
Embedding the Remote Application Control:
Visual API for PDA Programming

Salvatore Sorce, Paolo Raccuglia, Alessandro Genco
Department of Computer Science and Engineering (DINFO) - University of Palermo

Viale delle Scienze, edificio 6 - 90128 Palermo (Italy)
{sorce|genco}@unipa.it, p.raccuglia@tin.it

Abstract

PDAs are more and more used as advanced adaptive
HEI (human-environment interaction) interfaces, thus
enabling their users to easily operate applications
remotely running in pervasive computing scenarios.

Based on a previous implementation, in this paper
we discuss the development of a new set of .NET-
compliant Application Programming Interfaces to be
used within the Visual Studio IDE. Our main goal is to
provide programmers with a set of components to be
used with the common drag-and-drop operation, in
order to embed a remote application control within an
application running on the PDA and vice-versa.

The interaction relies on ad-hoc communication
protocols over a framework devoted to pair PDAs and
remote devices according to their relative position,
with no need to use any connection software.

1. Introduction

Pervasive systems are more and more used in real-

life environments in order to provide people with some
kind of service. They are composed of a large variety
of networked smart devices, thus enriching the
environment they are deployed in. Devices devoted to
the processing logic should be mostly hidden to avoid
the perception of their presence and to prevent the
environment flooding (pervasive systems have not to
be invasive). On the other hand, devices of a pervasive
system that are devoted to implement the user interface
cannot be hidden because of their own purpose.

Personal mobile devices (such as PDAs and
SmartPhones) are successfully exploited for human-
environment interaction purposes within pervasive
systems. In fact, it has to be considered that such
interaction should not be the same for all, since
differences in needs and skills of people have to be
taken into account to avoid heavy compromises which

could not satisfy anyone. Due to their programmability
and wide popularity, they can be made suitable to
operate as remote controllers, or personal adaptive I/O
interfaces, for applications remotely running. This way
needed services can be accessed by means of a well-
known device, with no need to learn how to use new
kind of interface.

There are several existing pervasive frameworks for
service provision within public accessible areas
exploiting personal mobile devices as human-
environment interface with the goal to improve the
users’ experience[1]. This common interest is justified
by the wide diffusion of such devices, that are almost
in everyone’s pocket and that can be used almost any
when and anywhere.

There is a large variety of application fields where
services provided by pervasive systems can be
accessed by mobile devices, such as interactive guides
in cultural heritage sites based on the user profile [2],
augmented reality objects assembly in mobility[3],
context-aware information provision within university
campuses[4], healthcare systems[5] [6].

One of the problems research groups are still
dealing with, is the composition of pervasive systems
and, in particular, the design of tools for user-friendly
interface definition[7]. In this field, a common basis to
build a suitable graphical user interface on a personal
mobile device for remote applications control, is to
exploit the remote desktop feature.

In 2004, de Paiva Guimarães et al.[8] proposed a
tool to generate graphical interfaces for PDAs in a
straightforward manner. The tool relies on an existing
library for distributed computing, allowing PDAs to
interact with immersive multiprojection environments.
The generated interface is light and simple, since it is
composed of an image on which a set of hot spots are
built. The interaction takes place by handling events on
the hot spots.

Authors of [9] describe a Java-Swing application

International Conference on Complex, Intelligent and Software Intensive Systems

978-0-7695-3575-3/09 $25.00 © 2009 IEEE

DOI 10.1109/CISIS.2009.174

789

International Conference on Complex, Intelligent and Software Intensive Systems

978-0-7695-3575-3/09 $25.00 © 2009 IEEE

DOI 10.1109/CISIS.2009.174

789

running on personal devices to launch, communicate
with, and control a shared set of interactive
applications running on different networked machines.
Applications to be controlled must agree to follow the
proposed conventions, since application-specific
program control protocols have to be encapsulated in
an XML document. This XML document is
downloaded and parsed by the remote application
controller on the PDA.

The Redar system[10] is a remote desktop
architecture for distributed virtual personal computing.
It integrates various application interfaces from
different service nodes into one virtual desktop
environment, and presents them on a virtual desktop to
the thin-client. The core of the proposed framework is
a framebuffer-based GUI merger. It composes the
remote desktop which is presented on a ultra-thin
client running on a PC equipped with just as a set of
network attached I/O devices.

One of the most recent works is presented in [11],
where the server-based application to be remotely
controlled is first analyzed and classified using image
processing. This generates an interface description that
is used on the client side to build the graphics element
corresponding to the application interface on the
server. This solution lowers the amount of data to be
exchanged over a wireless connection and allows users
to view only the useful GUI elements of a given
application on a PDA. In turn it adds a significant
overhead for the automatic recognition of components
within a GUI, and does not handle situations where the
interaction with an element of the GUI produces
dynamic changes on the GUI itself.

Most of discussed works propose solutions to
optimize the bandwidth usage or to adapt the size of a
remote desktop to a PDA display, by means of an ad-
hoc hardware/software framework. This means that
some overhead is added, applications to be controlled
have to be appropriately designed to fit the solution
purposes, controller interfaces are specific for each
application.

In this paper we present a framework aimed at the
easy building of applications to be remotely operated
by PDAs. Based on a previous implementation[12], the
IRIN (Intuitive Remote INterfaces) project allows
programmers also to visually design interfaces for
PDAs that are easy to be used and effective to control
remote applications.

2. IRIN Overall Architecture

The design of an infrastructure for remote
applications control involves different elements that

interact one with each other, and in particular (fig. 1):
- the controlled element;
- the remote control device;
- the user / human controller.

Figure 1. Actors of a remote control infrastructure

Besides the effectiveness of interaction, the

interface between the remote control device and the
controlled element should not be perceived by the end
user. In more detail, designers of such infrastructure
should pursue the following goals:
- the controlled element (e.g. a remote display) must
provide an interface for the remote control, such as a
given protocol;

- the control device must correctly use such interface,
adapting controls and commands to its own
capabilities;

- the control device must provide human users with a
friendly interface, requesting them minimum
technological skills or, better, not at all.

As a consequence, the design of a framework with
such goals involves different devices, different
technologies, and different tools.

Due to the features and capabilities of personal
mobile devices, the integration of such factors is not so
easy, and some proposed solution lacks in flexibility
and usefulness of user interfaces[13].

The main goal of the IRIN project is to provide
designers with an easy-to-use tool to implement
applications that are remotely controllable by PDAs. In
other words, IRIN is an integrated framework to easily
implement controllable applications and controller
interfaces with the support of visual development

790790

tools. The “intuitiveness” feature of IRIN refers both
to the easiness in building interfaces and to the
friendliness of built interfaces.

To this end, IRIN is composed of three logical
elements (fig. 2):
- the IRIN server, which role is to control the IRIN
framework;

- the IRIN Mobile Platform, which allows
programmers to implement and deploy applications
for PDAs;

- the IRIN Remote Control Protocol (IRCP), by which
PDAs and remote devices communicate with each
other.

 Figure 2. The IRIN framework

3. The IRIN Server

The IRIN server improves any device by making it

remotely controllable. It is not strictly bound to a given
architecture, since its core is written in Java and so it
can be ported in every compatible device. Furthermore,
the server can be easily adapted to almost every
computer system with no need to rewrite its core. This
goal is achieved by means of a set of drivers that can
be created and updated by means of a simple API that
will be described in the following.

The IRIN server exploits the simplicity of the IRCP
protocol, which has been developed as more light as
possible, in order to not waste too much resources.

3.1. The IRIN server architecture

The IRIN server is composed of (fig. 3):

- a core;
- a library of standard drivers. In the current

implementation, they allow users to interact with a
PC running the Windows OS as a remote display by
means of a PDA;

- a set of visual APIs, which allow designer to develop
ad-hoc drivers and controls for the remote control of
different devices, such as robots, networked
computers, multimedia devices, etc.

Figure 3. The IRIN server architecture

The IRIN server’s core manages IRCP transactions,

loads the current configuration which is coded in an
XML file, and loads the selected controls.

The implemented control library allows developers
to set up remote displays control, with dedicated
interfaces for multimedia stream control, remote
mouse control by drag&drop and buttons, remote
content management, PDA screen capture forwarding.

Besides the above described features, the control
library can be used to write new ad-hoc controls by
means of a set of re-usable APIs based on the Java
Native Interface.

The use of native interfaces allowed us to keep
separate the server core and the control system, thus
obtaining a solution that is interoperable, simple,
intuitive, portable. Therefore the remote display
control is only one of the features of IRIN, that claims
to be a set of control interfaces.

4. The IRIN Mobile Platform

The IRIN Mobile Platform (IMP) is a framework

for the rapid development of applications with
graphical user interface to be deployed on a PDA for
the remote control of computer devices by means of
the IRCP protocol. The IMP has been developed by
using the .NET Compact Framework 3.5, so it is
compatible with any device running Windows Mobile
2003 or above. The API makes use of all standards of

791791

the .NET platform, so applications can be developed
ex

mini-keyboards, touch
pen, even used in combination).

4.1. IMP implementation details

communications between the PDA and the IRIN

ploiting the visual IDE of Microsoft Visual Studio.
We decided to use the .NET Compact Framework

in order to validate our design choices using a large
variety of mobile devices with different input
interfaces (touch screen, qwerty

The IMP is composed of two libraries: the IRIN

Mobile Libs, and the IRIN Mobile Visual Components.
 The IRIN Mobile Libs are the foundation for the
development of any mobile application. They represent
the mobile counterpart of the IRIN server. In particular
they provide simplified socket-based interfaces for

server. The IRIN Mobile Libs are composed of three
sockets:
- the irSocket that is a virtual class. It provides basic
functions to connect the PDA with the remote
device;

- the irIRCPSocket that provides all needed methods
to manage the IRCP Protocol;

- the irBinarySocket that provides the irIRCPSocket
with additional functions for binary data exchange.

The IRIN Mobile Visual Components is a set of
libraries for the intuitive development of user-friendly
GUIs on PDA. Programmers are allowed to
concentrate on the GUI development, since the IRIN
Mobile Visual Components are integrated with the
sockets and with the Visual Studio IDE as above
mentioned (fig. 4).

Figure 4. the integration of IRIN Mobile Visual Components within the Microsoft Visual Studio IDE

ls are:

 display side;

The current implementation of visual controls

allows a PDA to control remote displays according to
the standard library set that is included within the IRIN

server. In more detail, the available visual contro
- irContentList for handy visualization of the list of
contents available on the remote

792792

- irImageNavigator for navigation of hi-res images in

- i e VLC
 buttons.

y” button for the
me

ions. Fig. 5
shows an example of source code for event-

 programming.

small-sized areas by dragging;
- irMouse for the mouse pointer remote control;

rVlcRemote for the remote control of th
media player by means of the standard set of

We implemented these four controls for
our tests because they allow users to control
a wide range of applications, considering
that the implementation of new controls is
very straightforward. Actually, the irMouse
control could be enough to control almost
any kind of application. We decided to add
some more visual control with ad-hoc
widgets (such as the “pla

dia player) in order to provide users with
a more intuitive interface.

Besides the re-usability, the strength of
these APIs is that they provide a full support
to the multithreading, they uses non-
blocking sockets, and they support event-
based programming for a fast development
and deployment of applicat

based interface

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using IRINMobileLibs;
using IRINMobileVCL;

namespace IRINConsoleSample
{
 class Program
 {
 public IRINRCPSocket remoteController;

 static void Main(string[] args)
 {
 Program thisProgram = new Program();
 thisProgram.remoteController = new _

IRINRCPSocket();
 thisProgram.remoteController.initialize _

("password", "192.168.2.1", 1984, true);
 //ADDING EVENTS:
 thisProgram.remoteController.rcpSocketReady _

+= new rcpSocketReadyHandle(thisProgram. _
remoteController_rcpSocketReady);

 thisProgram.remoteController. _
connectAndGetInfo();

 Console.Out.WriteLine("Connecting...");
 }

 private void remoteController_rcpSocketReady _

(object Sender)
 {
 Console.Out.WriteLine("Connection Done. _

Ready...");
 }
 }
}

Figure 5. Source code for event-based interface

 a wider range of devices and
applications. Fig. 6 gives an overview of the IRIN
project components.

 the IRIN project

5.

 functions
an

 resources
for

ile
Plaprogramming

All IRIN components are designed to be easily

modified in order to upgrade the IRIN framework.
This will allow IRIN users to easily develop specific
interfaces to control

Figure 6. A complete view of

 Implementation Details

The current available and tested version of the IRIN

framework provides programmers with all
d components for the fast deployment of a remote

display network to be controlled by PDAs.
The remote display control feature relies on the

IRCP protocol, that is an evolution of a previous trial
implementation[12]. The IRCP protocol has been set
up aiming at the tuning of control interfaces for PDAs
based on their computing and visualization
capabilities. It is based on a set of input text-strings.
The protocol does not need great computing

 the parsing of input strings, and it can be extended
with new commands for specific interfaces.

For example, the “GETCOMMANDS” and
“GETCONTENTS” strings allows the client to request
all needed information to control the remote display
from the IRIN Server, thus avoiding complex protocol-
based interaction. If the controlled application uses the
IRIN Mobile Platform, complex control functions are
already available, such as the mouse control by
drag&drop operation, or the visualization of remote
display on the PDA and vice-versa. The IRIN Mob

tform does not force the developers to implement
the IRCP protocol within their mobile applications.

The IRIN Easy Client is an example of a mobile
application that exploit the first implementation of the

793793

IRIN Mobile Platform. This allowed us to integrate all
interfaces to use a remote display within one mobile
application. At the same time, due to the re-usability of
av

rotocol. In this example
the transaction relies on a binary link (data are

ary form).

6.

DAs. The remote control
tak

 be controlled by a
PD

ults
int

an to redesign the
pro ocol in order to manage a IRIN-based framework

uted server.

etwork for Personal Mobile Devices”,

e on Human-Computer Interaction with

 4th Int’l

. of the 33rd annual ACM SIGUCCS

IEEE Engineering in Medicine and

”, IEEE Transaction on

ming environment for ubiquitous computing

e, New Mexico, March 13 - 17,

", proc. of Fifth International Conference

 on Mobile Devices," Computer

nt Interfaces for

roceedings IEEE International
Conference on e-Commerce Technology, CEC 2004, pp.
342-346, 6-9 July 2004

Mo

ailable components, the implementation work has
been extremely agile.

The IRIN Screen Sender is an example of
integration with PDA’s native APIs. This application
exploits the IRIN Mobile Native Libs that bind the
native libraries of the Windows Mobile OS with the
IRIN Mobile Platform. These libraries are currently
under further development, and they only implement
the PDA screen capture feature. The captured screen
can be sent to the remote display for visualization. The
transaction between the PDA and the server involves a
direct communications among controls, and does not
involve the IRCP text-based p

exchanged in a bin

 Conclusion

In this paper we presented the IRIN project, an

enabling framework for the rapid development of
applications to be remotely controlled, and of control
interfaces to be deployed on P

es place without any external connection software,
such as the ActiveSync one.

The IRIN project is an evolution of our previous
works[12], where an indoor positioning system was
used to locate a remote display to

A in the neighborhood. The relative position was
managed by a central server.

We are carrying out experiment about the
implementation of an intelligent pairing system. In
particular, we are aiming at the integration of the
positioning system within the IRIN server, by means of
the triangulation method used over the WIFI link.
Experiments carried out gave us good res in

egration, but they are not so satisfying concerning
the position detection accuracy and precision.

As a further enhancement, we pl
t

as a unique distrib

7. References

[1] Genco A., S. Sorce, G. Reina, G. Santoro, “An Agent-

Based Service N
IEEE Pervasive Computing, vol. 5, no. 2, pp. 54-61,
Apr-Jun, 2006

[2] Raptis D., Tselios N., Avouris N., “Context-based
design of mobile applications for museums: a survey of
existing practices”, Proc. of the 7th ACM International
Conferenc

bile Devices & Services, Salzburg, Austria 2005, pp:
153-160

[3] Henrysson A., M. Ollila, M. Billinghurst, “Mobile
phone based AR scene assembly”, Proc. of the
Conference on Mobile and Ubiquitous Multimedia,
Christchurch, New Zealand, 2005, pp. 95-102

[4] Genco A., S. Sorce, G. Reina, G. Santoro, R. Messineo,
R. Raccuglia, L. Lo vecchio, G. Di Stefano, “An
Augmented Campus Design for Context-aware Service
Provision”, proc
Conference on User Services, Monterey, CA, Nov. 6-11
2005, pp. 92-97

[5] Price, S.; Summers, R., “Mobile Healthcare in the
Home Environment”, Proc. of 28th Annual International
Conference of the
Biology Society EMBS '06, New York, NY, Aug. 2006,
pp. 6446-6448

[6] Ardizzone E., O. Gambino, A. Genco, R. Pirrone, S.
Sorce, “Pervasive Access to MRI Bias Artifact
Suppression Service on a Grid
Information Technology in Biomedicine, DOI:
10.1109/TITB.2008.2007108.

[7] Oh, M., Lee, J., Chang, B., Ahn, J., and Doh, K., “A
program
environment”, SIGPLAN Not. 42, 4 (Apr. 2007), pp.
14-22

[8] de Paiva Guimarães, M., Gnecco, B. B., and Zuffo, M.
K., “Graphical interaction devices for distributed virtual
reality systems”, proc. of the 2004 ACM SIGGRAPH
international Conference on Virtual Reality Continuum
and Its Applications in industry (Singapore, June 16 -
18, 2004). VRCAI '04. ACM, New York, NY, 363-367

[9] Miller, J. R., Yengulalp, S., and Sterner, P. L., “A
framework for collaborative control of applications”,
proc. of the 2005 ACM Symposium on Applied
Computing (Santa F
2005). L. M. Liebrock, Ed. SAC '05. ACM, New York,
NY, pp. 1244-1249

[10] Yuedong Zhang; Zhenhua Song; Dingju Zhu; Zhuan
Chen; Yuzhong Sun, "Redar: A Remote Desktop
Architecture for the Distributed Virtual Personal
Computing
Grid and Cooperative Computing, GCC 2006, pp.1-8,
Oct. 2006

[11] Lamberti, F.; Sanna, A., "Extensible GUIs for Remote
Application Control
Graphics and Applications, IEEE, vol.28, no.4, pp.50-
57, July-Aug. 2008

[12] Genco A., S. Sorce, R. Messineo, P. Raccuglia, “PDA –
Remote Display Interaction Framework”, proc. of First
International Workshop on Intellige
Human-Computer Interaction (IIHCI-2008), march 4-7,
2008, Barcelona, Spain, pp. 763-768

[13] Maekawa, T.; Uemukai, T.; Hara, T.; Nishio, S., "A
Java-based information browsing system in a remote
display environment," P

794794

