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In the present paper it is first shown that, due to their structure, the general governing equations of
uncompressible real fluids can be regarded as an ‘‘anisotropic’’ potential flow problem and closed stream-
lines cannot occur at any time. For a discretized velocity field, a fast iterative procedure is proposed to
order the computational elements at the beginning of each time level, allowing a sequential solution ele-
ment by element of the advection problem. Some closed circuits could appear due to the discretization
error and the elements involved in these circuits could not be ordered. We prove in the paper that the
total flux of these not ordered elements goes to zero by refining the computational mesh and that it is
possible to order all the remaining elements by neglecting the minimum inter-element flux inside each
circuit, with a very small resulting error.

The methodology is then applied to the solution of the 2D shallow water equations. The governing Par-
tial Differential Equations are discretized over a generally unstructured triangular mesh, which attains
the generalised Delaunay property. Solution is obtained applying a prediction-correction time step pro-
cedure. The prediction problem is solved applying a MArching in Space and Time (MAST) procedure,
where the computational elements are required to be ordered and explicitly solved. In the correction
step, a large linear well-conditioned system is solved. Model results are compared with experimental
data and other numerical literature results. Computational costs have been estimated and the conver-
gence order has been investigated according to a known exact solution.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The 2D Saint-Venant (SV) [39], or shallow water equations
(SWEs), are extensively used for hydrodynamic simulations in riv-
ers, lakes, estuaries and floodplains.

Among all the simplified forms of SWE, the diffusive model has
shown robustness with respect to the input data approximations
and has provided higher order accuracy with respect to the kine-
matic wave and the uniform formulae (see [8] and cited references).
There are several reasons to prefer the diffusive form to the fully dy-
namic one. The most important is that the sensitivity of the com-
puted water depth to the topographic error is much higher in the
fully dynamic model than in the diffusive one [8]. However, when
inertial terms play a major role in hydrodynamic simulations (e.g.
sudden failure of a dam or a dyke, transport problems dominated
by short period waves), it is necessary to solve the original SWEs,
in order to get a good representation of the physical process.

Several numerical models based on the Finite Difference (FD),
Finite Volume (FV) and Finite Element (FE) discretization of the
SWEs over structured/unstructured meshes have been developed
in the last two, three decades. Most of the research effort, espe-
cially in the case of FV Godunov-type schemes, has been dedicated
to improve solution accuracy and stability, because of the imbal-
ance existing between the source terms and the numerical flux
terms, mainly in the case of irregular topographies. Many of the
proposed approaches provide poor results in stationary or quasi-
stationary cases and fractional step approaches can fail (see [7]
and cited references).

In the last two decades, one of the main challenges of the
Authors who proposed FV Godunov-type schemes has been to con-
struct a numerical scheme preserving steady states at the discrete
level. A numerical scheme is regarded as well-balanced [22] or sat-
isfying the C-property [11,46], if it preserves steady states at rest.
The concept of C-property has been extended to the case of uni-
form 1D flow in rectangular section [46] and to 2D problems, only
over structured meshes [25,31]. The surface gradient method
(SGM) [50] is a Godunov-type scheme where, instead of water
depth variable, water surface levels are used for data reconstruc-
tion. The SGM has been used by the same Authors to deal with
bed topography with vertical steps (surface gradient method for
steps, SGMS) [51]. Both SGM and SGMS produce accurate solution
over structured meshes.
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Triangular mesh is generally the simplest and most convenient
method for covering a 2D domain. An advantage of using triangular
meshes is their ability to fit arbitrary geometries and to increase the
number of elements in high-gradient topography regions or in re-
gions of particular interest. Many Authors proposed numerical
schemes dealing with triangular meshes, where splitting techniques
are proposed for the solution of the homogeneous form of the SWEs
and the numerical fluxes [4], or for the inviscid and viscous terms of
the SWEs, or for the friction and bed slope components of the source
terms [24]. Usually these methods solve a Riemann problem at each
element interfaces and result computationally very expensive.

Adaptive shallow flow model based on boundary-fitted curvilin-
ear grids have been also proposed [26], where grid elements can
change size according to local flow features without altering the total
number of elements. An advantage of such an approach is the accu-
rate description of curved shorelines, even though the highly
stretched curvilinear elements created by the adaptation process
may adversely affect solution accuracy and stability. Examples of
adaptive shallow flow models based on unstructured triangular grids
are given in [41,42]. One of the main drawbacks of unstructured grids
is the grid connectivity when applied on an adaptive procedure. On
the opposite, hierarchical quadtree or tritree grids are created by do-
main decomposition and their underlying tree structure is easy to
interrogate in order to identify neighbouring elements [32].

Several FE approaches have been developed for the SWEs
[28,34,44,52], aimed to guarantee stable and non-oscillatory
schemes under highly varying flow regimes. FE methods based
on the primitive form of the SWEs using discontinuous approxi-
mating spaces have also been studied [2,3,16,17]. This discontinu-
ous approach (Discontinuous Galerkin, DG) has several appealing
features, in particular, the ability to incorporate upwinding and
post-processing stability into the solution of highly advective
flows. A brief description of the advantages and drawback of FE
and DG schemes can be found in [8] and cited references.

Another class of numerical schemes, recently proposed for the
solution of hyperbolic problems, are the conservation element
and solution element schemes (CE/SE), originally proposed by
Chang [15]. These schemes present substantial innovations respect
to the more traditional FD, FV or FE schemes, mentioned above.
Space and time are treated in a unified way and the governing
equations are discretized over a space–time space. More details
can be found in [49] and cited references.

Major difficulties in the solution of the SWEs are found over ini-
tially dry areas, with moving wetting–drying boundaries. If no spe-
cial attention is paid, standard numerical procedure may fail near
dry/wet front, producing unphysical oscillations and negative
water depths. During the last decades, hydrodynamic models have
been equipped with Wetting–Drying (WD) algorithms, even
though some of them require a significant additional computa-
tional cost. See for example in [20,27,32,33] a description of the
main categories of WD techniques.

Most of the above-referred methods are limited by the Courant-
Friedrichs-Levy stability condition.

Since 2007, a different numerical scheme has been proposed for
the solution of the 1D and 2D fully dynamic SWEs [6,7]. This is a
predictor–corrector scheme, which guarantees local and global
mass conservation. The main advantage of this methodology is
that, even if the computational effort is almost proportional to
the number of computational elements, no evidence of stability
restriction on the maximum CFL number has been found. The gov-
erning equation system is initially split in a prediction kinematic
(or convective) and in a correction diffusive system. The convective
problem is solved applying a MArching in Space and Time (MAST)
procedure, where the numerical fluxes are computed using an
Eulerian approach and the computational elements are required
to be ordered and explicitly solved according to a decreasing scalar
potential value. The diffusive correction step computes the correc-
tive fluxes by solving a large linear algebraic system obtained after
linearization of the problem, with order equal to the elements
number and a sparse and symmetric matrix. The discretized for-
mulation of the governing equations allows to handle also wetting
and drying processes without any additional specific treatment.

The application of the MAST approach has been previously lim-
ited by the use of the scalar potential for the element ordering. This
scalar potential does exist only for the solution of the diffusive
form of the SWEs, but is missing for the most general velocity field
(i. e. fully dynamic SWEs formulation). The element ordering, in the
solution of the original fully dynamic SWEs, was achieved by using
an approximated potential, which requires the solution of a new
algebraic system, as well as an extra correction step [6,7]. In the
present paper it is first shown that an ‘‘anisotropic’’ scalar potential
always exists for the most general velocity field resulting from the
solution of the fully dynamic SWEs, such that its gradient forms al-
ways, at any point and at any time, a negative dot product with the
velocity vector. Starting from this finding, a procedure is proposed
for elements ordering at the beginning of each time level. Due to
the discretization error, some closed circuits can appear and the
computational elements involved in these circuits could remain
not ordered at the end of the procedure, but the corresponding flux
goes to zero by refining the computational mesh. A simple proce-
dure is also proposed to cut such circuits and to order anyway all
the elements in the domain.

Another significant innovation with respect to the previous
algorithm concerns the solution of the diffusive step. Fluxes are
discretized according to a formulation similar to the one adopted
by the Mixed Hybrid Finite Element (MHFE) schemes [48]. Accord-
ing to a proposed adjustment of the standard MHFE formulation
and due to the mesh Delaunay property, the stiffness matrix of
the diffusive problem always guarantees the M-property, which
preserves solution monotonicity [48] (see in Appendix C the basic
definition of M-matrix).

The paper is organised as follows. In Section 2.1 the O property
of a discretized velocity field is defined and its relationship with a
possible scalar potential is explained. A discretized velocity field
satisfies the O property if it is possible to order all the elements
such that the fluxes through the edges of an element with order
number k comes either from the boundary or from elements with
lower order number (i.e. previously ordered elements). In Sec-
tion 2.2 the ‘‘anisotropic’’ potential is defined and it is shown to ex-
ist for the most general solution of the Reynolds equations. It is
also shown that the existence of an ‘‘anisotropic’’ potential guaran-
tees the O property to be asymptotically satisfied with the use of a
strong enough mesh density. In Section 2.3 a simple correction to
get the O property also with coarse meshes is proposed.

The governing Partial Differential Equations (PDEs) are shown
in Section 3. An overview of the proposed computational scheme
is given in Section 4, with the proposed innovative details of the
prediction and correction problems solution, as well as of the
boundary conditions. Finally, several numerical tests are proposed
in Section 5, where numerical results are compared with both lab
measured data and numerical results computed by other literature
schemes. An analysis of the computational costs is also carried out.
2. The flow field potential and the elements ordering procedure

2.1. The isotropic potential and the O property

When an exact scalar potential P of the flow field exists, velocity
vector u has the same direction of the spatial gradient rP

�!
of the

potential and it is always oriented according to the decreasing po-
tential values, such that:
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u ¼ �k0rP
�!

; ð1Þ

where k0 is a positive scalar. The velocity fields resulting from
the diffusive form of the SW equations or from their stationary case
are examples of velocity fields with exact potential, that in the fol-
lowing we shall call also isotropic potential. The exact (isotropic)
potentials in these cases are respectively the piezometric head
and the hydraulic head.

In the following we shall assume the control volumes obtained
after space discretization of the computational domain to overlap
with the mesh elements. Most of the available numerical schemes
associate to each control volume a single potential value (at the
nodes for standard (e. g. Galerkin) FE schemes, or at the circumcen-
tres for FV or MHFE methods) and guarantee the flux between two
neighbouring elements to be oriented from the highest to the low-
est potential value [6,7]. This implies that it is always possible to
order all the elements according to their decreasing potential va-
lue, such that the following property (that we shall call O property
from now on) is satisfied for the ensemble of the elements: each
element has an order number and the fluxes entering in any ele-
ment with order k come either from the boundary or from ele-
ments with lower order. It can be seen in references [6,7] that
the existence of such ordered set is a necessary condition for a pos-
sible sequential solution of the averaged governing equations in
each element.

On the other hand, it would be possible to obtain the same
element ordering by applying the following procedure, even if
the actual potential value were left unknown at each time level.
Let Te be a generic element. We define nok

e the order number of
element Te at time level tk.

(1) Assign nok
e = 0 to all elements.

(2) Assign nok
e = 1 to those elements Te whose sides fulfil the

following requirement: internal sides have only zero or
outward oriented fluxes.

(3) Iterate the following procedure until at least one new ele-
ment is ordered in the last iteration, or all the elements
are ordered:

(a) select all the elements Tep with nok

ep = 0 (i. e. not yet
ordered element) which satisfy the following conditions:
internal sides have either zero fluxes or inward directed
fluxes only from neighbouring ordered elements Tem

with nok
em > 0 (i. e. already ordered element) and bound-

ary sides have either assigned inward or outward ori-
ented fluxes.

(b) assign to each selected element order number
nok

ep = m + 1, where m is the maximum order of its neigh-
bouring elements.
We can show now that, if a scalar (even unknown) potential is
associated to each element and all the internal fluxes are oriented
from the higher to the lower potentials, the set of the remaining
unordered elements (i.e. with nok

e = 0) is empty. To this end observe
that, if nok

ep = 0, at least one of its internal sides must have an in-
ward oriented flux (otherwise element Tep would satisfy the
requirement of step (2) and nok

ep = 1). Among all the neighbouring
elements sharing fluxes oriented toward Tep, at least one element
Tem will have order number nok

em = 0. Otherwise, an order number
greater than zero would have been assigned to Tep in step (3).
The same observation can be repeated for the Tem element and this
allows the generation of a subset of elements with order number
zero. Since the total number of elements is finite, the generation
can continue indefinitely only if some or all the elements of the
subset form a closed circuit. Since we have assumed that fluxes
move from the higher to the lower potential, a looped subset of
connected elements cannot exist and the subset is empty.
2.2. The anisotropic potential flow field

We will show in the following that, even if the velocity field is
obtained as the numerical solution of the complete SW problem
and the mesh elements do not satisfy the O property, the same
property is asymptotically attained when the size of the elements
goes to zero. This conclusion is based on the existence of an ‘aniso-
tropic potential’, that is a scalar function of space and time such
that:

u ¼ �K � rP
�!

; ð2Þ

where K is a real symmetric positive definite matrix (also function
of space and time), that we call in the following ‘‘anisotropy ma-
trix’’. To show the existence of this function P, let’s start from the
general formulation of the Reynolds equations [30,45]:

@u
@t
þ uru� tr2uþr p

q

� �
þ grz ¼ 0; ð3Þ

where t is time, u is the mean flow velocity vector, p is the mean
pressure value, q is the fluid density and fluid is assumed barotrop-
ic, z is the ground topographic level, g is the gravitational accelera-
tion with norm g. Boussinesq hypothesis has been adopted for the
Reynolds stresses, and t is the sum of the water and eddy viscosity
coefficients, assumed constant in space and time without loss of
generality. Call s = s(t) the abscissa of a generic streamline. Multi-
plying Eq. (3) by vector ŝ, the unit vector tangent to the streamline,
and dividing by g, one gets:

@

@s
zþ p

c
þ u2

2g

� �
þ 1

g
@u
@t
¼ �J; ð4Þ

where u = u � ŝ, J is the projection of vector �tr2u=g along ŝ direc-
tion and c is the specific fluid weight (c = qg). Assume u to be a
smooth enough continuum function in both space and time and de-
fine U as:

Uðs; tÞ ¼
Z sðtÞ

0
uðs; tÞds: ð5Þ

U is a continuous function and u can be written as:

u ¼ @Uðs; tÞ
@s

¼ @

@s

Z sðtÞ

0
uðs; tÞds: ð6Þ

According to Eqs. (5) and (6) one gets:

@u
@t
¼ @

@t
@Uðs; tÞ
@s

� �
¼ @

@s
@Uðs; tÞ
@t

� �
; ð7Þ

where Eq. (7) is based on the smoothness of U function, which im-
plies the continuity of the second derivatives. From Eqs. (7) and (4)
can be written as:

@P
@s
¼ �J; ð8; aÞ

P ¼ zþ p
c
þ u2

2g
þ 1

g
@

@t

Z sðtÞ

0
uds

� �
: ð8;bÞ

Call P anisotropic potential. Observe that in the stationary case
(time independent problem), P is equal to the total energy (e.g.
the hydraulic head z + p/c + u2/2g) and in the hydrostatic case
(velocity is zero), P is equal to the piezometric head (z + p/c). Eq.
(8,a) and the positive sign of J imply the following condition:

�rP
�! � u P 0: ð9Þ

Eq. (9) implies that the transformation represented by Eq. (2) is
given by a K positive definite full rate (3 � 3) tensor.
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Assume at a given time tk the exact velocity field u to be avail-
able. The difference between potential P in two points a and b on
the same streamline (with co-ordinate vectors xa and xb) is given
by:

PðxbÞ � PðxaÞ ¼
Z b

a

rP � u
juj ds: ð10Þ

Eq. (10), coupled with Eq. (2), provides:

PðxbÞ � PðxaÞ ¼ �
Z b

a

ðK�1uÞ � u
juj ds: ð11Þ

Observe that the argument of the integral at the r.h.s. of Eq. (11)
is always positive, because K�1 is positive definite; this implies
that the difference between P(xb) and P(xa) is always negative,
unless the velocity is zero along all the streamline. Assuming the
potential continuity, this also implies that a closed streamline can-
not occur. The above assumption comes from the hypothesis of
continuity and smoothness of velocity u. In Appendix A we prove
that closed streamlines cannot occur also in discontinuous velocity
fields.

Assume now the velocity and the anisotropy matrix fields to be
approximated respectively by a set of vectors and tensors, piece-
wise constant inside each element. We apply the same element
ordering procedure explained in the previous section. Since in this
case, unlike in the previous isotropic one, a scalar potential is not
associated to each element, such that the side fluxes move from
the higher to the lower potentials, the final subset of elements with
order number zero could not be empty, the O property could not be
satisfied and the elements of the final subset could form one or
more closed circuits.

Call S the set of all the sides common to two elements, following
each other in the close circuit and C the set of the circumcentres c
of all the elements belonging to the same circuit. Call L the closed
path given by the straight lines connecting all C points.

Observe that, if the computed u velocity is a good approxima-
tion of the real one, the potential difference between two circum-
centres a and b e L (with coordinates xa and xb), generally not
contiguous to each other, can be obtained by integrating the poten-
tial gradient component given by Eq. (2) and approximated as:

PðxbÞ � PðxaÞ � �
XZ ciþ1

ci

ðK�1uÞ � n̂dn; ð12Þ

where the sum is extended to all the i straight lines connecting each
couple of contiguous circumcentres ci and ci+1 in L (with
co-ordinates xci

and xciþ1
) between a and b and n̂ is the unit vector

parallel to the straight lines connecting ci and ci+1 (see Fig. 1) (n̂ is
Fig. 1. Computation of potential difference P(xb) � P(xa) along a closed path. Detail
of the approximation of the closed streamline inside some of the involved triangles
(blue lines). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
orthogonal to the side shared by the two contiguous elements
with circumcentres ci and ci+1). Since K�1 is symmetric, Eq. (12)
implies:

PðxbÞ � PðxaÞ � �
XZ ciþ1

ci

ðK�1n̂Þ � udn: ð13Þ

Moreover, since K�1 is positive definite, the following inequality
holds moving according to the flux path orientation:Z ciþ1

ci

ðK�1n̂Þ � udn P 0: ð14Þ

Assuming the continuity of the potential, the velocity and the
anisotropy matrix, due to inequality in Eq. (14), the l.h.s. of Eq.
(11) will converge to a negative value along with the increment
of the mesh density and a looped subset will finally not exist.
The speed of convergence will depend on the actual value of the
velocity and of the anisotropy matrix, but we know that, using a
dense enough computational mesh, the O property will be finally
satisfied. Fig. 2(a) and (b) show a zoom of the computed flow field
for one of the following proposed 2D test cases (test 6 in Sec-
tion 5.6). Both Fig. 2(a) and (b) represent the same portion of the
domain. Fig. 2(a) shows the side normal unit vectors, oriented
according to the flux sign and obtained by discretizing the domain
with a coarse triangulation, while the same vectors in Fig. 2(b) are
computed over a refined mesh, obtained from the previous coarse
one dividing each element in four equal triangles. Both computed
flow fields generate closed circuits (see the blue vectors in the fig-
ures), but these reduce by refining the mesh. The mean value of the
fluxes along the circuits in the coarse mesh is 8.82329d-04 m3/s
with a standard deviation 5.3409d-04, while the corresponding
values computed for the refined mesh are respectively 4.38d-
06 m3/s and 4.85414d-07. Refining the computational mesh once
again, the closed circuits in the investigated domain area
disappear.

2.3. Flux correction for the achievement of the O property

To avoid an abnormal increment of the mesh density, it is
possible to guarantee the O property by using the original mesh
and by setting to zero some of the fluxes through internal sides.
To this end, the subset of elements with zero order number is first
identified, along with the corresponding loops. The side
corresponding to the minimum flux along each loop is then identi-
fied and the flux set to zero. The procedure described in Section 2.1
is then started again from step (3). Since the old loops no more
exist, one or more elements will be ordered. The new subset with
zero order number is computed again and the procedure is
repeated until an empty subset is finally found. Numerical values
shown in Fig. 2(a) and (b) are the order number of the elements
computed after neglecting the minimum flux along the closed
path, minus a constant (870). Observe that neglecting a flux
through an internal side violates the local mass continuity, but
not the global one.

3. Application to the SWEs

If the slope of the water surface is small in two horizontal
orthogonal directions, velocity and acceleration vertical compo-
nents in Eq. (3) can be neglected and the vertical distribution of
the pressure can be assumed hydrostatic. Averaging the horizontal
components of Eq. (3) and the continuity equations along depth,
after some manipulations (see for example [1,4,35]) one gets the
2D SWEs [39]:

@h
@t
þ @uh

@x
þ @vh

@y
¼ 0; ð15Þ
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Fig. 2. Zoom of the computed flow field with circulations (test 4). Black arrows – computed fluxes, blue arrows – computed fluxes of a closed path. (a) coarse triangulation (b)
refined triangulation. Numerical values indicate the elements order after neglecting the minimum flux. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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@uh
@t
þ @

@x
ðu2hÞ þ @

@y
ðuvhÞ þ gh

@h
@x

þ gh
@z
@x
þ

n2u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuhÞ2 þ ðvhÞ2

q
h7=3

0
@

1
A

¼ t
@

@x
h
@u
@x

� �
þ @

@y
h
@u
@y

� �� �
; ð16Þ

@vh
@t
þ @

@y
ðv2hÞ þ @

@x
ðuvhÞ þ gh

@h
@y

þ gh
@z
@y
þ

n2v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuhÞ2 þ ðvhÞ2

q
h7=3

0
@

1
A

¼ t
@

@x
h
@v
@x

� �
þ @

@y
h
@v
@y

� �� �
; ð17Þ

where x and y are the spatial coordinates (x = x1, y = x2), t is the time,
u and v are the x and y velocity components (u = u1, v = u2), h is the
water depth, n is the Manning friction coefficient. The sum of the
water depth and of the ground level, H = z + h, is the water level
(or piezometric level or total head). Eqs. (15)–(17) represent respec-
tively the mass and the x and y momentum conservation equations.
The unknowns in system (15)–(17) are the water depth h and the
two flow rates components per unitary width in x and y directions,
uh and vh.

4. The MAST procedure

4.1. General formulation

As mentioned in the introduction, MArching in Space and Time
(MAST) solver is based on the following ideas [6–8]:

(a) splitting in each time step the original problem in a kine-
matic (prediction) problem plus a diffusive (correction)
one. See in Appendix B more details of the fractional time
step procedure,
(b) solving the kinematic problem along the time step, one ele-
ment after the other, moving in downstream direction of the
scalar potential values, and solving the diffusive problem
using a fully implicit formulation.

An appropriate ordering of the elements allows to cast the
kinematic problem in each element as a small system of Ordinary
Differential Equations (ODEs), that can be solved along a time step
of any size without stability restrictions. The small size of the
correction computed in the diffusive problem makes the artificial
diffusion of its numerical solution small with respect to the size
of the changes computed in the prediction step.

In the proposed algorithm the unknowns are computed in the
circumcentre of each triangle, with a linear variation of the piezo-
metric head inside each triangle and equal flux per unit width in
the centre of the common side of two neighbour elements. Storage
capacity is assumed concentrated in the circumcentre of each ele-
ment, in the measure of the area of each triangle. The MAST
scheme is suitable to higher order extension in both space and
time [5,6,10], but we believe that the natural heterogeneity and
uncertainty of the parameters needed in the SWEs makes more
suitable the 1st order approximation.

Spatial discretization of the governing PDEs is based on a gener-
ally unstructured triangular mesh. Let X � R2 be a bounded do-
main, Xh a polygonal approximation of X and Th an unstructured
triangulation of Xh. NT is the number of triangles of Th, Te,
e = 1, . . .,NT is the generic triangle of Th and jTej is the area of Te.
The computational mesh satisfies the generalised Delaunay (GD)
condition (see details in Appendix C).

Call i, ip and im nodes of triangle Te, where ip and im are the
nodes respectively following and preceding node i in counterclock-
wise direction. The edge vector ri,ip (ri,im) connects nodes i and ip
(im), oriented from i to ip (im). Tep is the triangle sharing side ri,ip

with Te, (rip,i = �ri,ip, oriented from ip to i). cTe is the Te circumcentre
with xce its co-ordinate vector (see Fig. 3).

After integration of the prediction equations in space, apply-
ing the Green’s theorem, the integral form of the prediction system
is:
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@h
@t
jTej þ

X
j¼1;3

Fj;e ¼ 0; . . . ; e ¼ 1; . . . ;NT; ð18Þ

@uh
@t
jTej þ

X
j¼1;3

Mx
j;e þ Rx

e þ
X
j¼1;3

Dx
j;e ¼ 0; ð19Þ

@vh
@t
jTej þ

X
j¼1;3

My
j;e þ Ry

e þ
X
j¼1;3

Dy
j;e ¼ 0; ð20Þ

where Fj,e is the volumetric flux across side j (j = 1, 2, 3) of Te, linking

nodes i and ip (ri,ip) and MxðyÞ
j;e is the x(y) component of the momen-

tum flux along the same side. Fj,e and MxðyÞ
j;e will be further specified.

Rx
e and Ry

e are source terms defined as [7]:

Rx
e ¼ jTejg he

@Hk
e

@x
þ

n2ðuhÞe
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuhÞ2e þ ðvhÞ2e

q
h7=3

e

0
@

1
A; ð21; aÞ

Ry
e ¼ jTejg he

@Hk
e

@y
þ

n2ðvhÞe
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuhÞ2e þ ðvhÞ2e

q
h7=3

e

0
@

1
A; ð21;bÞ

with He, he (uh)e and (vh)e respectively the water level, the water
depth and the flow rate components per unit width in element Te.
Finally, the viscous momentum flux components Dx

j;e and Dy
j;e are

given respectively by:

Dx
j;e ¼ the

Z
Lj;e

@uk
e

@nj;e
n̂j;edl ¼ thejri;ipj

@uk
e

@nj;e
n̂j;e

Dy
j;e ¼ the

Z
Lj;e

@vk
e

@nj;e
n̂j;edl ¼ thejri;ipj

@vk
e

@nj;e
n̂j;e; ð22Þ

where Lj,e marks the jth side of element Te linking nodes i and ip,
with length jri;ipj and n̂j;e is its normal unit vector (positive out-
ward). Spatial gradients of the velocity components in the Dx

j;e and
Dy

j;e terms in Eq. (22) for triangle Te are computed by approximating:

he
@uk

e

@nj;e
n̂j ’ he

@

@nj;e

ðuhÞe
he

� �k

n̂j;e

he
@vk

e

@nj;e
n̂j ’ he

@

@nj;e

ðvhÞe
he

� �k

n̂j;e ð23Þ

and the derivatives at the r.h.s. of Eq. (23) are computed assuming a

linear variation between the values of ðuhÞ
h and ðvhÞ

h at time level tk in
triangles Te and Tep sharing side ri,ip. More details on the computation
of the spatial piezometric head gradients are given in Section 4.3.

According to the formulation in Eqs. (B.3)–(B.5) of Appendix B,
the differential linearized form of the correction problem is:

@h
@t
þ @uh

@x
þ @vh

@y
¼ @ðuhÞ

@x
þ @ðvhÞ

@y
; ð24Þ
epc
x

imx

ix

ipx

ec
x

i ,ipx
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epT
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epT

ip ic

,
eT
i ipc

Fig. 3. Elements notation.
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þ g�h

@H
@x
þ g n2ðuhÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuhÞ2 þ ðvhÞ2

q
h7=3

0
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1
A

¼ g�h
@Hk

@x
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuhÞ2 þ ðvhÞ2
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h7=3

0
@

1
A; ð25Þ
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þ g�h

@H
@y
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
h7=3

0
@

1
A

¼ g�h
@Hk

@y
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
h7=3

0
@

1
A; ð26Þ

where the over bar symbol marks the corresponding mean in time
values, computed as explained in the next sections. Initial condi-
tions of the correction system are the final values of the prediction
system.

In Eqs. (25) and (26) we neglect the difference between the sum
of inertial and viscous flux terms and the corresponding mean in
time value computed from the solution of the prediction system
[6,7]. This is equivalent to assume, in the correction system:

@

@x
ðu2hÞ þ @

@y
ðuvhÞ ’ @

@x
ðu2hÞ þ @

@y
ðuvhÞ

@

@y
ðv2hÞ þ @

@x
ðuvhÞ ’ @

@y
ðv2hÞ þ @

@x
ðuvhÞ; ð27; aÞ
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@
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�h
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@y
�h
@�v
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� �� �
: ð27;bÞ
4.2. The prediction problem

Triangles Te and Tep share side ri,ip between nodes i and ip. ri,ip is
the jth side of Te and rip,i is the mth side of Tep (j, m = 1, 2, 3). The
volumetric flux across side j of Te is equal to [7]:

FLj;e ¼ ðuhÞeðyip � yiÞ � ðvhÞeðxip � xiÞ: ð28Þ

According to Eq. (28) the leaving fluxes are positive, the enter-
ing ones negative. We finally define the volumetric flux between Te

and Tep as [7]:

Fj;e ¼ FLj;e if FLe
i;ip > 0 and FLj;e > FLm;ep; ð29; aÞ

Fj;e ¼ �FLm;ep otherwise; ð29;bÞ

Mx
j;e ¼ Fj;eue; My

j;e ¼ Fj;eve if Fj;e ¼ FLj;e; ð30; aÞ

Mx
j;e ¼ Fj;euep; My

j;e ¼ Fj;evep otherwise: ð30;bÞ

Condition Fj;e ¼ �Fm;ep holds for all the internal sides. If Fe;j is the
positive (outward oriented) flux of an external boundary side, con-
dition Fj;e ¼ FLj;e holds. On the base of Eqs. (29) and (30), volumetric
flux and momentum flux continuity is always guaranteed for each
internal element side.

According to formulations given in Eqs. (28)–(30) and to the
element ordering procedure presented in Section 2, flux and
momentum fluxes from Te to Tep in the prediction step are only
function of the Te unknowns if nok

e < nok
ep and are only function

of the Tep unknowns if nok
e > nok

ep. Due to the assumption of a con-
stant (in time) total head gradient in the prediction step, the pre-
diction system (18)–(20) can be solved as an Ordinary
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Differential Equations (ODEs) system. We solve the prediction step
as a sequence of small ODEs systems, one for each computational
element, after ordering the elements according to the procedure
proposed in Section 2. The ODEs system for the generic triangle
Te is given by:

dhe

dt
jTej þ

1
Dt

X
j¼1;3

dj;e

Z
Dt

Fout
j;e dt

¼ 1
Dt

X
j¼1;3

ð1� dj;eÞ
Z

Dt
Fin

j;edt e ¼ 1; . . . ;NT ; ð31Þ
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1
Dt

X
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Z
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 !
þ
Z

Dt
Rx

edt þ
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Z
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Dx
j;edt

 !

¼ 1
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X
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ð1� dj;eÞ
Z

Dt
Mx;in

j;e dt; ð32Þ

dðvhÞe
dt

jTej þ
1
Dt

X
j¼1;3

dj;e

Z
Dt

My;out
j;e dt

 !
þ
Z

Dt
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j¼1;3

Z
Dt

Dy
j;edt

 !

¼ 1
Dt

X
j¼1;3

ð1� dj;eÞ
Z

Dt
My;in

j;e dt; ð33Þ

where dj,e = 1 or 0 if flux across side j is oriented outward Te or not,
RxðyÞ

e and DxðyÞ
j;e are defined respectively in Eq. (21) and in Eq. (22) and

indices in and out mark the fluxes and momentum fluxes oriented
inward and outward element Te respectively. Viscous momentum
fluxes components appear in Eqs. (32) and (33) respect to the pre-
vious formulation in [7].

The solution of the ODEs system is further simplified if we
change the r.h.s. of each equation with its mean value along the gi-
ven time step, according to:

dhe

dt
jTej þ

1
Dt

X
j¼1;3

dj;e

Z
Dt

Fe;out
i;ip dt ¼ Fin

e e ¼ 1; . . . ;NT ; ð34Þ
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i;ip dt

 !
þ
Z
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¼Mx;in
e ; ð35Þ
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dt

jTejþ
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Z
Dt

Me;y;out
i;ip dt
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þ
Z

Dt
Ry

edt þ
X
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Z
Dt

De;y
i;ipdt

 !

¼My;in
e ; ð36Þ

where the r.h.s. of Eqs. (34)–(36), that is the mean in time values of
the incoming volumetric fluxes and momentum fluxes, are known
from the solution of the previously solved elements, as further spec-
ified.Elements are ordered at the beginning of the time step accord-
ing to the fluxes computed across their sides, applying the ordering
procedure described in Section 2. Systems (34)–(36) are then solved
sequentially, one after the other, proceeding from the lowest to the
highest ordering number. Elements with the same order number
can be solved independently of each other and an element with a
given order can be solved only after the solution of the neighbour-
ing ones with lower order. Element solution is function of the initial
state in the same element and of the fluxes and momentum fluxes
incoming from the already solved neighbouring elements with low-
er order. For this reason the prediction step can be regarded as the
‘‘explicit’’ component of the algorithm. The ODEs system is solved
along the original time step using a variable step Runge–Kutta
method with adaptive stepsize control [7,36]. Mean in time values
�h and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuhÞ2þðvhÞ2

h7=3

q
, required in the correction step, are computed

via numerical integration according to a C1 interpolation of the solu-
tion values computed at Gauss points, selected in the time interval
[tk � tk+1] [6,7]. Mean in time values of uh and vh are computed in a
different way, after integration in space, in order to guarantee the
mass balance for the element.After the ODEs in element Te are

solved, the mean total flux Fout
e leaving from Te along the time step

is computed from the local mass balance [7]. Once the total mean

leaving flux is computed, the mean flux Fout
j;e leaving from side ri,ip

of Te to the neighbouring element Tep with nok
e < nok

ep, can be esti-

mated by partitioning Fout
e according to the ratio between the flux

Fout
j;e and the sum of the leaving fluxes at the end of the time step

(details in [7]). Mean leaving momentum fluxes Mx;out
j;e and My;out

j;e

can also be estimated in a similar way [7]. Finally you set:

Fin
m;ep ¼ Fout

j;e Mx;in
m;ep ¼ Mx;out

j;e My;in
m;ep ¼ My;out

j;e ð37Þ

for all the neighbouring Tep elements with nok
e < nok

ep and you can
proceed to solve system (34)–(36) for the next element, that has
among the unsolved ones the minimum number of order greater
than or equal to nok

e .
Conservation of the mean values can be easily proved to guar-

antee the local and global mass conservation [6,7] and the proof
of the local and global mass conservation of the prediction step
is given in [8].

4.3. The correction problem

A fully implicit time discretization is adopted for the solution of
the diffusive correction problem (24)–(26). It leads for the generic
element Te to:
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with the above specified symbols, where index k + ½ marks the val-
ues of H, uh and vh computed at the end of the prediction step. From
Eqs. (39) and (40) one gets:

ðuhÞkþ1
e ¼ �eleme

@Hkþ1
e

@x
þ kx

e þ ðuhÞkþ1=2
e

ðvhÞkþ1
e ¼ �eleme

@Hkþ1
e

@y
þ ky

e þ ðvhÞkþ1=2
e ; ð41Þ
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with eleme ¼
g�heDt

1þ Dt g n2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuhÞ2eþðvhÞ2e
p

h7=3
e

� � ; kx
e ¼ eleme

@Hk
e

@x
;

ky
e ¼ eleme

@Hk
e

@y
: ð42Þ

After space integration, merging Eqs. (41) and (42) in Eq. (38)
and applying the Green theorem, one gets the following balance
law for triangle Te:Z

Te

@H
@t

dTe þ
X
j¼1;3

Z
Lj;e

�eleme
@Hkþ1

@nj;e
dl

¼
X
j¼1;3

Z
Lj;e

�eleme
@Hk

@nj;e
dlþ

X
j¼1;3

Z
Lj;e

ð�q� qkþ1=2Þ � n̂j;edl; ð43Þ

where �q and qk+1/2 are respectively the mean in time and the final
values of the specific flow rate vector computed after the solution
of the prediction step. Sum of fluxes due to �q is computed according
to the mass balance for Te:

X
j¼1;3

Z
Lj

�q � n̂j;edl ¼ Fin
e � Fout

e ¼ Hkþ1=2
e � Hk

e

Dt
jTej; ð44Þ

while the corresponding term due to qk+1/2 is obtained by
summing the fluxes given by Eqs. (28) and (29) using the final
prediction step solution. After time discretization, Eq. (43) can be
written as:

Hkþ1
e � Hkþ1=2

e

Dt
jTej þ

X
j¼1;3

~Fj;e ¼
X
j¼1;3

~bj;e; ð45Þ

where the flux ~Fj;e across side j of Te linking nodes i and ip (ri,ip) is:

~Fj;e ¼ �eleme
@Hkþ1

@nj;e
jri;ipj ð46; aÞ

and the source term ~bj;e is:

~bj;e ¼ ððuhÞe � ðuhÞkþ1=2
e � kx

eÞðyip � yiÞ � ððvhÞe � ðvhÞkþ1=2
e

� ky
eÞðxip � xiÞ: ð46;bÞ

The total head derivatives in Eq. (46,a) are discretized according
to the MHFE scheme lumped in the elements circumcentres, pro-
posed in [9]. This formulation leads to:

~Fj;e ¼ vj;eðH
kþ1
e � Hkþ1

i;ip Þ; ð47Þ

with coefficient vj;e given by Aricò et al. [9]:

vj;e ¼
eleme

cTe
i;ip

jri;ipj; ð48Þ

where cTe
i;ip is the distance between the Te circumcentre cTe and the

midpoint of ri,ip, computed as in Eq. (C.1) of Appendix C. Identity
of fluxes between elements Te and Tep across their common side ri,ip

provides, after some simple algebraic manipulations:

~Fj;e ¼ ve;epðHkþ1
e � Hkþ1

ep Þ; ð49Þ

where flux coefficient ve;ep given by Aricò et al. [9]:

ve;ep ¼
vj;evm;ep

vj;e þ vm;ep
¼ jri;ipj

cTe
i;ip

eleme
þ

c
Tep
ip;i

elemep

: ð50Þ

Such a formulation guarantees, as in the prediction problem,
flux continuity at element interfaces. Eq. (45) form a linear system
of order NT in the He (e = 1, . . .,NT) unknowns with fully implicit
time discretization. Diagonal term of the stiffness matrix system
corresponding to element Te is:
se;e ¼
jTej
Dt
þ
X

ep¼1:NT

ve;epde;ep; ð51; aÞ

where de,ep = 1 if elements Te and Tep share a side, otherwise it is
zero and its off-diagonal term corresponding to triangle Tep is:

se;ep ¼ �v̂e;ep: ð51;bÞ

According to the flux coefficient formulation given in Eq. (50), off-
diagonal coefficients for obtuse triangles could be non negative
and M-matrix property would be lost also for a generalised Dela-
unay mesh with positive sum of distances cTe

i;ip þ cTep

ip;i (see Eq. (C.2)
in Appendix C), if the two coefficients ve

i;ip and vep
ip;i were computed

with different element parameters eleme and elemep. In this case, the
sign of the total flux from Te to Tep can loose consistency with the H
difference. Given a generalised Delaunay mesh, we propose the fol-
lowing formulation for coefficient ve;ep [9]:

ve;ep ¼min big;
jri;ipj

ce
eleme
þ cep

elemep

 !
; ð52; aÞ

where ce and cep are defined as:

ce ¼ cTe
i;ip cep ¼ cTep

ip;i if cTe
i;ip > 0; cTep

ip;i > 0;

ce ¼ cTe
i;ip þ cTep

ip;i ce ¼ 0 if cTe
i;ip > 0; cTep

ip;i 6 0 and jcTep

ip;i j < cTe
i;ip;

ce ¼ 0 cep ¼ cTe
i;ip þ cTep

ip;i if cTep

ip;i > 0; cTe
i;ip 6 0 and jcTe

i;ipj < cTep

ip;i

ð52;bÞ

and big is a very large positive number (say big ’ 1.d + 15). Formu-
lation provided by Eq. (52) always guarantees for GD meshes the
negative sign of the off-diagonal coefficient defined by Eq. (51,b),
along with the M-property and the positive definite condition.

Observe that the flux formulation between the two elements Te

and Tep given in Eq. (49) using coefficient ve;ep, modified according
to Eq. (52), is consistent with the geometry of the Delaunay mesh.
If the two triangles sharing side ri,ip are acute triangles, formula-
tions (50) and (52) overlap; if one of the two triangles is obtuse,
the flux computed according to formulations (52) is still equal to
the flux through side ri,ip, due to a H gradient between the two Te

and Tep triangles circumcentres, computed according to the coeffi-
cient elem of the acute triangle where the segment between cTe and
cTep is entirely located (see Fig. 4(a)). In this case, the flux computed
with the coefficients given by the original Eq. (50) is different and
could not be consistent with the velocity occurring in the acute
triangle.

Once system (45) has been solved, the new piezometric head

gradients @Hkþ1
e
@x and @Hkþ1

e
@y are computed in each element according

to the three midpoint values. We distinguish two different cases
for each side ri,ip.

(1) ri,ip is a generic internal side. Midpoint value Hkþ1
i;ip is obtained

by comparing Eqs. (47) and (49), where Hkþ1
e and Hkþ1

ep are
known, to get:

Hkþ1
i;ip ¼

ðHkþ1
e vj;e þ Hkþ1

ep vm;epÞ
vj;e þ vm;ep

ð53Þ

with the above specified symbols for coefficients vj,e and vm,ep.
After simple algebraic manipulations, Eq. (53) is written as:

Hkþ1
i;ip ¼

Hk
ecep elemep þ Hk

epce eleme

ceelemep þ cepeleme
if ðceelemep þ cepelemeÞP toll;

Hkþ1
i;ip ¼

Hk
e þ Hk

ep

2
if ðceelemep þ cepelemeÞ < toll; ð54Þ
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where toll is the machine precision and distances ce and cep are com-
puted by Eq. (52,b).

(2) ri,ip is a boundary side. Hi,ip is computed according to the
boundary conditions specified in the following section.

After computation of the new gradients @Hkþ1
e
@x and @Hkþ1

e
@y , specific

flow rate components at the end of the correction problems
ðuhÞkþ1

e and ðvhÞkþ1
e are obtained by Eqs. (41) and (42). The values

of the new computed gradients will be kept constant during the
solution of the correction step of the next time iteration. The pie-
zometric head gradient formulation in Eqs. (53) and (54) is com-
pletely different form the ones suggested in the previous work
[7], where two distinguished computations have been carried out
for the convective and diffusive steps. Formulation suggested in
Eqs. (53) and (54) is coherent with the numerical procedure pro-
posed in this section which guarantees the M-property of the sys-
tem matrix.

Once specific flow rates are updated, the gradients @
@nj;e

ðuhÞe
he

� �
and @

@nj;e

ðuhÞe
he

� �
can be computed for the new time iteration accord-

ing to the new circumcentre values.

4.4. Boundary conditions

Let Te be a boundary element and its jth side (ri,ip) a boundary
side. Let ðuhÞke and ðvhÞke the specific flow rate components com-
puted inside Te at the beginning of a time step (time level tk). More-
over, we distinguish the external assigned values of water depths
and specific flow rate components, hex

e , ðuhÞex
e and ðvhÞex

e , from the
corresponding boundary side values, hb

e , ðuhÞbe and ðvhÞbe . At the
beginning of each time step we compute for each boundary ele-
ment side the volumetric flux Flj,e (as in Eq. (28)) and the Froude
number frk

j;e of the flux per unit length as:

frk
j;e ¼

ðuhÞbeðye
ip � ye

i Þ � ðvhÞbeðxe
ip � xe

i Þ

jri;ipj ðhb
eÞ

3=2 ffiffiffi
g
p ; ð55Þ

with the above specified symbols. The boundary water depth hb
e is

linked to the midpoint water level Hk
i;ip at the beginning of the time

step by the relationship:

hb
e ¼ Hk

i;ip � zj;e; ð56Þ

where zj,e is the topographic level of the midpoint of the boundary
side and Hk

i;ip is equal to the corresponding midpoint value com-
puted at the end of the previous time step, as further explained.

One of the following cases occurs:
(1) frk

j;e > 1 and Flj,e entering the domain (FLj;e < 0). In the predic-
tion problem the incoming volumetric and momentum fluxes are
known and equal to:
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imx
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ipx
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Fig. 4. (a) Side ri,ip satisfies Delaunay property. (b) Side ri,ip does not satisfy
Delaunay property.
Fe;j ¼ ðuhÞbeðye
ip � ye

i Þ � ðvhÞbeðxe
ip � xe

i Þ

Mx
e;j ¼ Fe;j

ðuhÞbe
hb

e

My
e;j ¼ Fe;j

ðvhÞbe
hb

e

; ð57; aÞ

with ðuhÞbe ¼ ðuhÞex
e ðvhÞbe ¼ ðvhÞex

e hb
e ¼ hex

e : ð57;bÞ

In the correction problem Hkþ1
i;ip is assumed equal to the Dirichlet

assigned value, i.e. Hkþ1
i;ip ¼ hex

e + zj,e,. Observe that Hkþ1
e remains an

unknown of the correction system and a flux given by Eq. (47)
has to be added in the l.h.s. of Eq. (45) corresponding to element

Te. Boundary side values hb
e , ðuhÞbe and ðvhÞbe in Eq. (55) for the next

time step are given by Eq. (57,b).
(2) frk

j;e > 1 and Flj,e leaving the domain (Flj,e P 0). No boundary
condition is required in this case. The ODEs system of the predic-
tion problem is solved for element Te as described above. In the
correction step call Fc

j;e the corrective flux, given by (see Eq. (46)):

Fc
j;e ¼ ~Fj;e þ ~bj;e: ð58Þ

Set Fc
j;e ¼ 0 in Eq. (45) corresponding to element Te. After solu-

tion of the correction system compute Hkþ1
i;ip by merging Eqs. (47)

and (58), to get:

vj;eðH
kþ1
e � Hkþ1

i;ip Þ ¼ �~bj;e: ð59Þ

Boundary side value hb
e in Eq. (55) for the next time iteration is

computed by Eq. (56), while ðuhÞbe and ðvhÞbe are equal to the ele-
ment values computed at the end of the correction problem,
respectively ðuhÞkþ1

e and ðvhÞkþ1
e .

(3) frk
j;e 6 1 and Flj,e entering the domain (FLj;e < 0). In this case

we assume the specific discharge components ðuhÞbe and ðvhÞbe to
be known and equal respectively to ðuhÞex

e and ðvhÞex
e . In the predic-

tion step, volumetric and momentum fluxes are computed using

the known discharge components ðuhÞbe and ðvhÞbe and the bound-

ary water depth hb
e computed at the end of the previous time step.

In the correction step, zero corrective flux is assigned (Fc
j;e ¼ 0), as

explained for the previous case (2) and the midpoint Hkþ1
i;ip value is

computed accordingly. Boundary side value hb
e in Eq. (55) for the

next time iteration is computed by Eq. (56).
(4) frk

j;e 6 1 and Flj,e leaving the domain (Flj,e P 0). No special
treatment is needed for element Te in the prediction step. Let
ðuhÞbe and ðvhÞbe be equal respectively to ðuhÞkþ1=2

e and ðvhÞkþ1=2
e ,

the element values computed at the end of the prediction step.
In the correction step two possibilities exist. If the assigned exter-
nal water depth hex

e is smaller than the critical depth hc
e correspond-

ing to the specific flow rate on the boundary side, that is:

hex
e 6 hc

e with hc
e ¼

ððuhÞbeÞ
2
þ ððvhÞbeÞ

2

g

0
@

1
A1=3

ð60; aÞ

a corrective flux corresponding to the critical depth inside the ele-
ment is assigned to the element boundary side, equal to:

Fc
e;j ¼

ffiffiffi
g
p
ðhc

eÞ
3=2jri;ipj � Fkþ1=2

e;j ; ð60;bÞ

where Fkþ1=2
e;j is given by Eq. (28) at the end of the prediction step.

After solution of the correction system, Hkþ1
i;ip is computed as solution

of Eq. (47), written as:

vj;eðH
kþ1
e � Hkþ1

i;ip Þ þ ~bj;e ¼ Fc
e;j ð60; cÞ

with Fc
j;e given by Eq. (60,b). If constraint (60,a) does not hold, the

external water depth is assigned in the midpoint of the boundary
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side as Dirichlet value, as already explained for case (1). In both
cases, hb

e for the next time iteration is computed by Eq. (56), while
the boundary values ðuhÞbe and ðvhÞbe are assumed equal respectively
to ðuhÞkþ1

e and ðvhÞkþ1
e .
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Fig. 5. Test 1. Lab flume geometry and position of the measure points.
4.5. Model properties

The model preserves the C-property (see for example [46]). For
quiescent water, in facts, we have, in the prediction step, zero flux
entering in each element and zero gradient of the piezometric
head. This implies, in the solution of system (34)–(36), Hk+1/

2 = Hk. In the correction step we solve system (43) which, after sim-
ple manipulations, can be written as:Z

Te

@g
@t
�
X
j¼1;3

Z
Lj;e

eleme
@ðg� #Þ
@nj;e

� �
¼ 0

with g ¼ H � Hkþ1=2 # ¼ Hk � Hkþ1=2; ð61Þ

where # is zero from the solution of the prediction step. System (61)
becomes:Z

Te

@g
@t
�
X
j¼1;3

Z
Lj;e

eleme
@g
@nj;e

� �
¼ 0; ð62Þ

whose solution is zero, that is zero correction of the water levels.
Moreover, since we adopt a fully-implicit time solution of the above
system, any numerical instability will be dampened by the numer-
ical diffusion.

Another property of the model is its capability to solve the wet-
ting and drying problem without losing mass conservation. This is
because the original continuity equation in the set of ODEs solved
in each element along the prediction step is always saved. If water
depth, in the circumcentre of the element, becomes zero or nega-
tive (from solution of the previous correction problem), momen-
tum equations are changed according to specific approximation
(see details in [6,7]), but the continuity equation is not. This gives
also the possibility of propagating the front of the wave along sev-
eral dry elements along a single time step. In the following linear-
ized correction step, small negative water depths can be computed
specially in the tail of the propagate waves, and the corresponding
volumes are kept as negative both in the local and in the global
mass balance. If, after the solution of the prediction step, water
depth in element e is zero or negative, the corresponding off-diag-
onal terms of the system matrix are set equals to zero (according to
Eq. (42)) and zero fluxes ~Fj;e are computed for element e (see Eq.
(43)).
Fig. 6. Test 1. Computed iso-h contours at t = 0.5 s. (a) zero bottom slope (b) 0.07
bottom slope along x direction.
5. Numerical tests

We present seven numerical tests. We compare results com-
puted by the proposed algorithm with experimental data collected
in lab flumes and results computed by other literature numerical
schemes. Viscous terms are neglected in the governing PDEs sys-
tem, except for the sixth test, where we investigate the capability
of the proposed element ordering procedure (see Section 2) in flow
fields with strong recirculation zones. Last test is finalized to study
the convergence order of the proposed model according to a given
exact solution. In some of the presented tests we show also the re-
sults computed by the previous MAST scheme proposed in [7], in
order to investigate the improvements of the present proposed
model. We investigate also the computational costs.

The computed local and global mass balance error for the
following proposed tests is of the order of machine precision,
approximately 1.d-16.
5.1. Test 1. 2D dam-break experiment by Fraccarollo and Toro [18]

The experimental flume has a (2 � 3) m2 rectangular bottom
plane, partially occupied by a reservoir, (see Fig. 5). The down-
stream part of the bottom plane is initially dry. Walls and bottom
Manning coefficient is 0.0095 s/m1/3. The width of the movable
gate, symmetrically centred, is 0.40 wide m. The flood-plain
boundaries are all open. The Authors in paper [18] measured pres-
sure, water depths and velocity components. Measure points are
shown in Fig. 5 and their spatial coordinates can be found in [18].

Two sets of runs have been carried out, assuming horizontal
bottom plane in the first run and 7% bottom slope along x direction
in the second run.
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Numerical results of the proposed model have been compared
with the experimental data in [18] and with the numerical results
by Fraccarollo and Toro [18] and Singh et al. [41]. In the two series
of runs, the proposed scheme computes results very similar to the
ones provided by the previous algorithm [7] and for brevity only
the new data are shown.

Fraccarollo and Toro [18] applied a WAF (Weighted Averaged
Flux) scheme, a 2nd order conservative, shock-capturing FV Godu-
nov-type scheme. The Authors discretized the domain with a reg-
ular mesh of 150 � 50 points along x and y directions respectively.
Singh et al. [41] applied a well balanced FV Godunov type scheme.
They discretized the domain with a regular quadrilateral mesh
with side 0.01 m and used a time step size which maintained
the maximum CFL number less than 0.25 [41].

For the present model simulations, spatial domain is discretized
with a GD triangulation of 8650 triangles and 4492 nodes. A time
step Dt = 0.01 s has been used. The final mesh has been obtained
from the one used for the simulation in [7] after the edge swap pro-
cedure mentioned in Section 5 and explained in [9].

In the experiment with zero bottom slope, the initial water
depth inside the reservoir is 0.6 m. Fig. 6(a) shows contours of
the iso-h lines obtained at simulation time t = 0.5 s. The maximum
CFL number for MAST scheme is 3.14. The asymmetric contours,
specially for the smaller water depths, is due to the mesh asymme-
try. In Fig. 7(a)–(d) we compare the measured and the computed
water depths at points ‘‘U1’’, ‘‘U2’’, ‘‘O’’ and ‘‘D’’. All the numerical
models are in good agreement with the experimental data at
points ‘‘U1’’, ‘‘U2’’ and ‘‘D’’. Observe the difference between mea-
sured and numerical results for small simulation times at point
‘‘O’’, where the shallow water hypothesis does not hold. After the
sudden opening of the gate a strong rarefaction wave starts moving
in upstream direction. As in the 1D case, water depth at the gate
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Fig. 7. Test 1 – zero bottom slope run. Time evolution of measured and computed water d
Fraccarollo and Toro [18], ‘‘measured’’ by Fraccarollo and Toro [18], ‘‘well balanced’’ by
location (point ‘‘O’’ in the specific case) drops to a local minimum
value (about 4/9 of the initial depth) after the opening of the gate.
This is analogous to the 1D exact solution in an horizontal and fric-
tionless channel (see [37] and cited references). After the mini-
mum water depth is reached, a rising stage follows, due to the
fluxes coming from the wall boundaries and to 2D effects.

The delay between measured and computed data at point ‘‘O’’ is
likely due to the small time required for the real opening of the
gate (about 0.1 s).

Inside the reservoir, Fraccarollo and Toro [18] measured also
the static pressure values at the bottom. Pressure measures are re-
ported in meters of water column. For measurement points ‘‘U1’’
and ‘‘U2’’ pressures and water levels values are very close to each
other and only water levels are reported in Fig. 7(a) and (b); at
point ‘‘O’’, as expected, measured levels and hydrostatic pressures
do not match because of the vertical velocity components.

In Fig. 8(a)–(d) the computed mean velocity components are
compared with the corresponding measured ones at points ‘‘-
3D’’, ‘‘O’’ and ‘‘-3A’’. Along the vertical of each experimental point,
velocity components have been measured at 8 levels with increas-
ing distances from the bottom, starting from 0.05 up to 0.4 m and
then averaged. Figures show also results by Fraccarollo and Toro
[18]. Observe that both algorithms provide results substantially
different from the measured values, specially for the shortest times
from the dam break (i.e. t 6 3— s). At point ‘‘O’’, measured velocity
decreases almost monotonically after its maximum value; on the
opposite, at points ‘‘-3A’’ and ‘‘-3D’’ measured velocity shows an
oscillating behaviour. MAST model reproduces these trends, even
though at point ‘‘O’’, for t < 0.05 s, high frequency dampening oscil-
lations appear. The oscillations at points ‘‘-3A’’ and ‘‘-3D’’ are more
irregular than the measured ones. Moreover, observe that the
amplitude of the oscillations at the first duration is even 50% more
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Fig. 8. Test 1 – zero bottom slope run. Time evolution of measured and computed velocity components at measure points: (a) ‘‘-3D’’ x-component, (b) ‘‘-3D’’ y-component, (c)
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than the measured value (see for example the y velocity compo-
nent at point ‘‘-3D’’). The relative errors of the MAST computed
velocities with respect to the measured ones are smaller than the
corresponding ones provided by the WAF scheme, but are much
larger than the relative errors of the computed water depths. A first
reason is that the original unknowns of the model are the specific
flow rate components and the water depth, instead of the velocity
components. A second reason could be found in the measurement
of the transient vertically averaged velocities, that is affected by a
large uncertainty.

In the second set of runs the initial water depth value, measured
at the wall foundation, is 0.64 m.

Fig. 6(b) shows the computed MAST iso-h contour lines at the
simulation time t = 0.5 s. Time step size Dt is 0.01 s and the corre-
sponding maximum CFL number is 4.22. Observe also in this case
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Fig. 9. Test 1 – 0.07 bottom slope in x-direction run. Time evolution of measured and co
Fraccarollo and Toro [18], ‘‘measured’’ by Fraccarollo and Toro [18].
the asymmetry of the MAST results, similar to the zero bottom
slope run.

In Fig. 9(a) and (b) computed water depths at points ‘‘U1’’ and
‘‘O’’ are compared with the corresponding measured values, as well
as with the results by Fraccarollo and Toro [18] up to the simula-
tion time t = 10 s.

The proposed numerical scheme computes some circulations in
the flow field during the simulation, due to the spatial discretiza-
tion as discussed in Section 2. The following numerical experiment
has been carried out. The above GD mesh (8650 triangles) has been
refined three times as described in Section 2. Time step size has
been halved at each refinement level, in order to limit the growth
of the CFL number. Fluxes along the flow field circulations have
been computed for each iteration and their values decrease dra-
matically refining the mesh. Similarly to the example shown in
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Fig. 11. Test 2 – dry-bed run. Computed iso-h contours at: (a) t = 3 s (b) t = 6 s.
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Section 2, the mean value of the circulation fluxes computed along
a closed path of the flow field is 4.34d-06 m3/s, but reduces to
3.28d-10 m3/s refining the mesh.

5.2. Test 2. 2D Dam-break experiment in a L-shaped channel [43]

Two sets of experiments have been carried out in the Civil Engi-
neering Laboratory of the Catholic University of Louvain (Belgium)
in a L-shaped channel form and rectangular cross section (Fig. 10)
[43]. Bottom slope is zero in both x and y directions.

The upstream reservoir is a tank with rectangular
(2.44 � 2.39) m2 planar section, closed with a vertically sliding
gate. The bottom level of the channel is 0.33 m higher than the res-
ervoir bottom level, with a vertical step at the channel inlet
(Fig. 10). In the experiments, the gate is pulled up very quickly
and the closure failure is assumed as instantaneous. The channel
is equipped with a set of gauges and their location can be found
in the paper [43]. The n Manning friction coefficient is 0.0095 s/
m1/3 and the wall friction effect has been neglected [43].

The initial water level in the upstream reservoir measured from
the channel bottom level is 0.2 m and the corresponding water
depth, measured from the bottom reservoir, is 0.53 m. The down-
stream channel is dry in a first set of runs and wet with a water
depth 0.01 m in a second one.

When the gate is opened, the water flows rapidly into the chan-
nel and reaches the bend after approximately 3 s. There, the water
reflects against the wall, a bore forms and begins to travel in the
upstream direction, back to the reservoir. For the water flowing
downstream after the bend, multiple reflections on the walls can
be observed.

A GD mesh with 10919 triangles and 5734 nodes has been used
for the simulation of MAST algorithm. Time step Dt is 0.01 s.

Fig. 11(a) and (b) show the MAST computed iso-h contour lines
at the simulation times 3 s and 6 s and for the dry bed experiment.
Model reproduces multiple reflections in the channel downstream
the bend and no numerical oscillations of the water level occur in
the transition reservoir-channel. Figs. 12(a)–(c) and 13(a)–(c) show
the measured and computed water depth at some of the measure
gauges for the two sets of experimental runs. Maximum CFL num-
bers computed by the present algorithm are respectively 1.71 and
2.26. In the same figures we show also results computed in both
initially dry and wet bed conditions by Zhou et al. [51] using the
SGMS algorithm, by Zhang et al. [49] using a CE/SE scheme, as well
as, in dry bed conditions only, by Gottardi and Venutelli [19]. Got-
tardi and Venutelli [19] applied an explicit 2nd order central
scheme, initially proposed by Kurganov and Tadmor [29]; integra-
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Fig. 10. Test 2. Lab flume geometry and position of the measure points.
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Fig. 12a. Test 2 – dry-bed run. Time evolution of the measured and computed
water depth at gauge ‘‘G2’’. Notations: ‘‘measured’’ by Soares Frazão et al. [43],
‘‘MAST old’’ by Aricò et al. [7], ‘‘SGMS’’ by Zhou et al. [51], ‘‘K–T’’ by Gottardi and
Venutelli [19] and ‘‘CE/SE’’ by Zhang et al. [49].
tion in time has been performed by means of a 3rd order TVD-Run-
ge–Kutta scheme. Results by Gottardi and Venutelli [19] are
marked as ‘‘K–T’’ in the following graphics. Zhou et al. [51] used
a regular quadrilateral mesh with Dx = 0.05017 m and Dy =
0.495 m. Authors in [49] and [19] used squared quadrilateral
meshes, with sides respectively 0.05 and 0.01 m.

At gauge G1 inside the reservoir, all the numerical schemes
compute very similar results in both wet and dry conditions. MAST
results are very close to the ones computed in paper [7] and for
brevity we refer the reader directly to paper [7].

Observe the time delay of the shock of the reflected wave in
both MAST and Gottardi and Venutelli’s [19] results with respect
to the measured data at gauges G2, G3 and G4 and at gauges G3
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Fig. 14. Test 3. Lab flume geometry for: (a) free outflow downstream boundary
condition (‘‘scenario 1’’) and (b) high vertical wall downstream boundary condition
(‘‘scenario 2’’).
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and G4 also for the CE/SE method. The delay of the MAST results is
less than in the previous algorithm [7]. The MAST delay at gauge
G4 is approximately 1.3 s in dry bed conditions and 1.05 s for
wet bed conditions. The delay reduces progressively going from
gauge G4 to gauge G2, where, in dry bed conditions, it is about
0.5 s, while in wet bed conditions the new MAST algorithm repro-
duces very well the shock. In the previous algorithm [7] the effect
of the reflected wave at gauge G2 in the numerical results arrives
early (about 0.2 s) with respect to the measured data. The CE/SE
scheme [49] computes very well the shock wave at gauge G2, in
both dry and wet runs, but it overestimates a lot water depth be-
fore the arrival of the shock and underestimates water depths after
20 s. Results by Zhou et al. [51] are in good agreement with mea-
sured data at gauge G3, while the computed reflected wave shows
a little delay (about 1 s) at gauge G4 and an anticipation at gauge
G2 (about 1.7 s and 1.45 s in dry and wet bed conditions). At gauge
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G2 both MAST and SGMS overestimate water depth before the ar-
rival of the reflected wave and results are very similar. On the
opposite, Gottardi and Venutelli [19] underestimate water depths
approximately up to 10 s.

At gauges G3 and G4, MAST scheme, as well as the models by
Zhou et al. [51] and by Gottardi and Venutelli [19] provide similar
result before and after the arrival of the reflected wave. After the
arrival of the reflected wave, the three numerical schemes produce
similar results also at the gauge G2. In the figures we show a zoom
of the reflected shock wave where we plot also the results of the
previous algorithm [7], marked as ‘‘MAST old’’.

Experimental data at points G5 and G6 are properly simulated
by the MAST scheme in both wet and dry conditions. Since com-
puted results are very close to the ones provided in paper [7], for
brevity we refer the reader directly to [7].
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5.3. Test 3. Experimental dam-break over triangular bump

A dam-break experiment over a triangular bump has been
carried out in the Laboratoire de Recherches Hydrauliques of the
Universitè Libre de Bruxelles [12]. A reservoir 15.5 m long is filled
up to 0.75 m level. A gate separates the reservoir from a dry,
straight rectangular channel 22.5 m long, with a triangular bump
0.4 m high and 6 m long (see Fig. 14(a)). The channel has constant
width 1.75 m and constant Manning friction coefficient, equal to
0.0125 s/m1/3. Impervious boundary condition is given at the
upstream end, where a solid wall is set, while two different down-
stream boundary conditions have been considered: free outflow
(see Fig. 14(a)) and impervious boundary (see Fig. 14(b)). An initial
water depth 0.15 m is assumed downstream the bump in the
second case. In the following, the different runs for the two
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’’, (b) ‘‘G13’’ and (c) ‘‘G20’’. Notations: ‘‘measured’’ by Brufau [12].
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Fig. 17b. Test 3 – scenario 1. Computed water depths at gauge ‘‘G8’’. Comparison
between the proposed scheme and the one by Liang and Marche [33]. Notations:
‘‘measured’’ by Brufau [12].

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70 80 90
time [s]

MAST

w
at

er
 d

ep
th

 [m
]

Fig. 17c. Test 3 – scenario 1. Computed water depths at gauge ‘‘G10’’. Comparison
between the proposed scheme and the one by Liang and Marche [33]. Notations:
‘‘measured’’ by [12].
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downstream boundary conditions will be marked as ‘‘scenario 1’’
and ‘‘scenario 2’’, respectively.

This case study has been presented in order to test the proposed
model in multiple high-frequency wetting/drying processes. It is
assumed that at t = 0 the dam suddenly collapses and the initial
still water in the reservoir rushes onto the downstream floodplain.
After about 3 s, the wet–dry front reaches the triangular obstacle
and continues to climb over it. At around t = 5 s, the front arrives
at the other side of the horizontal floodplain. A shock wave forms
due to the interaction between the incoming flow and the bed
topography and starts to propagate in an opposite direction to-
wards the upstream boundary. While the shock wave is travelling
upstream, a rarefaction wave is developed and moves downstream,
which causes the water depth above the bump to decrease. Multi-
ple shock and rarefaction waves move in opposite directions along
the channel, reflected either by the upstream wall, either by the
bump, either, for the second experimental runs, by the water
downstream the bump (see in [33] a qualitative description of
the physical process). Wave interactions and wetting/drying pro-
cesses continue until the flow momentum is damped by friction
effects.

For the present model simulations, domain has been discretized
with a GD triangulation with 1314 triangles and 773 nodes. Time
step size is set to 0.1 s. See in Fig. 15(a) and (b) the time evolution
of the water depth profiles for the two scenarios. Profiles computed
for scenario 1 are in very good agreement with the ones computed
by Brufau et al. [13] (Authors in [13] provide results for the first
scenario only). For simplicity, results by Brufau et al. [13] are not
shown here. MAST model reproduces very well, without oscilla-
tions, the wave arriving at the base of the hump (t = 3 s), as well
as the upstream travelling wave and the downstream travelling
wave downstream the hump (t = 5 s, 10 s and 20 s).

Water depths have been measured at different experimental
gauges, G2, G4, G8, G10, G11, G13 and G20, symmetrically located
along the channel transverse direction, respectively at 2 m, 4 m,
8 m, 10 m, 11 m, 13 m and 20 m downstream of the dam.
Figs. 16(a)–(c) and 17(a)–(d) show the measured and the com-
puted water depths for scenario 1. In Fig. 17(a)–(d) we compare
the measured water depths with the ones computed by the pre-
sented model and by a well-balanced FV Godunov scheme by Liang
and Marche [33]. This is a 2nd spatial approximation order, where
non-negative reconstruction of Riemann states and compatible
discretization of slope and friction source terms produce well-bal-
anced solutions. Liang and Marche [33] used square meshes with
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Fig. 17a. Test 3 – scenario 1. Computed water depths at gauge ‘‘G2’’. Comparison
between the proposed scheme and the one by Liang and Marche [33]. Notations:
‘‘measured’’ by Brufau [12].
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0.05 and 0.025 m side and time step size computed by the CFL cri-
terion. They assumed a constant CFL number equal to 0.5. Mea-
sured data are properly reproduced at gauges G2–G13 and
overestimated at G20. At the gauging points located before the
hump, the prediction of the arrival time of the wave as well as
the water depth is good. Point G13 is located at the vertex of the
obstacle and therefore is a critical point. It can be observed that
prediction of the transitions from wet to dry is correct. Very similar
results have been computed by Brufau et al. [13] and by Singh et al.
[41] but are not shown here for brevity.

Fig. 18(a)–(d) show the experimental data and numerical re-
sults for scenario 2 at gauges G4, G10, G13 and G20. The numerical
method overestimates and underestimates the water depths,
respectively at points G10 and G13. At point G4 the proposed
scheme reproduces properly the effect of the reflected wave. At
gauge G20 MAST scheme overestimates a little bit the water depth.
Maximum CFL values computed by MAST scheme are 2.35 and
2.12, respectively for scenario 1 and 2.

5.4. Test 4. Circular dam break problem

This test case consists of the instantaneous breaking of a cylin-
drical tank (with diameter 20 m) initially filled with 2 m of water
at rest. The initial water depth outside the tank is 0.5 m. When
the column of water is released, wave generated by the breaking
of the tank propagates into the still water with initial depth 0.5 m
and the shock wave results in a significant increase of water depth
in the lower depth region, propagating in the radial direction.

Domain is discretized using an unstructured mesh with 17942
triangles and 9154 nodes and the time step size is 0.05 s. The max-
imum computed CFL value is 1.008.

This test has been proposed in [14] and is useful to check the
ability of the method to preserve cylindrical symmetry, since the
problem becomes 1D in the radial direction.
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Fig. 18. Test 3 – scenario 2. Computed water depths at gauges: (a) ‘‘G4’’,
In Fig. 19(a)–(d) we show the iso – h contours as well as the 3D
view of the water depths at t = 1 s and t = 2.5 s. In Fig. 20(a) and (b)
we compare, for the same simulation times, the MAST results in ra-
dial direction (cut along a radial direction, which in this case corre-
sponds to the x-axis) obtained over the above mesh with 17942
elements (marked as ‘‘MAST coarse mesh’’ in the figures) with
the ones computed over a refined mesh, obtained from the first
one dividing each side in two equal parts (marked as ‘‘MAST re-
fined mesh’’ in the figures). As expected, the shock is captured in
fewer elements using the refined mesh. In the same figures we
show also the results obtained in [14]. The Authors in [14] pro-
posed a well-balanced FV high-order centered scheme on unstruc-
tured meshes, PRICE2-C. They discretized the domain with 18050
triangles and fixed the CFL at 0.5. In the same figures, a 1D refer-
ence numerical solution is shown too. This is presented in [14]
and has been obtained solving the 1D equations written in a radial
coordinate system, using a 1D version of the PRICE2-C model, the
PRICE-C. More details can be found in [14] and cited references.
According to fig. 19(a)–(d), MAST model properly reproduces the
outward-propagating circular shock and the inward-propagating
circular rarefaction wave. The model preserves cylindrical symme-
try and does not compute unphysical oscillations. In Fig. 20 there is
a good agreement between the MAST solution obtained over the
coarse mesh and the one provided by the PRICE2-C as well as the
1D numerical reference solution.

5.5. Test 5. Steady flow over a bump with shock

A steady-state transcritical flow over a bump, with a smooth
transition followed by a hydraulic jump is simulated. The channel
is horizontal, frictionless, 25 m long and 1 m wide. Boundary
conditions are given by:

uhð0; tÞ ¼ 0:18 m3=s hðL; tÞ ¼ 0:33 m; ð63Þ
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(b) ‘‘G10’’, (c) ‘‘G13’’ and (d) ‘‘G20’’. Notations: ‘‘measured’’ by [12].



Fig. 19. Test 4. (a) Computed iso – h contours at t = 1 s; (b) 3D view of the computed water depths at t = 1 s; (c) computed iso – h contours at t = 2.5 s; (b) 3D view of the
computed water depths at t = 2.5 s.

Fig. 20. Test 4. MAST computed water depths in radial direction over coarse mesh (black filled dots) and refined mesh (red empty dots). Comparison with the PRICE2-C (black
empty dots) and PRICE-C (black line) (PRICE2-C and PRICE-C results from Canestrelli et al. [14]). (a) t = 1 s; (b) t = 2.5 s. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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where L marks the channel length. Initial condition is given by a
constant water level over the channel, equal to 0.33 m. Bed profile
is given by:

zðxÞ ¼ 0:2� 0:05ðx� 10Þ2 if 8 6 x 6 12;
0 otherwise

(
ð64Þ

This problem was proposed at the workshop on dam-break sim-
ulations [21] and essentially is a 1D test case often employed with
2D unstructured meshes to study the convergence to steady states
in presence of discontinuities. For the MAST simulation, spatial do-
main is discretized using an unstructured GD mesh with 1503 tri-
angles and 872 nodes. Time step size is 0.1 s and the maximum
computed CFL number is 3.98. Fig. 21(a) and (b) show respectively
the computed water levels and flow rates at simulation time
t = 100 s. Computed water levels are compared with the analytical
solution provided in [21]. The hydraulic jump is captured in few
elements and that no oscillations occur in the water surface and
in the flow rate profiles along the bump. Increasing the iteration
number, uh value tends asymptotically to the stationary value
0.18 m3/s, while vh value is of order 1d-14 m3/s, in all the domain.
Many papers report this numerical case, either for 1D either for 2D
simulations. Most of the literature schemes provide accurate water
levels simulation, but compute spurious oscillations in the flow
rate profile (see for example [35] or [23]).

For the same test, we provide in Fig. 22 the convergence history
of the water levels and module of the flow rate solutions. The glo-
bal relative error R is defined as [35]:

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
e¼1;Nel

f n
e � f n�1

e

f n
e

� �2
vuut ; ð65Þ
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where f n
e is the water level or module of flow rate in the eth element

computed at time level nth and index n � 1 marks the correspond-
ing variables computed at the previous time level.
5.6. Test 6. Jet-forced flow in a circular basin

A jet flow is forced in a shallow circular basin with a flat bed. This
is a very useful test problem due to the complex geometry of the
computational domain and has been proposed in several papers
(e.g. [4,38,47]). Flow domain is bounded by straight-walled inlet
and outlet stems connected to the curved-walled basin (see in
Fig. 23 the channel geometry). The inlet into the reservoir is
sharp-edged, and separation occurs giving rise to recirculation
zones in both sides of the through-flow stream. The radius of the
circular basin is 0.75 m. Inlet velocity at the upstream end of the in-
flow stem is set to 0.1 m/s. The Authors of the above cited papers
impose at the outlet of the downstream outflow stem a Dirichlet
condition (water depth equal to 0.1 m). Since the proper boundary
condition depends on the Froude number computed at the down-
stream end, in the present work the downstream boundary condi-
tion is computed according to the model solution, as described in
Section 4.4. The bed friction coefficient is zero and t is 7.84 d-
04 m2/s. Spatial domain is discretized using two different GD trian-
gulations: the first one is symmetric with respect to the centre of
the circular basin, with 3112 triangles and 1695 nodes, the second
one is non symmetric, with 3100 triangles and 1689 nodes. Time
step size is 0.01 s. Maximum computed CFL values are 1.089 and
1.07 respectively for the two meshes. Streamlines computed after
4.2 s and 7.5 s using the symmetric mesh are shown in Fig. 24(a)
and (b), while Fig. 25(a) and (b) show the streamlines at the steady
state, computed respectively over the symmetric and non
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Fig. 23. Test 6. Lab flume geometry.

Fig. 24. Test 6 – symmetric mesh. Computed streamlines at: (a) t = 4.2 s (b) t = 7.5 s.

Fig. 25. Test 6 – Computed streamlines at steady state: (a) symmetric mesh (b) non
symmetric mesh.
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symmetric mesh. The strong similarity of the steady state stream-
lines computed over the two meshes highlights the robustness of
the model with respect to the mesh geometry. Several recirculation
zones can be found in the flow field. Due to the spatial discretization
error, the O property is not satisfied and the procedure explained in
Section 2 must be applied before each prediction step. See in Sec-
tion 2 how the computed flux along a closed circuit in a particular
area of the domain reduces by refining the computational mesh.

5.7. Test 7. Moving shorelines in a 2D frictional parabolic bowl

The analytical test of moving shorelines in a 2D frictional para-
bolic bowl was developed by Sampson et al. [40] and proposed by
several Authors (see for example [23]). Computational domain is
assumed squared with side 8000 m as in [23]. Bed topography,
symmetrical with respect to the centre of the domain (x0,y0), is gi-
ven by Hou et al. [23]:

zðx; yÞ ¼
h0 ðx� x0Þ2 þ ðy� y0Þ

2
� �

a
; ð66Þ

with x0 = y0 = 4000 m and h0 and a two constants (h0 = 10 m and
a = 3000 m as in [23]). Authors in paper [23] write the friction
source terms in the governing Eqs. (16) and (17) as:

gn2
uh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuhÞ2 þ ðvhÞ2

q
h7=3 ¼ Cf u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p

gn2
vh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuhÞ2 þ ðvhÞ2

q
h7=3 ¼ Cf v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
with Cf ¼

gn2

h1=3 ; ð67; aÞ

and for the proposed test case they write roughness coefficients Cf as:

Cf ¼
hsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p ; ð67;bÞ

with s a constant value. According to Eqs. (67,a) and (67,b) we get:

s ¼
gn2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuhÞ2 þ ðvhÞ2

q
h7=3 : ð67; cÞ

The exact solutions for water level and velocity components are
respectively [40,23]:

Hðx; y; tÞ ¼ h0 �
B2e�st

2g
� Be�st=2

g

s
2 sin st þ s cos st
� 	

ðx� x0Þþ
s
2 cos st � s sin st
� 	

ðy� y0Þ


 �
;

ð68Þ

uðtÞ ¼ Be�st=2 sin st vðtÞ ¼ Be�st=2 cos st;

where B is a constant given by the initial value of v(t = 0),
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 � s2Þ

p
=2, p ¼

ffiffiffiffiffiffiffiffiffiffiffi
8gh0

p
=a. Authors in [23] assign

s = 0.002 s�1 and B = 5 m/s. Initial conditions are obtained by the
exact solution in Eq. (68) setting t = 0. Starting from Eq. (67), formu-
lation of the source terms of the prediction problem (in Eq. (21))
and of the elem coefficients of the correction problem (in Eq.
(42,a)) changes accordingly as:

Rx
e ¼ jTej ghe

@Hk
e

@x
þ sðuhÞe

 !

Ry
e ¼ jTej ghe

@Hk
e

@y
þ sðvhÞe

 !

eleme ¼
g�heDt

1þ sDt
: ð69Þ

For the numerical simulation, domain has been discretized
using an unstructured mesh with 272 elements and 149 nodes
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and the time step size is 40. The total simulation time is 6000 s and
the maximum CFL computed value is 2.8. Computational mesh has
been refined three times, as previously specified and the time step
size has been halved to limit the growth of the CFL number. L2

norms of the relative errors of the water depths (L2,h) and the spe-
cific flow rate components uh and vh (L2,uh,L2,vh), with respect to
the exact values, have been computed. Results are reported in Ta-
ble 1. We assume the relative error computed for mesh level l, errl,
proportional to a power of the linear size of the area of the mean
triangle in the mesh,

errl ¼
ffiffiffiffiffiffiffi
jTjl

q� �rc

; ð70; aÞ

where jTjl is the area of the mean triangle at refinement level l andffiffiffiffiffiffiffi
jTjl

p
represents a measure of its linear size. The rate of convergence

rc is computed by comparing the relative errors of two successive
refinement levels l and l + 1:

rc ¼
log errl

errlþ1

� �
logð2Þ : ð70;bÞ

Table 1 shows the convergence order for water depth and spe-
cific flow rate components and these are close to 1, as expected due
to the spatial approximation order of the unknown variables as-
sumed in the model, and remain almost the same refining the
Table 1
Test 6. L2 norms of relative errors of the water level and specific flow rate components an

Refinement level Nel L2,h rc,h

0 272 4.67E�02
1 1088 1.79E�02 1.39E+00
2 4352 7.17E�03 1.32E+00
3 17408 3.02E�03 1.25E+00
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Fig. 26. Test 7. Computed and exact water levels and specific flow rates uh and vh in Se
t = 1500 s.
mesh. A constant convergence order along with the growth of
mesh density is very important, because it implies stable results
also when a coarse mesh is used instead of a very refined one.
Fig. 26(a)–(d) show the computed and exact water levels and spe-
cific flow rates uh and vh in section D–D (the domain diagonal, bot-
tom left corner – top right corner) at t = 500 s and t = 1500 s.
Results refer to the third refinement level mesh (17408 triangles
and 8881 nodes). Computed results are in very good agreement
with the exact ones. Moreover, model results are in very good
agreement with the ones provided by Hou et al. [23], who pro-
posed a 2nd spatial approximation order well-balanced FV Godu-
nov-type scheme, equipped with WD treatment procedure. Hou
et al. [23] discretized the domain with a Delaunay unstructured tri-
angular mesh with a density similar to the third refined one used
for the present model. For brevity we do not show results by
Hou et al. [23] since, at the graphic scale, they are undistinguish-
able from the ones computed by the proposed model.
5.8. Investigation of the computational costs (CPU times)

Computational costs of the different algorithm steps have been
investigated. Test 1 (in Section 5.1) with zero bottom slope has
been selected for this analysis. Starting from the GD triangulation
with 8650 triangles and 4492 nodes, three refinements have been
d convergence order.
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Table 2
Mean CPU times per iteration (in seconds).

NT Cell ordering Prediction problem Correction problem

MAST
8650 1.84E�06 3.56E�05 1.93E�06
34600 2.37E�06 3.71E�05 2.18E�06
138400 2.90E�06 3.44E�05 2.48E�06
553600 3.17E�06 3.12E�05 2.72E�06
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performed as previously described and the time step size has been
halved at each mesh refinement.

Table 2 shows the mean computational times (CPU, in seconds)
per iteration, required for element ordering, solution of the
prediction and of the correction steps. The mean CPU times have
been computed by dividing the total times required by the differ-
ent algorithm steps by the number of triangles NT. Numerical runs
have been performed using a single processor Intel Q 6600,
2.40 GHz. A brief comparison with the computational times of
the previous algorithm [7] is also given, where the simulations of
the scheme [7] have been performed on the same processor.

The growth rate b of the CPU time is measured as the power
exponent of the relationship:

CPU ¼ ðNTÞb ) logðCPUÞ ¼ logðNTÞ � b; ð71Þ

where CPU is the mean CPU time per iteration.
The computation of the prediction step is the most demanding

one, but it is almost independent from the mesh elements number,
since this represents the ‘‘explicit’’ component of the method. The
proposed procedure requires a computational cost for the solution
of the prediction step approximately 80% of the one required by
the previous MAST algorithm [7]. This is essentially due to the lack,
in the proposed procedure, of the extra correction step solution as
in the algorithm in [7]. The small decrement of the average CPU
time for the prediction step can be related to the increasing CFL
numbers obtained by partitioning and to the best aptitude of the
algorithm to work with CFL numbers greater than 1 [7]. Rates b
of the prediction step are negative and their absolute values are
much less than 1, as shown in Fig. 27. The mean CPU time for
the correction step solution is one magnitude order less than the
time required for the prediction step, but increases with the ele-
ment number. In fact this step, representing the ‘‘non explicit’’
component of the algorithm, require the solution of large linear
systems of the order of the elements number. The growth is much
less than linear, with a rate b approximately equal to 0.0841 (see
Fig. 27). Element ordering requires, in the new scheme, CPU times
very similar to the ones required for the solution of the correction
step and almost 22% the ones of the previous scheme, where an ex-
tra linear system had to be solved [7]. Element ordering CPU time
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Fig. 27. Mean CPU times for the different model steps and relative growth
exponents b (see Eq. (71)).
increases with element number, but its growth is much less than
linear, with a rate b equal to 0.1439.

6. Conclusions

A novel procedure has been proposed for the numerical solution
of the 2D fully dynamic form of the shallow water equations, start-
ing from the numerical structure of the previous MAST algorithm
[7]. Comparison with experimental data and analytical tests (some
of them not documented in the present paper) show a significant
improvement with respect to the previous algorithm, but we be-
lieve that the most important advance of the research is the devel-
opment of the anisotropic potential and the O property concepts,
where the O property is the counterpart of the anisotropic poten-
tial for a discretized flow field.

Starting from these definitions, we have shown that it is possi-
ble to develop a simple algorithm where the techniques available
for the solution of irrotational flow problems can be easily adapted
to the solution of the most general Reynolds equations.

A final very important issue for future investigations is the par-
allelization of the convective step in the MAST algorithm. This step
can be solved simultaneously for all the elements with the same
order number, and this should make the minimum computational
effort of each processor basically proportional to the number of
elements crossed by each stream line.

Appendix A. Loops cannot occur in discontinuous velocity fields

Let u be smooth in time and space along the streamline, with
the exception of the point with co-ordinates xd(t). Let a and b be
two points on the same streamline with co-ordinate vectors xa

and xb such that sa < sd < sb. The difference between potential P in
the two points is given by:

PðxbÞ � PðxaÞ ¼
Z sd

a

rP � u
juj dsþ

Z b

sd

rP � u
juj ds: ðA:1Þ

Equation (A.1) coupled with Eq. (2) provides:

PðxbÞ � PðxaÞ ¼ �
Z sd

a

ðK�1uÞ � u
juj dsþ

Z b

sd

ðK�1uÞ � u
juj ds

 !
; ðA:2Þ

where, as for Eq. (11), the argument of the two integrals on the r.h.s.
is always positive because K�1 is positive definite. This implies that
the difference P(xb) � P(xa) is always negative, unless velocity u is
zero along all the streamline. Moreover, due to the assumption of
continuity and smoothness of velocity u, far from xd(t), Eq. (A.2)
proves that P is a continuous function along the streamline, with
a jump in its first order derivative at sd. This also implies that a
closed streamline cannot occur in the flow field.

Appendix B. The fractional time step methodology

Eqs. (15)–(17) can be solved by means of a fractional time step
approach, by splitting the original problem in a prediction and a
correction problem. Assume a general system of balance laws:

@U
@t
þr � FðUÞ ¼ BðUÞ þ r � EðUÞ; ðB:1Þ

where U is the vector of the unknown variables, F(U) is the inviscid
flux vector, E(U) is the viscous flux vector and B(U) is a source term.
Applying a fractional time step procedure, we set:

FðUÞ ¼ FpðUÞ þ ðFðUÞ � FpðUÞÞ;
EðUÞ ¼ EpðUÞ þ ðEðUÞ � EpðUÞÞ;
BðUÞ ¼ BpðUÞ þ ðBðUÞ � BpðUÞÞ;

ðB:2Þ
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where Fp(U), Ep(U) and Bp(U) are respectively suitable numerical
inviscid flux, viscous flux and source terms, further defined. After
integration in space, system (B.1) can be split in the two following
ones:

Ukþ1=2 � Uk þr �
Z Dt

0
Fp dt ¼

Z Dt

0
Bp dt þr �

Z Dt

0
Ep dt; ðB:3; aÞ

Ukþ1 � Ukþ1=2 þr �
Z Dt

0
F dt �r � �FpDt

¼
Z Dt

0
B dt � �BpDt þr �

Z Dt

0
E dt �r � EpDt; ðB:3;bÞ

where �Fp; �Ep and �Bp are the mean in time values of Fp(U), Ep(U) and
Bp(U) computed along the prediction step, Uk+1/2 and Uk+1 are the
unknown variables computed respectively at the end of the predic-
tion and the correction phase. �Fp; �Ep and �Bp are estimated ‘‘a poste-
riori’’ after the solution of the prediction problem. We call systems
(B.3,a) and (B.3,b) prediction and correction systems respectively.
Observe that summing systems (B.3,a) and (B.3,b), the integral of
the original system (B.1) is formally obtained. The difference be-
tween Uk+1 and Uk+1/2 in Eq. (B.3,b) is close to zero as far as the dif-
ference between the predicted and mean in time values of the
fluxes and source terms is either small or time-independent. The
advantage of using formulations (B.3) instead of (B.1) is that, with
a suitable choice of the prediction terms Fp(U), Ep(U) and Bp(U),
each of the two systems (B.3,a) and (B.3,b) can be much easier to
solve than the original system (B.1). In the present case we have:

U ¼ ðh uh vh ÞT F ¼ ðF1 F2 Þ E ¼ ðE1 E2 Þ;

F1 ¼
uh

u2hþ 1
2gh2

uvh

0
B@

1
CA F2¼

vh

uvh

v2hþ 1
2 gh2

0
B@

1
CA E1¼

0
th@u

@x

th @v
@x

0
B@

1
CA E2¼

0
th @u

@y

th@v
@y

0
B@

1
CA;
ðB:4Þ

B ¼
0 �gh @z

@xþ
n2u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuhÞ2þðvhÞ2
p

h7=3

� �

�gh @z
@yþ

n2v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuhÞ2þðvhÞ2
p

h7=3

� �
0
BBB@

1
CCCA

T

;

Fp
1 ¼

uh

u2h

uvh

0
B@

1
CA Fp

2 ¼
vh

uvh

v2h

0
B@

1
CA Ep

1 ¼
0

thk @uk

@x

thk @vk

@x

0
B@

1
CA Ep

2 ¼

0
thk @uk

@y

thk @vk

@y

0
BB@

1
CCA

ðB:5Þ

Bp ¼
0 �gh @Hk

@x þ
n2u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuhÞ2þðvhÞ2
p

h7=3

� �

�gh @Hk

@y þ
n2v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuhÞ2þðvhÞ2
p

h7=3

� �
0
BBB@

1
CCCA

T

;

where index k marks the beginning of the time step (time level tk)
and (.)T is the transposed of vector (.). Observe that the total head
gradient in the Bp vector, as well as the gradients of velocity compo-
nents in the Ep vector are computed at time level tk and are kept
constant along the time step.

Prediction problem is solved in its integral form, while the cor-
rection problem is solved in its differential linearized form.

Appendix C. Computational properties of the mesh

Let i, ip and im be the nodes of triangle Te, where ip and im are
the nodes respectively following and preceding node i in counter-
clockwise direction, as specified in Section 4. Let Tep be the triangle
sharing side ri,ip with Te. We compute cTe
i;ip, the distance between the

Te circumcentre cTe and the midpoint of ri,ip, as (see Fig. 3):

cTq

j;jp ¼
ðxj � xjpÞðycq

� yj;jpÞ � ðyj � yjpÞðxcq � xj;jpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj � xjpÞ2 þ ðyj � yjpÞ

2
q dq;

q ¼
e

ep

�
) j ¼

i

ip

�
; jp ¼

ip

i

�
;

ðC:1Þ

where xj,jp is the co-ordinate vector of midpoint of side rj,jp, xcq is the
co-ordinate vector of circumcentre of triangle Tq, dq = �1 or 1 if
direction of vector rj,jp is respectively counterclockwise or not in
triangular element Tq, with q, j and jp defined in Eq. (C.1).

We say a mesh to satisfy the generalised Delaunay (GD)
property when all the sides satisfy the constraints:

cTe
i;ip þ cTep

ip;i P 0 or cTe
i;ip P 0; ðC:2Þ

for each interior or boundary edge, respectively, with nodes i and ip
(see [8,9] and cited references). Fig. 4(a) shows an internal side sat-
isfying the GD property. Most of the today available mesh-genera-
tors satisfy the GD property, even if some exceptions may occur
around internal boundaries, or when the mesh density is forced to
change in given sub-domains. If the GD property is not satisfied
(as in the example shown in Fig. 4(b)), it is still possible to obtain
a new mesh that satisfies the GD property without changing the
location of the original nodes, for example by swapping edges,
applying the procedure presented in [9].

We will show in the following sections that the GD mesh con-
dition, along with a special formulation of matrix coefficients for
heterogeneous medium, implies the so called M-property [48] for
the resulting matrix of the linear system of the diffusive problem.
An M-matrix is an irreducible matrix, with positive diagonal
coefficients and non-positive off-diagonal coefficients, strictly
diagonally dominant, or weakly diagonally dominant with strict
inequality for at least one row. The M-property guarantees inter-
element fluxes with a sign that is always consistent with the sign
of the corresponding water level difference. An important conse-
quence is the monotonicity of the steady-state solution, when
source terms are missing, as well as the lack of spatial oscillations
[48].
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