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The current state of knowledge regarding uncertainties in urban drainage models is poor. This is in part
due to the lack of clarity in the way model uncertainty analyses are conducted and how the results are
presented and used. There is a need for a common terminology and a conceptual framework for describ-
ing and estimating uncertainties in urban drainage models. Practical tools for the assessment of model
uncertainties for a range of urban drainage models are also required to be developed. This paper, pro-
duced by the International Working Group on Data and Models, which works under the IWA/IAHR Joint
Committee on Urban Drainage, is a contribution to the development of a harmonised framework for
defining and assessing uncertainties in the field of urban drainage modelling. The sources of uncertainties
in urban drainage models and their links are initially mapped out. This is followed by an evaluation of
each source, including a discussion of its definition and an evaluation of methods that could be used
to assess its overall importance. Finally, an approach for a Global Assessment of Modelling Uncertainties
(GAMU) is proposed, which presents a new framework for mapping and quantifying sources of uncer-

tainty in urban drainage models.

Crown Copyright © 2011 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Uncertainty is intrinsic in any modelling process and originates
from a wide range of sources, from model formulation to the collec-
tion of data to be used for calibration and verification. Uncertainties
cannot be eliminated, but their amplitude should be estimated and,
if possible, reduced. It is necessary to understand their sources and
impact on model predictions. For example, the confidence level of
amodel’s predictions should be included in every modelling applica-
tion. Beven (2006) reported that there are many sources of uncer-
tainty that interact non-linearly in the modelling process.
However, not all uncertainty sources can be quantified with accept-
able levels of accuracy, and the proportion of uncertainty sources
being ignored may be high in environmental modelling investiga-
tions (Harremoés, 2003; Doherty and Welter, 2010).

In the literature, the following sources of uncertainties are listed
(e.g. Butts et al., 2004): (i) model parameters, (ii) input data,
(iii) calibration data, and (iv) model structure. The impacts of
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calibration methods and data availability are also recognised. Each
of these sources is discussed below.

When dealing with complex urban drainage models, calibration
may lead to several equally plausible parameters sets, reducing
confidence in the model predictions (Kuczera and Parent, 1998).
The concept that a unique optimal parameter set exists should
therefore be replaced by the concept of “equifinality” (Beven,
2009) in which more than one parameter set may be able to pro-
vide an equally good fit between the model predictions and obser-
vations. Many published studies have dealt with the impact of
uncertainties on model parameters, also known as sensitivity anal-
ysis (Kanso et al., 2003; Thorndahl et al., 2008; Dotto et al., 2009).
Some studies used the results of a model sensitivity analysis to
produce parameter probability distributions (PDs), which reflect
how sensitive the model outputs are to each parameter (e.g.
Marshall et al., 2004; Dotto et al., 2010a; McCarthy et al., 2010);
while other studies used the sensitivity analysis to screen param-
eters for further analysis (e.g. Reichl et al.,, 2006; Haydon and
Deletic, 2007). In most cases, model sensitivity results were also
used to estimate confidence intervals around the model’s outputs
(e.g. Yang et al., 2008; Li et al., 2010).
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Impacts of input data uncertainties on urban drainage model-
ling are far less understood. Their importance, however, is widely
studied in related areas (Kuczera et al., 2006). For example, the im-
pact of systematic rainfall uncertainties on the performance of
non-urban catchment models was recognised and assessed by
Haydon and Deletic (2009). Work has also been completed on
the propagation of input data uncertainties through urban drain-
age models (Rauch et al., 1998; Bertrand-Krajewski et al., 2003;
Korving and Clemens, 2005). However, in these studies, the models
were first calibrated assuming that measured inputs and outputs
were true (no-error), and the impacts of input data uncertainties
were then propagated through the models, while keeping the mod-
el parameters fixed. Recently, Kleidorfer et al. (2009a) and Freni
et al. (2010) attempted to assess how input data uncertainties im-
pact model parameters, investigating the interactions between
these two sources of uncertainties. Freni and Mannina (2010) at-
tempted to isolate the contribution of different sources of uncer-
tainty in a complex integrated urban drainage model.

Research on the impact of calibration data on the accuracy of
drainage models has focused on the effectiveness of the calibration
and verification processes. Many studies have examined how to di-
vide the available data into calibration and verification sets (McCarthy,
1976; Klemes, 1986; Vaze and Chiew, 2003; Wagener et al., 2004).
A few recent papers (e.g. Mourad et al., 2005; Dotto et al., 2009)
evaluated how the number of events used in calibration and
verification of urban drainage models impacts on their predictive
uncertainty. On the other hand, there is little work reporting on
how uncertainties in measured calibration data impact on the mod-
el’s predictive capacity. However, large uncertainties in measured
urban discharges and water quality have often been reported (e.g.
Bertrand-Krajewski, 2007; McCarthy et al., 2008), thus clearly dem-
onstrating that calibration data sets may in themselves be a signifi-
cant source of uncertainty in the model calibration process. In fact,
McCarthy (2008) showed the influence of calibration data uncer-
tainty on the calibration of a simple rainfall-runoff model.

There are many studies on the effectiveness of calibration algo-
rithms. For example, Gaume et al. (1998) showed that different cal-
ibration methods can lead to different parameter sets, which
demonstrate a similarly good fit between measured and simulated
data. This can occur as a result of difficulties in finding a global
minima, especially for systems where the objective/criteria func-
tion surface is nonlinear. It is evident that these problems become
more important as model complexity increases (Silberstein, 2006),
or where models are ill-posed (Dotto et al., 2009). Therefore it
is not surprising that some calibration algorithms simply cannot
find the global minima in rather complex urban drainage models
(Kanso et al., 2003).

Given the wide range of communities and applications in which
uncertainty is studied, there is no general consensus in the litera-
ture with regard to the terminology used. For example, the terms
“sensitivity” and “uncertainties” are often used interchangeably
and yet have distinctly different meanings. A further example is
that some input variables that could be measured, but are also re-
fined through calibration processes (such as, effective impervious-
ness in rainfall-runoff modelling), are sometimes regarded as fixed
inputs and at other times as model parameters. These terminology
problems need to be addressed so as to improve the communica-
tion between research groups, thus the coherence and applicability
of future studies.

Despite previous work attempting to unify definitions and ap-
proaches of uncertainty evaluation (e.g. Walker et al., 2003), no
universal framework and methodology for categorising and assess-
ing modelling uncertainties has been accepted. Indeed, Montanari
(2007) stated that uncertainty assessment in hydrology suffers
from a lack of a coherent terminology and hence a systematic
approach.

This paper is a contribution in the debate to develop common
terminology and a conceptual framework for accounting for uncer-
tainties in urban drainage modelling. It outlines a Global Assess-
ment of Modelling Uncertainties (GAMU), which presents a new
framework for mapping and quantifying sources of uncertainty in
urban drainage models.

2. Methods

The International Working Group on Data and Models, which
works under the IWA/IAHR Joint Committee on Urban Drainage
(JCUD), conducted several workshops focused on uncertainties in
monitoring and modelling of urban drainage systems:

(1) ‘Integrated Urban Water Management Modelling: Chal-
lenges and Developments’, Melbourne, Australia, 2006, in
conjunction with the 7th Urban Drainage Modelling and
4th Water Sensitive Urban Design conferences (7UDM &
4WSUD);

(2) ‘Uncertainties in data and models’, Lyon, France, 2007, as
part of the 6th Novatech conference; and,

(3) ‘Challenges in monitoring and modelling of stormwater
treatment systems’, Edinburgh, UK, 2008 as part of the
11th International Conference on Urban Drainage (11ICUD).

This paper represents the outcome of these workshops. The lit-
erature, guidelines and standards on uncertainties in measure-
ments (Bich et al., 2006; 1SO, 2008, 2009a,b) were also consulted,
as well as recent relevant work on uncertainties. This paper thus
presents a review of the state of the art, and an attempt to harmo-
nise concepts, definitions and protocols.

3. Proposed framework for a Global Assessment of Modelling
Uncertainties (GAMU)

The first step in the proposed uncertainty framework is to map
the sources of uncertainty and their links; their contribution and
significance are then evaluated. Finally, the propagation of all
sources simultaneously provides an analysis of their effect on the
model sensitivity and consequently on the uncertainty of the mod-
el predictions.

3.1. Mapping uncertainties

The majority of urban drainage models require calibrating prior
to use. This calibration process is referred to as the ‘inverse prob-
lem’ (Gallagher and Doherty, 2007), whereby parameter values
are determined from measured calibration input data, calibration
output data and the model structure by applying an objective func-
tion. When using models for prediction outside of calibration, or
when models are simply used with estimated parameter values
(from expert knowledge, literature or defaults), the process is
known as the ‘forward problem’.

A generic modelling framework was therefore adopted, for
which the following information is needed (Fig. 1): model struc-
ture MS (i.e. relationships, linkages and numerical methods), input
data ID (e.g. rainfall or potential evapotranspiration time series)
and model parameters P (e.g. effective impervious area, linear res-
ervoir lag-time parameters in rainfall-runoff conceptual models).
For the inverse problem, the following information is also needed:
calibration input data (e.g. rainfall intensity time series), measured
calibration output data (e.g. flow time series), calibration algo-
rithms CA and objective functions OF selected by the modeller
according to the model requirements (e.g. sum of the squared
errors).



A. Deletic et al./Physics and Chemistry of the Earth 42-44 (2012) 3-10 5

(P)

Model Parameters 5

|
nputData e

(1D)
D

Model structure
(Ms)

Model Outputs |«
(MO)

_______________ 1
: Calibration Data | :
I (cD) - !
1
1| Calibration : Calibration
: InputData |1 Algorithms (CA)
=+ = l___:_p & Objective
: Calibration : Functions (OF)
I| OutputData |, *

Model application (forward problem)

— — — — Modelcalibration (inverse problem)

Fig. 1. General modelling framework.

Three key groups of uncertainty sources mapped in this frame-
work are outlined below and in Fig. 2.

(I) Model input uncertainties: Inputs that are required to run
either a calibrated or a non-calibrated model can be grouped
into the following categories, which their associated uncer-
tainties should be propagated through the model:

1. Input data (ID) - both random and systematic effects
have to be assessed in the input data collection process
(these may be described statistically using the actual
measurement information or simply estimated).

2. Model parameters (P) - uncertainty in their calibrated
values or estimates.

(II) Calibration uncertainties: That are related to the processes
and data used in model calibration. This source is mainly
due to:

3. Calibration data uncertainties due to measurement
errors in both inputs and outputs (CD-M), that are
dependent on the quality of the monitoring program
and instruments used in the collection of the data sets,
including the temporal resolution of the time series, data
collection and validation procedures and data manipula-
tion protocols.

4. Selection of appropriate calibration input and output
datasets (CD-S), which is linked to the choice of the cal-
ibration variable (e.g. the of use concentrations or loads

to calibrate a water quality model) and the amount of
data available for calibration (e.g. number of storm
events, length of time series).

5. Calibration algorithms (CA), which depends on the algo-
rithm wused for finding the appropriate sets of
parameters.

6. Objective functions (OF) used in the calibration process;
these need to be appropriate for the modelling
application.

(IIT) Model structure uncertainties: Which depend on how well

the model simulation represents the systems and pro-

cesses. These can include:

7. Conceptualisation errors, such scale-issues or omitting
key processes.

8. Equations, which could be ill posed and thus inade-
quately represent the process.

9. Numerical methods and boundary conditions, which can
be ill defined leading to inaccurate solutions (e.g. numer-
ical dispersion or instabilities).

Fig. 2 indicates that sources of uncertainties are interlinked. For
example, uncertainties in input data and calibration procedures
will at the same time impact on the model’s sensitivity to its cali-
bration parameters. In fact, all identified sources of uncertainties

(1) Model structure uncertainties

(1) Model input uncertainties

‘ 7. Conceptualisation |

1. Input data (ID)

| 8. Equations |

9. Numerical methods
and boundaries

2. Model
Parameters (P)

3. Calibration data
measurements (CD-M)

4. Calibration data
selection (CD-S)

5. Calibration
Algorithm (CA)

6. Objective
Functions (OF)

(I1) Calibration uncertainties

Fig. 2. The key sources of uncertainties in urban drainage models and links between them.
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will impact the model parameter values. Further, the model devel-
opment and calibration process needs to be strongly related to the
model application. A model used to predict average annual dis-
charge might be built and calibrated differently to a model used
to predict hydrographs and pollutographs. As discussed in the
Introduction, the model structure (e.g. conceptualisation, choice
of equations and numerical methods) impacts on this process,
since ill-posed models are notoriously difficult to calibrate. There-
fore, in Fig. 2, the model parameter uncertainties are placed at the
intercept of all three categories.

3.2. Model input uncertainties

In general, depending on their type and use in the model, model
inputs can either be measured or estimated. The two identified
sources (Fig. 2) are discussed below in detail.

Source (1): Input data uncertainties (ID) are defined as uncertain-
ties in any input data that can be either measured or estimated. In
the first case, input data are measured using appropriate monitoring
protocols and instruments (e.g. rainfall intensities measured by a
rain gauge). Uncertainties in the measured input data are generally
caused by (i) systematic and/or (ii) random errors. If input data are
not directly measured, their uncertainty can be elucidated using ac-
cepted statistically based methods (Garthwaite et al., 2005): in both
cases, they can be described by probability distributions. For exam-
ple, typical probability distributions for measured and estimated in-
put data are Gaussian and uniform PDs, respectively. In urban
drainage applications, effective impervious area is one of the most
common inputs that can be estimated using GIS/terrain maps asso-
ciated with drainage plans, but is often also used as a calibration
parameter (see Source (2) below) depending on the modelling ap-
proach. It is frequent in urban drainage modelling that some input
data, although theoretically measurable, are either estimated or re-
placed by the use of a model parameter which is then calibrated.

Uncertainties in measured input data can be characterised and
assessed according to international standards (ISO, 2007, 2008,
2009a,b) or related literature such as Bertrand-Krajewski and
Muste (2007). In these standards, uncertainty is defined as the var-
iable associated with a measurement result which characterises
the dispersion of the values which could be reasonably attributed
to the measured variable. As a first approximation in normal distri-
butions, uncertainty can be considered as equivalent to the stan-
dard deviation. This probabilistic approach allows measurement
result to be provided as a most probable mean value given with
its 95% confidence or coverage interval, or as a most probable mean
value given with its probability distribution (see ISO (2008,
2009a,b) for more details). In simple cases where normal distribu-
tions can be assumed, uncertainty is estimated as the standard
deviation derived from repeated measurements. This is usually re-
ferred to as the Type A method to evaluate uncertainties. In most
frequent cases in urban drainage, repeated measurements are not
possible and uncertainties are estimated by means of two other
methods: (1) the Type B method which applies the Law of Propa-
gation of Uncertainties (LPU) when the required underlying
hypotheses (linearity, normality, and narrow distributions) are
verified, and (2) the Monte Carlo method which propagates proba-
bility distributions of any type (uniform, normal, log-normal,
empirical, etc.) and is the most generic method with less restrictive
hypotheses for its application. In this case, probability distributions
are determined for each variable used in the measurement process
from the best available knowledge.

Input data uncertainties are often propagated in model applica-
tions by methods based on Monte Carlo simulations. As a first step
example, one may multiply the measured variable with the factor

IDracror = f(9,€) (1)

in which § is a systematic variability (e.g. an offset value, or results
from an error model application) and ¢ is a random variability, ide-
ally sampled from a distribution that represents random input
uncertainties. This means that an input data error model with
two additional model parameters ¢ and ¢ is introduced. The values
for 6 and the distribution for ¢ should be assessed using the best
knowledge on the monitoring protocol applied (e.g. following ISO
standard and by gathering additional data on possible systematic
uncertainties); or it can be estimated together with model parame-
ters in an inverse modelling approach. In the forward modelling ap-
proach, uncertainties in the input data can be propagated through
the model to the output by using Monte Carlo methods. For exam-
ple, for rainfall data, an IDgacror can be assumed as a simple sum of
8, which is an approximated constant, and ¢, which is sampled from
a uniform distribution (e.g. Rauch et al., 1998; Haydon and Deletic,
2009). However, this approach is rather simplistic and the uncer-
tainties in the input data are better modelled using our best knowl-
edge about the measurement process (e.g. information on the
accuracy in the equipment used, sampling procedure, etc.).

Both measured and estimated input data can be affected by
additional “long-term prediction uncertainties” which occur when
trying to predict long-term environmental change effects (e.g.
land-use, climate change effects). Such predictions often contain
substantial uncertainties, but as they cannot be compensated dur-
ing model calibration they are not covered here.

It should be noted that the method described above differs from
that typically used to quantify measurement uncertainty, since it is
not only the measurement uncertainty that needs quantification,
but rather how uncertainty in input data impacts model results.
This difference is necessary since the assessment of measurement
uncertainties requires that the measurements first be corrected for
all recognised systematic errors (ISO, 2009a). ISO (2009a) states
that since the measurements have been corrected for systematic
errors using a calculated correction factor or offset value, they
now contain (1) the random errors affecting the chosen correction
value since it cannot be exactly known and (2) the same random
errors that existed prior to the correction. As such, there is no dif-
ference in nature in the uncertainties derived from a random error
and those originating from a correction factor used to adjust the
dataset for systematic errors (hence both error types are to be
propagated similarly).

In the case of model application (forward problem in Fig. 1), the
propagation of uncertainties associated to input data is often pro-
cessed to the PDs by means of Monte Carlo methods, where inputs
are perturbed using, for example, Eq. (1) (or any other appropriate
function) for thousands of possible realisations. In other words, the
inputs are multiplied by IDgacror and the model is run many times.
The results are then represented by constructing mean and 95%
confidence intervals for each model output. If the confidence inter-
vals are small, it can be concluded that uncertainties do not signif-
icantly impact the model results, and vice versa. Small intervals are
usually possible if input uncertainties are small, or if the model cal-
ibration compensates these uncertainties. As in all other analyses,
it is important to propagate all inputs simultaneously because of
possibilities that uncertainties in different variables are not inde-
pendent and interact. Accounting for correlated input data and
their correlated PDs is of particular importance when attempting
to estimate an overall uncertainty.

Source (2): Model calibration parameter uncertainties (P). This is
also referred to as the “sensitivity of a model to its parameters”.
The aim is to derive probability distributions for the given param-
eters, and the extent and shape of the confidence region of model-
ling predictions around a specified measured output variable. Since
parameters in urban drainage models can be highly correlated
(commonly the case for water quality models, e.g. Dotto et al.,
2010b), it is essential to perform a global sensitivity of parameters
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where all parameters are varied simultaneously over the whole
range of possible parameter values (as opposed to the local sensi-
tivity analysis where sensitivity is only investigated at one point in
parameter space and one-at-a-time (OAT) methods where one
parameter is varied with others held fixed).

The literature on sensitivity of general hydrological models is
extensive, and the key methods and concepts already used in water
resources modelling are applicable to urban drainage. Many of
these methods, applied in model calibration (inverse problem in
Fig. 1), refer more or less strictly to Bayes’ (1763) principle. They
range from formal Bayesian approaches (e.g. Markov Chain Monte
Carlo - MCMC, like MICA (Doherty, 2003) or DREAM (Vrugt et al.,
2008)) to less formal likelihood methods (e.g. Generalized Likeli-
hood Uncertainty Estimation; GLUE - (Beven and Binley, 1992)).
According to Freni et al. (in press), the classical Bayesian method
is more effective at discriminating models according to their
uncertainty, but the GLUE approach performs similarly when it is
based on the same founding assumptions as the Bayesian method.
However, this conclusion is still debated (e.g. Beven, 2009; Vrugt
et al., 2009).

The International Working Group on Data and Models is cur-
rently working on comparison of some of the most popular calibra-
tion and sensitivity analysis approaches, including: (1) GLUE
developed by Beven and Binley (1992), (2) The Shuffled Complex
Evolution Metropolis algorithm (SCEM-UA) by Vrugt et al. (2003),
(3) Amultialgorithm, genetically adaptive multiobjective method
(AMALGAM) by Vrugt and Robinson (2007), and (4) The classical
Bayesian approach based on a MCMC method (implemented in
the software MICA by Doherty, 2003). These methods were tested
for both a simple rainfall-runoff model (KAREN - Rauch and Kinzel,
2007) and a simple water quality model using the same datasets
collected at a single site in Melbourne, Australia. Preliminary re-
sults showed that all methods tested are eligible to analyse uncer-
tainties of urban drainage models, to estimate parameter
sensitivity, parameter probability distributions and consequently
uncertainty bands of model output. However, each method has
its specific advantages and drawbacks. Special attention has to be
given to the computational efficiency (i.e. number of iterations re-
quired to generate the PDs of parameters) as computational time is
often a limiting factor of uncertainty analysis. So far it was found
that MICA and AMLAGAM produce results quicker than GLUE.
However, GLUE requires the lowest modelling skills and is easy
to implement. An important step in the application of all methods
is comprehensive posterior diagnostics of parameter distributions
and uncertainty bands obtained to ensure that the distributions
have converged and implicit assumptions are valid. Further inves-
tigations are being undertaken in order to provide insights on the
advantages and disadvantages of different approaches.

3.3. Calibration uncertainties

Source (3): Measured calibration data uncertainties (CD-M) are
uncertainties in the measured data collected for possible use dur-
ing calibration (e.g. flow and pollutants times eries). As in all other
measured variables, errors could be systematic and/or random, and
probability distributions are used to describe their uncertainty, as
for input data. So Eq. (1), or the other approaches discussed under
Source (1), could be applied to estimate measured calibration data
uncertainties.

It is well understood that the techniques used to measure urban
discharges and associated water quality are of limited accuracy
(e.g. Bertrand-Krajewski, 2007; McCarthy et al., 2008). However,
the propagation of these uncertainties has not been widely applied
in practice. Recently, Freni and Mannina (2010) assessed the differ-
ent components of uncertainty in an integrated urban drainage
model using a variance decomposition method. Interestingly, they

found that the uncertainty contribution of calibration data pro-
gressively reduced from upstream to downstream sub-models as
they became overwhelmed by other error sources. Others in the lit-
erature which have considered calibration data uncertainty usually
assess model accuracy by plotting the uncertainty bars (usually
95% confidence interval or just one standard deviation) around
the measured data, alongside the model outputs. In general, it is
proposed that the model is doing well if its outputs fall within
the uncertainty bars around the measured data. However, this can-
not be regarded as a proper and rigorous propagation of calibration
uncertainties. It is therefore proposed that this should be im-
proved, and that the calibration data uncertainties be explicitly ac-
counted for while the parameters are calibrated.

Source (4): Calibration data selection (CD-S) is focussed on using
the appropriate calibration variables and associate data sets that
will best suit the model application (e.g. selecting the right amount
of data for model assessment). For example, there has been discus-
sion on whether to calibrate load models using pollutant concen-
trations or fluxes, with fluxes most commonly used. McCarthy
(2008) demonstrated that using instantaneous concentrations for
calibration produced more accurate predictions than using instan-
taneous fluxes. This was thought to be caused by the fact that the
flux calibration process is affected by poorer quality input data be-
cause measured flow rates are used to estimate measured fluxes,
whilst modelled flow rates (which are calibrated to measured flow
rates) are used in the prediction of modelled fluxes. However,
Dembélé (2010) observed that calibrating various types of models
for a wide range of pollutants using event loads gives more accu-
rate predictions than calibrating them using event mean concen-
trations. This indicates conclusions based on some data sets,
models and calibration variables are difficult to be generalised:
more research is needed to identify the most appropriate calibra-
tion parameters to use.

If calibration data are not representative (i.e. do not represent
all possible contexts and ranges of phenomena and values to be
simulated by the model), the calibrated model parameters will
not be accurately estimated for the range of applicability of the
model (e.g. calibrating a rainfall-runoff model during summer peri-
ods will produce model parameters which will likely not reflect
winter period processes). For example, Mourad et al. (2005) used
a random sampling methodology to understand the impact of data
availability (i.e. number of events) on the calibration of several ur-
ban stormwater quality models. They found that, in order to ade-
quately calibrate these models, it was often required to use the
majority (between 60% and 100%) of the available dataset during
calibration.

In the case of spatially distributed systems, it is neither possible
nor sensible to measure the complete system characteristics, and
the question is raised about how many measurement sites are nec-
essary. Kleidorfer et al. (2009b) evaluated the impact of the num-
ber of measurement sites used for calibration of combined sewer
systems and showed that the number of required sites is influ-
enced by the time period used for calibration. For example, a sim-
ilar calibration performance can be reached when using 30% of all
available sites for calibration and a time period of one year, as com-
pared to using 60% of all available sites with five single events.

Furthermore, calibration data availability impacts not only the
uncertainty of a model’s prediction outside the calibration period
(Vaze and Chiew, 2003; Mourad et al., 2005; McCarthy, 2008), but
also the model’s parameter probability distributions (McCarthy,
2008).

The assessment of this type of uncertainty on a model should be
incorporated into the global approach for modelling uncertainties,
and the method presented by Mourad et al. (2005) could be easily
incorporated for this purpose. For example, for a rainfall-runoff
model, a number of events could be randomly (or systematically)
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selected and these events could then be used to perform a sensitiv-
ity analysis of the model outputs to parameter values. These results
could then be compared with the results obtained when all the
data was used for the analysis, to determine the impact of data
availability. For example, Dembélé (2010) applied the Leave-One-
Out Cross Validation (LOOCV) method (Rudemo, 1982), which is
particularly useful when only a limited number of events is avail-
able in the calibration dataset.

Source (5): Calibration algorithms (CA) used during model
parameter optimisation can produce significant uncertainties in
the model’s predictive performance (Beven and Freer, 2001). There
are many calibration algorithms available which can automatically
calibrate model parameters. However, even when using such com-
plex algorithms, which are capable of calibrating highly non-linear
functions, there is never certainty that the best solution (or global
optimum) will always be found (Beven and Freer, 2001; Wagener
et al., 2004). This can be caused by several conditions, but calibra-
tion which results in a non-global optimum can often be the fault
of the user, who has (1) incorrectly ‘wrapped’ the calibration algo-
rithm around the chosen model, and/or set incorrect boundary
conditions, or (2) chosen an algorithm which cannot solve the
specified model (e.g. a linear algorithm used to solve a nonlinear
function). Several tools can now calibrate models using a range
of different algorithms, the results of which could be used to help
quantify this type of uncertainty. Therefore, the best approach is to
use several calibration algorithms for a specific model and its
application and select the best outcome. Ideally, the algorithm or
algorithms tested will have been selected based on the suitability
of their criteria for the particular model. Another possibility is
the use comprehensive uncertainty analysis techniques (see Source
2) to explore the likelihood surface in a wider range of the param-
eter space and to identify local minima which can cause problems
in the calibration process.

Source (6): Objective functions (OF) used in the calibration pro-
cess. Models are often calibrated without considering the implica-
tions of the selected criteria/objective function (see Wagener et al.,
2004). Different objective functions can influence parameter distri-
butions (magnitude and shape), and therefore impacting the
apparent sensitivity of the modelled results to each parameter
and the general uncertainty of model predictions. All objective
functions sacrifice the fit of a certain portion of the dataset, to
achieve a good performance in another portion (Wagener et al.,
2004). McCarthy (2008) found that using a least-squares objective
function to calibrate an urban rainfall-runoff model over-empha-
sised peak flow rates, resulting in poor predictive performance of
events which only had smaller flows. However, changing this
objective function to a less biased function (similar to Chi-squared)
decreased the model’s performance slightly for peak estimation,
but substantially increased the accuracy of low flow estimation.
The choice of objective function can also impact on how well the
model will predict outside its calibration dataset, with certain
objective functions resulting in better estimates of the parameter
distributions. As such, it is essential that objective functions are
matched to the purpose and requirements of the modelling
application.

Most calibration tools (e.g. PEST - (Doherty, 2004); CALIMERO -
(Kleidorfer et al., 2009a); KALIMOD - (Uhl and Henrichs, 2010))
and model uncertainty assessment tools (e.g. MICA, GLUE) can
use alternate or multiple objective functions, and, as such, these
tools should be used to assess the impact of different objective
function choices on model results. It may also be considered that,
for a given model, different sets of parameters could be applied
for different contexts, e.g. one set for dry weather and another
set for storm weather. With this approach, the aim is not to iden-
tify the unique model for all contexts, but to distinguish models for
specific ranges of application.

3.4. Model structure uncertainties

Uncertainties are introduced through simplifications and/or
inadequacies in the description of spatially and temporally distrib-
uted real-world processes. Three main sources (see Fig. 2) are iden-
tified, but it is possible that other factors could be causing
inaccuracies, as well as coarse mistakes. Human error in model
development (e.g. derivation of equations, coding, etc.) may be
the major problem that cannot easily be evaluated. However, the
authors recognise that it is very difficult, and sometimes not possi-
ble (e.g. in the case of human error), to distinguish between these
causes. In general, it is a complex task, which requires a very ad-
vanced understanding of the processes of the system and model
development. Even if the estimation of model structure uncer-
tainty for a single model is not feasible and most of the time has
to be assessed heuristically, we suggest to compare the perfor-
mance of different models and thus establish which can better rep-
resent the system under investigation.

3.5. Global Assessment of Modelling Uncertainties (GAMU)

Assessing single sources of uncertainties independently from
others is not appropriate, since there are often strong links be-
tween the sources (Fig. 2). Therefore, the approach for a Global
Assessment of Modelling Uncertainties is recommended (Fig. 3)
that has recently been proposed by Dotto et al. (2010b). The GAMU
has three distinctive steps:

Step 1: Choosing analysis tools and datasets to minimise uncertain-
ties: Each model application may require different analysis calibra-
tion tools/algorithms (CA), criteria/objective functions (OF), and
datasets (CD-S) to minimise errors in the evaluation methods.
Unfortunately, due to the long computational times required for
detailed urban drainage models, it is very time consuming to deter-
mine the most apporpriate CA, OF and CD-S while still having to
propagate the other uncertainties through the model (i.e. conduct
Step 2 (below) for every possible CA, OF and CD-S). Therefore, it is
necessary to select CA, OF and CD-S in a preliminary study. For
example, it could be done by using simplified response surface
based methods (Schellart et al., 2010) to estimate combined uncer-
tainties. Tools such as CALIMERO or KALIMOD could be used to
compare effectiveness of algorithms and OFs for the given model
and its application, as well as to select adequate data sets for the
next step of the analysis. It could be speculated that in this ap-
proach at least some uncertainnties due to sources CA, OF and
CD-S will be minimised.

Step 2: Creating probability distributions of model parameters
while simultaneously propagating all data uncertainties: The param-
eter PDs should be created by simultaneously propagating input
data uncertainties (ID) and measured calibration data uncertainties
(CD-M), as outlined in Fig. 3. The uncertainties in these data sets
are assessed as outlined above; e.g. both the input data and calibra-
tion data uncertainties could be modelled by estimating their most
probable parameters  and ¢ in Eq. (1) and creating probability dis-
tributions of possible inputs and calibration data at any given time.
The PDs of all model parameters are then generated using a Bayes-
ian method (e.g. MICA, DREAM, GLUE, etc.) by sampling from the
input and calibration data assumed distributions. In this approach,
uncertainties due to Sources (5) and (6) (CA and OF) are replaced
by uncertainties caused by the Bayesian method being used. There-
fore, this leads to the fully calibrated model with the parameter
PDs derived by taking into account uncertainties in inputs and cal-
ibration data, while using tools/algorithms that hopefully impose
the smallest possible uncertainty. The process also yields informa-
tion on the misfit between modelled and observed output datasets,
known as residuals.
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Fig. 3. A total error framework for urban drainage models.

The calibrated model is then used to determine model predic-
tion uncertainties, typically for a dataset not used for calibration.
This is done in the ‘forward approach’ (Fig. 1) where the model is
applied to a new input dataset using the derived PDs of the model
parameters to create the prediction bounds. The residuals from the
calibration process are also used to understand the total predictive
uncertainty, obtained by the addition of the error term to the sim-
ulated values.

Step 3: Comparing models: As discussed earlier, the authors are
of the opinion that systematic and random effects due to model
structure could be assessed only by comparing the performance
of models applied for the same situation. Ideally, the proposed ap-
proach should be run for given models and situations and their
effectiveness compared.

4. Conclusions

This paper presents an attempt of the JCUD International Work-
ing Group on Data and Models to develop and promote a frame-
work for accounting and estimating the uncertainties in urban
drainage models. The following key sources of uncertainties are ac-
counted for: (I) Model input uncertainties including (1): input (mea-
sured and estimated) data uncertainties, (2): model parameter
uncertainties; (II) Calibration uncertainties due to (3): measured
calibration data uncertainties, (4): measured calibration data selec-
tion (availability and choice), (5): calibration algorithms, (6):
objective functions used in the calibration process; and (III) Model
structure uncertainties in conceptualisation, equations and numeri-
cal methods. They are highly interlinked, suggesting that assessing
the impact of a single source is not going to be adequate and that
simultaneous propagation of key sources of uncertainties is re-
quired. The importance of minimising uncertainties due to tools
that are used in model assessment is also recognised. Framework
for Global Assessment of Modelling Uncertainties (GAMU) is thus
recommended, containing three major steps:

Step 1: Selecting analysis tools and data sets to minimise
uncertainties;

Step 2: Creating probability distributions of model parameters
while simultaneously propagating all data uncertainties; and
Step 3: Comparing different models for similar scenarios.

Due to the large computational times required for applying this
approach, it is not expected that this method will be a standard
procedure in everyday engineering practice. However, this method

will contibute to an enhanced system understanding, and thus an
improved assesment of the reliability of modelling results, espe-
cially when using new models or working under limited data
availability.
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