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SUMMARY.The paper is devoted to the analysis of a coupled thermoelastic 1D problem in presence
of non-local thermal energy fluxes. The governing equation of temperature distribution involves
fractional operators as far as a power-law decaying function is included in the transport equation
of long-range fluxes that have been assumed proportional to the relative temperature among the
interacting locations. Some numerical applications reporting the distribution of temperature in 1D
elastic domain have been discussed in the paper.

1 INTRODUCTION
In recent years fractional differential calculus applications have been developed in physics, chem-

istry as well as in engineering fields. Fractional order integrals and derivatives extend the well-
known definitions of integer-order primitives and derivatives of the ordinary differential calculus to
real-order operators.

Engineering applications of these concepts dealt with viscoelastic models, stochastic dynamics
as well as with the, recently developed, fractional-order thermoelasticity [1]. In these fields the
main use of fractional operators has been concerned with the interpolation between the heat flux
and its time-rate of change, that is related to the well-known second-sound effects. In other recent
studies [2] a fractional, non-local thermoelastic model has been proposed as a particular case of the
non-local, integral, thermoelasticity introduced at the mid of the seventies [3].

Very recently the authors provided a physical description of fractional, non-local effects for heat
transfer in a rigid body introducing the long-range heat flux and, on this basis, a modified version
of the Fourier heat flux equation is obtained. Such an equation involves spatial Marchaud fractional
derivatives of the temperature field as well as Riemann-Liouville fractional derivatives of the heat
flux with respect to time variable to account for second sound effects [4].

In this study the authors aim to extend the non-local model of fractional heat conduction to
the case of of a purely elastic material accounting for the thermoelastic coupling. Some numerical
examples will be also discussed to show the effects of the long-range thermal energy exchange in an
1D unbounded domain.

2 FRACTIONAL-ORDER THERMODYNAMICS: THE LONG-RANGE HEAT FLUXES
IN RIGID BODIES

In this section the fundamentals of heat transfer in rigid bodies will be shortly summarized in
sec.(2.1) whereas sec.(2.2) will be devoted to the introduction of a physically consistent fractional-
order model of thermal energy transfer in rigid bodies that will be used in the context of thermoelastic
coupling as reported in sec.(3). The study will be confined to a one-dimensional problem involving
a rigid body with uniform cross-section A, homogeneous thermal conductivity κ and uniform mass
density of the material ρ. The body will be referred to a proper coordinate system, positive rightward
as in fig.(1).
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Figure 1: 1D domain with thermal energy transfer

2.1 Thermal energy transfer in rigid bodies: The Irreversible Thermodynamics
Let us refer the body internal energy to the extensive field of the absolute temperature denoted as

θ (x, t) with t denotes the time variable, whereas the specific thermal energy of the body at location
x and time t will be denoted as ϕ (x, t). The thermal energy associated with the mass ΔM contained
in the elementary volume element ΔV = AΔx reads Q (x, t) = ϕ (x, t) ρ (x)ΔV . The heat flux
along the x−direction across the areaA will be denoted q l (x, t) (see fig.2) so that the energy balance
between the ingoing and the outgoing fluxes reads:

A (−ql (x+Δx) + ql (x)) = ΔQ̇ (x, t) = ρΔV

(
∂ϕ (x, t)

∂t

)
(1)

that holds true under the assumption of no energy source located at abscissa x. As we set Δx → 0,
then the balance equation between the heat energy stored at location x at time t and the difference
between the ingoing and outgoing heat flux that reads:

−A
∂ql (x, t)

∂x
=

∂ϕ (x, t)

∂t
= ϕ̇ (x, t) (2)

The rate of thermal energy at location x is related, in rigid bodies, to the extensive absolute temper-
ature field θ (x, t) by means of specific heat, dubbed cV as:

dϕ (x, t) = cV dθ (x, t) (3)

we will assume, hereinafter that cV is constant for the considered range of temperature, the differ-
ential relation reported in eq.(3) may be reverted into a proper relation involving the time variations
as ϕ̇ (x, t) = cV Ṫ .

The temperature equation, that is a differential relation that rules the evolution of the space-time
temperature field θ (x, t) of the body is readily obtained as we introduce the transport equation in
eq.(2). In this study we will confine the thermal energy exchange to cases dealt with the classical
irreversible thermodynamics (CIT), corresponding to the use of the Fourier transport equation as:

ql (x, t) = −κ
∂θ (x, t)

∂x
(4)

where κ > 0 according to the second principle of thermodynamics and it is known as thermal
conductivity of the material. The use of eq.(4) in combination with eq.(3) yields the well-known
temperature equation of CIT as:

∂θ

∂t
= λ

∂θ2 (x, t)

∂x2
(5)
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Figure 2: Thermal exchange among interacting volumes

where λ = κ/cV ρ is the diffusion coefficient of the material.Eq.(5) must be supplemented by the
relevant initial condition θ (x, 0) = θ̄ (x) and boundary conditions to be satisfied for the temperature
field as:

θ (0, t) = θ0 (t) ;θ (L, t) = θL (t) (6a)

The boundary conditions involving the temperature field may be replaced, alternatively, by boundary
conditions involving the heat fluxes ingoing or outgoing from the considered solid as:

ql (0, t) = −κ
∂θ (x, t)

∂x

∣∣∣∣
x=0

; ql (L, t) = −κ
∂θ (x, t)

∂x

∣∣∣∣
x=L

(7a)

We must consider, additionally, that the parabolic differential equation of the temperature dis-
tribution reported in eq.(5) does not account for the finite speed of temperature waves generated by
disturbances in temperature fields. Such paradoxes are well-known in the context of thermal energy
transfer in superfluids (He II) and they are usually accounted for as we introduce first-order time
derivatives of the heat flux in transport equations ([7]) and/or fractional-order derivatives of the heat
flux resorting to fractional-order thermodynamics ([1]).

Beside such remarkable contributions, in the mid-seventies a complementary approach based
upon spatial integro-differential mathematical description of the transport equations has been in-
troduced in the relevant scientific literature dubbed as non-local thermodynamics ([3]). In such a
theory, the transport equation, relating the heat flux to the gradient of temperature field, involves a
convolution integral in the form:

ql (x, t) = −κ1
∂θ (x, t)

∂x
− κ2

∫
L

gE (|x− ξ|) ∂θ (x, t)

∂x

∣∣∣∣
ξ

dξ (8)

where κ1 and κ2 are the material thermal conductivities and function gE (|x− ξ|) is real a material-
dependent attenuation function that is introduced to fade out the effects of the temperature gradients
at large distances.
Eq.(8) is the basis to introduce the fractional-order non-local thermodynamics selecting the non-
local kernel in the power-law decay functional class gE (|x− ξ|) = |x− ξ|α−1 with 0 ≤ α ≤ 2
for physical reasons ([2]) and the dimensional coefficient κ 2 = κα/Γ (1− α) with κα the material
thermal conductivity with anomalous dimensions. As we assume vanishing values of the absolute
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Figure 3: Balance of thermal energy including local and long-range contributions

temperature field at the borders of the body domain we get a non-local fractional transport equation
that involves the left and right RL fractional derivatives as:

ql (x, t) = −κ1
∂θ (x, t)

∂x
− κα

[
(Dα

0+θ)x (x, t) + (Dα
L−θ)x (x, t)

]
(9)

where
(
Dα

+θ
)
x
(x, t) and

(
Dα

−θ
)
x
(x, t) are, respectively the left and right fractional-order Riemann-

Liouville (RL) derivatives in unbounded domains that reads, respectively (see e.g. [6] for details):

(Dα
0+θ)x (x, t) =

1

Γ (α)

∂

∂x

x∫
0

θ (ξ, t) dξ

(ξ − x)
1−α ; (D

α
L−θ)x (x, t) =

1

Γ (α)

∂

∂x

L∫
x

θ (ξ, t) dξ

(x− ξ)
α−1 (10)

where Γ [•] is the Euler-Gamma function. It may be observed that eq.(9) coincides with the well-
known Fourier transport equation as κ1 = 0, kα = κ/2 and α → 1 from below . Some straightfor-
ward manipulations involving the transport equation in eqs.(9,1) yield a fractional-order temperature
equation that, however may be solved only in unbounded cases due to the presence of divergent con-
tributions at the borders ([4]).

This consideration open the way to introduce a non-local fractional-order thermodynamics with
underlying physical scheme that is not pathologically affected by the problem of non-homogeneous
boundary conditions. This will be done in the next section.

2.2 The fractional model of thermal energy transfer: The long-range fluxes
In this section we introduce a different approach to fractional-order thermodynamics accounting

for the existence, at a mesoscale, of long-range transport of the thermal energy. This concept is
analogous to the idea of long-range interactions, recently introduced by the authors in the context
of non-local elasticity [5]. The physical description of the model has been reported in fig.(1) where
we introduced a spatial discretization grid of the body domain with N + 1 nodal points located at
abscissas xj = (j − 1)Δx with j = 1, 2, ..., N + 1. Let us consider a volume element extracted
by the solid as in fig.(3), we assume that the thermal exchange of the considered element with the
surrounding domain is ruled by a two-scale phenomenon:

• A thermal exchange between the considered and the adjacent elementary volumes represented
by the local heat flux Δql (xj , t) = ql (xj +Δx) − ql (xj , t) resulting in the time rate of
change of the local thermal energy ΔQ̇l (xj , t);
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Figure 4: Long-range heat fluxes

• An overall long-range thermal energy transfer between volume ΔV j and the surrounding vol-
ume elements of the body, named ΔQ̇nl (xj , t) .

This latter contribution accounts for small scales heat transfer so that, considering both contributions,
the balance equation of thermal energy of a volume element ΔV reads:

ρAΔxj
dϕ

dt
= −ΔQ̇l (xj , t)−ΔQ̇nl (xj , t) (11)

In the following we will assume that the long-range overall flux Δ Q̇nl (xj , t) is the resultant of
the elementary long-range fluxes occurring at smaller scales. Such contributions are provided by
elementary fluxes of higher-order and henceforth are assumed proportional to the product of the
interacting volumes as (fig.4):

ΔQ̇nl (xj , t) = A2
N+1∑
k=1

qnl (xj , xk, t)ΔxjΔxk = A2
N+1∑
k=1

qnl (xj , xk, t)Δx2 (12)

where qnl (xj , xk, t)
(
[qnl] = F/

(
TL7

))
is the elementary long-range flux exchanged by volumes

located at abscissa xj and xk. Introducing eq.(12) and eq.(1) into eq.(11) the balance equation
involving local and long-range contributions reads:

ρ
dϕ

dt
= −Δql (xj , t)

Δx
−A

N+1∑
k=1

qnl (xj , xk, t)Δx (13)

that reverts as Δx → 0 to an integro-differential equation that reads:

ρ
∂ϕ (x, t)

∂t
= −∂ql (x, t)

∂x
−A

∫
L

qnl (x, ξ, t) dξ (14)

where we replaced the running discrete abscissa xk with its continuous counterpart ξ that is the
dummy integration variable in the latter integral term of eq.(14). Eq.(14) is the non-local version of
the first principle of thermodynamics in presence of long-range heat fluxes.

The equation that rules the evolution of the temperature field in a rigid body in presence of
long-range fluxes may be obtained as we specify the transport equations for the local flux q l (x, t)
and for the non-local contributions qnl (x, ξ, t). The transport equation of the local heat flux is
assumed as the fundamental equation of the EIT (eq.4). The transport equation of the long-range
heat flux qnl (x, ξ, t) is assumed analogous to the ballistic motion of photonic gases and henceforth
it is assumed proportional to the relative absolute temperature between locations ξ and x as:
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qnl (x, ξ; t) = g (|x− ξ|) (θ (ξ, t)− θ (x, t)) (15)

where function g (|x− ξ|) is a material-dependent distance-decaying function that accounts for
smaller thermal exchange as the distance increases. The second principle of thermodynamics rules
the direction of the thermal energy transfer and henceforth it may be satisfied only if g (|x− ξ|)
is strictly positive. Despite several class of decaying function are allowed (exponential, gaussian,
stretched exponential) in the following we will assume a fractional power-law as:

g (|x− ξ|) = αcα
Γ (1− α)

|x− ξ|−(1+α) (16)

where α ∈ �+ and cα is a material dependent proportionality coefficient ([cα] = F/
(
TL4−α

)
).

Introducing the transport equations in eq.(4) and in eq.(15) into eq.(14) we get the equation:

ρcV
∂θ

∂t
+ ρcα

(
D̂

α
θ
)
x
(x, t) = −κ

∂2θ

∂x2
(17)

where we denoted
(
D̂αθ

)
x
(x, t) =

(
D̂α

0+θ
)
x
(x, t) +

(
D̂α

L−θ
)
x
(x, t) the sum of left and right

integral parts of the Marchaud-type fractional operators that reads, respectively:

(Dα
0+θ)x (x, t) =

α

Γ (1− α)

⎛
⎝θ (x, t)

xα
+

x∫
0

θ (x, t)− θ (ξ, t) dξ

(ξ − x)
1+α

⎞
⎠ = (18a)

=
α

Γ (1− α)

θ (x, t)

xα
+
(
D̂α

0+θ
)
x
(x, t) (18b)

(Dα
L−θ)x (x, t) =

α

Γ (1− α)

⎛
⎝ θ (x, t)

(L− x)
α +

L∫
x

θ (x, t)− θ (ξ, t) dξ

(x− ξ)
1+α

⎞
⎠ = (18c)

=
α

Γ (1− α)

θ (x, t)

(L− x)α
+
(
D̂α

L−θ
)
x
(x, t) (18d)

The field equation of the temperature distribution in the solid in eq.(17) must be supplemented
with the Dirichlet boundary conditions about the prescribed temperature field at the borders and/or
with the Neumann boundary conditions about the spatial gradients of the temperature field. This
latter conditions do not involve the presence of long-range fluxes. In fact the overall incoming flux
is of the same order of a volume heat source and therefore it does not appear in the position of the
Neumann boundary conditions that are expressed in terms of the local heat flux q l (x, t) only (see
e.g. [4] for details).

3 THE NON-LOCAL THERMOELASTIC PROBLEM
In this section we will consider the more general problem involved in the analysis of 1D lin-

early elastic solid in presence of non-local thermoelastic contributions. The elastic properties of
the considered solid, described geometrically, by means of the cross-section A and of the length
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L are described by the Young modulus E. Kinematics of the 1D model is described by the axial
displacement function u (x, t) of the volume element dV (x) = Adx positive rightward. The elastic
solid is undergoing a temperature distribution, measured by means of the absolute temperature field
introduced in previous section and is subjected to external and internal force field F 0 and FL and
n (x)Adx, respectively. The rate of of change of the internal energy function in an elastic solid with
long-range heat transfer defined in the previous section must account for the rate of change of the

mechanical work, dubbed Ẇ = −F0u̇0 + FLu̇L +
L∫
0

n (x)u̇ (x) dx that is:

Aρ
L∫
0

dϕ̇ (x, t) = Aρ
L∫
0

ϕ̇ (x, t) dx =A
L∫
0

Q̇ (x, t) dx+ Ẇ =

= −A
L∫
0

∂ql(x,t)
∂x dx +A2

L∫
0

L∫
0

qnl (x, ξ; t) dξdx+ Ẇ

(19)

so that, recalling that at the borders, σ (0)A = F0andσ (L)A = FL, and using the 1D version of
the Gauss identity, the contribution of the rate of the mechanical work may be written as:

Ẇ = A

⎡
⎣

L∫
0

(
∂σ (x, t)

∂x
− n (x)

)
u̇ (x) dx+

L∫
0

σ (x, t) ε̇ (x, t) dx

⎤
⎦ =

L∫
0

σ (x, t) ε̇ (x, t) dx (20)

where the first integral is identically vanishing for equilibrium equations among the stress and the
body force field σ (x, t) and n (x), respectively. Substitution of the expression of the rate of change
of mechanical work in eq.(20) into eq.(19) yields the local version of the energy balance, namely the
local version of the first principle of thermodynamics in presence of long-range fluxes that reads:

ρϕ̇ = −∂ql (x, t)

∂x
+A

L∫
0

qnl (x, ξ; t) dξ + σ (x, t) ε̇ (x, t) (21)

that corresponds, beside the contribution of the non-local long-range fluxes, to the well-known bal-
ance equation of thermoelastic solids ([8]). In the considered thermoelastic problem we introduce
the entropy state function ṡ (ε, θ) that is defined in local version, for the long-range heat transfer
here considered as:

ρθṡ = −∂ql (x, t)

∂x
+A

L∫
0

qnl (x, ξ; t) dξ (22)

so that, the complete version of the thermoelastic problem at generic location x may now be formu-
lated in terms of the rate of change of the entropy density as:

ρϕ̇ = ρθṡ+ σε̇ (23)

and then, introducing the Helmholtz free energy:

H (ε, θ) = ϕ (ε, θ)− ρθs (ε, θ) (24)

we get, upon substitution in the energy balance equation in eq.(22):
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ρ
(
Ḣ (ε, θ) + θ̇s (ε, θ)

)
= ρ

(
∂H

∂ε
ε̇+

∂H

∂θ
θ̇

)
+ ρθ̇s = σε̇ (25)

and henceforth the constitutive equations for the state functions σ (ε, θ) and s (ε, θ) as:

σ =
1

ρ

∂H

∂ε
;s = −∂H

∂θ
(26)

The constitutive equations reported in eq.(26) may be used to introduce the thermoelastic stress-
strain relations as we introduce a proper expression for the Helmholtz free energy that, assuming
that there exists a reference state, stress free, of the elastic solid at absolute temperature θ 0, may be
expressed as:

H
(
ε, θ̄

)
=

1

2
Eε2 − Eγθ̄ε+

1

2
γ2θ̄2 (27)

where θ̄ = (θ − θ0) /θ0. Substitution of eq.(27) into eqs.(26) yields the stress-strain relation in the
form σ = E (ε− γ (θ − θ0)), whereas the state equation for the entropy balance in terms of thermal
energy fluxes reads:

ρθ

(
∂s

∂ε
ε̇+

∂s

∂θ
θ̇

)
= ρθ

(
∂2H

∂ε∂θ
ε̇+

∂2H

∂θ2
θ̇

)
= −∂ql (x, t)

∂x
+A

L∫
0

qnl (x, ξ; t) dξ (28)

The temperature equation involving thermoelastic effects as well as long-range contributions may
then be written as:

ρcV θ̇ + Eγθ0ε̇ = κ
∂2θ

∂x2
− κα

(
D̂αθ

)
x
(x, t) (29)

where we introduced the specific heat at constant volume cV and we introduced the transport equa-
tions reported in sec.(2) assuming κα = ρcα. It may be observed that, assuming a rigid body
analysis, the temperature equation with long-range thermal energy transfer is perfectly coalescing
with the temperature equation in eq.(17)

The temperature equation yields the evolution of the temperatures in presence of long-range
fluxes, accounting for thermoelastic coupling so that, the complete version of the thermoelastic 1D
problem is ruled by the governing equations:

∂2u

∂x2
− γ

∂θ

∂x
= −n (x)

EA
(30a)

ρcV θ̇ + Eγθ0
∂2u

∂x2
= κ

∂2θ

∂x2
− κα

(
D̂αθ

)
x
(x, t) (30b)

where we assumed an uniform temperature of the reference state along the bar domain θ 0. Eq.(30)
must be supplemented by Dirichlet or Neumann boundary conditions involving temperature and
displacement fields and/or their spatial gradients. Some numerical applications showing the effect
of the long-range fluxes in a 1D unbounded domain will be reported in the next section.
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4 NUMERICAL APPLICATION
Let us consider int this section a decoupled thermoelastic problem in which the transformation

among thermal and mechanical energy is neglected. In this latter case, the decoupled, thermoelastic
1D problem is ruled by the following system of differential equations:

∂2u

∂x2
− γ

∂θ

∂x
= −n (x)

EA
(31a)

ρcV θ̇ + κα

(
D̂αθ

)
x
(x, t) = κ

∂2θ

∂x2
(31b)

We observe that, neglecting mechanical-thermal energy coupling, the temperature equation in eq.(31b)
reverts to the thermal energy transfer in rigid bodies yet discussed in sec.(2) with attendant initial
and boundary conditions discussed in eqs.(6,7). The initial conditions for the axial displacement
function read u (x, 0) = ū (x) whereas the Dirichlet boundary conditions read:

u (0, t) = u0 (t) ;u (L, t) = uL (t) (32)

that may be alternatively replaced by the or Neumann boundary conditions as:

EA

(
∂u

∂x

∣∣∣∣
0

− γθ (0, t)

)
= −F0 (33a)

EA

(
∂u

∂x

∣∣∣∣
L

− γθ (L, t)

)
= FL (33b)

In the following analysis we will study the temperature distribution in an unbounded 1D rigid
domain contrasting the temperature distribution for different values of the fractional differentiation
index α. The analysis is conducted under the assumption of vanishing local heat fluxes so that, the
temperature equation reads:

∂θ

∂t
= − cα

cV

(
D̂αθ

)
x
(x, t) (34)

The solution of eq.(34) will be obtained by means of Fourier Transform in the space of wavenumber:

θ (x, t) =
1

2π

∞∫
−∞

θ̂0 (k) e
−Cα|k|αteikxdk (35)

where Cα = cos (απ/2) cα/cV and θ (x, 0) = θ0 (x). The temperature distribution due to a Dirac
delta value of temperature θ0 (x) = δ (x) is then obtained with θ̂0 (κ) = 1 as the inverse Fourier
Transform of eq.(35) in figs.(5) for α = 1 and α = 2 have been represented.
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Figure 5: Evolution of a concentrated temperature impulse:Left α = 1; Right α = 2

5 CONCLUSIONS
In this paper, a first approach to fractional thermoelasticity has been presented for a 1D case. A

non-local model involving long-range fluxes, recently proposed by the authors , has been used to
represent the non-local thermal energy transfer in the body. The governing equations of thermoe-
lastic model have been obtained resorting to the Helmholtz free energy and they involve Marchaud
fractional derivatives beside ordinary second-order derivatives of the temperature field, that appear
as the decaying function of the long-range fluxes is provided as power-law of the inter distance.
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