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Chapter 1

Introduction

Every physical system S that we study as an individual entity is usually just a sufficiently
isolated part of a larger universe which we divide, more or less arbitrarily, into the system S
itself and the remaining part, the so-called environment E. The fact that these two parts
interact is at the basis of the phenomenon of dissipation affecting S. The archetypical
model of dissipation is the damped harmonic oscillator in which S is a point mass which
loses its initial energy due to the friction exerted by the surrounding environment. The
effect of the environment is introduced through a viscous term, proportional to the velocity
ẋ of the particle, in the differential equation describing the point mass dynamics

Mẍ(t) + kx(t) + γẋ(t) = 0,

where γ is the damping coefficient.

There are limiting cases, as for example that of a heavy body moving in absence of
external atmosphere, where the dissipative effects of the surrounding environment (other
objects in contact with the body, the electromagnetic field etc.) can be safely neglected for
all practical purposes. However in general this is not the case. For example, in the opposite
limit of a very light classical particle suspended in a fluid, the mere introduction of a viscous
term in the Newton equation is not sufficient to account for the particle’s motion. As the
particle is sufficiently light to be sensitive to the collisions with the individual constituents
of its environment, the granular nature of the fluid emerges and the particle’s trajectory
manifest itself as a random process. The description of such a motion can only be given
statistically, unless one keeps track of the individual degrees of freedom of the environment.
The behavior of the suspended particle is called Brownian motion. In the one-dimensional
case it is mathematically described by the Langevin stochastic differential equation [1]

Mẍ(t) + γẋ(t) = ξ(t). (1.1)

The term ξ(t) is a stochastic force modeling a delta correlated noise source i.e. 〈ξ(t)〉 = 0
and 〈ξ(t)ξ(t′)〉 = 2γkBTδ(t− t′).

If we consider a quantum system, the presence of a dissipative environment has even
deeper consequences in that, not only implies the relaxation to equilibrium, but also
prevents the assignment of a well defined quantum state to the system once it has become
entangled with the environment. Indeed, even if we require that at a certain initial time
t0 S and E are uncorrelated, at a successive time t the overall state of S + E will be
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6 CHAPTER 1. INTRODUCTION

non-separable or entangled. Mathematically this is expressed by

|Ψ(t0)〉 = |ψS〉|φE〉 → |Ψ(t)〉 =
∑
i,j

cij |iS〉|jE〉, (1.2)

where |ψS〉 =
∑

i ai|iS〉, in some basis {|i〉} of the Hilbert space of S.
It follows that the trace over the environmental degrees of freedom of the full density

matrix ρ(t) = |Ψ(t)〉〈Ψ(t)| gives a mixed reduced density matrix for S, which means that
we can describe the state of S only as a probabilistic mixture of quantum states, with
probability pi associated to the outcome Ai in a measurement of the observable Â, such
that Â|i〉 = Ai|i〉 [2]. Tracing out the environment, the reduced density matrix of the
system S describes the mixed state

ρS(t) = TrE{ρ(t)} =
∑
i

pi|iS〉〈iS |. (1.3)

This is because, in taking the trace over E, we discard an essential part of the information
about the quantum state of the global system S + E which has become a unique system
described by the overall density matrix ρ(t) = |Ψ(t)〉〈Ψ(t)|, with |Ψ(t)〉 given by Eq. (1.2).

The entanglement between S and E is at the basis of the decoherence, a peculiar feature
of dissipation in Quantum Mechanics, which consist in the loss of the relative phases in the
superposition of basis states defining a specific quantum state of S. This can be seen by
comparing the initial state |ψS〉 of S with the mixture weighted by classical probabilities
given by Eq. (1.3)

Every quantum mechanical system is subject to the interaction with the surrounding
environment. The very act of observing the system, however protected from the uncon-
trolled degrees of freedom of a noisy environment, perturbs it as implies the interaction
with a large classical system which is the measurement apparatus.

A large system, such as the measurement apparatus or uncontrolled noisy environment,
is ultimately made by its microscopic constituents which obey the quantum mechanical
laws. The way the classical behavior emerges from a large ensemble of quantum object
constituting the ordinary classical systems is a problem of the foundations of Quantum
Mechanics which has been and is still actively investigated [3–6].

However, independently of these interpretational issues, the interaction of a system
S with a large, even macroscopic, environment can always be understood as the sum of
the contributions of the interactions between S and a multitude of microscopic quantum
objects. This observation make it possible to formulate the problem of the dissipation
in quantum mechanics in terms of the Hamiltonian formalism by considering the unitary
evolution of the global closed system and tracing out the environment degrees of freedom,
as shown above.

The predictions obtained by taking into account the quantum nature of dissipation
coincide with those of classical mechanics only in the limit ~→ 0 (i.e. high temperature)
and differ substantially whereas the quantum effects cannot be neglected [7–9].

1.1 Quantum systems for computation

The field of quantum hardware for computation is an area of investigation where much the-
oretical and experimental effort has been devoted in studying and limiting the detrimental
effects of dissipation.
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The idea of quantum computation can be traced back to the end of the fifties when
Richard Feynman had the intuition that the use of hardware obeying the laws of Quantum
Mechanics would have a potential beyond the possibilities of ”classical” hardware1.

It soon became clear that quantum hardware could open new possibilities in infor-
mation processing and simulation of quantum mechanical systems. Indeed, using classical
machines, tasks like the simulation of quantum systems present formidable difficulties even
for quite small systems and turns out to be hopeless as soon as the number of degrees of
freedom becomes moderately large (N ∼ 100), not to speak of macroscopic many body
ensembles.

At the basis of the exorbitant amount of resources required for a classical computer to
simulate a many body quantum system is the fact that the system’s Hilbert space grows
exponentially with the number of degrees of freedom involved. On the other hand, this the
reason underlying the potential of quantum mechanical systems as computation resources.

The elementary unit of information that can be stored in a quantum system is called
the quantum bit or qubit. It differs from the classical bit in that, while the latter can be
in one of the two mutually exclusive states 0 or 1, a qubit can be in one of an infinite
number of states given by the superposition of the two classical states. Specifically a qubit
state is the state of a two-state quantum system (without any reference to its practical
realization) whose Hilbert space is spanned by the computational basis set which we denote
by {|0〉, |1〉}

|ψ〉 = c0|0〉+ c1|1〉, (1.4)

where |c0|2 + |c1|2 = 1 [2, 10]. So, the specification of a qubit state requires two complex
numbers with the constraint of probability conservation and up to an irrelevant global
phase factor, which amounts to two real numbers that can be identified with the angles
defining a point on the surface of a unit sphere called Bloch sphere. In principle an infinite
amount of information can be encoded for example in the relative phase between the two
orthogonal basis states of a single qubit [11], but this doesn’t work in practice because it
would require an infinite precision in writing or reading the information.

In passing from one qubit to multiple qubit states the wired features of quantum
mechanics become evident. The Hilbert space of a two qubit system has dimension four
and a generic state can be written as

|ψ〉 = c00|00〉+ c01|01〉+ c10|10〉+ c11|11〉 (1.5)

Take for example the so-called Bell state

|ψ〉 =
1√
2

(|00〉+ |11〉) .

This entangled state state has the nonlocal feature that if we measure the first qubit and
we obtain |0〉 (|1〉), a measure on the second qubit will give with certainty the result |0〉
(|1〉), even if the measurements are two space-like separated events.

A N -qubit state in the computational basis reads

|ψ〉 =

2N∑
i=1

ci|xi〉, (1.6)

1Richard Feynman talk ”There is plenty of room at the bottom”, 1959.
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where |xi〉 is a state of the computational basis of theN qubit Hilbert space. The number of
amplitudes required to specify the state of Eq. (1.6) is 2N . This means that it is impossible
to store in any conceivable classical device the information required to define a N qubit
state as N ∼ 100, which explains the impossibility to simulate large quantum system with
classical computer, as discussed above. However, an ensemble of N two-level quantum
system can be realized and prepared in an arbitrary state, in principle even for large N .
Moreover the linearity of Quantum Mechanics can be exploited to perform operations on
the quantum superposition defining the state in Eq. (1.6), which amounts to perform the
operation on each of the basis states |xi〉 at the same time. This feature, named quantum
parallelism, produces the speedup theoretically allowing quantum computers to perform
tasks which are out of the reach of classical computers. An example is the factorization
of large numbers using the Shor algorithm [12].

Every practical realization of quantum computing has to satisfy a number of crite-
ria [13] which include scalability (the possibility to build large scale system) and a coher-
ence time larger than that required to perform the operations (the quantum gates) and to
perform error correcting protocols [14].

In one of the first realizations the qubits are nuclear spins of molecules in a magnetic
field, manipulated using nuclear magnetic resonance techniques (liquid-state NMR) [15].
By this technique a twelve qubit system has been demonstrated [16], but liquid-state NMR
presents scalability problems due to the difficulties in distinguishing singular spin when
the size of the system grows [17].

Other physical realizations include trapped ions [18], in which the information is en-
coded in some internal degree of freedom of the ion or in collective motional degrees of
freedom of an ensemble of ions, quantum dots, which are solid state systems with elec-
trons or holes trapped in potential wells with discrete energy levels [19], atoms in cavity
QED [20] and photons in circuits with linear optical elements [21].

1.1.1 Superconducting qubits

Superconducting qubits represent a viable technology for the realization of quantum com-
puting systems [17, 22–30] and for the simulation of quantum systems (e.g. atoms) in
a controlled fashion [31]. The key element of superconducting circuits is the Josephson
junction, consisting in a thin layer of insulator between two superconducting electrodes.
This element introduces the nonlinearity necessary for obtaining non-equally spaced en-
ergy levels, so that a couple of levels (usually the two lowest) with a well defined and
unique transition frequency can be isolated and associated to the computational basis of
the qubit. The supercurrent tunnels across the junction and a phase difference ϕ is asso-
ciated to the collective wave function of the Cooper pairs on the two sides of the junction
ψ(x, t) = |ψ(x, t)| exp(iϕ(x, t)). The phase ϕ is related to the potential energy of the
junction by

V (ϕ) = −EJ(cosϕ− 1).

The Josephson energy Ej is defined by Ej = Φ0IJ , where IJ is the critical current and
the quantity Φ0 = ~/2e is the flux quantum. The quantization of the magnetic flux in
the superconducting circuit derives from the requirement that the wave function ψ be
single-valued.

The Hamiltonian of the Josephson junction, with the charge Q in the capacitance CJ
associated to the junction and the phase ϕ promoted to (canonically conjugate) operators
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([ϕ̂, Q̂/2e] = i), reads

Ĥ =
Q̂2

2CJ
− Ej cos ϕ̂.

The Josephson relation is obtained by the Heisenberg equation of motion ˙̂ϕ = i[Ĥ, ϕ̂]/~

dϕ̂

dt
=

Q̂

Φ0CJ

Similarly we get, for the current/phase relation of the junction, the equation

dQ̂

dt
=
EJ
Φ0

sin ϕ̂.

A superconducting qubit can be in a variety of configurations corresponding to different
circuit designs. There are three basic configurations, according to which couple of variable
is chosen as the conjugate dynamical variables: the charge qubit, the phase qubit and the
flux qubit (see Fig. 1.1). There are in addition a variety of hybrid configurations. Here

Figure 1.1: (a - c) The three basic realizations of superconducting qubits. The Josephson junctions
are indicated by the red stripes. Notice that in the flux qubit (panel (b)) there are two identical
junctions with energy Ej and a third with energy αEj . (d) Energy levels of the flux qubit as
functions of the applied bias flux f (figure from J. You and F. Nori, Nature 474, 589 (2011)).

we consider in some detail only the flux qubit. The flux qubit Hamiltonian is

Ĥ =
Q̂2

2CJ
+

Φ̂2

2L
− EJ cos

[
Φ̂

Φ0
− Φext

Φ0

]
, (1.7)

where Φext is an external control flux and L is the ring inductance. Notice that the external
flux acts as a bias, the potential being symmetric for Φext = Φ0/2.
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(a) (b)

Figure 1.2: (a) Actual configuration of a three junction flux qubit. The arrows indicate the two
opposite directions of the circulating supercurrent, giving the |L/R〉 states (figure from J. Clarke
and F. K. Wilhelm, Nature 453, 1031 (2008)). (b) Potential energy as a function of the two gauge
invariant phases across the identical Josephson junctions and potential energy along the red and
blue trajectories. The phase at the remaining junction is fixed by the requirement of ψ being single
valued (figure from J. Mooij et al., Science 285, 1036 (1999)).

In terms of the energy eigenstates |g〉 and |e〉, the ground state and the first excited
state given by the Hamiltonian in Eq. (1.7), the localized basis |R/L〉, which is the basis
of states localized in one of the two wells, reads

|R〉 = cos
φ

2
|g〉+ sin

φ

2
|e〉

|L〉 = sin
φ

2
|g〉 − cos

φ

2
|e〉,

(1.8)

where φ depends on the control parameter Φext. In particular, for zero bias one has
φ = π/2 and Eq. (1.8) becomes |R/L〉 = (|g〉± |e〉)/

√
2. In this basis, using the Pauli spin

matrices σz = |R〉〈R| − |L〉〈L| and σx = |R〉〈L| + |L〉〈R|, the qubit Hamiltonian can be
written as

Ĥ = −~
2

(∆σx + εσz). (1.9)

The frequency ∆ is called tunneling element and ε the bias. Diagonalizing the Hamiltonian
of Eq. (1.9) one finds tan(φ) = ∆/ε. In Fig. 1.3 is depicted the potential in the biased case
with energy levels, tunneling element and bias factor. In the working regime the system
can transfer its state from an anti-clockwise circulating current state |L〉 to a clockwise
one |R〉, by tunneling through the effective potential barrier. This phenomenon takes the
name of macroscopic quantum tunneling (MQT). The quantum state of the qubit can be
a superposition of the two above current states as, for example, |g〉 or |e〉.

A major obstacle to the realization of quantum operations is constituted by the envi-
ronmental noise sources causing the loss of quantum coherence and, on larger time scales,
the system relaxation. To these processes are associated two characteristic times, the
relaxation time T1 and the decoherence time T2.

The theoretical modeling of the dissipative qubit dynamics is based on the introduction
of an Hamiltonian in an enlarged Hilbert space, which includes, along with the qubit
Hamiltonian of Eq. (1.9), a reservoir of harmonic oscillators linearly interacting with the
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system, modeling the quantum noise source, and a classical noise source of 1/f noise [32,
33]. This last noise source is attributable to the impurities present in the junctions,
behaving as effective two-level systems, and represent a serious limitation on the system’s
coherence. However, in the following we limit to the study of the quantum noise only, as
it represents an ubiquitous dissipation mechanism in a variety of quantum system, both
natural and manufactured.

Figure 1.3: Potential energy as a function of the flux threading the superconducting loop realizing
the flux qubit. The localized states |R/L〉 are given by Eq. (1.8) and are associated to the current
moving in the anti-clockwise and clockwise directions.

1.1.2 Single-molecule magnets

Another class of physical systems displaying quantum tunneling dynamics at low temper-
ature is that of single-molecule magnets (SMM), hi-spin molecules (s = 10) in which the
total spin tunnels through an effective potential barrier due to the molecular field creating
two states of opposite spin, which we can indicate as | ↓〉 and | ↑〉. Their state can be
manipulated by an external applied magnetic field [34–36]. Their slow relaxation time at
the temperature of few K makes these composites suitable as hi density storage devices
and possible resources for classical and quantum computing [37, 38]. Indeed quantum
coherence has been recently demonstrated in Fe8 single-molecule magnets with coherence
time of ∼ 700 ns at T = 1.3 K [39].

The effective Hamiltonian of the system can be put in the form [36]

Ĥ = Ĥ ′ −DŜ2
z −AŜ4

z − gzµBHzŜz (1.10)

where the last three terms are a quartic potential in the spin variable Ŝz with asymmetry
given by the external (magnetic) bias field Hz and [Ŝz, Ĥ

′] 6= 0.
Performing a sweep with the magnetic field Hz from negative to positive values, the

magnetization shows an hysteresis loop with steps corresponding to the resonant tunnel-
ing, occurring as the couples of energy levels associated to the potential become nearly
degenerate. In figure 1.4 is shown the potential in the unbiased and biased case, with
tunneling transitions occurring via the levels indicated by arrows, and energy levels as
functions of the external bias.
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Figure 1.4: (a) Potential with zero bias and energy levels associated to the spin projections. Biased
case without (b) and with (c) the fourth order term in the Hamiltonian Eq. (1.10). Tunneling
transitions indicated by arrows. N = 4 refers to the step in the hysteresis loop at a certain
temperature for a given (positive) external field Hz. (d) Energies of the spin operator eigenstates
as a function of the external field without and (e) with the quartic term in the Hamiltonian. In
the latter case at different field strength different couples of levels are in resonance (figure from J.
R. Friedman and M. P. Sarachik, Annu. Rev. Condens. Matter Phys. 1, 109 (2010)).

The SMM are another example of dissipative quantum system with an environment
at a certain temperature, which can be modeled as a reservoir with degrees of freedom
linearly interacting with the system.

1.2 Caldeira-Leggett model of dissipation in quantum me-
chanics

The model of dissipation considered throughout this thesis is the so-called Caldeira-Leggett
model [40–42]. It allows for a microscopic derivation of dissipation which emerges once we
consider the reduced dynamics of the system in interaction with the environment. This is
in contrast with the classical case, where noise terms whose statistical properties are fixed
a priori, are phenomenologically introduced into the dynamical equations.

The system, a particle of mass M and coordinates q̂ and p̂ subject to a potential
V0, is linearly coupled to the environment, a reservoir of N independent quantum har-
monic oscillators of masses mj , frequencies ωj and coordinates x̂j and p̂j . The reservoir
is also called, in the thermodynamical limit N →∞, bosonic heat bath (bosonic since its
excitations obey the Bose statistics).

The full Hamiltonian is the sum of a free system term, a free reservoir term and a
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system-reservoir interaction term

Ĥ =ĤS + ĤR + ĤI

=
p̂2

2M
+ V0(q̂) +

N∑
j=1

1

2

[
p̂2
j

mj
+mjω

2
j x̂

2
j

]
−

N∑
j=1

cj x̂j q̂
(1.11)

The interaction of the particle with the individual degrees of freedom of the bath is
defined by the set of constants cj and is proportional to the inverse of the reservoir’s vol-
ume [9]. Thus, for a macroscopic environment, the coupling with the individual oscillators
is weak, which justifies the linear coupling assumption. As a consequence we can consider
the bare system energy levels unaffected by the reservoir. The collective effect of the
reservoir on the system level structure can be assumed to be a frictional level broadening.
Nevertheless, since the number of degrees of freedom coupled to the system is very large
for a macroscopic reservoir, such as that surrounding a superconducting device [40], the
overall effective system-bath coupling can be strong (see Sec. 1.4.1).

The effective potential energy to which the system is subject is Veff(q̂, x̂j) = V0(q̂) +
∆V (q̂, x̂j) where

∆V (q̂, x̂j) =
N∑
j=1

(
−cj x̂j q̂ +

1

2
mjω

2
j x̂

2
j

)
.

The minima surface of Veff, with respect to the reservoir coordinates at fixed q̂, is at
x̂min
j = cj q̂/(mjω

2
j ). The corresponding q̂-dependent offset in the potential felt by the

particle is

∆V (q̂)x̂min
j

= −
N∑
j=1

c2
j

2mjω2
j

q̂2.

This term can be large and modify qualitatively the potential V0. To have a purely dissi-
pative environment and get rid of this additional potential term we add a renormalization
term −∆V (q̂)x̂min

j
to the Hamiltonian. The new renormalized Hamiltonian can be rewrit-

ten as

Ĥ =
p̂2

2M
+ V0(q̂) +

N∑
j=1

1

2

 p̂2
j

mj
+mjω

2
j

(
x̂j −

cj
mjω2

j

q̂

)2
 . (1.12)

The model described by Eq. (1.12) is the Caldeira-Leggett model.

1.3 Quantum Langevin equation

The derivation of dissipation on a microscopic basis, within the Caldeira-Leggett model,
can be carried out using the density matrix formalism or deriving a quantum version of
the Langevin equation for the particle’s position operator q̂ in the Heisenberg picture.
This latter approach, though not easily manageable in practice for predicting the actual
time evolution of the system, has the advantage to allow for a clear comparison with the
classical case.

The density matrix formalism, within the path integral representation of quantum
mechanics, will be used in the next chapters for studying the time evolution of bistable
systems in various dissipation regimes.
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Taking the time derivative of the Heisenberg equations of motion for q̂(t) and x̂j(t),
the following two second order differential equations are obtained

M ¨̂q(t) +
dV (q̂(t))

dq̂(t)
+ q̂(t)

N∑
j=1

c2
j

mjω2
j

=

N∑
j=1

cj x̂j(t) (1.13)

and

mj
¨̂xj(t) +mjω

2
j x̂j(t) = cj q̂(t). (1.14)

In Laplace space Eq. (1.14) reads

x̃j(λ) =
λ

λ2 + ω2
j

xj(0) +
ωj

λ2 + ω2
j

ẋj(0)

ωj
+

cj
ωjmj

ωj
λ2 + ω2

j

q̃(λ).

Transforming back to the time domain we get the solution

x̂j(t) = x̂j(0) cos(ωjt) +
p̂j(0)

mjωj
sin(ωjt) +

cj
mjωj

∫ t

0
dt′q(t′) sin[ωj(t− t′)]. (1.15)

Substituting Eq. (1.15) into Eq. (1.13) we obtain the following generalized Langevin
equation for the particle’s position operator

M ¨̂q(t) +M

∫ t

0
dt′γ(t− t′) d

dt′
q̂(t′) +

dV (q̂(t))

dq̂(t)
= −Mγ(t)q̂(0) + ζ̂(t), (1.16)

where

γ(t) = Θ(t)
1

M

N∑
j=1

c2
j

mjω2
j

cos (ωjt) (1.17)

and

ζ̂(t) =

N∑
j=1

cj

[
x̂j(0) cos (ωjt) +

p̂j(0)

mjωj
sin (ωjt)

]
(1.18)

are respectively the memory-friction kernel and the bath force operator.
Suppose the bath is in the thermal state

ρRth =
e−βĤR

Z
, (1.19)

then the expectation value of the bath force operator and the bath force autocorrelation
are

〈ζ̂(t)〉R = TrR

[
ρRthζ̂(t)

]
= 0 and

〈ζ̂(t) ˆζ(0)〉R = TrR

[
ρRthζ̂(t)ζ̂(0)

]
=

N∑
j=1

~c2
j

2mjωj

[
coth

(
~ωjβ

2

)
cos (ωjt)− i sin (ωjt)

]
,

(1.20)
respectively.

In the classical limit (~→ 0) the bath force correlation function is

lim
~→0
〈ζ̂(t) ˆζ(0)〉R =

1

β

N∑
j=1

c2
j

mjω2
j

cos (ωjt) = MkBTγ(t), (1.21)
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where we used coth(β~ωj/2) ∼ 2(β~ωj)−1 for ~ → 0. Therefore the two relations in
Eq. (1.20), in the continuum limit (N → ∞), describe a stochastic force which in turn
reproduce, in the classical limit, a classical colored noise source.

Note that in the quantum Langevin equation (1.16) a term appears in the RHS which
is dependent on the initial condition q̂(0). This term vanishes at long time due to the
interference of the quasi continuum of spectral components of γ(t), and is ascribable to
the fact that we have implicitly assumed a factorized initial condition with the reservoir
in the canonical equilibrium.

Consider a different preparation, e.g. with the particle held fixed at the position q0

from t = −∞ to t = t0: the reservoir starts in a shifted thermal condition. Focusing on the
jth oscillator, for times t < t0 it can be considered as a particle in a potential dependent
on q0 with Hamiltonian

Ĥj
R(q0) =TrS

[
|q0〉〈q0|Ĥj

RI

]
=

p̂2
j

2mj
+ V (x̂j , q0) =

p̂2
j

2mj
+

1

2
mjω

2
j

(
x̂j −

cj
mjω2

j

q̂0

)2

.
(1.22)

Setting Xj := ωj/Ωj(x̂j − cjq0/mjω
2
j ) we have that the new free reservoir Hamiltonian is

ĤR(q0) =
N∑
j=1

(
p̂2
j

2mj
+

1

2
mjΩ

2
jX̂

2
j

)
=

N∑
j=1

~Ωj

(
b̂†j b̂j +

1

2

)
. (1.23)

Now consider the RHS of Eq. (1.16). We define a new modified bath force operator
ξ̂(t) which includes the term dependent on the initial particle’s position. By the definition
in Eq. (1.18), we get

ξ̂(t) =ζ̂(t)−Mγ(t)q0

=
∑
j=1

cj

[
X̂j(0) cos (ωjt) +

p̂j(0)

mjωj
sin (ωjt)

]
.

(1.24)

It follows immediately that the new force has the properties (1.20) and (1.21) if the
averages are taken with respect to the shifted thermal density matrix of the reservoir

ρth
R (q0) =

e−βĤR(q0)

Z(q0)
. (1.25)

The new initial condition, with the particle held fixed at q0 and the reservoir ther-
malized in interaction with the particle, gives to the quantum Langevin equation a close
correspondence with the classical version, featuring the single stochastic force term ξ(t),

M ¨̂q(t) +M

∫ t

0
dt′γ(t− t′) d

dt′
q̂(t′) +

dV (q̂(t))

dq̂(t)
= ξ̂(t), (1.26)

It is to notice that this kind of preparation is actually realized for a large class of
experimental settings.
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1.4 Spectral density function

In this section we introduce the bath spectral density function, which describes the fre-
quency distribution of the reservoir (or thermal bath) and the coupling of each oscillator
with the particle

J(ω) =
π

2

N∑
j=1

c2
j

mjωj
δ(ω − ωj). (1.27)

Note that J(ω) has the dimension of a mass times a frequency. By comparing Eq. (1.17)
and Eq. (1.27) one can see that the bath spectral density function and the memory damping
kernel are related by the equation

γ(t) = Θ(t)
1

M

2

π

∫ ∞
0

dω
J(ω)

ω
cos(ωt). (1.28)

To relate J(ω) to γ̃(ω), the Fourier transform of the memory damping kernel γ(t), we have
to express the latter in the frequency space. The Laplace transform of γ(t) (see Eq. (1.17))
is

γ̂(λ) =
1

M

N∑
j=1

c2
j

mjω2
j

λ

λ2 + ω2
j

. (1.29)

The Fourier transform is related to the Laplace transform through the relation γ̃(ω) =
limε→0+ γ̂(λ = −iω + ε), so that in Fourier space γ(t) reads

γ̃(ω) = lim
ε→0+

1

M

N∑
j=1

c2
j

mjω2
j

iω

ω2 − ω2
j + 2iεω

. (1.30)

The real part of γ̃(ω) = γ̃′(ω) + γ̃′′(ω) is

γ̃′(ω) =
1

M

π

2

N∑
j=1

c2
j

mjω2
j

δ(ω − ωj). (1.31)

As a result the real part of the Fourier transform of the damping kernel is related to the
spectral density function through the relation

J(ω) = Mγ̃′(ω)ω. (1.32)

Already for a moderate number of reservoir oscillators, the periodicity in the time
evolution of the system, given by the Poincarè recurrence time, is practically lost so that
the continuum or thermodynamical limit N → ∞ of the reservoir is usually considered.
In this case the coupling constant cj , the masses mj and the frequencies of the bath’s
oscillators ω are continuous functions c(ω), m(ω) and ω, respectively. The special case of
frequency independent (Ohmic) damping γ̃′(ω) = γ, Eq. (1.32) gives J(ω) = Mγω.

However, allowing this linear behavior to arbitrarily high frequency gives non-physical
results as, for example, the divergence of the renormalization term

−∆V (q̂)x̂min
j

= 2γMq2
0π

∫ ∞
0

dω =∞ (1.33)

in the Hamiltonian Eq. (1.12).
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To avoid this kind of difficulties a cut-off is introduced on the memory time of the
kernel at a finite time τD = ω−1

D , the inverse of the (Drude) frequency ωD. The friction
memory kernel with Drude cut-off reads

γ̃(t) = Θ(t)γωD exp(−ωDt). (1.34)

This exponential cut-off corresponds to an algebraic cut-off on the spectral density func-
tion. Indeed

γ̂(λ) =
γωD
λ+ ωD

(1.35)

and, using the relation γ̃(ω) = limε→0+ γ̂(λ = −iω + ε),

γ̃′(ω) + iγ̃′′(ω) =
γ

1 + (ω/ωD)2
+ i

γω/ωD
1 + (ω/ωD)2

. (1.36)

The corresponding spectral density is

J(ω) = Mγ̃′(ω)ω =
Mγω

1 + (ω/ωD)2 (1.37)

The physical consequences of the introduction of the cut-off is that the system behaves like
being in contact with an Ohmic environment on time scales longer than τD. At shorter
times the higher frequencies are coupled to the system according to Eq. (1.37). So the
cut-off corresponds to a coarse grained model for the system dynamics. What is the effect
of the high frequency modes of the reservoir on the coarse grained dynamics?

To answer this question we consider a general cut-off f(ωc) at a characteristic frequency
ωc and take into account the high frequency part (ω > ωc) of the reservoir by writing the
spectral density as the sum [9]

J(ω) = Jlf(ω)f(ωc) + Jhf(ω)[1− f(ωc)]. (1.38)

Comparing the definition of J(ω) in Eq. (1.27) with the expression in Eq. (1.30), we get

γ̃(ω) = lim
ε→0+

2

Mπ

∫ ∞
0

dω′
J(ω′)

ω′
iω

ω2 − ω′2 + 2iεω
. (1.39)

At ω � ωc we have

γ̃(ω � ωc) ∼
Jlf(ω)

Mω
− i ω

M
∆hf, (1.40)

where ∆hf = 2/π
∫∞

0 dω′Jhf(ω
′)/ω′3. Inserting this expression into the Fourier transform

of the quantum Langevin equation (Eq. (1.16)) we have

iω(M + ∆hf)q0 + F [V ′(q̂)] = ζ(−iω), (1.41)

which makes clear that, at sufficiently long times (t� ω−1
c ), the effect of the high frequency

spectral density function consists in dressing the particle’s bare mass by the high frequency
modes of the bath. In the coarse grained description, once the mass has been redefined,
one can consider only the low frequency part of the spectral density function and drop the
suffix “lf “.

In the general case of continuous bath the spectral density function is modeled as a
power law, characterized by the exponent s with respect to ω, with an exponential cutoff
at ωc

J(ω) = Mγsω
1−s
ph ωse−ω/ωc . (1.42)

The bath is said sub-Ohmic for 0 < s < 1 and super-Ohmic for s > 1. The phonon
frequency ωph is introduced for γs to mantain the dimension of a frequency also in the
non-Ohmic case (s 6= 1).
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1.4.1 Coupling with the individual bath oscillators in the Ohmic case

Having introduced the bath spectral density function J(ω) and its continuous limit, it
is now possible to extrapolate the frequency dependence of the coupling of the system
with the individual bath oscillators for frequencies � ωc. The general expression for the
spectral density is

J(ω) =
π

2

N∑
j=1

c2
j

mjωj
δ(ω − ωj). (1.43)

If the n-th coupling coefficient is given by

cn =

(
γ

2Mm

πn
ω3
n

)1/2

, (1.44)

then, substituting in Eq. (1.43) with ωn/n =: ∆ωn, we get

J(ω) =Mγ

NΩ∑
j=1

∆ωjωjδ(ω − ωj)

N�1−−−→Mγ

∫ ∞
0

dω′ω′δ(ω − ω′) = Mγω,

(1.45)

and we obtain the Ohmic spectral density in the continuous limit.
The result (1.44) shows that if the environment is a large collection of oscillators, one

can have strong dissipation, quantified by γ, and still a weak coupling with the individual
oscillators, as anticipated in Sec. 1.2.

1.5 Outline of the thesis

In this thesis the dissipative dynamics of bistable quantum systems, as those described in
the previous sections, is studied within the path integral (PI) approach. This approach
is particularly effective in the presence of nonlinear potentials, such as those involved in
tunneling dynamics and escape problems in the quantum regime [8, 9, 43, 44].

Being inherently non-perturbative in the coupling with the environment, the PI ap-
proach is suited for treating the dissipation in the weak to strong coupling regime, whereas
the traditional Born-Markov master equation techniques, perturbative in the coupling [42,
45], are confined to the weak coupling case. Moreover, the PI techniques have the fur-
ther advantage of being flexible, as they allow for different approximate treatments in the
various dissipation regimes.

The Hamiltonian model used throughout the thesis is the Caldeira-Leggett model,
introduced in Sec. 1.2. The results shown are obtained for Ohmic dissipation in the
thermodynamical limit, i.e. considering a quasi-continuum of bath spectral components
with spectral density given by Eq. (1.42) with s = 1.

In Chapter 2 a brief description of the path integral representation of Quantum Me-
chanics is given, with a detailed description of the approach for discrete variable systems.
In particular, as an exemplification, the dynamics of a free two-level system is obtained by
the PI approach and compared to the standard result as given by the Sroödinger equation.

In the second part of the chapter a PI picture of dissipation is introduced by deriv-
ing the Feynman-Vernon (FV) influence functional from the trace over the environment
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degrees of freedom in the PI representation of the full density matrix, along the lines of
Ref. [9]. The FV influence functional multiplies the amplitude associated to a path of
the isolated system, accounting for the effects brought by the environment. Further, it
incorporates the effects exerted by the motion of the particle on the reservoir of harmonic
oscillators constituting the environment. This last feature gives a hint of how this ap-
proach describes the non-Markovoian character of the dynamics in open systems. Using
the FV formalism, a formally exact expression for the propagator of the system reduced
density matrix is obtained. However this exact expression is too intricate in the general
case and of little practical use, unless suitable approximations are introduced.

In Chapter 3 the main approximations to the FV influence are introduced and applied
to the the so-called spin-boson model, a two-level system coupled the bosonic heat bath of
the Caldeira-Leggett model. A generalized master equation is derived for the populations,
the diagonal elements of the system reduced density matrix in the {|L〉, |R〉} basis, starting
from their PI expressions. The kernels of the master equation are taken within approxi-
mation schemes designed to deal with different coupling strengths and temperatures.

In Chapter 4 the techniques developed in Chapter 3 are applied to a bistable system
beyond the two-level system approximation. The energy levels in the strongly non-linear
potential considered are arranged in doublets. If kBT is of the order of the inter-doublet
spacing or the initial condition involves energy states beyond the first doublet of energy
state, a description in terms of two-level system is inappropriate and the physical sys-
tem has to be describes as a multi-state system. Specifically, the so-called double-doublet
system is considered. By the combined use of the Bloch-Redfield perturbative approach
and of the PI techniques, a phase diagram showing the various dynamical and dissipa-
tive regimes of the double-doublet system is established. Examples of time evolution of
the populations in a spatially localized basis are shown in various coupling/temperature
regimes.

Chapter 5 deals with the general case of biased multi-state system in the strong cou-
pling regime, possibly driven by a high-frequency oscillating force. Using a Markov-
approximated version of the generalized master equation for these multi-state systems,
a systematic study is performed on the transient and stationary properties of the dynam-
ics as functions of the driving parameters. The role of the temperature and the damping
is investigated. Within the same approach the problem of the escape from a metastable
state with nonequilibrium initial condition, in the presence of strong dissipation, is also
considered in the static case. This dynamical approach to escape dynamics allows to take
in consideration a broader class of initial preparations, with the particle possibly not in
the quasi-stationary state, at the bottom of the metastable well. This is motivated by the
role played in the corresponding classical problem by the initial condition. The nonmono-
tonic behavior of the escape time as a function of the noise intensity, found in the classical
context, takes the name of noise enhanced stability (NES). The study of the corresponding
quantum problem is aimed at determining if a similar effect is present once the tunneling
is involved.
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Chapter 2

Path integral approach for discrete
variable systems

In this chapter the path integral representation of Quantum Mechanics is introduced and
the expression for the propagator of the state vector for a closed system is derived in
the position representation. The corresponding expression for a closed system with finite
Hilbert space (of dimension D) is derived in the eigenbasis {|kj〉} of some operator K̂.
This general expression is specialized to the free two-level system. The propagator for the
density matrix of a discrete variable system with D-dimensional Hilbert space is obtained
along the same lines.

In the second part of the chapter the path integral approach to dissipation is introduced
for a general open quantum system. The trace over the environment in the path integral
expression of the full density matrix leads to the introduction of the Feynman-Vernon
(FV) influence functional. The discrete variable version of the FV functional is obtained
through a suitable parametrization for the step-like paths of the reduced density matrix
(RDM) of the open system. The formalism and the notation introduced here are applied
to the dissipative two-level system in Chap. 3 and to the dissipative double-doublet system
in Chap. 4.

2.1 Path integral representation of Quantum Mechanics

In this section a brief outline of the path integral expression of the propagator for a generic
closed quantum system is given following the derivation in [46, 47].

The probability amplitude for a quantum mechanical system, described by the (time
independent) Hamiltonian Ĥ = T (p̂) + V (q̂), to be in the eigenstate |q〉 of the position
operator q̂ at time t is given by

〈q|ψ(t)〉 = 〈q|U(t− t′)|ψ(t′)〉 =

∫
dq′〈q|U(t− t′)|q′〉〈q′|ψ(t′)〉, (2.1)

where U(t) = exp(−iĤt/~) is the time evolution operator, solution of the Schrödinger
equation i~U̇(t) = ĤU(t), which satisfies the composition law U(t−t′) = U(t−t′′)U(t′′−t′)
(where t′ < t′′ < t).

The function

G(q, t; q′, t′) ≡ 〈q|U(t− t′)|q′〉 (2.2)

21
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is the propagator for the quantum state of the system from the state |q′〉 at time t′ to the
state |q〉 at time t.

Dividing the time interval t − t′ in N � 1 intervals ∆t = (t − t′)/N and using the
Trotter splitting formula

e−i(T̂+V̂ )(t−t′)/~ =
(
e−i(T̂+V̂ )∆t/~

)N
= lim

N→∞

(
e−iT̂∆t/~e−iV̂∆t/~

)N
, (2.3)

the propagator can be put in the form

G(q, t; q′, t′) ' 〈q|
N∏
n=1

e−iT̂∆t/~e−iV̂∆t/~|q′〉

=
N∏
n=1

∫
dqndpn〈qn|pn〉〈pn|e−iT̂∆t/~e−iV̂∆t/~|qn−1〉δ(qN − q)δ(q0 − q′)

=
N∏
n=1

∫
dqn

dpn
2π~

e
− i

~∆t
[
p2
n/2M+V (qn−1)−pn

qn−qn−1
∆t

]
δ(qN − q)δ(q0 − q′).

(2.4)

Here the identity operator I =
∫
dqn

∫
dpn|qn〉〈qn|pn〉〈pn| has been introduced N times in

passing from the first to the second line and the scalar product 〈qn|pn〉 = exp(iqnpn/~)/
√

2π~
has been used.

Performing the gaussian integrals over pn (using the result
∫
dp exp(−ap2 + bp) =√

π/a exp(b2/4a)) and taking the limit N → ∞, the path integral representation of the
propagator is obtained

G(q, t; q′, t′) =

∫ q(t)=q

q(t′)=q′
Dqe

i
~S[q]. (2.5)

The functional S[q] =
∫ t
t′ dt

′′L(q, q̇) is the classical action functional associated to the
Lagrangian L(q, q̇) = Mq̇2/2− V (q). The integration symbol is defined as∫

Dq = lim
N→∞

√
M

i2π~∆t

N−1∏
n=1

dqn. (2.6)

The meaning of Eq. (2.5) is that the propagator is the sum of the amplitudes exp(iS[q(τ)]/~)
over all possible paths q(τ) with fixed extrema (the values of the function q(τ) at t′ and
t).

2.2 Propagator for a discrete variable system

There are quantum system with no classical analogues, as for example two-state systems
like a spin 1/2 particle, for which the classical action is not defined. Nevertheless the path
integral expression for the propagator can be constructed as follows.

Consider a system with a finite Hilbert space of dimension D, spanned by some basis
set B = {|K1〉, . . . , |KD〉}. The probability amplitude for the system to be in the state
|kf 〉 ∈ B at time tf is the discrete analogous of Eq. (2.1), i.e.

〈kf |ψ(tf )〉 =

KD∑
ki=K1

G(kf , tf ; ki, t0)〈ki|ψ(t0)〉. (2.7)
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Splitting the time interval t− t′ in N � 1 small ∆t, the propagator can be written as

G(kf , tf ; ki, t0) = 〈kf |
N∏
j=1

e−iĤ∆t/~|ki〉

' δkNkf δk0ki

N∏
j=1

∑
kj

〈kj |1−
i

~
Ĥ∆t|kj−1〉.

(2.8)

In passing from the first to the second line of Eq. (2.8) the identity I =
∑M

j=1 |Kj〉〈Kj | has
been introduced N + 1 times. Moreover, due to the small ∆t, the time evolution operator
from time tj−1 to time tj has been taken in the linearized form, i.e. to the first order
in ∆t. As the limit N → ∞ of Eq. (2.8) is taken, the path integral expression for G is
obtained, but before doing the limit it is necessary to perform other intermediate steps.

The propagator in Eq. (2.8) is the sum of the amplitudes relative to all of the possible
paths with n < N transitions. If, for some path, kj = kj−1, then no transitions occur in
the time interval tj+1 − tj−1. As a consequence, even if N is very large there are paths
with few or even zero transitions. It is convenient to express the propagator as the sum
over the propagators Gn with fixed number n of transitions

G(kf , tf ; ki, t0) =
∞∑
n=0

Gn(kf , tf ; ki, t0), (2.9)

and then to take the limit N →∞, as in Ref. [48].
The propagator with zero transitions doesn’t vanish only if initial and final state are

the same (kf = ki). It reads

G0(kf , tf ; ki, t0) = lim
N→∞

δkNkf

N∏
j=1

∑
kj

〈kj |1−
i

~
Ĥ∆t|kj−1〉δkjkj−1

= lim
N→∞

δkfki

(
1− i

~
Hkfki

tf − t0
N

)N
≡ δkfkie

−iEfi(tf−t0).

(2.10)

Hereinafter the Hamiltonian Ĥ in the {|k〉} representation is decomposed into its diagonal
and off-diagonal parts

Enm = δnm〈kn|Ĥ|km〉/~
∆nm = (1− δnm)〈kn|Ĥ|km〉/~.

(2.11)

The one-transition propagator is different from zero if kf 6= ki. Suppose that the unique
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Figure 2.1: Example of a path with two transitions at times t1 and t2. The factors that
form the amplitude for this path are indicated in the upper part of the figure. See the last
line of Eq. (2.13) for comparison.

transition occurs at time tL, where L runs between 1 and N − 1, then

G1(kf , tf ;ki, t0) = lim
N→∞

δkNkf δk0ki

N−1∑
L=1

N∏
j=L+1

∑
kj

〈kj |1−
i

~
Ĥ∆t|kj−1〉δkjkj−1

×
∑
kL

〈kL| −
i

~
Ĥ∆t|kL−1〉

L−1∏
j=1

∑
kj

〈kj |1−
i

~
Ĥ∆t|kj−1〉δkjkj−1

= lim
N→∞

N−1∑
L=1

∆t

(
1− iEff

tf − tL
N − L

)N−L
(−i∆fi)

(
1− iEii

tL − t0
L

)L
=− i

∫ tf

t0

dt1∆fie
−i[Eff (tf−t1)+Eii(t1−t0)].

(2.12)

Notice that the sum over the intermediate state collapses because the target state of the
transition has to be the final (fixed) state.

By a similar construction the two-transition propagator G2 is obtained. For n ≥ 2
the propagator is nonzero for any pair of initial and final states. In the n = 2 case the
target state of the first transition and the starting state of the second transition have to be
the same, which implies that only one of the sums over the intermediate states survives.
Assume that the first transition to take place at time tR and the second at time tL with
0 < R < L < N . The resulting n = 2 propagator reads

G2(kf , tf ;ki, t0) = lim
N→∞

N−1∑
L=2

∆t

(
1− iEff

tf − tL
N − L

)N−L∑
kR

(−i∆fR)

×
L−1∑
R=1

∆t

(
1− iERR

tL − tR
L−R

)L−R
(−i∆Ri)

(
1− iEii

tR − t0
R

)R
= (−i)2

∫ tf

t0

dt2

∫ t2

t0

dt1
∑
k1

∆f1∆1ie
−i[Eff (tf−t2)+E11(t2−t1)+Eii(t1−t0)]

(2.13)

In Fig. 2.1 is sketched an example of two-transition path. The factors constituting the
amplitude are indicated in correspondence of the stationary parts and of the transitions.

The three-transition propagator G3, obtained with the same procedure as that used
above for G2, results in a series of three nested integrals over the transition times tj (with
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j = 1, 2, 3). The sum over the intermediate states is for the first and second transition,
since the third is fixed by the fact that the target state has to be |kf 〉. The resulting
expression is

G3(kf , tf ; ki, t0) = (−i)3
∫ tf

t0

dt3

∫ t3

t0

dt2

∫ t2

t0

dt1
∑
k1,k2

e−iEff (tf−t3)
3∏
j=1

∆jj−1e
−iEjj−1(tj−tj−1)

(2.14)
We are now in the position to generalize the result for the n-transition propagator which
reads

Gn(kf , tf ; ki, t0) = (−i)n
∫ tf

t0

D{t}ne−iEff (tf−tn)
n∏
j=1

∆jj−1e
−iEjj−1(tj−tj−1), (2.15)

where ∫ tf

t0

D{t}n =

∫ tf

t0

dtn

∫ tn

t0

dtn−1 . . .

∫ t2

t0

dt1
∑

k1,...,kn−1

. (2.16)

Notice that in the energy basis {|Ej〉} the propagator assumes a very simple form because
the Hamiltonian is diagonal in this basis: every term but the first (G0) vanishes as, by the
definition in Eq. (2.11), the factors ∆jj−1 vanish. In the energy basis

G(Ef , tf ;Ei, t0) = δEfEie
−iEfi(tf−t0). (2.17)

2.2.1 Propagator for the free two-level system

The simplest nontrivial example of a quantum system with finite Hilbert space is that of
a two-level system (TLS). As an illustrative example, I give the path integral expression
of the propagator in the localized basis {|L〉, |R〉}, introduced in Sec 1.1.1 (Eq. (1.8)). In
this basis the Hamiltonian reads

ĤTLS = −~
2

(∆σx + εσz), (2.18)

where σz = |R〉〈R| − |L〉〈L| and σx = |R〉〈L| + |L〉〈R|. In terms of the tunneling (∆)
and bias (ε) factors the energy splitting between the ground and the excited states is
E ≡ Ee − Eg = ~

√
∆2 + ε2 (see Fig. 1.3).

Suppose that the system is in the localized state |L〉 at time t = 0. The probability
amplitude for the system to be in the state |L〉 at time t is easily calculated using Eq. (2.7)
in the energy eigenbasis, with the propagators given by Eq. (2.17), which gives

〈L|ψ(tf )〉 = cos

(
Et

2~

)
+ i

~ε
E

sin

(
Et

2~

)
, (2.19)

where I used Eq. (1.8) and tanφ = ∆/ε. The survival probability in the state |L〉 is thus

|〈L|ψ(tf )〉|2 =
~2ε2

E2
+

~2∆2

E2
cos2

(
Et

2~

)
. (2.20)

Let’s move to the path integral expression in the localized basis. The probability am-
plitude 〈L|ψ(tf )〉, as given by Eq. (2.7) in the localized basis, coincides with the propagator
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G(L, t;L, 0) itself. The initial and final state are fixed by the definition of the propagator
but, contrary to the D > 2 case in the TLS there is no sum over the internal states, since
the path can only alternate between |L〉 and |R〉.

Specializing to the TLS case, the matrix elements of the Hamiltonian are Ejj = ±ε/2
and ∆jk = −∆/2 (see Eq. (2.18)). Recognizing that, if the starting and final states are the
same, each contributing path must have an even number 2n of transitions, the sum (2.9)
of general term (2.15) becomes

G(L, t;L, 0) =

∞∑
n=0

∫ t

0
dt2n . . .

∫ t2

0
dt1

(
−∆2

4

)n n∏
j=0

e−iε(t2j+1−t2j)/2
n∏
j=1

eiε(t2j−t2j−1)/2

=
∞∑
n=0

∫ t

0
dσ0

∫ t−σ0

0
dτ1 . . .

∫ t−...τn−1−σn−1

0
dτn

(
−∆2

4

)n n∏
j=0

e−iεσj/2
n∏
j=1

eiετj/2,

(2.21)
where I introduced the n + 1 odd time intervals σj = t2j+1 − t2j and the n even time
intervals τj = t2j − t2j−1. The Laplace transform of Eq. (2.21) reads

G(L, λ;L, 0) =
∞∑
n=0

(
−∆2

4

)n n∏
j=0

1

λ+ iε/2

n∏
j=1

1

λ− iε/2

=
1

λ+ iε/2

∞∑
n=0

(
− ∆2/4

λ2 + ε2/4

)
=

λ− iε/2
λ2 + E2/4~2

.

(2.22)

The inverse Laplace transform is performed using the Bromwich integral

G(L, t;L, 0) = L−1{G(L, λ;L, 0)}(t) =
1

2πi

∫ c+i∞

c−i∞
dλeλtG(L, λ;L, 0), (2.23)

where, by convention, a counterclockwise oriented integration contour is used with c ∈
R > <{poles of G(L, λ;L, 0)}. The integral is evaluated calculating the residues at the
poles λ = ±iE/2~. The result is

G(L, t;L, 0) = cos

(
Et

2~

)
+ i

~ε
E

sin

(
Et

2~

)
, (2.24)

which coincides with the amplitude in Eq. (2.19) obtained in the energy basis.

2.3 Propagator for the density matrix of a discrete variable
system

As shown in the previous sections, the calculation of the propagator for a free system is
straightforward in the energy basis. However the path integral construction in different
basis (e.g. position eigenstates) demonstrates its usefulness in the presence of a (possibly
strong) interaction with the environment as in the Caldeira-Leggett model. As the envi-
ronment is the large thermal reservoir with uncontrollable degrees of freedom such as that
introduced in Sec. 1.2, the formalism suited for describing the system dynamics is that of
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the density matrix. Therefore, in view of the applications to the dissipative case, in this
section I construct a path integral expression for the propagator of the density matrix of
the discrete variable system considered in Sec. 2.2, which has a D-dimensional Hilbert
space spanned by the basis {|Kj〉} (j = 1, . . . , D). It turns out that the propagator as-
sumes the form of a double discretized path integral. The construction is along the same
lines as the one performed in Sec. 2.2.

The density matrix element kf , k
′
f at time tf is given by

ρkf ,k′f = 〈kf |ρ(tf )|k′f 〉 = 〈kf |U(tf , t0)|ρ(t0)|U †(tf , t0)|k′f 〉

=

KD∑
ki,k′i=K1

ρki,k′i(t0)G(kf , k
′
f , tf ; ki, k

′
i, t0),

(2.25)

where the propagator for the density matrix is defined as

G(kf , k
′
f , tf ; ki, k

′
i, t0) = 〈kf |U(tf , t0)|ki〉〈k′i|U †(tf , t0)|k′f 〉. (2.26)

Dividing the time interval into N sub-intervals and proceeding as for the quantum
state propagator in Sec. 2.2 we have

G(kf , k
′
f , tf ; ki, k

′
i, t0) = f

KD∑
kj ,k′j=K1

N∏
j=1

〈kj |U(tj , tj−1)|kj−1〉〈k′j−1|U †(tj , tj−1)|k′j〉, (2.27)

where f = δk0,kiδk′0,k′iδkN ,kf δk′N ,k
′
f

fixes the states at initial and final time. Again, it is con-

venient to express the propagator as a sum over the number of transitions of propagators
with fixed number n of transitions, i.e.

G(kf , k
′
f , tf ; ki, k

′
i, t0) =

∞∑
n=0

Gn(kf , k
′
f , tf ; ki, k

′
i, t0). (2.28)

The difference with the quantum state propagator is that now n is the sum of the number
of left and right coordinate transitions.

The propagator with zero transitions doesn’t vanish only if kf = ki and k′f = k′i. It is
given by

G0(kf , k
′
f , tf ; ki, k

′
i, t0) = lim

N→∞
f

N∏
j=1

∑
kj ,k′j

〈kj |1−
i

~
Ĥ∆tj |kj−1〉

× 〈k′j−1|1 +
i

~
Ĥ∆tj |k′j〉δkj+1,kjδk′j+1,k

′
j

=δkf ,kiδk′f ,k
′
i
exp {−iεi(tf − t0)},

(2.29)

where I have introduced

εj = Ejj − E′jj =
1

~

(
〈kj |Ĥ|kj〉 − 〈k′j |Ĥ|k′j〉

)
. (2.30)

Notice that εj vanishes if the system is in a diagonal configuration (kj = k′j). Indeed the
so-called bias factor exp(−iεj∆t) gives the probability amplitude to be in the off-diagonal
state (kj , k

′
j) during the time ∆t.
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The one-transition propagator is obtained with a procedure similar to that in Eq. (2.12)
and we eventually obtain

G1(kf , k
′
f , tf ; ki, k

′
i, t0) = −is1∆1

∫ tf

t0

dt1e
−i[εf (tf−t1)+εi(t1−t0)], (2.31)

where s1 = +1 (−1) if the unique transition, occurring at time t1, is in the left [unprimed]
(right [primed]) coordinate. Accordingly, the factor ∆1 is defined as ∆k1,k0 (∆k′1,k

′
0
) (see

Eq. (2.11)). Also in this case there is no sum over the internal transition as the target
state is fixed by the final state of the coordinate that makes the transition.

In the two-transition propagator, with transitions occurring at times t1 and t2, we sum
over the intermediate configurations {(k1, k

′
1), (k2, k

′
2)} denoted by {kj , k′j}2. The n = 2

propagator is

G2(kf , k
′
f , tf ; ki, k

′
i, t0) =

∫ tf

t0

dt2

∫ t2

t0

dt1
∑
{kj ,k′j}2

e−iεi(t1−ti)
2∏
j=1

(−isj∆j) e
−iεj(tj+1−tj).

(2.32)
According to Eq. (2.28), the full propagator is the sum over the number of transitions

of the n-transition propagators and reads

G(kf , k
′
f , tf ; ki, k

′
i, t0) =

∞∑
n=0

∫ tf

t0

D{t}ne−iεi(t1−t0)
n∏
j=1

(−isj∆j) e
−iεj(tj+1−tj), (2.33)

where ∫ tf

t0

D{tj}n =

∫ tf

t0

dtn

∫ tn

t0

dtn−1 . . .

∫ t2

t0

dt1
∑
{kj ,k′j}n

.

In Chapter 3 this general path integral expression for a D-state system is specialized
to the free TLS and then used in the dissipative case.

2.4 Path integral and dissipation: the Feynman-Vernon in-
fluence functional

Due to its close resemblance to the classical Langevin equation for a particle subject to
a stochastic force, the quantum Langevin equation gives a clear insight into the physics
described by the Caldeira-Leggett model. However, for practical calculations beyond the
weak coupling approximation, it is more convenient to use the path integral representation
of the reduced dynamics.

Consider the system described by the full Hamiltonian Ĥ in Eq. (1.12) plus a possible
external driving term of the type f(t)q̂(t). The full (system plus reservoir) density matrix
at the initial time is W(t0) and evolves according to

W(t) = U(t, t0)W(t0)U †(t, t0), (2.34)

where the time evolution operator, in the general case of a time dependent driving acting
on the particle, is

U(t, t0) = T exp

(
− i
~

∫ t

t0

dt′Ĥ(t′)

)
. (2.35)
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The position eigenvalues of the bath oscillators are collectively denoted by x := (x1, . . . , xN ).
In the position representation the matrix elements of W(t) are given by

〈qf ,xf |W(t)|q′f ,x′f 〉 =

∫
dq0dq

′
0dx0dx

′
0〈qf ,xf |U(t, t0)|q0,x0〉

× 〈q0,x0|W(t0)|q′0,x′0〉〈q′0,x′0|U †(t, t0)|q′f ,x′f 〉.
(2.36)

Here I have used Eq. (2.34) and inserted two times the identity operator
∫
dq0dx0|q0,x0〉〈q0,x0|,

before and after W(t0). The transition amplitude for the full system in the path integral
representation reads

〈qf ,xf |U(t, t0)|q0,x0〉 =

∫ qf ,xf

q0,x0

Dq(t)Dx(t) exp

(
i

~
S[q(t),x(t)]

)
, (2.37)

where S[q(t),x(t)] is the classical action for the full system’s path q(t),x(t) with fixed
extrema (q0,x0) at time t0 and (q,x) at time t

S[q(t),x(t)] =

∫ t

t0

dt′L(q(t′), q̇(t′),x(t′), ẋ(t′), t′).

For brevity, from now on I omit the time dependencies of the coordinates where there
is no ambiguity. The classical Lagrangian function for the full system is

L(q, q̇,x, ẋ, t) = LS(q, q̇, t) +

N∑
j=1

LjR(q, q̇, xj , ẋj , t), (2.38)

where the bare system Lagrangian is

LS(q, q̇, t) =
Mq̇2

2
− V (q)− f(t)q (2.39)

and the Lagrangian of the j-th oscillator under the influence of the external time-dependent
force exerted by the particle is

LjRI(q, q̇, xj , ẋj) =
ẋ2
j

2mj
−
mjω

2
j

2

(
xj −

cj
mjω2

j

q(t)

)2

. (2.40)

The choice of merging the interaction term and the free-bath Lagrangian is motivated by
the circumstance that the path integral for a driven harmonic oscillator is exactly resolv-
able. Instead, in most of the interesting applications, such as the dissipative tunneling
dynamics, the strong non-linearity of the potential prevents an exact calculation of the
path integral for the bare system, even in the non-driven case.

2.4.1 Factorized initial condition: the Feynman-Vernon influence func-
tional

Suppose that the interaction starts at time t0 and that the bath is in the unperturbed
thermal state of Eq. (1.19). The full density matrix at initial time is then in the factorized
form

W(t0) = ρ(t0)⊗ ρRth. (2.41)
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From Eqs. (2.36) and (2.37), the RDM at time t, obtained by tracing out the bath’s degrees
of freedom, has the formal expression

〈qf |ρ(t)|q′f 〉 =

∫
dx〈qf ,xf |W(t)|q′f ,xf 〉

=

∫
dq0dq

′
0〈q0|ρ(t0)|q′0〉

∫ qf

q0

Dq
∫ q′f

q′0

D∗q′e
i
~ (SS [q]−SS [q′])FFV [q, q′],

(2.42)

where SS [q] is the classical action given by the Lagrangian LS of the bare system defined
in Eq. (2.39). The functional FFV is the so called Feynman-Vernon influence functional
whose explicit expression is

FFV [q, q′] =

∫
dx0dx

′
0〈x0|ρRth|x′0〉

∫
dx

∫ xf

x0

Dx

∫ xf

x′0

D∗x′e
i
~ (SRI [x,q]−SRI [x′,q′]), (2.43)

where, using Eq. (2.40),

SRI [q,x] =

N∑
j=1

∫ t

t0

dt′LjRI(q, q̇, xj , ẋj). (2.44)

Since the bath oscillators are mutually independent, the amplitude for a path of the
reservoir under the influence of the particle factorizes as the product of the amplitudes for
the single oscillators as follows

∫ xf

x0

Dxe
i
~SRI [x,q] =

N∏
j=1

∫ xj,f

xj,0

Dxje
i
~S

j
R[xj ,q]. (2.45)

Also the matrix elements of the thermal density matrix, describing the state of the bath
at initial time, factorize as the product

〈x0|ρRth|x′0〉 =

N∏
j=1

1

Zj
〈xj,0|e−βĤ

j
R |x′j,0〉, (2.46)

where

Zj =
∞∑

nj=0

〈nj |e−β~ωjn̂j |nj〉 =
1

1− e−β~ωj
=

1

2 sinh(β~ωj/2)
. (2.47)

The path integral for the harmonic oscillator in the presence of a time-dependent
potential V (t) is solved in [49]. The solution for the j-th oscillator, in the product on the
RHS of Eq. (2.45), is∫ xj,f

xj,0

Dxje
i
~S

j
R[xj ,q] =

√
mjωj

2πi~ sin (ωj(t− t0))
exp

(
i

~
S[xCl

j (t)]

)
, (2.48)

where S[xCl
j (t)] is the action for the classical path xCl

j (t). This path is the solution of the
Euler-Lagrange equation of motion with the Lagrangian function given in Eq. (2.40) and



2.4. PATH INTEGRAL AND DISSIPATION 31

boundary conditions xj(t0) = xj,0 and xj(t) = xj . Explicitly

S[xCl
j (t)] =

mjωj
2 sin (ωj(t− t0))

[
(x2
j,0 + x2

j,f ) cos (ωj(t− t0))− 2xj,0xj,f
]

+
xj,0cj

sin (ωj(t− t0))

∫ t

t0

dt′ sin
(
ωj(t− t′)

)
q(t′)

+
xj,fcj

sin (ωj(t− t0))

∫ t

t0

dt′ sin
(
ωjt
′) q(t′)− c2

j

2mjω2
j

∫ t

t0

dt′q2(t′)

−
c2
j

mjωj sin (ωj(t− t0))

∫ t

t0

dt′
∫ t′

t0

dt′′ sin
(
ωj(t− t′)

)
sin
(
ωjt
′′) q(t′)q(t′′)

(2.49)

Eq. (2.48) is the path integral expression for the transition amplitude

〈xj,0|e
− i

~
∫ t
t0
dt′Ĥj

R(t′)|xj,f 〉 (2.50)

where Ĥj
R is the Hamiltonian operator of the driven j-th harmonic oscillator, i.e.

Ĥj
R(t) =

p̂2
j

2mj
+
mjω

2
j

2

(
x̂j −

cj
mjω2

j

q(t)

)2

. (2.51)

At this point we note the formal identity of the j-th term of the product defining
the canonical thermal equilibrium of the bath (Eq. (2.46)) and the transition amplitude
of Eq. (2.51). It follows that the solution of the path integral expression for Eq. (2.51),
given by Eq. (2.48), represents also the state of the j-th bath’s oscillator in the canonical
equilibrium state (non-normalized), provided that we express it i) in imaginary time t =
−i~β, ii) with cj = 0 (because the interaction starts at t > t0) and iii) with different
endpoints. From Eq. (2.48) and Eq. (2.49), the matrix elements of the product (2.46) are
given by

〈xj,0|e−βĤ
j
R |x′j,0〉 =

√
mjωj

2π~ sinh(β~ωj)

× exp

{
− mjωj

2~ sinh(β~ωj)

[
(x2
j,0 + x′

2
j,0) cosh(β~ωj)− 2xj,0x

′
j,0

]}
.

(2.52)

Putting everything together and setting

FFV = exp(−ΦFV ), (2.53)

the influence phase functional ΦFV takes the form

ΦFV [y, x] =
1

~2

∫ t

t0

dt′
∫ t′

t0

dt′′y(t′)
[
L′(t′ − t′′)y(t′′) + iL′′(t′ − t′′)x(t′′)

]
+ i

µ

2~2

∫ t

t0

dt′x(t′)y(t′),

(2.54)

where I have introduced the relative and center of mass coordinates

y(t) = q(t)− q′(t) and x(t) = q(t) + q′(t), (2.55)
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and used the the bath correlation function L(t), whose expression is (cf. Eqs. (1.20)
and (1.27) )

L(t) = L′(t) + iL′′(t) =
~
π

∫ ∞
0

dωJ(ω)

(
coth

~ωβ
2

cosωt− i sinωt

)
. (2.56)

Performing the time integrations in Eq. (2.54) by parts, with care in exchanging the
integrations variables, the Feynman-Vernon influence phase functional can be put in a
form convenient in view of working with discrete variables (see below)

ΦFV [x, y] = −
∫ t

t0

dt′
∫ t′

t0

dt′′
[
ẏ(t′)Q′(t′ − t′′)ẏ(t′′) + iẏ(t′)Q′′(t′ − t′′)ẋ(t′′)

]
+ y(t)

∫ t

t0

dt′
[
ẏ(t′)Q′(t− t′) + iẋ(t′)Q′′(t− t′)

]
+ y(t0)

[
y(t)Q′(t− t0)−

∫ t

t0

dt′ẏ(t′)Q′(t′ − t0)

]
+ x(t0)

[
y(t)Q′′(t− t0)−

∫ t

t0

dt′ẏ(t′)Q′′(t′ − t0)

]
.

(2.57)

The function

Q(t) = Q′(t) + iQ′′(t) =
1

π~

∫ ∞
0

dω
J(ω)

ω2

[
coth

~ωβ
2

(
1− cosωt

)
+ i sinωt

]
(2.58)

is related to the bath force correlation function by L(t)/~2 = d2Q(t)/dt2 (see Eq. (2.56)).
Substituting in Eq. (2.58) the bath spectral density function in the general continuous

limit form given in Sec. 1.4

J(ω) = Mγsω
1−s
ph ωse−ω/ωc , (2.59)

the integral can be performed and yields [9]

Q(t) =
Mγs
π~

(
ωc
ωph

)s−1

Γ(s− 1)
{

1− (1 + iωct)
1−s + 2(~βωc)1−sζ(s− 1, 1 + κ)

− (~βωc)1−s [ζ(s− 1, 1 + κ+ iκωct) + ζ(s− 1, 1 + κ− iκωct)]
}
,

(2.60)

where the dimensionless quantity κ = (~βωc)−1 is a measure of the ratio between the
temperature and the cutoff frequency. The function ζ(z, q) is the Hurwitz zeta function,
related to the Riemann zeta function ζ(z) by ζ(z) ≡ ζ(z, 1), and Γ(z) is the Euler gamma
function.

The limit s→ 1 of Eq. (2.60) gives Q(t) in the Ohmic case

Q(t) =
Mγ

π~
ln

(
κ−1Γ2(1 + κ)

Γ(κ+ iκωct)Γ(1 + κ− iκωct)

)
. (2.61)

At finite temperature and assuming a high frequency cutoff ωc � ω0 i.e. in the limit
κ� 1, the function Q(t) has the form

Q(t) =
Mγ

π~
ln

(√
1 + ω2

c t
2
sinh(πκωct)

πκωct

)
+ i

Mγ

π~
arctan(ωct). (2.62)

The long time or high temperature limit (κωct� 1) of Eq. (2.62) has a linear dependence
on time

Q(t) ' Mγ

π~

[
π

~β
t− ln

(
2π

β~ωc

)]
+ i

Mγ

2~
. (2.63)
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2.5 Discrete variable representation

The exact path integral expression for the reduced dynamics (Eq. (2.42)) can be computed
only in special cases. As noticed above, in the presence of nonlinear potentials, approxi-
mate solutions have to be found based on spatial discretization, which in turn is attained
by restricting the Hilbert space of the open system. Specifically, based on the assumption
that, given the initial condition and the damping/temperature regime, the system is not
likely to visit high-energy states during its time evolution, the Hilbert space of the system
is restricted to that spanned by the first D energy eigenstates. Thus the problem reduces
to that of a dissipative D-state system.

The continuum of position states turns into a discrete set of states localized around a
grid of D position eigenvalues Q1, . . . , QD, where

q̂|Qj〉 = Qj |Qj〉. (2.64)

In this picture, called discrete variable representation (DVR), the paths of the coordinates q
and q′ are represented by a sequence of transitions among the positionsQj . Consider a path
of the coordinate q(τ) (where t0 ≤ τ ≤ t) with N transitions at times t1, . . . , tN ∈ (t0, t).
In the DVR this path is parametrized by

q(τ) =

N−1∑
j=0

qj [Θ(τ − tj)−Θ(τ − tj+1)] + qNΘ(τ − tN )

= q0Θ(τ − t0) +
N∑
j=1

(qj − qj−1) Θ(τ − tj).

(2.65)

As a consequence the paths of relative and center of mass coordinates read

y(τ) =

N∑
j=0

ξjΘ(τ − tj)

x(τ) =
N∑
j=0

χjΘ(τ − tj),

(2.66)

where, for j 6= 0, the quantities ξ and χ, called charges (for the reasons shown below), are
defined by

ξj =(qj − qj−1)− (q′j − q′j−1)

χj =(qj − qj−1) + (q′j − q′j−1),
(2.67)

whereas ξ0/χ0 ≡ q0∓ q′0. Notice that, with this definition, the ξ-charges in a path sum up
to the value y(τ = t) of the relative coordinate at the final time t

N∑
j=0

ξj =q0 − q′0 + (q1 − q0)− (q′1 − q′0)

+ · · ·+ (qN − qN−1)− (q′N − q′N−1) = qN − q′N = yN .

(2.68)
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The time derivatives of the y and x coordinates, entering in the phase of the influence
functional (see Eq. (2.57)), are

ẏ(τ) =
N∑
j=0

ξjδ(τ − tj)

ẋ(τ) =

N∑
j=0

χjδ(τ − tj).

(2.69)

2.6 Feynman-Vernon influence for the populations in the
DVR

We now focus on the calculation of the populations, i.e. the diagonal elements of the RDM,
in the position representation. The population ρkk(t) ≡ 〈qk|ρ(t)|qk〉 gives the probability
of finding the particle localized around the position qk at time t.

ρkk(t) =

∫
dq0

∫
dq′0G(qk, qk, t; q0, q

′
0, t0)ρq0q′0(t0). (2.70)

In the path integral approach the paths contributing to the summation which gives ρkk
are those ending in a diagonal configuration at the final time t, i.e. those for which
y(τ = t) = 0. The Feynman-Vernon influence phase in Eq. (2.57) for these paths reduces
to

ΦFV [x, y] =−
∫ t

t0

dt′
∫ t′

t0

dt′′
[
ẏ(t′)Q′(t′ − t′′)ẏ(t′′) + iẏ(t′)Q′′(t′ − t′′)ẋ(t′′)

]
− x(t0)

∫ t

t0

dt′ẏ(t′)Q′′(t′ − t0).

(2.71)

Substituting Eq. (2.69) in Eq. (2.71) we find

ΦFV [ξ, χ] = −
N∑
i=1

i−1∑
j=0

(
ξiQ
′
ijξj + iξiQ

′′
ijχj

)
− χ0

N∑
i=0

ξiQ
′′
j0

' −
N∑
i=1

i−1∑
j=0

(
ξiQ
′
ijξj + iξiQ

′′
ijχj

)
.

(2.72)

Here the shorthand notation Qij ≡ Q(ti − tj) it is used. The second term in Eq. (2.72)
describes a transient effect which can be neglected for Ohmic damping with large ωc.
Indeed, for times t & 1/ωc, from Eq. (2.62) we have Q′′ ∼Mγ/2~. Thus the second term
is approximated by the quantity Mγ/2~χ0

∑N
i=0 ξi = Mγ/2~χ0yN (see Eq. (2.68)), which

vanishes, since yN is equal to zero for the contributing paths in the calculation of the
populations.

From Eq. (2.72) we see that the Feynman-Vernon functional couples the ξ- and χ-
charges through the function Q(t), called pair interaction [9]. This explains the name
charges. The nature of the coupling is nonlocal in time and reflects the non-Markovian
character of the general time evolution for a dissipative quantum system. This feature
constitutes a major difficulty in the practical evaluation of the propagator.
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Using the expression (2.33) for the amplitudes relative to the bare system and Eq. (2.72)
for the phase of the Feynman-Vernon influence functions, the exact path integral expression
for the propagator G(qk, qk, t; q0, q

′
0, t0) of the dissipative D-state system is

G(qk, qk, t; q0, q
′
0, t0) =

∞∑
N=0

∫ t

t0

DN{tj}B0(t1 − t0)

N∏
j=1

(−i) ∆jBj(tj+1 − tj)

× exp

(
N∑
i=1

i−1∑
l=0

(
ξiQ
′
ilξl + iξiQ

′′
ilχl
))

.

(2.73)

The N = 0 term in this sum is δq′0q0δq0qk . Equation (2.73) is the propagator for the popu-
lations in the DVR in the presence of dissipation. It reduces to the free case (Eq. (2.33))
if the coupling with the environment is turned off.

The q/q′ transition amplitudes per unit time ∆j in Eq. (2.73) are defined by

∆j =

{
1
~〈qj |ĤS |qj−1〉 for a q transition

−1
~〈q
′
j |ĤS |q′j−1〉 for a q′ transition

, (2.74)

and the bias factors by

Bj(tj+1 − tj) = exp [−iεj(tj+1 − tj)] , (2.75)

where

εj =
1

~

(
〈qj |ĤS |qj〉 − 〈q′j |ĤS |q′j〉

)
. (2.76)

2.7 Conclusions

In this chapter the path integral approach to the dissipation in quantum Mechanics was in-
troduced. The path integral representation of the reduced dynamics features the Feynman-
Vernon influence functional. The discrete variable version of the functional was given along
with the picture of interacting charges, which will be exploited for carrying out the ap-
proximations in the next chapter.



36 CHAPTER 2. PROPAGATOR FOR THE DENSITY MATRIX



Chapter 3

The dissipative Two-Level System

[Part of the present chapter is published in collaboration with Prof. D. Valenti1, Prof. B.
Spagnolo1 and Prof. M. Grifoni2 [50]]

Consider a quantum particle subject to a double well potential such as the one asso-
ciated to a flux qubit, shown in Fig. 1.3. If the particle is initially in a superposition of
the two lower energy states (|g〉 and |e〉) and the temperature is low enough, to a good
approximation the system can be considered a two-level system (TLS) and the model in
Eq. (1.12) reduces to the celebrated spin-boson (SB) model [51]. A picture of the TLS
dynamics in terms of tunneling from one well to the other is given by the localized basis,
where the left/right well states |R/L〉 are combinations of |g〉 and |e〉.

For the SB dynamics there exist various approximation schemes. When the system is
weakly coupled to the heat bath (usually this is the case for quantum optical systems and
qubit setups), the approach traditionally used is that of a Born-Markov master equation
for the RDM [52]. It captures well the coherent tunneling dynamics, characterized by the
relaxation and dephasing rates Γrel = τ−1

1 and Γph = τ−1
2 , respectively.

However, the perturbative in the coupling character of this approach makes it unsuited
in situations where the coupling is not weak. In this case the real-time path integral tech-
niques can be used to trace out the bath degrees of freedom and obtain a still exact formal
expression for the RDM. This expression can, in some cases, be numerically evaluated
by tensor multiplication [53] or using Monte Carlo or stochastic techniques [54? –56].
However, the numerical evaluation of the path integral is a hard task, especially at long
times.

It is therefore convenient to have an equation for the RDM in the form of the Nakajima-
Zwanzig equation [42], which captures the non-Markovian reduced dynamics of a general
system plus bath model. The difficult task, in this case, is to have a reasonably simple
expression for the kernel.

Starting from the real-time path integral expression for the particle’s RDM, there are
different approximation schemes, all yielding a generalized (integro-differential) master
equation for the populations in a spatially localized representation. By tracing out the
bath degrees of freedom, the amplitude associated to a path has the factorized form of
a bare amplitude, relative to the free system, multiplied by the Feynman-Vernon (FV)

1Dipartimento di Fisica e Chimica, Università di Palermo.
2Theoretische Physik, Universität Regensburg, Regensburg Germany.
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influence functional [57] which weights the path according to the effect exerted by the
particle’s motion on the bath degrees of freedom.

The FV influence introduces nonlocal in time correlations inside the paths which make
the path integral expression intractable when the confining potential is anharmonic. For
the SB dynamics the simplest, non-perturbative in the coupling approximation is the non-
interacting blip approximation (NIBA) [51]. The NIBA scheme neglects the nonlocal part
of the correlations due to an exponential cutoff in the FV functional, which is effective at
high temperature and/or strong damping. This approach, while being non-perturbative
in the coupling, is perturbative in the tunneling ∆.

In the opposite damping regime, the weak coupling approximation (WCA) [58], treat-
ing the coupling to the first order and ∆ to all orders, is appropriate. It gives the same
results as the Born-Markov approach. Finally, an approach exists which interpolates be-
tween these two extrema by considering the local correlations fully and the nonlocal ones
to the first order in the coupling. This scheme is called weakly interacting blip approxima-
tion (WIBA) [59], and, by construction, also covers the intricate regime of intermediate
temperatures and damping, where both the WCA and the NIBA fail.

In this chapter the three above approximation schemes are implemented in the kernels
of a generalized master equation derived within the path integral approach, and their valid-
ity discussed. The predictions for the TLS dynamics obtained using these approximation
schemes are shown in different dissipation regimes.

3.1 Two-level system Hamiltonian and parametrization

Ee

Eg

|<x | L>|2
V0(x)

x

|<x | R>|2

q0

ε
(ε2+Δ2)1/2

Figure 3.1: Potential and energy levels for a bistable system in the TLS approximation and
probability density relative to the left and right localized states |L/R〉, defined in Eq. (1.8).

The TLS Hamiltonian in the localized basis |R〉, |L〉 is

ĤTLS = −~
2

(∆σx + εσz), (3.1)

where ∆ is the tunneling frequency, ε is the (static) bias. The spin operators in the
localized basis are σz = |R〉〈R| − |L〉〈L| and σx = |R〉〈L|+ |L〉〈R|.
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A path of the TLS consists of a sequence of alternating blips (y 6= 0) of length τj =
t2j − t2j−1 and sojourns (y = 0) of length σj = t2j+1 − t2j . Consequently, if the system
starts and ends in a sojourn, every path will have an even number 2n of transitions. The
two ξ-charges in the same blip (say the i-th blip) are opposite in sign (ξ2i = −ξ2i−1) and
the same is true for the two χ-charges in the same sojourn (χ2i+1 = −χ2i).

A convenient parametrization for the TLS is in terms of the new charges ζ and η,
scaled with q0 and associated with blips and sojourns, respectively. They are defined by

Figure 3.2: Parametrization of the TLS in terms of the sojourn and blip states η and ζ. These
are related to the χ- and ξ-charges by Eq. (3.2). Left panel - An example of TLS path with 2n = 4
transitions. Right panel - TLS states and corresponding values of η and ζ.

(see Fig. 3.2)

ξ2j−1 = q0ζj
ξ2j = −q0ζj

j = 1, . . . , n and
χ2j = q0ηj
χ2j+1 = −q0ηj

j = 0, . . . , n (3.2)

If the system is in the diagonal state L,L (R,R) then η = −1 (η = +1), whereas if the
system is in the blip state L,R (R,L) then ζ = −1 (ζ = +1). Using this parametrization
and considering the tunneling elements and the bias factor as given by the TLS Hamilto-
nian of Eq. (3.1), the bare system’s amplitude for a path of 2n transitions, starting in the
sojourn η0 and ending in the sojourn state ηn ≡ η, reads

n∏
j=1

(−iηj−1ζj)
∆

2
(−iηjζj)

∆

2
exp(−iζjετj) = ηη0

(
−∆2

4

)n
exp

−i n∑
j=1

ζjετj

 , (3.3)

where we used the property η2
j = ζ2

j = 1.

3.1.1 Free TLS dynamics with the path integral approach

The general path integral expression for the populations, in the free TLS case (FFV = 1),
with the parametrization given in Eq. (3.2), becomes

P (η, t|η0, t0) = δηη0 + ηη0

∞∑
n=1

(
−∆2

4

)n ∑
{η}n−1

∑
{ζ}n

∫ t

t0

dt2n . . .

∫ t2

t0

dt1

n∏
i=1

exp (−iζiετi).

Consider the |R〉 (|L〉) state population corresponding to η = +1 (η = −1). The sum over
the intermediate sojourns sates yields a factor 2n−1, while the sum over the blip states ζ
gives the product of the n factors 2 cos(ετj). Changing the integration variables into the
blip and sojourn times and taking the Laplace transform (as explained in Appendix ??)
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one gets a factor 1/λ for each of the n + 1 sojourns. The resulting expression in Laplace
space is

P (η, λ|η0, t0) =
δη,η0

λ
− ηη0

2λ
+
ηη0

2λ

∞∑
n=0

(
− ∆2

λ2 + ε2

)n
=
δη,η0

λ
− ηη0

2λ
+
ηη0

2λ

λ2 + ε2

λ2 + E2/~2
,

(3.4)

where E = ~
√

∆2 + ε2. This expression is transformed back to the time domain using the
Bromwich integral

L−1{P (η, λ|η0, t0)} =
1

2πi

∫ c+i∞

c−i∞
eλtP (η, λ|η0, t0). (3.5)

We explicitly calculate the survival probability in the state |L〉 (η = η0 = −1). The
function

P (−1, λ| − 1, t0) =
1

2λ

2λ2 + E2/~ + ε2

λ2 + E2/~2
(3.6)

has poles at λ = 0,±iE/~ so that, performing the inverse Laplace transform, in the time
domain it reads

P (−1, t| − 1, t0) =
~2ε2

E2
+

~2∆2

E2
cos2

(
Et

2~

)
, (3.7)

which coincides with the result in Eq. (2.20).

3.2 Feynman-Vernon influence functions for the TLS

Now we consider the Feynman-Vernon influence function for the TLS. To this end we
introduce the dimensionless functions

S(t) = q2
0Q
′(t) and R(t) = q2

0Q
′′(t). (3.8)

Using the TLS parametrization introduced above, the phase of the influence function,
whose expression for a generic M -level is given in Eq. (2.72), can then be put in the form
(N = 2n)

ΦFV [ζ, η]n =
n∑
i=1

S2i,2i−1

n∑
i=2

i−1∑
j=1

ζiΛi,jζj − i
n∑
i=1

i−1∑
j=0

ζiXi,jηj , (3.9)

where
Λi,j = S2i,2j−1 + S2i−1,2j − S2i,2j − S2i−1,2j−1

Xi,j = R2i−1,2j +R2i,2j+1 −R2i,2j −R2i−1,2j+1.
(3.10)

(see Fig. 3.3). Note that, since R(0) = 0, the functions Xi,i−1 ≡ Yi,i−1 are the sum of only
three non-vanishing terms

Yi,i−1 = R2i−1,2i−2 +R2i,2i−1 −R2i,2i−2 −R2i−1,2i−1︸ ︷︷ ︸
=0

.
(3.11)

The functions Y take into account the blip-preceding-sojourn interactions. Rearranging
the sums in Eq. (3.9)

ΦFV [ζ, η]n =

n∑
i=1

S2i,2i−1 +

n−1∑
j=1

n∑
i=j+1

ζiΛi,jζj − i
n−1∑
j=0

n∑
i=j+1

ζiXi,jηj , (3.12)
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Figure 3.3: Interactions introduced by the FV influence phase in Eq. (3.12). (a) - Interactions
(blue dotted lines) between a couple of blips inside a longer sequence constituting a TLS path. (b) -
Interactions (green dotted lines) among a blip and pair of sojourns, one of which (the sojourn i−1)
directly precedes the blip. Red and blue dots indicate the interacting charges. Time differences
are indicated by transition time indexes. Transition times and blip/sojourn times are in the low
part of the figures. (c) - Blip-blip, blip-preceding sojourn and intra-blip interactions collectively
indicated by the symbols defined in Eqs. (3.10) and (3.11).

3.3 Exact path integral expressions of the conditional prob-
abilities for the dissipative TLS

Using Eq. (3.3) and Eq. (3.9) in the general path integral expression for the system propa-
gator we can now write the formal expression for P (η, t|η0, t0), which is the probability of
finding the system in the sojourn η at time t, given that it started in the sojourn state η0

at time t0 (see the left panel of Fig. 3.2). A contributing path has an even number 2n of
transitions, with n + 1 sojourns interrupted by n blips. The resulting general expression
for the conditional probabilities is

P (η, t|η0, t0) = δηη0 + ηη0

∞∑
n=1

(
−∆2

4

)n ∑
{η}n−1

∑
{ζ}n

∫ t

t0

dt2n . . .

∫ t2

t0

dt1

× exp

(
−i

n∑
i=1

ζiετi

)
exp (−ΦFV [ζ, η]n) .

(3.13)

Notice that, since the initial and final sojourns are fixed, the sum over the paths with 2n
transitions is realized by the sum over the n − 1 intermediate sojourn states ({η}n−1 =
η1, . . . , ηn−1 = ±1) and over the n-blip states ({ζ}n = ζ1, . . . , ζn = ±1).

In the influence phase (Eq.(3.12)) we isolate the j = 0 terms in the last sum, because
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η0 is fixed

−i
n−1∑
j=0

n∑
i=j+1

ζiXi,jηj = −iη0

n∑
i=1

ζiXi,0 − i
n−1∑
j=1

ηj

 n∑
i=j+1

ζiXi,j

 .

Performing the sum over the intermediate sojourns η in Eq. (3.13), we get

P (η, t|η0, t0) =δηη0 + ηη0
1

2

∞∑
n=1

(
−∆2

2

)n ∑
{ζi=±1}n

∫ t

t0

dt2n . . .

∫ t2

t0

dt1

× exp

(
−i

n∑
i=1

ζi (ετi − η0Xi,0)

)
exp

(
−

n∑
i=1

S2i,2i−1

)

× exp

− n−1∑
j=1

n∑
i=j+1

ζiΛi,jζj

 n−1∏
j=1

cos

 n∑
i=j+1

ζiXi,j

,
(3.14)

where we used the formula∑
{ηj=±1}m

m∏
j=1

exp {−iηjxj} = 2m
m∏
j=1

cos (xj). (3.15)

We write the first exponential in Eq. (3.14) as cos (x) − i sin (x). This factor is mul-
tiplied by an even function of the ζ’s so that, once we perform the summation over
ζ, the contribution of the sine part vanishes. Moreover we express the cosine part as
cos(a) cos(b) + η0 sin(a) sin(b). Doing this, the amplitudes in the path integral expression
of Eq. (3.14) can be written as the sum of two terms, symmetric and antisymmetric in the
bias ε:

P (η, t|η0, t0) = δηη0+ηη0
1

2

∞∑
n=1

(
−∆2

2

)n ∫ t

t0

dt2n . . .

∫ t2

t0

dt1

×
∑

{ζi=±1}n

(
B(s)
n F (+)

n + η0B
(a)
n F (−)

n

) (3.16)

where we have introduced the symmetric and antisymmetric bias factors

B(s)
n = cos

(
n∑
i=1

ζiετi

)
and B(a)

n = sin

(
n∑
i=1

ζiετi

)
(3.17)

and the influence functions

F (+)
n = Gn

n−1∏
j=0

cos

 n∑
i=j+1

ζiXi,j


F (−)
n = Gn sin

(
n∑
i=1

ζiXi,0

)
n−1∏
j=1

cos

 n∑
i=j+1

ζiXi,j

,
(3.18)

where

Gn = exp

(
−

n∑
i=1

S2i,2i−1

)
exp

− n−1∑
j=1

n∑
i=j+1

ζiΛi,jζj

.
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3.4 Generalized master equation for the population differ-
ence

The conditional population difference Pη0 is the difference between the conditional popu-
lation of the |R〉 state (η = +1) and that of the |L〉 state (η = −1)

Pη0(t) = P (+1, t|η0, t0)− P (−1, t|η0, t0) = 2P (+1, t|η0, t0)− 1. (3.19)

It coincides with the expectation value of the σz operator, given the initial condition
P±1(t0) = ±1. Using Eq. (3.16) for the conditional populations of the TLS, the conditional
population difference for a general initial state η0 = ±1 reads

Pη0(t) = η0 +

∞∑
n=1

(
−∆2

2

)n ∫ t

t0

dt2n . . .

∫ t2

t0

dt1
∑

{ζj=±1}n

(
η0B

(s)
n F (+)

n +B(a)
n F (−)

n

)
,

(3.20)
where we used δ+1,η0 − δ−1,η0 = η0 and η2

0 = 1. Notice that the stationary value of Pη0

doesn’t depend on the initial state η0 since the symmetric in the bias part of Pη0(∞)
vanishes (the population difference at equilibrium for the unbiased system must be zero).

In this section we obtain the exact generalized (integro-differential) master equation
(GME) for Pη0 , and in the next sections we obtain the dynamics of the TLS by making
suitable approximations on the kernels of the GME. We start by making the following
general ansatz [60]

Ṗ (η, t|η0, t0) =
∑
η′=±1

∫ t

t0

dt′K(η, t; η′, t′)P (η′, t′|η0, t0), η = ±1. (3.21)

Since, for the conservation of probability P (+1, t|η0, t0) + P (−1, t|η0, t0) = 1, we have
Ṗ (+1, t|η0, t0) + Ṗ (−1, t|η0, t0) = 0, then K(+1, t; η′, t′) +K(−1, t; η′, t′) = 0, so the GME
for the population difference reads

Ṗη0(t) =

∫ t

t0

dt′
[
K(+)(t, t′)Pη0(t′) +K(−), (t, t′)

]
(3.22)

where

K(+)(t, t′) = K(+1, t; +1, t′) +K(−1, t;−1, t′) ≡ KRR(t, t′) +KLL(t, t′),

K(−)(t, t′) = K(+1, t; +1, t′)−K(−1, t;−1, t′) ≡ KRR(t, t′)−KLL(t, t′).
(3.23)

Now we substitute Eq. (3.20) in the right hand side of Eq. (3.22) and compare the
result, order by order in ∆2, with the time derivative of Eq. (3.20), to find the kernels

K(±) in terms of the influence functions B
(s/a)
n F

(±)
n . The time derivative of Pη0(t) is

Ṗη0(t) =

∞∑
n=1

(
−∆2

2

)n ∫ t

t0

dt2n−1 . . .

∫ t2

t0

dt1
∑

{ζi=±1}n

{
η0B

(s)
n F (+)

n +B(a)
n F (−)

n

}
. (3.24)

• At the first order in ∆2
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K(+)(t, t′)(1) = −∆2

2

∑
ζ1=±1

B
(s)
1 F

(+)
1 (t, t′),

K(−)(t, t′)(1) = −∆2

2

∑
ζ1=±1

B
(a)
1 F

(−)
1 (t, t′).

• At the second order in ∆2, using
∫ t
t0
dt′
∫ t′
t0
dt′′ =

∫ t
t0
dt′′
∫ t
t′′ dt

′,

K(+)(t, t′)(2) =

(
−∆2

2

)2 ∫ t

t′
dt3

∫ t3

t′
dt2

∑
ζ1,ζ2=±1

B̃
(s)
2 F̃

(+)
2 (t, t3, t2, t

′),

K(−)(t, t′)(2) =

(
−∆2

2

)2 ∫ t

t′
dt3

∫ t3

t′
dt2

∑
ζ1,ζ2=±1

B̃
(a)
2 F̃

(−)
2 (t, t3, t2, t

′).

Here we have introduced the symmetric and antisymmetric irreducible influence functions
of order 2. Irreducible means that they consist of the part of the original influence functions
that cannot be expressed as the product of lower order, non-interacting parts. This is
shown for the n = 2 case in Fig. 3.4.

B̃
(s)
2 F̃

(+)
2 = B

(s)
2 F

(+)
2 −B(s)

1 F
(+)
1 B

(s)
1 F

(+)
1

B̃
(a)
2 F̃

(−)
2 = B

(a)
2 F

(−)
2 −B(s)

1 F
(+)
1 B

(a)
1 F

(−)
1

Figure 3.4: Interactions in an irreducible (left) and a reducible (right) second order kernel.

• Finally, at order n in ∆2

K(+)(t, t′)(n) =

(
−∆2

2

)n ∫ t

t′
dt2n−1 . . .

∫ t3

t′
dt2

∑
{ζi=±1}n

B̃(s)
n F̃ (+)

n ,

K(−)(t, t′)(n) =

(
−∆2

2

)n ∫ t

t′
dt2n−1 . . .

∫ t3

t′
dt2

∑
{ζi=±1}n

B̃(a)
n F̃ (−)

n ,

where the irreducible influence functions of order n are given by

B̃(s/a)
n F̃ (+/−)

n =B(s/a)
n F (+/−)

n

−
n∑
j=2

(−1)j
∑

m1,...,mj

B(s)
m1
F (+)
m!

B(s)
m2
F (+)
m2

. . . B(s/a)
mj

F (+/−)
mj

δm1+···+mj ,n.

(3.25)
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The result for the symmetric and antisymmetric irreducible kernels is then

K(+)(t, t′) =− ∆2

2

∑
ξ1=±1

B
(s)
1 F

(+)
1 (t, t′)

+
∞∑
n=2

(
−∆2

2

)n ∫ t

t′
dt2n−1 . . .

∫ t3

t′
dt2

∑
{ζi=±1}n

B̃(s)
n F̃ (+)

n ,

K(−)(t, t′) =− ∆2

2

∑
ξ1=±1

B
(a)
1 F

(−)
1 (t, t′)

+
∞∑
n=2

(
−∆2

2

)n ∫ t

t′
dt2n−1 . . .

∫ t3

t′
dt2

∑
{ζi=±1}n

B̃(a)
n F̃ (−)

n .

(3.26)

Notice that the K(−) is antisymmetric in the bias and vanishes for ε = 0, while K(+) is
symmetric in ε.

3.4.1 GME for the free system

The free TLS dynamics is recovered setting to zero the coupling with the environment in
the kernels of the GME. The only non-vanishing contribution to the irreducible kernels
is the lowest order term in the symmetric kernel (the antisymmetric kernel vanishes for
γ = 0, as can be checked from Eq. (3.26) with the definitions given in Eq. (3.18)) so we
have

K
(+)
free(τ) = −∆2

2

∑
ζ=±1

exp(−iζετ) = −∆2 cos(ετ)

K
(−)
free(τ) = 0.

(3.27)

The GME for the free system is then

Ṗη0(t) =

∫ t

t0

K
(+)
free(t− t′)Pη0(t′). (3.28)

In this simple case it can be solved by passing to the Laplace space where the GME for
the free conditional population difference reads (Pη0(t0) = η0)

λPη0(λ)− η0 = −∆2 λ

λ2 + ε2
Pη0(λ). (3.29)

Transforming back to the time domain by using the Bromwich integral (Eq. (3.5)), the
result is

Pη0(t) = η0
~2ε2

E2
+ η0

~2∆2

E2
cos

(
Et

~

)
. (3.30)

The survival probability in the left state (1 − Pη0(t))/2 with η0 = −1, obtained from
Eq. (3.30), coincides with those given in Eqs. (2.20) and (3.7).

Here we introduce the self-energies, defined as the differences between the irreducible
kernels of the GME with dissipation and in the free case [9]

Σ(+)(t, t′) = K(+)(t, t′)−K(+)
free(t− t′),

Σ(−)(t, t′) = K(−)(t, t′).
(3.31)

Notice that they vanish for zero coupling with the environment.
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3.5 Approximation schemes

The generalized master equation in Eq. (3.22), with the exact symmetric and antisym-
metric irreducible kernels given in Eq. (3.26), gives in principle the exact dynamics of the
dissipative TLS in any regime of damping/temperature compatible with the TLS approxi-
mation. However, due to the intricacies brought by the FV influence functions in practice
it is not possible to compute the kernels, and approximations are required. There exist
various approximation schemes, according to the dissipation regime to which the system
is subject.

3.5.1 Noninteracting-blip approximation

Th simplest approximation on the influence functions consists in neglecting the nonlocal
in time part of the interaction. In terms of the TLS parametrization it consists in re-
taining only the intra-blip interactions, represented by the wavy lines in the lower panel
of Fig. 3.3. For this reason the resulting approximation scheme is called non-interacting-
blip approximation (NIBA). This is a valid approximation at sufficiently high temperature
(T & ~∆b/kB) i.e when the cutoff operated by the real part of the Feynman-Vernon influ-
ence function occurs on time scales comparable to the average blip length. In this case one
can use the long time/high temperature limit of Q(t), given in Eq. (4.12). Specifically, the
dimensionless functions S(t) and R(t) take on the linearized form and, by the definitions
given in Eq. (3.10), we have

Λi,j = 0, Xi,j 6=i−1 = 0, Yi,i−1 = R2i,2i−1 = R(τi). (3.32)

Applying to the definitions of Eq. (3.18), the approximation (3.32), the NIBA symmetric

Figure 3.5: Interactions retained in the NIBA: intra-blip interactions (red wavy lines). Example
of a TLS path of n transitions

and antisymmetric influence functions, in terms of the blip times, are

∑
{ζi=±1}n

B(s)
n F (+)

n ' 2n
n∏
i=1

e−S(τi) cos (ετi) cos (R(τi)) (3.33)

and

∑
{ζi=±1}n

B(a)
n F (−)

n '2ne−S(τi) sin (ετ1) sin (R(τi))
n∏
i=2

e−S(τi) cos (ετi) cos (R(τi)), (3.34)

respectively. Both the n-th order NIBA influence functions have the structure of the
product of n first order functions. As a consequence the NIBA irreducible kernels consist
solely of the first order terms in ∆2 (see Eq. (3.26)), because the higher irreducible
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influence functions vanish, as it can be easily checked from the definition of irreducible
kernel in Eq. (3.25). Explicitly, the GME in the NIBA scheme is

Ṗη0(t) =

∫ t

t0

dt′
[
K

(+)
N (t− t′)Pη0(t′) +K

(−)
N (t− t′)

]
(3.35)

with the NIBA kernels given by

K
(+)
N (t) = −∆2e−S(t) cos (εt) cos (R(t)),

K
(−)
N (t) = −∆2e−S(t) sin (εt) sin (R(t)).

(3.36)

The solution of the GME given in Eq. (3.35) can be obtained in principle (and also
in practice, but in particular cases) by expressing it in Laplace space and solving the
Bromwich integral of Eq. (3.5), once the poles are known. In terms of the self energies,
defined in Eq. (3.31), the NIBA master equation in Laplace space reads (Pη0(t0) = η0)

Pη0(λ) =
η0 + Σ

(−)
N (λ)/λ

λ+ ∆2λ/(λ2 + ε2)− Σ
(+)
N (λ)

. (3.37)

The result shown below are obtained by numerically integrating Eq. (3.35) rather than
transforming back Eq. (3.37) to the time domain.

3.5.2 Validity of the NIBA

The NIBA scheme is non-perturbative in the coupling (the intra-blip interactions are
retained at all orders in γs) but it is at the second order in the tunneling element ∆, so in
the general case it describes correctly the dynamics only at short times t . 1/∆.

At high temperatures (T & ~∆b/kB) it gives the correct results for the conditional
populations both in the biased and in the unbiased case. For Ohmic dissipation, in the
symmetric case (ε = 0) the NIBA scheme reproduces the correct results also for weak
damping at every temperature [9].

The NIBA fails for a biased (ε 6= 0) Ohmic system at low temperature (T . ~∆b/~).
For example, it predicts complete localization in the right well at equilibrium in the limit
T → 0, even for vanishingly small bias, as can be seen from Eq. (3.37), considering the
limit

P (∞) = lim
λ→0

λP̃η0(λ) = −
Σ

(−)
N (0)

Σ
(+)
N (0)

= tanh

(
ε~β
2

)
. (3.38)

The correct population difference at equilibrium for vanishing damping, obtained by ther-
modynamic considerations [9], is

P (∞) = Tr[σzρeq] =
1

Z

(
〈R|e−βĤTLS |R〉 − 〈L|e−βĤTLS |L〉

)
=

~ε
E

tanh

(
βE

2

)
, (3.39)

which shows no localization in the limit ε, T → 0. In Sec. 3.8 a similar expression is given
for weak but finite damping using the self energies in the weak coupling approximation.
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3.5.3 extended-NIBA

The convolution character of the path integral expression for the NIBA probability dif-
ference in the time domain is preserved if the blip-preceding sojourn interactions Y [61],
discarded in the NIBA scheme, are taken fully, while the other blip-sojourn as well as the
inter-blip correlations are discarded. In formulae

Λi,j =0, Xi,j 6=i−1 = 0,

Yi,i−1 =Y (σi−1, τi) = R(σi−1) +R(τi)−R(σi−1 + τi).
(3.40)

In terms of the blip and sojourn times the influence functions take the form

Figure 3.6: Interactions retained in the extended-NIBA: intra-blip interactions (red wavy lines)
and blip-preceding sojourn interactions (red semicircles). Example of a TLS path of n transitions.

∑
{ζi=±1}n

B(s)
n F (+)

n ' 2n
n∏
i=1

e−S(τi) cos (ετi) cos (Y (σi−1, τi)) (3.41)

and∑
{ζi=±1}n

B(a)
n F (−)

n ' 2ne−S(τ1) sin (ετ1) sin (Y (σ0, τ1))
n∏
i=2

e−S(τi) cos (ετi) cos (Y (σi−1, τi)).

(3.42)
As stated above the extended-NIBA preserves the convolution character of the expression
for the population difference. As a result, the irreducible kernels of the extended-NIBA
master equation are of the first order in ∆2, as for the NIBA. Using the prescription (3.26)
we have

K
(+)
eN (t, t′) = −∆2e−S(t−t′) cos

(
ε(t− t′)

)
cos
(
R(t′) +R(t− t′)−R(t)

)
,

K
(−)
eN (t, t′) = −∆2e−S(t−t′) sin

(
ε(t− t′)

)
sin
(
R(t′) +R(t− t′)−R(t)

)
.

(3.43)

The resulting extended-NIBA master equation reads

Ṗη0(t) =

∫ t

t0

dt′
[
K

(+)
eN (t, t′)Pη0(t′) +K

(−)
eN (t, t′)

]
. (3.44)

For later convenience we now find the master equation satisfied by the symmetric part

P
(+)
η0 (t) of the conditional population difference in the extended-NIBA scheme

Ṗ
(+)
η0,eN

(t) =

∫ t

t0

dt′K
(+)
eN (t, t′)P

(+)
η0,eN

(t′). (3.45)

The path integral expression for P
(+)
η0 is

P
(+)
η0,eN

(t) = η0 + η0

∞∑
n=1

(
−∆2

2

)n ∫ t

0
D{t}2n

∑
{ζi=±1}n

B(s)
n F (+)

n , (3.46)

with
∑
B

(s)
n F

(+)
n given by Eq. (3.41).
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3.6 Weakly-interacting blip approximation (WIBA)

While the extended-NIBA represents a small correction to the NIBA, there is a scheme,
called weakly-interacting blip approximation [59] (WIBA), which is capable to give correct
results in the regimes from weak to strong damping. Its results coincide with those of the
weak coupling approximation (WCA [9], perturbative in γ) in the weak coupling/low tem-
perature regime and with those of the NIBA in the opposite limit of strong coupling/high
temperature. This is attained by taking at all orders in γ the intra-blip (’intra’) and the
blip-preceding-sojourn (’bps’) parts of the influence function, as in the extended-NIBA
scheme, and to the first order in the coupling strength γ the blip-blip (’b-b’) and the
blip-sojourn (’b-s’) parts.

This scheme represents an improvement of the NIBA-like schemes in that its results
coincide with those of the NIBA at high temperatures, where the nonlocal part of the
interactions introduced by FFV is efficiently suppressed by the cut-off operated through
the real part of the pair interaction S(τ) so that, considering them at the first order
is immaterial, even if the coupling is strong. On the other hand at low temperature the
nonlocal interactions cannot be neglected and at weak coupling the WIBA gives the correct
predictions for the TLS dynamics. The problematic regime is that of low temperature
and strong damping because taking the nonlocal interactions at the first order in γ is
not strictly correct. Nevertheless it turns out [59] that also in this regime the WIBA
predictions agree quite well with those of numerically exact ab initio calculations [53].

We split the influence functions of order n in the above mentioned parts and expand
the nonlocal terms b− b and b− s to the first order in γ

FFV = exp (Φintra) exp (Φbps) exp (Φb-b) exp (Φb-s)

' exp (Φintra) exp (Φbps) (1 + Φb-b) (1 + Φb-s) ,
(3.47)

It is convenient to restate the definitions of the influence functions (Eq. (3.18)) so as
to separate the intra-blip and blip-preceding sojourn arguments from the blip-blip and
intra-blip arguments. The exact influence functions are

F (+)
n = exp

(
φintran

)
exp

(
φb−bn

) n∏
j=1

[
cos
(
φbpsj

)
cos
(
φb−sj

)
− sin

(
φbpsj

)
sin
(
φb−sj

)]
F (−)
n = exp

(
φintran

)
exp

(
φb−bn

) [
sin
(
φbps1

)
cos
(
φb−s1

)
+ cos

(
φbps1

)
sin
(
φb−s1

)]
×

n∏
j=2

[
cos
(
φbpsj

)
cos
(
φb−sj

)
− sin

(
φbpsj

)
sin
(
φb−sj

)]
,

(3.48)
where

φintran = −
n∑
i=1

S2i,2i−1, φbpsj = ζjYj,j−1,

φb−bn = −
n−1∑
j=1

n∑
i=j+1

ζiζjΛi,j and φb−sj =

n∑
i=j+1

ζiXi,j−1.

(3.49)
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3.6.1 WIBA symmetric irreducible kernel

Now we calculate the symmetric irreducible kernel order by order in ∆2. This is done,
once n is fixed, by summing over ζ (using the linearized b-b and b-s terms), taking the
result to the first order in γs and then applying the recipe (3.25). The power series in ∆2

for the symmetric WIBA kernel is

K
(+)
W (t, t′) =

∞∑
n=1

K
(+)
W (t, t′)(n). (3.50)

• For n=1 the symmetric WIBA irreducible kernel coincides with the symmetric
extended-NIBA irreducible kernel because, at the first order in ∆2, the b-b and
b-s contributions are absent. We have

K
(+)
W (t, t′)(1) = K

(+)
eN (t, t′) = −∆2e−S(t−t′) cos

(
ε(t− t′)

)
cos
(
Y (t− t′, t′)

)
, (3.51)

where
Y (τ, σ) = R(σ) +R(τ)−R(τ + σ). (3.52)

• The n = 2 symmetric WIBA irreducible kernel is (see Appendix B)

K
(+)
W (t, t′)(2) =∆4

∫ t̃

0
dτ1

∫ t̃−τ1

0
dτ2e

−S(τ1)−S(τ2) sin(ετ1) sin(ετ2) cos(Y (τ2, t̃− τ1 − τ2))

×
[
X(t̃, τ2, σ0) sin(Y (τ1, σ0)) + Λ(t̃, τ2, τ1) cos(Y (τ1, σ0))

]
(3.53)

where t̃ = t− t′, τ2 = t− t′ − τ1 − σ1, and σ0 = t′ − t0 = t′, and where

X(t̃, τn, σ0) = R(t̃− τn + σ0) +R(t̃)−R(t̃+ σ0)−R(t̃− τn)

Λ(t̃, τn, τ1) = S(t̃) + S(t̃− τn − τ1)− S(t̃− τ1)− S(t̃− τn).
(3.54)

For reason which will be clear below, we eliminate the σ1 dependence in Y (τ2, σ1) =
R(σ1) + R(τ2) − R(τ2 + σ1), by substituting it with the NIBA approximated form
Y (τ2, σ1) ' R(τ2). It follows that

K
(+)
W (t, t′)(2) '

∫ t̃

0
dτ1

∫ t̃−τ1

0
dτ2W(+)(t̃, τ1, τ2, σ0),

where we have introduced the function

W(+)(t̃, t1, t2, σ0) =∆4e−S(t1)−S(t2) sin(εt1) sin(εt2) cos(R(t2))

×
[
X(t̃, t2, σ0) sin(Y (t1, σ0)) + Λ(t̃, t2, t1) cos(Y (t1, σ0))

]
.

(3.55)

• The n = 3 symmetric WIBA irreducible kernel is

K
(+)
W (t, t′)(3) =−∆6

∫ t−t′

0
dτ1

∫ t−t′−τ1

0
dσ1

∫ t−t′−τ1−σ1

0
dτ2

∫ t−t′−τ1−σ1−τ2

0
dσ2

× e−S(τ1)−S(τ2)−S(τ3) sin(ετ1) cos(ετ2) sin(ετ3) cos(Y (τ3, σ2)) cos(Y (τ2, σ1))

×
[
X(t̃, τ3, σ0) sin(Y (τ1, σ0)) + Λ(t̃, τ3, τ1) cos(Y (τ1, σ0))

]
,

(3.56)
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where t̃ = t− t′, σ0 = t′ − t0 = t′ and τ3 = t− t′ − τ1 − σ1 − τ2 − σ2.

Similarly to the n = 2 case we make the change of variable σ2 → τ3 = t− t′ − τ1 −
σ1 − τ2 − σ2, and then exchange the integration order using the rule (C.2). Finally
we use Y (σ2, τ3) ' R(τ3). The result is

K
(+)
W (t, t′)(3) '

∫ t̃

0
dτ1

∫ t̃−τ1

0
dτ3W(+)(t̃, τ1, τ3, σ0)p(1)(t̃− τ1 − τ3), (3.57)

where the first order in ∆2 function p(1) is defined by

p(1) = η0P
(+)
η0,eN

(t)(1) = −∆2

∫ t

0
dσ1

∫ t−σ1

0
dτ2e

−S(τ2) cos(ετ2) cos(Y (τ2, σ1)). (3.58)

The extended-NIBA symmetric population difference P
(+)
η0,eN

(t) is defined in Eq. (3.46)
and satisfies Eq. (3.45).

• For generic n ≥ 3, the symmetric WIBA irreducible kernel reads

K
(+)
W (t, t′)(n) '

∫ t̃

0
dτ1

∫ t̃−τ1

0
dτnW(+)(t̃, τ1, τn, σ0)p(n−2)(t̃− τ1 − τn), (3.59)

where

p(n−2)(t) = η0P
(+)
η0,eN

(t)(n−2)

=
(
−∆2

)n−2
∫ t

0
dσ1 . . .

∫ t−···−σn−2

0
dτn−1

n−1∏
i=2

e−S(τi) cos(ετi) cos(Y (τi, σi−1)).

(3.60)

Here, again, we changed the last integration variable σn−1 → τn = t− t′− τ1− · · · −
σn−1, and used the approximated form Y (τn, σn−1) ' R(τn).

Using Y (τn, σn−1) ' R(τn), at every order ≥ 2 in ∆2 the WIBA symmetric kernel
appears as a convolution between the second order function W(+) and p(n−2), where

p(t) = η0P
(+)
η0,eN

(t) (3.61)

(the expansion of P
(+)
η,eN in powers of ∆2 is given in Eq. (3.46)). This feature allows us to

perform the sum in Eq. (3.50). For the symmetric irreducible WIBA kernel with initial
time t0, we have

K
(+)
W (t̃, t̃′) = K

(+)
eN (t̃, t̃′) +

∫ t̃

0
dτ

∫ t̃−τ

0
dτ ′W(+)(t̃, τ, τ ′, t̃′)p(t̃− τ − τ ′), (3.62)

where t̃ = t− t′ and t̃′ = t′ − t0.
It is important to notice that the function p(t) doesn’t depend on the initial condition

Pη0(t0) = η0. In practice it is the solution of the equation

ṗ(t) =

∫ t

t0

dt′K
(+)
eN (t, t′)p(t′) (3.63)

with initial condition p(t0) = η0Pη0,eN (t0) = 1. The kernel K
(+)
eN is given in the first of

Equations (3.43).
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3.6.2 WIBA antisymmetric irreducible kernel

The antisymmetric irreducible WIBA kernel is obtained carrying out the same calculations
as for the symmetric kernel. The power series in ∆2 is in this case

K
(−)
W (t, t′) =

∞∑
n=1

K
(−)
W (t, t′)(n). (3.64)

• For n=1 the antisymmetric kernel coincides with the corresponding on in the extended-
NIBA

K
(−)
W (t, t′)(1) = K

(−)
eN (t, t′) = −∆2e−S(t−t′) sin

(
ε(t− t′)

)
sin
(
Y (t− t′, t′)

)
(3.65)

• The n = 2 antisymmetric WIBA irreducible kernel is (see Appendix B)

K
(−)
W (t, t′)(2) '∆4

∫ t̃

0
dτ1

∫ t̃−τ1

0
dτ2e

−S(τ1)−S(τ2) cos(ετ1) sin(ετ2) cos(R(τ2))

×
[
X(t̃, τ2, σ0) cos(Y (τ1, σ0))− Λ(t̃, τ2, τ1) sin(Y (τ1, σ0))

]
≡
∫ t̃

0
dτ1

∫ t̃−τ1

0
dτ2W(−)(t̃, τ1, τ2, σ0).

(3.66)

where t̃ = t−t′, τ2 = t−t′−τ1−σ1, and σ0 = t′−t0 = t′. As for the symmetric kernel
we have used the approximated form Y (τ2, σ1) ' R(τ2). Here we have introduced
the function

W(−)(t̃, t1, t2, σ0) =∆4e−S(t1)−S(t2) cos(εt1) sin(εt2) cos(R(t2))

×
[
X(t̃, t2, σ0) cos(Y (t1, σ0))− Λ(t̃, t2, t1) sin(Y (t1, σ0))

]
(3.67)

(see definitions of X and Λ in Eq. (3.54)).

• The n = 3 antisymmetric WIBA irreducible kernel reads

K
(−)
W (t, t′)(3) =−∆6

∫ t−t′

0
dτ1

∫ t−t′−τ1

0
dσ1

∫ t−t′−τ1−σ1

0
dτ2

∫ t−t′−τ1−σ1−τ2

0
dσ2

× e−S(τ1)−S(τ2)−S(τ3) cos(ετ1) cos(ετ2) sin(ετ3) cos(Y (τ3, σ2)) cos(Y (τ2, σ1))

×
[
X(t̃, τ3, σ0) cos(Y (τ1, σ0))− Λ(t̃, τ3, τ1) sin(Y (τ1, σ0))

]
(3.68)

where t̃ = t− t′, σ0 = t′ − t0 = t′ and τ3 = t− t′ − τ1 − σ1 − τ2 − σ2.

Similarly to the n = 2 case we make the change of variable σ2 → τ3 = t− t′ − τ1 −
σ1 − τ2 − σ2, and then exchange the integration order using the rule (C.2). Finally
we use Y (σ2, τ3) ' R(τ3). The result is

K
(−)
W (t, t′)(3) '

∫ t̃

0
dτ1

∫ t̃−τ1

0
dτ3W(−)(t̃, τ1, τ3, σ0)p(1)(t̃− τ1 − τ3) (3.69)

where W(−) and p(1) are defined in Eqs. (3.67) and (3.58), respectively.
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• As for the symmetric one, the n ≥ 3 irreducible antisymmetric WIBA kernel is
obtained using the approximated form Y (τn, σn−1) ' R(τn), and reads

K
(−)
W (t, t′)(n) '

∫ t̃

0
dτ1

∫ t̃−τ1

0
dτnW(−)(t̃, τ1, τn, σ0)p(n−2)(t̃− τ1 − τn), (3.70)

where p(n−2) is defined in Eq. (3.60).

It is now possible to perform the sum in Eq. (3.64). The full antisymmetric irreducible
WIBA kernel, with initial time t0, is

K
(−)
W (t̃, t̃′) = K

(−)
eN (t̃, t̃′) +

∫ t̃

0
dτ

∫ t̃−τ

0
dτ ′W(−)(t̃, τ, τ ′, t̃′)p(t̃− τ − τ ′), (3.71)

where t̃ = t − t′ and t̃′ = t′ − t0. The function p(t) is the solution of Eq. (3.63) with
p(t0) = 1.

3.6.3 Validity and features of the WIBA scheme

Some remarks are in order at this point. First, as it can be seen by inspection of Eqs. (3.59)
and (3.70), the irreducible kernels of order n show a structure in which the initial sojourn
and the first blip σ0 and τ1 are connected through the beyond NIBA interactions X and
Λ to the last blip τn, which is the time-nonlocal feature that gives to the WIBA scheme
the non-Markovian character. The intermediate propagation has the time-local intra-blip
and blip-preceding sojourn interactions given by p(t). This is exemplified in Fig.3.7.

Figure 3.7: Interactions in the irreducible WIBA kernels of order n. Solid lines are the intra-
blip (wavy lines) and blip-preceding sojourn interactions (semicircles). Dashed lines represent the
blip-blip (red) and blip-sojourn (sky-blue) interactions taken to the first order in γ.

Secondly, the kernel K
(+)
W is symmetric under the inversion ε → −ε, nevertheless the

beyond-NIBA correction vanishes for ε = 0 (as obviously does the full antisymmetric
kernel). This is consistent with the discussion about the validity of the NIBA scheme
in Sec. 3.5.2, where it is pointed out that, for ε = 0, the NIBA reproduces the correct
results down to weak coupling in the low to high temperature regime. We also notice
that the beyond-NIBA corrections in the WIBA kernels is proportional to γ, through
the functions Λ and X. This means that the entity of the correction grows with γ.
However it must be kept in mind that the scheme is derived under the assumption that
the correction can be treated perturbatively in γ at low to intermediate temperatures,
where their contribution is not made irrelevant by the cutoff exerted through S(t). As a
consequence, if the temperature is not high, in principle the WIBA is not valid at strong
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damping. On the other hand, at high temperature it coincides with the NIBA because
the functions Λ and X vanish, as S(t) and R(t) assume the long time/high temperature
linearized form (4.12), and Y (t)→ R(t). Finally, the dynamics within the WIBA scheme
cannot be computed analytically so the GME (3.22) with the WIBA kernels has to be
numerically integrated in order to obtain the time evolution of the population difference.
The numerical scheme used to solve the GME here and in Chapter 4 is described in
Appendix A.

3.7 Master Equation for the populations

In view of applying to M-states systems, with M > 2, the approximation schemes intro-
duced in this chapter, we write the kernels for the conditional populations of the TLS in
the basis |R/L〉 starting from the expressions of the population difference kernels K(±).
Using Eq. (3.23) and the probability conservation, with no reference to any particular
approximation scheme, one gets

KLR(t, t′) = −1

2

(
K(+)(t, t′) +K(−)(t, t′)

)
KRL(t, t′) = −1

2

(
K(+)(t, t′)−K(−)(t, t′)

)
KRR(t, t′) = −KLR(t, t′)

KLL(t, t′) = −KRL(t, t′).

(3.72)

3.7.1 NIBA and extended-NIBA kernels for the populations

Substituting Eq. (3.36) into Eq. (3.72) we obtain the irreducible NIBA kernels for the
populations

KN
LR(τ) =

∆2

2
e−S(τ) cos (ετ −R(τ)),

KN
RL(τ) =

∆2

2
e−S(τ) cos (ετ +R(τ))

(3.73)

and analogue expressions for the extended-NIBA, with the function Y (τ, t′) in place of
R(τ).

3.7.2 WIBA kernels for the populations

The symmetric and antisymmetric irreducible WIBA kernels of the master equation for
the population difference have the form of a extended-NIBA (eN) plus a beyond-NIBA
(BN) contribution. The same holds for the irreducible WIBA kernels for the populations.
Substituting Eqs. (3.71) and (3.62) into Eq. (3.72) we get

KW
LR(t̃, t̃′) = KeN

LR(t̃, t̃′) +KBN
LR (t̃, t̃′)

=
∆2

2
e−S(t̃) cos

(
εt̃− Y (t̃, t̃′)

)
− ∆4

2

∫ t̃

0
dτ

∫ t̃−τ

0
dτ ′e−S(τ)−S(τ ′) sin(ετ ′) cos(R(τ ′))

× p(t̃− τ − τ ′)
[
Λ(t̃, τ ′, τ) sin(ετ − Y (τ, t̃′)) +X(t̃, τ ′, t̃′) cos(ετ − Y (τ, t̃′))

]
(3.74)
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and

KW
RL(t̃, t̃′) = KeN

RL(t̃, t̃′) +KBN
RL (t̃, t̃′)

=
∆2

2
e−S(t̃) cos

(
εt̃+ Y (t̃, t̃′)

)
− ∆4

2

∫ t̃

0
dτ

∫ t̃−τ

0
dτ ′e−S(τ)−S(τ ′) sin(ετ ′) cos(R(τ ′))

× p(t̃− τ − τ ′)
[
Λ(t̃, τ ′, τ) sin(ετ + Y (τ, t̃′))−X(t̃, τ ′, t̃′) cos(ετ + Y (τ, t̃′))

]
,
(3.75)

where t̃ = t − t′ and t̃′ = t′ − t0, p(t) is given by Eq. (3.63), and the functions Λ and X
are defined in Eq. (3.54).

3.8 Weak coupling approximation

The dynamics of Pη0 in the weak coupling approximation (WCA) scheme [9, 62] can be
derived quite simply by the results obtained for the WIBA in Sec. 3.6. The WCA is
perturbative in γ both in the inter-blip and in the intra-blip interactions and thus is an
approximation scheme valid in the opposite limit with respect to the NIBA, i.e at low
temperature and weak damping, where the NIBA fails in describing the biased TLS (see
Sec. 3.5.2).

The WIBA interpolates between these two opposite regimes and reproduces correctly
the WCA results. However at low temperatures the non-Markovian character of the dy-
namical evolution becomes relevant and this is reflected by an increase of the memory time
of the WIBA kernels which, in turn, makes the numerical solution of the GME increasingly
harder. On the other hand the WCA allows for an analytical solution which can be used
as a check for other approximation schemes in the weak coupling and low temperature
regime.

We start from the expressions (3.62) and (3.71) for the symmetric and antisymmetric
WIBA kernels and expand every function of γ to the first order. The result is

K
(+)
WCA(t̃, t̃′) = K

(+)
free(t̃) + Σ

(+)
WCA(t̃, t̃′)

K
(−)
WCA(t̃, t̃′) = Σ

(−)
WCA(t̃, t̃′),

(3.76)

where K
(+)
free(t) = −∆4 cos(εt) is the kernel of the GME for the free system (see Equations

(3.27) and (3.31)). The self energies take the form

Σ
(+)
WCA(t̃, t̃′) =∆2S(t̃) cos(εt̃)

+ ∆4

∫ t̃

0
dτ

∫ t̃−τ

0
dτ ′Λ(t̃, τ ′, τ) sin(ετ) sin(ετ ′)pfree(t̃− τ − τ ′)

Σ
(+)
WCA(t̃, t̃′) =−∆2Y (t̃, t̃′) sin(εt̃)

+ ∆4

∫ t̃

0
dτ

∫ t̃−τ

0
dτ ′X(t̃, τ ′, t̃′) cos(ετ) sin(ετ ′)pfree(t̃− τ − τ ′),

(3.77)

where

pfree(t) =1 +

∞∑
n=1

(
−∆2

)n ∫ t

0
D{t}2n cos(ετi) =

~2ε2

E2
+

~2∆2

E2
cos

(
Et

~

)
. (3.78)
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Expressing the self energies in Laplace space, using the spectral representation of the
dimensionless pair interaction S and R, given by Eq. (2.58), and exchanging the time and
frequency integrals, one obtains the expressions for Σ(±)(λ) [9, 58, 63]. Substituting these
expressions in

Pη0(λ) =
η0 + Σ

(−)
WCA(λ)/λ

λ+ ∆2λ/(λ2 + ε2)− Σ
(+)
WCA, (λ)

(3.79)

and transforming back into the time domain, the following analytical expression for the
conditional population difference in the WCA is obtained

Pη0(t) '
(
η0
ε2

Ω2
− P (∞)

)
e−Γrt + P (∞)

+

[
η0

∆2
eff

Ω2
cos(Ωt) +

(
Γrε

2 + Γ∆2
eff

Ω3
− Γr

Ω
P (∞)

)
sin(Ωt)

]
e−Γt,

(3.80)

where
Ω2 =∆2 (1− 2<{u(iE/~)}) + ε2 ≡ ∆2

eff + ε2

Γr =γ
Mq2

0∆2
eff

2~Ω
coth

(
β~Ω

2

)
Γ =

Γr
2

+ γ
Mq2

0ε
2

β~2Ω2
.

(3.81)

The function u(z) in the definition of Ω is

u(z) = γ
Mq2

0

2π~

∫ ∞
0

dω
ωe−ω/ωc

ω2 + z2

[
coth

(
~βω

2

)
− 1

]
. (3.82)

This integral can be solved by a contour integration with residues at the two poles ω = ±iz
and at the infinite series of poles at the so-called Matsubara frequencies νn = n2π/~β.
Note that increasing the damping γ the oscillation frequency Ω (which also depends on
the temperature T , at low T ) is decreased, which gives the frequency shift introduced by
the environment. For vanishing γ one gets the free case with Ω → E/~. The asymptotic
population difference, entering in Eq. (3.80) is given by

P (∞) = lim
λ→0

λP̃η0(λ) = −
Σ

(−)
WCA(0)

Σ
(+)
WCA(0)

=
ε

Ω
tanh

(
~βΩ

2

)
. (3.83)

This formula is similar to that given in Sec. 3.5.2 but takes into account (for weak coupling)
the effects of the environment in determining the equilibrium values of the right/left well
populations.

3.9 Examples of TLS dissipative dynamics

We show the time evolution of the conditional probability difference Pη0 = PR,η0−PL,η0 ≡
〈σz〉η0 in the presence of Ohmic dissipation

J(ω) = Mγωe−ω/ωc

with cut-off frequency ωc = 50∆. The initial condition is η0 = −1, meaning that the
particle starts in the |L〉 state. Both the biased and unbiased TLS are considered at low
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temperature and in the weak to strong coupling regimes. The predictions of the approx-
imation schemes described above are shown. No noticeable difference emerges between
the NIBA and the extended-NIBA results (an example is given in Fig. 3.8). On the con-
trary both these schemes give results significantly different from those obtained within the
WIBA for the biased system in the weak to intermediate damping regime.

-1

-0.5

0

0.5

1

 0  10  20  30  40  50  60  70  80
t

=0.4 ,   T=0.1 -h /kB

NIBA
extNIBA

Figure 3.8: Comparison between the NIBA and the extended-NIBA schemes for the biased system
(ε = 1∆ and ωC = 50∆) in the intermediate coupling γ = 0.4∆ and low temperature T =
0.1~∆/kB . The two results practically coincide and both give an incorrect stationary population
difference (see Fig. 3.12).
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NIBA

Figure 3.9: Symmetric system (ε = 0 and ωC = 50∆) in the weak to intermediate coupling
γ = 0.2∆ and low temperature temperature T = 0.1~∆/kB . The NIBA gives the correct result for
the unbiased system, as confirmed by the comparison with the WIBA scheme.
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Figure 3.10: WIBA, NIBA and WCA results for the biased system (ε = 1∆ and ωC = 50∆) in
the weak to intermediate coupling γ = 0.2∆ and low temperature temperature T = 0.1~∆/kB .
The WIBA scheme reproduces the WCA results while the NIBA predicts incorrectly localization
at equilibrium.
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Figure 3.11: WIBA, NIBA and WCA results for the biased system (ε = 1∆ and ωC = 50∆) in the
weak coupling γ = 0.05∆ and low temperature temperature T = 0.1~∆/kB . The WIBA scheme
reproduces exactly the WCA results. The NIBA scheme for the biased system fails in this weak
coupling regime.
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Figure 3.12: WIBA, NIBA and WCA results for the biased system (ε = 1∆ and ωC = 50∆) in the
moderate coupling γ = 0.5∆ and low temperature T = 0.1~∆/kB . In this intermediate coupling
regime the WCA looses validity as predicts less localization than the WIBA. On the other hand
the NIBA fails on the opposite direction predicting complete localization. The WIBA scheme is
the most reliable in this dissipation regime.
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Figure 3.13: WIBA, NIBA and WCA results for the biased system (ε = 1∆ and ωC = 50∆) in
the strong coupling γ = 1.0∆ and low temperature T = 0.1~∆/kB . In the strong coupling regime
the NIBA is valid and its results coincide with those of the WIBA scheme. The WCA completely
fails since γ cannot be treated perturbatvely.



Chapter 4

The dissipative double-doublet
system

[The present chapter is published in collaboration with Prof. D. Valenti1, Prof. B. Spag-
nolo1 and Prof. M. Grifoni2 [50]]

In this chapter the study of dissipative bistable quantum systems is extended beyond
the TLS approximation. In the presence of strongly non linear potentials, such as those
considered throughout this thesis (see Figs. 1.1, 1.4 and 3.1), the first energy levels are
organized in well separated doublets. It follows that different time scales appear in the
dynamics as energy states other than those of the first doublet are involved. Exploiting
this separation in the time scales and using the techniques introduced in Chap. 3, an
approximation scheme is introduced which is capable of treating the four-state system
resulting from considering the first two energy doublets, in the intermediate coupling and
temperature regime, where the system’s dynamics displays coherent intra-well oscillations
and incoherent tunneling.

If a bistable system is prepared with the particle in one of the two wells, coherent
Rabi oscillations between the wells occur at very small dissipation strengths and low
temperatures. On the other hand, at sufficiently large damping and/or high temperatures
the dynamics is known to be incoherent. So far, the coherent to incoherent crossover
has been only investigated in the so-called two-level system (TLS) approximation for the
Hilbert space of the bistable system: the temperature is taken to be low enough that, to a
good approximation, the system’s dynamics can be restricted to the space spanned by the
lowest doublet {|g〉, |e〉} of eigenstates of the system’s bare Hamiltonian (cf. Fig. 3.1). A
vast literature exists [9, 33, 51, 64] which investigates the coherent to incoherent crossover
for various dissipation mechanisms in great detail.

For temperatures of the order of the separation to the next lying energy levels, the TLS
approximation breaks down and the multi-level nature of the bistable potential cannot be
neglected. Despite its relevance for applications, the dissipative bistable dynamics in this
temperature regime is so far poorly understood [65–72].

For very small damping strengths, a perturbative Bloch-Redfield approach capturing
coherent intra-well and inter-well oscillations is appropriate [69, 70]. In the opposite

1Dipartimento di Fisica e Chimica, Università di Palermo.
2Theoretische Physik, Universität Regensburg, Regensburg Germany.
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regime of moderate to large damping and temperatures the dynamics is fully incoherent
and is well described in terms of rate equations for the populations of states localized in the
wells, with rates obtained within a non-perturbative path integral approach [71]. However,
the crossover regime, characterized by moderate damping and temperatures, presents an
unsolved challenge. The major difficulty lies in the fact that, as the tunneling dynamics
occurs on a time scale much larger than that of the intra-well dynamics, a hybrid situation
can occur where quantum coherence is present at the level of intra-well motion, but is lost
at longer times where tunneling processes are relevant.

In this chapter we consider a generalization of the SB model to a four level bistable
system, the so-called double-doublet system (DDS), because its energy levels are arranged
in well separated doublets due to the strong nonlinearity of the potential (see Fig. 4.1). We
develop and use a novel approximation scheme, outlined in [61], which is based on a differ-
ence in time-scales between the fast intra-well motion and the slow inter-well (tunneling)
dynamics and makes use of the TLS WIBA scheme (presented in Chap. 3). To take into
account the different time scales of the intra- and inter-well dynamics, we include in the
vibrational relaxation (VR) dynamics the long and short time correlations introduced by
the Feynman-Vernon influence functional. On the other hand, only short time correlations
turn out to be relevant for the tunneling process. Using this novel scheme we succeed in
treating the crossover region of intermediate temperatures and damping not accessible to
currently existing Bloch-Redfield-like [69, 70] or NIBA-like [71, 72] approximation schemes
for multi-state systems.

At low temperature and weak damping, the resulting dynamics exhibits coherent oscil-
lations at short times and incoherent tunneling behavior at longer times. By increasing the
temperature and/or coupling strength, a crossover to a fully incoherent regime is observed,
in accordance with the predictions in Ref. [71, 72].

A phase diagram in the coupling strength-temperature plane, displaying the various
dynamical regimes, with the corresponding approaches or approximation schemes, gives a
comprehensive account for the problem of the dissipative quantum dynamics beyond the
TLS approximation.

4.0.1 The double-doublet system

The double well potential considered is modeled by the quartic polynomial in the particle
position operator

V (q̂) =
M2ω4

0

64∆U
q̂4 − Mω2

0

4
q̂2 − εq̂ (4.1)

which has qualitatively the same features as that of the flux qubit in Eq. (1.7. The
parameters ε and ∆U are the bias and the potential barrier, respectively.

The specific bistable system considered in this chapter symmetric (ε = 0 in Eq. (4.1))
and its relevant Hilbert space spanned by the first four energy eigenstates. Since the
corresponding energy levels are arranged in a pair of two well separated doublets, the
system is called double-doublet system (DDS).

In Fig. 4.1 are shown the potential, the energy levels and wavefunctions 〈q|Ei〉, along
with the corresponding DVR eigensystem, given by

q̂|Qj〉 = Qj |Qj〉 j = 1, . . . , 4. (4.2)

The energy doublets are characterized by internal frequency differences Ω2 � Ω1 � Ω0,
where ~Ω2 = E2 − E1 and ~Ω1 = E4 − E3 are the intra-doublet (or tunneling) splittings,
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Figure 4.1: Potential V (Eq. (4.1)) with ∆U = 1.4~ω0 and ε = 0. The minima are at qL/R ∓
3.35

√
~/(Mω0). Upper panel - The four energy levels (horizontal lines) and the respective energy

eigenfunctions. The spacing between the first two levels is exaggerated for the sake of clarity.
The frequency Ω0 = 0.8151ω0 is the average inter-doublet frequency spacing while the tunneling
frequency splittings of the higher and the lower doublet are Ω1 = 0.1212ω0 and Ω2 = 0.0037ω0,
respectively. Lower panel - Discrete variable representation. The four position eigenvalues {Qj}
and the corresponding eigenstates {|Qj〉}. In the present problem Q1/4 ∼ ∓3.51

√
~/(Mω0) and

Q2/3 ∼ ∓1.82
√
~/(Mω0).
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and ~Ω0 = (E4 + E3)/2 − (E2 + E1)/2 is the average inter-doublet spacing, which is of
the order of ~ω0 (the numerical values for the potential used in this work are given in the
caption Fig. 4.1).

In the DVR the wave functions are peaked around the four eigenvalues Q1, . . . , Q4 so
that, for the particle, to be in the state |Qj〉 means to be localized around Qj .

It is important to notice that limiting the energy levels involved in the system dynamics
to the first four is a good approximation as long as the environment is not likely to excite
the particle to higher energies, i.e. as long as kBT/~ . Ω0.

The passage to the DVR is performed through the diagonalization of the position oper-
ator q̂. This operation can be carried out analytically, to a good degree of approximation,
and is made more comfortable by writing the position operator in the localized basis of
the DDS {|L1〉, |L2〉, |R1〉, |R2〉}, where

|L1〉 =
1√
2

(|E1〉 − |E2〉) , |L2〉 =
1√
2

(|E3〉 − |E4〉)

|R1〉 =
1√
2

(|E1〉+ |E2〉) , |R2〉 =
1√
2

(|E3〉+ |E4〉) .
(4.3)

The position operator in the localized basis reads

q̂ =


−a11 −a12 0 b
−a12 −a22 −b 0

0 −b a11 a12

b 0 a12 a22

 , where

a11 = 〈E1|q̂|E2〉
2a12 = 〈E1|q̂|E4〉+ 〈E2|q̂|E3〉
a22 = 〈E2|q̂|E3〉
2b = 〈E1|q̂|E4〉 − 〈E2|q̂|E3〉 � aij

(4.4)
The DVR is provided by the the eigensystem {Qj , |Qj〉}. To proceed analytically is simpler
to take b ∼ 0, however the parameters used for calculating the DDS dynamics in Sec. 4.3
are obtained form numerical diagonalization. The position eigenvalues are (see Fig. 4.1)

Q1,2 =
1

2

(
−a11 − a22 ∓

√
(a11 − a22)2 + 4a2

12

)
Q3,4 =

1

2

(
a11 + a22 ∓

√
(a11 − a22)2 + 4a2

12

)
.

(4.5)

Note that, because of the symmetry of the potential, these eigenvalues are displaced sym-
metrically, i.e. Q3/4 = −Q2/1. The four DVR states, expressed in terms of the energy
eigenbasis |E1〉, . . . , |E4〉, are

|Q1〉 =
v√
2

(
|E1〉 − |E2〉 − u|E3〉+ u|E4〉

)
|Q2〉 =

v√
2

(
− u|E1〉+ u|E2〉 − |E3〉+ |E4〉

)
|Q3〉 =

v√
2

(
u|E1〉+ u|E2〉+ |E3〉+ |E4〉

)
|Q4〉 =

v√
2

(
|E1〉+ |E2〉 − u|E3〉 − u|E4〉

)
(4.6)

where

u =
a11 +Q1

a12
and v =

1√
1 + u2

. (4.7)
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In the present problem u ∼ −0.585125.
The transition amplitudes per unit time ∆ and the bias factors ε, defined in Eq. (2.76)

in terms of the frequency differences ωij = ωi − ωj , are given by

∆1,2 = ∆2,1 = −∆4,3 = −∆3,4 = v2uΩ0

∆1,3 = ∆3,1 = −∆2,4 = −∆4,2 =
v2u

2
(ω4,3 − ω2,1)

∆2,3 = ∆3,2 =
v2

2
(ω4,3 + u2ω2,1)

∆1,4 = ∆4,1 =
v2

2
(u2ω4,3 + ω2,1)

(4.8)

and

ε1,2 = ε1,3 = ε4,3 = ε4,2 = −ε2,1 = −ε4,1 = −ε3,4 = −ε2,4 = v2(u2 − 1)Ω0

ε1,4 = ε4,1 = ε2,3 = ε3,2 = 0.
(4.9)

The last line derives from the symmetry of the problem. Here the two indexes are used to
specify the states qj and q′j , whereas in Eq. (2.76) the single index specifies the transition
number.

A formally exact expression for the dynamics (of the populations in a generic basis) of
a multi-state system has been given in Eq. (2.73). As already noticed, because of the in-
tricacies introduced by the Feynman-Vernon influence functional, approximate treatments
are needed. Approximations which go beyond the generalized NIBA (gNIBA) proposed in
Ref. [72] are discussed in Sec. 4.1. Notice that the parameters of the bistable potential are
chosen as in [72], such that some of the results presented there for the incoherent regime
can be used as reference.

In the DVR the double path (q(t), q′(t)) is no more a continuous function of time but
a walk on a two-dimensional spatial grid with 4 × 4 grid-points. Each coordinate takes
values in the set {Q1, . . . , Q4}, so the path integral turns into a sum over all the possible
path configurations, integrated over the transition times (as in Eq. (2.73)). An example
of double path with five transitions is shown in Fig. 4.2.

Figure 4.2: Left panel - Example of a double path in the DVR plane (q, q′) in which the two
diagonal sites (Q2, Q2) and (Q4, Q4) are connected by five transitions. When the path crosses the
horizontal (vertical) dotted line the coordinate q (q′) is making a tunneling transition. Right panel
- Time resolved picture of the path in the left panel in terms of relative coordinate y = q− q′. The
path has three sojourns and two clusters.
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4.0.2 Exact free dynamics of the DDS

The calculation of the DDS dynamics in the DVR basis is not straightforward within
the path integral approach described above. Nevertheless, if the system is isolated, the
populations in the DVR are easily obtained by carrying out the calculations in the energy
representation. Suppose the initial condition is |ψ(0)〉 = |Q1〉. The DVR populations, i.e.
the probabilities to find the particle in the DVR states |Qi〉 (i = 1, . . . , 4) are

ρ11(t) =
v4

2

{
1 + u4 + cos(ω21t) + u2 [cos(ω31t) + cos(ω41t) + cos(ω32t) + cos(ω42t)]

+ u4 cos(ω43t)
}

ρ22(t) =
u2v4

2
{2 + cos(ω21t)− cos(ω31t)− cos(ω41t)− cos(ω32t)− cos(ω42t) + cos(ω43t)}

ρ33(t) =
u2v4

2
{2− cos(ω21t)− cos(ω31t) + cos(ω41t) + cos(ω32t)− cos(ω42t)− cos(ω43t)}

ρ44(t) =
v4

2

{
1 + u4 − cos(ω21t) + u2 [cos(ω31t)− cos(ω41t)− cos(ω32t) + cos(ω42t)]

− u4 cos(ω43t)
}
,

(4.10)
where ωi,j = ωi − ωj .

The free DDS dynamics is shown in Fig. 4.3, where the relevant time scales are high-
lighted and a comparison is made with the long time free dynamics of the system in the
TLS approximation.

The free dynamics displays fast intra-well oscillations of frequency Ω0 and a tunneling
dynamics, occurring in two distinct time scales: the shorter one is given by the higher
energy doublet (frequency Ω1, see Fig. 4.1) and the longer one, involved in the left/right
population inversion, occurs on the times scale set by the frequency Ω2 = (E2 − E1)/~.
As shown in Fig. 4.3, the long time oscillations coincide with those of the system in the
TLS approximation starting with the particle in the left well.

The rich dynamics described reflects the configuration of the energy levels in two well
separated doublets, with different inter-doublet separation, and allows for the approxima-
tions on the Feynman-Vernon influence functional introduced in the following sections.

4.1 Approximations

We want to study the DDS dissipative dynamics in terms of the time evolution of the
populations, the diagonal elements of the RDM in the DVR basis, assuming that the
particle is initially in the state |Q1〉. This amounts to calculate the propagator (see
Eq. (2.25))

ρkk(t) = G(Qk, Qk, t;Q1, Q1, t0), k = 1, . . . , 4. (4.11)

The evaluation of the propagator involves two main difficulties. The first one is that,
contrary to the TLS case, the variety of possible paths of the multi-state system makes
the summation difficult, if not impossible, even in the absence of coupling with the bath.
This feature calls for a selection on the paths to be summed.
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Figure 4.3: Time evolution of the populations in the DVR for the free DDS with initial condition
ρ(t0 = 0) = |Q1〉〈Q1| (analytical result). Left panel - Long time dynamics of the left well population
PL = ρ11 + ρ22 compared to the |L〉 state population of the system in the TLS approximation.
Right panel - Short time dynamics of the left well population of the DDS and time evolution of
the single populations of the DVR basis states.

The second difficulty is constituted by the intricate set of time nonlocal correlations
among the ξi and χj charges, introduced by FFV , which make the path integral expression
intractable.

Hereinafter we shall use an approximation on FFV which is based on the separation of
time scales between the intra-well and the inter-well dynamics. The first one is charac-
terized by transitions among states in the same well, called vibrational relaxation events
(VR). The inter-well dynamics consists of transitions among states in different wells, called
tunneling events (T).

In order to give a justification for this approximation we describe, in the next section,
the free dynamics of the system. It shows the characteristic time scales associated with
the level structure of the symmetric double well potential considered (see Fig. 4.1).

4.1.1 Selection on the paths and retained interactions

When a double path is in a diagonal configuration (q = q′), it is said to be in a sojourn.
The non-diagonal configuration (q 6= q′) between two consecutive sojourns forms a cluster.
The latter is a generalization of the blip configuration for the TLS [51]. The difference
is that a blip consists, for geometrical reasons, of a single off-diagonal excursion while a
cluster can be made of an arbitrary long sequence of off-diagonal transitions. In Fig. 4.2
we give an example of a path with three sojourns and two clusters, the first of which is a
simple blip and the second a proper cluster with multiple off-diagonal excursions.

For Ohmic damping with exponential cutoff at a high frequency ωC , the long time or
high temperature limit (t� ~/kBT ) of the bath correlation function (Eq. (2.62)) is

Q(t) =
Mγ

π~

[
κt− ln

(
2κ

ωC

)]
+ i

Mγ

2~
, (4.12)

where κ = πkBT/~. In this limit, the inter-cluster interactions cancel out exactly, so that
the suppression of the path weight exerted through Q′(t) depends on the length of the
cluster. For this reason, in the presence of the dissipative Ohmic environment considered
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here, the contribution of paths with long off-diagonal excursions is suppressed. Thus, the
main contribution to the sum (2.73) is given by those path returning in a sojourn after a
single off-diagonal excursion.

The first approximation we do is to consider only this class of paths. Following the
TLS convention, we call the off-diagonal configurations vibrational relaxation-blips (VR-
blips), if q and q′ belong to the same well, and tunneling-blips (T-blips), if q and q′ belong
to different wells.

The second approximation consists in neglecting, among the interactions induced by
FFV , i) all the interactions between couples of T-blips, ii) those between a T-blip and a VR-
blip and iii) the interactions between two non-consecutive VR-blips. This approximation
is justified by the long time scale of the tunneling dynamics, i.e. by the fact that, on
the average, tunneling events are rare, because the transition amplitude per unit time
associated with them is small in comparison with that of a VR event. Since in a typical
path the T-blips are well separated in time, their ξ and χ charges interact through the
long time limit of the bath correlation function, meaning that the total interaction sums
up to zero, as stated above.

Moreover, a tunneling blip is strongly suppressed by the environment, since ξjξj−1 =
−(qj−q′j)2 in Eq. (2.72) is large if q and q′ are in different wells. The resulting picture, for
a typical path among those retained in the summation, is that of a sequences of frequent
VR-blips, which we call VR-blip chain, interrupted by T-blips, as sketched in Fig. 4.4.
Notice that, inside a VR-blip chain, the interactions are retained.

Figure 4.4: A path made by two VR-blip chains separated by a T-blip. The transition times and
the blip/sojourn times are indicated. The shaded areas on the lower part of the figure represent the
time intervals inside which the correlations are retained according to the approximations discussed
in Sec. 4.1.1. Specifically, according to the VR-WIBA scheme introduced in Sec. 4.1.2, the
intra-VR-blip and intra-T-blip interactions (solid wavy lines) are taken at all order in γ while the
inter-VR-blip and VR-blip-sojourn interactions (dashed lines) are taken to the first order in γ.

Under these two approximations the system decouples into a set of six TLSs. Any
double path can be seen as a sequence of arbitrarily long, non-interacting paths inside
the two dimensional sublattices in Fig. 4.5, each of which represents a different TLS
characterized by its own bias factor, tunneling element and distance between the spatial
coordinates.
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Figure 4.5: With the limitations on the allowed paths and the separation of the intra- and inter-
well dynamics, the motion of the system in the 4 × 4 grid of spatial positions decouples into a
sequence of arbitrarily long paths inside the six two-dimensional square sublattices in the figure,
each one representing a different TLS. The dashed squares indicate the TLSs with nonzero effective
bias while the solid squares indicate symmetric TLSs.

4.1.2 Weakly-interacting VR-blip approximation

The approximations done still allow for the treatment of the VR-blip chains, i.e. the
motion of the TLSs formed by the couples of states inside each well, to arbitrary accuracy.

Again, also for an intra-well TLS, an exact treatment is impossible due to the intricacies
brought by FFV . It is therefore necessary to make further approximations on the nonlocal
interactions inside the VR-blip chains.

At high temperatures, in the limits of the DDS description, the long time limit of Q(t)
(see Eq. (4.12)) is attained at short times. If the linearized form is attained on time scales
of the order of magnitude of the average separation between two VR-blips, they can be
considered noninteracting objects. This amounts to retain only the local in time effects
introduced by FFV . The resulting scheme for the intra-well dynamics is the well known
NIBA. Within the NIBA for the VR-blip chains every blip is noninteracting with any
other. The resulting overall scheme is the multi-level generalization of the NIBA, which
can be called generalized non-interacting blip approximation (gNIBA)3.

At lower temperature the gNIBA breaks down because the inter-blip interactions are
not removed completely inside a VR-blip chain. However, due to the long timescale of the
inter-well dynamics, the isolation of the T-blips is still valid if the cutoff operated by FFV
occurs on the time scale Ω−1

1 of the fast tunneling dynamics.

To account for inter-blip correlations in the VR dynamics, we adapt to our purposes
a scheme for the TLS, called weakly interacting blip approximation (WIBA) [59], which
interpolates between strong and weak damping regimes. The scheme retains, to the first
order in γ, the nonlocal part of the interactions among the VR-blips and, to all orders,
the interactions inside the VR-blips. We name the resulting overall scheme for the DDS
VR-WIBA.

3This scheme corresponds to the generalized non-interacting cluster approximation (gNICA) at the
leading order in the ∆ factors [72].
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From what stated above two considerations can be made about the validity of our
VR-WIBA approximation scheme. The first is that the region of the parameter space in
which the VR-WIBA is valid includes that of the gNIBA because the isolation of any blip
implies the separation among T-blips and VR-blip chains. The second comment is that,
while the validity of the gNIBA is established by the temperature and depends weakly on
the damping, in determining the validity of the VR-WIBA both temperature and damping
play an important role.

In the Sec. 4.2 we discuss in more detail the validity domains and in Sec. 4.3 we show
and compare their results for the dissipative DDS dynamics.

4.1.3 VR-WIBA generalized master equation

By properly taking into account the above approximations every double path can be
considered as a sequence of non-interacting paths along the two 2×2 sublattices in Fig 4.5.
A sublattice is identified by the coordinates of its two diagonal sites (red dots in the
figure). Suppose a sublattice has diagonl sites (qA, qA) and (qB, qB). Then the path
inside this sublattice is mapped onto the motion of the TLS {|qA〉, |qB〉}. Every TLS path
has, by definition, an even number of transitions, since it starts and ends in a diagonal
configuration, so the whole path has an even number 2n of transitions (see Fig. (4.5)).
We can therefore factorize the amplitude A(t0, . . . , t2n, t) = A(q)A∗(q′)FFV (x, y) into the
product of the amplitudes Aj associated to the paths into the TLSs. The initial and final
states are fixed: q0 = Q1 and qn = Qk.

From inspection of Eq. (2.73) (see also Fig. 4.4) we see that the amplitudes don’t
depend on the last sojourn time.

Moreover we neglect, in each of the amplitudes Aj , the interactions involving the first
sojourn time (this is justified by the fact that the VR-blip chains and the T-blips are well
separated, which implies a long first sojourn time).

If a path switches sublattice M times, with 2kj transitions in the j-th sublattice and∑N
j=1 kj = n, we have

A(t1, t2 . . . , t2n−1, t2n) =
M∏
j=1

Aj(τ
j
1 , σ

j
1, . . . , σ

j
kj−1, τ

j
kj

), (4.13)

where τj = t2j − t2j−1 are the blip times and σj = t2j+1 − t2j the sojourn times.
The population ρkk(t) of the state |Qk〉 at time t, given the initial condition ρ(t0) =

|Q1〉〈Q1| (see Eq. (4.11)), is

ρkk(t) = δQkQ1 +

∞∑
n=1

∫ t

t0

D2n{tj}A(t0, t1, . . . , t2n, t). (4.14)

Due to the fact that the amplitudes in this sum over the paths factorize as in Eq. (4.13),
the Laplace transform of ρkk(t) reads

ρkk(λ) =
δQkQ1

λ
+

1

λ

∞∑
M=1

Q4∑
{qj}=Q1

M∏
j=1

K̂qj−1qj (λ)

λ
, (4.15)

where, for qj 6= qj−1, the functions K̂qj−1qj (λ) are the Laplace transforms of the TLS
kernel Kqj−1qj (τ) in the master equation for the populations of the TLS {|qj−1〉, |qj〉} (see
Appendix C).
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We now switch to vector notation. We define the four-dimensional vector ~ρ(λ), whose
components are the Laplace transform ρkk(λ) of the four populations. Defining also the
4× 4 matrix K̂(λ), whose elements are the functions K̂qjqj−1(λ), Eq. (4.15) reads

~ρ(λ) =
~ρ(t0)

λ
+

1

λ

∞∑
M=1

[
K̂(λ)

λ

]N
~ρ(t0)

=
1

λ

∞∑
N=0

[
K̂(λ)

λ

]N
~ρ(t0)

=
[
λI− K̂(λ)

]−1
~ρ(t0).

(4.16)

Transforming back to the time domain we obtain the following generalized master equation
(GME)

~̇ρ(t) =

∫ t

t0

dt′K(t− t′)~ρ(t′),

where K(t) = L−1{K̂(λ)}. Restoring the index notation, we find equivalently

ρ̇kk(t) =
4∑
j=1

∫ t

t0

dt′Kkj(t− t′)ρjj(t′). (4.17)

The diagonal elements of the kernel matrix K(t) are given by the probability conservation

Kjj(t) = −
4∑

i(6=j)=1

Kij(t).

The non-diagonal elements have been defined as the TLS kernels corresponding to
the motion into the sublattices. These elements of the kernel matrix are taken within
different approximation schemes, according to the populations they connect in the GME.
Specifically, on the basis of the approximations made, they are classified as follows

• If the DVR states k and j belong to different wells, i.e.

(k, j) = (1, 3), (3, 1), (1, 4), (4, 1), (2, 3), (3, 2), (2, 4), (4, 2),

the corresponding kernel is a NIBA kernel KN
kj(t).

• If the DVR states k and j belong to the same well, i.e

(k, j) = (1, 2), (2, 1), (3, 4), (4, 3),

the nonlocal correlations can be, in principle, taken into account to any accuracy.
We use the WIBA scheme for these intra-well kernels. In this scheme they consist
of a NIBA plus a beyond-NIBA part

KW
kj (t) = KN

kj(t) +KBN
kj (t).

If we set to zero the beyond-NIBA correction in these intra-well kernels we obtain
the gNIBA scheme for the DDS discussed in [71].

The explicit expressions for the kernels are given in Appendix E.
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4.2 Dynamical regimes and validity of the approximation
schemes: phase diagram

While the dynamics of a TLS can occur in the coherent or incoherent tunneling regime, for
the DDS there’s a richer variety of dynamical regimes, due to the different energy scales
involved in the problem.

Looking at the free DDS dynamics depicted in Fig. 4.3, we recognize three charac-
teristic frequencies: Ω2 � Ω1 � Ω0. As discussed in Sec. 4.0.2, this is reflected by the
presence of a slow tunneling dynamics, occurring at the time scale Ω−1

2 , a fast tunneling
dynamics with frequency Ω1 and the intra-well dynamics, which occurs on the shortest
time scale Ω−1

0 . In the dissipative case the different oscillatory behaviors undergo damp-
ing/temperature dependent frequency shifts and are progressively suppressed at different
dissipation regimes.

At intermediate damping and temperature the dynamical regimes are controlled by
the behavior of the effective TLSs introduced in Sec. 4.1, as the natural description for
the system passes from the energy representation to the localized one given by the DVR.
It is thus suggestive to use the machinery existing for the spin-boson problem to give an
indication of the boundaries between different dynamical regimes in the parameter space.

As discussed in Sec. 4.1.1, each effective TLS, denoted by {|Qi〉, |Qj〉}, has its tun-
neling element ∆ij , bias εij and characteristic distance qij = Qi − Qj . It follows that at
fixed γ, the effective coupling Kij to which a TLS is subject can be more or less strong,
depending on its parameters. The effective damping strength, or Kondo parameter, for
the TLS {|Qi〉, |Qj〉} is defined by

Kij = Mγq2
ij/(2π~). (4.18)

For a real symmetric TLS at T = 0, the value K = 1/2 corresponds to the transition from
the coherent to the incoherent behavior, while at K = 1 the localization occurs, consisting
in the complete inhibition of the tunneling, with the consequence that the particle doesn’t
leave the well where it was prepared. The coherent-to-incoherent transition temperature
T ∗ as a function of the effective damping for the symmetric TLS is given by [9]

T ∗(K) =

(
(2π)K

πK

)1/(1−K) ~∆r

kB
, (4.19)

where ∆r = ∆(∆/ωc)
K/(1−K) (K < 1) is the renormalized tunneling element.

We exploit the decoupling of the DDS into effective TLSs, in conjunction with numer-
ical tests, to identify the following dynamical regimes in the (γ, T )-space for the DDS: (a)
- completely coherent regime, with coherent tunneling at both the slow (Ω−1

2 ) and the fast
(Ω−1

1 ) tunneling time scales and coherent intra-well oscillations (Ω−1
0 ); (b) - coherence at

the fast tunneling time scale Ω−1
1 , with oscillations of the left/right well populations around

a slow incoherent relaxation behavior and coherent intra-well dynamics; (c) - crossover
regime, where the coherence is only at the level of intra-well motion (on the time scale
Ω−1

0 ); (d) incoherent regime, where the four populations relax incoherently to their equi-
librium values.

The regions in the parameter space corresponding to the above mentioned dynamical
regimes and the validity areas of the approximation schemes used to treat the DDS are
depicted in the phase diagram of Fig. 4.6.
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Figure 4.6: Phase-space diagram in the dimensionless coupling-temperature space. The dynamical
regions, separated by solid lines, are: (a) complete coherence, (b) coherent regime, (c) crossover
regime and (d) incoherent regime. The dashed line is an extrapolation to finite temperatures of the
localization regime predicted for the effective symmetric TLS {|Q2〉, |Q3〉} at T = 0. The shaded
areas indicate the validity domains of the approximation schemes used. The WR-WIBA reduces to
the gNIBA at high temperatures, so the domain of the first scheme includes that of the latter. The
characteristic frequencies Ωi of the DDS, reported in both axes in units of ω0, serve as reference to
establish the effective dissipation regimes. The diamonds refer to the parameters chosen to obtain
the results presented in Sec. 4.3.

The completely coherent regime (Region (a) on the phase diagram) is established by
considering T ∗14, the coherent-to-incoherent transition temperature as a function of the
effective coupling for the effective TLS {|Q1〉, |Q4〉} (cf. Eq. (4.19)). The boundary be-
tween Regions (a) and (b), given by T ∗14, determines the suppression of the slow oscillatory
behavior of PL = ρ11 +ρ22, while both the intermediate tunneling oscillations and the fast
intra-well dynamics survive.

In the part of Region (a) where the perturbative in the coupling treatment is appro-
priate, the Bloch-Redifield master equation describes correctly the dynamics of the DDS.
The master equation has, for the coherences in the energy representation, the solution (see
Appendix D)

ρEnm(t) = e−iωnmte−Lnm,nmtρEnm(t0). (4.20)

To determine the domain of validity of the Bloch-Redfield approach we compare the de-
phasing coefficient L12,12 with the frequency ω21 ≡ Ω2 = ω2 − ω1 imposing L12,12 ≤ ω21.
The result is the shaded area on the left part of the phase diagram. However, the extension
of this validity domain may be overestimated, having neglected the frequency shifts in the
evaluation of the Bloch-Redifield tensor (see. Eq. D.5). The weak coupling approximation
fails near the boundary between (a) and (b) where the long time oscillations of PL turn
into incoherent relaxation.

Region (b) of the diagram, characterized by stronger damping and/or higher tempera-
ture, is outside the validity domain of the Bloch-Redfield approach. Nevertheless we can
use the weak coupling estimates for the asymptotic values of the populations on the basis
of the following argument. Whenever the relaxation to the equilibrium occurs, the asymp-
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totic values of the left- and right-well populations are PL(∞) = PR(∞) = 1/2, due to the
symmetry of the system. This means that we can obtain the single populations ρii(∞),
focusing on the intra-well biased TLSs {|Q1〉, |Q2〉} and {|Q3〉, |Q4〉}. They are charac-
terized by effective tunneling elements |∆12| ' 0.35ω0 and effective biases |ε12| ' 0.40ω0.
For these intra-well TLSs the effective damping K12/34 is still weak and we can use the
expressions given by the WCA [9] for the asymptotic populations of the intra-well TLSs
states

ρ33/44(∞) =
1

4
∓ ε

4∆b
tanh

(
~∆b

2kBT

)
, (4.21)

where ∆b =
√

∆2
12 + ε212. By the symmetry of the problem we have ρ22/11(∞) = ρ33/44(∞).

The boundary between the Regions (b) and (c) indicates the passage to the crossover
regime in which the tunneling is incoherent. The right boundary to the area (b) is obtained
considering the coherent-to-incoherent transition temperature T ∗23 as a function of K23 for
the symmetric TLS {|Q2〉, |Q3〉}.

The boundary between the coherent and the crossover regimes delimits also the validity
of the approximation lying at the basis of the factorization of the DDS amplitudes into
uncorrelated amplitudes relative to TLS paths. Indeed in the crossover regime, where
the tunneling is incoherent, the contribution of the clusters in the sum over the paths is
negligible so that the limitation made on the contributing paths holds.

Since the two intra-well TLSs have an effective bias, they can be treated according to
the NIBA only in the high temperature/strong coupling regime (on the frequency scale
Ω0 of the intra-well motion) [9].

Treating the intra-well dynamics within the NIBA amounts to use the gNIBA scheme
for the complete DDS and we can conclude that the gNIBA reproduces correctly the
dynamics inside the darker shaded area in the uppermost part of the diagram.

The WIBA scheme applied to the intra-well TLSs extends the path integral approach
for the DDS to low temperatures in a quite large damping range. The WIBA correctly
predicts both the transient behavior and the asymptotic populations for the TLS whenever
the intra-blip correlation can be neglected (high temperature at any coupling) or treated
to the first order (from low to high temperature at weak coupling) [59]. Thus the validity
area of the VR-WIBA includes that of the gNIBa and covers the upper-right shaded region
in the phase diagram.

The dissipation regime inaccessible to the WIBA for a biased TLS, and consequently
to the VR-WIBA for the DDS, is the low temperature/intermediate-to-strong coupling,
where the inter-blip correlations are non suppressed by the bath and the coupling is not
sufficiently weak to justify their treatment to the first order in γ. This corresponds to
the lower-right part of the diagram where the dashed line at strong damping indicates
an extrapolation to finite temperatures of the localization regime occurring at T = 0 for
the symmetric effective TLS {Q2, Q3}. The extrapolation is made observing that, in this
region of the parameter space, the effective tunneling elements of the inter-well effective
TLSs vanish [9], so that the DDS is not expected to undergo the tunneling dynamics,
irrespective of the initial condition.
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4.3 Results for the DDS dynamics

4.3.1 Parameters and units

We scale all the parameters with ω0, the natural oscillation frequency around the minima of
the potential described in Eq. (4.1). We use the Ohmic bath spectral density function with
exponential cutoff J(ω) = Mγω exp(−ω/ωC). The cutoff frequency is set to ωC = 50ω0.
The potential is the same as in Fig. 4.1, with parameters ε = 0 and ∆U = 1.4~ω0. In
what follows t0 = 0 and the initial condition is ρ(0) = |Q1〉〈Q1|.

4.3.2 Dissipative DDS dynamics

In this section we show the time evolution of the populations in the DVR basis |Q1〉, . . . , |Q4〉,
at the parameter space points indicated in the phase diagram (Fig. 4.6).

In the Region (a) of the phase diagram (completely coherent dynamical regime) we
give the dynamics at two phase space points. The first one (Fig. 4.7), at very low T
and γ, is well within the applicability domain of the Bloch-Redfield master equation.
The dynamics of the left/right well populations, PL/R, of the DDS shows a slow damped
oscillatory behavior of frequency Ω2 with superposed small oscillations of frequency Ω1

featured also in the free dynamics (see Fig 4.3). The short time behavior of the single
populations is shown in the lower panels and resembles the free case, with fast oscillations
of frequency Ω0 and an oscillatory envelope of frequency Ω1. This is because, at short
times, the effect of the environment is not visible in this dissipation regime. We remark
that in this dissipation regime the fast intra-well oscillations are a result of the initial
condition (cf. Sec. 4.0.2).

The second dynamics is shown in Fig. 4.8 and corresponds to point 2 in the diagram.
It is in the same dynamical regime as the first. The populations show the same qualitative
feature as in the free case even if the damping of the fast tunneling oscillations is now
visible.

The third point in the diagram is in the crossover regime at weak coupling and inter-
mediate temperature (with respect to Ω0). Here the coherence is only in the intra-well
motion. In this dissipation regime the WCA completely fails as γ ∼ Ω1, so the time
evolution of the populations is calculated within the path integral approach in the gNIBA
and in the novel VR-WIBA scheme.

The results are given in Fig. 4.9 and show that the gNIBA fails as expected from the
discussion in Sec. 4.2. Indeed the point 3 in the phase diagram is outside the regime of
validity of the gNIBA because the temperature is not sufficiently high to justify NIBA in
the biased intra-well TLS.

The next time evolution is provided at point 4 in the diagram of Fig. 4.6, i.e. at weak
damping and high temperature with respect to the intra-well frequency. Contrary to the
previous case, here both the VR-WIBA and the gNIBA are expected to give the correct
prediction. The results for the two schemes at this point of the parameter space coincide,
as shown in Fig. 4.10.

The point 5 in the phase diagram is inside the crossover region at intermediate damping
and temperature with respect to Ω0. The gNIBA and VR-WIBA dynamics are shown in
Fig. 4.11. Similarly to the case 3, the gNIBA fails and the VR-WIBA is expected to give
the correct predictions. Interestingly, even if the damping is larger than that at point 3
in the phase diagram, the gNIBA prediction in this case is even worse than in Fig. 4.9,
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Figure 4.7: Completely coherent dynamics of the DDS at very weak damping and low temperature
(point 1 in the phase diagram). Results obtained within the Bloch-Redfield master equation.
Uppermost panel - Time evolution of the left/right well populations of the DDS. The long time
behavior of PL/R = ρ11/33 + ρ22/44 is characterized by weakly damped oscillations of frequency
Ω2 and fast oscillations (of frequency Ω1) around the long time envelope. Both these features are
related to the tunneling dynamics. Lowest panels - Time evolution of the four populations in the
DVR basis. The short time behavior of the DDS in this dissipation regime is very similar to the
free case (see Fig 4.3).
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Figure 4.8: Uppermost panel - Time evolution of the left/right well populations of the DDS
(PL/R = ρ11/33 + ρ22/44) for γ and T at point 2 in the phase diagram. The long time oscillations
are more damped with respect to the case in the uppermost panel of Fig. 4.7. Lowest panels -
Short time dynamics (with respect to Ω−12 ) of the individual DDS populations. As in Fig. 4.7,
the time evolutions display qualitatively the same features found in the free case (right panel of
Fig. 4.3) but the damping is now visible at this short time scale.
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Figure 4.9: Weak damping and low to intermediate temperature with respect to the intra-well
frequency (point 3 in the phase diagram). Comparison between the VR-WIBA and the gNIBA
results for the time evolution of the populations in the crossover dynamical regime (Region (c)
in Fig. 4.6). As expected, the gNIBA gives incorrect predictions of both the transient and the
stationary, while the VR-WIBA is expected to give the correct results. The configuration at
equilibrium, as given by the WCA (Eq. (4.21)), is shown for comparison.
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Figure 4.10: Weak damping and high temperature with respect to the the intra-well frequency
(point 4 in the phase diagram). Comparison between the VR-WIBA and the gNIBA results for
the time evolution of the populations in the crossover dynamical regime (Region (c)). The results
in the two scheme coincide and reproduce the correct stationary configuration, provided by the
WCA (Eq. (4.21)). This example shows that the gNIBA scheme is reliable also at weak damping,
provided that the temperature is high enough, according to the domain of validity established in
Sec. 4.2.
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Figure 4.11: Intermediate damping and temperature with respect to the intra-well frequency
(point 5 in the phase diagram). Comparison between the VR-WIBA and the gNIBA results for
the time evolution of the populations in the crossover dynamical regime (Region (c)). As in Fig.
4.9 the gNIBA fails and the VR-WIBA is expected to be valid. The blue dashed lines are WCA
prediction for the equilibrium values of the populations.
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as it predicts localization. This is because the beyond-NIBA correction in the intra-well
kernels on the GME is proportional (at appropriate damping) to the damping itself (see
Appendix ??).
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Figure 4.12: Strong damping and intermediate to high temperature with respect to the intra-well
frequency (point 6 in the phase diagram). Comparison between the VR-WIBA and the gNIBA
results for the time evolution of the populations in the strong coupling part of the crossover
dynamical regime (Region (c)). The gNIBA and VR-WIBA results disagree as the coordinates of
point 6 in the diagram are outside the gNIBA validity domain.

The sixth point in the diagram is in the strong coupling and intermediate to high tem-
perature regime with respect to the intra-well TLS parameters. The dynamical regime is
the crossover (Region (c)) with strongly damped intra-well oscillations and slow incoherent
tunneling relaxation. Again, the gNIBA results differ from those of the VR-WIBA, which
confirms that also in this coupling regime the gNIBA is valid only at high temperatures.

The last two points (7 and 8 in the diagram of Fig. 4.6) are in the incoherent regime
(Region (d)). The gNIBA describes well the incoherent relaxation at strong damping and
high temperature, as shown in Fig. 4.13. In the strong coupling regime at intermediate
temperatures (point 8) the gNIBA fails. The VR-WIBA is expected to give better results
even if the treatment of the inter-blip interactions to the first order is questionable at this
level of coupling with the environment. The comparison of the WIBA with numerically
exact approaches (QUAPI [73]) for the asymmetric TLS, in the strong dissipation regime,
proves that the WIBA attains a good performance also outside the weak coupling limit at
finite temperature [59].
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Figure 4.13: Incoherent dynamics at strong damping and high temperature (point 7 in the phase
diagram). This dissipation regime is in the overlap of the validity domains of VR-WIBA and
gNIBA. As expected, the results in the two schemes agree. Upper panel - Short time dynamics
within the two approximation schemes; comparison with the Markov approximated gNIBA master
equation (see Chap. 5). Lower panel - Long time dynamics (time in log scale) calculated by the
gNIBA Markovian master equation.
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Figure 4.14: Strong damping and intermediate temperature (point 8 in the phase diagram). This
regime is outside the reach of the gNIBA scheme, as shown in Fig. 4.6. Nevertheless the gNIBA
predictions are in qualitative agreement with those of the VR-WIBA.

4.4 Conclusions

In this chapter we give a comprehensive account of the dissipative dynamics of the double-
doublet system in an Ohmic environment with a high frequency cutoff, using a novel
approximation scheme based on a real-time path integral approach, the VR-WIBA.

By taking into account the nonlocal inter-blip correlations at the level of the intra-
well dynamics, this scheme contains and extends the domain of validity of the generalized
NIBA and succeeds in describing the crossover dynamical regime occurring at intermediate
temperatures for a broad range of damping. The crossover regime is characterized by
coherence at the level of intra-well motion and incoherent tunneling dynamics and is, to
a large extent, inaccessible to previous approximation schemes.

At weak damping and low temperatures we use a Born-Markov approximated master
equation technique to account for the coherent oscillatory behavior of the intra-well and
tunneling dynamics. This approach is also used to check the VR-WIBA predictions for
the stationary configuration where the damping is large respect to the tunneling frequency
but still weak with respect to the intra-well characteristic frequency.

The combined use of the master equation and path integral techniques, within our
novel scheme, accounts for the dissipative dynamics of the DDS in a large region of the
parameter space where the four-state truncation of the Hilbert space is justified. To show
this we establish a phase diagram which describes the dynamics corresponding to the
various dissipation regimes and the domains of validity of the techniques used in this
work. We provide several examples of DDS dynamics in each of the accessible dynamical
regimes in the phase diagram, ranging from the weak coupling/low temperature to the
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strong coupling/high temperature regime.
Two final remarks are in order. Even if the calculations presented in this work are

performed for an unbiased double well potential, the applicability of the VR-WIBA is not
limited to the symmetric case. Indeed a static bias can be taken into account as long as
the dynamical time scales of the intra- and inter-well dynamics remain well separated. In
terms of energy levels this means that the inter-doublet energy separation should be much
larger than the intra-doublet separation. This condition is not very restrictive as it is
fulfilled for any bias for which the two energy doublets are below the top of the potential
barrier.

Finally, the generalization of the VR-WIBA to broadband sub-Ohmic or super-Ohmic
environments is possible, although care must be taken in establishing, from time to time,
the validity of the approximations discussed throughout this chapter.



Chapter 5

Strong coupling regime: driven
multi-state systems and
metastability

[Part of the present chapter is going to be published in collaboration with Prof. D. Valenti1,
Dr. P. Caldara and Prof. B. Spagnolo1]

In this chapter, following Ref. [72], we consider the general case of a D-state bistable
quantum system (with D ≥ 4), possibly subject to a (high-frequency) sinusoidal driving,
in the strong coupling regime. Using the analytic technique of the strong coupling Markov-
approximated master equation, the transient dynamics occurs as an incoherent relaxation
towards an equilibrium state which depends on the driving parameters as well as on the
damping regime. Along with the time evolution a systematic study is performed in the
driving parameters space (amplitude and frequency) to give an account for the stationary
configuration and time scales of the relaxation in different (strong coupling) dissipation
regimes [74].

The same technique is used to study the problem of the escape from a metastable state
(static case) in the quantum regime. By an analysis of a suitably defined escape time,
a non monotonic behavior with respect to the damping and temperature is found, which
resembles the well known phenomenon, in the classical context, of the noise enhanced
stability.

5.1 Master equation for the driven multi-state system within
the gNIBA

In the presence of a sinusoidally varying bias the bare system Hamiltonian ĤS in Caldeira-
Leggett Hamiltonian (1.11) acquires a time dependence

ĤS(t) =
p̂2

2M
+
M2ω4

0

64∆U
q̂4 − Mω2

0

4
q̂2 − q̂ε(t). (5.1)

1Dipartimento di Fisica e Chimica, Università di Palermo.
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The time dependent bias is defined by

ε(t) = ε+A sin(Ωt), (5.2)

where we assume Ω � ω0. The general expression for the propagator for a D-state non-
driven system, given in Eq. (2.73), with the time dependent Hamiltonian, turns into

G(qk, qk, t; q0, q
′
0, t0) =

∞∑
N=0

∫ t

t0

DN{tj}B0(t1, t0)

N∏
j=1

(−i) ∆jBj(tj+1, tj)FFV (5.3)

The bias factors, defined in Eq. (2.75) for the non-driven system, now do not depend
anymore on the time differences tj+1 − tj , but take on the form

Bj(tj+1, tj) = exp

(
−i
∫ tj+1

tj

dt′εj(t
′)

)
= exp [−iεj(tj+1 − tj)]

× exp

[
−i2∆qjA

Ω

(
sin

Ω

2
(tj+1 + tj) sin

Ω

2
(tj+1 − tj)

)]
,

(5.4)

where ∆qj = qj − q′j is the difference between the left and right coordinates at the j-th
transition.

Having assumed a fast driving it is reasonable [72] to average over a driving period
with respect to the variable t̃ = tj+1 + tj , so as to restore the time-convolution character
of Eq. (2.73) in the propagator (5.3), allowing for the simple derivation of the GME given
in Sec. 4.1.3. The averaged bias factors read

B̄j(tj+1 − tj) =
Ω

2π

∫ Ω/4π

−Ω/4π
dt̃Bj(t̃j , tj+1 − tj)

= exp [−iεj(tj+1 − tj)] J0

(
2∆qj

A

Ω
sin

Ω

2
(tj+1 − tj)

)
,

(5.5)

where J0 is the zero-th order Bessel function of the first kind.

By this procedure and assuming to be within the validity of the gNIBA (see Sec. 4.1),
it is possible to derive the generalized master equation for the populations in the DVR for
the D-state system along the same lines as done for the non-driven case in Sec. 4.1.3. The
GME for the D-state system reads

ρ̇kk(t) =

D∑
j=1

∫ t

t0

dt′KgN
kj (t− t′)ρjj(t′), (5.6)

where the gNIBA kernels with averaged bias factors read (see Sec. 4.1.3 and Appendix E)

KgN
kj (t) =2∆2

kje
−q2

kjQ
′(t)J0

(
2qkjA

Ω
sin

Ωt

2

)
cos
(
εkjt+ q2

kjQ
′′(t)

)
(j 6= k)

KgN
kk (t) =−

∑
i

KgN
ik (t).

(5.7)
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Here we have used

∆kj =
1

~
〈qk|ĤS |qj〉

εkj =
1

~

(
〈qk|ĤS |qk〉 − 〈qj |ĤS |qj〉

)
qkj = qk − qj ,

(5.8)

where ĤS is the static part of the system Hamiltonian in Eq. (5.1).
At strong damping, in the incoherent regime, the populations evolve on time scales

larger than the time intervals over which the gNIBA kernels are substantially different
from zero. The characteristic time over which they vanish is dictated by the smallest qij
and by γ and T in Q′, at the exponent in Eq. (5.7). This observation allows to approximate
the gNIBA GME (5.6) into the Markovian master equation

ρ̇kk(t) =

D∑
j=1

Γijρjj(t), (5.9)

where

Γij =

∫ ∞
0

dtKgN
kj (t). (5.10)

The Markov-approximated maser equation (5.9) admits the analytical solution

ρkk(t) =

D∑
ij=1

SkiS
−1
ij e

Λi(t−t0)ρjj(t0). (5.11)

The rates Λi are the eigenvalues of the rate matrix Γ and S is the transformation matrix
which diagonalizes Γ. The probability conservation implies that the smallest in absolute
value of the Λ’s, say Λ1, is zero (the others have negative non zero values) so that the
asymptotic value of ρkk is obtained as

ρkk(∞) =

D∑
j=1

Sk1S
−1
1j ρjj(t0). (5.12)

The smallest, in absolute value, of the Λ’s gives the so-called quantum relaxation rate
(|Λrelax|) whose inverse, τrelax, gives the time scale of the relation to the equilibrium con-
figuration [72].

5.2 Driven dissipative multi-state dynamics

In the following discussion the environment is assumed to be Ohmic (J(ω) = Mγω, with
a high-frequency cut-off) and the static potential of Hamiltonian (5.1) considered is de-
picted in Fig. 5.1. The potential barrier is ∆U = 1.4~ω0 and the static bias (Eq. (5.2))
ε = 0.15

√
M~ω3

0. We show the time evolution of the populations ρµµ(t) in the DVR in
different driving regimes as well as the asymptotic population of the metastable well and
the relaxation times as functions of the diving parameters. Everything is evaluated for
γ = 0.1ω0 and 0.3ω0 and T = 0.1~ω0/kB and 0.14~ω0/kB, in regimes in which quantum
tunneling through the potential barrier is an active mechanism of population transfer from
one well to the other.
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Figure 5.1: Static potential (barrier height ∆U = 1.4~ω0 and static bias ε = 0.15
√
M~ω3

0)
and first three energy eigenfunctions. The horizontal lines are the first eight energy levels and
the vertical lines the position eigenvalues in the DVR. The distance between the minima is ∼
6.5
√
~/(Mω0)

Within the present choices for the environmental parameters, it is a good approxi-
mation to assume that no energy levels higher than the first eight are involved in the
dynamics, even in the presence of external driving. The resulting unequally spaced grid
of positions in the DVR is depicted in Fig. (5.1) together with the potential profile and
the first two energy eigenvalues in units of ~ω0.

The system-plus-environment initial condition is of the factorized kind of Eq. (2.41),
with the system in the state

ρ(t0) = |q4〉〈q4|. (5.13)

Notice that in the static case, since T � ω0, a description in terms of fewer states
is sufficient, provided that the initial condition doesn’t involve higher energy states. Our
preparation (5.13) actually involves all of the eight states, being a state localized around
the top of the potential barrier.

5.2.1 Results I: Dynamics

For each of the four combinations (γ, T ), three different driving regimes are studied,
namely: (i) non-driven, (ii) driven off-resonance and (iii) resonantly driven (Ω ' E2−E1).
At the resonance the oscillating bias induces transitions among states localized in different
wells, in particular |q7〉 → |q2〉. Indeed, for this configuration of the potential |q7〉 ∼ |E1〉
and |q2〉 ∼ (|E2〉+ |E3〉)/

√
2 as can be seen in Fig. 5.1. This is at the basis of the striking

difference in the stationary configuration of the populations between the static and the
resonantly driven case.

The results for the dynamics of the eight populations in the three driving regimes are
shown in Figs. 5.2 and 5.3. Each time evolution is plotted up to time t = 100τrelax, where
τrelax is the relaxation time defined in Sec. 5.1. By comparing the truncation times of two
plots one gets an indication of the relative magnitude of τrelax (which depends on both
the driving and the dissipation regime) for the two configurations considered. A more
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systematic study of the relaxation time as function of the driving parameters is done in
Sec. 5.2.2.
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Figure 5.2: Populations in the DVR as functions of time (in units of ω−10 ) for γ = 0.1ω0. The

driving amplitude is set to A = 0.2
√
M~ω3

0 and the frequencies are Ω = 0.35ω0 (off-resonant
driving, middle panels) and Ω = 0.87ω0 (resonant driving, lowest panels). Left - T = 0.1~ω0/kB .
Right - T = 0.14~ω0/kB . The off-resonant driving suppresses the peak in ρ22 during the transient
and populates the right well states at the stationary. The driving resonance gives a noticeable
stationary population of the left well. At the higher temperature a speed-up of the transient
dynamics occurs together with a reduction of the stationary |q2〉 population in the resonantly
driven regime.

A general feature of the transient is the presence of peaks in the populations of the
metastable well states (|q1〉, |q2〉 and |q3〉) whose height is sensitive to the driving force,
being largest in the non-driven case, and smallest with off-resonant driving. Notice that,
in the driven case far from resonance, these peaks are almost suppressed. Another general
related feature is that the external driving, especially in the off-resonant case, shortens
the transient times. This is clearly visible in the results of Sec. 5.2.2.

This behavior is given by the interplay among driving parameters (A and Ω) and
distances qij present in the argument of the Bessel function in Eq. (5.7). These parameters
determine the time integrals of the kernels giving the rates Γ.

The off-resonant driving suppresses the rates involved in the tunneling dynamics and
enhances the vibrational relaxation inside the right well. As a consequence the stationary
state is reached faster and the asymptotic configuration displays a spread in the population
among the states in the right well.

On the other hand, the driving at the resonance (Ω ' E2−E1 ' ω0) induces transitions
between |q2〉 and |q7〉, and an asymptotic population of the state ρ22 (in the metastable
well) which is substantially different from zero, as shown in Fig. 5.2. By slightly increasing
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Figure 5.3: Populations in the DVR as functions of time (in units of ω−10 ) for γ = 0.3ω0. The

driving amplitude is set to A = 0.2
√
M~ω3

0 and the frequencies are Ω = 0.35ω0 (off-resonant
driving, middle panels) and Ω = 0.87ω0 (resonant driving, lowest panels). Left - T = 0.1~ω0/kB .
Right - T = 0.14~ω0/kB . The qualitative features of the dynamics for the two temperature
considered are similar to those in Fig. 5.2 (γ = 0.1ω0). The main differences are that, at this
stronger damping regime, the relaxation in slower and the system relaxes almost completely into
the right (lower) well, even in the presence of resonant driving.
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the temperature, the relaxation times are shortened in all the driving regimes, and the
asymptotic value of ρ22 in the resonant case decreases (see Figs. 5.2 and 5.3).

In passing to the stronger coupling regime (γ = 0.3ω0, Fig. 5.3), two new features
appear: a noticeable slowing down of the evolutions and an almost complete relaxation
towards the lower well, even with driving at the resonance. This is because the damping
inhibits transitions among far away lying states. As in the γ = 0.1ω0 case, an increase in
the temperature enhances the relaxation, making τrelax smaller.

5.2.2 Results II: Stationary left well population and relaxation times

In this section we show the results for the asymptotic value of the population of the
metastable (left) well, defined as the sum of the asymptotic populations of the DVR
states belonging to the left well

PL(∞) = ρ11(∞) + ρ22(∞) + ρ33(∞),

with ρkk(∞) defined in Eq. (5.12). We also consider the relaxation time τrelax, defined in
Sec. 5.1. Both these quantities are plotted as functions of the amplitude A and frequency Ω
of the high-frequency oscillating bias, in the same four damping/temperature parameters
as considered in Sec. 5.2.1.

We observe a strong non-monotonic behavior of both PL(∞) and τrelax with respect
to Ω. Specifically, all the PL(∞) plots display peaks in the lower part of the frequency
domain, whose magnitude is sensitive to the damping constant, being larger at lower
damping (compare Figs. 5.4 and 5.5 with Figs. 5.6 and 5.7, upper panels). For γ = 0.1ω0

peaks are also present in the higher frequencies domain, noticeably at the resonance, while
for γ = 0.3ω0 these peaks are strongly suppressed, even at the resonance.

As noticed in Sec. 5.2.1, this is because the driving couples far away lying states and
the transfer of population between these states is inhibited by the exponential cut off in
the kernels (5.7), which is larger at stronger damping.

At the lower damping γ = 0.1ω0, the plot of PL(∞) displays several peaks, correspond-
ing to the level structure of the static potential in Fig. 5.1. We note also that, in all of
the four dissipation regimes considered, if the system is driven at very high frequency its
behavior is the same as in the non-driven case. The same happens for τrelax.

Finally, for both the values of γ at the higher temperature, a non-zero asymptotic PL
is present for A = 0 (static potential). This is due to the fact that the system eventually
reaches a γ-dependent state of equilibrium with the environment at temperature T : at
high temperature states of energy higher than that of the first few are thermally populated.

In the lower panels of Figs. 5.4-5.7, we show the relaxation time in the four regimes
considered. The key feature is that at low driving frequency, around Ω = 0.3, the driving
enhances the relaxation, as already pointed out in sec. 5.2.1, in all of the dissipation
regimes. A relevant feature, already pointed out in Sec. 5.2.1, is that τrelax, in the stronger
damping regime, has roughly twice the value taken at γ = 0.1ω0.

On the other hand, the slight increase in temperature has the opposite effect of reducing
considerably the relaxation time at both the damping regimes considered.
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Figure 5.4: Asymptotic left well population PL(∞) (upper panel) and relaxation time τrelax
(in units of ω−10 , lower panel) as functions of the driving amplitude A (in units of
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M~ω3

0)
and frequency Ω (in units of ω0). Damping constant and temperature are γ = 0.1ω0 and T =
0.1~ω0/kB , respectively.
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Figure 5.5: Asymptotic left well population PL(∞) (upper panel) and relaxation time τrelax
(in units of ω−10 , lower panel) as functions of the driving amplitude A (in units of
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0)
and frequency Ω (in units of ω0). Damping constant and temperature are γ = 0.1ω0 and T =
0.14~ω0/kB , respectively.
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Figure 5.6: Asymptotic left well population PL(∞) (upper panel) and relaxation time τrelax
(in units of ω−10 , lower panel) as functions of the driving amplitude A (in units of

√
M~ω3

0)
and frequency Ω (in units of ω0). Damping constant and temperature are γ = 0.3ω0 and T =
0.1~ω0/kB , respectively.
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Figure 5.7: Asymptotic left well population PL(∞) (upper panel) and relaxation time τrelax
(in units of ω−10 , lower panel) as functions of the driving amplitude A (in units of
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0)
and frequency Ω (in units of ω0). Damping constant and temperature are γ = 0.3ω0 and T =
0.14~ω0/kB , respectively.



96 CHAPTER 5. STRONG COUPLING REGIME

5.3 Metastability in the strong coupling regime

Recently, the role of dissipation on the dynamics of quantum systems has been the subject
of renewed interest [75, 76].

The presence of a dissipative environment indeed influences significantly the escape
from a quantum metastable state. This is a general problem, of interest in many areas of
physics, whenever a sudden change in the state of a system occurs on time scales small
with respect to the typical times of the systems dynamics.

The archetypical model describing the escape process is that of a particle subject to
a cubic or asymmetric bistable potential and linearly coupled to a heat bath of quantum
harmonic oscillators [9, 40, 77]. In such a system the decay from the metastable state
occurs on time scales that depend on the friction and temperature. Various physical
systems such as magnetization in solid state systems [37, 78], proton transfer in chemical
reactions [79] and superconducting devices [24, 30] can be described within this framework.

Calculations of the decay rates, using a cubic potential, have been performed in
Refs. [43, 80] using functional integral techniques. In Ref. [43], starting with the par-
ticle at the bottom of the metastable well, it has been shown that the decay rate decreases
monotonically as the damping increases and grows with the bath temperature. Similarly,
by using a master equation technique, a monotonic increase of the escape rate, with re-
spect to the temperature, is found in Ref. [81] for a Gaussian wave packet initially in the
metastable well of a biased quartic potential.

Stabilization of a quantum metastable state by an external time-periodic driving, in ab-
sence of environment, was obtained in Ref. [82]. Moreover, suppression of activated escape
from a metastable state by increasing the temperature was found in a time-periodically
driven quantum dissipative system [83].

Common wisdom is that environmental fluctuations always enhance the escape from
a quantum metastable state. A critical issue of great importance is: can the dissipation
enhance the stability of a quantum metastable state?

To answer this question we follow the time evolution of the populations of spatially
localized states in a strongly asymmetric bistable system, starting from a nonequilibrium
initial condition. This choice allows us to observe how, increasing the damping, the re-
laxation process towards the stable well goes from a population transfer in which the
metastable well is temporarily populated, to a mechanism of direct transfer to the stable
state. This stabilization effect is related to that due to the suppression of tunneling by
dissipation in quantum regime [40, 43]. As a result we find that dissipation can enhance
the stability of the quantum metastable state. Indeed, we observe that the escape dynam-
ics is characterized by a nonmonotonic behavior, with a maximum, as a function of the
damping strength: there is an optimal value of the damping strength which maximizes
the escape time, producing a stabilizing effect in the quantum system. This result, which
resembles the phenomenon known, in the classical context, as noise enhanced stability
(NES) of metastable states [84–87], sheds new light on the role of the environmental fluc-
tuations in stabilizing quantum metastable systems. We also find that the behavior of
the escape time versus the temperature is nonmonotonic with a minimum. Therefore as
the temperature increases, an enhancement of the escape time is observed, increasing the
stability of the quantum metastable state.
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5.3.1 Model

We consider the static biased bistable potential

V (q̂) =
M2ω4

0

64∆U
q̂4 − Mω2

0

4
q̂2 − q̂ε, (5.14)

where ε is taken large enough to mimic the cubic potential, which is the archetypal po-
tential to model metastable systems.
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Figure 5.8: Potential profile V (q) (Eq. (5.14)) for ∆U = 1.4~ω0 and ε = 0.27
√
M~ω3

0 . Horizontal
lines: the first 6 energy levels. Vertical lines: the position eigenvalues in the DVR. The dashed
curve is the initial probability distribution |Ψ(x, 0)|2. For the tunneling splitting we have ∆E4,3 =
E4 − E3 = 0.2~ω0 while E2 − E1 = 0.985~ω0.

As in the previous section, the oscillators bath is assumed to have the Ohmic spectral
density J(ω) = Mγω, with a cut-off at a frequency much larger than any other involved.

In the quantum regime, given our choice for the particle’s initial preparation and
the bath temperature (see Sec. 5.3.2), it is appropriate to assume that the dynamics is
practically confined among the first 6 levels of the potential shown in Fig. 5.8. In this
reduced Hilbert space, the particle’s reduced dynamics is described in terms of the localized
basis of the position eigenstates {|q1〉, . . . , |q6〉}, where q̂|qi〉 = qi|qi〉, giving the discrete
variable representation (DVR, see Sec. 2.5).

5.3.2 Escape time

In the following we focus on the particle’s transient dynamics, as given by the solu-
tion (5.11) of the master equation (5.9), starting from the nonequilibrium initial condition

ρ(0) = |q3〉〈q3|, (5.15)

i.e. with the particle’s probability density initially peaked on the right of the potential
barrier, in the interval (qb, qc) (see Fig. 5.8). This may be experimentally attained by
preparing the particle in the ground state of an appropriate harmonic well centered at the
desired position, and then relaxing the harmonic potential [88].

Before giving the definition of escape time in the present context, we define the popu-
lation of the lower (right side) well as the cumulative population of the three DVR states
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from |q4〉 to |q6〉, that is

Pright(t) =
6∑

µ=4

ρµµ(t), (5.16)

which is a discretized version of the probability of penetration of the wave packet through
the barrier [81]. During the transient dynamics the populations of the metastable states
(|q1〉 and |q2〉) reach a maximum. Afterwards, by tunneling through the potential barrier,
the population of the metastable well decays, finally settling down to a stationary value
dependent on the temperature.

We consider large asymmetry of the potential, low temperatures with respect to the
barrier height, and damping regimes ranging from moderate to strong (γ & ω0). Given
the above conditions, the relaxation occurs in the incoherent regime, with no oscillations
in the populations. As a consequence we may consider the particle irreversibly escaped
from the metastable state once Pright(t) has reached a certain threshold value that we set
to Pright(τ) = 0.95.
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Figure 5.9: Escape time τ , in units of ω−10 , for the initial condition ρ(0) = |q3〉〈q3| (see Eq. (5.15)).
(a) τ and τrelax as a function of both damping γ and bath’s temperature T . (b) τ as a function of
γ for different temperatures. Inset - escape time vs temperature at fixed values of γ. The variables
γ and T are given in units of ω0 and ~ω0/kB , respectively.
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5.3.3 Results

We observe a nonmonotonic behavior of τ with respect to both γ and T . In Fig. 5.9
it is shown the presence of a peak in τ vs γ, whose height and position depend on the
temperature.

A comparison between τ and τrelax versus γ indicates that the two quantities exhibit
roughly the same behavior until the peak in τ is reached (see Fig. 5.9b). At higher γ,
while τrelax keeps increasing monotonically, τ has a sudden fall off at a critical value γc,
dependent on the temperature (for example γc ' 0.98 at T = 0.352).

This critical value corresponds to a dynamical regime in which the population transfer
from the initial state to the states of the metastable well is inhibited and there is a direct
transfer to the states of the lower right well. In this regime the probability to find the
particle in the metastable state is practically zero throughout the entire dynamics. Indeed,
while τrelax is the time needed for the system to reach the equilibrium in the double well
potential, the escape time is a relevant quantity for the transient dynamics, involving the
crossing of the potential barrier and the depletion of the metastable well. Therefore, our
analysis applies to the general problem of the escape from a metastable well, starting from
a nonequilibrium condition.

The nonmonotonic behavior of τ vs γ can be interpreted as the quantum counterpart
of the NES phenomenon observed in classical systems, and may be called quantum noise
enhanced stability (QNES).

Another interesting feature is the presence of a slow monotonic increase of τ for γ > γc,
which leads to the quantum Zeno effect [89].

The behavior of τ vs the temperature is characterized by a minimum as kBT approaches
the tunneling splitting ∆E4,3 = E4−E3 (see Fig. 5.8). This is the signature of the thermally
activated tunneling, an experimentally well established phenomenon [90]. This is better
shown in the inset of Fig. 5.9b.

Finally we wish to point out that our results are robust against the variation of the
potential asymmetry, threshold value and initial conditions (initial DVR states within the
interval (qb, qc), see Figs. 5.8 and 5.10).

To exemplify this robustness, we give here the results for another potential profile and
a different initial condition (see Fig. 5.10).

The definition of τ is the same as for the previous case i.e. Pright(τ) = 0.95. In this
situation however, due to the different number of energy levels considered, the right well
population is defined as Pright(t) =

∑8
µ=5 ρµµ(t).

The escape time displays qualitatively the same features as for the first configuration,
even if now the initial wave packet is centered close to the top of the potential barrier. In
particular τ has a nonmonotonic behavior as a function of both γ and T . The minimum
of τ vs T is at T ' 0.27/kB, which is the average value of the three tunneling splittings
∆E7,6,∆E6,5, and ∆E5,4 (see Fig. 5.10a). Moreover, for γ > γc, we observe a monotonic
increasing behavior of τ leading to the quantum Zeno effect.

5.4 Conclusions

In this chapter the analysis of the dissipative bistable system, carried out for the two-
level system in Chap. 3 and for the double-doublet system in Chap. 4, was generalized
to a multi-state system with an arbitrary number of states and possibly subject to a
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Figure 5.10: (a) Potential profile V (q) (see Eq. (5.14)) for ∆U = 2.5~ω0 and ε = 0.35
√
M~ω3

0 .
Horizontal lines: the first 8 energy levels. Vertical lines: position eigenvalues in the DVR. The
dashed curve is the initial probability distribution |Ψ(x, 0)|2. Here ∆E7,6 = 0.14~ω0, ∆E6,5 =
0.58~ω0, ∆E5,4 = 0.1~ω0. (b) Escape time τ , in units of ω−10 , for the initial condition shown in
panel (a).

periodically varying bias. This general case was treated exclusively in the strong coupling
regime, where the analytical technique of the master equation derived within the path
integral approach is available.

The first part of the chapter was devoted to the study of the driven dynamics starting
from a nonequilibrium initial condition. The time evolution and the stationary values of
the populations in the discrete variable representation were studied, along with the char-
acteristic time scales of the dynamics. In particular the interplay between the dissipation
and the driving was systematically investigated.

A strong non-monotonicity with respect to the driving frequency was found in the
metastable well population at equilibrium, which is characterized by the presence of res-
onant peaks. This means that, at appropriate frequency, the probability to find the par-
ticle in the metastable well is noticeably different from zero. On the other hand, a strong
damping enhances the relaxation towards the lower well. The analysis, carried out at two
temperatures, showed also that the relaxation times are smaller at higher temperature.

In the second part of the chapter considered the static case of a strongly asymmetric
potential was considered, which mimic the situation encountered in escape problems in
classical and quantum mechanics. We showed that in nonequilibrium dynamics the escape
time from a quantum metastable state exhibits a nonmonotonic behavior as a function of
both the damping, with a maximum (QNES), and temperature, with a minimum at the
resonance with the tunneling splitting (see Figs. 5.8 and 5.10).

We also observed stabilization of the quantum metastable state due to the dissipation
and its interplay with the temperature. Moreover, a suppression of the activated escape
was obtained by increasing the temperature. The stabilization phenomenon associated
to the model considered is within the reach of existing experimental technologies such as
superconducting qubits [88] and optical trapping [91].



Chapter 6

Conclusions

In this thesis the path integral approach is used to study the dissipative dynamics of the
bistable quantum system. The open quantum system, consisting in a particle subject to
a double well potential, is assumed to interact with an environment of bosonic modes,
according to the celebrated Caldeira-Leggett model [40]. This Hamiltonian model allows
for a microscopical derivation of the dissipation, which emerges as the environmental
degrees of freedom are traced out and a description in terms of reduced density matrix is
given for the open system.

If the coupling is weak, perturbative techniques based on the Born-Markov approxi-
mation are appropriate for predicting the time evolution of the system’s reduced density
matrix. However, as the coupling with the environment cannot be treated as a pertur-
bation, the inherently non-perturbatively path integral has to be used, which allows in
principle to deal with every coupling regime.

The strong nonlinearity of the potential causes the energy levels below the barrier top to
form doublets with large inter-doublet spacing with respect to the intra-doublet separation.
As a consequence, if the temperature is much lower than the inter-doublet energy difference
and the particle is initially in a superposition of the first two energy states, a description
in terms of an effective two-level system is appropriate. This regime is experimentally
attained, for example, in the superconducting qubits operating at temperature in the
mK scale. The model describing the two-level system linearly coupled to the bosonic
environment takes the name of spin-boson model [51]. The spin-boson model has been,
and still is, extensively studied using a variety of techniques, including the path integral [9,
51] and related stochastic [54] and numerically exact methods [53, 92], or the numerical
renormalization group [93, 94]. Present-day path integral approaches, based on suitable
approximation schemes, are capable to investigate the spin-boson problem virtually in
every regime of dissipation, corresponding to dynamical regimes ranging from the coherent
regime to incoherent relaxation to equilibrium, both in the symmetric and the biased case.

However, if the initial condition involves higher energy levels or the temperature is
of the order of the inter-doublet energy separation, the two-level system approximation
is no more tenable. Considering the successive energy states entails the introduction
of multiple dynamical time scales, due to the nonlinearity of the potential, as mentioned
above. Moreover the description in terms of sum over paths, which, for a finite-dimensional
Hilbert space, consists in sequences of transitions among localized states, gets dramatically
more involved as the dimension of the problem exceeds two.

This is reflected by the fact that, up to now, investigations of multi-state dissipative

101
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systems are confined to the opposite regimes of weak and strong coupling [69–71], de-
scribing coherent dynamics and incoherent relaxation. The crossover region, absent in the
spin-boson problem, characterized by the simultaneous presence of long time incoherent
relaxation associated to the tunneling and coherent oscillations at the level of the intra-well
motion remained poorly understood.

In Chap. 3 of the present work the path integral approach was applied to the spin-
boson problem, in its various approximation limits, covering the corresponding dissipation
regimes. Specifically the non-interacting blip approximation (NIBA [9]), an approxima-
tion scheme which discards the time non-local interactions inside the double-paths of the
reduced density matrix, was illustrated together with the weakly-interacting blip approx-
imation (WIBA [59]) scheme, treating the time non-local interactions to the first order in
the coupling and the local ones to all orders. Finally the weak coupling approximation
(WCA [9, 62]) was introduced as a perturbative limit of the WIBA.

The techniques described for the spin-boson model were then applied to the so-called
double-doublet system (DDS), the four level generalization of the two-level system, char-
acterized by two well separated energy doublets, producing a rich dynamics which has
three, well separated time scales. The crossover regime for the (DDS) is investigated using
a novel approximation scheme which exploits the separation of the time scales of the sys-
tem dynamics. In particular the NIBA scheme is applied to the tunneling dynamics and
the WIBA to the intra-well motion (vibrational reaxation). The resulting novel scheme,
called vibrational relaxation weakly-interacting blip approximation (VR-WIBA, outlined
in Ref [61]) describes successfully the fast intra-well oscillations and the incoherent tunnel-
ing relaxation of the crossover regime. Moreover it reduces to the gNIBA (the multi-states
generalization of the NIBA [72]) in the strong coupling limit. These path integral approxi-
mation schemes, in conjunction with the Bloch-Redifield (weak coupling) master equation
approach, cover almost entirely the coupling-temperature parameter space of the problem
and allowed for the realization of a phase space diagram in which the various dynamical
regimes are described, together with the domain of applicability of the above mentioned
approximation. The phase-space diagram for the DDS is the main result of Chap. 4.

The part of the parameter space of the DDS which remains outside the reach of the
novel approximation scheme is that in which coherence is still present at the level of both
the fast tunneling dynamics (involving the higher doublet) and intra-well motion, while
the slow tunneling dynamics has turned into incoherent relaxation. In the corresponding
dissipation regime the coupling is too strong to allow for weak coupling description (such
as the Bloch-Redfield) and, on the other hand, is still too weak for the DDS to separate
into a set of effective two-level systems to be treated within the NIBA or the WIBA. The
difficulty in this case is not given by the intricate time non-local correlations introduced
by the environment, but it is due to the fact that the so-called clusters (complicated path
configurations) start to contribute, in the sum over the paths, as the coupling is weak
or the temperature is low. Further investigations are needed to find a technique which
fully exploits the approximations on the environmental influence on the path’s amplitudes,
without neglecting classes of intricate path configurations.

In Chap. 5 a systematic study of the multi-state dynamics (for an asymmetric eight-
level system) in the presence of time dependent bias was performed. The interplay between
a high-frequency driving and the dissipative environment in the strong coupling regime
was illustrated using a Markov approximated master equation technique [72]. It was found
that the resonant driving (of the order of the natural oscillation frequency of the wells)
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increases the population of the metastable well at the stationary. A plot of the overall
metastable well population at the stationary versus the driving amplitude and frequency
shows several resonant peaks as a function of the driving frequency. Moreover the effect
of increasing the coupling is to enhance the relaxation towards the lower well. Finally
an increase of the temperature enhances the relaxation in the sense that the equilibrium
configuration is reached within a shorter time.

In the second part of Chap. 5 a study on the escape problem in the strong coupling
regime was carried out using the same analytical technique as that used in the first part
of the chapter. The escape from a metastable well, starting from a nonequilibrium initial
condition has been extensively investigated in the classical context [84–87], where the
counterintuitive phenomenon of an enhacement of the lifetime of a metastable state at
appropriate noise intensity occurs. This effect is called noise enhanced stability (NES).
Considering the dynamics of the particle starting in a localized nonequilibrium state, in
a strongly biased (static) potential, and introducing a suitable definition of escape time
in the quantum context, we obtained a result which can be considered a quantum version
of the NES. Specifically we found a non-monotonicity of the escape time with respect to
both the damping strength (a peak followed by a rapid fall-off of the escape time at a
critical damping strength) and the temperature (a resonant minimum). The finding that
the environment can have a positive role in the enhancement of the lifetime of a metastable
quantum state is the main result of Chap. 5.

The study of multi-state bistable systems in the general case of arbitrary bias and
number of levels within the path integral technique is at present limited to the strong
coupling regime. This is because, at low temperature/weak coupling the clusters start to
contribute and the path integral becomes intractable, as already pointed out for the DDS.
However in general, contrary to the DDS case, one cannot rely on a sharp separation of
the time scales of the dynamics. For this reason it may be useful to find a weak coupling
path integral scheme for the DDS, to be possibly suitable for further approximations or
to be used for dealing with some other specific multi-state system in the weak or, at least,
intermediate coupling regime.
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Appendix A

Numerical scheme for the GME

The following numerical schemes are applied independently of the particular approxima-
tion used for the kernels of the generalized master equation.

GME for the TLS

We use a simple implicit scheme for integrating the GME for the population difference

Ṗ (t) =

∫ t

0
dt′
[
K(+)(t, t′)P (t′) +K(−)(t, t′)

]
. (A.1)

We denote the time dependencies by discrete indexes: Pi ≡ P (i∆t) andKi,j ≡ K(i∆t, j∆t).
Using the forward finite difference for the derivative and the trapezoid rule for the integral,
Eq. (A.1) becomes

1

∆t
(Pi+1 − Pi) =∆t

i∑
j=1

[
K

(+)
i+1,jPj +K

(−)
i+1,j

]
+

∆t

2

[
K

(+)
i+1,0P0 +K

(−)
i+1,0 +K

(+)
i+1,i+1Pi+1 +K

(−)
i+1,i+1

]
,

so that we can express the population difference at time (i + 1)∆t in terms of the same
quantity at previous times

Pi+1 =

(
1− (∆t)2

2
K

(+)
i+1,i+1

)−1
[
Pi +

(∆t)2

2

(
K

(+)
i+1,0P0 +K

(−)
i+1,0 +K

(−)
i+1,i+1

)
+ (∆t)2

i∑
j=1

(
K

(+)
i+1,jPj +K

(−)
i+1,j

)]
.

GME for multi-state systems

We integrate the master equation for the populations of the M-state system (M ≥ 2) using
a generalization of the method employed for the TLS population difference. In this case
however, the implicit method requires a matrix inversion at every time step. The master
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equation reads

ρ̇µ,µ(t) =
M∑
ν=1

∫ t

0
dt′Kµν(t, t′)ρνν(t′).

Using vector notation

~̇ρ(t) =

∫ t

0
dt′K(t, t′)~ρ(t′), (A.2)

where K is the M × M kernel matrix and ~ρ = (ρ11, . . . , ρMM ) is the M-dimensional
population vector.

As for the TLS, we use forward finite difference, trapezoid rule and discrete time
indexes. Thus Eq. (A.2) becomes

1

∆t
(~ρi+1 − ~ρi) = ∆t

i∑
j=1

Ki+1,j~ρj +
∆t

2
[Ki+1,0~ρ0 + Ki+1,i+1~ρi+1] ,

The solution at time (i+ 1)∆t in terms of the populations at previous times is

~ρi+1 = M−1
i+1

~Ci,

where

Mi+1 = 1− (∆t)2

2
Ki+1,i+1

~Ci = ~ρi +
(∆t)2

2
Ki+1,0~ρ0 + (∆t)2

i∑
j=1

Ki+1,j~ρj .



Appendix B

n = 2 influence functions

Exact n = 2 symmetric influence function

∑
ξ1,ξ2=±1

B
(s)
2 F

(+)
2 = exp(−S(τ1)− S(τ2)) cos(X2,1)

×
[

cosh(Λ2,1) cos(X1,0) cos(X2,0) cos(ετ1) cos(ετ2)

+ sinh(Λ2,1) cos(X1,0) cos(X2,0) sin(ετ1) sin(ετ2)

+ sinh(Λ2,1) sin(X1,0) sin(X2,0) cos(ετ1) cos(ετ2)

+ cosh(Λ2,1) sin(X1,0) sin(X2,0) sin(ετ1) sin(ετ2)
]
.

Approximated form (Λ2,1 and X2,0 to first order in γ)

∑
ξ1,ξ2=±1

B
(s)
2 F

(+)
2 ' exp(−S(τ1)− S(τ2)) cos(X2,1)

×
[

cos(X1,0) cos(ετ1) cos(ετ2)

+ Λ2,1 cos(X1,0) sin(ετ1) sin(ετ2)

+X2,0 sin(X1,0) sin(ετ1) sin(ετ2)
]
.

Irreducible approximated symmetric influence function

∑
ξ1,ξ2=±1

B̃
(s)
2 F̃

(+)
2 ' exp(−S(τ1)− S(τ2)) cos(X2,1)

×
[
Λ2,1 cos(X1,0) sin(ετ1) sin(ετ2)

+X2,0 sin(X1,0) sin(ετ1) sin(ετ2)
]
.
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Exact n = 2 antisymmetric influence function∑
ξ1,ξ2=±1

B
(a)
2 F

(−)
2 = exp(−S(τ1)− S(τ2)) cos(X2,1)

×
[

cosh(Λ2,1) sin(X1,0) cos(X2,0) sin(ετ1) cos(ετ2)

+ cosh(Λ2,1) cos(X1,0) sin(X2,0) cos(ετ1) sin(ετ2)

− sinh(Λ2,1) cos(X1,0) sin(X2,0) sin(ετ1) cos(ετ2)

− sinh(Λ2,1) sin(X1,0) cos(X2,0) cos(ετ1) sin(ετ2)
]
.

Approximated form (Λ2,1 and X2,0 to first order in γ)∑
ξ1,ξ2=±1

B
(a)
2 F

(−)
2 ' exp(−S(τ1)− S(τ2)) cos(X2,1)

×
[

sin(X1,0) sin(ετ1) cos(ετ2)

+X2,0 cos(X1,0) cos(ετ1) sin(ετ2)

− Λ2,1 sin(X1,0) cos(ετ1) sin(ετ2)
]
.

Irreducible approximated antisymmetric influence function∑
ξ1,ξ2=±1

B̃
(s)
2 F̃

(+)
2 ' exp(−S(τ1)− S(τ2)) cos(X2,1)

×
[
X2,0 cos(X1,0) cos(ετ1) sin(ετ2)

− Λ2,1 sin(X1,0) cos(ετ1) sin(ετ2)
]
.

For n > 2 it is convenent to expand the b − b and b − s terms to the 1st order in γ,
then to get rid of all the possible reducible contributions and finally sum over the ξ’s.



Appendix C

Propagator in Laplace space

First we give the expressions for the blip times τ and the sojourn times σ

τj = t2j − t2j−1

σj = t2j+1 − t2j .

The approximation on the paths made in Sec. 4.1.1 implies that, if ρ(t0) = |Qj〉〈Qj |, then
each path contributing to the population ρkk(t) has an even number 2n of transitions.
Consider the series of integrals∫ t

t0

dt2n

∫ t2n

t0

dt2n−1 . . .

∫ t3

t0

dt2

∫ t2

t0

dt1. (C.1)

Using repeatedly the integral interchange rule∫ tj+1

t0

dtj

∫ tj

t0

dtj−1 =

∫ tj+1

t0

dtj−1

∫ tj+1

tj−1

dtj , (C.2)

we can put Eq. (C.1) in the form∫ t

t0

dt1

∫ t

t1

dt2

∫ t

t2

dt3 . . .

∫ t

t2n−2

dt2n−1

∫ t

t2n−1

dt2n

=

∫ t̄

0
dσ0

∫ t̄−σ0

0
dτ1

∫ t̄−τ1−σ0

0
dσ1 . . .

×
∫ t̄−···−τn−1

0
dσn−1

∫ t̄−···−σn−1

0
dτn.

Notice that there is no integration over the last sojourn time, since it is fixed by the length
of the interval t̄ = t− t0.

In passing to the Laplace space we note that t̄ = σn+τn+· · ·+τ1+σ0. Using repeatedly
the rule

∫∞
0 dt

∫ t
0 dt

′ =
∫∞

0 dt′
∫∞
t′ dt, we obtain

Lt̄
∫ t̄

0
dσ0 . . .

∫ t̄−···−σn−1

0
dτn

=

∫ ∞
0

dt̄e−λt̄
∫ t̄

0
dσ0 . . .

∫ t̄−···−σn−1

0
dτn

=

∫ ∞
0

dσne
−λσn

∫ ∞
0

dτne
−λτn . . .

∫ ∞
0

dσ0e
−λσ0 .

(C.3)
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Suppose that a path of the DDS with 2n transitions starts in the diagonal state (q0, q0)
and ends in the diagonal state (q, q). Suppose moreover that the path changes sublattice
M times. Specifically it passes from (q0, q0) to (q1, q1) making 2k1 transitions in the
first sublattice, then passes from (q1, q1) to (q2, q2) making 2k2 transitions in the second
sublattice and so on, with n =

∑N
j=1 kj . Notice that the starting and arrival sites of

the sub-paths need not to be different. Due to the approximations made in Sec. 4.1, the
amplitude A for this path factorizes as

A(τ1, σ1 . . . , σn−1, τn) =

M∏
j=1

Aj(τ
j
1 , σ

j
1, . . . , σ

j
kj−1, τ

j
kj

).

Here τ ji (σji ) is the i-th blip (sojourn) in the j-th sublattice (see Fig. 4.4 and 4.5). Therefore
the Laplace transform of the multiple integral of the amplitude A is

Lt̄
∫ t̄

0
dσ0 . . .

∫ t̄−···−σn−1

0
dτnA(τ1, . . . , τn) =

1

λ

M∏
j=1

f̂j(λ)

λ
, (C.4)

where
f̂j(λ)

λ
=

∫ ∞
0

dτ jkje
−λτ jkj . . .

∫ ∞
0

dσj0e
−λσj

0Aj(τ
j
1 , . . . , τ

j
kj

)

=LT
∫ T

0
dτ j1 . . .

∫ T−···−σj
kj−1

0
dτ jkjAj(τ

j
1 , . . . , τ

j
kj

),

with σj0 playing the role of σn in Eq. (C.3): the integral over the sojourn times results in
the 1/λ factors because none of the amplitudes depend on the initial or final sojourn time.

The full propagator from (q0, q0) to (q, q) is the sum over the paths

G(q, q, t; q0, q0, t0) = δqq0 +

∞∑
n=1

∫ t

t0

D2n{tj}A(t0, . . . , t). (C.5)

Exploiting the factorization of the amplitudes in this sum and extending the reasoning
made above for a single amplitude, the Laplace transform of the propagator is

G(q, q; q0, q0;λ) =
δqq0
λ

+
1

λ

∞∑
M=1

Q4∑
{qj}=Q1

M∏
j=1

K̂qj−1qj (λ)

λ
(C.6)

where, if qj 6= qj−1, the function K̂qj−1qj (λ) is the Laplace transform of

Kj,j−1(t− t′) =

∞∑
kj=1

∫ t

t′
dt2kj−1

. . .

∫ t

t′
dt2

×
∑

paths2kj

A
qj−1,qj
j (t, t2kj−1 . . . , t

′).

This, in turn, is the kernel that connects the populations of the states |qj−1〉 and |qj〉 in
the integro-differential equation [9, 60]

ρ̇qjqj (t) =

qj∑
l=qj−1

∫ t2k

t0

dt1Kqj ,l(t− t
′)ρll(t

′)

for the populations of the TLS {|qj−1〉, |qj〉} corresponding to the j-th sublattice {qj−1, qj}.
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Bloch-Redfield master equation

The energy representation of the DDS is given by the four energy eigenstates |µ〉 satisfying
the equations

ĤS |n〉 = ~ωn|n〉 (n = 1, . . . , 4).

We define
ωnm = ωn − ωm and qnm = 〈n|q̂|m〉.

In the energy representation, to the first order in the coupling and under the assump-
tion that the memory time of the bath is short compared to the characteristic times in the
evolution of the density matrix (Markov approximation), the following master equation
can be derived [52] from the microscopical model given in Sec. 1.2

ρ̇Enm(t) = −iωnmρEnm(t) +
∑
k,l

Lnm,klρEkl(t). (D.1)

This is the Bloch-Redfield master equation. The Bloch-Redfield tensor is

Lnm,kl = qnk (Qlm + Plm) + qlm (Qnk − Pnk)

−
∑
j

[δknqjm (Qlj + Plj) + δlmqnj (Qjk − Pjk)] (D.2)

where

Qnm = qnm

∫ ∞
0

dτ

∫ ∞
0

dω
J(ω)

π~

× coth

(
β~ω

2

)
cos(ωτ)e−iωnmτ

(D.3)

and

Pnm = qnmωnm

∫ ∞
0

dτ

∫ ∞
0

dω
J(ω)

ωπ~
cos(ωτ)e−iωnmτ . (D.4)

To perform the integral over τ we use∫ ∞
0

dτeiω̃τ = πδ(ω̃) + iP 1

ω̃
. (D.5)

Neglecting the principal value, which gives a frequency shift, we have

Qnm = qnm
J(|ωnm|)

2~
coth

(
β~|ωnm|

2

)
(D.6)
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and

Pnm =
qnmωnm

2~
J(|ωnm|)
|ωnm|

. (D.7)

We notice that for ωnm > 0

Qnm − Pnm = Qmn + Pmn = qnm
J(|ωnm|)

~
nβ(ωnm)

while, for ωnm < 0,

Qnm − Pnm = Qmn + Pmn = qnm
J(|ωnm|)

~
(nβ(|ωnm|) + 1) .

Here nβ(ωnm) is the expectation value of the number of bath excitations of energy ~ωnm
at temperature T = (kBβ)−1.

Analytic solution in the full secular approximation

Setting ρEnm(t) = e−iωnm(t−t0)σnm(t), Eq. (D.1) becomes

σ̇nm(t) =
∑
kl

Lnm,klΩnm,kl(t)σkl(t), (D.8)

where Ωnm,kl(t) = exp [i(ωnm − ωkl)(t− t0)]. We have σ(t0) = ρ(t0).
The full secular approximation (FSA) consists in neglecting the terms in the master

equation for which ωµν − ωκλ 6= 0. Mathematically this condition reads

Ωµνκλ(t)→ (δκµδλν + δκλδµν) Ωµνκλ(t).

In the FSA the equations for the diagonal elements decouple from those for the non-
diagonal elements of σ.

Specifically, the dynamics of σ(t) is given by a master equation for the diagonal el-
ements and a set of independent equations for the non-diagonal elements. The master
equation for the diagonal elements reads

σ̇nn(t) =
∑
k

Lnn,kkσkk(t), (D.9)

where, for n 6= k,
Lnn,kk = qnk (Qkn + Pkm) + qkn (Qnk − Pnk)

and Ln,n = −
∑

k Lk,n.
The solution of Eq. (D.9) is

σnn(t) =
∑
ij

Snie
λi(t−t0)(S−1)ijσjj(t0),

where S is the transformation that diagonalizes the matrix Lnk = Lnn,kk and λi are the
eigenvalues. From the definition of σ(t) we have ρEnn(t) = σnn(t).

The uncoupled equations for the non-diagonal elements of σ(t) are

σ̇nm(t) = −Lnm,nmσnm(t) (D.10)
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with
Lnm,nm =(qnn − qmm) [Qnn − Pnn − (Qmm + Pmm)]

+
∑
j 6=m

qjm(Qmj + Pmj) +
∑
j 6=n

qnj(Qjn − Pjn).

In our specific problem, due to the symmetry of the potential, the diagonal matrix elements
qii of the position operator in the energy representation vanish.

The solutions of Eq. (D.10) are

σnm(t) = e−Lnm,nm(t−t0)σnm(t0),

so that the non-diagonal elements of the density matrix in the energy representation are

ρEnm(t) = e−iωnm(t−t0)e−Lnm,nm(t−t0)ρEnm(t0).

Once the solution for ρ(t) in the energy basis {|n〉} is known, to pass to the DVR basis
{|qj〉} it is sufficient to perform the transformation

ρDV Rnm (t) =
∑
ij

Tniρ
E
ij(t)T

†
jm,

where Tij = 〈i|qj〉.
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Appendix E

VR-WIBA kernels

The gNIBA kernels connecting the populations of the states |qk〉 and |qj〉 in Eq. (4.17) are
the modified versions of the TLS NIBA kernels

KgN
kj (t) = 2∆2

kje
−q2

kjQ
′(t) cos

(
εkjt+ q2

kjQ
′′(t)

)
(E.1)

where

∆kj =
1

~
〈qk|ĤS |qj〉

εkj =
1

~

(
〈qk|ĤS |qk〉 − 〈qj |ĤS |qj〉

)
q2
kj = (qk − qj)2.

In the VR-WIBA scheme we use these expressions only if qk and qj belong to different
wells.

If qk and qj belong to the same well, we use the modified TLS WIBA kernels (see

Ref. [59]) KV RW
kj (t) = KgN

kj (t) +KBgN
kj (t). The beyond-gNIBA correction is

KBgN
kj (t) =8∆4

kj

∫ t

0
dτ

∫ t−τ

0
dτ ′e−q

2
kjQ

′(τ)−q2
kjQ

′(τ ′)

× sin(εkjτ
′) cos(q2

kjQ
′′(τ ′))pkj(t− τ − τ ′)

×[q2
kjX(t, τ ′) cos(εkjτ + q2

kjQ
′′(τ))

−q2
kjΛ(t, τ ′, τ) sin(εkjτ + q2

kjQ
′′(τ))],

(E.2)

where
Λ(t, τ ′, τ) = Q′(t) +Q′(t− τ ′ − τ)−Q′(t− τ)−Q′(t− τ ′)

and
X(t, τ ′) = Q′′(t)−Q′′(t− τ ′).

In the calculations the function Q′(t) and Q′′(t) are taken in the form of Eq. (2.62).
The functions pkj obey the equations

ṗkj(t) =

∫ t

0
dt′K

N,(+)
kj (t− t′)pkj(t′)

with initial condition pkj(0) = 1 and kernel

K
N,(+)
kj (τ) = −4∆2

kje
−q2

kjQ
′(τ) cos(εkjτ) cos(q2

kjQ
′′(τ)).
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Note that, by the symmetry of the problem, the four functions p12, p21, p34 and p43 are the
same for the symmetric DDS.
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[80] I. Affleck, Phys. Rev. Lett. 46, 388 (1981).

[81] V. Sargsyan, Y. Palchikov, Z. Kanokov, G. Adamian, and N. Antonenko, Phys. Rev.
A 75, 062115 (2007).

[82] C.-L. Ho and C.-C. Lee, Phys. Rev. A 71, 012102 (2005).

[83] A. Shit, S. Chattopadhyay, and J. R. Chaudhuri, The Journal of Physical Chemistry
A 117, 8576 (2013).

[84] R. Mantegna and B. Spagnolo, Phys. Rev. Lett. 76, 563 (1996).

[85] N. Agudov and B. Spagnolo, Phys. Rev. E 64, 035102 (2001).

[86] A. Dubkov, N. Agudov, and B. Spagnolo, Phys. Rev. E 69, 061103 (2004).

[87] A. Fiasconaro, B. Spagnolo, and S. Boccaletti, Phys. Rev. E 72, 061110 (2005).

[88] F. Chiarello, E. Paladino, M. G. Castellano, C. Cosmelli, A. D’Arrigo, G. Torrioli,
and G. Falci, New Journal of Physics 14, 023031 (2012).

[89] P. Facchi et al., Phys. Rev. A 71, 022302 (2005).

[90] J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, Phys. Rev. Lett. 76, 3830
(1996).

[91] P. Korda, M. Taylor, and D. Grier, Phys. Rev. Lett. 89, 128301 (2002).

[92] D. Makarov and N. Makri, Chem. Phys. Lett. 221, 482 (1994).

[93] R. Bulla, N.-H. Tong, and M. Vojta, Phys. Rev. Lett. 91, 170601 (2003).

[94] R. Bulla, T. Costi, and T. Pruschke, Rev. Mod. Phys. 80, 395 (2008).

http://dx.doi.org/http://dx.doi.org/10.1016/S0301-0104(97)00047-5
http://dx.doi.org/10.1103/PhysRevLett.85.860
http://dx.doi.org/10.1006/aphy.2001.6174
http://dx.doi.org/10.1103/PhysRevB.52.R2257
http://www.actaphys.uj.edu.pl/_old/vol44/abs/v44p1185.htm
http://www.actaphys.uj.edu.pl/_old/vol44/abs/v44p1185.htm
http://dx.doi.org/10.1103/PhysRevLett.110.010402
http://dx.doi.org/10.1103/PhysRevB.89.121108
http://dx.doi.org/10.1016/S0370-1573(98)00022-2
http://dx.doi.org/10.1002/anie.200390099
http://www.sciencedirect.com/science/article/pii/S0301010498003541
http://dx.doi.org/10.1103/PhysRevLett.46.388
http://dx.doi.org/ 10.1103/PhysRevA.75.062115
http://dx.doi.org/ 10.1103/PhysRevA.75.062115
http://dx.doi.org/10.1103/PhysRevA.71.012102
http://dx.doi.org/10.1021/jp402565y
http://dx.doi.org/10.1021/jp402565y
http://dx.doi.org/10.1103/PhysRevLett.76.563
http://dx.doi.org/10.1103/PhysRevE.64.035102
http://dx.doi.org/10.1103/PhysRevE.69.061103
http://dx.doi.org/10.1103/PhysRevE.72.061110
http://stacks.iop.org/1367-2630/14/i=2/a=023031
http://dx.doi.org/10.1103/PhysRevA.71.022302
http://dx.doi.org/10.1103/PhysRevLett.76.3830
http://dx.doi.org/10.1103/PhysRevLett.76.3830
http://dx.doi.org/10.1103/PhysRevLett.89.128301
http://dx.doi.org/10.1103/PhysRevLett.91.170601
http://dx.doi.org/10.1103/RevModPhys.80.395

	Introduction
	Quantum systems for computation
	Superconducting qubits
	Single-molecule magnets

	Caldeira-Leggett model of dissipation in quantum mechanics
	Quantum Langevin equation
	Spectral density function
	Coupling with the individual bath oscillators in the Ohmic case

	Outline of the thesis

	Path integral approach for discrete variable systems
	Path integral representation of Quantum Mechanics
	Propagator for a discrete variable system
	Propagator for the free two-level system

	Propagator for the density matrix of a discrete variable system
	Path integral and dissipation: the Feynman-Vernon influence functional
	Factorized initial condition: the Feynman-Vernon influence functional

	Discrete variable representation
	Feynman-Vernon influence for the populations in the DVR
	Conclusions

	The dissipative Two-Level System
	Two-level system Hamiltonian and parametrization
	Free TLS dynamics with the path integral approach

	Feynman-Vernon influence functions for the TLS
	Conditional probabilities for the dissipative TLS
	Generalized master equation for P0
	GME for the free system

	Approximation schemes
	Noninteracting-blip approximation
	Validity of the NIBA
	extended-NIBA

	Weakly-interacting blip approximation (WIBA)
	WIBA symmetric irreducible kernel
	WIBA antisymmetric irreducible kernel
	Validity and features of the WIBA scheme

	Master Equation for the populations
	NIBA and extended-NIBA kernels for the populations
	WIBA kernels for the populations

	Weak coupling approximation
	Examples of TLS dissipative dynamics

	The dissipative double-doublet system
	The double-doublet system
	Exact free dynamics of the DDS

	Approximations
	Selection on the paths and retained interactions
	Weakly-interacting VR-blip approximation
	VR-WIBA generalized master equation

	Phase diagram
	Results for the DDS dynamics
	Parameters and units
	Dissipative DDS dynamics

	Conclusions

	Strong coupling regime: driven multi-state systems and metastability
	Master equation for the driven multi-state system within the gNIBA
	Driven dissipative multi-state dynamics
	Results I: Dynamics
	Results II: Stationary left well population and relaxation times

	Metastability in the strong coupling regime
	Model
	Escape time
	Results

	Conclusions

	Conclusions
	Numerical scheme for the GME
	n=2 influence functions
	Propagator in Laplace space
	Bloch-Redfield master equation
	VR-WIBA kernels

