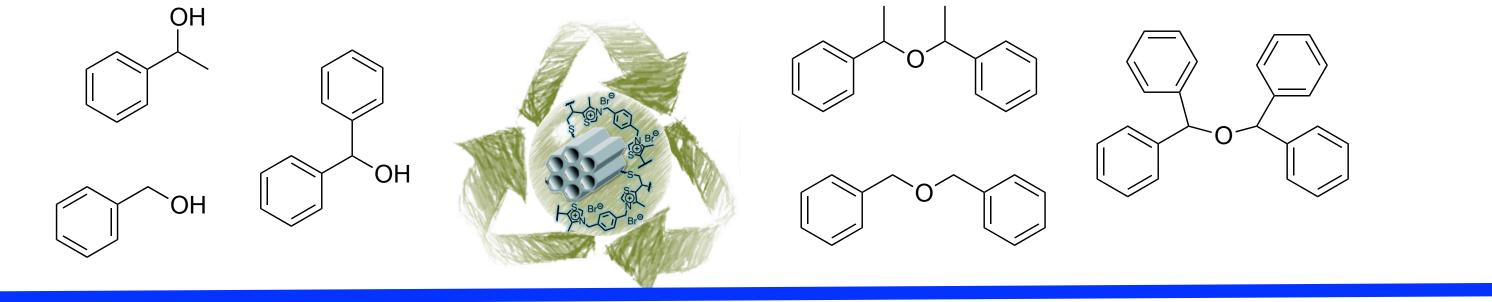


# Thiazolium-based catalysts for the etherification of benzylic alcohols under solventfree conditions

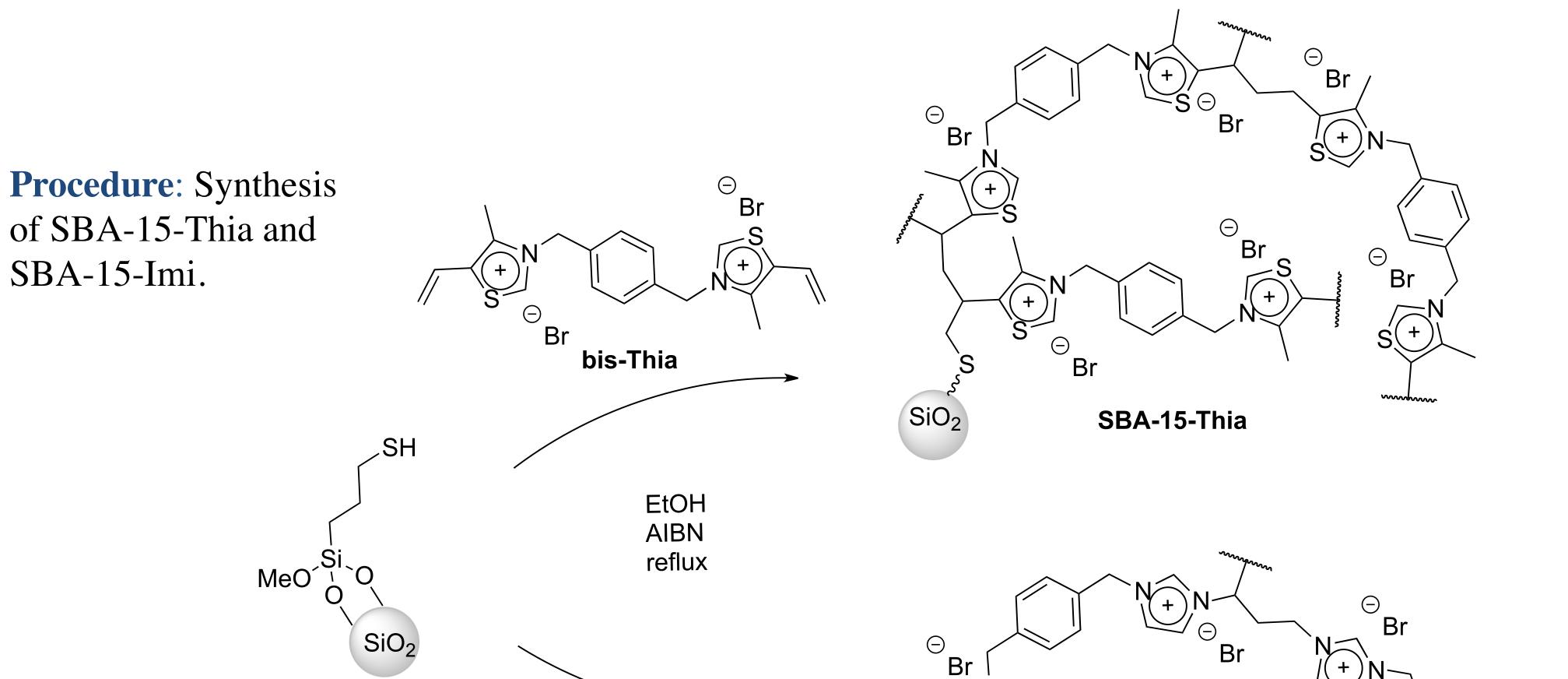




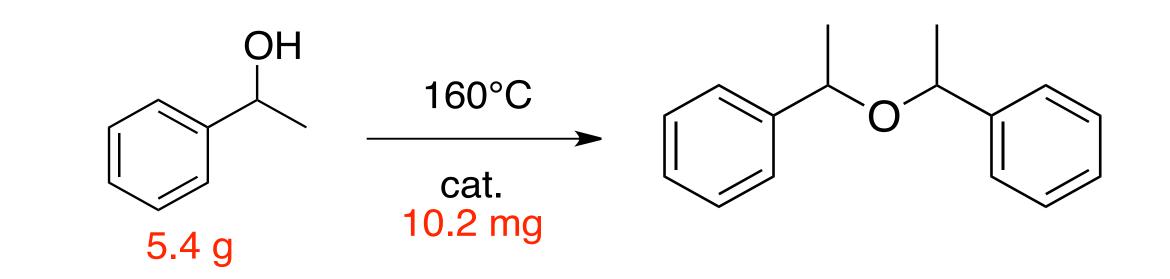
Entry


(a)

L.A. Bivona,<sup>1,2</sup> F. Quertinmont,<sup>1</sup> H.A. Beejapur,<sup>2</sup> F. Giacalone,<sup>2</sup> M. Buaki-Sogo,<sup>1</sup> M. Gruttadauria,<sup>2,\*</sup> and C. Aprile<sup>1,\*</sup>




**I. INTRODUCTION:** Etherification reaction is one of the most important transformations in organic synthesis and industrial processes. Ethers are largely employed as solvents, fragrance precursor and diesel blends.<sup>1</sup> Several methods are reported for the preparations of ethers from alcohols, but not without limitations. A variety of catalysts based on Lewis acids are employed for etherification reaction, also in presence of organosilanes. In most of the cases, the methods based on transition metal catalysts display good performances, however the homogeneous conditions used represent a major drawback for industrial applications.<sup>2</sup> Ionic liquids recently emerged as a novel class of compounds with multiple possible uses from alternative "green" reaction media to active molecules in catalytic reactions. Supported ionic liquid-like phase (SILLP) are a class of materials that have interesting applications in heterogeneous catalysis.<sup>3</sup> In this work a novel class of thiazolium based supported ionic liquid phase is reported for etherification of benzylic alcohols under solvent-free conditions, showing excellent performances.<sup>4</sup>


AIM: In the present work we present a thiazolium based supported ionic liquid phase as efficient catalyst for the etherification reaction.



## **II. SYNTHETIC STRATEGY AND CHARACTERISATION**



### **III. CATALYTIC TESTS**



#### **Procedure**: Investigation of reaction conditions with SBA-15-Thia and SBA-15-Imi.

| Entry | Support     | Time (h) | Gas phase      | Conversion (%) <sup>a</sup> | Selectivity (%) <sup>b</sup> |
|-------|-------------|----------|----------------|-----------------------------|------------------------------|
| 1     | SBA-15-Thia | 24       | $O_2$          | 93                          | 73                           |
| 2     | SBA-15-Thia | 24       | Air            | 93                          | 86                           |
| 3     | SBA-15-Thia | 24       | $\mathbf{N}_2$ | 55                          | 93                           |
| 4     | SBA-15-Thia | 24       | Ar             | 57                          | 91                           |
| 5     | SBA-15-Imi  | 24       | $O_2$          | 73                          | 38 <sup>c</sup>              |
| 6     | SBA-15-Imi  | 24       | Air            | 48                          | 70                           |

| Support | BET Surface Area (m <sup>2</sup> | g <sup>-1</sup> ) Cumulative<br>Volume (cm <sup>2</sup> )       |                                                                                                                                                                          |
|---------|----------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | ⊖<br>Br<br>bis-Imi               | SiO <sub>2</sub><br>SiO <sub>2</sub><br>SiO <sub>2</sub><br>SBA | A-15-Imi                                                                                                                                                                 |
| N+      | e<br>Br<br>+ N                   | N<br>Prove N<br>N<br>N<br>+<br>N<br>+<br>N                      | $ \begin{array}{c} \Theta \\ Br \\ (+) \\ H \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \Theta \\ \Theta \\ Br \\ H \\ \end{array} \\ \end{array} $ |

|   |             |     | volume (cm g ) | of finite (finition g ) |
|---|-------------|-----|----------------|-------------------------|
| 1 | SBA-15      | 911 | 1.18           | -                       |
| 2 | SBA-15-SH   | 675 | 0.86           | _                       |
| 3 | SBA-15-Thia | 129 | 0.17           | 2.46                    |
| 4 | SBA-15-Imi  | 145 | 0.18           | 2.32                    |

**Table 1**: BET surface area and cumulative pore volume of support SBA-15 and supports fonctionalized (SBA-15-SH, SBA-15-Thia and SBA-15-Imi). <sup>a</sup> Loading of thiazolium or imidazolium moiety, calculated by nitrogen data in elemental analysis, show an high degree of organic functionalization.

#### <sup>29</sup>Si and <sup>13</sup>C NMR spectra (500 MHz)

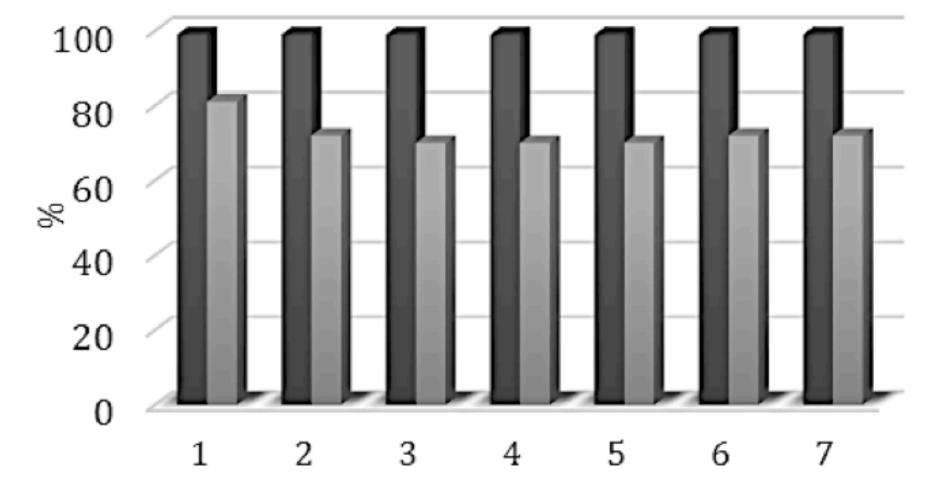
(b)

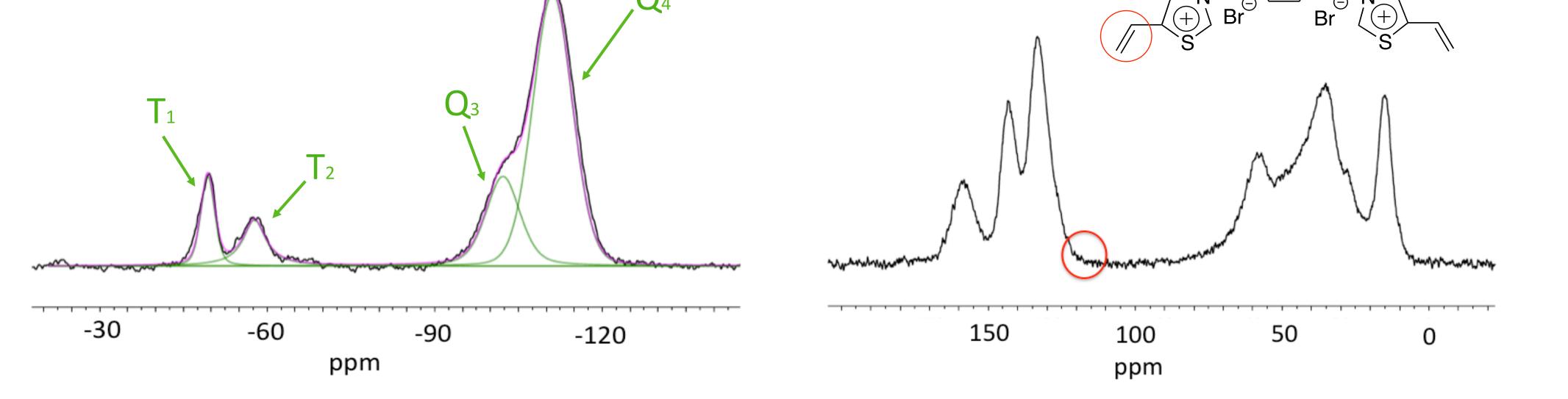
| 7 | SBA-15-Thia | 7 | $O_2$ | 92 | 75 |
|---|-------------|---|-------|----|----|
| 8 | SBA-15-Thia | 7 | Air   | 78 | 88 |

**Table 2**: Reaction condition: 1-phenylethanol (5.4 g, 44.2 mmol), **SBA-15-Thia** o **SBA-15-Imi** (10.2 mg), 160 °C, under stirring. <sup>a)</sup> Determined by <sup>1</sup>H NMR. <sup>b)</sup> Selectivity toward ether. <sup>c)</sup> Main by-product: acetophenone

# Catalytic Study with SBA-15-Thia

#### **Conversion in function of the time** $\frown$ Oxygen %) Air 80 Nitrogen <u>.0</u> S Ð 60 > U O D $\mathbf{O}$ ohol 4


#### Time (h)


**Figure 2**: Conversion of 1-phenylethanol with SBA-15-Thia as function of the time in oxygen (red), air (green) and nitrogen (blue) atmosphere.

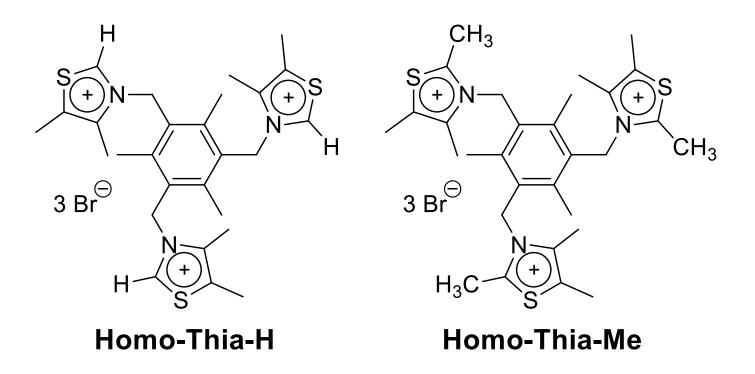
**Oxygen dipendent behavior of the SBA-15-Thia catalysed reaction** 



**Conversion and Selectivity in multiple catalytic runs** 






**Figure 1**: <sup>29</sup>Si-NMR spectrum in the solid state of SBA-15-SH (left, a); <sup>13</sup>C-MAS-NMR spectrum in the solid state of SBA-15-Thia (right, b). In <sup>13</sup>C-MAS NMR data the absence of the signals corrisponding to vinylic carbons confirms the absence of unreacted bis-vinyl precursors in the supported solid,

**SBA-15-Thia** was tested with primary alcohol and more hindered secondary alcohol (as benzylic alcohol and diphenylmethanol) showing excellent results in term of conversion and selectivity.

Catalytic cycles

#### Mechanicistic study

We investigated the role of the hydrogen at C2 position with two thiazolium based catalysts in homogeneous condition (Homo-Thia-H and Homo-Thia-Me) obtaining reduced performance with Homo-Thia-Me.



**IV. CONCLUSION:** Thiazolium and imidazolium hybrid materials (**SBA-15-Thia** and **SBA-15-Imi**) were prepared and tested as catalysts for the etherification of 1-phenylethanol. The SBA-15-Thia displayed an excellent catalytic performance, also with others benzyl alcohols. The results allow proving that oxygen play an active role in the reaction probably regenerating the catalysts. A mechanicistic study in homogeneous conditions was also performed. This study represents the first use of thiazolium-based compounds as catalysts for the etherification of alcohols.

**REFERENCES:** <sup>1</sup>Cuenca, A. B.; Mancha, G.; Asensio, G.; Medio-Simon, M. *Chem. Eur. J.* **2008**, 14, 1518-1523. <sup>2</sup> Miller, K. J.; Abu-Omar, M. M. *Eur. J. Org. Chem.* **2003**, 1294-1299. <sup>3</sup> Pavia, C.; Ballerini, E.; Bivona, L. A.; Giacalone, F.; Aprile, C.; Vaccaro, L.; Gruttadauria, M. *Adv. Synth. Catal.* **2013**, *355*, 2007-2018. <sup>4</sup> Bivona, L. A.; Quertinmont, F.; Beejapur, H.A.; Giacalone, F.; Buaki-Sogo, M.; Gruttadauria, M. *Adv. Synth. Catal.* **2013**, *355*, 2007-2018. <sup>4</sup> Bivona, L. A.; Quertinmont, F.; Beejapur, H.A.; Giacalone, F.; Buaki-Sogo, M.; Gruttadauria, M.; Aprile, C. *Adv. Synth. Catal.* **2015**, *357*, 800-810.

ACKNOWLEDGEMENTS: The authors acknowledge in the frame of the program FSR-FNRS "Research Credit Project". L. A. Bivona thanks University of Namur and University of Palermo for a co-funded PhD fellowship. M.B-S is gratefully acknowledged for an Incoming Post-Doctoral Fellowship of the Academie Universitaire de Louvain co-funded by the Marie Curie Actions of the European Commission.