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A crustal reflection seismic profile, more than 100 km long, was recorded across central Sicily, from the
Tyrrhenian shore to the Sicily Channel, to understand the deep structures and the collision mechanisms
between Europe and Africa and the subsequent geodynamic evolution. The profile was acquired using
explosive sources and 240 active channels recorded by a Sercel 408-XL, 24 bits A/D converter, with a 12 km
spread and a 24-fold coverage.
The data were processed following a non-conventional procedure in order to preserve the relative
amplitudes of the reflections and to better investigate the Sicily deep structures down to the Moho. The main
highlighted structures are the dramatic flexure of the Iblean crust, the huge, deeper than expected, trough of
Caltanissetta consisting of deep seated thrusts and nappes, and the imbricate thrust system of rigid bodies
characterizing the northern Maghrebian chain. We designed an ad hoc acquisition and processing in order to
highlight these main geological features in the seismic stacked section. Moreover, the deepest parts of the
Caltanissetta trough are imaged for the first time, and its bottom is now fixed at more than 7 s TWT. The
giant crustal wedge flexuring the Iblean foreland and the Moho geometries are examinated.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction and geological setting

During the winter of 2007–2008 a crustal seismic line was acquired
in Sicily (Figs. 1 and 2) with the aim of identifying the poorly known
deep crustal geometries of the Sicilian–Maghrebian segment of the
Apennine system. The acquired line is part of the SIRIPRO (SIsmica a
RIflessione PROfonda) multidisciplinary research project for investigat-
ing the deep structures of Sicily, a key geodynamical region of the
Mediterranean.

The profile acquired in central Sicily (Fig. 2) starts near Termini
Imerese on the Tyrrhenian coast, crosses the Sicilian–Maghrebian
chain in the north, the Caltanissetta trough in central Sicily, and ends
on the southern coast near Gela, close to the outcroppings of the
Iblean plateau, foreland of the Sicilian–Maghrebian fold and thrust
belt (Fig. 2). The altitude along the profile varies from 930 m in the
northern mountain chain to less than 25 m at the southern
termination.

The primary objectives of the project are outlined by the following
questions:

– Where is the boundary between the African and the Tyrrhenian/
European plates at depth and in which way do both lithospheres
interact?

– Is there a pronounced crustal flexure in central Sicily and which
are the precise thicknesses of the crust and of the sedimentary
layers filling the Caltanissetta trough?

– What is the crustal nature of the foreland and the internal
architecture of the chain where a crustal doubling has been
proposed?

– Are there shear zones to account for the complex imbrications and
wedging and how does the basement interact with the thrust and
fold belt?

– How do the shear zones and faults accommodate at depth?
– Are there basic differences in the deep structures between the

Maghrebian/Sicilian chain and southern Apennines?

In order to answer these questions, the work is developed in three
steps: 1) acquisition and processing of the seismic line to obtain a
stacked section; 2) tomographic inversion of the refracted arrivals to
get a detailed velocity model of the shallowest part (down to about
2 km depth); 3) analysis of the results.
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Three seas surround Sicily: to the south, the Pelagian Sea is
underlain by the Pelagian Platform with Mesozoic carbonates that
include the Pantelleria–Malta grabens as well as the Malta plateau.
The Iblean plateau located onshore in the SE of Sicily is the major
subaerial exposure of the Pelagian platform. This setting firmly ties
the geology of Sicily to that of north Africa, since the Permian (Roure
et al., 1990, Casero and Roure, 1994; Catalano et al., 1991).

To the north, the Tyrrhenian Sea crust is composed of Neogene
much thinned continental to oceanic crust related to the back arc
opening of that domain. Extension in the Tyrrhenian starts in
Tortonian, the oceanic spreading in the late Pliocene and Quaternary.
Between the southern Tyrrhenian and Sicily outcrops a south-verging
segment of the Apennine–Mahgrebrian mountain chain and thrust
belt that stretches from the Alps in Europe to the Atlas Mountains in
north Africa. This structure records most of the tectonic events
involved in the complex interaction of Europe and Africa prior and
during the opening and closing of the western Tethys.

To the east, the Malta Escarpment and a belt of prominent active
normal faults (Bianca et al., 1999) face this margin of Sicily. These
features correspond to the boundary (Casero and Roure, 1994;
Nicolich et al., 2000) that limits the continental domain towards the
Ionian Sea. In this area, a thinned continental to oceanic crust
transition (possibly a remnant of the Tethys) has been proposed by
different authors (Catalano et al., 2000a and references therein).

Sicily links the African Maghrebides with the Apennines across the
Calabrian accretionary wedge (Fig. 1). The building of the chain is
considered the result of both post-collision convergence between
Africa and a complex “European” crust (Bonardi et al., 2001) and
rollback of the subduction hinge of the Ionian lithosphere.

Three main elements characterize the “collisional” complex of
Sicily and adjacent offshore areas (Fig. 2). First, the foreland which
outcrops in the SE-corner (Iblean plateau) is submerged by the
Pelagian Sea and the adjacent Ionian Sea. The sedimentary cover in
the Sicily Channel and in the Ionian Sea is underlain by thinned

continental and oceanic crusts, respectively (De Voogd et al., 1992;
Catalano et al., 2001). The present day foreland represents a remnant
of a Late Jurassic–Early Cretaceous passive continental margin.

Second, a Late Pliocene–Pleistocene NW-dipping foredeep is
located along the northern side of the foreland. It is presently buried
by the frontal sector of the chain (Gela thrust system) in southern
Sicily and in the Gela Basin (Fig. 2). Finally a complex E and SE vergent
fold and thrust belt, locally more than 15 km thick, outcrops on land
and is submerged in the adjacent seas. It is formed by a “European”
element (Peloritani Units), a “Tethyan” element (Sicilide Units) and
an African element (Maghrebian Sicilian Units) (Catalano and
D'Argenio, 1982; Roure et al., 1990; Lentini et al., 1994; Catalano
et al., 2000a; Finetti, 2005). The stratigraphy and facies domains of the
different rock bodies exposedwithin the chain are briefly summarized
in Fig. 3. Interpretation of the several commercial seismic profiles,
supported by joint detailed stratigraphy (Fig. 3) and field mapping,
has provided regional cross sections illustrating the deeper structures
of both western (Catalano et al., 2000b) and eastern Sicily (Casero and
Roure, 1994; Bianchi et al., 1989; Bello et al., 2000). It is broadly
accepted that a common architecture exists, characterized by an
imbricate thrust system to the north, and a stack of S and S–E verging
thrusts and nappes to the south (Gela Thrust). These units were
presumed to lie on top of the undeformed crystalline basement.

Catalano et al. (2000b), and Bello et al. (2000) distinguished in the
Sicily thrust wedge four main structural levels (excluding the
Peloritani unit).

The lowest level results from a Meso-Cenozoic, mostly carbonate
platform, S-vergent imbricate fans (Trapanese to Iblean units; Fig. 3)
overthrusting the Iblean foreland and the Pelagian offshore; this
element appears as the main bulk of the chain. The intermediate level
is a wedge of flat-lying Meso-Cenozoic deep-water carbonate thrust
sheets (Imerese and Sicanian units) overthrusting the deformed
carbonate platform rock units. The overlying level is a wedge of
nappes of Sicilide deposits and detached terrigenous Numidian flysch.

Fig. 1.Map illustrating different crustal sectors of central Mediterranean region (modified from Catalano et al., 1996). 1) Tyrrhenian oceanic crust; 2) Algerian Basin oceanic crust; 3)
thinned Sardinia and Kabilian continental crust; 4, 5) African thinned continental crust; 6) Ionian oceanic crust; 7) Sardinia units; 8) Kabylian–Calabrian units; 9) Maghrebian–
Sicilian units; 10) Ionian accretionary wedge; 11) thrust fronts; 12) fault with strike-slip component; 13) Moho isobaths (km); 14) hypothetic continental–oceanic boundary; 15)
bathimetry. Inset shows the location map of the investigated area.
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The upper level consists of syntectonic uppermost Miocene–lower
Pleistocene clastics that unconformably seal the whole underlying
shortened tectonic units.

The aforementioned tectonic assemblage is the result of two main
compressional tectonic phases (Roure et al., 1990; Catalanoet al., 2000b).
The first one is Middle to Late Miocene in age and caused the
overthrusting of the deep-water carbonate rock bodies above the not
already deformed platform carbonate substrate. The latter is Pliocene to
Lower Pleistocene in age; it deformed with deep seated structures, the
platform carbonate units, re-imbricating the previously emplaced deep-
water carbonates. In the growing chain, the simultaneous development
of thrusts, backthrusts, and lateral displacements (Ghisetti and Vezzani,
1984) and the occurrence of clockwise paleomagnetically detected
nappe rotations (Channell et al., 1990; Oldow et al., 1990) during Late
Miocene to Middle Pleistocene, produced wedge top basins. These were
filled by Miocene–middle Pleistocene syntectonic deposits in the frame
of a continuous forward migration (Bianchi et al., 1989; Lentini et al.,
1994; Catalano et al., 2000b).

Regional facies analysis indicates (Catalano and D'Argenio, 1982;
Catalano et al., 1991; Di Stefano, 1990) that the Paleozoic–Mesozoic to

Paleogene rock assemblages, today found in Sicily, represent the
sedimentary cover of distinct paleogeographic domains which belonged
to the “Tethyan” ocean and to the African continentalmargin prior to the
onset of the deformation. In contrast, the Miocene–Pleistocene rocks
were deposited during and after the deformation of the mentioned
domains. The Pelagian foreland and the onland Iblean platform have
been extensively investigated by oil exploration. The region underwent
the typical evolution of a sunken continental margin in the Mesozoic.
Moreover, shape and dimensions of the paleogeographic domains in the
region are still preserved (Patacca et al., 1979; Ismail-Zadeh et al., 2003).

The Moho boundary is recognized in seismic data at 9–10 s TWT
(Two-Way-Traveltimes) under the Pelagian platform (Catalano et al.,
2000b). Previous wide angle reflection/refraction seismic data reveal
that the Moho is located at 20 km on sea and 25 km along the Sicilian
South-Western coasts. Under the fold and thrust belt along the north-
ern edge of the island, the Moho depth is proposed at about 37–38 km
(Cassinis et al., 1969; Colombi et al., 1973). In the Southern
Tyrrhenian, the Moho depth ranges from around 25 to only 10 km
in the abyssal plain. The similar setting is observed along the Ionian
margin and its abyssal plain with depths ranging from 20 to 16 km,

Fig. 2. Structural map of Sicily (modified from Catalano et al., 2000a,b). 1) Iblean units; 2) shelf to pelagic carbonate (Trapanese–Saccense) units; 3) shelf to deep-water carbonate
(Monte Genuardo) units; 4) deep-water carbonate (Sicanian) units; 5) shelf carbonate (Panormide) units; 6) slope to deep-water (Imerese–Panormide) units; 7) Miocene Flyschs;
8) Sicilide units; 9) Calabrian–Peloritani units; 10) Miocene–Pliocene syntectonic deposits; 11) Plio-Pleistocene syntectonic deposits; 12) Plio-Quaternary volcanic rocks;
13) Pleistocene deposits; a) Kabylian–Calabrian thrust front; b) Maghrebian–Sicilian thrust front; c) Ionian accretionary wedge thrust front; d) thrusts; e) faults with strike-slip
component; f) hypothetic continental oceanic boundary (modified by Catalano et al., 2000a,b; Chamot-Rooke et al., 2005). In white bold line the location of SIRIPRO profile. In the
left-hand corner CMT (1977–2003) focal solutions from the area (after Pondrelli et al., 2004) are also shown. Hypocentral depth: b50 km; MagnitudoN4. Blue: focal mechanisms
with compressional regime; green: focal mechanisms with strike-slip regime; red: focal mechanisms with extensional regime.
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respectively (Giese andMorelli, 1975; Makris et al., 1986; Dal Piaz and
Nicolich, 1991; Nicolich et al., 2000; Catalano et al., 2000a).

The top of the magnetic basement shows a strongly variable
morphology, with depths from 8 to 10 km in the S–E, beneath the
Iblean domain (Bello et al., 2000), and 10–12 km in the westernmost
Sicily sector. The map of the magnetic basement was completed by
AGIP and was reported in Morelli (2007). The basement is very deep
(more than 14 km) in the Caltanissetta trough (Bello et al., 2000)
and along the northern coasts of the island (from 10 to 13 km or
more).

Basaltic volcanism occurred since the Jurassic (from the beginning
of the opening of the Tethys Ocean) in thewestern Sicily mountains as
well as the Iblean area. Today, the active basaltic volcanism is
represented by the active Etna volcano, which started approximately
0.5 Mys ago. The presence of Etna is explained by differential flexure

or rollback in the subducting lithosphere beneath the Tyrrhenian Sea
(Doglioni et al., 1999; Nicolich et al., 2000).

Major earthquakes occurred in eastern Sicily (Hirn et al., 1997; Bianca
et al., 1999; Catalano et al., 2008) along the NNW-trending offshore
systemof recent faults, in the sector facing the shorelinebetweenSiracusa
and Catania, parallel to the Malta Escarpment and to the transtensional
fault zone separating Sicily from the Ionian abyssal plain (Casero and
Roure, 1994; Cernobori et al., 1996). Recent medium to high magnitude
earthquakes were recorded along the E–W trending compressive belt
(Fig. 2) in the southern sector of the Tyrrhenian Sea (Agate et al., 2000;
Montone et al., 2004; Pondrelli et al., 2004). Contractional to transpres-
sional earthquakes were also recorded in southern and western Sicily
(Belice valley). Extensional to transtensional mechanisms of seismic
events are known from the northern–eastern Sicily belt (Madonie–
Peloritani) and beneath the Caltanissetta trough (Fig. 2).

Fig. 3. Stratigraphy and facies domains of the investigated area.
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2. Seismic data

The seismic profile is 106 km long and crosses a major gravity
anomaly shown in Fig. 4 with +200 mGal on the Tyrrhenian side,
+50 mGal in the Pelagian Sea and −100 mGal in the Caltanissetta
trough. A dynamite source was employed with charges ranging from
20 to 30 kg, shot in 24–30 m deep boreholes. 240 active channels
were deployed with receiver spacing equal to 50 m and with a 12 km
spread connected to a telemetric Sercel 408-XL recording unit with 24
bits A/D converter. The standard shot spacing was 250 m and the
coverage was 24-fold.

In-line strings of 12 geophones, with a natural frequency of 10 Hz,
were deployed with patterns able to reduce high amplitude ground
roll. According to structural information and due to the N–W dip of
the crustal layer, an asymmetrical recording configuration in the
southern part of the line was chosen, with a maximum southward
offset of 7 km. In the northern part, we switched to a symmetric split-
spread geometry with a maximum offset of 6 km. A total number of
402 shots were detonated with 240 active channels for each record.
Where the shooting was not permitted for security reasons, we
preserved the designed coverage at depth by adding shots with
asymmetrical recording geometries. The shot holes were drilled
mainly in clays or sandy marls formations.

The profile crosses the Sicilian–Maghrebian chain in a N–S
direction, but turns to SSE from Caltanissetta towards Gela,
following the Iblean structural trends. Table 1 summarizes the
main acquisition parameters.

2.1. Processing sequence

The aim of the data processing was the improvement of the signal/
noise ratio to preserve the reflection relative amplitudes, both for the
shallowest and deepest structures, in order to maintain their
responses and seismic signal characteristics. The following key actions
were adopted to obtain the final stacked section presented in Fig. 5. In
the first step, the shot/receiver geometry was recreated with the
definition of the Common Mid Points (CMP) crooked line. Spherical
divergence and surface consistent amplitude correction were applied
to compensate for the signal differences caused by geophone ground
coupling and diverse energy contributions of each shot.

Vertical resolution was improved by applying a surface consistent
deconvolution, choosing parameters on the basis of the autocorrela-
tion function (prediction lag of 28 ms, operator length of 150 ms and
pre-whitening of 1%).

The field statics to lead the data to a datum plane (in our case to
the sea level) were calculated by tomographic inversion of the first
arrivals (explained in the next paragraph), evaluating the near surface
velocity variations. After the Normal Move Out (NMO) correction
using a preliminary velocity analysis, a trimmed mean-dynamic dip
filter and an F-X deconvolution were applied in the shot domain. The
trimmed mean-dynamic dip filter computes, at each sample of all the
traces, a sequence of trimmed means along rays (dips), using the
sample itself and a number of leading and trailing traces (Holcombe
andWojslaw, 1992). With this procedure we removed the ground roll
with satisfactory results. Before the F-X deconvolution we added zero
traces at the end of each shot, removed after, to avoid influence of a
shot to the next one. Fig. 6 shows the same shot before and after the
described processing sequence. A new velocity analysis was per-
formed at this point and the definitive NMO correction was applied.
The residual statics were computed using a surface consistent
approach, referring to a moving window focused on a marker at
about 6–7 s TWT. A stretch mute and a CMP stack let us to obtain the
output section. Post-stack processing consisted in an F-X deconvolu-
tion, in a time-variant filter that decreases linearly from 7–80 Hz at 0 s
to 7–20 Hz at 8 s, and in an automatic gain control with a time-
window of 3 s. The processing sequence flow is shown in Table 2.

Fig. 4. Location map of the SIRIPRO with station positions. In the background the Bouguer gravimetric map (Ferri et al., 2008) of the area is reported.

Table 1
Acquisition parameters.

Source Dynamite (20–30 kg) at depths of 24–30 m

Nominal fold 2400%
Recording instrument SERCEL 408-XL, 24 bit A/D conversion
Number of active channels 240
Receivers interval 50 m, 12 geophones, 10 Hz, in-line
Recording length 20 s with 2 ms sampling rate
Configuration length Symmetric split-spread 6000-150-0-150-6000 m

Asymmetric split-spread 7000-150-0-150-5000 m
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2.2. Tomographic inversion

The picking of the first arrivals of all the shots was accomplished to
obtain information about the shallow velocity structures (up to
1.5 km below the sea level, i.e. up to 3 km below the topography), and
to compute more reliable statics correcting the seismic traces in the
processing sequence. More than 85.000 picks were used simulta-
neously to perform the inversion. To avoid errors in the picking, an
analysis of the apparent velocity of the picks was performed, and the
picks with anomalous apparent velocities were neglected (Fig. 7). An
initial velocity model was proposed with 30 subparallel interfaces
from the maximum field elevation to 7 km below the sea level. The
distance between the interfaces increased linearly with depth from
150 m to 400 m down to the above planned 7 km. Horizontally, each
layer was subdivided into pixels of 1 km size. The initial model was
designed using a constant velocity of 1500 m/s.

The tomographic inversion was performed with the software
CAT3D, using a modified version of the minimum time ray tracing
(Böhm et al., 1999) and an iterative procedure for the inversion, based
on the SIRT algorithm (Stewart, 1993). The ray tracing computation
starts with an initial path and converges to a final geometry through
an iterative procedure by using the analytical solution of Snell's law
(Accaino et al., 2007 and references therein).

At the beginning, the first arrivals were inverted using a
circumference arc travel path of the rays to obtain an initial model
close to the real model. In the subsequent steps, using the results
obtained in the previous inversion, the arrivals were inverted
assuming the ray path for the diving waves. Afterward, to improve
the lateral resolution of the velocity model, the inversion procedure
continued utilizing the staggered grid method (Vesnaver and Böhm,
2000) to obtain a final velocity model (Fig. 8) from the near surface.

3. Discussion

The velocity field, obtained by the tomographic inversion, is
constructed down to about 2000 m below sea level. This model shows
velocities ranging from 1300 m/s to 4500 m/s (Fig. 8). In the first
30 km of the northern sector of the profile, the model evidences that
the geological formations are characterized by high velocity rock
bodies. The latter includes limestones, as calibrated by boreholes.

Velocities greater than 2000 m/s are present at very shallow depths
increasing to 4500 m/s between 0 and 1.5 km below sea level.
Between stations numbers 700 and 1000, the velocities are lowered
and, in addition, lower velocities of 2000 m/s are observed in the
central and southern sectors, where low velocities reach depths of
about 1–1.5 km below sea level. In this area low velocities are
probably associated to low density rocks, which partially explains the
occurrence in the Caltanissetta depression of a large negative Bouguer
anomaly (Fig. 4). In the central sector of the profile (between stations
numbers 1000 and 1150) a high velocity zone (about 3500 m/s) is
evident at a depth ranging from 0 to 1 km below sea level (Fig. 8).

The processed stacked section (Fig. 5) images wedge shaped thrust
systems of shallow and deep structures of the crust. In the northern
part of the seismic profile (see Fig. 9), the reflectors merge towards
south, imaging the stack of imbricate thrusts characterizing the chain.
Based on seismic facies characters and borehole calibration, the
reflecting body consists (from the top) of Numidian flysch and Sicilidi
thrust sheets and of Meso-Cenozoic deep-water carbonates (Imerese
and Sicanian thrust units) that overlie thick shallow water carbonate
embricates. The wedge is identifiable down to 7 s TWT, where a
decoupling level at the basement-cover boundary may occur. The
depth of this interface can be estimated between 14 and 16 km below
the surface, which is in agreement with the depth of the supposed
location of themagnetic basement in Tyrrhenian coastal areas of Sicily
(Bello et al., 2000). More discontinuous reflections, apparently related
to a stack of units of the intermediate and lower crust, are well
identified in the deeper crust down to a marker at about 14 s TWT.
This marker is probably related to the African Moho, which was
estimated by DSS data at depths of 37–38 km (Cassinis et al., 1969;
Colombi et al., 1973; Giese and Morelli, 1975). Offshore, off the
northern coast of Sicily (Cefalù Basin), the Moho of the southern
Tyrrhenian domain is positioned at depths of 25–26 km (Giese and
Morelli, 1975; Scarascia et al., 1994; Chironi et al., 2000).

In the central part, the thick stack of allochthonous folded and
thrusted rigid bodies showing southward vergence forms a wedge in
the Caltanissetta trough. Its base can be recognized by the highly
reflective top of the Iblean units, down-warped from the southern
outcrops to about 7 s TWT. The depression, shown in Fig. 10, displays,
starting from the bottom, shallow and deep-water carbonate thrust
units, thick Numidian flysch tectonic slices and Sicilidi nappes, and

Fig. 6. Comparison of a shot before (left) and after (right) the processing.
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syntectonic Upper Tortonian–Lower Pleistocene terrigenous evapo-
ritic and clastic deposits. The post-Tortonian development of thrusts
and backthrusts with related foreland and hinterland verging folds
(Catalano et al., 2000b; Bello et al., 2000) is evident in the seismic
images immediately north of Caltanissetta (Fig. 5).

Other bright reflections occur inside the terrains located in the
depression and emphasize the complexity of the structural setting.
The deep seated deep-water carbonate south-verging thrust sheets
are partly overlaid by the Gela nappe. The latter appears as a tectonic

wedge with a common basal decollement underlying to the north the
more internal rock bodies.

The buried Iblean foreland units forming a steep regional
monocline are deformed by buried NW-dipping normal faults system
to some extent reactivated by successive compressional tectonics
(Bello et al., 2000). At the southern end of the profile, its basement is
at around 5.5 s TWT and the Moho at about 9–10 s TWT,
corresponding approximately to 25 km depth (15–16 km of not
sedimentary crust) (Chironi et al., 2000; Catalano et al., 2000a). The
Iblean crust thins towards the Caltanissetta depression, where the
Moho quickly reaches 12 s TWT (5 s below the top of the deepest
image of the Iblean carbonate platform) at the depression centre.
Then, it deeps gently northwards, attaining about 14 s TWT beneath
the Tyrrhenian coastline. A complex interaction between the northern
thickened crystalline crust and southern Sicilian crust occurs in
correspondence of the depression with a strong flexure and a
pronounced thinning of the foreland crust.

4. Conclusions

The results obtained by the SIRIPRO seismic transect across Sicily
evidence that the parameters and procedures adopted in acquisition
and processing steps are valuable to identify the crustal deep
structures in the study area. Refraction tomography allowed obtaining
information about the velocities of shallow structures until 2 km
below the sea level, while the seismic reflection data furnished the
images of the geometries of the structures in depth. In particular: (1)
in the northern part, a reflector at 7 s TWT associated to the crystalline

Table 2
Flowchart of the processing adopted to produce the stacked section.

Fig. 7. Apparent velocity versus offset of all picking.

Fig. 8. Shallow velocity field obtained by tomographic inversion of refracted events.
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magnetic basement is imaged; (2) the deepest part of the Caltanis-
setta trough is imaged for the first time at about 7 s TWT; (3) the
reflector delimiting the top of Iblean unit is well imaged; (4) theMoho
discontinuity can be identified in the northern sector around 14 s
TWT, while beneath the Caltanissetta depression and the Iblean
southern sector it can be identifiable at 12 s TWT and 9 s TWT,
respectively. The crustal thickness appears reduced to approximately
10 km beneath the Caltanissetta depression and thickened in the
northern part of Sicily; (5) the strong flexure of the Iblean foreland
suggests a complex interaction between the northern and southern
Sicily crusts, which appear to be relatively thin.

Acknowledgments

SIRIPRO (Sismica a Riflessione Profonda, Deep reflection seismic
exploration) is a collaborative Italian Project (scientific leader Prof. R.
Catalano) cofinanced by MIUR Italian Research Minister. The authors
are very grateful to the two reviewers for their constructive comments
which improved the paper. Deep reflection seismic, refraction seismic,
gravimetry andmagnetotelluric data have been acquired by the project
partners (Dipartimento di Geologia e Geodesia Palermo University,
Istituto di Oceanografia e Geofisica Sperimentale Trieste-OGS, Istituto
di Geoscienze e Georisorse CNR Pisa, Centro per la Ricerca Elettronica in
Sicilia CRES). The main goal of the SIRIPRO is to define an optimal
exploration methodology to study deep crustal lithospheric structures
and to integrate the obtained different types of data by means of a
software platform. We are very grateful to Claudio Zanolla for the
compilation of the Bouguer gravity map utilizing data collected within
the SIRIPRO project and from other sources.

References

Accaino, F., Bratus, A., Conti, S., Fontana, D., Tinivella, U., 2007. Fluid seepage in mud
volcanoes of the northen Appennines: an integrated geophysical and geological
study. J. Appl. Geophy. 63, 90–101.

Agate, M., Beranzoli, L., Braun, T., Catalano, R., Favali, P., Frugoni, F., Pepe, F., Smriglio, G.,
Sulli, A., 2000. The 1998 NW Sicily offshore earthquakes: constraints for kinematic
model of the southern border of the Tyrrhenian Sea.Mem. Soc. Geol. It. 55, 103–114.

Bello, M., Franchino, A., Merlini, S., 2000. Structural model of Eastern Sicily. Mem. Soc.
Geol. It. 55, 61–70.

Bianca, M., Monaco, C., Tortorici, L., Cernobori, L., 1999. Quaternary normal faulting in
southeastern Sicily (Italy): a seismic source for the 1693 large earthquake.
Geophys. J. Int. 199, 370–394.

Bianchi, F., Carbone, S., Grasso, M., Invernizzi, G., Lentini, F., Longaretti, G., Merlini, S.,
Moscardini, F., 1989. Sicilia orientale: profilo geologico Nebrodi-Iblei. Mem. Soc.
Geol. It. 38, 429–458.

Böhm, G., Rossi, G., Vesnaver, A., 1999. Minimum time ray-tracing for 3-D irregular
grids. J. of Seism. Expl. 8, 117–131.

Bonardi, G., Cavazza, W., Perrone, V., Rossi, S., 2001. Calabria–Peloritani terrane and
northern Ionian Sea. In: Vai, G.B., Martini, I.P. (Eds.), Anatomy of a Mountain: the
Apennines and Adjacent Mediterranean Basins. Kluwer Academic Publisher,
Dordrecht, The Netherlands, pp. 287–306.

Casero, P., Roure, F., 1994. Neogene deformations at the Sicilian–North African plate
boundary. In: Roure, F. (Ed.), Peri-Tethian Platforms. Institut Francaise du Petrole
Research Conference, Arles, Proceedings. Editions Technip, Paris, pp. 27–50.

Cassinis, R., Finetti, I., Giese, P., Morelli, C., Steinmetz, L., Vecchia, O., 1969. Deep seismic
refraction research on Sicily. Boll. di Geof. Teor. Appl. 11, 140–160.

Catalano, R., D'Argenio, B., 1982. Schema geologico della Sicilia. In: Catalano, R.,
D'Argenio, B. (Eds.), Guida alla geologia della Sicilia occidentale. Soc. Geol. It. Guide
Geologiche Regionali, pp. 9–41.

Catalano, R., Di Stefano, P., Kozur, H., 1991. Permian circumpacific deep-water faunas from
the Western Tethys (Sicily-Italy) — new evidences for the position of the Permian
Tethys. In: Channell, J.E.T., Winterer, E.L., Jansa, L.F. (Eds.), Paleogeography and
Paleoceanography of Tethys, Palaeogeography, Palaeoclimatology, Palaeoecology, 87.
Elsevier, Amsterdam, pp. 75–108.

Catalano, R., Di Stefano, P., Sulli, A., Vitale, F.P., 1996. Paleogeography and structure of the
central Mediterranean: Sicily and its offshore area. Tectonophysiscs 260, 291–323.

Fig. 9. Detail of the stacked section for the northern sector of the SIRIPRO profile.

60 F. Accaino et al. / Tectonophysics 508 (2011) 52–61



Author's personal copy

Catalano, R., Franchino, A., Merlini, S., Sulli, A., 2000a. A crustal section from North
Algerian to the Ionian ocean (Central Mediterranean). Mem. Soc. Geol. It. 55, 71–85.

Catalano, R., Franchino, A., Merlini, S., Sulli, A., 2000b. Central Western Sicily structural
setting interpreted from seismic reflection profiles. Mem. Soc. Geol. It. 55, 5–16.

Catalano, R., Doglioni, C., Merlini, S., 2001. On the Mesozoic Ionian basin. Geophys. J. Int.
143, 1–24.

Catalano, S., De Guidi, G., Monaco, C., Tortorici, G., Tortorici, L., 2008. Active faulting and
seismicity along the Siculo-Calabrian Rift Zone (Soutjern Italy). Tectonophysics 453,
177–192.

Cernobori, L., Hirn, A., McBride, J.H., Nicolich, R., Petronio, L., Romanelli, M., STREAMER/
Profiles WG, 1996. Crustal image of the Ionian basin and its Calabrian margins.
Tectonophysics, 264, pp. 175–189.

Chamot-Rooke, N., Rangin, C., Le Pichon, X., DOTMED working group, 2005. DOTMED: a
synthesis of deep marine data in eastern Mediterranean. Mèm. Soc. Gèeol. France
177 64 p.

Channell, J.E.T., Oldow, J.S., Catalano, R., D'Argenio, B., 1990. Paleomagnetically determined
rotations in the western Sicilian fold and thrust belt. Tectonics 9 (4), 641–660.

Chironi, C., De Luca, L., Guerra, I., Luzio, D.,Moretti, A., Vitale,M., Group, S.E.A.L.A.N.D., 2000.
Crustal structures of theSouthernTyrrhenian Sea and theSicily Channel on the basis of
the M25, M26, M28, M39WARR profiles. Boll. Soc. Geol. It. 119, 189–203.

Colombi, B., Giese, P., Luongo, G., Morelli, C., Riuscetti, M., Scarascia, S., Schutte, K.G.,
Strowald, J., De Visentini, G., 1973. Preliminary report on the seimic refraction profile
Gargano-Salerno-Palermo-Pantelleria. Boll. di Geof. Teor Appl. 15 (59), 225–254.

Dal Piaz, G.V., Nicolich, R., 1991. Carta della Moho e lineamenti tettonici. C.N.R., P.F.
Geodinamica. Structural Model of Italy. sheet 2.

De Voogd, B., Truffert, C., Chamot-Rooke, N., Huchon, P., Lallemant, S., Le Pichon, X.,
1992. Two-ship deep seismic soundings in the basins of the Eastern Mediterranean
Sea (Pasiphae cruise). Geophys. J. Int. 109, 536–552.

Di Stefano P, 1990. The Triassic of Sicily and the Southern Apennines. Boll. Soc. Geol. It.
109, 21–37.

Doglioni, C., Harabaglia, P., Merlini, S., Mongelli, F., Peccerillo, A., Piromallo, C., 1999.
Orogens and slabs vs. their direction of subduction. Earth Sci. Rev. 45, 167–208.

Ferri, F., Zanolla, C., Porfidia, B., Coren, F., Giori, L., Cesi, C., 2008. La cartografia
gravimetrica digitale d'Italia alla scala 1:25000. GNGTS, pp. 437–438.

Finetti, I.R., 2005. CROPproject: deep seismic exploration of the centralMediterraneanand
Italy. In: Finetti, I.R. (Ed.), Atlases in Geoscience 1. Elsevier, Amsterdam, pp. 1–794.

Ghisetti, F., Vezzani, L., 1984. Thin-skinned deformations of the Western Sicily thrust
belt and relationships with crustal shortening: mesostructural data on the Mt.
Kumeta Alcantara. Boll. Soc. Geol. It. 103, 129–157.

Giese, P., Morelli, C., 1975. Crustal structure in Italy. In: Ogniben, L., Parotto, M.,
Praturlon, A. (Eds.), Structural Model of Italy. CNR-Quaderni de “La Ricerca
Scientifica”, Roma, pp. 453–489.

Hirn, A., Nicolich, R., Gallart, J., Laigle, M., Cernobori, L., ETNASEIS,Scientific Group, 1997.
Roots of Etna volcano in faults of great earthquakes. Earth Planet. Sci. Lett. 148, 171–191.

Holcombe, H.T., Wojslaw, R.S., 1992. Spatially Weighted Trimstackeding: a Technique
for Pre-Stacked Noise Suppression. Proceedings Society of Exploration Geophysi-
cists-SEG, Annual Meeting. 1157–1160.

Ismail-Zadeh, A., Cernobori, L., Nicolich, R., 2003. AGU— Computational Seismology and
Geodynamics 5, 1–12.

Lentini, F., Carbone, S., Catalano, S., 1994. Main structural domains of the central
Mediterranean region and their Neogene tectonic evolution. Boll. Geofis. Teor. ed
Appl. 36, 141–144.

Makris, J., Nicolich, R., Weigel, W., 1986. A seismic study in theWestern Ionian Sea. Ann.
Geophysicae 6B, 665–678.

Montone, P., Amato, A., Pondrelli, S., 2004. Active stress map of Italy. J. Geophys. Res.
104, 25595–25610.

Morelli, C., 2007. Confirmations of and apparent contradictions from the new
geophysical deep constraints in the southern Aennines. In: Mazzotti, A., Patacca,
E., Scandone, P. (Eds.), CROP-04. Boll.Soc. It, Special Issue, 7, pp. 3–12.

Nicolich, R., Laiglé, M., Hirn, A., Cernobori, L., Gallart, J., 2000. Crustal structures of the
Ionian margin of Sicily: Etna volcano in the frame of regional evolution.
Tectonophysics 329, 121–139.

Oldow, J.S., Channel, J.E.T., Catalano, R., D'Argenio, B., 1990. Contemporaneous thrusting
and large-scale rotations in thewestern Sicilian fold and thrust belt. Tectonics 9 (4),
661–681.

Patacca, E., Scandone, P., Giunta, G., Liguori, V., 1979. Mesozoic paleotectonic evolution
of the Ragusa zone (Southeastern Sicily). Geologia Romana 18, 331–369.

Pondrelli, S., Piromallo, C., Serpelloni, E., 2004. Convergence vs. retreat in Southern
Tyrrhenian Sea: insights from kinematics. Geophys. Res. Lett. 31, 1–4.

Roure, F., Howell, D.G., Muller, C., Moretti, I., 1990. Late Cenozoic subduction complex of
Sicily. Journ. of Struct. Geology 12 (2), 259–266.

Scarascia, S., Lozej, A., Cassinis, R., 1994. Crustal structures of the Ligurian, Tyrrhenian
and Ionian Seas and adjacent onshore areas interpreted from wide-angle seismic
profiles. Boll. Geof., Teor. Appl. 36, 5–19.

Stewart, R., 1993. In: Domenico, S.N. (Ed.), Exploration Seismic Tomography:
Fundamentals: SEG Course note series, 3, p. 140.

Vesnaver, A., Böhm, G., 2000. Staggered or adapted grids for seismic tomography? Lead.
Edge 9, 944–950.
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