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1 INTRODUCTION 

Diffusion equation with anisotropic coefficients arise in many environmental topics, heat 
transfer, groundwater flow and transport problems, petroleum reservoir simulations, 
hydrodynamic simulations, … These problems are characterized by a full rank diffusion tensor, 
that is diagonal only if the reference system is aligned with the principal direction of anisotropy 
(Bear1). Numerical difficulties in solving this type of equation could arise when anisotropy, the 
tendency of a phenomenon to progressively align along a preferential direction, becomes strong. 

A new methodology for the solution of the anisotropic heterogeneous diffusion problem is 
presented in this paper. The governing equations are discretized over a basic unstructured 
triangular mesh satisfying the so called Generalized Delaunay condition, further specified. The 
resulting spatial discretization of the fluxes across the control volume is similar to the one 
occurring in the standard linear (P1) Galerkin Finite Element scheme.  

2 GOVERNING EQUATIONS AND FLUX SPATIAL DISCRETIZATION 

is a 2D domain,  its boundary and x = [x1, x2]
T the spatial co-ordinate vector. H1() is the 

Sobolev space of square-integrable functions with square-integrable 1st order derivatives over . 
Assume the following diffusive problem in the unknown variable u(x, t)  H1(): 

 
     

   in  0,       
,         ,  D D N N

f T u
u u g
      
     

q q D
x x q x n x x

                                               (1), 

where q is the unitary diffusive flux vector, D(x) the (2x2) diffusion matrix, symmetric and 
positive definite,D and N the portions of  where Dirichlet and Neumann conditions 
respectively hold, uD a fixed Dirichlet value on D, gN the assigned Neumann flux (n the unit 
outward normal to the boundary) and f = f(x, t)   L2() a given function (source term).  

h is a polygonal approximation of  and Th (basic mesh) an unstructured triangulation of h. 
NT is the number of triangle T of Th. Pi, i = 1, …, N is the set of all vertices (nodes) of all TTh 
and N the node number. A dual mesh is constructed over Th and the dual finite control volume 
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(or cell) associated with node i is the closed polygon given by the union of the midpoint of each 
side with the “anisotropic” circumcentre of each triangle T sharing i, further defined.  

2.1 The anisotropic circumcentre 

Assume an homogeneous medium with D its full diffusion tensor. Nodes of triangle T are i, ip 
and im, in counterclockwise direction. Edge vector ri,ip (ri,im) connects i and ip (im), oriented 
from i to ip (im). Call cT the anisotropic circumcentre of triangle T ( T

cx  its co-ordinate vector). 

Pi,ip and Pi,im are the midpoints of ri,ip and ri,im (xi,ip and xi,im the corresponding co-ordinate 

vectors). cT is computed in order to set to zero the flux across segments i ,ip TP c  and i ,im TP c  due to 

the component of the u gradient orthogonal to ri,ip and ri,im. This is equivalent to set fluxes in 
triangle T equal to: 

  , , , 0T T
i ip i ip c i ipFn     Dn x x

  
 and    , , , 0T T

i im i im c i imFn     Dn x x
 
                     (2), 

where ni,ip and ni,im are the inward unit vectors orthogonal to the edges ri,ip and ri,im respectively.  
Since D is a full tensor, ri,ip and ri,im are generally not orthogonal to vectors –Dni,ip 

and –Dni,im. 

 2.2. Computation of the diffusion coefficients  

According to the computation of cT, fluxes across i ,ip TP c  and i ,im TP c  are entirely due to the 

component of the u gradient along ri,ip and ri,im. A computational structure of the flux across the 
segment from midpoint edge to triangle circumcentre similar to the one of  the conforming linear 
(P1) Galerkin Finite Element (FE) scheme (Putti and Cordes2) can be derived.  

We compute the flux across i ,ip TP c  and i ,im TP c  due to a unitary difference between u values in 

i and ip and i and im (specific fluxes) as (see Aricò and Tucciarelli3):  

   , , 2

,

1T T
i ip ip i c i ip

i ip

Fd    D x x x x
r

    and      , , 2

,

1T T
i im i im c i im

i im

Fd    D x x x x
r

                  (3). 

where the Euclidean norm of ri,ip (ri,im) is also the distance between nodes i and ip (im). Assume 
now T1 and T2  sharing ri,im, with anisotropic circumcentres 

1Tc  and 
2Tc . In the stiffness matrix of 

the resolving system, the extra-diagonal coefficient Fdi,im corresponding to the connected nodes i 

and im can be viewed as the sum of the unitary fluxes across i ,ip TP c  and i ,im TP c , equal to: 

1 2
, , ,

T T
i im i im im iFd Fd Fd                                                                     (4), 

with coefficients 1
,
T
i imFd  and 2

,
T
im iFd  defined in Eq. (3). Eq. (4) can be written as: 

 

       1 1 2 2
, , ,2 2

, ,

1 1
i im i im c i im im i c i im

i im i im

Fd         D x x x x D x x x x
r r

                      (5), 

with D1(2) diffusive tensor in T1(2). Eq. (5) can be written as: 
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 1 1 2 2
, , 1 , , 2

, 2

,

sin sinT T T T
i im i im im i im i

i im

i im

d c d c
Fd

  
 

r
,   ,

qT q
p pm p pmd  D x x    with     1

, ,
2

i im
q p pm

im i
        (6), 

,
qT

p pmc  is the distance between 
qTc  and midpoint Pi,im in triangle Tq and q is the angle between 

vectors Dq(xp - xpm) and  ,
q
c i imx x  in Tq. Fdi,im has to be always negative to guarantee the M-

property of the system matrix. 

3 DISCRETIZATION OF THE DIFFUSIVE SYSTEM (1)  

3.1 Isotropic case and Generalized Delaunay (GD) mesh condition 

From Eq. (2), the dual finite volume ei associated with node Pi  in isotropic media is the 
polygon given by the union of the midpoint of each side with the circumcentre of each triangle T, 
equal to the control volume of the mass balance of the standard Galerkin FE stiffness equation 
for node Pi (Putti and Cordes2).  

A Delaunay triangulation in 2  is defined by the condition that all the nodes in the mesh are 
not interior to the circles defined by the three nodes of each triangle (Joe4). A Delaunay 
triangulation satisfies the following condition (Putti and Cordes2):  

1 2
, , 0T T

i im im ic c                                                                          (7), 

for each interior edge ri,im. q qDD I (q = 1, 2, I is the identity matrix and Dq is a positive scalar 
value) are the diffusive tensors of triangles T1 and T2 sharing ri,im. Given a Delaunay mesh, 
starting from Eq. (6) we propose to compute the extra-diagonal coefficient Fdi,im as: 

  1 2 1 2
1 2

1 2 1 2 1 2

2 1

1 , 2 , , ,
, 1 , 2

, 1 , , 2 , , , ,2

,
1 2 , ,

,    if  0   and   0
,     + ,  0   if  0,   0   and    

0,  + 0  

T T T T
T T i im im i i im im i
i im im i T T T T T T

i im i im im i i im im i i im im i
T Ti im
im i i im

c c c c c cd c d c
Fd c c c c c c c c

c c c c

   
      

 r 1 2 2 1
, , , ,if  0,   0  and   T T T T

i im im i im i i imc c c c




   

          (8). 

According to Eq. (8), cq is never smaller than zero. In the standard Galerkin FE discretization, 
if the two element fluxes 1

,
T
i imFd  and 2

,
T
im iFd   are computed with different elemental parameters 

qTD , the sign of the total flux from node i to node im can loose consistency with the u difference, 
even if the mesh satisfies the Delaunay property. On the opposite, the formulation provided by 
Eq. (8) guarantees the negative sign of Fdi,im defined by Eq. (8). If Delaunay property is not 
satisfied, it is possible to obtain a new mesh that satisfies Eq. (7) for all the internal edges 
starting from the original one, without changing the location of the original nodes. This can be 
done by a series of local edge swaps (Forsyth5). 

If element T1 is a boundary element with boundary side ri,im opposite to an obtuse angle, 
specific flux is negative, even in a Delaunay mesh, since the distance of the circumcentre from 
the boundary edge is negative and Fdi,im is positive. We define Generalized Delaunay (GD) mesh 
a Delaunay mesh where the following condition holds for all the boundary edges: 
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1
, 0T

i imc                                                                                (9). 

If Eq. (9) does not hold for one or more boundary edges, and/or common edges are fixed as 
internal boundaries, it is still possible to obtain a GD mesh, also saving internal boundaries, by 
adding new nodes along the original boundary edges (Aricò and Tucciarelli3). 

3.2 Directionally homogeneous anisotropic case and Generalized Anisotropic Delaunay 
mesh  

Diffusion tensor D can be split into a scalar d0 and a directional D  component, according to: 

11 12
0 0

21 22

D D
d d

D D

       
D D     with  0 11 22d D D     and   

0

rs
rs

D
D

d
  ,  r, s = 1, 2           (10).  

Tensor D , similarly to D, is symmetric and positive definite. D1 and D2 are the diffusive 
tensors in triangles T1 and T2 sharing side ri,im with the same D  component. The extra-diagonal 
coefficient Fdi,im can be computed by Eq. (6), which becomes: 

 1 2
, 1 , 2

, 2

,

sinT T
i im im i

i im

i im

d c d c
Fd

 
 

r
                                                         (11), 

and = 1 = 2 (medium directionally homogeneous). Even if 1
,
T
i imd  and 2

,
T
im id  have different 

weight, coefficient Fdi,im computed by Eq. (11) is always negative and the M-property is 
preserved if  . We say a mesh to satisfy the Generalized Anisotropic Delaunay (GAD) 
property if Fdi,im computed for each side of the mesh by Eq. (11) is always negative. The 
orthogonality in T1 between ri,q (with q = im or ip) and ni,q = D-1s, (s is the unit vector going from 
the edge midpoint to 

1Tc ), implies: 

    11 1 2 0T
c q i q i

     D x x x x x                                                       (12). 

Changing xq with the co-ordinate vector x of a generic point, Eq. (12) is: 

    11 1 2 0T
c i i

     D x x x x x                                                        (13), 

which is the equation of an ellipse, with centre 
1Tc , passing through the three T1 nodes (Aricò and 

Tucciarelli3). Eq. (13) can be written as (Aricò and Tucciarelli3): 

    1 1 2 0
TT T

c i i   x x x C C x x     with   C = H1/2                                    (14),                     

where columns of matrix H are the 1D eigenvectors,  is the diagonal matrix with diagonal 
elements equal to the 1D  eigenvalues. Matrix C acts on x with a rotation and a distortion: H 
accounts for rotation, 1/2 for distortion. We define a new co-ordinate vector:  

 = F x       with       F = CT                                                       (15).  
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x and  represent the co-ordinate vectors respectively in the physical and in the computational 
space. According to Eqs. (15), Eq. (14) in the computational space becomes a circle equation 
(Aricò and Tucciarelli3): 

    1 1 2 0
TT

cir i i   ξ ξ ξ ξ ξ                                                    (16). 

The original physical anisotropic problem becomes in the computational space an isotropic 
one. Matrix F =1/2 HT provides an affine transformation between the physical and the 
computational space. HT can be viewed as an intermediate transformation, from x to Tξ H x . 
The original figure is simply rotated in the new space ξ  and unitary flux in the original x space 

and in the new ξ  space is the same. 1/2 provides a second transformation from ξ  to ξ , that is a 
simple contraction along the 'ξ  principal axis. Since eigenvalues are both positives, the sign of 
two coefficients in the physical and the computational space is the same (Aricò and Tucciarelli3). 

3.3 Flux computation in the heterogeneous anisotropic case 

In the most general heterogeneous anisotropic case, it is not possible to guarantee the M-
property, unless some “smoothing” is applied to the D dispersion tensor. To do that, we treat 
differently the scalar d0 and the directional D  components of tensor D. The scalar component is 
assigned to each node and in the flux computation its original average value in the triangle is 
always saved and assumed as constant inside the element. The directional component D  is 
assigned to each triangle of the initial mesh, that satisfies the GD condition. When an internal 
edge is swapped, the average value of the D  directional components in the two old triangles is 
assumed to hold for both the new triangles (further details in Aricò and Tucciarelli3).   

4 NUMERICAL TESTS   

4.1 Test 1. Analysis of the system condition number 

A unitary square domain =[0,1]2 and a diagonal homogeneous diffusion tensor D are 
assumed. Coefficient D11 is kept constant, equal to 1, D22 ranges from 1 to 1.d-10 (see Mazzia et 
al.6). The basic mesh has 14 acute triangles and 12 nodes. Dirichlet conditions are imposed on 
the left and right boundary sides. Tables 1,a-1,b show the maximum and minimum stiffness 
matrix eigenvalues (max and min) and their ratio, for different D22 values, for the proposed and 
the P1 standard Galerkin schemes. Condition number of the stiffness matrix is the ratio max/min. 
In the proposed algorithm this ratio is closer to 1 than in the P1 Galerkin scheme, implying a 
better conditioning of the final system. Because of the anisotropy, some of the extra-diagonal 
coefficients of the stiffness matrix computed by the P1 Galerkin scheme are positive and M-
property is lost. Results of the P1 Galerkin scheme are given by Mazzia et al.6 

4.2. Test 2. Investigation of computation of unphysical oscillations in the solution 

The following problem is solved over the square domain =[0,1]2 (Edwards and Zengh7): 
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     
   2 / 0,0 , 1,1

0

0,0 0  1,1 200      0, 100
D

D D D

u

u u u x
   

   
   


D
                                   (17,a), 

with discontinuous diffusion tensor: D1 in sub-regions (0  x1 1) x (0  x2 1/3) and (0  x1 1) 
x (2/3 < x2 1) and D2 in sub-region (0  x1 1) x (1/3 < x2  2/3) : 

1

2464.36002 1148.683643
1148.683643 536.6399794
   
 

D ,      2

2464.36002 1148.683643
1148.683643 536.6399794

    
D        (17,b). 

Edwards and Zengh7 apply two Multi-Point Flux Approximation schemes: a linear Triangle 
Pressure Support and a Full-Pressure Support scheme. The first one produces unphysical 
oscillations in the solutions. The second one computes solutions almost free of oscillations. In 
the proposed approach the domain is discretized with a GD unstructured mesh (2624 triangles, 
1377 nodes). Due to the strong contrast of tensor D in the three zones, two situations have been 
considered: the first one without internal boundaries, the second one, with assigned internal 
boundaries overlapping the jumps of D1 and D2. Results in the two cases  are very similar and for 
brevity we show only the ones with internal boundaries. Figures 1,a-1,c show the computed 
contours of the iso-u, the 3D u profile and the final mesh after the edge swaps. Computed 
solutions are in both cases free of spurious oscillations.  

4.3. Test 3. Mesh locking investigation 

The following problem is studied over the square domain = [0,1]2 (Manzini and Putti8; Gao 
and Wu9): 

   ,          , , ,    D D N N

u f
u u t g t

   
     

D
x q x n x x

,    with   1 0
0 D              (18), 

with parameter  a positive real number in the range [10-6, 1]. The exact solution is given:  

   1 2exp 2 sin 2exu x x                                                     (19). 

and source term f on the r.h.s. of eq. (19) is computed by space differentiating the same solution 
on the l.h.s. of  Eq. (19). Three types of boundary condition are considered: Case A: fully 
Dirichlet conditions; Case B: mixed Dirichlet/Neumann conditions, with u = uD on D = [(x1,x2), 
x1 = 0 or x2 = 0] and q n = gN on N = [(x1, x2), x1 = 1 or x2 = 1]. Case C: nearly pure Neumann 
conditions, with u = uD on D=[(x1, x2), 1-h ≤ x1 ≤ 1 and x2 = 1 or x1 = 1 and 1-h ≤ x2 ≤ 1] (h is the 
characteristic linear mesh size) and q n = gN on N = -D. In Case C, a Dirichlet condition is 
imposed on the two boundary edges located at the upper right corner and the length of these edge 
goes to zero as h. Locking may arise when solving parametric elliptic problems with FE methods 
and usually prohibits the convergence of low-order FE schemes when the parameter associated 
with the problem approaches an asymptotic value such as zero.  

Domain is discretized with an unstructured GD mesh (272 acute elements, 159 nodes) and 
five refinements have been performed. Figure 2 shows the L2 norms of relative errors versus h 
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for Cases A to C. No mesh locking is present and a second convergence order is obtained. In 
Case A, since the basic triangulation is acute, the most regular situation corresponds to  = 1, 
where circumcentres of two triangles sharing an edge are on the opposite sides respect to that 
edge. Reducing , triangular elements tend to lengthen and to become parallel to the principal 
anisotropy direction and in some cases circumcentres of two triangles sharing the same edge fall 
on the same side respect to that edge and swapping could be necessary. This could introduce a 
small error in the boundary edges, where Dirichlet conditions are imposed. For Case B, errors 
seem to be quite independent on anisotropy ratio. This could be due to the error introduced by 
substituting a Dirichlet condition with a Neumann condition, greater than the error due to the 
progressive deformation of triangle mesh for decreasing . In Case C, computed solution is free 
of locking effects. Solutions computed by Manzini and Putti8 and Gao and Wu9 are affected by 
mesh locking especially for the smallest .  

5 CONCLUSIONS 

A new methodology for the solution of heterogeneous anisotropic diffusion problem is  
presented. Governing PDE is discretized over an unstructured triangular mesh satisfying the GD 
condition and a dual mesh is constructed over the basic mesh. The dual control volume is 
obtained connecting the midpoint of each triangle side with the anisotropic circumcentre of each 
triangle. The main advantages of the proposed procedure are: 1) the algorithm acts directly on 
the physical mesh, without dealing with the computational space; 2) the number and the location 
of nodes are not changed; 3) the stiffness matrix has the M property; 4) it can be easily applied to 
convection–diffusion transport problem, where diffusion matrix coefficients change in time. The 
proposed methodology does not compute unphysical oscillations, shows a second convergence 
order and no locking effects have been observed, also for strong anisotropy ratios. 
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proposed scheme P1 Galerkin scheme 

D22 min max max/min min max max/min 
1.d+00 0.88030 4.8407 5.4989 0.8803 4.8407 5.4989 
1.d-01 0.72124 2.49489 3.4592 0.72129 3.0363 4.2095 
1.d-04 0.57819 1.87076 3.2355 0.6348 2.954 4.6534 
1.d-06 0.57799 1.87010 3.2355 0.63468 2.9539 4.6542 
1.d-10 0.57799 1.87009 3.2355 0.63468 2.9539 4.6542 

Table 1. max, min and spectral condition number of the proposed and P1 Galerkin scheme 

 a) b) c) 

x2

 x1 

x2 

 x1 x2 x1 
 

Figure 1: test 2. a) iso-u; b) 3D u profiles; c) final computed mesh 

 

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E-031.E-021.E-01 h

L
2 

no
rm

 o
f r

el
at

iv
e

 e
rr

or
s 1.d-06 1.d-05

1.d-04 1.d-03
1.d-02 1.d-01
1.d-00 Serie9

theoretical second order slope

1.E-031.E-021.E-01 h

1.d-06 1.d-05
1.d-04 1.d-03
1.d-02 1.d-01
1.d-00

1.E-031.E-021.E-01 h

1.d-06 1.d-05
1.d-04 1.d-03
1.d-02 1.d-01
1.d-00

Case B Case C Case A 

 

Figure 2.  L2 norms of relative errors versus characteristic length size h; cases A) to C) 


