
Boll. di mat. pura ed appl. Vol. IV (2011)

The Henstock-Kurzweil-Stieltjes type integral for
real functions on a fractal subset of the real line

D. Bongiorno, G. Corrao

Dipartimento di Ingegneria Elettrica, Elettronica e delle Telecomunicazioni,
di Tecnologie Chimiche, Automatica e Modelli Matematici (DIEETCAM)

Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
E-mail addresses: donatella.bongiorno@unipa.it, giusi.corrao@unipa.it

Abstract

The aim of this paper is to introduce an Henstock-Kurzweil-Stieltjes type
integration process for real functions on a fractal subset E of tha real line.
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1 Introduction

During last years, some mathematicians have been obliged to define a new concept
of derivation (see [1] and [2]) and a new concept of integration (see, [6] and [9]) to
solve some physical and engineering problems. In fact even if the geometry of fractal
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sets is a well explored subject (see, [3], [4], [5], [7]), in this sets there are so many
irregularities to render inapplicable the standard methods and the technique of the
ordinary calculus to give reasonable solutions of practical problems. Just think of the
fact that the usual derivative of the classical Lebesgue-Cantor staircase function is
zero almost everywhere (see [1] and [6]) and of the fact that the Riemann’s integral of
functions defined on a fractal sets is undefined. So, in 1991, de Guzmann, Martin and
Reyes (see [1]) in order to study the problem of the existence and the uniqueness of
the solutions of differential equations of the type: d x(t)

dt = f(t, x(t)) in which t or x(t)
takes values in a non-continuous set (i.e. a fractal set) introduced, for functions defined
on a fractal set E, a new concept of derivative, called the s-derivative. Later on,
Jiang and Su (see [6]) and more recently Parvate and Gangal (see [9]) introduced, for
function defined in a fractal set E, a new concept of Riemann-Stieltjes type integral,
called the s-integral and the F s-integral, respectively. Both authors defined such
integration process in an analogous fashion as the classical Riemann integral but with
the Hausdorff measure and the mass function taking over the role of the distance,
respectively. Since the Hausdorff measure and the mass function are proportional
(see [9], section 4), we can say that Jiang and Su in [6] and Parvate and Gangal in [9]
defined indipendently the same integral. Both authors developed in a way analogous
to the standard calculus the rest of the integration theory. Therefore properties like
linearity and additivity with respect to integration domain are valid. About the
Fundamental theorem of calculus, both authors use an extra hypothesis to prove it.

In this paper we will compare the hypothesis of the Fundamental theorem of
Calculus used by Jiang and Su with the one used by Parvate and Gangal and we will
notice that without such additional hypothesis the Fundamental theorem of Calculus
lose its classical formulation. Therefore in in the fractal case, it is not possible to
prove a theorem like this:

If E ∈ R is a closed fractal set and if F : E → R is s-differentiable on E with a
continuous derivative therefore∫

E∩[a,b]
F ′s dHs = F (b)− F (a).

Moreover, in this paper we introduce an Henstok-Kurzweil-Stieltjes type integra-
tion process defined for real functions on a fractal subset E of the real line of Hausdorff
dimension s with 0 < s ≤ 1, since it is well known that numerical algorithms are based
very rarely on Lebesgue integrals but are based more often on Riemann sums and in
the classical literature the best formulation of the Fundamental theorem of calculus
is done by the Henstock-Kurzweil integral that it is based on Riemann sums too (see
[?].

Finally, we will show that the Henstok-Kurzweil-Stieltjes integral on the fractal
set E contains properly the Riemann-Stieltjes integral defined by Jiang and Su and
by Parvate and Gangal.
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2 Preliminaries
In all the paper we denote by R the set of all real numbers and by E a nonempty

closed subset of the interval [a, b] ⊂ R, with a = minE and b = maxE. Moreover, we
denote, by L(·) the Lebesgue measure on R.

Now, given s, with 0 ≤ s ≤ 1, we recall that the s-dimensional Hausdorff measure
of E is defined as:

Hs(E) = lim
δ→0

inf

{ ∞∑
i=1

L(Ai)
s : E ⊂

∞⋃
i=1

Ai, L(Ai) ≤ δ

}
.

Hs(·) is a Borel regular measure (see [7]).
Moreover, we recall that, the unique number s for which Ht(E) = 0 if t > s and

Ht(E) = +∞ if t < s is called the Hausdorff dimension of E.
Whenever E is Hs-measurable with 0 < Hs(E) <∞, therefore E is said to be an

s-set. Without loss of generality we can assume in all the paper, that Hs(E) = 1.

Definition 2.1. (see [1], [5], and [8])
Let f : E → R be a function and let x0 ∈ E. The s-derivative of f , on the right and
on the left, at the point x0 is:

f ′+s (x0) = lim
x→x+

0
x∈E

f(x)− f(x0)

Hs([̃x0, x])
if Hs([̃x0, x]) > 0 for all x > x0

f ′−s (x0) = lim
x→x−0
x∈E

f(x0)− f(x)

Hs([̃x, x0])
if Hs([̃x, x0]) > 0 for all x < x0

where these limits exist.
It is said that the s-derivative of f at x0 exists if f ′+s (x0) = f ′−s (x0), we be denote

by f ′s(x0) such common value.

Remark. Of course, if f is s-derivable at the point x0 then f is continuous at x0,
according to the topology induced on E for the usual topology of R.

2.1 The s-integral

Definition 2.2. Let A ⊂ [a, b] be an interval. The set Ã = A∩E is called an interval
of E.

Definition 2.3. A partition of E is any collection P = {(Ãi, xi)}pi=1 of pairwise
disjoint intervals Ãi and points xi ∈ Ãi such that E =

⋃
i Ãi.

Definition 2.4. (see [5]) Let f : E → R be a function. A number σ is said to be the
s-integral of f on E, if for each ε > 0 there is a δ > 0 such that

|
n∑
i=1

f(xi) Hs(Ãi)− σ| < ε
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for each partition P = {(Ãi, xi)}pi=1 of E with Hs(Ãi) < δ, for i = 1, 2, ..., n.

By

σ = (R)

∫
E

f(t)dHs(t)

we will denote the s-integral and by s-R(E) we will denote the collection of all func-
tions that are s-integrable on E.

Theorem 2.1. (see [5]) Let f : E → R be a continuous function at all points of E.
If F : E → R is a function Hs-absolutely continuous on E and F

′

s(x) = f(x) at Hs-
a.e. point x ∈ E, then

(R)

∫
E

f(t) dHs(t) = F (b) − F (a).

Definition 2.5. (see [5]) Let f : E → R be a function. We say that f isHs-absolutely
continuous on E, if ∀ε > 0, ∃δ > 0 such that

n∑
k=1

|f(bk) − f(ak)| < ε

whenever
∑n
k=1 Hs

[ ˜(ak, bk)
]
< δ, ak, bk ∈ E, k = 1, . . . , n, and a1 < b1 ≤ a2 <

b2 ≤ .... ≤ an < bn.

Lemma 2.2. Let f : E → R be Hs-absolutely continuous on E. If [α , β] is a
contiguous interval of E therefore

f(α) = f(β).

Proof. Since [α , β] is a contiguous interval of E it follows that Hs([α , β]) = 0.
Moreover, since f is Hs-absolutely continuous on E,
∀ε > 0 we have that

|f(β) − f(α)| < ε.

The assertion follows by the arbitrariness of ε.

Definition 2.6. (see, [8]) Let f : R→ R be a function. A point x ∈ R is said a point
of change of f if f is not constant over any open interval (c, d) containing x. The
set of all points of change of f is called the set of change of f and it is denoted by
Sch(f).

Theorem 2.3. (see [8]) If F : R → R is s-differentiable on E, F ′s is a continuous
function on E and Sch(F ) ⊆ E then

(R)

∫
E

F ′s(x)dHs(x) = F (b)− F (a).
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Example 2.1. Let E ⊂ [0, 1] be the classical Cantor set. Let F be a function on
[0, 1] defined by

F (x) =


0, 0 ≤ x ≤ 1

3

3x− 1, 1
3 < x < 2

3

1, 2
3 ≤ x ≤ 1.

and let f be the restriction of F on the set E.

Note that:

• f is not Hs-absolutely continuous on E.

• Sch(f) 6⊆ E.

• f is s-differentiable at each point of E and f ′s(x) = 0 for all points x ∈ E.

• f ′s is s-integrable on E and

(R)

∫
E

f ′s dHs = 0 6= f(1)− f(0) = 1.

(i) f is not Hs-absolutely continuous on E.

(ii) Sch(f) 6⊆ E.

(iii) f is s-differentiable at each point of E and f ′s(x) = 0 for all points x ∈ E.

(iv) f ′s is s-integrable on E and

(R)

∫
E

f ′s dHs = 0 6= f(1)− f(0) = 1.

3 The s-Henstock-Kurzweil-Stieltjes integral
Definition 3.1. A gauge on E is any positive real function δ defined on E.

Definition 3.2. A partition of E is any collection P = {(Ãi, xi)}pi=1 of a pairwise
disjoint intervals of E Ãi and points xi ∈ Ãi such that E =

⋃
i Ãi.

Definition 3.3. Let P = {(Ãi, xi)}pi=1 be a partition of E. If δ is a gauge on E, then
we say that P is a δ-fine partition of E whenever Ãi ⊆]xi − δ(xi), xi + δ(xi)[ for all
i = 1, 2, ..., p.

The following Cousin’s lemma, addresses the existence of δ-fine partitions.

Lemma 3.1. If δ is a gauge on E, then there exists a δ-fine partition of E.
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Proof. If [α , β] ⊂ [a , b] and if [̃α , β] = ∅, we said that [̃α , β] has a δ-fine partition
of E.

Let c be the midpoint of [a, b] and let us observe that if P1 and P2 are δ-fine
partitions of ˜[a, c] and [̃c, b], respectively, then P = P1 ∪ P2 is a δ-fine partition of E.
Using this observation, we proceed by contradiction.
Let us suppose that E does not have a δ-fine partition then at least one of the intervals˜[a, c] or [̃c, b] does not have a δ-fine partition, let us say ˜[a, c]. Therefore ˜[a, c] is not
empty. Let us relabel the interval [a, c] with [a1, b1] and let us repeat indefinitely this
bisection method. So, we obtain a sequence of nested intervals:

[a, b] ⊃ [a1, b1] ⊃ ... ⊃ [an, bn] ⊃ ...

Since the length of the interval [an, bn] is (b − a)/2n therefore, for the Nested Intervals
Property, there is a unique number ξ ∈ [a, b] such that:

∞⋂
n=0

[an, bn] = {ξ}.

It is trivial to notice that the interval ˜[an, bn] is not empty.
Let ξn ∈ ˜[an, bn], therefore |ξn − ξ| < |bn − an| = (b−a)/2n. So limn→∞ ξn = ξ.

Now since E is a closed set, ξ ∈ E.
Since δ(ξ) > 0, we can find k ∈ N such that ˜[ak, bk] ⊂ [ξ−δ(ξ), ξ+δ(ξ)]. Therefore

{˜[ak, bk], ξ} is a δ-fine partition of ˜[ak, bk], contrarily to our assumption.

Let P = {(Ãi, xi)}pi=1 be a partition of E, let f : E → R be a function and let us
consider the following sum

S(f, P ) =

p∑
i=1

f(xi)Hs(Ãi).

Definition 3.4. We say that the function f is s-HK-integrable on E, if there exists
I ∈ R such that for all ε > 0, there is a gauge δ on E with:

|S(f, P )− I| < ε

for each δ-fine partition P = {(Ãi, xi)}pi=1 of E.

The number I is called the s-HK-integral of f on E and we write

I = (HK)

∫
E

f dHs.

The collection of all functions that are s-HK integrable on E will be denoted by
s-HK(E).
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Remark. The number I from Definition 5 is determinate uniquely by the s-HK-
integrable function f . In fact, let us suppose that I and J satisfies Definition 5,
let us assume that J 6= I and let us take ε = |I − J |/2. Then we can find two gauges
δ1 and δ2 on E so that ∣∣∣∣∣

p∑
i=1

f(xi)Hs(Ãi)− I

∣∣∣∣∣ < ε

for each δ1-fine partition P = {(Ãi, xi)}pi=1 of E and∣∣∣∣∣
p∑
i=1

f(xi)Hs(Ãi)− J

∣∣∣∣∣ < ε

for each δ2-fine partition P = {(Ãi, xi)}pi=1 of E.
Now let δ = min{δ1, δ2}. Then, for each δ-fine partition of E we have

|I − J | ≤

∣∣∣∣∣I −
p∑
i=1

f(xi)Hs(Ãi)

∣∣∣∣∣+

∣∣∣∣∣
p∑
i=1

f(xi)Hs(Ãi)− J

∣∣∣∣∣ < 2ε = |I − J |,

that is a contradiction.

3.1 Linearity properties

Theorem 3.2. (a) If f and g are s-HK-integrable on E, then f + g is also s-HK-
integrable on E and

(HK)

∫
E

(f + g) dHs = (HK)

∫
E

f dHs + (HK)

∫
E

g dHs.

(b) If f is s-HK-integrable on E and k ∈ R, then kf is s-HK-integrable on E and

(HK)

∫
E

kf dHs = k · (HK)

∫
E

f dHs.

Proof. (a): Let I and J be the s-HK-integrals of f and g, respectively. Given ε > 0,
let δ′ and δ′′ be two gauges on E such that:∣∣∣∣∣

p∑
i=1

f(xi)Hs(Ãi)− I

∣∣∣∣∣ < ε

2
,

if the partition P = {(Ãi, xi)}pi=1 is δ′-fine and∣∣∣∣∣
p∑
i=1

g(xi)Hs(Ãi)− J

∣∣∣∣∣ < ε

2
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if the partition P = {(Ãi, xi)}pi=1 is δ′′-fine.
Now let δ = min{δ′, δ′′} therefore if P is a δ-fine partition, then it is both δ′-fine
and δ′′-fine. So ∣∣∣∣∣

p∑
i=1

(f + g)(xi)Hs(Ãi)− (I + J)

∣∣∣∣∣
≤

∣∣∣∣∣
p∑
i=1

f(xi)Hs(Ãi)− I

∣∣∣∣∣+

∣∣∣∣∣
p∑
i=1

g(xi)Hs(Ãi)− J

∣∣∣∣∣ < ε.

for each δ-fine partition of E.
The proof follows by arbitrariness of ε.

(b): Let I be the s-HK-integral of f . Then, ∀ ε > 0 there is a gauge δ on E with:∣∣∣∣∣
p∑
i=1

f(xi)Hs(Ãi)− I

∣∣∣∣∣ < ε

for each δ-fine partition P = {(Ãi, xi)}pi=1 of E. Therefore, ∀k ∈ R we have:∣∣∣∣∣
p∑
i=1

kf(xi)Hs(Ãi)− kI

∣∣∣∣∣ = |k|

∣∣∣∣∣
p∑
i=1

f(xi)Hs(Ãi)− I

∣∣∣∣∣ < |k| ε.
The proof follows by arbitrariness of ε.

Theorem 3.3. Let f be s-HK-integrable on E and f(x) ≥ 0 for all x ∈ E, then

(HK)

∫
E

f dHs ≥ 0.

Proof. Let δ be a gauge on E such that∣∣∣∣∣
p∑
i=1

f(xi)Hs(Ãi)− (HK)

∫
E

f dHs
∣∣∣∣∣ < ε

if the partition P = {(Ãi, xi)}pi=1 is δ-fine.
Since f(x) ≥ 0 for all x ∈ E, then

p∑
i=1

f(xi)Hs(Ãi) ≥ 0.

Therefore

− ε ≤
p∑
i=1

f(xi)Hs(Ãi)− ε < (HK)

∫
E

f dHs <
p∑
i=1

f(xi)Hs(Ãi) + ε,
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by the arbitrariness of ε it follows that

(HK)

∫
E

f dHs ≥ 0.

Corollary 3.4. Let f and g be s-HK-integrable on E. If f ≤ g for all x ∈ E, then

(HK)

∫
E

f dHs ≤ (HK)

∫
E

g dHs.

Proof. Let h := g − f . By theorem 3.2 (b) h is s-HK-integrable and

(HK)

∫
E

h dHs = (HK)

∫
E

g dHs − (HK)

∫
E

f dHs,

and since f ≤ g then h(x) ≥ 0 for all x ∈ E and (HK)
∫
E
h dHs ≥ 0.

Therefore the conclusion is immediate.

3.2 Cauchy Criterion and Cauchy extension
Theorem 3.5. A function f : E → R is s-HK integrable on E if and only if for each
ε > 0 there exists a gauge δ on E such that

|S(f, P1)− S(f, P2)| < ε

for each pair δ-fine partitions P1 and P2 of E.

Proof. (⇒) Let ε > 0 be given. Since f ∈ s-HK(E), there exists a gauge δ on E such
that ∣∣∣∣S(f, P )− (HK)

∫
E

f dHs
∣∣∣∣ < ε

2

for each δ-fine partition P of E. If P1 and P2 are two δ-fine partitions of E, we have
that

|S(f, P1)− S(f, P2)|

≤
∣∣∣S(f, P1)− (HK)

∫
E

f dHs
∣∣∣+∣∣∣S(f, P2)− (HK)

∫
E

f dHs
∣∣∣

< ε.

(⇐) For each n ∈ N, let δn be a gauge on E such that

|S(f,Qn)− S(f,Rn)| < 1

n

for each pair δn-fine partitions Qn and Rn of E.
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Let ∆n(x) = min{δ1(x), ..., δn(x)} be a gauge on E. For each n ∈ N, let Pn be a
∆n-fine partition on E.

Clearly, if m > n then Pm and Pn are ∆n-fine partitions on E; hence

|S(f, Pn)− S(f, Pm)| < 1

n

for m > n.
Conseguently, {S(f, Pn)}∞n=1 is a Cauchy sequence of real numbers; therefore this

sequence converges to some real numer A = limn→∞ S(f, Pn).

Then

|S(f, Pn)−A| < 1

n

for each n.
Let ε > 0 be given and choose N such that 1

N < ε
2 . If P is an arbitrary ∆N -fine

partitions on E, then

|S(f, P )−A| ≤ |S(f, P )− S(f, PN )|+ |S(f, PN )−A| < 1

N
+

1

N
< ε.

Thus f ∈ s-HK(E) and A = (HK)
∫
E
f dHs.

Theorem 3.6. If f ∈ s-HK(E), then f ∈ s-HK(Ã) for each closed interval Ã ⊂ E.

Proof. Let Ã be a closed interval of E. Since f ∈ s-HK(E), it follows that by
Theorem 3.4, for each ε > 0 there exists a gauge δ on E such that

|S(f, P )− S(f,Q)| < ε

for each pair δ-fine partitions P and Q of E.
Let {Ã1, Ã2, ..., ÃN} be a finite collection of pairwise non-overlapping intervals of

E, such that Ã /∈ {Ã1, Ã2, ..., ÃN} and such that

E = Ã ∪
N⋃
k=1

Ãk.

For each k ∈ {1, ..., N} we fix a δ-fine partition Pk of Ãk. If PÃ and QÃ are
δ-fine partitions of Ã, then it is clear that PÃ ∪

⋃N
k=1 Pk and QÃ ∪

⋃N
k=1 Pk are δ-fine

partitions of E.
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Thus ∣∣S(f, PÃ)− S(f,QÃ)
∣∣

=

∣∣∣∣∣S(f, PÃ) +

N∑
k=1

S(f, Pk)− S(f,QÃ)−
N∑
k=1

S(f, Pk)

∣∣∣∣∣
=

∣∣∣∣∣S(f, PÃ ∪
N⋃
k=1

Pk

)
− S

(
f,QÃ ∪

N⋃
k=1

Pk

)∣∣∣∣∣
< ε.

Therefore, by Theorem 3.4, f ∈ s-HK(Ã).

3.2.1 Saks-Henstock Lemma

Definition 3.5. A subpartition of E is a finite collection P = {(Ãi, xi)}pi=1 of a
pairwise disjoint intervals Ãi ⊂ E and points xi ∈ Ãi for i = 1, 2, ..., p.

Definition 3.6. Let P = {(Ãi, xi)}pi=1 be a subartition of E. If δ is a gauge on E,
then we say that P is a δ-fine subpartition of E whenever Ãi ⊂]xi− δ(xi), xi + δ(xi)[
for all i = 1, 2, ..., p.

Lemma 3.7 (The Saks-Henstock Lemma). Let f ∈ s-HK(E) and ε > 0. If δ is a
gauge on E such that ∣∣∣∣S(f, P )− (HK)

∫
E

f dHs
∣∣∣∣ < ε

for each δ-fine partition P of E, then∣∣∣∣∣
p∑
i=1

{
f(xi)Hs(Ãi)− (HK)

∫
Ãi

f dHs
}∣∣∣∣∣ ≤ ε

and

p∑
i=1

∣∣∣∣f(xi)Hs(Ãi)− (HK)

∫
Ãi

f dHs
∣∣∣∣ ≤ 2ε

for each δ-fine subpartition P0 = {(Ãi, xi)}pi=1 of E.

Proof. Let ε > 0. The set E \
⋃p
i=1 Ãi is a finite union of disjoint intervals. Let

K̃1, K̃2, ..., K̃m be the closure of these intervals.
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From theorem 3.5 we have that f ∈ s-HK(K̃j) for each j = 1, 2, ...,m. Hence for
each η > 0 and for each j there exists a gauge δj on K̃j such that

∣∣∣∣∣S(f, Pj)− (HK)

∫
K̃j

f dHs
∣∣∣∣∣ < η

m

for each δj-fine partition Pj of K̃j .

Let P = P0 ∪
⋃m
j=1 P̃j . Then P is a δ-fine partition of E and since S(f, P ) =

S(f, P0) +
∑m
j=1 S(f, Pj) we have that

(HK)

∫
E

f dHs =

p∑
i=1

(HK)

∫
Ãi

f dHs +

m∑
j=1

(HK)

∫
K̃j

f dHs.

Therefore

∣∣∣∣∣
p∑
i=1

{
f(xi)Hs(Ãi)− (HK)

∫
Ãi

f dHs
}∣∣∣∣∣ =

∣∣∣∣∣S(f, P0)−
p∑
i=1

(HK)

∫
Ãi

f dHs
∣∣∣∣∣

=

∣∣∣∣{S(f, P )−
m∑
j=1

S(f, Pj)

}
−
{

(HK)

∫
E

f dHs −
m∑
j=1

(HK)

∫
K̃j

f dHs
}∣∣∣∣

≤
∣∣∣∣S(f, P )− (HK)

∫
E

f dHs
∣∣∣∣+

m∑
j=1

∣∣∣∣∣S(f, Pj)− (HK)

∫
k̃j

f dHs
∣∣∣∣∣

< ε+m
η

m
= ε+ η.

Since η > 0 is arbitrary, the first inequality is proved.

To prove the second part, let

P+
0 =

{
(Ãi, xi) ∈ P0 : f(xi)Hs(Ãi)− (HK)

∫
Ãi

f dHs ≥ 0

}

and let P−0 = P0 \ P+
0 . Let us note that both P+

0 and P−0 are δ-fine subpartition
of E, so they satisfy the first part of Lemma.
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Thus,

p∑
i=1

∣∣∣∣f(xi)Hs(Ãi)− (HK)

∫
Ãi

f dHs
∣∣∣∣

=
∑

(Ãi,xi)∈P+
0

{
f(xi)Hs(Ãi)− (HK)

∫
Ãi

f dHs
}

−
∑

(Ãi,xi)∈P−0

{
f(xi)Hs(Ãi)− (HK)

∫
Ãi

f dHs
}

≤ ε+ ε = 2ε.

Theorem 3.8 (Cauchy extension). Let f : E → R be a function s-HK integrable
on [̃c, b] for each c ∈ E ∩ (a, b). If limc→a+(HK)

∫
[̃c,b]

f dHs exists, then f is s-HK
integrable on E and

(HK)

∫
E

f dHs = lim
c→a+

(HK)

∫
[̃c,b]

f dHs.

Proof. Let ε > 0 and let {cn}∞n=0 be a strictly decreasing seguence of real numbers of
E such that c0 = b and infn∈N cn = a.

Let A = limc→a+(HK)
∫
[̃c,b]

f dHs. Choose N such that

∣∣∣∣∣(HK)

∫
[̃x,b]

f dHs −A

∣∣∣∣∣ < ε

4

for x ∈ (̃a, cN ] and |f(a)|Hs
(

[̃a, cN ]
)
< ε

4 .

From Theorem 3.5, since f is s-HK integrable on [̃c, b] for each c ∈ E ∩ (a, b), then
f ∈ s-HK( ˜[ck, ck−1]). Therefore, for ε > 0 and for each positive integer k, we let δk
be a gauge on ˜[ck, ck−1] such that

∣∣∣∣∣S(f,Qk)− (HK)

∫
˜[ck,ck−1]

f dHs
∣∣∣∣∣ < ε

4(2k)

for each δk-fine partition Qk of ˜[ck, ck−1].
Define a gauge δ on E by setting

D. Bongiorno, G. Corrao (pp. ? – ??)
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δ(x) =



cN − a if x = a

min{δk(ck), δk+1(ck),
1

2
(ck−1 − ck),

1

2
(ck − ck+1)}

if x = ck and k=1,2,..

min{δk(ck),
1

2
(x− ck),

1

2
(ck−1 − x)}

if x ∈ ˜(ck, ck−1) and k=1,2,..
1

2
(b− c1) if x = b

and let P = {(Ãi, xi)}pi=1 be a δ-fine partition of E. Let Ãi = ˜[yi−1, yi] for i =

1, 2, ..., p and a = y0 < y1 < ... < yp = b. Since a /∈
⋃∞
k=1

˜[ck, ck−1], our choice of δ

implies that x1 = a, y1 < cN and y1 ∈ ˜(cr+1, cr] for some unique positive integer r.
We also observe that for each k ∈ {1, 2, ..., r}, our choice of δ implies that

{(Ã, x) ∈ P : Ã ⊆ ˜[ck, ck−1]}

is a δk-fine partition of ˜[ck, ck−1].

Since

S(f, P ) = f(a)Hs([̃a, y1]) +
∑

(Ã,x)∈P
Ã⊆˜[y1,cr]

f(x)Hs(Ã) +

r∑
k=1

( ∑
(Ã,x)∈P

Ã⊆ ˜[ck,ck−1]

f(x)Hs(Ã)

)

and

(HK)

∫
[̃y1,b]

f dHs = (HK)

∫
˜[y1,cr]

f dHs +

r∑
k=1

(
(HK)

∫
˜[ck,ck−1]

f dHs
)

thus
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∣∣∣∣∣S(f, P )− lim
c→a+

(HK)

∫
[̃c,b]

f dHs
∣∣∣∣∣

≤ |f(a)|Hs([̃a, y1]) +

∣∣∣∣∣∣∣∣∣∣
∑

(Ã,x)∈P
Ã⊆˜[y1,cr]

f(x)Hs(Ã)− (HK)

∫
˜[y1,cr]

f dHs

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
r∑

k=1

( ∑
(Ã,x)∈P

Ã⊆ ˜[ck,ck−1]

f(x)Hs(Ã)− (HK)

∫
˜[ck,ck−1]

f dHs
)∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣(HK)

∫
[̃y1,b]

f dHs − lim
c→a+

(HK)

∫
[̃c,b]

f dHs
∣∣∣∣∣

< ε.

4 Relationship between the s-integral and the s-Henstock-
Kurzweil-Stieltjes integral

4.1 The Vitali-Carathéodory Theorem

Theorem 4.1 (The Vitali-Carathéodory Theorem). Let E be an s-set, let f be L-
integrable on E and let ε > 0. Then there exist functions u and v on E such that
u ≤ f ≤ v, u is upper semicontinuous and bounded above, v is lower semicontinuous
and bounded below, and

(L)

∫
E

(v − u) dHs < ε. (1)

Proof. Assume first that f ≥ 0 and that f is not identically 0. Since f is the pointwise
limit of an increasing sequence of simple functions sn (see [9]), f is the sum of the
simple functions tn = sn − sn−1 (taking s0 = 0), and since tn is a linear combination
of characteristic functions, we see that there are measurable sets Mi (not necessarily
disjoint) and constants ci > 0 such that

f(x) =

∞∑
i=1

ciχMi
(x) (x ∈ E).
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Since

(L)

∫
E

f dHs =

∞∑
i=1

ciHs(Mi) (2)

the series in (3) converges. Since Hs is Borel regular (see [7], pag. 57) and E is an
s-set, therefore HsLE is a Radon measure. So, there are compacts sets Ki and open
sets Vi such that Ki ⊂Mi ⊂ Vi and

ciHs(Vi −Ki) < 2−i−1ε (i = 1, 2, 3, ...). (3)

Put

v =

∞∑
i=1

ciχVi
, u =

N∑
i=1

ciχKi
,

where N is chosen so that
∞∑
N+1

ciHs(Mi) <
ε

2
. (4)

Then v is lower semicontinuous, u is upper semicontinuous, u ≤ f ≤ v, and

v − u =

N∑
i=1

ci(χVi − χKi) +

∞∑
N+1

ciχVi ≤
∞∑
i=1

ci(χVi − χKi) +

∞∑
N+1

ciχVi

so that (4) and (5) imply (2).
In the general case, write f = f+ − f−, attach u1 and v1 to f+, attach u2 and v2

to f−, as above, and put u = u1−u2, v = v1−v2. Since −v2 is upper semicontinuous
and since the sum of two upper semicontinuous functions is upper semicontinuous, u
and v have the desired properties.

We now show that the s-HK integral is more general than the Lebesgue integral.

Theorem 4.2. If E is an s-set, then L(E) ⊆ s-HK(E) and

(L)

∫
E

f dHs = (HK)

∫
E

f dHs

for each f ∈ L(E).

Proof. Let f ∈ L(E) and ε > 0. For the Vitali-Carathéodory Theorem, there are
upper and lower semicontinuos functions g and h, respectively, such that −∞ ≤ g ≤
f ≤ h ≤ +∞ and (L)

∫
E

(h− g) dHs < ε. Find a gauge δ on E so that

g(t) ≤ f(t) + ε and h(t) ≥ f(t)− ε

for each x, t ∈ E with |x− t| < δ(x). Now if P = {(Ãi, xi)}pi=1 is a δ-fine partition of
E, then

(L)

∫
Ãi

g dHs ≤ (L)

∫
Ãi

f dHs ≤ (L)

∫
Ãi

h dHs. (5)
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Since g(t) ≤ f(xi) + ε, then g(t)− ε ≤ f(xi), for each t ∈ Ãi we have that

(L)

∫
Ãi

(g − ε) dHs ≤ (L)

∫
Ãi

f(xi) dHs

and therefore
(L)

∫
Ãi

g dHs − εHs(Ãi) ≤ f(xi)Hs(Ãi).

Moreover, since h(t) ≥ f(xi) + ε, then f(xi) ≤ h(t) + ε, for each t ∈ Ãi and
therefore

f(xi)Hs(Ãi) ≤ (L)

∫
Ãi

h dHs + εHs(Ãi).

The last two results lead to

(L)

∫
Ãi

g dHs − εHs(Ãi) ≤ f(xi)Hs(Ãi) ≤ (L)

∫
Ãi

h dHs + εHs(Ãi), (6)

i = 1, ..., p. It follows that:∣∣∣∣S(f, P )− (L)

∫
E

f dHs
∣∣∣∣ ≤ p∑

i=1

∣∣∣∣f(xi)Hs(Ãi)− (L)

∫
Ãi

f dHs
∣∣∣∣

For the (7), we have that∣∣∣∣f(xi)Hs(Ãi)− (L)

∫
Ãi

f dHs
∣∣∣∣ ≤ ∣∣∣∣(L)

∫
Ãi

h dHs + εHs(Ãi)− (L)

∫
Ãi

f dHs
∣∣∣∣

=

∣∣∣∣εHs(Ãi) + (L)

∫
Ãi

(h− f) dHs
∣∣∣∣ .

Since
− (L)

∫
Ãi

h dHs ≤ − (L)

∫
Ãi

f dHs ≤ − (L)

∫
Ãi

g dHs

and therefore
0 ≤ (L)

∫
Ãi

(h− f) dHs ≤ (L)

∫
Ãi

(h− g) dHs

we have that∣∣∣∣S(f, P )− (L)

∫
E

f dHs
∣∣∣∣ ≤ p∑

i=1

∣∣∣∣f(xi)Hs(Ãi)− (L)

∫
Ãi

f dHs
∣∣∣∣

≤
p∑
i=1

[
εHs(Ãi) + (L)

∫
Ãi

(h− g) dHs
]

< ε (Hs(E) + 1)

and then the theorem is proved.

D. Bongiorno, G. Corrao (pp. ? – ??)
17



Boll. di mat. pura ed appl. Vol. IV (2011)

Remark. The converse of previus theorem is not true. The following example explains
this assertion.

Example 4.1. Let E be the classical Cantor set and let F : E → R be the function
defined as follow

F (x) =
(−1)n+12n

n
if x ∈

˜[
2

3n
,

1

3n−1

]
, ∀n = 1, 2, 3, ...

We will prove that F is s-HK-integrable on E, but it is not s-L-integrable on E.

(HK)

∫
[̃ 2

3k
,1]

F dHs =

k∑
n=1

(HK)

∫
˜[ 2

3n ,
1

3n−1 ]

F dHs =

=

k∑
n=1

(−1)n+1 2n

n
Hs
( ˜[

2

3n
,

1

3n−1

])
=

=

k∑
n=1

(−1)n+1 2n

n
· 1

2n
=

k∑
n=1

(−1)n+1

n

For the Cauchy extension, we have:

(HK)

∫
E∩[0,1]

F dHs = lim
k→∞

(HK)

∫
[̃ 2

3k
,1]

F dHs =

∞∑
n=1

(−1)n+1

n
= log 2

F is not s-L-integrable on E. In fact, if F were s-L-integrable on E, therefore |F |
would be s-L-integrable on E.

Following the previous sequnce of steps, it follows easily that

(HK)

∫
E∩[0,1]

|F | dHs =

∞∑
n=1

1

n
= +∞.
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