx)
 + s[d(x, fx) + d(y, fy)]

+ γ
d(x, fx)d(x, fy) + d(y, fy)d(y, fx)

 + d(x, fy) + d(y, fx)

]

for all x, y ∈ X with fx �= fy. Also, suppose that the following assertions hold:
(i) there exists x ∈ X such that α(x, fx) ≥ ;

(ii) for any sequence {xn} in X with α(xn, xn+) ≥ , for all n ∈N∪ {}, such that xn → x
as n → ∞, we have α(xn, x) ≥  for all n ∈N∪ {}.

Then f has a fixed point.
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Corollary . Let (X, d) be a b-complete b-metric space (with parameter s > ), and let
f be a triangular α-admissible mapping. Suppose that there exist θ ∈ �, k ∈ (, ) and
α,β ,γ ∈ [, ) with α + β + γ <  such that


s

d(x, fx) ≤ d(x, y)

�⇒ lnα(x, y) + sd(fx, fy) ≤ k
[
αd(x, y) + β

d(x, fx)d(y, fy)
 + s[d(x, y) + d(x, fy) + d(y, fx)]

+ γ
d(x, fy)d(x, y)

 + sd(x, fx) + s[d(y, fx) + d(y, fy)]

]

for all x, y ∈ X with fx �= fy. Also, suppose that the following assertions hold:
(i) there exists x ∈ X such that α(x, fx) ≥ ;

(ii) for any sequence {xn} in X with α(xn, xn+) ≥ , for all n ∈N∪ {}, such that xn → x
as n → ∞, we have α(xn, x) ≥  for all n ∈N∪ {}.

Then f has a fixed point.

The following example supports our results.

Example . Let X = R. Define a metric d on X by d(x, y) = (x – y). Clearly, (X, d) is a
complete b-metric space, with s = . Also, let k = 

 and define f : X → X, θ : (,∞) →
(,∞) and α : X × X → [,∞) by

f (x) =

⎧
⎨

⎩


 x if x ∈ {, , },
x, otherwise,

θ (t) = cosh t,

α(x, y) =

⎧
⎨

⎩
 if x, y ∈ {, , },
, otherwise.

First, we assume that 
 d(x, fx) ≤ d(x, y) and α(x, y) ≥  with fx �= fy. Then,

(x, y) ∈ {
(, ), (, ), (, ), (, ), (, ), (, )

}
.

Now, we consider the following cases:
• Let (x, y) = (, ), then

α(x, y)θ
(
sd(fx, fy)

)
= cosh

(
 · d(, )

)
= .

≤ √
cosh() =

√
.

= . ≤ [
θ
(
M(, )

)]k .

• Let (x, y) = (, ), then

α(x, y)θ
(
sd(fx, fy)

)
= cosh

(
 · d

(
,




))
= .

≤ √
cosh() =

√
. × 

= . ≤ [
θ
(
M(, )

)]k .
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• Let (x, y) = (, ), then

α(x, y)θ
(
sd(fx, fy)

)
= cosh

(
 · d

(
,




))
= .

≤ √
cosh() =

√
.

= . ≤ [
θ
(
M(, )

)]k .

We deduce that


s

d(x, fx) ≤ d(x, y) �⇒ α(x, y)θ
(
sd(fx, fy)

) ≤ [
θ
(
M(x, y)

)]k

for all x, y ∈ X with fx �= fy, where (we recall)

M(x, y) = max

{
d(x, y),

d(x, fx)d(y, fy)
 + d(x, y)

,
d(x, fx)d(y, fy)

 + d(fx, fy)

}
.

Therefore, all conditions of Theorem . hold true and f has a fixed point. Here, x =  is a
fixed point of f .
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