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Abstract 

From a suitable extension of the notion of spectrum drew from normed algebra 
theory, it will be possible, among other things, to provide some generalizations 
of the well-known Gelfand-Mazur theorem. In this brief research report, we 
wish to pursue one of these, as achieved in I,4. 

1. Introduction 

Let K  be an arbitrary field of characteristic zero1, not necessarily 
algebraically closed. 

Let KA  be an arbitrary linear unitary commutative algebra-K  and 

( )KAG  be the group of units of .KA  For each ,KAa ∈  let2 

( ) { ( ) },1thatsuch; 1
,

−λ−∃/∈λλσ KK KK AA aa   

                                                      
1Whence card .∞=K  

2
KA1  denotes the unit of such a .algebra-K  
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that we say to be the ( ) spectrumA -, KK  of ( ) ( )aara AA KK KK K ,, \; σ  is 

said to be the ( ) resolventA -, KK  of a. 

There exist linear unitary commutative algebras-K  in which such a 

spectrum may be empty for certain their elements: for instance, if KA  is 

a linear unitary commutative integral algebra-K  of finite degree ( )1>  

over ,K  then it follows that it is a field (because KAxaxxa ∈∀→ϕ :  

is an automorphism of ,KA  for each KAa ∈  arbitrarily fixed),               

so that ( ) 0, /=σ aA KK  for each ( )0\ /≠∈ KK KAAa  because, being 

{ } ,0\1 KKK ∈λ∀∈λ− Aa A  there always exists ( ) .1 1−λ− KAa  

Likewise, if ( ),XA KK =  then ( ) .0, /=σ XA KK  

It follows that the question related to the emptiness or not, of the 
spectrum of the generic element of a given linear unitary commutative 

,algebra-K  is not trivial. 

For the first elementary properties of the spectrum, we refer to [1] 
and [3]. 

Let K  be an arbitrary field. If KA  is an arbitrary linear unitary 

commutative algebra-K  such that KK ≅IA  for every maximal ideal I 

of ,KA  then KA  is said to be a spectral algebra (see [10, Chapter 2, 

Section 1]). So, for instance, the Weak Nullstellensatz proves, amongst 
other, that [ ]nXX ,,1 …K  is a spectral algebra when K  is algebraically 

closed (see [1], where a new alternative proof of Weak Nullstellenstaz 
making use of the above notion of spectrum, is provided). 

Let K  be an arbitrary field of characteristic zero. We remember that 

KA  is always a linear-K  space, so that we set (with abuse of notation) 

[ ] .dim: KKK K AA =  Furthermore, if every non-zero element of KA  has 

a multiplicative inverse (that is, KA  is a field extension of K ), then we 

call ,KA  more specifically, a division algebra (according to Van der 

Waerden - see [5]). 
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I. If KA  is a linear unitary commutative integral algebra,-K  and K  

is an arbitrary field of characteristic zero, then we have the following 
results: 

1. If K  is not algebraically closed and [ ] ,:2 ∞<≤ KKA  then there 

exists, at least, one KAa ∈  such that ( ) 0, /=σ aA KK  (see final Note 1). 

2. If [ ] KKK ,: ∞=A  is not algebraically closed and KA  is a division 

algebra, then there exists, at least, one KAa ∈  such that ( ) 0, /=σ aA KK  

(see final Note 1). 

3. If [ ] ∞=KK :A  and KA  is not a division algebra (hence not 

finitely generated as a K-algebra3), then ( ) 0, /=/σ aA KK  for each ,KAa ∈   

whatever be K  (see final Note 1). 

4. (Generalized Gelfand-Mazur) If [ ] ,1: =KKA  then ( )aA KK ,σ  0/=  

for each ,KAa ∈  and ,KK ≅A  whatever be K  (see Remark 1). 

If KA  is a linear unitary commutative ,algebra-K  K  is an 

algebraically closed field and [ ] ,: KKK cardA <  then KA  is a spectral 

algebra, and therefore ( ) 0, /=σ aA KK  for each .KAa ∈  

Let us prove the first part of the theorem given by 1, 2, 3, and 4. 

If [ ] ,:2 ∞<≤ KKA  since KA  is an integral domain and a finite 

dimensional linear-K  space, it follows that it is a field (because 

∈∀→ϕ xaxxa :  KA  is an automorphism for every nonzero Aa ∈ ), 

                                                      
3Therefore, taking into account 2, if K  is not algebraically closed, then KA  may be a 

division algebra, finitely generated as a algebra.-K  For instance, ( )XK  is a division 

algebra (finitely generated field extension of K ), not finitely generated as a algebra,-K  for 
which 3. does not hold, as we have already seen. See also next Note 1. 
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with 01\ /≠KKK AA  ( [ ] ),2:by ≥KKA  so, for each ,1\ KKK AAa ∈  

we have that there exists ( ) ;1\1 1 KK KK K ∈λ∀∈λ− −
AA Aa  thus 

( ) .0, /=σ aA KK  Therefore, (1) is proved4. 

Since KA  is a division algebra, we may suppose it is a field. 

Furthermore, since [ ] ∞=KK :A  and K  is not algebraically closed, it 

follows that KA  is a proper field extension of ,K  so ,01\ /≠KKK AA    

and, hence, there exists ( ) { } KKK K ∈λ∀∈λ− −
AA Aa 0\1 1  and 

,1\ KKK AAa ∈∀  that is, ( ) 0, /=σ aA KK  for every ,1\ KKK AAa ∈  

whence5 2. 

If [ ] ,1: =KKA  then KA  is a trivial extension of ,K  so that 

( ) { }aA a λ=σ KK ,  with KAaa 1λ=  for a unique ,K∈λa  for every 

KAa ∈  arbitrarily fixed; hence, ( ) ,0, KKK AaaA ∈∀/=/σ  and thus 4. is 

proved, with ,KK
v

A /
≅  where .: KAaav a ∈∀λ→/  

To prove 3, we assume, by contradiction, it is not true. Let 

( ) 0, /=σ aA KK  for, at least, one ,KAa ∈  so that we have ( ) 11 −λ−∃ KAa  

,K∈λ∀  whence it follows that, in particular, ( ).KAGa ∈  If ,1 KAa =  

then for ,1K=λ  we reach an absurdity so that let ( ) { }.1\ KK AAGa ∈  

If ( ) { },1 KK AAG =  then we get again an absurdity, so we suppose 

( ) { } ,1\0 KK K AAG A ⊂≠/  being ( ) { } KK K AAG A ≠1\  because KA  is 

not a division algebra. Therefore, let ( ) { }.1\ KK AAGa ∈  

 

                                                      
4For instance, if ,RK C=A  then ( ) .0, /=σ iRCR  

5For instance, if ,QA RK =  then [ ] ∞=QR :  and ( ) .0, /=σ eQRQ  
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We now consider [ ][ ],λA  i.e., the linear unitary commutative integral 

algebra-K  of the formal power series in the variable λ  (considered, a 

priori, as an abstract theoretical variable), with coefficients in A                
(= support of KA ). Since ( ) { },1\ KK AAGa ∈  we have6 

( ) ( ) ( ) .1,1 11111

00

nn

n
A

nn

n
A aaaa λ=λ−λ=λ− +

∈

−−+−

∈

− ∑∑
NN

KK  (1) 

We endow [ ][ ]λA  with a suitable topology as follows. We recall that, if Ω  
is an abstract set (of indices), and A is a unitary commutative ring, then 
we denote the total algebra, generated by the monoid (of multi-indices) 

Ω
0N  over A, by [[( ) ]] :Ω∈iiXA  it is the algebra of formal power series in 

the indeterminates ( )Ω∈iXi  with coefficients in A, whose generic 

element (in multi-index notation) is of the type ν
νν Xau ∑ Ω∈

=
0N  with 

general term ν
νXa  of degree .0≥ν  By the well-known identification 

series-sequences, we have [[( ) ]] ,0
Ω

≅Ω∈
NAXA ii  where 

Ω
0NA  is the 

formal Cartesian product of many copies of A, that is, of the type 

                                                      
6In a power series ring [ ][ ] ,TA  where A is an arbitrary unitary commutative ring, the 

following Neumann’s expansion ( ) =− −11 T  n
n T∑ ∈ 0N

 subsists. Moreover, we recall 

that, if one considers the norm 

[ ][ ] ( ) ,oforder,:
00

0 »« n
n

n

n
n

n

aaA λλ→λ ∑∑
∈∈ NN

N νν  

then it is possible to define the following convergence criterion: 

( ) ly,definitivelim
0

def

0 00

naaaa i
i

n

i

n
n

n

i
i

n

i
n

n
n

n

≥λ−λ⇔λ=λ ∑∑∑∑
=∈=

∞→
∈ NN

ν  (2) 

whence the following result arises: if { }
0N∈χ nn  is a sequence of [ ][ ] ,λA  then nn χ∑ ∈ 0N

 

converges if and only if ( ) ,lim +∞=χ∞→ nn ν  whence, by Equation (2), it also follows that 

the general term of a convergent power series tends to zero (see [6, Capítulo 1, Seccíon 1.5], 
[2] and the next proposition II, 2). 
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{ ( ) },,:; IiSiSIS ii
Ii

i
Ii

∈∀∈ϕ→ϕϕ
∈∈

∏ ∪  

where Ω= 0NI  and .iASi ∀=  By the Axiom of Choice (Zermelo) .00 /=/
ΩNA  

Hence, for instance, it is possible to endow A with the discrete topology, 

and then to equip ( ) [[( ) ]]Ω∈≅
Ω

iiXAA 0N  with the product topology 

which we will call the canonical topology; if card ,∞<Ω  then such a 

topology is discrete. In this topological space, it is possible to prove the 
following lemma (see [2, Chapter IV, Section 4, n. 2] and references 
therein). 

II. Let Ξ  be an infinite set of indices and ( ) Ω∈jju  be a family of 

elements of [[( ) ]]Ω∈iiXA  with ν
νν Xau jj ∑=  for each .Ξ∈j  Then, the 

following conditions are equivalent amongst them: 

1. The family ( ) Ξ∈jju  is summable in [[( ) ]].Ω∈iiXA  

2. We have 0lim =jj u  taken along the filter of complements of 

finite subsets of Ξ  (cofinite of Fréchet filter7). 

3. For every ,0
Ω∈ Nν  we have 0=νja  except for a finite number of 

indices .Ξ∈j  When, at least, one of these conditions holds, then the 

series jj uu ∑ Ξ∈
=  is equal to ν

νν Xa∑  with νν jj aa ∑ Ξ∈
=  for each 

.0
Ω∈ Nν  

Remark. As an example of summable family, we consider the 

following: if [[( ) ]]Ω∈∈ iiXAu  with νa  the coefficient of νX  in u, then 

the family ( ) Ω∈ 0Nν
ν

νXa  is summable with sum u (see, also, footnote 6). 

                                                      
7See also what has been said in the last part of the previous footnote 6. 
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In our case, we consider [ ][ ]λA  as above with card 1=Ω  (hence, with 
the discrete canonical topology), so that ( ) Ω∈iiX  reduces only to .λ  By 

the convergence of the series of (1) for every K∈λ  (as well as taking into 
account what is said in footnote6), it follows that the general term of 
these, tends to 0 in the cofinite topology of 6 II, 2, whence it also follows 
that 

( ) ( ) 0limlim 11 =λ=λ +
∞→

+−
∞→

nn
n

nn
n

aa   (9) 

in .0N  On the other hand, card ∞=K�  because K  has characteristic 
zero, so that it is also card ,∞=A  and hence there is a natural 
continuous8 bijection (see [3]), say [ ] ( ),,: AAA polF→λΨ  between the 

algebra of (abstract) polynomials [ ]λA  (which is a dense subset of [ ][ ],λA  
so that Ψ  can be, in a unique manner, continuously extended to the 
whole of [ ][ ]λA ) and the algebra of polynomial functions ( )AApol ,F  

(with elements ( ) AAff ∈λ∀∈λ→λ: ). Therefore, the relations (9) in 

[ ],λA  hold too in ( )AApol ,F  via8 ,Ψ  so that we have ( ) 01 →λ+− nna  and 
( ) 01 →λ+ nna  for every ,A∈λ  hence also for ,1A=λ  whence 

                                                      
8This continuity condition surely holds, whatever is the topology given in ( )AApol ,F  

provided that it is at least of Hausdorff type, because we have supposed [ ][ ]λA  equipped 

with the discrete canonical topology (since card 1=Ω ), so that the related induced topology 
on [ ]λA  is also discrete. Furthermore, since we have supposed that A is neither a finitely 

generated algebra (as a algebra-K ) nor a division algebra, the natural identification 

[ ] ( )AAA pol ,F
Ψ
≅λ  does not have strange pathological cases: for example, it does not subsist 

when A is the (infinite) pure transcendental field ( ) ,XK  since, due to the singularities of 
the rational functions, these latter cannot be extended, as functions, upon the whole of A. 
Finally, under these hypotheses, thanks to the continuity of the bijection ,Ψ  we have that 

xxn →  implies ( ) →Ψ nx  ( ) ,xΨ  for every { } N∈nnx  in [ ][ ].λA  Indeed, if ,xxn →  then, 

for each open neighbourhood ( )( )xU Ψ  of ( ) ( )( )( )xUx ΨΨΨ −1,  is an open neighbourhood of 

( )( )xx ΨΨ= −1  because of the continuity of ,Ψ  so that ( )( )( )xUxn ΨΨ∈ −1  definitively, 

hence ( ) ( ( )( )( )) UxUxn =ΨΨΨ∈Ψ −1  ( )( )xΨ  definitively, whence ( ) ( ).xxn Ψ→Ψ  
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( ) ( ) .0lim,0lim 11 == +
∞→

+−
∞→

n
n

n
n

aa   (10) 

But, since λ  is arbitrary, for every ,0≠λ  we have the identity 

( ) ( ) { },0\11 11111 K�∈λ∀λ−λ−=λ− −−−−−
AA aaa  

from which it follows that (10) must hold simultaneously, and this is an 

absurdity since (in the integral domain A) we have ( ) ( )
A

nn aa 111 =++−  

.0N∈∀n  Hence, 3. must be true. 

We finally prove the second and last part of the theorem. 

First of all, since char ,0=K  we have card ,∞=K  whence           
card ∞=KA  (independently by [ ] <KK :A  card ∞=K ). 

If I is an arbitrary maximal ideal of ,KA  then it follows that =KA~  

IAK  is a field extension of .K  We suppose, by contrast, that ,~ KK ≠A  

so, being KA~  a field extension of ,K  in any case we have ,~
KK A⊆  so that, 

let ( ).0\~ /≠∈ KKAx  Hence ( )
KAx ~1λ−  is invertible for every ,K∈λ  

that is, ( ) ,0,~ /=σ xA KK
 and therefore ( ) .,~ KKK

=ρ xA  Then, since 

[ ] <= KK :An  card ,∞=K  if { }nxx ,,1 …  is a system of generators for 

,KA  it follows that { }niIxx i ,,1;~ …=+=  is a system of generators for 

,~
KA  so that (by Steiner’s lemma of linear algebra) [ ] .:~ KKK cardnA <≤  

Hence, {( ) }K
K

∈λλ− − ;1~ 1~Ax  is necessarily a linearly dependent system 

because we have card {( ) } =∈λλ− − K
K

;1~ 1~Ax  card ( ) =ρ xA KK ,~  card ,K  

whence 

( ) zero,allnot,,somefor01~ ~1~ Λ∈∈µ=λ−µ −

Λ∈
∑ ix iAAii
i

K
KK

 

and for each finite set (of indices) .Λ  Therefore, x  is algebraic over ,K  so 
that K∈x  (being K  algebraically closed), which is impossible. Thus 

,~ KK ≅A  and we shall obtain the complete proof arguing as in [1, IV]. 
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Note 1. Under the hypotheses of I, if K  is algebraically closed, then 
[ ] ∞<≤ KK :2 A  cannot be true. In fact, since KA  is an integral 

domain, if it were [ ] ,:1 ∞<< KKA  then KA  would be a field (as proved 

in 1.), hence a finite degree field extension of K  (which is necessarily 
algebraic - see [2]) and, therefore, it should be KK ≅A  because K  is 

algebraically closed. Hence ,1dim =KK A  against [ ] .1: >KKA  

Likewise, ever due to the algebraic closure of ,K  we obtain an 
absurdity if we suppose [ ] KKK ,: ∞=A  algebraically closed and KA  a 

division algebra, whereas, if K  is algebraically closed and KA  is a 

division algebra, then (see I, 4) it has to be ,KK ≅A  and so, in this case, 

we have again ( ) .0, KKK AaaA ∈∀/≠σ  The proof of 3, has been 

conducted through an auxiliary artifice, precisely considering [ ][ ]λA  
equipped with a particular product topology (the canonical one, which is 
discrete for card 1=Ω ) and ( )AApof ,F  endowed with an arbitrary 

Hausdorff topology. 

Finally, we observe that the condition [ ] <KK :A  card ,K  of the last 

part of the theorem I, is satisfied by every linear unitary commutative 
algebra-K  having a (finite or) infinite system of generators Θ  whose 

cardinality has an infinity’s order less than of K  (we recall that          
,∞=Kcard  since K  is algebraically closed): for instance, it may be            

card 0=Θ  and card .2 0=K  

Then, if we keep into account the infinity’s order of card ,K  it is 
possible to opportunely extend the first part of I, on the basis of its 
second part. 

Remark 1. Historically, the origin of the notion of spectrum of an 
element of an algebra, may be partially recognized in a proof given by 
Weyl in [5, Chapter V, Part A, Section 7, p. 316] (of the Dover edition), 
where it is proved that the only division algebra of finite order, over an 
algebraically closed field, is this field itself. 
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On the other hand, the so-called Gelfand-Mazur theorem states that 
every complex Banach algebra – that is, a division algebra – is 
(isometrically) isomorphic to .C  This theorem is truly one of the most 
fundamental theorems in the study of commutative Banach algebras: it 
was announced by Mazur in 1938 (see [7]) and proved by Gelfand in 1941 
(see [8]). For various other proofs of this theorem, see [9]. 
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