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Abstract

This paper consider the possibility of using some quantum tools in decision making

strategies. In particular, we consider here a dynamical open quantum system helping

two players, G1 and G2, to take their decisions in a specific context. We see that,

within our approach, the final choices of the players do not depend in general on

their initial mental states, but they are driven essentially by the environment which

interacts with them. The model proposed here also considers interactions of different

nature between the two players, and it is simple enough to allow for an analytical

solution of the equations of motion.
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I Introduction

In recent years the scientific literature has seen a growing interest in the possibility of

using quantum ideas and quantum tools in the description of some aspects of several

macroscopic systems, systems which, in the common understanding, are usually thought

to be purely classical. This interest has touched very different fields of science, starting

with finance, going to ecology, passing through psychology, decision making and so on.

The literature is now very rich, and it increases almost every day. We just cite here some

recent books, [1]-[6], which cover some of the area mentioned above, but not only.

In this paper we will propose a dynamical approach to a very simple and well known

problem in decision making, but in a slightly modified version. Our starting point is what

was considered in [7], which is a variation on the theme of the prisoners’ dilemma. This is

just one of the several contributions existing in the literature related to decision making

processes and to brain dynamics, and it is just one of the contributions suggesting the

relevance of something quantum in this kind of problems. For instance, Manousakis in

[8] suggests that the condition describing someone who must still make a choice, could

be thought as a superposition of suitable states in a particular Hilbert space, whose co-

efficients are related to the probabilities of making a particular choice among the various

possibilities. He also proposes a time evolution driven by some hyper-simplified hamilto-

nian. Other effective hamiltonians are used, in similar contexts, by other authors, [9, 10].

Of course these effective hamiltonians, as such, are usually quite ad hoc and can only be

used to describe some particular aspect of the system under analysis.

Less dynamically oriented is the paper by Agrawal and Sharda, [11], where the au-

thors focus particularly on the probabilistic aspects of the process of decision making.

Still other contributions are due, for instance, to Vitiello, Khrennikov et al., [12], and

to Busemeyer et al., [13]. In particular, in this last paper the authors confront Markov

models of human decision-making with other models somehow connected to quantum me-

chanics. A common feature of almost all these papers have to do with the probabilistic

interpretation of quantum mechanics, where interference effects are quite naturally intro-

duced and described, with respect to what happens using classical ideas, where a similar

interpretation is not as natural. Other interesting references are given in [14].

Let us now go back to the problem we are interested in here. We adopt almost the
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same notation as in [7]. We have two players, G1 and G2, and each of them can make

two possible choices, ”0” and ”1”. For instance, 01 means that G1 has chosen ”0”, while

12 means that G2 has chosen ”1”. More compactly, this choice is indicated as 0112. In

the same way 1112 means that both G1 and G2 made the same choice, ”1”. And so on1.

Now, let us introduce as in [7] four real numbers a, b, c and d satisfying the inequalities

c > a > d > b. The payoff of G1 is a or c if G2’s choice is 02: 0102 corresponds to a payoff

a, while 1102 corresponds to c. On the other hand, if G2 chooses 1, 12, G1’s payoff is b or

d: 0112 corresponds to b, while 1112 corresponds to d. The situation is summarized in the

following table, [7]:

G1\G2 02 12

01 (a\a) (b\c)
11 (c\b) (d\d)

This table represents the point of view of both G1 and G2. For instance, if the two

players choose 0 (0102), they both have a payoff a. Analogously, choice 1112 corresponds

to the same payoff d for G1 and G2. On the other hand, different choices of the players

correspond to different payoffs: the choice 0112 produces a payoff b for G1, and c for G2,

while 1102 produces a payoff c for G1, and b for G2. The table shows that if G1 chooses 1,

then he can get the maximum payoff, c (if G2 chooses 0), or a small one, d (if G2 chooses

1). Hence this could be the best choice, but it can also have bad consequences. On the

other hand, if G1 chooses 0, then he can have the minimum payoff, b (if G2 chooses 1), or

a better one, a (if G2 chooses 0). Hence G1 should make choice 1, hoping that G2 makes

choice 0, so that he gets the maximum payoff c. Of course, with this choice there exists

also the possibility that he gets d, which is less than a (corresponding to 0102). But, for

sure, choosing 1, G1 will not get b, which is the lowest possible payoff. Hence, if what G1

really hopes is not to get the lowest payoff2, he must choose 1. A similar analysis of the

table from the point of view of G2 suggests that, if also G2 wants to avoid to get the worst

1Notice that in any choice X1Y2 the indices 1 and 2 refer to the players, while X and Y refer to the

possible choices of the players, 0 or 1.
2This is what in the literature is called loss-aversion
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payoff, he has to choose 1. Then, if G1 and G2 are rational players, meaning that they are

both interested not to get b, they should both choose 1 (1112).

In [7] this problem has been considered using quantum techniques: a mental state

vector belonging to some suitable Hilbert space is associated to each possible choice of

the players, and it is used to describe the situation. In particular, since we have here only

four possible choices, the Hilbert space is four dimensional. We will give more details,

adapted to our aims, in Section II. The dynamics of the vector is deduced by a master

equation, and the final decision is related to the equilibrium solution of this equation.

In this paper we consider a similar system from a slightly different point of view, i.e.

from the point of view of quantum open systems. In our opinion, this choice is more

realistic, since we consider the possibility that the two players interact with the external

world, to make up their mind and to take their decisions. Of course, this is different

from the standard version of the two players game, where there is no interaction at all,

and this is the reason why we talk of a ”similar system”. In particular, in our case, the

Hilbert space of the model is richer than the one considered in the existing literature. In

fact, most of the papers considering a quantum approach to decision making deal with

finite dimensional Hilbert spaces. This is not the case for us: in our settings, while the

players will be attached to a four-dimensional Hilbert space, the reservoir will not. But,

rather than being a problem, in our opinion this makes the structure more realistic. In

fact, the presence of the reservoir mimics well the very many inputs that each player

normally takes into account while making his choice. This is exactly our interpretation

of the reservoir: it represents the set of rumors, ideas, suggestions,... coming from the

external world and reaching the players. For this reason, the dynamics of the players is

provided by an hamiltonian, written following the rules proposed in [4], which describes

not only the two players, but also the reservoir, and, above all, the possible interactions.

As we have already said, similar ideas have already been used in the literature on decision

making, see [8, 9, 10] for instance. However, in these cases, the hamiltonian is often a very

simple matrix which, of course, can only be used to describe a particular aspect of the

model. On the other hand, our hamiltonian contains rather general information on the

system, and the different ingredients of H can be easily identified. Finally, even if, in our

knowledge, this is not done in any standard (or quantum) view to the two players game,

4



we will also consider here the possibility of having some interaction between G1 and G2,

and we will discuss the consequences of this interaction. In particular, we will consider

the case in which the two players react in the same way and the case in which they have

opposite reactions. This will be clarified in the next section. Of course, the presence of

this interaction between the players, makes our system even more different from the one

considered in [7].

The paper is organized as follows: in the following section we propose the model and

we derive its dynamics. Then we consider the cases in which G1 and G2 do not interact,

and the cases in which they do, and different possibilities are considered. The analysis of

the results and our conclusions are discussed in Section III. Finally, to keep the paper self

contained, we discuss some important facts in quantum mechanics in the Appendix.

II The model and its dynamics

In this section we will discuss the details of our model, constructing first the vectors of the

players, the hamiltonian of the system, and deducing, out of it, the differential equations

of motion and their solution, with particular interest to its asymptotic (in time) behavior.

In our game we have two players, G1 and G2. Each player could operate two possible

choices, 0 and 1. Hence we have four different possibilities, which, following [7], we

associate here to four different and mutually orthogonal vectors in a four dimensional

Hilbert space HG. These vectors are φ0,0, φ1,0, φ0,1 and φ1,1. The first vector, φ0,0,

describes the fact that, at t = 0, the two players have both chosen 0 (0102). Of course, this

is not a fixed choice, and can change during the time evolution of the system. Analogously,

φ0,1 describes the fact that, at t = 0, the first player has chosen 0, while the second has

chosen 1 (0112). And so on. Fφ = {φk,l, k, l = 0, 1} is an orthonormal basis for HG. The

general mental state vector of the system SG (i.e. of the two players), for t = 0, is a linear

combination

Ψ =
1∑

k,l=0

αk,lφk,l, (2.1)

where we assume that
∑1

k,l=0 |αk,l|2 = 1 in order to normalize the total probability. Indeed

|α0,0|2 is the probability that SG is, at t = 0, in a state φ0,0, i.e. that both G1 and G2 have
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chosen 0. Notice, incidentally, that Ψ = Φ1 ⊗Φ2, where Φk = x
(k)
0 φ

(k)
0 + x

(k)
1 φ

(k)
1 , k = 1, 2,

and where αk,l and x
(k)
j are related in an obvious way: α0,0 = x

(1)
0 x

(2)
0 , α1,0 = x

(1)
1 x

(2)
0 ,

α0,1 = x
(1)
0 x

(2)
1 and α1,1 = x

(1)
1 x

(2)
1 . We see that the vectors describing G1 and G2 are

independent, and Ψ is the tensor product of the two.

The first essential difference with respect to what is done in [7] is now the way in

which these vectors are constructed: we consider two fermionic operators, see Appendix,

i.e. two operators b1 and b2, satisfying the following canonical anti-commutation rules

(CAR):

{bk, b†l} = δk,l 11, {bk, bl} = 0, (2.2)

where k, l = 0, 1, 11 is the identity operator, and {x, y} = xy + yx. Then we take φ0,0 as

the vacuum of b1 and b2: b1φ0,0 = b2φ0,0 = 0, and construct the other vectors out of it:

φ1,0 = b†1φ0,0, φ0,1 = b†2φ0,0, φ1,1 = b†1 b
†
2φ0,0.

The explicit expressions of these vectors and operators can be found in many textbooks

in quantum mechanics, see [15] for instance: φk,l = φ
(1)
k ⊗ φ

(2)
l , where φ0 =

(
1

0

)
and

φ1 =

(
0

1

)
. Then,

φ1,0 = φ
(1)
1 ⊗ φ

(2)
0 =

(
0

1

)
⊗

(
1

0

)
, φ1,1 = φ

(1)
1 ⊗ φ

(2)
1 =

(
0

1

)
⊗

(
0

1

)
,

and so on. The matrix form of the operators bj and b†j are also quite simple. For instance,

b1 =

(
0 1

0 0

)
⊗

(
1 0

0 1

)
, b2 =

(
1 0

0 1

)
⊗

(
0 1

0 0

)
,

and so on.

Let now n̂j = b†jbj be the number operator of the j-th player: the CAR above imply

that n̂1φk,l = kφk,l and n̂2φk,l = lφk,l, k, l = 0, 1. Then, as already stated, the eigenvalues

of these operators correspond to the choice operated by the two players at t = 0: for

instance, φ1,0 corresponds to the choice 1102, just because one is the eigenvalue of n̂1 and

zero is the eigenvalue of n̂2.
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Remark:– One might wonder why, in the description of our model, we use fermionic

rather than bosonic operators, as we have done in several other applications in recent

years, [4]. This is easily understood, since the eigenvalues of the fermionic number oper-

ators n̂j are exactly 0 and 1, which are the only possible choices of the players. On the

other hand, see [16], the eigenvalues of the bosonic number operators are all the natural

numbers (including 0): too many for us!

Our main effort now consists in giving a dynamics to the number operators n̂j, follow-

ing the scheme described in [4]. Therefore, what we first need is to introduce a hamiltonian

H for the system. Then, we will use this hamiltonian to deduce the dynamics of the num-

ber operators as n̂j(t) := eiHtn̂je
−iHt, and finally we will compute the mean values of

these operators on some suitable state which is needed to describe, see below, the status

of the system at t = 0. The rules needed to write down H are described in [4]. The main

idea here is that the two players are just part of the full system: in order to take their

decision, they need to be somehow informed. In fact, it is really the information which

creates the final decision. Hence, SG must be open, meaning with this that there must be

a reservoir R = R1 ⊗ R2, interacting with G1 and G2, which is responsible for this sort

of information. The reservoir, compared with SG, is expected to be a very large system

since the information is created by several different sources. A possible hamiltonian is

therefore the following:
h = H0 +HI ,

H0 =
∑2

j=1 ωjb
†
jbj +

∑2
j=1

∫
RΩj(k)B

†
j (k)Bj(k) dk,

HI =
∑2

j=1 λj

∫
R

(
bjB

†
j (k) +Bj(k)b

†
j

)
dk.

(2.3)

Here ωj and λj are real quantities, and Ωj(k) are real functions. In analogy with the bj’s,

we adopt fermionic operators Bj(k) and B†
j (k) to describe the reservoir. They depend on

j = 1, 2 (two different sub-reservoirs for the two players), and on the real variable3 k, and

they satisfy the rules

{Bi(k), Bl(q)
†} = δi,lδ(k − q) 11, {Bi(k), Bj(k)} = 0, (2.4)

3In principle we should use a discrete variable to label each element of the reservoirs. However, since

integrals are quite often easier to be computed than series, as usually done in the literature we consider

this label to be real.
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which have to be added to those in (2.2). Moreover each b♯j anti-commutes with each

B♯
j(k): {b

♯
j, B

♯
l (k)} = 0 for all j, l and k. Here X♯ stands for X or X†.

II.1 An interlude: why fermionic operators, and why this hamil-

tonian?

It may be useful to recall now that, as discussed in the Appendix, the fermionic operators

considered above have a very useful characteristic for us: they can be used to construct

new self-adjoint operators, the number operators n̂j = b†jbj, which are diagonal in the

φk,l’s, and whose eigenvalues are exactly zero and one. Which, important to stress, are

the only two possible choices of our players. As we have already said, this is the core of

our choice: we have two main possible choices of the players, and these correspond exactly

to two eigenvalues of very simple matrices. Then, as we have already discussed, a rather

natural possibility to describe the process of decision making is simply to give a dynamics

to n̂j. And our claim is that this dynamics is given (in part) by the hamiltonian (2.3).

The full hamiltonian is given below, in (2.5).

Let us now concentrate on the meaning of h, beginning with the role of the parameters

and of the functions. Of course, λj is an interaction parameter, measuring the strength of

the interaction between Gj and Rj. If, in particular, λ1 = λ2 = 0, then h = H0 and, since

[h, n̂j] = 0, this would imply that the number operators describing the choices of the two

players stay constant in time. In other words, in this case the original choices of G1 and G2

are not affected by the time evolution4. Both ωj and Ωj(k) are related to a sort of inertia

of the system, [4], i.e. to a tendency of a particular part of the system not to change too

fast its status. For instance, we will see in Section II.1 that Ωj(k) is related to the time

needed by Gj to make his choice. In [4] it is also shown, in several concrete applications,

that the values of ωj and Ωj(k) are related to the magnitude of the oscillations of some

relevant functions of the model. For this reason, in analogy with classical mechanics, we

adopt the word inertia in connection with these quantities.

Let us now explain why we have chosen these particular forms of H0, and of HI .

4Please consider that h is not really the full hamiltonian, see (2.5). In fact, n̂j(t) stays really constant

in time if [H, n̂j ] = 0, which is surely true if λ1 = λ2 = 0 and if µex = µcoop = 0, see (2.5).
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H0 is a sum of diagonal operators, describing the free evolution of the operators of

S = SG ⊗ R. In fact, for instance,
∑2

j=1 ωjb
†
jbj =

∑2
j=1 ωjn̂j, which is already diagonal

in terms of the φk,l. Slightly more complicated, but not particularly different, is the part

of H0 which refers to the reservoirs: it is also diagonal. Now, suppose that G1 and G2

are, at t = 0 in a definite state, say φ0,1 (i.e. 0111), and that the dynamics of the system

is only given by H0. Then, at t > 0, the two players will be still described by φ0,1: no

change in their decisions. This is coherent with the fact that, as we have discussed before,

[H0, n̂j] = 0. Stated with different words, we could say that H0 is the simplest quadratic

self-adjoint operator in our fermionic operators which commutes with n̂1 and n̂2. This

ensures that, in absence of interactions, G1 and G2 do not change idea.

More interesting is the role of HI . In order to explain its meaning, we have to recall

that, see Appendix, bj and Bj(k) are lowering operators, while their adjoint b
†
j and B†

j (k)

are raising operators. For instance, if we consider b1φ1,0, we obtain φ0,0. Then, the action

of b1 modify the original choice of the players, 1102, to the new choice, 0102. Similarly,

since b†1φ0,0 = φ1,0, the action of b†1 brings 0102 to 1102. The operators Bj(k) and B†
j (k)

behave similarly for the reservoir.

Then, it is clear that HI describes the interaction between the two components of

R, R1 and R2, with the players: bjB
†
j (k) describes the fact that, when the amount of

information reaching Gj increases (because of B†
j (k)), Gj tends to chose 0 (because of

bj). On the other hand, Bj(k)b
†
j describes the fact that Gj tends to chose 1, when the

amount of information reaching him decreases. Now, recalling that, in our model, what

the players really want to avoid is getting the smallest payoff b, and recalling that this is

achieved by choosing 1, it is natural to interpret the information produced by the reservoir

as information of bad quality: the more it reaches Gj, the more he moves away from his

rational choice.

II.2 Enriching the model

To make the situation richer and more interesting for us we admit here the possibility

that the two players also interact among them and we consider two different possible

interactions, by adding a cooperative and an exchange effects. The full hamiltonian H is
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therefore {
H = h+ hint,

hint = µex

(
b†1b2 + b†2b1

)
+ µcoop

(
b†1b

†
2 + b2b1

)
,

(2.5)

where µex and µcoop are non negative. In particular, they could be both equal to zero, and

in this case H = h. In this particular case, G1 and G2 do not interact with each other.

On the other hand, if µex ̸= 0 and µcoop = 0 then G1 and G2 are pushed to make different

choices because of the terms b†1b2 and b†2b1, while they act cooperatively if µex = 0 and

µcoop ̸= 0 (because of b†1b
†
2 and b2b1). Finally, we also allow the possibility of having both

these contributions, when µex and µcoop are simultaneously non zero.

Before deducing the time evolution of the relevant observables of the system, it is

interesting to discuss the presence, or the absence, of some integrals of motion for the

model. In our context, these are (self-adjoint) operators which commute with the hamil-

tonian. In many concrete situations the existence of these kind of operators gives an hint

on how the hamiltonian should look like, [4], and can be used sometimes to check how

realistic our model is. In fcat, this strategy was previously used to fix the form of H0.

Let us introduce

N =
2∑

j=1

Nj =
2∑

j=1

(
b†jbj +

∫
R
B†

j (k)Bj(k) dk

)
, (2.6)

with obvious notation. First of all, it is easy to check that [Nj, h] = 0, j = 1, 2, so that

[N, h] = 0. Moreover, even if
[
Nj, µex

(
b†1b2 + b†2b1

)]
̸= 0, we find that[

N,µex

(
b†1b2 + b†2b1

)]
= 0,

so that N commutes also with h+ µex

(
b†1b2 + b†2b1

)
. On the other hand, neither Nj nor

N commute with µcoop

(
b†1b

†
2 + b2b1

)
so that, when µcoop ̸= 0, N ceases to be an integral

of motion. This suggests that the cooperation destroys the integral of motion in (2.6).

This is because the cooperative term in H forces G1 and G2 to behave in a similar way

forcing, as a consequence, the mean value of N to change with time. On the other hand,

if µcoop = 0, the creation and the annihilation operators in H always compensate their

actions and for this reason N stays constant in time, even if its different contributions in

(2.6) have a non trivial time evolution.
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We can now go back to the analysis of the dynamics of the system. The Heisenberg

equations of motion Ẋ(t) = i[H,X(t)], see Appendix, can be deduced by using the CAR

(2.2) and (2.4) above:
ḃ1(t) = −iω1b1(t) + iλ1

∫
R B1(k, t) dk − iµexb2(t)− iµcoopb

†
2(t),

ḃ2(t) = −iω2b2(t) + iλ2

∫
R B2(k, t) dk − iµexb1(t) + iµcoopb

†
1(t),

Ḃj(k, t) = −iΩj(k)Bj(k, t) + iλjbj(t),

(2.7)

j = 1, 2. The third equation can be rewritten as

Bj(k, t) = Bj(k)e
−iΩj(k)t + iλj

∫ t

0

bj(t1)e
−iΩj(k)(t−t1) dt1

and, taking Ωj(k) = Ωjk, Ωj > 0, standard computations produce∫
R
Bj(k, t) dk =

∫
R
Bj(k)e

−iΩjkt dk + iπ
λj

Ωj

bj(t). (2.8)

We refer to [4] for details of this computation and for a discussion on the physical genesis

of this approach. If we now replace (2.8) in the equations (2.7) for ḃj(t), we can write

ḃ(t) = i U b(t) + iβ(t), (2.9)

where we have introduced νj = iωj + π
λ2
j

Ωj
, βj(t) =

∫
R Bj(k)e

−iΩjkt dk, j = 1, 2, and

b(t) =


b1(t)

b2(t)

b†1(t)

b†2(t)

 , β(t) =


λ1β1(t)

λ2β2(t)

−λ1β
†
1(t)

−λ2β
†
2(t)

 U =


iν1 −µex 0 −µcoop

−µex iν2 µcoop 0

0 µcoop iν1 µex

−µcoop 0 µex iν2

 .

The solution of (2.9) is easily found in a matrix form:

b(t) = ei U tb(0) + i

∫ t

0

ei U (t−t1) β(t1) dt1, (2.10)

which is now the starting point for our analysis below.
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II.3 G1 and G2 do not interact

This is almost the classical two players game, since they do not interact each other, but

still both communicate with their environments. As we have discussed before, in this case

µex = µcoop = 0. Then U is a diagonal matrix, and ei U t is diagonal as well. Then, from

(2.10) we easily deduce that

bj(t) = e−νjtbj(0) + i

∫ t

0

e−νj(t−t1)βj(t) dt1,

j = 1, 2. From this equation we can obtain b†j(t) and, consequently, the number operator

n̂j(t) = b†j(t)bj(t). However, what is relevant for us is not really n̂j(t) itself, but its mean

value on some suitable state on S. These states are assumed to be tensor products of

vector states for SG and states on the reservoir which obey a standard equation, see below.

More in details, for each operator of the form XS ⊗ YR, XS being an operator of SG and

YR an operator of the reservoir, we consider

⟨XS ⊗ YR⟩ := ⟨Ψ, XSΨ⟩ ωR(YR).

Here Ψ is the vector introduced in (2.1), while ωR(.) is a state satisfying the following

standard properties, [4]:

ωR(11R) = 1, ωR(Bj(k)) = ωR(B
†
j (k)) = 0, ωR(B

†
j (k)Bl(q)) = Nj δj,lδ(k − q), (2.11)

for some constant Nj. Also, ωR(Bj(k)Bl(q)) = 0, for all j and l. These formulas for ωR

reflect for the reservoir expressions similar to those for SG. Then

nj(t) = ⟨n̂j(t)⟩ = e−2πλ2
j/Ωj t∥bjΨ∥2 +Nj

(
1− e−2πλ2

j/Ωj t
)
. (2.12)

What is interesting here is that, if λj ̸= 0,

nj(∞) := lim
t→∞

nj(t) = Nj (2.13)

does not depend on the original state of mind of the two players, but only on what the

reservoir suggests. In fact, independently of the vector Ψ describing probabilistically, at

t = 0, the choices of both G1 and G2, if R1 (the part of the reservoir interacting with G1)
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has in (2.11) N1 = 0, then after a sufficiently long time, 0 will be exactly G1’s choice. On

the other hand, if N1 = 1, then G1 will eventually choose 1. A similar conclusion can be

deduced for G2. Therefore, when G1 and G2 do not interact, their choices are only dictated

by their environments. This conclusion looks quite reasonable, in the present context.

Remarks:– (1) Notice that, if λj = 0, formula (2.12) reduces to nj(t) = ∥bjΨ∥2 =

nj(0), ∀ t. This is not surprising, since reflects what was already deduced before in absence

of interactions of any kind. In this case, in fact, we have seen that the initial state of

mind is what really matters for the final decision, since there is no time evolution of the

operator n̂j at all.

(2) More in general, formula (2.12) suggests the introduction of a sort of characteristic

time for Gj, τj =
Ωj

2πλ2
j
. The more t approaches τj, the bigger the influence of Rj on Gj is.

In particular, if λj → 0, τj diverges. Hence we recover our previous conclusions: Gj is not

influenced at all by Rj, even after a long time. A similar behavior is deduced also when

Ωj increases: the larger its value, the larger the value of τj. In other words, for large Ωj

the influence of the environment is effective only after a sufficiently long interval. This

is not very different from what we have deduced in other systems, [4], where analogous

parameters of the hamiltonian measure the inertia of that particular part of the system.

Of course, τj can be considered as a sort of decision time.

(3) Since the rational choice of both players is 1, (2.13) shows that rationality really

belongs to Rj, rather than to Gj: in our version of the game, Gj does not need to be

rational, at least if their reservoirs behave rationally!

II.4 The effect of exchange interaction

In the following we will fix µcoop = 0, allowing µex to be different from zero. In particular,

from now on, for concreteness’ sake we will work fixing the following values of the other

parameters in the hamiltonian: ω1 = 1, ω2 = 2, λ1 = λ2 = 0.5, Ω1 = Ω2 = 0.1. This

choice is meant to have almost identical players and reservoirs. As it is clear, the only

difference between G1 and G2 is played here by the values of ω1 and ω2.

After few computations, calling V (t) = ei U t and Vk,l(t) its (k, l)-matrix element, we

13



deduce that

n1(t) = |V1,1(t)|2∥b1Ψ∥2 + |V1,2(t)|2∥b2Ψ∥2+

+2π

∫ t

0

dt1

[
λ2
1

Ω1

|V1,1(t− t1)|2N1 +
λ2
2

Ω2

|V1,2(t− t1)|2N2

]
, (2.14)

and

n2(t) = |V2,1(t)|2∥b1Ψ∥2 + |V2,2(t)|2∥b2Ψ∥2+

+2π

∫ t

0

dt1

[
λ2
1

Ω1

|V2,1(t− t1)|2N1 +
λ2
2

Ω2

|V2,2(t− t1)|2N2

]
, (2.15)

To begin with, we consider three different choices for µex: (a). µex = 0.01, (b). µex = 0.05

and (c). µex = 0.1. In all these cases it is possible to check that both V1,1(t) and V1,2(t)

converge to zero when t diverges. On the other hand, neither
∫ t

0
dt1|V1,1(t − t1)|2 nor∫ t

0
dt1|V1,2(t−t1)|2 converge to zero. All these computations can be performed analytically

and the explicit result, in case (a), is the following:{
n1(∞) ≃ 0.99997N1 + 0.00001N2,

n2(∞) ≃ 0.00001N1 + 0.99997N2.
(2.16)

How we can see, these are symmetrical, and not very different from the result in (2.13):

the two players modify their decision with respect to when µex = 0, but just a little bit !

This is because µex is too small. In fact, let us consider the case (b) above, µex = 0.05.

In this case, repeating the same computations, we conclude that{
n1(∞) ≃ 0.99997N1 + 0.00251N2,

n2(∞) ≃ 0.00251N1 + 0.99997N2,
(2.17)

which shows that the mixing between N1 and N2 increases a little bit. And, in fact, this

mixing increases even more in case (c), when µex = 0.1: we get{
n1(∞) ≃ 0.99039N1 + 0.00958N2,

n2(∞) ≃ 0.00958N1 + 0.99039N2.
(2.18)

To clarify further the role of the exchange hamiltonian, we now consider much higher

values of µex, keeping again µcoop = 0. Hence we take: (d). µex = 10 and (e). µex = 100.
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In the first case, µex = 10, we find{
n1(∞) ≃ 0.59627N1 + 0.40370N2,

n2(∞) ≃ 0.40370N1 + 0.59627N2,
(2.19)

while in case (e), µex = 100, we obtain{
n1(∞) ≃ 0.50154N1 + 0.49846N2,

n2(∞) ≃ 0.49846N1 + 0.50154N2.
(2.20)

We believe that, for µex ≫ µcoop = 0, the two players reach eventually a common choice

which should be n1(∞) = n2(∞) = 1
2
(N1 + N2): perfect mixing! Once again, then, the

decisions of G1 and G2 are driven by the reservoirs but, in this case, the stronger the

interaction between G1 and G2, the more R1 and R2 affect in a symmetric way the two

players.

II.5 The effect of cooperative interaction

We now consider the case in which only the cooperative part in the hamiltonian is switched

on, µcoop ̸= 0, while the exchange contribution is turned off, µex = 0. As before, we

will consider, for the same reasons, the following values of the other parameters in the

hamiltonian: ω1 = 1, ω2 = 2, λ1 = λ2 = 0.5, Ω1 = Ω2 = 0.1, and then we will put (a).

µcoop = 0.01, (b). µcoop = 0.05 and (c). µcoop = 0.1.

In this case we deduce that

n1(t) = |V1,1(t)|2∥b1Ψ∥2 + |V1,4(t)|2(1− ∥b2Ψ∥2)+

+2π

∫ t

0

dt1

[
λ2
1

Ω1

|V1,1(t− t1)|2N1 +
λ2
2

Ω2

|V1,2(t− t1)|2(1−N2)

]
, (2.21)

and

n2(t) = |V2,2(t)|2∥b2Ψ∥2 + |V2,3(t)|2(1− ∥b1Ψ∥2)+

+2π

∫ t

0

dt1

[
λ2
1

Ω1

|V2,3(t− t1)|2(1−N1) +
λ2
2

Ω2

|V2,2(t− t1)|2N2

]
, (2.22)
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Again it is possible to check that all the functions Vk,l(t) above converge to zero when

t diverges. On the other hand,
∫ t

0
dt1|Vk,l(t − t1)|2 admits a non zero limiting value for

t → ∞. The results are the following: in case (a), µcoop = 0.01 and µex = 0, we have{
n1(∞) ≃ 0.99997N1 + 0.00001(1−N2),

n2(∞) ≃ 0.00001(1−N1) + 0.99997N2.
(2.23)

In case (b), µcoop = 0.05 and µex = 0, we have{
n1(∞) ≃ 0.99966N1 + 0.00028(1−N2),

n2(∞) ≃ 0.00028(1−N1) + 0.99966N2,
(2.24)

while in case (c), µcoop = 0.1 and µex = 0, we get{
n1(∞) ≃ 0.99887N1 + 0.00115(1−N2),

n2(∞) ≃ 0.00115(1−N1) + 0.99887N2.
(2.25)

Again we observe that the higher the value of µcoop, the higher the mixing between the

effects of the two sub-reservoirs. Hence we are led to formulate a similar conclusion as we

did in the previous situation, and we expect that, for µcoop ≫ µex = 0, the two players

arrive to an asymptotic (in time) choice which is the following: n1(∞) = 1
2
(N1+(1−N2)),

n2(∞) = 1
2
((1−N1) +N2).

II.6 Full hamiltonian

In this last part, we consider together the effects of the exchange and of the cooperative

hamiltonians, still keeping unchanged the values ω1 = 1, ω2 = 2, λ1 = λ2 = 0.5, Ω1 =

Ω2 = 0.1. Now both µex and µcoop will be taken different from zero. In particular, we will

consider the situation in which µex and µcoop are significantly different from each other

(which we don’t expect is particularly different from what we did before), and the case

in which they are similar. More in details, these will be our choices of parameters: Case

(a). µex = 0.01 and µcoop = 100; (b). µex = 0.01 and µcoop = 1; (c). µex = µcoop = 0.5;

(d). µex = 1 and µcoop = 0.01 and (e). µex = 100 and µcoop = 0.01.

In this case we deduce that

n1(t) = |V1,1(t)|2∥b1Ψ∥2+ |V1,2(t)|2∥b2Ψ∥2+ |V1,3(t)|2(1−∥b1Ψ∥2)+ |V1,4(t)|2(1−∥b2Ψ∥2)+
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+2π

∫ t

0

dt1
λ2
1

Ω1

[
|V1,1(t− t1)|2N1 + |V1,3(t− t1)|2(1−N1)

]
+

+2π

∫ t

0

dt1
λ2
2

Ω2

[
|V1,2(t− t1)|2N2 + |V1,4(t− t1)|2(1−N2)

]
(2.26)

and

n2(t) = |V2,1(t)|2∥b1Ψ∥2+ |V2,2(t)|2∥b2Ψ∥2+ |V2,3(t)|2(1−∥b1Ψ∥2)+ |V2,4(t)|2(1−∥b2Ψ∥2)+

+2π

∫ t

0

dt1
λ2
1

Ω1

[
|V2,1(t− t1)|2N1 + |V2,3(t− t1)|2(1−N1)

]
+

+2π

∫ t

0

dt1
λ2
2

Ω2

[
|V2,2(t− t1)|2N2 + |V2,4(t− t1)|2(1−N2)

]
. (2.27)

The following are the results we have deduced in the five cases listed above. We have:

Case (a), µex = 0.01 and µcoop = 100:{
n1(∞) ≃ 0.50317N1 + 0.49682(1−N2),

n2(∞) ≃ 0.49682(1−N1) + 0.50317N2.
(2.28)

Case (b), µex = 0.01 and µcoop = 1:{
n1(∞) ≃ 0.91914N1 + 0.08075(1−N2),

n2(∞) ≃ 0.08075(1−N1) + 0.91914N2.
(2.29)

Case (c), µex = 0.5 and µcoop = 0.5:
n1(∞) ≃ 0.85428N1 + 0.00626(1−N1) + 0.11974N2 + 0.01917(1−N2) =

= 0.84802N1 + 0.10057N2 + 0.02543,

n2(∞) ≃ 0.11974N1 + 0.01917(1−N1) + 0.85428N2 + 0.00626(1−N2) =

= 0.10057N1 + 0.84802N2 + 0.02543.

(2.30)

Notice that, in these equations, the first form has been explicitly written simply because, in

this way, the different contributions arising from (2.26) and (2.27) can be easily identified.

Case (d), µex = 1 and µcoop = 0.01:{
n1(∞) ≃ 0.99210N1 + 0.00795N2,

n2(∞) ≃ 0.00795N1 + 0.99210N2,
(2.31)
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and, finally, Case (e), µex = 100 and µcoop = 0.01:{
n1(∞) ≃ 0.50308N1 + 0.49692N2,

n2(∞) ≃ 0.49692N1 + 0.50308N2.
(2.32)

We postpone our detailed analysis of these and of the previous results to the next section.

Here we just want to add that, contrarily to what we have seen in Section II.1, in this

more general case we expect that the characteristic time depends also on µex and µcoop,

so that these parameters are expected to contribute to the decision time.

III Analysis of the results and conclusions

The first clear output of our analysis suggests that, when G1 and G2 do not directly

interact, it is really the environment which produces their decisions. Hence the rationality

of the players is strongly linked to the nature of the reservoirs: if both reservoirs have

Nj = 1, j = 1, 2, then nj(∞) = 1, and the two players make the most rational choice

according to the loss aversion rule. More interesting is the situation when we allow some

interaction between G1 and G2. In particular our results show that, when at least one

between µex or µcoop is different from zero, and small, the value of nj(∞) is essentially

decided again by the j-th part of the reservoir. However, when the numerical values of

one of the two parameters increase, then some mixing is possible. For instance, we see

that when µex = 100 and µcoop = 0, n1(∞) ≃ 0.50154N1 + 0.49846N2 and n2(∞) ≃
0.49846N1 + 0.50154N2. This means that, even if the two components of the reservoir do

not mutually interact, the existence of a direct interaction between G1 and G2 mixes the

cards: the final decision of each player is not only related to the value of his own part

of reservoir (i.e. to N1 or to N2), but it is a mixture of the two, and, at least for this

high value of µex, in this mixture N1 and N2 have almost the same weights for G1 and G2.

A similar behavior is observed also when µex = 0 while µcoop increases: again we have a

stronger and stronger mixing of the effects of R1 and R2 for µcoop increasing. However as

we see from (2.23)-(2.25), N1 mixes with 1−N2 (rather than with N2) and N2 with 1−N1

(rather than with N1). Hence, this contribution in the hamiltonian, behaves differently

from the other one, and this is natural, due to the different kind of the interactions. When
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we consider both contributions in hint, the two effects come together and we see this in

formulas (2.28)-(2.32). From these formulas we also see that in the extreme situations

(when µex is much smaller or much larger than µcoop), not unexpectedly the two final

decisions of G1 and G2 are similar to the previous cases (i.e. to the cases in which one of

the µ’s was zero). On the other hand, when µex = µcoop, the two effects are both clearly

visible, see formula (2.30).

In order to compare these results with those in the Introduction, we begin with a very

evident fact: the initial state of mind of the players plays absolutely no role in the final

decision, except when there is no interaction at all. No matter which was their status

at t = 0, its effect simply disappears when t increases. This is clearly a measure of the

fact that our model is not really the two-player game proposed in [7], as we have already

stressed before, but a slightly different version of that.

Let us now consider four different cases, depending on the values of Nj of Rj. Case

(I): N1 = N2 = 0; Case (II): N1 = 0 and N2 = 1; Case (III): N1 = 1 and N2 = 0; Case

(IV): N1 = N2 = 1. From the formulas of Section II we deduce the following:

1. the only way in which both G1 and G2 choose 1 if when N1 = N2 = 1, but not for

all values of µex and µcoop. For instance, apparently this is not so when µcoop ≪ µex.

However, when this happens, n1(∞) and n2(∞) still coincide.

2. on exactly the opposite side, when N1 = N2 = 0 the values of n1(∞) and n2(∞) stay

always very low, except again when µcoop ≪ µex. Even now, when this happens,

n1(∞) and n2(∞) still coincide. The larger µcoop with respect to µex, the bigger

the value n1(∞) = n2(∞) which approaches asymptotically, as our computation

suggests, the value 1
2
.

3. when N1 = 0 and N2 = 1 in most of the cases considered here n1(∞) stays close

to 0 while n2(∞) is close to 1. However, when µex ≪ µcoop, again our numerical

results suggest that n1(∞) = n2(∞) ≃ 1
2
. Specular (and similar) conclusions can

be deduced when N1 = 1 and N2 = 0.

4. while there is apparently no other way to get n1(∞) = n2(∞) = 1 than having

N1 = N2 = 1, there exist several possibilities to have n1(∞) = n2(∞). Therefore,
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in a slightly modified version of the game in which we look for equal decisions (not

necessarily equal to 1), we have plenty of possibilities in which this happens.

Remarks:– (1) A different possibility, which may be closer to the usual interpretation

of what is quantum in decision making, is to look at the nj(∞) we have deduced before in

a probabilistic way. For instance, rather than looking at nj(∞) as the real decision taken

by Gj, we could consider it as a sort of probability that Gj chooses 0 or 1. Then, instead

of looking to square modula of the coefficients of the vectors in Ψ, we directly look at

nj(∞). But this does not fit well with our general interpretation, see [4], and we will not

insist on it here.

(2) It should probably be stressed that the payoffs a, b, c and d do not enter explicitly

in the definition of the hamiltonian, at least in the model considered here. In fact,

we are interested here in the possibility that Gj make the rational choice for a fixed

choice of parameters satisfying c > a > d > b, whatever this choice is. Changing their

values, but maintaining these inequalities, we don’t affect the players’ behavior, of course.

Nevertheless, it could be interesting to look for some different model in which the role

of the payoffs is evident in the hamiltonian of the system itself or directly in the state

describing the system at t = 0. The (probably) easiest way to include the payoffs directly

in the hamiltonian is to assume, for instance, that µex and µcoop depend explicitly on a,

b, c and d. For instance, if this dependence is such that µex > µcoop, then the effect of the

exchange interaction would be stronger than that of the cooperative term in hint. More

sophisticated dependencies could be considered, like for instance some nonlinear extra

term in H, depending on the payoffs. But this would make very hard, if not impossible,

to get an exact analytical solution, and perturbative expansions should be possibly used.

This is probably just the beginning of the story: there are still several possible aspects

to be considered. First of all, we have considered here just a particular choice of the

many parameters of H. A natural question is what changes when these parameters, and

in particular those which reflect the nature of the players, are fixed in a different way.

For instance, in view of the meaning of the ωj’s we have deduced for other systems, [4],

we could expect a larger inertia of, say, G1 with respect to G2 if ω1 ≫ ω2: G1 changes his

original idea slowly, when compared to G2. However, from the point of view of n1(∞) and
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n2(∞), we don’t expect this will change much our conclusions, but at most some (minor)

details, like the decision time. Moreover, the hamiltonian we have considered here is just

one among all the possible choices. Indeed, in our opinion, it is a rather natural choice and,

when compared with other possibilities, allows a more natural interpretation. Still, one

could look for other possibilities, and for instance one could try to add non linearities in

the model. However, in this case, numerical techniques should most probably be adopted.

Another interesting aspect is the following: is there any other problem in decision making

theory in which the method proposed here could be applied? We believe this is very

plausible. These are some of the aspects we plan to consider in a close future.
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Appendix: Few results on the number representation

To keep the paper self-contained, we discuss here few important facts in quantum mechan-

ics and in the so–called number representation. More details can be found, for instance,

in [16, 15], as well as in[4].

Let H be an Hilbert space, and B(H) the set of all the (bounded) operators on H.

Let S be our physical system, and A the set of all the operators useful for a complete

description of S, which includes the observables of S. For simplicity, it is convenient (but

not really necessary) to assume that A coincides with B(H) itself. The description of

the time evolution of S is related to a self–adjoint operator H = H† which is called the

Hamiltonian of S, and which in standard quantum mechanics represents the energy of S.
In this paper we have adopted the so–called Heisenberg representation, in which the time

evolution of an observable X ∈ A is given by

X(t) = exp(iHt)X exp(−iHt), (A.1)
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or, equivalently, by the solution of the differential equation

dX(t)

dt
= i exp(iHt)[H,X] exp(−iHt) = i[H,X(t)], (A.2)

where [A,B] := AB − BA is the commutator between A and B. The time evolution

defined in this way is a one–parameter group of automorphisms of A.

An operator Z ∈ A is a constant of motion if it commutes with H. Indeed, in this

case, equation (A.2) implies that Ż(t) = 0, so that Z(t) = Z for all t.

In some previous applications, [4], a special role was played by the so–called canon-

ical commutation relations. Here, these are replaced by the so–called canonical anti–

commutation relations (CAR): we say that a set of operators {aℓ, a†ℓ, ℓ = 1, 2, . . . , L}
satisfy the CAR if the conditions

{aℓ, a†n} = δℓn11, {aℓ, an} = {a†ℓ, a
†
n} = 0 (A.3)

hold true for all ℓ, n = 1, 2, . . . , L. Here, 11 is the identity operator and {x, y} := xy + yx

is the anticommutator of x and y. These operators, which are widely analyzed in any

textbook about quantum mechanics (see, for instance, [16, 15]) are those which are used

to describe L differentmodes of fermions. From these operators we can construct n̂ℓ = a†ℓaℓ

and N̂ =
∑L

ℓ=1 n̂ℓ, which are both self–adjoint. In particular, n̂ℓ is the number operator for

the ℓ–th mode, while N̂ is the number operator of S. Compared with bosonic operators,

the operators introduced here satisfy a very important feature: if we try to square them

(or to rise to higher powers), we simply get zero: for instance, from (A.3), we have a2ℓ = 0.

This is related to the fact that fermions satisfy the Fermi exclusion principle [15].

The Hilbert space of our system is constructed as follows: we introduce the vacuum

of the theory, that is a vector φ0 which is annihilated by all the operators aℓ: aℓφ0 = 0

for all ℓ = 1, 2, . . . , L. Such a non zero vector surely exists. Then we act on φ0 with the

operators a†ℓ (but not with higher powers, since these powers are simply zero!):

φn1,n2,...,nL
:= (a†1)

n1(a†2)
n2 · · · (a†L)

nLφ0, (A.4)

nℓ = 0, 1 for all ℓ. These vectors form an orthonormal set and are eigenstates of both n̂ℓ

and N̂ : n̂ℓφn1,n2,...,nL
= nℓφn1,n2,...,nL

and N̂φn1,n2,...,nL
= Nφn1,n2,...,nL

, whereN =
∑L

ℓ=1 nℓ.

Moreover, using the CAR, we deduce that

n̂ℓ (aℓφn1,n2,...,nL
) = (nℓ − 1)(aℓφn1,n2,...,nL

)
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and

n̂ℓ

(
a†ℓφn1,n2,...,nL

)
= (nℓ + 1)(a†lφn1,n2,...,nL

),

for all ℓ. Then aℓ and a†ℓ are called the annihilation and the creation operators. Notice

that, in some sense, a†ℓ is also an annihilation operator since, acting on a state with

nℓ = 1, we destroy that state.

The Hilbert space H is obtained by taking the linear span of all these vectors. Of

course, H has a finite dimension. In particular, for just one mode of fermions, dim(H) = 2.

This also implies that, contrarily to what happens for bosons, all the fermionic operators

are bounded.

The vector φn1,n2,...,nL
in (A.4) defines a vector (or number) state over the algebra A

as

ωn1,n2,...,nL
(X) = ⟨φn1,n2,...,nL

, Xφn1,n2,...,nL
⟩, (A.5)

where ⟨ , ⟩ is the scalar product in H. As we have discussed in [4], these states are useful

to project from quantum to classical dynamics and to fix the initial conditions of the

considered system.
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