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Multivaluedmappings and related selection theorems are fundamental tools inmany branches ofmathematics and applied sciences.
In this paper we continue this theory and prove the existence of Caristi type selections for generalized multivalued contractions on
complete metric spaces, by using some classes of functions. Also we prove fixed point and quasi-fixed point theorems.

1. Introduction and Preliminaries

In 1998, Repovs and Semenov [1] furnished a comprehensive
study of the theory of continuous selections for multivalued
mappings. They point out that “this interesting branch of
modern topology was started by Michael [2] and, since
then, has received a great amount of interest with various
applications outside topology, for instance, approximation
theory, control theory, convex sets, differential inclusions,
economics, fixed point theory, and vector measures.” Thus
an interesting matter is to obtain existence conditions for
selections, under different regularity hypotheses, for instance,
Lipschitz-continuity and measurability; see also [3–5]. In
particular, we are interested in developing this theory for
fixed point theorems, by using Caristi’s mappings. Some
precise results concerning existence of fixed points for
Caristi’s single-valued and multivalued mappings and data
dependence of fixed points set are proved in [6]; see also the
references therein. We recall that Browder [7] was the first
author to use continuous selections to prove a fixed point
result; but the first result of Caristi type selection was proved
by Jachymski [8] for Nadler’s multivalued contraction with
closed values.

Definition 1. Let (𝑋, 𝑑) be ametric space. A function𝜙 : 𝑋 →

[0, +∞) is lower semicontinuous at 𝑥 ∈ 𝑋 if and only if,
for every sequence {𝑥

𝑛
} in 𝑋 with 𝑥

𝑛
→ 𝑥 as 𝑛 → +∞,

lim inf
𝑛→+∞

𝜙(𝑥
𝑛
) ≥ 𝜙(𝑥). Also, 𝜙 is lower semicontinuous

if and only if it is lower semicontinuous at every 𝑥 ∈ 𝑋.

Also, 𝐿(𝑦) := {𝑥 ∈ 𝑋 : 𝜙(𝑥) ≤ 𝑦} is called the
lower counter set defined by a point 𝑦 ∈ [0, +∞). Then the
following results hold true.

Proposition 2. Let (𝑋, 𝑑) be a metric space. Let 𝜙 : 𝑋 →

[0, +∞) be a function. Then, 𝜙 is lower semicontinuous if and
only if 𝐿(𝑦) is closed for every 𝑦 ∈ [0, +∞).

Theorem 3 (Caristi [9]). Let (𝑋, 𝑑) be a complete metric space
and let 𝑓 : 𝑋 → 𝑋 be a mapping not necessarily continuous.
Assume that there exists a function 𝜙 : 𝑋 → [0, +∞), which
is lower semicontinuous, such that

𝑑 (𝑥, 𝑓𝑥) ≤ 𝜙 (𝑥) − 𝜙 (𝑓𝑥) ∀𝑥 ∈ 𝑋. (1)

Then, 𝑓 has a fixed point 𝑧; that is, 𝑧 = 𝑓𝑧.

Also, 𝑓 is called Caristi’s mapping on (𝑋, 𝑑). On the other
hand, Nadler [10, 11] established the following result.

Theorem 4 (Nadler [10, 11]). Let (𝑋, 𝑑) be a complete metric
space and let 𝐹 : 𝑋 → 𝐶𝑙(𝑋) be a multivalued mapping such
that, for some 𝑘 ∈ (0, 1), one has

𝐻(𝐹𝑥, 𝐹𝑦) ≤ 𝑘𝑑 (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝑋, (2)

where 𝐶𝑙(𝑋) denotes the class of all nonempty closed subsets
of 𝑋 and 𝐻 denotes a generalized Hausdorff metric on 𝐶𝑙(𝑋).
Then 𝐹 has a fixed point 𝑧; that is, 𝑧 ∈ 𝐹𝑧.
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For𝐴, 𝐵 ∈ 𝐶𝑙(𝑋), we recall that𝐻(𝐴, 𝐵) = max{sup{𝐷(𝑥,

𝐵) : 𝑥 ∈ 𝐴}, sup{𝐷(𝑦, 𝐴) : 𝑦 ∈ 𝐵}}, where 𝐷(𝑥, 𝐵) = inf{𝑑(𝑥,

𝑦) : 𝑦 ∈ 𝐵}. Also, a multivalued mapping 𝐹 satisfying
the assumption of Theorem 4 is called Nadler’s multivalued
contraction.

Definition 5. Let 𝐹 : 𝑋 → 𝐶𝑙(𝑋) be a multivalued mapping
and let 𝑓 : 𝑋 → 𝑋 be a (single-valued) mapping. Then, 𝑓 is
said to be a selection for 𝐹 if

𝑓𝑥 ∈ 𝐹𝑥, 𝑥 ∈ 𝑋. (3)

Also 𝑓 is called Caristi type selection if it is Caristi’s map-
ping. As mentioned above, Jachymski established existence
theorems stating that certain multivalued mappings admit
selections that are Caristi’s mappings, which do not need to
be continuous (see, for instance, Example 1 in [8]).

Theorem 6 (Jachymski [8]). If 𝐹 is Nadler’s multivalued
contraction on a complete metric space (𝑋, 𝑑), then 𝐹 admits
a selection 𝑓 : 𝑋 → 𝑋, which is Caristi’s mapping on (𝑋, 𝑑)

generated by a Lipschitz function 𝜙.

Clearly, Theorem 3 yields Theorem 4; that is, every
Nadler’s multivalued mapping admits a fixed point, but
the converse does not hold in general. Obviously, if the
multivalued mapping does not admit a fixed point, then a
Caristi type selection cannot exist. The following example
illustrates the case of a multivalued mapping which does not
admit a Caristi type selection, even if it has a fixed point.

Example 7 (Xu [12]). Consider the complete metric space
([0, +∞), 𝑑), where 𝑑 denotes the standard metric. Define 𝐹 :

[0, +∞) → 𝐶𝑙([0, +∞)) as𝐹𝑥 = [2𝑥, 3𝑥] for all 𝑥 ∈ [0, +∞).

Trivially, 0 is a unique fixed point of 𝐹. Now, assume
that there exists a Caristi type selection for 𝐹, say 𝑓. Then,
referring to notions and notations of Theorem 3, we write
𝑑(𝑥, 𝑓𝑥) ≤ 𝜙(𝑥) − 𝜙(𝑓𝑥) for all 𝑥 ∈ [0, +∞). By definition
of 𝐹, we have 2𝑥 ≤ 𝑓𝑥 ≤ 3𝑥 and so 𝑥 ≤ 𝜙(𝑥) − 𝜙(𝑓𝑥) for all
𝑥 ∈ (0, +∞). By iteration, we can get easily that

𝑓
𝑛

𝑥 ≤ 𝜙 (𝑓
𝑛

𝑥) − 𝜙 (𝑓
𝑛+1

𝑥) ∀𝑛 ∈ N ∪ {0} . (4)

This implies that the sequence {𝜙(𝑓𝑛𝑥)} is nonincreasing and
so, being bounded below, convergent to some 𝑟 ≥ 0. Also,
from (4), as 𝑛 → +∞, we get 𝑓

𝑛𝑥 → 0. On the other
hand, the reader can immediately prove that {𝑓𝑛𝑥} is a strictly
increasing sequence and hence we get a contradiction with
the above limit. Then we conclude that 𝑓 is not a Caristi type
selection.

Definition 8. Given a function 𝜇 : [0, +∞) → [0, +∞) with
𝜇(𝑡) < 𝑡 for 𝑡 > 0, a multivalued mapping 𝐹 : 𝑋 → 𝐶𝑙(𝑋) is
said to be a multivalued 𝜇-contraction if

𝐻(𝐹𝑥, 𝐹𝑦) ≤ 𝜇 (𝑑 (𝑥, 𝑦)) ∀𝑥, 𝑦 ∈ 𝑋. (5)

Definition 9. A function 𝜇 : [0, +∞) → [0, +∞) is said to be
subadditive if

𝜇 (𝑠 + 𝑡) ≤ 𝜇 (𝑠) + 𝜇 (𝑡) ∀𝑠, 𝑡 ∈ [0, +∞) . (6)

Also, 𝜇 is said to be superadditive if the reverse inequality
holds true.

Theorem 10 (Jachymski [8]). Let 𝐹 : 𝑋 → 𝐶𝑙(𝑋) be a
multivalued 𝜇-contraction on a complete metric space (𝑋, 𝑑)

such that 𝜇 is superadditive, and the function 𝑡 → 𝑡−𝜇(𝑡) (𝑡 ∈

[0, +∞)) is nondecreasing. Then there exist a selection 𝑓 of
𝐹 and a function ℎ : [0, +∞) → [0, +∞), which is
nondecreasing and subadditive and continuous at 𝑡 = 0 such
that ℎ

−1({0}) = {0}. Moreover, there is an equivalent metric 

such that (𝑋, ) is complete and f is Caristi’s mapping on (𝑋, ).

In this paper we continue this study and prove the exis-
tence of Caristi type selections for generalized multivalued
contractions on complete metric spaces. Our results fit into
the theory of selections for multivalued mappings showing
certain ways to establish selection theorems, by using some
classes of functions. Alsowe prove fixed point and quasi-fixed
point theorems.We remark that the existence of a Caristi type
selection for a multivalued mapping ensures the existence of
a fixed point.

2. Caristi Type Selection Theorems

We start to develop our theory by using the concept of lower
semicontinuity, which is one of the most important concepts
in multivalued analysis.

Theorem 11. Let (𝑋, 𝑑) be a complete metric space. Let 𝐹 :

𝑋 → 2
𝑋\{0} be amultivaluedmapping and let 𝑞 > 1 be a real

number. Consider 𝑆
𝑞
(𝑥) := {𝑦 ∈ 𝐹𝑥 : 𝑑(𝑥, 𝑦) ≤ 𝑞𝐷(𝑥, 𝐹𝑥)}

and suppose that 𝐹 satisfies the following conditions:
(i) there exist two nonnegative real numbers 𝑎, 𝑏with 𝑎𝑞+

𝑏 < 1 such that, for each 𝑥 ∈ 𝑋, there is 𝑦 ∈ 𝑆
𝑞
(𝑥)

having the property

𝐷(𝑦, 𝐹𝑦) ≤ 𝑎𝑑 (𝑥, 𝑦) + 𝑏𝐷 (𝑥, 𝐹𝑥) ; (7)

(ii) the function 𝑝 : 𝑋 → [0, +∞) defined by 𝑝𝑥 :=

𝐷(𝑥, 𝐹𝑥), for all 𝑥 ∈ 𝑋, is lower semicontinuous.
Then 𝐹 has a selection 𝑓 that is Caristi’s mapping.

Proof. By the axiom of choice and condition (i), there is a
mapping 𝑓 : 𝑋 → 𝑋 with 𝑓𝑥 ∈ 𝑆

𝑞
(𝑥) for all 𝑥 ∈ 𝑋 such

that

𝐷(𝑓𝑥, 𝐹𝑓𝑥) ≤ 𝑎𝑑 (𝑥, 𝑓𝑥) + 𝑏𝐷 (𝑥, 𝐹𝑥) (8)

and so

𝐷(𝑓𝑥, 𝐹𝑓𝑥) − 𝑏𝐷 (𝑥, 𝐹𝑥) ≤ 𝑎𝑑 (𝑥, 𝑓𝑥) . (9)

Then
(1 − 𝑏 − 𝑎𝑞) 𝑑 (𝑥, 𝑓𝑥) ≤ (1 − 𝑏) 𝑞𝐷 (𝑥, 𝐹𝑥) − 𝑎𝑞𝑑 (𝑥, 𝑓𝑥)

≤ (1 − 𝑏) 𝑞𝐷 (𝑥, 𝐹𝑥) − 𝑞𝐷 (𝑓𝑥, 𝐹𝑓𝑥)

+ 𝑏𝑞𝐷 (𝑥, 𝐹𝑥)

= 𝑞𝐷 (𝑥, 𝐹𝑥) − 𝑞𝐷 (𝑓𝑥, 𝐹𝑓𝑥) .

(10)
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By condition (ii), the function 𝜙 : 𝑋 → [0, +∞) defined
by 𝜙(𝑡) := (𝑞/(1 − 𝑏 − 𝑎𝑞))𝐷(𝑡, 𝐹𝑡), for all 𝑡 ∈ 𝑋, is lower
semicontinuous and hence 𝑓 is Caristi’s mapping that is a
selection of 𝐹.

Example 12. Let𝑋 = [0, 1] be endowed with the usual metric
𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| for all 𝑥, 𝑦 ∈ 𝑋 so that (𝑋, 𝑑) is a complete
metric space. Also, let 𝐹 : 𝑋 → 2𝑋 \ {0} be defined by

𝐹𝑥 =

{{

{{

{

[0,
𝑥

2
] if 𝑥 ∈ [0, 1[ ,

[
1

2
, 1] if 𝑥 = 1.

(11)

Consider 𝑞 = 4/3, 𝑎 = 1/2, and 𝑏 = 1/6 such that 𝑎𝑞 + 𝑏 =

5/6 < 1. Then, for 𝑥 ̸= 1 and 𝑦 = 𝑥/2, we have 𝑑(𝑥, 𝑦) =

𝑥/2 ≤ (4/3) ⋅ (𝑥/2) = (4/3)𝐷(𝑥, 𝐹𝑥); that is 𝑦 ∈ 𝑆
𝑞
(𝑥).

Moreover,

𝐷(𝑦, 𝐹𝑦) = 𝐷(
𝑥

2
, [0,

𝑥

4
]) =

𝑥

4
≤

1

2
⋅
𝑥

2
+

1

6
⋅
𝑥

2

= 𝑎𝑑 (𝑥, 𝑦) + 𝑏𝐷 (𝑥, 𝐹𝑥) .

(12)

Also, for 𝑥 = 1 and 𝑦 = 1, we have 𝑑(𝑥, 𝑦) = 0 = 𝑞 ⋅ 0 =

𝑞𝐷(𝑥, 𝐹𝑥); that is, 1 ∈ 𝑆
𝑞
(𝑥). Moreover,

𝐷(𝑦, 𝐹𝑦) = 𝐷(1, [
1

2
, 1]) = 0 ≤ 𝑎𝑑 (𝑥, 𝑦) + 𝑏𝐷 (𝑥, 𝐹𝑥) .

(13)

Finally, the function 𝑝 : 𝑋 → [0, +∞) defined by

𝑝𝑥 = 𝐷 (𝑥, 𝐹𝑥) =
{

{

{

𝑥

2
if 𝑥 ∈ [0, 1[ ,

0 if 𝑥 = 1
(14)

is lower semicontinuous in [0, 1]. Thus, all the hypotheses of
Theorem 11 are satisfied and so 𝐹 has a selection 𝑓 that is
Caristi’s mapping. In fact, 𝑓 : 𝑋 → 𝑋, defined by 𝑓𝑥 = 𝑥/2

for all 𝑥 ∈ 𝑋, is such that 𝑓𝑥 ∈ 𝐹𝑥 and also 𝑑(𝑥, 𝑓𝑥) = 𝑥/2 =

𝜙(𝑥) − 𝜙(𝑓𝑥), where 𝜙 : 𝑋 → [0, +∞) is given by 𝜙(𝑥) = 𝑥

for all 𝑥 ∈ 𝑋.
Notice that

𝐻(𝐹0, 𝐹1) = 𝐻({0} , [
1

2
, 1]) = max {

1

2
, 1} = 𝑑 (0, 1)

(15)

and hence 𝐹 is not Nadler’s multivalued contraction.

Analogous results toTheorem 11 can be established under
different hypotheses. For instance, in the next theorem,
the multivalued mapping 𝐹 satisfies another contractive
condition.

Theorem 13. Let (𝑋, 𝑑) be a complete metric space. Let 𝐹 :

𝑋 → 2
𝑋\{0} be amultivaluedmapping and let 𝑞 > 1 be a real

number. Consider 𝑆
𝑞
(𝑥) := {𝑦 ∈ 𝐹𝑥 : 𝑑(𝑥, 𝑦) ≤ 𝑞𝐷𝑑(𝑥, 𝐹𝑥)}

and suppose that 𝐹 satisfies the following conditions:
(i) there exist nonnegative real numbers 𝛼, 𝛽, 𝛾 with (𝛼 +

𝛾)𝑞 + 𝛽 + 𝛾 < 1 such that, for each 𝑥 ∈ 𝑋, there is
𝑦 ∈ 𝑆
𝑞
(𝑥) having the property

𝐷(𝑦, 𝐹𝑦) ≤ 𝛼𝑑 (𝑥, 𝑦) + 𝛽𝐷 (𝑥, 𝐹𝑥) + 𝛾𝐷 (𝑥, 𝐹𝑦) ; (16)

(ii) the function 𝑝 : 𝑋 → [0, +∞) defined by 𝑝𝑥 :=

𝐷(𝑥, 𝐹𝑥), for all 𝑥 ∈ 𝑋, is lower semicontinuous.

Then 𝐹 has a selection 𝑓 that is Caristi’s mapping.

Proof. By the axiom of choice and condition (i), there is a
mapping 𝑓 : 𝑋 → 𝑋 with 𝑓𝑥 ∈ 𝑆

𝑞
(𝑥) for all 𝑥 ∈ 𝑋 such

that

𝐷(𝑓𝑥, 𝐹𝑓𝑥) ≤ 𝛼𝑑 (𝑥, 𝑓𝑥) + 𝛽𝐷 (𝑥, 𝐹𝑥) + 𝛾𝐷 (𝑥, 𝐹𝑓𝑥)

(17)

and so, by using the triangular inequality for 𝐷(𝑥, 𝐹𝑓𝑥),

(1 − 𝛾)𝐷 (𝑓𝑥, 𝐹𝑓𝑥) − 𝛽𝐷 (𝑥, 𝐹𝑥) ≤ (𝛼 + 𝛾) 𝑑 (𝑥, 𝑓𝑥) .

(18)

Then

(1 − 𝛽 − 𝛾 − (𝛼 + 𝛾) 𝑞) 𝑑 (𝑥, 𝑓𝑥)

≤ (1 − 𝛽 − 𝛾) 𝑞𝐷 (𝑥, 𝐹𝑥) − (𝛼 + 𝛾) 𝑞𝑑 (𝑥, 𝑓𝑥)

≤ (1 − 𝛽 − 𝛾) 𝑞𝐷 (𝑥, 𝐹𝑥) − (1 − 𝛾) 𝑞𝐷 (𝑓𝑥, 𝐹𝑓𝑥)

+ 𝛽𝑞𝐷 (𝑥, 𝐹𝑥)

= (1 − 𝛾) 𝑞𝐷 (𝑥, 𝐹𝑥) − (1 − 𝛾) 𝑞𝐷 (𝑓𝑥, 𝐹𝑓𝑥) .

(19)

By condition (ii), the function 𝜙 : 𝑋 → [0, +∞) defined
by 𝜙(𝑡) := ((1−𝛾)𝑞/(1−𝛽−𝛾−(𝛼+𝛾)𝑞))𝐷(𝑡, 𝐹𝑡), for all 𝑡 ∈ 𝑋,
is lower semicontinuous and hence𝑓 is Caristi’smapping that
is a selection of 𝐹.

We would like to remark that other results can be stated
by involving upper semicontinuousmultivaluedmappings, in
view of the following situation.

Definition 14. Let (𝑋, 𝑑) be a metric space. Then, a multi-
valued mapping 𝐹 : 𝑋 → 2𝑋 \ {0} is said to be ℎ-upper
semicontinuous at 𝑥

0
∈ 𝑋, if the function

ℎ (𝐹𝑥, 𝐹𝑥
0
) := sup {𝐷 (𝑦, 𝐹𝑥

0
) : 𝑦 ∈ 𝐹𝑥} (20)

is continuous at 𝑥
0
. Clearly, 𝐹 is said to be ℎ-upper semicon-

tinuous, whenever ℎ(𝐹𝑥, 𝐹𝑥
0
) is continuous at every 𝑥

0
∈ 𝑋.

Now we present a class of multivalued mappings such
that the function 𝜙(𝑥) = 𝐷(𝑥, 𝐹𝑥), for all 𝑥 ∈ 𝑋, is lower
semicontinuous.

Proposition 15. Let (𝑋, 𝑑) be a metric space. If 𝐹 : 𝑋 →

2𝑋 \ {0} is ℎ-upper semicontinuous, then the function 𝜙(𝑥) =

𝐷(𝑥, 𝐹𝑥) is lower semicontinuous.

Proof. Given 𝑥 ∈ 𝑋, for all 𝑦 ∈ 𝑋, we get

𝜙 (𝑥) = 𝐷 (𝑥, 𝐹𝑥) ≤ 𝑑 (𝑥, 𝑦) + 𝐷 (𝑦, 𝐹𝑦) + ℎ (𝐹𝑦, 𝐹𝑥)

≤ 𝑑 (𝑥, 𝑦) + 𝜙 (𝑦) + ℎ (𝐹𝑦, 𝐹𝑥) .
(21)

From above inequalities, we deduce that 𝜙(𝑥) ≤

lim inf
𝑦→𝑥

𝜙(𝑦) and so 𝜙 is a lower semicontinuous
function.
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For instance, fromTheorem 13 and Proposition 15 we get
the following corollary.

Corollary 16. Let (𝑋, 𝑑) be a complete metric space. Let 𝐹 :

𝑋 → 2
𝑋

\ {0} be an ℎ-upper semicontinuous multivalued
mapping and let 𝑞 > 1 be a real number. Consider 𝑆

𝑞
(𝑥) :=

{𝑦 ∈ 𝐹𝑥 : 𝑑(𝑥, 𝑦) ≤ 𝑞𝐷(𝑥, 𝐹𝑥)} and suppose that 𝐹 satisfies
the condition (𝑖) of Theorem 13. Then 𝐹 has a selection 𝑓 that
is Caristi’s mapping.

3. Extension to Quasi-Fixed Point Theorems

Let (𝑋, 𝑑) be a metric space. We recall that a multivalued
mapping 𝐹 : 𝑋 → 2𝑋 \ {0} has a quasi-fixed point if
there exists a point 𝑧 ∈ 𝑋 such that 𝐷(𝑧, 𝐹𝑧) = 0. Then
we extend our theory by considering functions instead of
constant values. Therefore, let (𝑋, 𝑑) be a metric space, and
let 𝑎, 𝑏 : 𝑋 → [0, +∞) and 𝑞 : 𝑋 → (0, +∞) be functions
such that

𝑎 (𝑥) 𝑞
−1

(𝑥) + 𝑏 (𝑥) < 1 ∀𝑥 ∈ 𝑋. (22)

Remark 17. Notice that in (22) we do not need that 𝑞(𝑥) < 1.
Wewill return on this fact to derive a particular situation from
the following theorem.

Theorem 18. Let (𝑋, 𝑑) be a complete metric space. Let 𝐹 :

𝑋 → 2
𝑋 \ {0} be a multivalued mapping. Suppose that 𝐹

satisfies the following conditions:

(i) there exist three functions 𝑎, 𝑏 : 𝑋 → [0, +∞) and
𝑞 : 𝑋 → (0, +∞) such that (22) holds;

(ii) for each 𝑥 ∈ 𝑋, with 𝐷(𝑥, 𝐹𝑥) > 0, there exists 𝑦 ∈

𝑋 \ {𝑥} such that

𝑞 (𝑥) 𝑑 (𝑥, 𝑦) ≤ 𝐷 (𝑥, 𝐹𝑥) ,

𝐷 (𝑦, 𝐹𝑦) ≤ 𝑎 (𝑥) 𝑑 (𝑥, 𝑦) + 𝑏 (𝑥)𝐷 (𝑥, 𝐹𝑥) ;
(23)

(iii) the function 𝑝 : 𝑋 → [0, +∞) defined by 𝑝𝑥 :=

𝐷(𝑥, 𝐹𝑥), for all 𝑥 ∈ 𝑋, is lower semicontinuous;
(iv) there exists 𝜂 > 0 such that

inf {𝑞 (𝑥) − 𝑏 (𝑥) 𝑞 (𝑥) − 𝑎 (𝑥) : 𝑥 ∈ 𝑋,

𝐷 (𝑥, 𝐹𝑥) ≤ inf
𝑧∈𝑋

𝐷 (𝑧, 𝐹𝑧) + 𝜂} > 0.

(24)

Then 𝐹 has a quasi-fixed point; that is, there exists 𝑧 ∈ 𝑋 such
that 𝐷(𝑧, 𝐹𝑧) = 0.

Proof. Assume that 𝐷(𝑥, 𝐹𝑥) > 0 for all 𝑥 ∈ 𝑋. By the axiom
of choice and condition (ii), there is a mapping 𝑓 : 𝑋 → 𝑋

with 𝑓𝑥 ̸= 𝑥 such that

𝑞 (𝑥) 𝑑 (𝑥, 𝑓𝑥) ≤ 𝐷 (𝑥, 𝐹𝑥) ,

𝐷 (𝑓𝑥, 𝐹𝑓𝑥) ≤ 𝑎 (𝑥) 𝑑 (𝑥, 𝑓𝑥) + 𝑏 (𝑥)𝐷 (𝑥, 𝐹𝑥) .
(25)

Then for each 𝑥 ∈ 𝑋

𝐷 (𝑓𝑥, 𝐹𝑓𝑥) − 𝑏 (𝑥)𝐷 (𝑥, 𝐹𝑥) ≤ 𝑎 (𝑥) 𝑑 (𝑥, 𝑓𝑥) . (26)

This implies

(1 − 𝑏 (𝑥) − 𝑎 (𝑥) 𝑞
−1

(𝑥)) 𝑑 (𝑥, 𝑓𝑥)

≤ (1 − 𝑏 (𝑥)) 𝑞
−1

(𝑥)𝐷 (𝑥, 𝐹𝑥) − 𝑎 (𝑥) 𝑞
−1

(𝑥) 𝑑 (𝑥, 𝑓𝑥)

≤ (1 − 𝑏 (𝑥)) 𝑞
−1

(𝑥)𝐷 (𝑥, 𝐹𝑥) − 𝑞
−1

(𝑥)𝐷 (𝑓𝑥, 𝐹𝑓𝑥)

+ 𝑏 (𝑥) 𝑞
−1

(𝑥)𝐷 (𝑥, 𝐹𝑥)

= 𝑞
−1

(𝑥)𝐷 (𝑥, 𝐹𝑥) − 𝑞
−1

(𝑥)𝐷 (𝑓𝑥, 𝐹𝑓𝑥) .

(27)

Consequently, we have

𝑑 (𝑥, 𝑓𝑥) ≤
1

𝑞 (𝑥) − 𝑏 (𝑥) 𝑞 (𝑥) − 𝑎 (𝑥)

× [𝐷 (𝑥, 𝐹𝑥) − 𝐷 (𝑓𝑥, 𝐹𝑓𝑥)] .

(28)

Now, let 𝑌 := {𝑥 ∈ 𝑋 : 𝐷(𝑥, 𝐹𝑥) ≤ inf
𝑧∈𝑋

𝐷(𝑧, 𝐹𝑧) + 𝜂}. Since,
by (iii),𝑌 is a closed subset of𝑋, we deduce that𝑌 is complete.
Denote by 𝛾 := inf{𝑞(𝑥) − 𝑏(𝑥)𝑞(𝑥) − 𝑎(𝑥) : 𝑥 ∈ 𝑌} > 0. For
all 𝑥 ∈ 𝑌, we get

𝑑 (𝑥, 𝑓𝑥) ≤
1

𝛾
[𝐷 (𝑥, 𝐹𝑥) − 𝐷 (𝑓𝑥, 𝐹𝑓𝑥)] = 𝜙 (𝑥) − 𝜙 (𝑓𝑥) ,

(29)

where the function 𝜙 : 𝑋 → [0, +∞) is defined by 𝜙(𝑡) :=

𝛾−1𝐷(𝑡, 𝐹𝑡), for all 𝑡 ∈ 𝑋. Clearly, by condition (iii), the
function 𝜙 is lower semicontinuous. From (29), we get that
𝑓𝑥 ∈ 𝑌 whenever 𝑥 ∈ 𝑌 and hence 𝑓 : 𝑌 → 𝑌 is
Caristi’s mapping. This implies that 𝑓 has a fixed point in 𝑌,
a contradiction since 𝑓𝑥 ̸= 𝑥 for all 𝑥 ∈ 𝑋. Hence there is
𝑧 ∈ 𝑋 such that 𝐷(𝑧, 𝐹𝑧) = 0.

As a consequence of Theorem 18, in the case that 𝐹𝑥 is
also closed, we obtain the following corollary.

Corollary 19. Let (𝑋, 𝑑) be a complete metric space. Let 𝐹 :

𝑋 → 2𝑋\{0} be amultivaluedmapping such that𝐹𝑥 is closed.
Suppose that 𝐹 satisfies the following conditions:

(i) there exist three functions 𝑎, 𝑏 : 𝑋 → [0, +∞) and
𝑞 : 𝑋 → (0, +∞) such that (22) holds;

(ii) for each 𝑥 ∈ 𝑋, with 𝐷(𝑥, 𝐹𝑥) > 0, there exists 𝑦 ∈

𝑋 \ {𝑥} such that

𝑞 (𝑥) 𝑑 (𝑥, 𝑦) ≤ 𝐷 (𝑥, 𝐹𝑥) ,

𝐷 (𝑦, 𝐹𝑦) ≤ 𝑎 (𝑥) 𝑑 (𝑥, 𝑦) + 𝑏 (𝑥)𝐷 (𝑥, 𝐹𝑥) ;
(30)

(iii) the function 𝑝 : 𝑋 → [0, +∞) defined by 𝑝𝑥 :=

𝐷(𝑥, 𝐹𝑥), for all 𝑥 ∈ 𝑋, is lower semicontinuous;
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(iv) there exists 𝜂 > 0 such that

inf {𝑞 (𝑥) − 𝑏 (𝑥) 𝑞 (𝑥) − 𝑎 (𝑥) : 𝑥 ∈ 𝑋,

𝐷 (𝑥, 𝐹𝑥) ≤ inf
𝑧∈𝑋

𝐷 (𝑧, 𝐹𝑧) + 𝜂} > 0.

(31)

Then 𝐹 has a fixed point.

In view of Remark 17, by assuming 𝑞(𝑥) < 1, for all 𝑥 ∈ 𝑋,
on the same lines of the proof of Theorem 18, one can prove
the following result.

Theorem 20. Let (𝑋, 𝑑) be a complete metric space. Let 𝐹 :

𝑋 → 2𝑋 \ {0} be a multivalued mapping. Suppose that 𝐹

satisfies the following conditions:
(i) there exist three functions 𝑎, 𝑏 : 𝑋 → [0, 1) and 𝑞 :

𝑋 → (0, 1) such that (22) holds;
(ii) for each 𝑥 ∈ 𝑋, with 𝐷(𝑥, 𝐹𝑥) > 0, there exists 𝑦 ∈ 𝐹𝑥

such that
𝑞 (𝑥) 𝑑 (𝑥, 𝑦) ≤ 𝐷 (𝑥, 𝐹𝑥) ,

𝐷 (𝑦, 𝐹𝑦) ≤ 𝑎 (𝑥) 𝑑 (𝑥, 𝑦) + 𝑏 (𝑥)𝐷 (𝑥, 𝐹𝑥) ;
(32)

(iii) the function 𝑝 : 𝑋 → [0, +∞) defined by 𝑝𝑥 :=

𝐷(𝑥, 𝐹𝑥), for all 𝑥 ∈ 𝑋, is lower semicontinuous;
(iv) there exists 𝜂 > 0 such that

inf {𝑞 (𝑥) − 𝑏 (𝑥) 𝑞 (𝑥) − 𝑎 (𝑥) : 𝑥 ∈ 𝑋,

𝐷 (𝑥, 𝐹𝑥) ≤ inf
𝑧∈𝑋

𝐷 (𝑧, 𝐹𝑧) + 𝜂} > 0.

(33)

Then 𝐹 has a selection 𝑓 that is Caristi’s mapping on a closed
subset of 𝑋.

Remark 21. If, in Theorems 18 and 20 and Corollary 19,
we assume that the multivalued mapping 𝐹 is ℎ-upper
semicontinuous, then (iii) holds true. In this case, we can
reformulate the statements of these results, requiring that 𝐹

satisfies only conditions (i), (ii), and (iv).

4. Generalization of Caristi’s Theorem

We denote by Φ the set of all functions 𝜁 : [0, +∞) →

[0, +∞) such that there exist 𝜀 > 0 and 𝑐 ∈ (0, 1) satisfying
𝛿
𝜀

= sup 𝜁
−1

([0, 𝜀]) < +∞, 𝜁(𝑡) ≥ 𝑐𝑡 for all 𝑡 ∈ [0, 𝛿
𝜀
] and

𝜁(𝑡) > 𝜀 for all 𝑡 > 𝛿
𝜀
.

Remark 22. Given a nondecreasing function 𝜁 : [0, +∞) →

[0, +∞) continuous at 𝑡 = 0 with 𝜁(0) = 0, consider the right
lower Dini derivative of 𝜁 at 𝑡 ∈ [0, +∞); that is,

[𝐷
+
𝜁] (𝑡) = lim inf

𝑠→ 𝑡
+

𝜁 (𝑠) − 𝜁 (𝑡)

𝑠 − 𝑡
. (34)

Then 𝜁 ∈ Φ provided that [𝐷
+
𝜁](0) > 0; see [8]. Also, each

function 𝜁 : [0, +∞) → [0, +∞) that is nondecreasing,
subadditive, and continuous at 𝑡 = 0 with 𝜁(0) = 0 belongs to
Φ.

Inspired by Khamsi [13] and Jachymski [8], we give
two fixed point theorems. In particular our first theorem
furnishes an alternative proof to Theorem 3 of [13] and the
related Kirk’s problem, without using order relations (see
Section 3 in [13] for more details).

Theorem 23. Let (𝑋, 𝑑) be a complete metric space. Let 𝑓 :

𝑋 → 𝑋 be a mapping. Suppose that there exist a lower
semicontinuous function 𝜙 : 𝑋 → [0, +∞) and a function
𝜁 ∈ Φ such that

𝜁 (𝑑 (𝑥, 𝑓𝑥)) ≤ 𝜙 (𝑥) − 𝜙 (𝑓𝑥) ∀𝑥 ∈ 𝑋. (35)

Then 𝑓 has a fixed point in 𝑋.

Proof. Let 𝜀 > 0, 𝑐 ∈ (0, 1), and let 𝛿
𝜀
be as stated above. Let

𝑌 := {𝑥 ∈ 𝑋 : 𝜙 (𝑥) ≤ inf
𝑧∈𝑋

𝜙 (𝑧) + 𝜀} . (36)

The set𝑌 is closed since 𝜙 is lower semicontinuous and hence
complete. Now, from (35), we get that 𝑓𝑥 ∈ 𝑌 whenever 𝑥 ∈

𝑌. Also
𝜁 (𝑑 (𝑥, 𝑓𝑥)) ≤ 𝜙 (𝑥) − 𝜙 (𝑓𝑥) ≤ 𝜙 (𝑥) − inf

𝑧∈𝑋

𝜙 (𝑧) ≤ 𝜀

(37)

for all 𝑥 ∈ 𝑌; we obtain that 𝑑(𝑥, 𝑓𝑥) ∈ [0, 𝛿
𝜀
] whenever 𝑥 ∈

𝑌. Hence

𝑐𝑑 (𝑥, 𝑓𝑥) ≤ 𝜁 (𝑑 (𝑥, 𝑓𝑥)) ≤ 𝜙 (𝑥) − 𝜙 (𝑓𝑥) ; (38)

that is,

𝑑 (𝑥, 𝑓𝑥) ≤
1

𝑐
𝜙 (𝑥) −

1

𝑐
𝜙 (𝑓𝑥) ∀𝑥 ∈ 𝑌. (39)

Since the function (1/𝑐)𝜙 is lower semicontinuous, by
Theorem 3, the mapping 𝑓 : 𝑌 → 𝑌 has a fixed point in
𝑌 and so in 𝑋.

Example 24. Let𝑋 = {−3, −1}∪[0, +∞) be endowed with the
usual metric 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| for all 𝑥, 𝑦 ∈ 𝑋 so that (𝑋, 𝑑) is
a complete metric space. Also, let 𝑓 : 𝑋 → 𝑋 be defined by

𝑓𝑥 = {
0 if 𝑥 ∉ [1, 3] ,

1 if 𝑥 ∈ [1, 3] .
(40)

It follows that

𝑑 (𝑥, 𝑓𝑥) = {
|𝑥| if 𝑥 ∉ [1, 3] ,

𝑥 − 1 if 𝑥 ∈ [1, 3] .
(41)

Notice that 𝜙 : 𝑋 → [0, +∞), defined by 𝜙(𝑥) = |𝑥| for
all 𝑥 ∈ 𝑋, is a lower semicontinuous function such that
𝜁(𝑑(𝑥, 𝑓𝑥)) ≤ 𝜙(𝑥) − 𝜙(𝑓𝑥), where 𝜁 : [0, +∞) → [0, +∞) is
given by 𝜁(𝑡) = 𝑐𝑡 for all 𝑡 ≥ 0, where 𝑐 ∈ (0, 1). Thus, we can
applyTheorem 23 to conclude that𝑓 has a fixed point; clearly
0 and 1 are fixed points of 𝑓.

The inspiration of our next theorem is Theorem 10. In
particular, our result does not use a monotonic condition.
For a comprehensive discussion, we refer the reader to the
fundamental paper of Jachymski [8].
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Theorem 25. Let (𝑋, 𝑑) be a complete metric space. Let 𝐹 :

𝑋 → 𝐶𝑙(𝑋) be a multivalued mapping. Suppose that 𝐹 is a
𝜇-contraction with 𝜇 right upper semicontinuous such that the
function 𝜁(𝑡) := (𝑡 − 𝜇(𝑡))/2 for all 𝑡 ≥ 0 belongs to Φ. Then 𝐹

has a fixed point.

Proof. Let ] : [0, +∞) → [0, +∞) be the function defined
by ](𝑡) := (𝑡 + 𝜇(𝑡))/2, for all 𝑡 ≥ 0. Clearly, ] is right upper
semicontinuous and ](𝑡) < 𝑡 for all 𝑡 > 0. Therefore, the set

{𝑦 ∈ 𝐹𝑥 : ] (𝑑 (𝑥, 𝑦)) ≤ 𝐷 (𝑥, 𝐹𝑥)} ̸= 0 (42)

for all 𝑥 ∈ 𝑋. In fact, if {𝑦
𝑛
} ⊂ 𝐹𝑥 is a sequence such that

𝑑(𝑥, 𝑦
𝑛
) ↓ 𝐷(𝑥, 𝐹𝑥), the right upper semicontinuity of the

function ] ensures that

lim sup
𝑛→+∞

] (𝑑 (𝑥, 𝑦
𝑛
)) ≤ ] (𝐷 (𝑥, 𝐹𝑥)) (43)

and hence there exists 𝑦
𝑛
such that

] (𝑑 (𝑥, 𝑦
𝑛
)) < 𝐷 (𝑥, 𝐹𝑥) . (44)

The axiom of choice ensures that there is a mapping 𝑓 : 𝑋 →

𝑋 such that

𝑓𝑥 ∈ 𝐹𝑥, ] (𝑑 (𝑥, 𝑓𝑥)) ≤ 𝐷 (𝑥, 𝐹𝑥) for 𝑥 ∈ 𝑋. (45)

Since 𝐷(𝑓𝑥, 𝐹𝑓𝑥) ≤ 𝐻(𝐹𝑥, 𝐹𝑓𝑥) ≤ 𝜇(𝑑(𝑥, 𝑓𝑥)), we get

𝜁 (𝑑 (𝑥, 𝑓𝑥)) = ] (𝑑 (𝑥, 𝑓𝑥)) − 𝜇 (𝑑 (𝑥, 𝑓𝑥))

≤ 𝐷 (𝑥, 𝐹𝑥) − 𝐷 (𝑓𝑥, 𝐹𝑓𝑥)

= 𝜙 (𝑥) − 𝜙 (𝑓𝑥) ,

(46)

where the function 𝜙 : 𝑋 → [0, +∞) is defined by
𝜙(𝑥) := 𝐷(𝑥, 𝐹𝑥), for all 𝑥 ∈ 𝑋. Since the function 𝜙 is lower
semicontinuous, then we get that 𝑓 has a fixed point, which
is a fixed point for 𝐹.

5. Conclusion

Under suitable hypotheses for multivalued mappings, we
established the existence of Caristi type selections. Also we
proved fixed point and quasi-fixed point theorems, by using
weaker andmodified hypotheses on some classes of functions
present in the literature. Our results extend and complement
many theorems in the literature.
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