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Abstract

The study of nonlinear dynamics in long Josephson junctions and the features of a
particular kind of junction realized using a graphene layer, are the main topics of this
research work. The superconducting state of a Josephson junction is a metastable state,
and the switching to the resistive state is directly related to characteristic macroscopic
quantities, such as the current the voltage across the junction, and the magnetic field
through it. Noise sources can affect the mean lifetime of this superconducting metastable
state, so that noise induced effects on the transient dynamics of these systems should
be taken into account. The long Josephson junctions are investigated in the sine-
Gordon framework, stressing the relations beetwen nonlinear excitations travelling into
the medium and switching dynamics towards the resistive state. Nonlinear travelling
wave solutions of the sine-Gordon equation are solitons and antisolitons (and their
combinations), breathers and plasma waves.

The effect of a non-Gaussian noise source is considered, by changing peculiar system
parameters, such as the junction length or the frequency and the amplitude of an applied
oscillating bias current, and features of the noise sources, such as the amplitude and the
statistic of the stochastic signal. Fortran codes are implemented to integrate the nonlinear
stochastic differential equations for the order parameter of these systems. Typical noise
induced effects, such as the noise enhanced stability and the resonant activation, are
evident exploring the mean switching time from the superconducting regime, as a function
of the noise amplitude and driving frequency, respectively. Attention is given to the
soliton evolution in connection with the escape dynamics from the superconducting
metastable state. Moreover, noise induced breathers are detected. Breathers are special
solutions of the sine-Gordon equation, composed by a coupled soliton-antisoliton pair,
oscillating in an internal frame with a proper frequency. These solutions are highly
unstable, and their detection in long Josephon junctions is an open challenge.

The possibility to generate only breathers into a junction properly excited is the main
focus of the second part of this work. The phenomenon of nonlinear supratransmission in
long Josephson junction stimulated by an external signal is analyzed. In correspondence of
precise combinations of values of amplitude A and frequency ω of the external sinusoidal
pulse, the generation of only breathers emerges. Variations of the pulse durations, both
of the applied bias current and of the damping parameter affect the localizations of
breathers on a (A, ω) 2D parametric space. The robustness of the generated breathers
is tested inserting into the model a thermal noise source to mimic the environmental
influence.

The last part of this work deals with the characteristics of a Josephson junctions
designed suspending over a graphene layer two superconducting electrodes. The resistively
and capacitively shunted junction model is used to analyze the dynamics of this system,
including the Josephson current affected by the graphene. The mean escape times under
the influence of a colored noise source are calculated varying the noise intensity and
driving frequency, and setting different values of the mean bias current. Noise enhanced
stability characterizes the mean escape times as a function of the noise intensity. Dynamic

iii
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and stochastic resonant activation effects can be clearly distinguished in different noise
amplitude ranges. A complete probability density function analysis shades light on the
features and the details of all these noise induced effects. The experimental implications
of this work are finally discussed, togheter with its possible future developments.
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the characteristic Lévy flights of the CL statistic. [10] . . . . . . . . . . . 33



ix

2.8 Log-log plots of MST τ versus ω obtained using: homogeneous ib(x) and
noise sources G, CL and LS (panels a, c and e respectively); inhomogeneous
ib(x) and noise sources G, CL and LS (panels b, d and f respectively). In
all graphs the values of the other parameters are: i0 = 0.9, L = 10 and
γ = {0.025, 0.1, 0.2, 0.45, 0.9}. The legend in panel d refers to all panels. [10] 34

2.9 Log-log plots of MST τ versus γ obtained using: homogeneous ib(x) and
noise sources G, CL and LS (panels a, c and e respectively); inhomogeneous
ib(x) and noise sources G, CL and LS (panels b, d and f respectively). In
all graphs the values of other parameters are: i0 = {0.5, 0.9}, ω = 0.9 and
L = {1, 10}. The legend in panel c refers to all panels. [10] . . . . . . . . 35

2.10 Time evolution of the probability P (t) in the following conditions: G
noise with L = 1 (panel a) and L = 10 (panel b); CL noise with L = 10
(panel c). The system parameters are i0 = 0.9 and ω = 0.9. Each graph
contains curves of P (t) obtained using values of γ for which a minimum
or maximum appears in the τ vs γ behaviour. The insets reproduce the
corresponding curves of panels a and c of Fig. 2.9. [10] . . . . . . . . . . 37

2.11 MST τ as a function of L, γCL, and ω. All curves were obtained considering
the simultaneous presence of CL and thermal noise sources, using two
different values, i.e. i0 = 0.5 (top panels) and i0 = 0.9 (bottom panels), of
the homogenous bias current, and varying the Gaussian noise intensity,
γG. The legend in panel d refers to all panels. [10] . . . . . . . . . . . . . 38

3.1 Representation of un(t) as a function of time for n = 60 in the case
ω = 0.90 for two amplitudes. [12] . . . . . . . . . . . . . . . . . . . . . . 43

3.2 The bifurcation diagrams in the (A, ω) plane. The crosses indicate the
lowest values of amplitude for which nonlinear supratransmission is seen
in numerical simulations. a) Discrete SG chain, the solid curve is the
threshold Eq. (3.3). b) Continuous SG, the solid curve is the threshold
Eq. (3.13). [12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Picture of a breather generated in a mechanical pendula chain driven at
one end at a frequency in the forbidden band gap. [13] . . . . . . . . . . 45

3.4 a) Probability of generating a breather versus the RMS noise amplitude for
different amplitudes of the sinusoidal driving. The probability is estimated
over 200 simulations. (1) A = 1.23, (2) A = 1.2, (3) A = 1.15, (4)
A = 1.1, (5) A = 1, (6) A = 0.9. b) Bifurcation diagram of the SG chain
subjected to a noisy sinusoidal excitation. (1) Critical noise value σ10% for
which a breather is generated with 10% probability versus the amplitude.
(2) Critical noise value σ90% for which a breather is generated with 90%
probability versus the amplitude. These two critical curves define three
regions of parameters that allow us to generate a breather with a given
probability. Parameters: N = 4000, m = 500, b = 140, ω0 = 1, c = 10,
Ω = 0.95. . [14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 a) External sinusoidal pulse, with amplitude smoothly increasing/reducing
according to Gaussian profiles during the switching on/off regimes of the
pulse. b) Train of identical modulated sinusoidal pulses spaced by TPulses. 47

3.6 Bifurcation diagrams for σϕ (left panels) and injected energies Ei (right
panels) as a function of amplitude A and frequency ω of the driving signal,
setting γ = 0.02 and varying the duration of the pulse Texp. From the top,
Texp = {1 (panels a and b), 5 (c and d), 10 (e and f), 20 (g and h), 35 (i
and l)}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Bifurcation thresholds Eq. (3.13) [13] and 3.22, setting t = Texp. . . . . . 50



x Acknowledgements

3.8 Bifurcation diagrams for σϕ (left panels) and injected energies Ei (right
panels) as a function of amplitude A and frequency ω of the driving signal,
setting γ = 0.02 and Texp = 20 and varying the bias current value ib. From
the top, ib = {0 (panels a and b), 0.05 (c and d), 0.1 (e and f), 0.15 (g
and h), 0.2 (i and l)}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.9 Bifurcation diagrams for σϕ (left panels) and injected energies Ei (right
panels) as a function of amplitude A and frequency ω of the driving signal,
setting Texp = 20 and varying the damping parameter γ. From the top,
γ = {0 (panels a and b), 0.001 (c and d), 0.01 (e and f), 0.02 (g and h),
0.2 (i and l)}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.10 a) Breathers speeds, normalized to the intial value v0, see Eq. (3.23), as
a function of the time t, for γ ∈ [0.01 − 0.05] and setting v0 = 0.9. b)
Maximum distances covered by a breather, see Eq. (3.27), as a function
of the initial speed v0 for γ ∈ [0.01− 0.05]. The legend in panel b refers
to both graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.11 Percentage of surviving breathers as a function of amplitude A and
frequency ω of the external drive, setting γTN = 10−4 (panel a) and
γTN = 10−3 (panel b), and performing N = 103 numerical realizations.
The legend in panel b refers to both pictures. . . . . . . . . . . . . . . . 55

4.1 Schematic view of a suspended SGS device. The electrons forming a
Cooper pair, when they enter graphene, move into different K-valleys,
represented as orange cones. In the short-junction regime, L� W . . . . 58

4.2 Washboard potential for conventional (see Eq. (4.3)) and graphene (see
Eq. (4.9)) JJs (solid and dashed lines, respectively), for different initial
values of the bias current: a i0 = 0.0; b i0 = 0.5; c i0 = 0.9. It is also
shown the initial position (bottom of the potential well) of the “phase
particle”. Blue and pink dotted-dashed lines indicate the left and right
absorbing barriers, respectively. . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 MFPT as a function of both ω and γ, for τc = 0.0 and different initial
values of the bias current: a i0 = 0.0 (no slope); b i0 = 0.1 (small slope); c
i0 = 0.5 (intermediate slope); d i0 = 0.9 (high slope). The legend in panel
d refers to all pictures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 MFPT as a function of ω, for γ = 10−4, τc = 0.0, and different initial
values of the bias current: i0 = 0.0, 0.1, 0.5, 0.9. Solid and dotted lines
represent results for a graphene-based JJ (indicated as GJJ) and a normal
JJ (indicated as NJJ), respectively. . . . . . . . . . . . . . . . . . . . . . 65

4.5 MFPT as a function of γ, for different values of ω, i0 and τc. In detail: a
i0 = 0, ω = 0.44; b i0 = 0.1, ω = 0.44; c i0 = 0.1, ω = 1.0; d i0 = 0.5 and
ω = 0.6; e i0 = 0.5, ω = 1.08; f i0 = 0.9, ω = 1.18. The legend in panel d
refers to all pictures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 MFPT as a function of γ, for ω = 0.75, i0 = 0.0, and different values the
noise correlation time: τc = 0.0, 1.0, 5, 10. Lines and symbols represent
results for a normal JJ (NJJ) and a graphene-based JJ (GJJ), respectively. 67



xi

4.7 Panels a, b, c and d: PDFs as a function of the time t, varying ω. Every
picture is obatined fixing the values of γ = 10−4, τc = 0 and i0 = {ai0 = 0,
bi0 = 0.1, ci0 = 0.5, di0 = 0.9}. The MFPT versus ω curves corresponding
to the dynamic RA effects (see solid lines in Fig. 4.4) are also shown. The
PDF and t axes are logarithmic. Panel e: Semi-log plot of the PDFs as a
function of the time t, normalized to the washboard oscillation period Tp,
setting i0 = 0.1 and ω = ω0.1

dRA
= {0.75, 0.95}. The inset shows the same

PDF data in function of the bias current ib(t). . . . . . . . . . . . . . . . 68
4.8 PDF as a function of the time t, normalized to the washboard oscillation

period Tp, varying γ. Every picture is obatined fixing the values of ω, i0
and τc = 0. In detail: a i0 = 0, ω = 0.44; b i0 = 0.1, ω = 0.44; c i0 = 0.1,
ω = 1.0; d i0 = 0.5 and ω = 0.6; e i0 = 0.5, ω = 1.08; f i0 = 0.9, ω = 1.18.
Every picture shows also the MFPT versus γ curve corresponding to NES
effect (see solid lines in Fig. 4.5) obtained using the same values for the
other parameters. The PDF and γ axes are logarithmic. The legend in
panel b refers to all pictures. . . . . . . . . . . . . . . . . . . . . . . . . . 69



xii List of Figures



List of Tables

2.1 Closed form of the stable distributions and characteristic values of param-
eters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Experimental values of different JJ parameters, calculated or directly
acquired by various published works [15–20]. . . . . . . . . . . . . . . . 62

A.1 Stable distributions and corresponding values of the characteristic parameters. 79

xiii



xiv List of Tables



Glossary of acronyms

BCS - Bardeen, Cooper and Schrieffer
CL - Cauchy-Lorentz
CΦR - Current Phase Relation
FBG - Forbidden Band Gap
G - Gaussian
JJ - Josephson Junction
K-A - kink-antikink
KG - Klein-Gordon
LJJ - Long Josephson junction
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σ - Lévy distribution - shape parameter
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Chapter 1

Introduction

This chapter contains a brief overview on the general features of a Josephson junction,
superconductivity and applications in quantum computing. The state of the art of noisy
out-of-equilibrium dynamics of short and long JJs affected is also presented. This is the
main focus of this work.

1.1 The Josephson junctions: the transient dynam-

ics

During last decades the interest in superconductor physics and its applications has had
a remarkable development. In this context, an important role is played by improvements
made in devising and realizing Josephson junction (JJ) based devices. In fact, great
attention has been paid to JJs as superconducting quantum bits [21–24], nanoscale
superconducting quantum interference devices for detecting weak flux changes [25, 26],
and threshold noise detectors [27–30]. Moreover JJs are typical out-of-equilibrium systems
characterized by tilted or switching periodic potentials [7, 10, 31, 32]. The behavior of
these systems is strongly influenced by environmental perturbations, and specifically by
the presence of noise source responsible for decoherence phenomena [22, 33]. The role
played by random fluctuations in the dynamics of these devices has recently solicited a
large amount of work. Specifically, the investigation both on the effects of thermal and
non-thermal noise sources on the transient dynamics of Josephson junctions [34–39] has
recently attracted a lot of attentions. The noise current signal is caused by the stochastic
motion of the charge carriers, namely the Cooper pairs in a superconductor. While
thermal noise is originated by the thermal motion of the charge carriers, non-thermal
noise signal is related to their scattering and transmission. Non-Gaussian noise appears
when the conductor, or the superconductor, is in a non-equilibrium state because of the
presence of a bias voltage or external current. The JJ behaviour can be depicted as the
motion of a fictitious Brownian “phase particle” rolling down on a tilted potential, called
the washboard potential (see Fig. 1.1), composed by a sequence of wells. The position of
this phase particle along the potential profile, or, more precisely, its dynamical regime,
defines the working regime of the junction. In the superconducting state the particle
lies in a well, while in the resistive state it rolls down along the potential. When this
happens, a non zero mean voltage V across the junction appears, according to the a.c.
Josephson relation. The dynamics of this particle is also affected by dissipative factors,
so that a phase diffusion (PD) state, that is an escape event combined with a subsequent
retrapping in the first next minimum, can be established. The switching dynamics
from the superconducting state can be driven by a force applied on the system, i.e. a
polarization current, or by the stochastic fluctuations due to environmental interactions.

1
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Figure 1.1: Schematic of washboard potential U(φ), normalized by the Josephson coupling
constant EJ (φ is the phase difference across the JJ), and dynamics of a phase particle
escaping from the local potential minimum (PD, phase diffusion; TA, thermal activation; MQT,
macroscopic quantum tunnelling).

Two different mechanisms can cause the noise-induced crossing of a potential barrier:
the macroscopic quantum tunneling (MQT) or the thermally activated (TA) escape.
These processes are triggered in distinct ranges of temperature, so that a threshold
value exists, the crossover temperature for zero bias and damping TCO = ~ωp0/2πk (k is
the Boltzmann constant). The frequency ωp0 is a parameter characterizing a junction,
called the JJ plasma frequency, representing the oscillation frequency in the bottom of a
potential well. In a damped system, when a polarization current is applied, this value is
slightly reduced, becoming [40]

T ?CO = ~ωR/2πk

where ωR = ωp0
{√

1 + α2 − α
}

, α = (2ωPRNC)−1 (RN and C are the normal resistance
and the capacitance of the junction). For temperatures below this threshold the system
undergoes a quantum tunneling regime, otherwise the system works in the thermal
activation regime. In this latter condition and neglecting thermal fluctuations, the phase
can remarkably change merely when the polarization current approaches and overcomes
the critical value (the system go into a resistive regime). Conversely, considering noise
effects, transitions along the potential can also occur applying a current smaller then the
critical one. The phase dynamics is affected by dissipative phenomena, responsible for
peculiarities of the system, ranging from overdamped (high viscosity) to underdamped
(low viscosity) condition. In light of this, one can talk about metastable states, switching
events and transient dynamics studying the current-voltage characteristic of a JJ.

1.2 Superconductivity and Josephson effects

A JJ is made by sandwiching a thin layer of a non-superconducting material between
two layers of superconducting material. The devices are named after Brian Josephson,
who predicted in 1962 [41] that pairs of electrons, called Cooper pairs, can “tunnel”
right through the nonsuperconducting barrier from one superconductor to another. He
also predicted the exact form of the current and voltage relations for the junction. In
particular, the carriers in the left and right superconductors forming a junction can be
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described by

ψ
L

=
√
ρ
L
eiθL

(1.1)

ψ
R

=
√
ρ
R
eiθR

in which θ
L,R

and ρ
L,R

are the wave functions phases and carriers densities of the coupled
superconductors. Defining the phase difference

ϕ = θ
R
− θ

L
, (1.2)

the well-known Josephson Equations can be derived:

Iϕ = Ic sin(ϕ) (1.3)

(1.4)

dϕ

dt
=

2eV

~
(1.5)

where Iϕ is the Josephson current, Ic is the critical current, e is the electron charge, ~
is the reduced Planck constant and V is the potential difference across the junction.
These relations tell us that also without voltage applied to the junction, i.e. V = 0,
a costant phase difference can be established, therefore a finite supercurrent can flow
through the junction. This is the core of the d.c. Josephson effect, first experimentally
observed in 1963 [42]. Instead, as a result of a non-zero costant potential difference the
phase difference will grow linearly in time, i.e. if V ≡ V0 then ϕ(t) = ϕ0 + (2e/~)V0t
and a current, oscillating with a frequency 2eV/~, appears. This is known as the a.c.
Josephson effect. Experimental works proved that Josephson was right, so that he was
awarded the 1973 Nobel Prize in Physics for his work.

To understand the unique and important features of JJs, it is first necessary to
understand the basic concepts and features of superconductivity. Cooling many metals
and alloys to very low temperatures (with temperature T < 20◦K), a phase transition
occurs. At this “critical temperature”, the metal goes from what is known as the
normal state, where it has electrical resistance, to the superconducting state, where
there is essentially no resistance to the flow of direct electrical current. The newer
high-temperature superconductors, which are made of ceramic materials, exhibit the
same behavior but at higher temperatures, ranging from 40◦K to 190◦K [43]. What
occurs is that the electrons in the metal become paired, forming the so-called “Cooper
pairs”, according to the work of Bardeen, Cooper and Schrieffer in 1957 (BCS theory) [44].
Above the critical temperature, the net interaction between two electrons is repulsive.
Below the critical temperature, though, the overall interaction between two electrons
becomes very slightly attractive, a result of the electronic interaction with the ionic
lattice of the metal.

This very slight attraction allows them to drop into a lower energy state, opening
up an energy “gap”. Because of the energy gap and the lower energy state, electrons
can move (and therefore current can flow) without being scattered by the ions of the
lattice, which leads to electrical resistance in metals. Therefore, there is no electrical
resistance in a superconductor, and therefore no energy loss. There is, however, a
maximum supercurrent that can flow, called the critical current. Above this critical
current the material is normal. There is another very important property: when a metal
goes into the superconducting state, it expels all magnetic fields, as long as the magnetic
fields are not too large. In a JJ, the nonsuperconducting barrier separating the two
superconductors must be very thin. If the barrier is an insulator, its thickness has to be
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Figure 1.2: Dc currentvoltage characteristic of Nb/Al2O3/Nb trilayer Josephson tunnel
junction at 4.2K. Note the supercurrent in the zero-voltage state and the steep gap structure
near 2.7 mV. (a) No applied microwaves and (b) with applied microwaves. The small vertical
zero-crossing steps are equally spaced with a voltage difference of ∆V = hf/2e. These nonlinear
quantum phenomena allow for the practical construction of the Josephson voltage primary
standard. Figure adpated from [1].

of the order of 30 Å or less. If the barrier is another metal (nonsuperconducting), it can
be as much as several microns thick. Until a critical current is reached, a supercurrent
can flow across the barrier; electron pairs can tunnel across it without any resistance.
So, as long as the current through the junction is less than the critical value, the voltage
is zero. When the current exceeds the critical current, the voltage is not zero but varies
in time. Detecting and measuring the change from one state to the other is at the heart
of the many applications for JJs. Electronic circuits can be built from JJs, especially
digital logic circuitry. Many researchers are working on building ultrafast computers
using Josephson logic. JJs can also be fashioned into circuits called SQUIDs–an acronym
for superconducting quantum interference device. These devices are extremely sensitive
and very useful in constructing extremely sensitive magnetometers and voltmeters. A
SQUID consists of a loop with two JJs interrupting the ring, and it is extremely sensitive
to the total amount of magnetic field that penetrates the area of the loop. The voltage
that can be measured across the device is very strongly correlated to the total magnetic
field into the loop.

If the junction is supplied with a constant voltage, VDC , the phase difference steadily
increases with time, and the junction current oscillates with the frequency ν = VDC/Φ0,
that is, the junction works as a voltage controlled oscillator (VCO) that may generate
microwave power into the gigahertz range (the pre-factor 1/Φ0 ≈ 0.5 GHz/ µV).

The capacitance between the two electrodes shunts the Josephson tunneling and
leads to hysteresis in the current-voltage characteristic (I-V curve) as shown in Fig. 1.2.
Starting at zero and increasing the bias current, there is a vertical supercurrent (zero-
voltage state) up to Ic where the junction switches (horizontally) to the steep so-called
quasi-particle curve (near 2.7 mV), which reflects the superconducting gap of the two
niobium electrodes. The quasi-particle curve is followed both when the bias current is
further increased and when the current is returned to I = 0. The hysteretic I-V curve is
pointsymmetric around (V,I)=(0,0).

The I-V curve near the gap is strongly nonlinear and temperature dependent. Tunnel
junctions biased close to the knee are used as low-noise bolometers to detect broad
band signals in the millimeter, or µm, range. Due to its strong nonlinearity, heterodyne
receivers based on this “superconductor-insulator- superconductor”(SIS)-mixer can be
operated near the quantum limit (hν ≈ kBT ). The SIS-mixer may be pumped by
the microwave signal emitted from a long JJ (see below the descriptions for both long
JJ and SIS junction). Most modern radio-telescopes employ SIS-mixers for spectral
measurements in the frequency range 10-1000 GHz.
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Figure 1.3: Schematics of the different possibilities for producing a weak coupling between
two superconductors: (a) SIS junction with an oxide layer as a barrier; (b) SNS junction with a
normal conducting barrier; (c) point contact; (d) microbridge; (e) YBa2Cu3O7 grain boundary
junction; (f) intrinsic Josephson junction in Bi2Sr2CaCu2O8. Figure adpated from [2].

Fig. 1.2 shows the I-V curve when a microwave signal is applied to the junction. The
supercurrent is suppressed and small equally spaced replica appear as vertical (Shapiro)
steps [45] with a voltage difference of ∆V = hν/2e. These zero-crossing steps and the
fact that voltage and frequency are related only through fundamental constants allow
for the practical realization of the Josephson voltage primary standard. When pumped
by a 70 GHz signal, ∆V ≈ 140µV; thus a small chip with more than 20.000 dc series
connected JJs can generate a reference voltage of 10V with an accuracy of 0.1 nV. The
stability of the Josephson voltage standard is limited by chaotic behavior [46].

JJs are highly sensitive to magnetic fields. The gradient of the phase difference ϕ is
proportional to the magnetic field applied in the plane of the junction, and for constant
current density the ϕ has a variation of 2π when the flux Φ through the junction is
exactly one flux quantum Φ0. These changes of the phase difference along the junction
also lead to the so-called Fiske steps. These are nearly constant-voltage steps in the
I-V curve at voltages VFSn = nΦ0c̄/2L, where n = 1, 2, ..., L is the junction length
perpendicular to the magnetic field and c̄ is the speed of light in the medium.

1.3 Types of junctions

A huge variety of junctions exists, depending on the specific application. A simple
collection of different type o junction is shown in Fig. 1.3 [2]. The panels (a) and (b) of
this figure show a superconductor-insulator-superconductor (SIS) and a superconductor-
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normal conductor-superconductor (SNS) junction, respectively. While in the SIS structure
the insulating barrier must be only 1-2 nm thick, the SNS can work with a larger normal
conductor layer. This is due to the deeper penetration of the Cooper pairs in a metal
layer than into an oxide layer. An important difference beetwen these two structures is
the value of the resistance per square (normal resistance/area of the barrier). For the SIS
junction reanges in [10−3 − 10−4] Ωcm2 and for SNS junction is below 10−8 Ωcm2. More
complicated structures exist, e.g. the so-called SINIS junctions. In the point contact
junction (panel (c) of Fig. 1.3) a metal tip is pressed on a surface, so that the cross section
of the contact depends on the applied pressure. A microbridge (panel (d) of Fig. 1.3) is
a narrow constriction limiting the Cooper pairs exchange. Considering high temperature
superconductors, grain boundaries can be used as weak coupling regions. YBa2Cu3O7

thin film can be deposited on a bicrystal substrate, consisting of two single-crystalline
parts joined together at a specific angle. The grain boundary of the substrate is then
transferred also into the deposited film, which otherwise is a single-crystalline epitaxially
grown (panel (e)). Variations in the grain boundary angles corresponds to variations
in the strenght of the Josephson coupling. Intrinsic JJs can be detected in the crystal
structure of some high-temperature superconductors, as Bi2Sr2CaCu2O8 (panel (f)).
Here the superconductivity is restricted only to the copper oxide layers with about
0.3 nm thickness. Between these layers there are electrically insulating bismuth oxide
and strontium oxide planes. Hence, such materials form stacks of SIS JJs, where each
junction has a thickness of only 1.5 nm, the distance between two neighboring copper
oxide layers [47].

This work is base on the investigation of SNS or SIS junctions, including spatial
dependence of the current density through it, referred as extended JJs [48]. Discussing
the physics of extended JJs, two cases can be distinguished:

• Short Josephson junctions:

in short junctions the magnetic field generated by the Josephson current itself is
negligible compared to the externally applied magnetic field. Junctions can be
considered as short junctions, if the spatial dimensions of the junction area are
smaller than a characteristic length scale named Josephson penetration depth λJ .

• Long Josephson junctions:

in long JJs the magnetic field generated by the Josephson current itself is no longer
negligible. Long JJs have spatial dimensions larger than the Josephson penetration
depth λJ .

The Josephson penetration depth is:

λJ =

√
~c2

8πedJc
(1.6)

and represents the skin portion of the junction edge in which, in d.c. Josephson effect,
the Josephson current is confined. In the λJ expression, Jc is the critical current density,
d = λL1 + λL2 + tox, where tox is the interlayer thickness and λL1,2 are the London
penetration depths, that is the length scale over which an applied field can penetrate the
two superconductors.

1.4 Noise and JJ

During the second half of the twentieth century, the industry of microelectronics
has made considerable technological progress, creating new devices and nanoscopic
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heterostructues. These have instigated experiments revealing novel quantum effects,
originated from the transport of electrons through nanostructures, for example:

• The Aharonov-Bohm effect. In quantum mechanics, the electromagnetic potentials
have a physical significance and can cause effects on charged particles even in
spatial regions where the fields (and thus all the applied electromagnetic forces)
are zero [49].

• The universal conductance fluctuations. If the length of the system is comparable to
the electron coherence length, reproducible conductance fluctuations as a function
of an applied magnetic field are observed [50].

• The quantum Hall effect. In two-dimensional electron systems at low temperatures
and high magnetic fields, the resistance is quantized [51, 52].

• The phenomenon of weak localization. In materials with a high density of defects,
the resistivity increases due to the quantum interference, e.g. a 2D electron gas
becomes insulating in absence of magnetic field as the temperature approaches
absolute zero [53].

In quantum transport, there are various physical length scales that, compared to the
dimensions of the conductor, establish the nature of transport. The basic scales are the
average distances that an electron travels before it:

� scatters changing its momentum (mean free path) or

� scatters inelastically randomizing its phase (coherence length).

In terms of these length scales, transport can be characterized as

X diffusive, if the conductor dimensions are much larger than the mean free path and
the coherence length of the electrons, so their initial momentum and phase get
changed;

X ballistic, if the mean free path is larger than the dimensions of the conductor;

X coherent, if the electrons coherence length is greater than the dimensions of the
conductor.

Transport experiments exhibit current and voltage fluctuations. This undesirable
‘noise’ is often originated from imperfections in the design of the circuit. However, part of
the noise is of more fundamental nature, and when that originated from a bad design is
sufficiently suppressed, the remaining fluctuations can be used as a powerful tool to learn
about electronic properties and different characteristics of the conductor. Let us start by
giving a brief description of the fundamental types of noise that may be encountered in
a mesoscopic system:

� thermal noise (Johnson-Nyquist noise): at thermodynamic equilibrium and a
finite temperature T , the distribution of the number of particles n with a particular
energy ε (which is f = [exp{− ε

kBT
}+ 1]−1 for fermions) presents a non-vanishing

noise value (second cumulant) given by
〈
(n− 〈n〉)2〉 = f(1− f).
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(a) (b)

Figure 1.4: a) Barrier configuration of the system studied by Doering and Gadoua [3]. b)
Resonant Activation: theoretical curve (solid line) and simulation data (points) of the MFPT
vs fluctuation rate of the driving potential [3].

� 1/f noise (flicker noise): the nature of this noise is believed to be often related to
the random motion of charges trapped in the substrate of the material. This motion
is slow compared to other time-scales in the system, what makes the fluctuations
to be significant usually below 10kHz.

� shot noise (Schottky noise): this is due to the discrete character of the current,
composed of electrons flowing along the conductor. Each of these particles has
a wave character, and thus a probability P of being transmitted and (1 − P) of
being reflected in the process of tunneling through the system. Shot noise may
also originate from the random nature in which particles are released from the
emitter. In any case, if 〈nP〉 = P is the mean number of transmitted particles,
we find 〈(nP − 〈nP〉)2〉 = P(1− P). Thus, in the tunneling limit (P� 1) we have
〈(nP − 〈nP〉)2〉 ≈ P = 〈nP〉, that is, the current noise is proportional to the current
itself. This Poissonian behaviour was measured by Schottky in 1918 in the process
of emission of electrons from a cathode in a vacuum tube. Notice that if electrons
are emitted according to the Fermi distribution f , we have 〈nP〉 = Pf and thus
〈(nP − 〈nP〉)2〉 = Pf(1− Pf), which reduces to P(1− P) in the zero-temperature
limit.

� quantum noise: This arises from the quantum nature of the emission and ab-
sorption processes. First, the spectrum of radiation of the electromagnetic field
follows Planck’s law. Second, it incorporates vacuum fluctuations. Similarly to
the zero-point motion of the quantum harmonic oscillator (〈x̂2〉vac 6= 0, 〈p̂2〉vac 6= 0,
being x̂ and p̂ position and momentum, respectively, and the averages taken in the
vacuum state), voltage V and current I in an electric circuit present a zero-point

variance as well,
〈
V̂ 2
〉

vac
6= 0,

〈
Î2
〉

vac
6= 0 (which can be understood as inherited

from the fluctuations of flux Φ̂ and charge Q̂, namely
〈

Φ̂2
〉

vac
6= 0,

〈
Q̂2
〉

vac
6= 0).

1.5 State of the art

Recently various works explored the behavior of long and short JJs analyzing the
effect of a stochastic noise source on the switching dynamics from the metastable
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(a) (b)

Figure 1.5: a) Switching piece-wise linear potential [4]. b) Semilogarithmic plot of the MFPT
vs the white noise intensity D for three values of the dimensionless driving frequency ω: 0.1
(curve 1), 0.05 (curve 2), 0.01 (curve 3) [4].

superconducting state. Different noise induced phenomena can be highlighted, specially
when a random fluctuating potential or effect of an oscillating external driving are
considered. The phenomenon called “resonant activation” (RA), first studied by Doering
and Gadoua [3], is observed by investigating the problem of thermally activated potential
barrier crossing in the presence of fluctuations of the barrier itself. For a piecewise
linear barrier, displayed in Fig.1.4a, switching between two values as a Markov process,
their results reveal a resonant-like phenomenon as a function of the barrier fluctuation
rate. Fig.1.4b shows the average of the first passage time (MFPT) as a function of
fluctuation rate of the barrier. For very slow variations the MFPT is the average of the
times required to diffuse over each of the barriers separately; for very fast variations the
MFPT is that required to cross the average barrier. At intermediate rates the crossing is
strongly correlated with the potential variation and the MFPT exhibits a local maximum
at a “resonant” fluctuation rate, Fig.1.4b.

Another noise induced effect can result studying the MFPT as a function of the
intensity of the noise signal. Counterintuitively, the presence of a stochastic signal can
increase the permanence time inside the metastable state respect the deterministic case,
and this produce a maximum in the MFPT behavior. This effect was first experimen-
tally observed in a tunnel diode by Mantegna and Spagnolo [54], and it was named
“noise enhanced stability” (NES) [4, 54–58]. The dynamics of a Brownian particle in
fluctuating piece-wise linear potential, Fig.1.5a, is studied. The MFPT, i.e. how long
it take the particle, starting from the the metastable state, to arrive into the point b
(abosrbing boundary), as a function of the noise intensity D shows an evident maximum,
corresponding to a growing permanence time inside a potential well. This is displayed in
Fig.1.5b, for three different values of the driving frequency. All curves are characterized
by a non-monotonic behavior expressed by a clear NES effect.

1.5.1 Thermal noise in short JJs

The dynamics of a short overdamped JJ, subjected to a current i(t), was firstly
computationally explored by Gordeeva et al [5] studying the following Langevin equation:

ω−1
c

dϕ(t)

dt
= −du(ϕ)

dϕ
− if (t), (1.7)

u(ϕ) = 1− cos(ϕ)− i(t)ϕ, (1.8)
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Figure 1.6: a) Washboard potential: the extreme positions during the periodical variations
(i = -0.5 and i = 1.5), and the intermediate configuration (i = 0.5) are shown [5]. b) MST
versus the signal frequency for different values of the noise intensity [5]. c) MST versus noise
intensity for seven different values of driving frequencies [5].

where ϕ is the phase difference (see the Eq.1.2), u(ϕ) is the dimensionless washboard
potential (see Fig.1.6a), ωc = 2eRNIc/~ is the characteristic frequency of the JJ. Here
i(t) = I(t)/Ic = i0 + f(t) is the total current across the junction, where i0 is the constant
bias current and f(t) is the driving signal. Moreover if(t) = If(t)/Ic is a normalized
stochastic signal that, due to the thermal fluctuations, may be represented by white
Gaussian noise

〈if (t)〉 = 0, 〈if (t)if (t+ τ)〉 =
2γ

ωc
δ(τ), (1.9)

where γ = 2ekT/~Ic = IT/Ic is the dimensionless intensity of fluctuations, T is the
temperature and k is the Boltzmann constant. Initially, the JJ is biased with a current
across the junction smaller than the critical one, that is i0 = (I0/Ic) < 1, and the location
of the phase in a potential minimum, ϕ0 = arcsin(i0), is taken as the initial condition. A
current signal f(t), such that i(t) > 1, switches therefore the junction into the resistive
state. In Fig.1.6a the periodical potential profile of the JJ and its extreme positions
within which it varies in time are displayed. The switching occurs not immediately, but
at a later time, i.e switching time that, due to the noise, is a random quantity. Therefore
the mean switching time (MST) τ is explored. The used driving signal is f(t) = A sin(ωt),
where ω is the oscillation frequency and A is the signal amplitude. In Fig.1.6b the MST
is shown versus the signal frequency ω for different values of the noise intensity, and
the RA phenomenon is clearly evident. A frequency range, from 0.2 to 0.4, where the
MST grows by increasing the noise intensity is evident. By increasing the noise intensity,
the probability of the thermal activated switching increases and, as a result, the MST
decreases. In the interval 0.2 < ω < 0.5 the NES effect appears (see Fig.1.6c) and the
behavior of the MST vs γ curves, becomes non-monotonic in contrast with the cases
with ω < 0.2. Due to the periodic variation of the potential profile, the particle starting
from the minimum reaches a position near the top of the barrier. An enhancement of
the lifetime of the metastable state produces an enhancement of the mean switching
time. By increasing the noise intensity the thermally activated escape increases too and
the MST decreases. Taking a cue from these results, Augello et al [6, 59] studied the
effects of a colored noise source on the transient dynamics of short JJs. They explored
the Langevin equation 1.7, inserting however the colored noise source modelized using
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(a) (b)

Figure 1.7: a) MST versus the driving frequency ω, with evidence of the RA minimum. b)
MST versus the noise intensity γ, with evidence of the maximum. [6, 7]

an Ornstein-Uhlenbeck (OU) process

dφ

dt
= −ωc

dU(φ)

dφ
− ωcζ(t), (1.10)

dζ(t) = − 1

τc
ζ(t)dt+

√
γ

τc
dW (t) 〈ζ(t)ζ(t′)〉 =

γ

2τc
e−
|t−t′|
τc (1.11)

They studied the mean lifetime in the superconductive state as a function of the driving
frequency ω and the noise amplitude γ, varying the correlation time of the OU noise
source τc. In Fig.1.7a the behavior of MST vs ω is reported for different values of τc.
The non-monotonic behavior of the curves shows that the RA phenomenon appears
also with colored noise. The values of MST around the minimum are influenced by
the variation of τc, more strongly for higher values of the noise intensity. Moreover,
for higher intensity values, they find, in a wide range of frequency (0.3 < ω < 0.8), a
non-monotonic behavior of MST as a function of the correlation time. In Fig.1.7b, the
behavior of MST as a function of the noise intensity, for different values of the correlation
time, is displayed. The appearance of noise enhanced stability (NES), a phenomenon
already found in short JJs in the presence of white noise, is found. They observed a
range of values of correlation time, namely 0.01< τc <1, in which the curves present a
non-monotonic behavior. For τc=[ 5, 10], the non-monotonic behavior disappears.

Both resonant activation and noise-enhanced stability were experimentally observed in
underdamped JJs by Sun et al [8]. Their numerical simulations, which include a driving
current signal and thermal fluctuations, show good agreement with the experimental
results. The switching times from the metastable superconducting state were measured
and collected to calculate the MST. The escape time was measured using the time-domain
technique shown in Fig.1.8a. For each escape event, the measurement cycle started by
ramping up the bias current to a value Ib, which was very close to Ic, and maintaining it
at this level for a period of waiting time. A sinusoidal current with amplitude 2iac was
added to Ib during the waiting time, so that Ib + 2iac < Ic and the junction was still in a
metastable state. The junction voltage was connected to a timer, which was triggered by
the sudden voltage jump when the junction, because of thermal fluctuations, switched
from zero-voltage state to finite voltage-state, to record the escape time tesc. The bias
current Ib was then decreased to zero, returning the junction to the zero voltage state.
The process was repeated to obtain an ensemble of the escape time. The average time of
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(a) (b) (c)

Figure 1.8: (a) Schematic time profile for measuring the escape time of a JJ subjected to
a weak sinusoidal force. (b) and (c) MST as a function of the driving frequency at 4.2 K for
various normalized bias currents which are marked below the curves. The initial phases were
ϕ0 = 0 (b) and ϕ0 = π (c). [8]

the ensemble represented the mean thermal activation escape time 〈tesc〉. Then, another
〈tesc〉 was measured changing the frequency of the driving current. In Fig.1.8b 〈tesc〉 as a
function of the driving frequency f is reported for different values of the bias current
Ib. The RA phenomenon is evident and a minimum in correspondence of a resonant
frequency is present for each value of the bias current. The curves of Fig.1.8b were
obtained for zero initial phase of the particle ϕ0 = 0. By gradually changing the initial
phase, the minimum of the curves vanishes. When initial phase is gradually changed the
minimum of the curves vanishes. Moreover, for ϕ0 = π resonant peaks are present at
different resonance frequencies, as shown in Fig.1.8c. The junction actually has a longer
average escape time than that observed without periodical driving force, corresponding,
in Fig.1.8c, to 〈tesc〉 at very low frequency. Therefore, the noise enhances the stability of
the metastable state in the observed frequency domain, in agreement with the theoretical
results previously obtained in Ref. [4].

Experimental evidence of RA effect was achieved also by Pan et al [9] by study, in
short underdamped JJs, the behavior of a thermal noise current signal. They defined, to
overcome the problem associated to the experimental control of the fluctuating current if ,
an effective temperature Teff related to a white noise current. They realized a practical
method to manage an oscillating effective temperature in a JJ. First, they considered an
additional white noise current I ′n(t), so that the correlation function of the total noise
current Ins defines Teff

〈Ins(t)Ins(t′)〉 =
2kBTeff

R
δ(t− t′),

where R is the equivalent resistance of the JJ and Teff = T + RI2
σ/2kB. The term Iσ

is defined by the autocorrelation function of the additional white noise 〈I ′n(t)I ′n(t′)〉 =
I2
σδ(t− t′). Therefore Teff can be adjusted by tuning Iσ. Furthermore, the behavior of

the measured switching current distribution is identical to that obtained by changing the
bath temperature. To measure the MST, the time-domain technique described in Fig.1.8a
was used. During the waiting time, a white noise signal with frequency f is periodically
added to make the system fluctuating between two effective temperatures, as shown
in Fig.1.9a. Figs. 1.9b and 1.9c show the MST as a function of the driving frequency,
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(a) (b) (c)

Figure 1.9: (a) Schematic time profile for measuring the escape time of a JJ with presence
of an oscillating white noise. (b) 〈tesc〉 as a function of characteristic time of temperature
fluctuation 1/f for different bias current I and setting Iσ = 0. Inset: 〈tesc〉 as a function of
the characteristic time of barrier fluctuation for flactuating temperature (FT) and flactuating
barrier (FB). (c) 〈tesc〉 vs 1/f for various Iσ’s (normalized to I). [9]

obtained, respectively, setting Iσ = 0 and changing the bias current (see Fig.1.9b) and
varying the Iσ values, i.e. varying Teff , and setting the bias current (see Fig.1.9c). The
results highligth RA effects in presence of fluctuating barrier and temperature. As Teff
increases the RA valleys get deeper and narrowed, and the minima move towards lower
frequencies. Moreover the additional white noise current allows control the thermal
effects on the system varying the effective temperature.

1.5.2 Thermal noise in long JJs

The noisy dynamics of a LJJ was explored by Fedorov et al [60, 61] and Augello et
al [6]. The electrodynamics of a LJJ, in the Stewart-McCumber framework [62], is ruled
by a differential equation called the sine-Gordon (SG) equation

β
∂2ϕ

∂t2
+
∂ϕ

∂t
− ∂2ϕ

∂x2
= ib(x)− sin(ϕ(x, t)) + if (x, t) (1.12)

(a) (b)

Figure 1.10: a) Schematic representation of a LJJ. b) Washboard potential u(ϕ) and a phase
string.
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(a) (b)
(c)

Figure 1.11: MST of LJJ for: (a) homogeneous bias current distribution with β=0.01: squares,
i0=0.5, γ=0.3; circles, i0=0.7, γ =0.3; triangles, i0=0.9, γ =0.3; solid line, γ =0.2, i0=0.7;
dashed line γ =0.4, i0=0.7; (b) inhomogeneous bias current density with β=0.01, γ=0.4 and
(circles) i0=0.5, (squares) i0=0.6, (triangles) i0=0.7; (c) γ=0.3, i0=0.7: circles for β=0.01 and
solid line for β=100, inhomogeneous distribution, squares for β=0.01, and dashed line for
β=100, homogeneous distribution.

where β = ωcRC is the McCumber parameter, with R and C respectively the equivalent
resistance and capacitance of the LJJ, ωc the characteristic frequency. The bias i(x) and
the fluctuating if (x, t) current densities are both normalized to the critical value Ic. The
term if(x, t) takes into account the thermal fluctuations. The absence of an external
magnetic field Γ is included in the boundary conditions

ϕx(0, t) = ϕx(L, t) = Γ = 0, (1.13)

where L is the LJJ length normalized to the Josephson penetration depth λJ . The
fluctuating term if (x, t) used by Fedorov et al [60, 61] represents a Gaussian white noise
signal with zero mean value and

〈if (x, t)if (x′, t′)〉 = 2γδ(x− x′)δ(t− t′), (1.14)

where γ = IT/(JcλJ) is the dimensionless noise intensity, IT = 2ekBT/~ the thermal
current, T is the temperature and Jc is the critical current density of the JJ. The structure
of a LJJ is shown in Fig. 1.10a. A LJJ can also be depicted as a phase string located
beetwen the valleys of a bidimensional washboard potential (see Fig. 1.10b, the solid line
represents the phase string). The mean life time is calculated as the time of permanence
of the string elements inside the interval [−π, π]. Two different bias current distributions
are used

ib(x) =


i0 homogeneous

i0 L

π
√
x (L−x)

inhomogeneous.
(1.15)

Fig. 1.11a shows the MST τ data as a function of the junction length L. Two different
regime are evident for the τ values: a raising up trend for small length (L . 1) and a
saturation regime for L & 5 with a costant value reached. For L . 1 the interaction
beetwen each elementary part of the string and its neighbors is so strong that the string,
also after stochastic fluctuations, can overcome the potential barrier only as a whole.
Therefore, in these conditions, the escape time linearly grows by lengthening the junction.
When L & 5 the formation of kinks, i.e. a 2π step in the ϕ values located beetwen two
neighboring washboard valleys (see solid line in Fig. 1.10b), and antikinks is allowed. The
results obtained changing the bias current distribution are shown in the Fig. 1.11b. A
non-monotonic effect is clearly evident. The small length regime is equivalent to the case
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(a) (b)

(c) (d)

Figure 1.12: a) b) MST vs L for i0 = 0.7, for white noise and colored noise with different
correlation times τc, and β = 0.01: a) homogenous i(x) and γcn = 0.7, b) inhomogenous i(x)
and γcn = 0.4. [6, 7]

of the homogeneous bias current distribution (see Fig. 1.11c). When the kink formation
is permitted, the role of the edges of the junction, acting in this case as a generators of
kinks, is crucial. The inhomogeneous bias current distribution includes large values in
correspondence of the edges of the junction. The parts of the string subjected to these
intense currents, slip freely on the washboard potential, supporting the generations of
kinks and antikinks. This effect enhances if L increases, and this explains the observed
non-monotonic behaviors.

The transient dynamics of an overdamped LJJ in presence of fluctuating bias current
and oscillating potential was studied by Augello et al [6]. The investigation was developed
in the framework of the SG model Eq. 1.12 with the boundary conditions Eq. 1.13. Both
homogenous and inhomogenous bias current density Eq. 4.10 have been used. Firstly,
the effect of only a correlated noise source with correlation function

〈icn(x, t)icn(x′, t′)〉 =
2γcn
2τc

δ(x− x′)e−
|t−t′|
τc , (1.16)

was considered (2γcn is the intensity of the source). The MST as a function of the JJ
length L is reported in Fig. 1.12a and 1.12b, for different values of τc and for homogeneous
and inhomogenous bias current distributions, respectively. The MST behavior are equal
to those obtained by Fedorov et al [60, 61]. A MST decrease, as the intensity of the
colored noise γ increases, was found. The results highlight the presence of different
regimes: for small lengths the kinks formation is forbidden, exceeding a threshold value
kinks are formed. Using an inhomogenous bias current density, the junction edges act as
kinks generators, producing the MST decrease by increasing the junction length. The
study was integrated including in the bias current an oscillating driving current signal:
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Figure 1.13: Circuit diagram of a JJ noise detector: a JJ with critical current ic is biased in
a twofold way. [10]

i(t) = ib(x) + A sin(ωt) (1.17)

where A and ω are its amplitude and angular frequency, respectively. The results are
presented in Fig. 1.12c. All the MST as a function of ω curves show a minimum, signature
of RA effects. Moreover, for 0.3 < ω < 0.1 the curves with different τc overlap. In order
to investigate in detail the behavior in this frequency range, the MST as a function of τc,
setting ω = 0.9, is reported in the inset of Fig. 1.12c, finding a nonmonotonic behavior.
The MST as a function of the noise intensity γ presents NES effects, which manifests
itself as a double peack structure (see Fig. 1.12d).

1.5.3 Non-Gaussian noise in JJs

The JJs behavior is strongly influenced by environmental perturbations, and specif-
ically by the presence of noise source responsible for decoherence phenomena [22, 33].
The role played by random fluctuations in the dynamics of these devices has recently
solicited a large amount of work and investigations on the effects both of thermal and
non-thermal noise sources on the transient dynamics of Josephson junctions [34–39]. The
noise current signal is caused by the stochastic motion of the charge carriers, namely
the Cooper pairs in a superconductor. While thermal noise is originated by the thermal
motion of the charge carriers, non-thermal noise signals are related to their scattering and
transmission. Non-Gaussian noise appears when the conductor, or the superconductor, is
in a non-equilibrium state because of the presence of a bias voltage or current. In the last
decade, theoretical progress allowed one to calculate the entire probability distribution
of the noise signal and its cumulants, performing a full counting statistics of the current
fluctuations [35]. Moreover, the presence of non-Gaussian noise signals has been found
experimentally in many systems [34, 38, 63–66]. As an example in a wireless ad hoc
network with a Poisson field of co-channel users, the noise has been well modeled by
an α-stable distribution [66]. Non-equilibrated heat reservoir can be considered as a
source of non-Gaussian noise sources [63–65]. Specifically, the effect of non-Gaussian
noise on the average escape time from the superconducting metastable state of a current
biased JJ, coupled with non equilibrium current fluctuations, has been experimentally
investigated [34, 38].

Recently, the characterization of JJs as detectors, based on the statistics of the
escape times, has been proposed [27–30, 67–69]. In particular, the statical analysis
of the switching from the metastable superconducting state to the resistive running
state of the JJ has been proposed to detect weak periodic signals embedded in a noise
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(a) (b) (c)

Figure 1.14: a) Probability density function for the four stable distribution: Gaussian (dark
red), Cauchy-Lorentz (orange), Lévy-Smirnov (light green) and Lévy-Smirnov Reflected (dark
green). b) c) One dimensional and two dimensional, respectively, trajectory of the free diffusion
of a particle subjected to noise signals with Gaussian, Cauchy-Lorentz and Lévy-Smirnov
distribution. [7, 11]

environment [29, 30]. Moreover, the rate of escape from one of the metastable wells of
the tilted washboard potential of a JJ encodes information about the non-Gaussian noise
present in the input signal [27, 28, 67–69].

After the seminal paper of Tobiska and Nazarov [39], Josephson junctions used
as threshold detectors allow to study non-Gaussian features of current noise [67, 68].
Specifically, when a JJ leaves the metastable zero voltage state it switches to a running
resistive state and a voltage appears across the junction. Therefore, it is possible to
measure directly in experiments the escape times or switching times and to determine its
probability distribution [8, 9, 70–73]. A typical simplified realization of a JJ noise detector
is shown in Fig. 1.13. The fluctuating current if , produced by the noise generating
system, is added to the bias current ib and drives the JJ, characterized by a critical
current ic and a capacitance C. The switching times of the junction can be directly
measured using the time-domain technique [8, 9, 70, 74, 75]. For each switching event
the bias current is ramped up to a value ib, which is very close to the critical current
ic and it is maintained constant for a period of waiting time. To record the switching
time, the voltage across the junction is sent to a timer-counter, which is triggered by the
sudden jump from zero voltage state to finite voltage state. The bias current is then
decreased to zero, the junction returns to the zero voltage state, and a new cycle starts
again. For JJs working in overdamped regime, the superconducting state is restored
automatically, without necessity to decrease the bias current to zero. The process is
repeated enough times to obtain a statistically significant ensemble of switching times
(ST).

1.5.4 Non-Gaussian noise in short JJs

Recently, Augello et al [11] explored the role of thermal and non-Gaussian noise
sources on the transient dynamics of short overdamped JJs. They addressed the problem
in the resistively shunted junction (RSJ) framework [62], considering the following
Langevin equation for the phase dynamics

dϕ(t)

dt
= −ωc

dU(ϕ)

dϕ
− ωc(iTN(t) + inG(t)), (1.18)

where iTN(t) and inG(t) are a Gaussian thermal noise and a non-Gaussian noise source,
respectively. The expression of the potential is

U(ϕ, t) = 1− cos(ϕ)− i(t)ϕ, (1.19)
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(a) (b)

(c) (d)

Figure 1.15: Log-Log plot of MST as a function of ω (panel a) and γ (panel b) for Gaussian,
Cauchy-Lorentz and Lévy-Smirnov distributions of the noise signals. Log-Log plot of MST as a
function of ω (panel c) and γCauchy (panel d) for different thermal noise intensities γTN . [7, 11]

where

i(t) = i0 + A sin(ωt) (1.20)

as in the work of Gordeeva et al [5]. The results with iTN(t) = 0.0 and inG(t) given
by Cauchy-Lorentz, reflected Lévy-Smirnov and Gaussian distributions are presented in
Fig. 1.15a and 1.15b. The values of characteristic parameters and the probability density
functions of these stable distributions are show in Fig 1.14a. The minus sign of inG(t)
in Eq. 1.18 indicates that the reflected Lévy-Smirnov distribution was considered. By
this way the Lévy jumps push the particle in the positive ϕ direction. In Fig. 1.15a, the
RA phenomenon is observed, but the Lévy Smirnov MST values are smaller then the
Gaussian and Cauchy-Lorentz ones. In Fig. 1.15b, the curves corresponding to Gaussian
and Cauchy-Lorentz show NES effect. For very low noise intensities, that is in the
deterministic regime, all three curves tend to the same MST value. Increasing the noise
intensity the Lévy-Smirnov curve decrease monotonically, because greater jumps, the
so-called Lévy flights [76], push the particle very fast from the superconducting state.
For higher γ values, the Gaussian curve is characterized by a double-maximum NES
effect, sign of two different mechanism giving temporary trapping phenomenon. The
Cauchy-Lorentz results show a single NES maximum, shifted towards higher intesity
values respect to the Gaussian first peak. This is due to the typical displacement respect
the mean value of the Cauchy-Lorentz distribution, that is shorter compared with the
Gaussian case. This is well shown in the free-diffusion trajectories of a particle under
the influence of Gaussian and Cauchy-Lorentz noises, displayed in the Fig 1.14b and
Fig 1.14c. Results presented in Fig. 1.15c and 1.15d are obtained using a thermal and a
Cauchy-Lorentz noise sources with intensities γTN and γCauchy, respectively. The curves
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shown in Fig. 1.15c represent MST as a function of ω changing the γTN value. The
curve with γTN = 0.0 shows RA phenomenon. This effect is robust enough to be clearly
detected until γTN ≤ 0.2. While the position of the minimum is slightly affected by the
presence of the thermal noise source, the MSTs for low and high frequencies decrease.
The results in Fig. 1.15d represent MST as a function of γCauchy, by changing the γTN
value, and reveal the presence of NES effects. The simultaneous action of two noise
sources produces an increase in the overall noise intensity “felt” by the system. Increasing
the thermal noise intensity the maximum is lower and shifted towards higher γCauchy
values.

1.6 Noisy dynamics in long and short JJs: overview

of the project

In the framework sketched out by experimental and computational works presented in
this introduction, this work explores the transient dynamics of various JJ in the presence
of noise sources. The focus is placed on the evolution of nonlinear solutions, i.e. soliton,
antisoliton and breathers, of the SG model, their modifications due to noise influence
and the connections with the transient dynamics of these devices. The investigation is
computationally performed through numerical algorithms mainly implemented using
fortran language based codes. The study of the lifetime in the metastable state gives
informations about the switching from the superconducting regime and about all the
macroscopic quantities, that is current, voltage and magnetic field, characteristic of the
system. Noise represent a suitable way to model the influence of the environment on the
system, and to control the dynamics of a JJ device by using it.

Taking a cue directly from the papers by Augello et al [6, 11], in chapter 2 the
transient dinamycs of a LJJ under the simultaneous action of thermal and non-Gaussian
noise sources is investigated. Soliton dynamics is deeply explored.

In chapter 3 the creation and propagation of breathers, in LJJ excited by a suitable
external pulse, is analyzed. The breathers are peculiar unstable solutions of SG equation
decaying in time. The effect of environmental fluctuation on the breathers stability is
takes into account.

Chapter 4 contains a deep investigation of a different short junction that includes
a graphene layer beetwen the superconducting elecrodes. The Josephson current for
this system is quite different, departing from the conventional sinusoidal behavior. The
MFPT is studied as a function of the frequency and the initial value of the applied bias
current and of the parameters of the Gaussian colored noise source .

In chapter 5 the conclusions are drawn, including an outline of the main results and
the future developments of these research lines.

Finally, various appendixes are included. In appendix A the algorithm used to model
the α-stable distributions is described. In appendix B the numerical implementation of
implicit finite-difference method used to numerically integrate the sine-Gordon equation
is shown. Appendix C contains informations about the current-phase relation for a
graphene based Josephson junction.
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Chapter 2

Long JJ: the effects of the
non-Gaussian noise

In this chapter the superconducting lifetime of long current-biased Josephson junctions,
in the presence of Gaussian and non-Gaussian noise sources, is investigated. In particular,
the dynamics of a Josephson junction as a function of the noise signal intensity, for
different values of the parameters of the system and external driving currents, is analyzed.
The chapter is organized as follows. In section 2.1 the equivalent circuit and mechanical
model associated with a LJJ are described. In section 2.2 the sine-Gordon model
is presented. In section 2.3 the statistical properties of the Lévy noise are briefly
reviewed, showing some peculiarities of different α-stable distributions. Section 2.4 gives
computational details. In section 2.5 the theoretical results for the behaviors of the MST
as a function of the junction length, frequency of the external driving current and noise
intensity with homogeneous and inhomogeneous bias current, are shown and analyzed.
This analysis has been carried out at very low temperatures of the system, around the
crossover temperature.

Below this temperature, the phase difference over the junction behaves quantum
mechanically, the escape events occur primarily by quantum tunneling through the
barrier, and the thermal fluctuations can be neglected. Therefore, only the effects of
non-Gaussian noise have been analyzed. The transient dynamics of a long JJ subject
to thermal fluctuations and non-Gaussian, Lévy type, noise sources is investigated in
section 2.6. Finally, in section 2.7 the conclusions are drawn.

2.1 Equivalent circuit and mechanical model

The dynamics of long Josephson junctions can be described by an equivalent circuit
and a mechanical model. The effects of spatially extension has to be taken into account
when one or more dimension of the junction exceeds the Josephson penetration depth λJ
(see Eq. 1.6). In what follow, the effects due to the extension of only one dimension of the
junction will be taken into account to investigate the dynamics of narrow LJJ. Josephson
supercurrent and bias current, flowing in the junction, generate magnetic fields that
influence the current distribution in the direction along which the junction extends. The
geometry of a LJJ is shown in figure 2.1a. The two superconducting layers are separated
by a non-superconducting layer, playing the role of an insulator. The insulator, usually a
thin oxide layer, has uniform thickness tox along the Z-axis representing the Cooper pairs
tunneling direction. The width W is very shorter than the Josephson penetration depth,
W << λJ , so that the electromagnetic field in the insulating barrier could be considered
uniformly distributed in the Y-direction. The tunneling supercurrent is described by the

21
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(a)
(b)

Figure 2.1: a) Schematic representation of the geometry of a LJJ. b) Circuit scheme repre-
senting the dynamics of a LJJ.

Josephson equations 1.3 and 1.5. Considering a combination of these equations and the
Maxwell equations, a set of partial-differential equations representing the dynamics of
the junction is obtained

∂V

∂X
= −i2RP = −LP

∂i1
∂T

(2.1)

∂i1
∂X

+
∂i2
∂X

= −C∂V
∂T
−GV − J0 sinϕ+ JB (2.2)

where i1 and i2 are the superconducting and the normal components of the current
flowing parallel to the barrier in the X direction. Considering the Eqs.( 2.1) and ( 2.2),
the dynamics of a LJJ can be described, in terms of the circuit scheme shown in
Fig. 2.1b. The resistance RP , is related to the dissipative effects due to the motion
of quasi-particles, and represents, in this case, the scattering of quasi-particle in the
superconductor’s surfaces. LP is the the inductance per unit length, and represents the
magnetic energy stored within one London penetration depth of the superconductor.
It is equal to LP = µ0(λL1 + λL2 + tox)/W , where λL1,2 are the London penetration
depths for the two superconductors and µ0 is the vacuum magnetic permeability. The
capacitance per unit length C represents the electric energy stored in the barrier. It
is given by C = εrε0W = tox, where εr is the relative dielectric constant of the barrier
oxide layer and ε0 is the vacuum dielectric constant. The term GV takes into account
the dissipative effects of quasi-particle motion through the effective normal resistance
per unit length R = 1/G. The supercurrent per unit length is given by J0 sinϕ, JB
represents the externally applied bias current per unit length [77]. The equivalent circuit
of a LJJ can be represented by a connection of a set of SJJs. In Fig. 2.1b the parallel
connection of LP and RP can be distinguished by the equivalent circuit representing a
SJJ. The long junction equivalent circuit corresponds to a set of the circuits of Fig. 2.1b
connected in parallel. The Eqs. 1.5, 2.1 and 2.2, can be combined in the third-order
partial-differential equation

LP
RP

∂3ϕ

∂2X∂T
+
∂2ϕ

∂2X
− LP

∂2ϕ

∂2T
−GLP

∂ϕ

∂T
=

2πLPJ0

Φ0

(
sinϕ− JB

J0

)
. (2.3)

The third-order effects will be not considered, that is the term ∂3ϕ/∂2X∂T in Eq.( 2.3)
will be neglected. This corresponds to neglect the presence of surface loss in the electrodes
due to the scattering of quasi-particle in proximity to the surfaces [78]. Considering the
expressions of the Josephson penetration depth Eq. 1.6, the characteristic and plasma
frequencies, with the proper normalizations for space and time, the sine-Gordon (SG)
equation results from the Eq.( 2.3).
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Figure 2.2: Stationary breather, with ωb = π/5. Picture adapted from [1].

2.2 The SG Model

The dynamics of the phase difference of the LJJ, analyzed within the SG formalism [60–
62, 79], is characterized by the formation and propagation of particular wave packets,
called solitons [80, 81]. Their presence is strongly connected with the penetration of the
magnetic flux quanta, i.e. fluxons [82, 83] (the magnetic soliton), travelling through the
junction during the switching towards the resistive state (see Fig. 2.3b). Several systems
governed by SG equation show evidence of soliton motion, including not only JJs [84–90]
but also the relativistic field theory, mechanical transmission lines, and atomic, particle
and condensed matter physics.

The electrodynamics of a normal JJ is described by a nonlinear partial differential
equation for the order parameter ϕ, that is the SG equation [62, 79]. Here ϕ is the phase
difference between the wave functions describing the superconducting condensate in the
two electrodes. The unperturbed SG equation, in the absence of damping, bias and
noise, in normalized units is given by [1, 82]

ϕxx(x, t)− ϕtt(x, t) = sin(ϕ(x, t)). (2.4)

First introduced in 1939 by Frenkel and Kontorova [91] to study the dynamics in crystal
dislocations, the SG equation found application in a huge number of fields, among others
simple one-dimensional model for elementary particle, Bloch walls dynamics, self-induced
trasparency in nonlinear optics and spin waves in the liquid in 3He. The SG model
can be depict as a linear array of coupled pendula [62]. This suggests solutions in the
traveling wave form f = ϕ(x− vt):

ϕ(x, t) = 4 arctan [±γ (x− vt)] , (2.5)

where v < 1 is the wave propagation velocity normalized to the speed of light in

the medium, also called Swihart velocity and γ
`

= (1− v2)
−1/2

is the Lorentz factor.
Eq. (2.5) represents a single kink, or soliton, that is a 2π variation in the phase values. The
signs + and − indicate a 2π-kink (soliton) and a 2π-antikink (antisoliton), respectively.
Furthermore ϕ/2π has “topological charge” +1 for a kink and −1 for an antikink.
Imposing the boundary conditions ϕ(x→ ±∞) = 0 the generic N-solitons solution can
be given [92, 93]. The kink-kink collision formula, i.e. the simplest 2-soliton solution of
the SG equation, is:

ϕ(x, t) = 4 arctan

[
v sinh (γ

`
x)

cosh (γ
`
vt)

]
, (2.6)
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and a kink-antikink collision is

ϕ(x, t) = 4 arctan

[
sinh (γ

`
vt)

v cosh (γ
`
x)

]
. (2.7)

The Eq.( 2.7) take an interesting expression if the velocity is allowed to be imaginary.
Setting

v = iωb/
√

1− ω2
b ωb < 1 (2.8)

the Eq.( 2.7) becomes the equation of a stationary breather, oscillating with frequency
ωb,

ϕ(x, t) = 4 arctan


√

1− ω2
b

ωb

sin (ωbt)

cosh
(
x
√

1− ω2
b

)
 , (2.9)

shown in Fig. 2.2 for ωb = π/5. Eq.( 2.4) is invariant under Lorentz trasformation, so
this stationary breather can be boosted into a moving frame, resulting in the following
moving breather, travelling with an envelope velocity v < 1,

ϕ(x, t) = 4 arctan


√

1− ω2
b

ωb

sin [γ
`
ωb (t− vx)]

cosh
[
γ
`

√
1− ω2

b (t) (x− vt)
]
 . (2.10)

Physical models often suggest other nonlinear terms instead of “sinϕ” in Eq.( 2.4), such
ϕ3−ϕ (from the ϕ4 equations of particle physics) or sinϕ+ sinϕ/2 (the so called double
SG equation). Though these models admit non-dissipative kink solutions, these kinks
don’t maintain their shape after collisions and thus are not considered solitons. The
unperturbed SG equation che be exactly solved by analytical techniques. First solution
by direct method was produced by Hirota [94], and an year later Ablamowitz et al [95]
and Lamb [96] produced the inverse scattering method to solve this equation. Also
Bäcklund transformations can be used to solve the SG equation. The sine-forcing term in
the SG equation can be view as a nonlinear deformation ϕ→ sinϕ of the linear forcing
term of the Klein-Gordon (KG) equation [97]. This implies that SG equation can be
derived as an Euler-Lagrangian equation from the Lagrangian density

LSG(ϕ) =
(
ϕ2
t − ϕ2

x

)
/2− 1 + cosϕ, (2.11)

expected as a “deformation” of the KG Lagrangian

LKG(ϕ) =
(
ϕ2
t − ϕ2

x

)
/2− ϕ2/2. (2.12)

Therefore, beetwen the two Lagrangians exist the relations

LSG(ϕ) = LKG(ϕ) +
∞∑
n=2

(−ϕ2)
n

(2n)!
. (2.13)

The Hamiltonian density (kinetic plus potential energy), can be give in terms of
canonically-conjugate coordinate and momentum fileds by

HSG(ϕ,Π) = Πϕt − LSG(ϕ) =
(
Π2 + ϕ2

x

)
/2 + 1− cosϕ (2.14)

so the Hamiltonian is

H =

∫ ∞
−∞
HSG(ϕ,Π)dx =

∫ ∞
−∞

[(
Π2 + ϕ2

x

)
/2 + 1− cosϕ

]
dx. (2.15)
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The SG equation is an infinite-dimensional Hamiltonian system with Poisson brachets
given by

{F,G} =

∫ ∞
−∞

[
δF

δϕ(x)

δG

δΠ(x)
− δF

δΠ(x)

δG

δϕ(x)

]
dx. (2.16)

The Hamilton’s equations yield the SG equation

δH

δϕ
= −Ḣ and

δH

δΠ
= ϕ̇ (2.17)

−ϕ̈ = −Ḣ = −ϕxx + sinϕ and Π = ϕ̇. (2.18)

Computing H

H =

∫ ∞
−∞

[(
ϕ2
t + ϕ2

x

)
/2 + 1− cosϕ

]
dx (2.19)

for a soliton and for a breather the resulting energies are

Es = 8γ
`

(2.20)

Eb = 16γ
`

√
1− ω2

b . (2.21)

In this framework, ϕ gives a normalized measure of the magnetic flux through the
junction, so that Eq. (2.4) can also represent the motion of a single fluxon (or antifluxon).
In fact, starting from simple electrodynamic considerations [62], it is possible to obtain a
simple relation between the magnetic field H(y) and the spatial derivative of the phase
difference

ϕx = 2π
dH(y)

Φ0

, (2.22)

where d = λL1 + λL2 + tox is the magnetic penetration, λL1 and λL2 are the London
depths in the left and right superconductors and tox is the interlayer thickness. In our
LJJ model, if the junction is extended along x and short along z, the magnetic field
points along y. Integrating Eq. (2.22) over the entire JJ length the following relation is
obtained

ϕ(L)− ϕ(0) = 2π
ΦH

Φ0

, (2.23)

where ΦH is the magnetic flux through the junction and Φ0 = hc/2e is the fluxon. If
the phase string has a portion lying in the first valley and a portion inside the n−valley,
from Eq. (2.29), the phase difference is equal to 2πn. Therefore the magnetic flux will
be equal to

2πn = 2π
ΦH

Φ0

ΦH = nΦ0. (2.24)

If the phase evolution shows a single 2π-kink, a single fluxon will propagate along the
junction, as shown in Fig. 2.3b. Here the washboard potential is represented at three
different times t = 0, π

2ω
, 3π

2ω
, corresponding to zero initial slope, maximum and minimum

slope, respectively. The line on the highest potential profile represents a soliton between
two adjacent valleys. The panel (b) of the same figure shows a soliton and the shape of
the correspondent fluxon, that is the values of the x-derivative of ϕ, along the junction
length in a generic time t′.

Our analysis includes a quasiparticle tunneling term and an additional stochastic
contribution, if(x, t), representing the noise effects. However, the surface resistance of
the superconductors is neglected. The resulting perturbed SG equation reads

β
SG
ϕtt(x, t) + ϕt(x, t)− ϕxx(x, t) = ib(x, t)− sin(ϕ(x, t)) + if (x, t), (2.25)
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(a) (b)

Figure 2.3: (a) Washboard potential at 3 different times with a soliton wave (2π-kink) on the
highest profile; (b) Soliton (Eq. (2.5)) and corresponding fluxon profile (Eq. (2.22)) [10].

where a simplified notation has been used, with the subscript indicating the partial
derivative of ϕ in that variable. This notation will be used throughout all the work. In
Eq. (2.25), the fluctuating current density if(x, t) is the sum of two contributions, a
Gaussian thermal noise iT (x, t) and an external non-Gaussian noise source inG(x, t)

if (x, t) = iT (x, t) + inG(x, t). (2.26)

The SG equation is written in terms of the dimensionless x and t variables, that are
the space and time coordinates normalized respectively to the Josephson penetration
depth λJ and to the inverse of the characteristic frequency ωc of the junction. Moreover,
β
SG

= ωcRC, where R and C are the effective normal resistance and capacitance of the
junction. The terms ib(x, t) and sin(ϕ) of Eq. (2.25) are respectively the bias current
and supercurrent, both normalized to the JJ critical current iC . Eq. (2.25) is solved
imposing the following boundary conditions

ϕx(0, t) = ϕx(L, t) = Γ, (2.27)

where Γ is the normalized external magnetic field. Hereinafter Γ = 0 is imposed.
The two-dimensional time-dependent tilted potential, named washboard potential, is

given by
U(ϕ, x, t) = 1− cos(ϕ(x, t))− ib(x, t)ϕ(x, t), (2.28)

and shown in Fig. 2.3a. In the same figure is shown a phase string in the potential
profile (2.28), along which it moves during the switching dynamics. Specifically, the
washboard potential is composed by a periodical sequence of peaks and valleys, with
minima and maxima satisfying the following conditions

ϕmin = arcsin(i(x, t)) + 2nπ

ϕmax = (π − arcsin(i(x, t))) + 2nπ (2.29)

with n = 0,±1,±2, ... .
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Figure 2.4: Inhomogeneous bias current density (see Eq. (4.10)) along JJs, for i0 = 0.9 and
different values of junction length [10].

The bias current is given by

ib(x, t) = ib(x) + A sin(ωt), (2.30)

where A and ω are amplitude and frequency (normalized to ωc) of the dimensionless
driving current. This time dependence is normalized to the inverse of the JJ characteristic
frequency ωc.

The ib(x) term is a dimensionless current that, in the phase string picture, represents
the initial slope of the potential profile. Different regimes of spatial dependence can be
considered, obtaining in particular the two following current distributions [98]

ib(x) =


i0 homogeneous

i0 L

π
√
x (L−x)

inhomogeneous.
(2.31)

The more realistic inhomogeneous condition provides strong current contributions at the
edges of the junction. This is shown in Fig. 2.4, for i0 = 0.9 and L ranging between 1
and 20. In these conditions, the phase of the cells in the edges of the junction can flow
along the potential without resistance, so that the soliton formation occurs mostly in
these parts of the junction.

2.3 The Lévy Statistics
The analysis is performed varying the statistic of the noise signal modeled by us-

ing different α-stable (or Lévy) distributions. These statistics allow to describe real
situations [99] in which the evolution shows abrupt jumps and very rapid variations
of parameters, called Lévy flights. Lévy-type statistics is observed in various scientific
areas, where scale-invariance phenomena take place [100–103]. For a recent short review
on Lévy flights see Dubkov et al. [76], and references there. Applications and other
research fields in which observed evolutions are well reproduced using Lévy statistics are
quite numerous, ranging from biology [104], zoology [105–107], social systems [108] and
financial markets [109], to geological [110] and atmospheric data [111].
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Distribution Abbr. P(x) Sα(σ, β, µ)

Gaussian (G)
1√
2πσ
e
− (x−µ)2

2σ2 x ∈ R S2(σ, 0, µ)

Cauchy-Lorentz (CL)
σ/π

σ2+(x−µ)2 x ∈ R S1(σ, 0, µ)

Lévy-Smirnov (LS)
√

σ
2π

e
− σ

2(x−µ)

(x−µ)3/2 x ≥ µ S 1
2
(σ, 1, µ)

Table 2.1: Closed form of the stable distributions and characteristic values of parameters.

In order to motivate the use of α-stable (or Lévy) distributions, some cases [112]
in which non-Gaussian stable statistics is used to model experimental data with asym-
metric and heavy tailed distributions, closely linked with the Generalized Central Limit
Theorem [113–119], are recalled. The concept of stable distribution is briefly reviewed.
A random non-degenerate variable is stable if

∀n ∈ N,∃(an, bn) ∈ R+ × R :

X + bn = an

n∑
j=1

Xj, (2.32)

where the Xj terms are independent copies of X. Moreover X is strictly stable if and
only if bn = 0 ∀n. The well known Gaussian distribution stays in this class. This
definition does not provide a parametric handling form of the stable distributions. The
characteristic function, however, allows to deals with them. The general definition of
characteristic function for a random variable X with an associated distribution function
F (x) is

φ(u) =
〈
eiuX

〉
=

∫ +∞

−∞
eiuXdF (x). (2.33)

Following this statement, a random variable X is said stable if and only if

∃(α, σ, β, µ) ∈ ]0, 2]× R+ × [−1, 1]× R :

X
d
= σZ + µ, (2.34)

where Z is a random number. Accordingly one obtains

φ(u) =


exp

{
− |u|α

[
1− iβ tan πα

2
(signu)

]}
α 6= 1

exp
{
− |u|

[
1 + iβ 2

π
(signu) log |u|

]}
α = 1

(2.35)

in which

signu =

{
±1 u ≷ 0

0 u = 0
(2.36)

represents the sign function.
This definition of X requires four parameters: a stability index (or characteristic

exponent) α ∈]0, 2], an asymmetry parameter β with |β| ≤ 1 and two real numbers
σ > 0 and µ that determine the outward of the distribution and are called, for this
reason, shape parameters. The names of these two parameters indicate their physical
meaning. Specifically β = 0 (β 6= 0) gives a symmetric (asymmetric) distribution, while
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Figure 2.5: Probability density functions for Gaussian (G) (solid line), Cauchy-Lorentz (CL)
(dashed line) and Lévy-Smirnov (LS) (dashed-dotted line) distributions [10].

α determines how the tails of distribution go to zero. For α < 2 the asymptotic behaviour
is characterized by a power law, while α = 2 and β = 0 give a Gaussian distribution.
The stable distribution, obtained setting σ = 1 and µ = 0, is called standard. Every
α-stable distribution are denoted with the symbol Sα(σ, β, µ). Only a few number of
Lévy distributions has a probability density function known in explicit form, as shown
in Table (2.1). Here the abbreviations for some peculiar distributions, used in the rest of
this work, are also listed.

The G (Gaussian) and CL (Cauchy-Lorentz) distributions (both with β = 0) are
symmetrycal with respect to x = 0, while the LS (Lévy-Smirnov) distributions (normal
and reflected) are skewed to the right (β = +1) or left (β = −1) side. The three
distributions of Table (2.1) are plotted in Fig. 2.5. The reflected (with respect to the
vertical axis) LS distribution, obtained setting β = −1, is not shown. The asymmetrical
structure of the LS distribution is evident, with a heavy tail and a narrow peak located
at a positive value of x. The CL distribution, in comparison with the Gaussian one,
presents tails much higher and a central part of the distribution more concentrated
around the mean value. For short times, the values extracted from a CL distribution
determine trajectories characterized by limited space displacement : this can be explained
noting that the CL statistics is characterized, around the mean, by a narrower form
respect to the Gaussian one. For longer times, however, heavy tails cause the occurrence
of events with large values of x, whose probability densities are non-neglectable. The use
of CL and LS statistics allows to consider rare events, corresponding to large values of x,
because of the fat tails of these distributions. These events correspond to the Lévy flights
previously discussed. The algorithm used in this work to simulate Lévy noise sources is
that proposed by Weron [120] for the implementation of the Chambers method [121].

2.4 Computational Details
The JJ dynamics in the SG overdamped regime, setting β

SG
= 0.01, is studied. The

time and spatial steps are fixed at ∆t = 0.05 and ∆x = 0.05. In order to obtain the
mean values a suitable number (N = 5000) of numerical realizations are performed.
Throughout the whole work, the words string, referring to the entire junction, and cell
to indicate each of the elements with dimension ∆x, which compose the junction, will be
used. The washboard potential valley labeled with n = 0 (Eq. (2.29)) is chosen as initial
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condition for solving Eq. (2.25), i.e. ϕ0 = arcsin(ib(x, 0)) = arcsin(ib(x)). In our model
there are no barriers, neither absorbing nor reflecting, surrounding the initial metastable
state, and the value of MST calculated is the nonlinear relaxation time (NLRT) [4]. After
a first exit, other temporary trapping events are permitted: during the time evolution
each cell can return into the initial potential well, contributing again to the final value
of MST, indicate as τ . This agrees with the definition, proposed by Malakhov [122], for
the mean permanence time of the phase ϕ inside the interval [−π, π]

τ =

∫ ∞
0

tw(t)dt =

∫ ∞
0

P (t)dt, (2.37)

where P (t) is the probability that ϕ ∈ [−π, π] and w(t) = ∂P (t)/∂t. For each cell and
for each realization the numerical calculation of P (t) is performed by considering

Pij(t) =


1 ⇐⇒ ϕ ∈ [−π, π]

0 ⇐⇒ ϕ /∈ [−π, π],
(2.38)

where Pij is the probability that in the i-th realization for the j-th cell ϕ ∈ [−π, π].
Summing Pij(t) over the total number Ncells of string elements, and averaging first over
the total number of cells, then over the total number N of realizations, the probability
that the entire string is in the superconducting state at time t is

P (t) =
1

N Ncells

N∑
i=1

Ncells∑
j=1

Pij(t) (2.39)

The maximum time value used to perform the integral of Eq. (2.37) has to be set large
enough so that temporary trapping events, in the metastable state, can occur. Therefore
the upper limit of the integral, ∞, is replaced with a maximum time tMAX = 100,
obtaining the mean switching time

τ =

∫ tMAX

0

P (t)dt. (2.40)

The whole procedure is repeated for the three noise statistics analyzed in the previous
section, obtaining the behaviour of the MST τ in the presence of different sources of
Lévy noise.

2.5 Effects of non-Gaussian noise

The analysis is carried out looking at the MST variations as a function of the junction
length L, noise intensity γ and frequency ω of the driving signal. The i0 values choosen
are 0.5 and 0.9, to work with potentials less or more inclinated, and the ib(x) distributions
used are homogeneous or inhomogeneous (Eq. (4.10)). The washboard slope is connected
to the heights of the potential barriers seen by the phase elements. Reducing the i0
value, the barriers intensity is enhanced and the MST values tend to increase. Evidences
of nonmonotonic behaviour varying first the values of L, γ and ω, then the statistics of
the noise sources are searched. Moreover, I try to find connections between the MST
behaviors and JJ soliton dynamics. The amplitude of the oscillating driving signal is set
to A = 0.7, to obtain at certain times (see Eq. (2.30)) ib(x, t) > 1 (absence of metastable
states) and, at least with one of the i0 values used, ib(x, t) < 0 (positive slope). In this
section the thermal fluctuations of the current density iT (x, t) are neglected with respect
to the non-Gaussian (Lévy) noise source inG(x, t) in Eqs. (2.25), (2.26), because very
low temperatures, around the crossover temperature, are considered.
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(a) (b)

(f)(d) (e)

(c)

Figure 2.6: MST τ versus L for different current distributions along the junction: homogeneous
ib(x) and noise sources with Gaussian (panel a), Cauchy-Lorentz (panel b) and Lévy-Smirnov
(panel c) statistics; inhomogeneous ib(x) and noise sources with Gaussian (panel d), Cauchy-
Lorentz (panel e) and Lévy-Smirnov (panel f) statistics. In all graphs the other parameters are:
i0 = {0.5(empty symbols), 0.9(full symbols)}, ω = {0.4 (circles), 0.7 (triangles), 0.9 (squares)}
and γ = 0.2. The legend in panel c refers to all pictures. [10]

.

2.5.1 MST vs JJ length L
I begin to study the MST values varying the JJ length L in the range [0, 20]. The

results are shown in Fig. 2.6, emphasizing the three different noise sources used, G
(panels (h1) and d), CL (panels b and e) and LS (panels c and f).

The panels (h1), b and c contain the results for homogeneous bias current density,
while the panels d, e and f contain the results for inhomogeneous bias current density.
In each panel, the MST values for i0 = 0.5 are greater than those for i0 = 0.9. This is
due to the reduced height of the right potential barrier due to the increased slope, i.e.
i0 value, of the washboard. Specifically the expression for the left (or right) potential
barrier height ∆U+(or ∆U−) is

∆U±(x, t) = 2
√

1− i2b(x, t) +

+ ib(x, t)[2 arcsin(ib(x, t))± π]. (2.41)

I start analizing the results obtained in the presence of a Gaussian noise source with
i0 = 0.5 and ib(x) homogeneous (empty symbols in the panel (h1)). In this panel of
Fig. 2.6 it is evident the presence of two different dynamical regimes in each of these
curves. An initial monotonic increasing behavior is followed by a constant MST plateau.
This underlines the presence of two different mechanisms, governing the time evolution of
the phase, which clearly appear in the soliton dynamics shown in Fig. 2.7. This picture
displays four different phase dynamics during the passage towards the resistive state, i.e.
when the phase ϕ approximately changes of 2π. The cells can escape from a potential
well all together (panel (a) of Fig. 2.7) or by the formation of a single kink, or a single
antikink, or a kink-antikink (K-A) pair (panel (c) of Fig. 2.7). If the string is too short,
the connection among cells is so strong that the soliton formation is forbidden, the string
can move from, or remain inside, a potential minimum as a whole. This is evident in
panel (a) of Fig. 2.7. In this length regime, an increase in the number of cells makes
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more difficult the motion of the whole string during the transition process, causing the
MST to raise for short lengths. This happens as long as no soliton formation occurs.
There is, in fact, a specific junction length above which the dynamics is governed by the
formation of phase kinks. This length is connected with the soliton nucleation, that is the
formation of a K-A pair. Following the work of Büttiker [81], in the soliton nucleation a
critical nucleus, that is the minimum separation between kink and anti-kink, exists. For
junction lenghts greater than this critical value it is evident a saturation effect. The MST
reaches an almost constant value and the switching events are guided by the solitons,
which indicates that the dynamics of these events is indipendent of the JJ length. To
explain this behaviour, I consider that inside the string a subdomain structure exists.
Each subdomain is composed by an amount of cells of total size approximately equal to
the critical nucleus. The entire string can be thought as the sum of these subdomains
and the overall escape event results to be the superimposition of the escape events of
each single subdomain, so that the total MST is equal to the individual subdomain time
evolution. The size of this subdomain approximately corresponds to the length value for
which the initial monotonic behavior is interrupted. The dimension of the critical nucleus
is proportional to Lc ∝ − log(i0). Increasing the i0 value, the critical nucleus decreases
and the soliton dynamics can start in correspondence of shorter junction lengths, as one
can see in panel (h1) of Fig. 2.6, where results obtained for i0 = 0.5 (empty symbols)
and i0 = 0.9 (full symbols) are shown. In particular, Lc ∼ 5 for i0 = 0.5, and Lc ∼ 2 for
i0 = 0.9. The curves obtained for i0 = 0.9 are characterized by a small maximum, which
reveals the presence of a weak nonmonotonic behavior. Between the initial increasing
behavior and the saturation, a portion with negative slope and corresponding reduction
of the MST is evident. Increasing the slope of the potential, the critical nucleus becomes
shorter so that the nucleation is allowed also in regime of strong connections among the
cells. These two conditions, i.e. anticipated nucleation and intense “bind” among cells,
determine cooperating effects, which lead to MST reduction before the saturation regime
is reached.

Panels b and c of Fig. 2.6 show MST curves obtained in the presence of CL and LS
noise sources. These behaviors appear quite different with respect to those obtained
using Gaussian noise sources. MST curves are strongly affected by Lévy flights that
favour jumps between different potential valleys, and soliton formation (see panel (c)
of Fig. 2.7, containing rapid and sudden phase variations). Specifically, for CL noise
the saturation effect gives rise to a value of MST lower than that observed with the
Gaussian thermal fluctuations. This is due to the peculiarity of the fat tails of PDF
for CL noise. Therefore, for homogeneous density current (panel b), after the initial
transient with an increasing behavior due to the increasing length of the junction and
therefore of the string, nucleation and intense ”bind” among cells speed up the escape
process and τ decreases towards the saturation value. For inhomogeneous density current
(panel e), the weak nonmonotonic behavior, found for homogeneous case (see panel b),
disappears. This is because the edge portions of the phase string are subject to high
values of bias current (ib(x) > 1, see Fig. 2.4 and Eq. (4.10)). As a consequence, all
the string is dragged out of the potential well, speeding up the escape process. The
MST values obtained in the presence of LS noise sources are in general smaller than
those obtained using noise sources with CL distribution. These differences are related to
the intensity of the jumps in these two statistics. The saturation effect is also present,
but the corresponding value of τ is very low. This is due to the LS Lévy flights, which
push the string very fast out of the superconductive state, giving rise to a monotonic
decreasing behavior of τ versus L. In other words, LS noise drives the phase string out of
the potential well very quickly, due to the greater diffusive power of this noise source. It
is worth noting that, for i0 = 0.9, the values obtained using the Cauchy-Lorentz statistics
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Figure 2.7: String dynamics during the switching towards the resistive state: for a JJ
of length L = 2, with homogeneous bias current distribution and G noise source (panel
(a)), inhomogeneous bias current distribution and CL noise source (panel (b)); for a JJ of
length L = 15, with homogeneous bias current distribution and CL noise source (panel (c)),
inhomogeneous bias current distribution and G noise source (panel (d)). All graphs were
obtained for ω = 0.9 and γ = 0.2. The curves in panels (b) and (c) show the characteristic
Lévy flights of the CL statistic. [10]

are slightly greater than those obtained in the presence of Gaussian thermal fluctuations.
This is connected with the limited space displacement, that rules the CL statistics for
short time scale [11].

Panels d, e and f of Fig. 2.6 show results obtained in the presence of an inhomogeneous
bias current. According to Eq. (4.10), ib(x) diverges at the string ends, x = 0 and x = L,
having a minimum equal to ib(L/2) = 2/π · i0 in the string center, x = L/2. In a
considerable edge portion of the string (around 5% and 18% of the total length for
i0 = 0.5 and 0.9, respectively) ib(x) > 1, allowing the phase elements to roll down along
the tilted potential without encountering any resistance. These edge elements can be
considered as generators of solitons. This corresponds to the physical situation in which
the supercurrent flows between the junction ends and the fluxon formation occurs in these
regions of the JJ. This kind of dynamics is shown in panel (d) of Fig. 2.7, in which the
kink starts from the cells located in the junction edges. The role of these cells becomes
particularly important as the length L increases, but is irrelevant for short junctions, in
which the connection between cells is still too strong, and the dynamics is not guided
by solitons. This situation is clear in panel (b) of Fig. 2.7, although the presence of CL
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(f)(b) (d)

(e)(c)(a)

Figure 2.8: Log-log plots of MST τ versus ω obtained using: homogeneous ib(x) and noise
sources G, CL and LS (panels a, c and e respectively); inhomogeneous ib(x) and noise sources
G, CL and LS (panels b, d and f respectively). In all graphs the values of the other parameters
are: i0 = 0.9, L = 10 and γ = {0.025, 0.1, 0.2, 0.45, 0.9}. The legend in panel d refers to all
panels. [10]

statistics causes the appearance of flights. The G curves in panel d of Fig. 2.6 show an
increasing behavior similar to those obtained with homogeneous bias current distribution,
even if the values reached are a little bit higher. Independently of the value of L, about
77% of the cells composing the junction has ib(x) < i0. Therefore, this percentage of
cells should overcome potential barriers higher than those corresponding to the case of
homogeneous bias current ib(x). This determines, in the absence of soliton formation,
an increase of the escape time. Moreover, a nonmonotonic behavior is observed. After
reaching the maximum, the MST curves decrease due to the action of the junction
edges, which behave as generators of solitons. This effect accelerates the escape process,
becoming more important as the value of L increases (see Fig. 2.4). For i0 = 0.9, the time
average of the barrier height is lower than in the case with i0 = 0.5 and the switching
process is faster.

The CL and LS results presented in panels e and f of Fig. 2.6 do not show remarkable
differences with respect to those obtained with homogeneous current distribution, except
for an enhancement in the MST for very short junction. The physical reason of this
behaviour is the same as that discussed for the Gaussian case.

The curves in panels (b) and (c) of Fig. (2.7), obtained using a CL noise source,
show peaks associated with the generations of the Lévy flights. As previously discussed,
these noise induced fluctuations influence the switching events and the soliton formation.
These graphs also clearly display the creation of another ”structure”, known as breather
(see panel (b) for t = {18.5, 19} and x/λj ≈ 1.5, and panel (c)). This is a well-known
localized solution of the SG equation consisting of a soliton-antisoliton pair and oscillating
with an internal ”breathing” frequency. The curves obtained by using non-Gaussian
noise sources exhibit this kind of nonlinear ”structures” (panel (b) and (c) of Fig. (2.7)).

2.5.2 MST vs driving frequency ω

In this section the MST behaviour, setting the bias current at i0 = 0.9, and varying
both the frequency ω of the driving signal (within the interval [0.01, 10]) and the noise
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Figure 2.9: Log-log plots of MST τ versus γ obtained using: homogeneous ib(x) and noise
sources G, CL and LS (panels a, c and e respectively); inhomogeneous ib(x) and noise sources
G, CL and LS (panels b, d and f respectively). In all graphs the values of other parameters are:
i0 = {0.5, 0.9}, ω = 0.9 and L = {1, 10}. The legend in panel c refers to all panels. [10]

intensity γ, is analyzed. The values of MST obtained are shown in Fig. 2.8. Specifically,
results obtained in the presence of G, CL and LS noise sources are shown in the upper
panels, a, c and e respectively, for homogeneous bias current distribution, and in the
lower panels b, dand f respectively, for inhomogeneous bias current distribution. Each
panel contains five curves, obtained for the values of γ displayed in the legend. This
analysis was performed working with a junction of length L = 10, that is a string with a
suitable length, which allows to onset the phenomenon of soliton formation. All graphs
show clearly the presence of resonant activation (RA) [3, 4, 123–130], or stochastic
resonance activation, a noise induced phenomenon, whose signature is the appearance
of a minimum in the curve of MST vs ω. This minimum tends to vanish for CL and
LS distributions when the noise intensities are greater than the time average of the
potential barrier height (∆U i0=0.9 ' 0.4, see Eq. (2.41)). It is worthwhile to note that the
nonmonotonic behavior of τ versus the CL noise intensity around the minimum, observed
in panels c and dof Fig. 2.8, is related to that shown in panels c and d of Fig. 2.9. The
RA is a phenomenon robust enough to be observed also in the presence of Lévy noise
sources [11]. Particle escape from a potential well is driven when the potential barrier
oscillates on a time-scale characteristic of the particle escape itself. Since the resonant
frequency is close to the inverse of the average escape time at the minimum, which is
the mean escape time over the potential barrier in the lower configuration, stochastic
resonant activation occurs [9, 30], which is a phenomenon different from the dynamic
resonant activation. This effect, in fact, appears when the driving frequency matches the
natural frequency of the system, that is the plasma frequency [71, 72, 131]. Finally, the
contemporaneous presence of RA and NES phenomena in the behavior of τ as a function
of the driving frequency, in underdamped JJ, has been observed, finding that the MST
can be enhanced or lowered by using different initial conditions [8].

The G data in panels a and b of Fig. 2.8 present this minimum for a frequency
value (ωRA ∼ 0.6) which varies little with the noise intensity γ. The only evident effect,
switching to an inhomogeneous bias current, is a general reduction of the MST. The
curves with CL noise present a clear minimum, shifted towards higher values of ω, with
respect to that of the Gaussian case. This minimum tends to disappear increasing
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the noise intensity. This is due to the influence of Lévy flights which, for strong noise
intensities, drive the escape processes. As found in the presence of Gaussian noise, also
in the case of CL statistics, using inhomogeneous ib(x) causes a general lowering in the
MST values. For a weak noise signal, the Cauchy-Lorentz distributions are higher than
the Gaussian ones: for low values of γ the jumps are not relevant, and the limited space
displacement gives short phase fluctuations, making more difficult to escape from the
potential wells. The MST calculated using LS sources are also governed only by the
noise and present quite small values. Therefore, the RA effect is found only in the curve
obtained for a very weak noise intensity.

By increasing the driving frequency, at low noise intensities, a trapping phenomenon
occurs. A threshold frequency ωthr exists such that for ω > ωthr the phase string is
trapped within a region between two successive minima of the potential profile. In other
words, the string can not move from the potential well to the next valley during one
period T0 of the driving current A sin(ωt). As a consequence, the MST diverges in the
limit γ → 0. The value of the threshold frequency increases with increasing bias current
and/or maximal current across the junction [4, 55, 132]. The threshold values for the
following parameter values i0 = 0.9 and A = 0.7 are estimated. Specifically, for Guassian
thermal fluctuations ωthr ? 1.8, for CL noise source ωthr ? 2.1 and for LS noise source
ωthr ? 3.

2.5.3 MST vs noise intensity γ

Here the MST curves calculated varying the noise amplitude in the range [0.0005, 200]
are analyzed. The results are shown in Fig. 2.9. Specifically the results in panels a, c and
e were obtained, using an homogeneous ib(x) and G, CL and LS noise sources respectively,
while those shown in panels b, d and f, using an inhomogeneous ib(x) and G, CL and LS
noise sources respectively. This analysis is performed using ω = 0.9 and two different
values of L and i0, i.e. L = {1, 10} and i0 = {0.5, 0.9}. Fixing the values of the system
parameters, for γ → 0 the curves for the three noise sources (G, CL and LS) converge
to the same values, i.e. the deterministic lifetime in the superconducting state, which
depend strongly on the bias current. When γ → 0 and the potential is not too tilted,
trapping phenomena occur and the MST tends to tMAX . Increasing the noise intensity,
the MST curves exhibit an effect of noise enhanced stability (NES) [4, 54–58, 133–141], a
noise induced phenomenon consisting in a nonmonotonic behaviour with the appearance
of a maximum. The stability of metastable states can be enhanced and the average life
time of the metastable state increases nonmonotonically with the noise intensity. The
observed nonmonotonic resonance-like behavior proves to be different from the monotonic
one of the Kramers theory and its extensions [142–144]. This enhancement of stability,
first noted by Hirsch et al. [145], has been observed in different physical and biological
systems, and belongs to a highly topical interdisciplinary research field, ranging from
condensed matter physics to molecular biology and to cancer growth dynamics [58, 146].

From Fig. 2.9, can be noted that in the curve obtained using a Gaussian noise source,
homogeneous current distribution and high washboard inclination, i0 = 0.9, two maxima
are present in correspondence of γ

L=1

MAX

∼= {0.06, 10} for L = 1 and γ
L=10

MAX

∼= {0.07, 100}
for L = 10. In view of understanding the physical motivations of these NES effect, the
time evolution of the probability P (t), as defined in Eq. (2.39), is calculated during
the switching dynamics of the junction. I remember that 0 ≤ P (t) ≤ 1, where the two
extreme values indicate the resistive state (P (t) = 0) and the superconducting state
(P (t) = 1).

The time evolution of P (t) was calculated for i0 = 0.9 and ω = 0.9. The results,
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(b) (c)(a)

Figure 2.10: Time evolution of the probability P (t) in the following conditions: G noise with
L = 1 (panel a) and L = 10 (panel b); CL noise with L = 10 (panel c). The system parameters
are i0 = 0.9 and ω = 0.9. Each graph contains curves of P (t) obtained using values of γ for
which a minimum or maximum appears in the τ vs γ behaviour. The insets reproduce the
corresponding curves of panels a and c of Fig. 2.9. [10]

shown in Fig. 2.10, were obtained in the following conditions: i) G noise with L = 1
(panel a) and L = 10 (panel b); ii) CL noise with L = 10 (panel c). All panels of
Fig. 2.10 contain curves of P (t) calculated setting the noise intensity at values for which
a maximum or minimum appears in the MST vs γ behaviour (see insets). Looking at
the curves displayed in panel a, the dotted curve (γ = 0.0005) represents a deterministic
switching event. The string after a quick escape does not return inside the first washboard
valley. Conversely, the dashed line, obtained for γ = 0.06, describes a temporary trapping
phenomenon. The contemporaneous presence of the fluctuating potential and noise
source, inhibits the phase switching and therefore the passage of the junction to the
resistive regime. Moreover the exit from the first well is not sharp, as in the deterministic
case, and P (t) assumes an oscillatory behavior, almost in resonance with the periodical
motion of the washboard potential. This oscillating behavior of P (t), which is related to
the temporary trapping of the phase string, tends to disappear as the noise intensity
increases. For γ = 10 (solid line in a of Fig. 2.10) another peak (NES effect) in the MST
behaviour is observed, but no oscillations in P (t) are present. At this value of γ, the JJ
dynamics is totally driven by the noise and the NES effect is due to the possibility that
the phase string returns into the first valley after a first escape event, as indicated by the
fat tail of P (t). This behaviour is strictly connected with that found for the MST, whose
calculation is based on the definition of NLRT. Further increases of γ reduce for the
phase string the possibility not only of returning into the intial well but also of staying
for a long time inside it. The results for G noise source and L = 10, displayed in panel b
of Fig. 2.10, are similar to those obtained for L = 1. The first hump, corresponding to
γ = 0.07 (see inset of panel b) is a little bit smaller than that for L = 1 and γ = 0.06
(see inset of panel a), and this is consistent with the previous MST versus L analysis.
Moreover a NES effect for γ = 100 is present (see inset of panel b). The difference
of one order of magnitude in the noise intensity (γ = 100 for L = 10), respect to the
NES phenomenon observed for L = 1 at γ = 10, can be noted. This difference is due
to the greater difficulty for random fluctuations of carrying a string, ten times longer,
again in the initial potential well. Panel c of Fig. 2.9 shows the curves of MST vs γ
in the presence of CL noise source. Here the absence of the second peak, observed
in the previous analysis at higher values of γ, can be noted. This discrepancy can be
explained noting that, for low noise intensity, the effect of the CL flights on the overall
JJ dynamics is neglegible, and the time evolution should appear quite similar to those
observed with Gaussian noise. Conversely, due to the limited space displacement, to
obtain the same effect (i.e. escape from the first potential well), junctions subject to CL
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(f)(b) (d)

(e)(c)(a)

Figure 2.11: MST τ as a function of L, γCL, and ω. All curves were obtained considering the
simultaneous presence of CL and thermal noise sources, using two different values, i.e. i0 = 0.5
(top panels) and i0 = 0.9 (bottom panels), of the homogenous bias current, and varying the
Gaussian noise intensity, γG. The legend in panel d refers to all panels. [10]

noise should be exposed to noise intensity larger respect to identical junctions subject
to G noise. The peak (maximum of MST) should be therefore shifted towards higher
values of γ. Increasing the noise intensity, the influence of Lévy-flights on the total JJ
dynamics becomes higher, and the probability that a second peak appears, similar to
that observed in the presence of G noise, tends to vanish. This analisys is confirmed by
the graph shown in panel c of Fig. 2.10. Conversely, LS flights are too intense to allow
the formation of NES peaks (see panel e of Fig. 2.9). Finally, the curves obtained with
inhomogeneous ib(x) do not present any differences, except those for i0 = 0.9 and L = 1
(full circles), that show very high values of MST with respect to the case of homogenous
current distribution. This indicates again a trapping phenomenon that occurs when a
short junction undergoes very weak noise intensities (γ → 0). In this case, the parts
of the junction generating solitons do not affect the string dynamics. In fact, since
ib(x) < i0 for 77% of the total length, a large percentage of the string remains confined in
a potential well deeper than that of the analogous homogeneous case, thus determining
the trapping effect.

Moreover, all the curves of MST vs γ for CL and LS noise sources coalesce together
at high noise intensities. The MST has a power-law dependence on the noise intensity
according to the expression

τ ' C(α)

γµ(α)
(2.42)

where the prefactor C and the exponent µ depend on the Lévy index α [76]. From
Fig. 2.9, µ(α) ∼ 0.9 for CL noise and µ(α) ∼ 1.2 for LS noise, which are in agreement
with the exponent µ(α) ≈ 1 for 0 < α < 2, calculated for barrier crossing in bistable and
metastable potential profiles [147, 148].
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2.6 Simultaneous presence of Lévy noise and ther-

mal fluctuations

In this section the presence of both thermal and Lévy noise sources is analyzed.
Therefore, in Eqs. (2.25) and (2.26) both contributions of Gaussian thermal fluctuat-
ing current density iT (x, t) and non-Gaussian Lévy noise current density inG(x, t) are
considered. The Lévy contribution is restricted to a Cauchy-Lorentz term. The noise
intensities are indicated by γG (Gaussian), ranging within the interval [10−7, 1], and γCL

(Cauchy-Lorentz). Noise induced phenomena previously observed, when the CL noise
source only is present, show now some differences. The values of the system parameters
are chosen in such a way to highlight these changes. Fig. 2.11 contains a collection of
MST curves obtained varying the junction lenght L (panels a and b), CL noise intensity
γCL (panels c and d), and frequency of the oscillating bias current ω (panels e and f).
Top and bottom panels show data calculated using i0 = 0.5 and i0 = 0.9, respectively.
An overall reduction of the MST values is observed by increasing the intensity of thermal
fluctuations, by speeding up the switching process between the superconductive and
the resistive state. The simultaneous presence of thermal fluctuations and a Lévy noise
source produces an increase of the overall intensity ”felt” by the string phase. In all
panels clear modifications of the nonmonotonic behavior are present, becoming more
pronounced as the Gaussian thermal noise intensity increases, especially for γG > 10−1.

The analysis of MST vs L suggests that the soliton dynamics is modified only when
the intensity of thermal fluctuations are greater than those of the CL noise, that is
γG > γCL, conversely the curves for γG < γCL overlap all together (γG ≤ 10−1). The
curves of the panels a and b maintain the structure already shown in panel b of Fig. 2.6
(see Sec. 2.5.1), that is a nonmonotonic behavior with a maximum and a saturation
plateau. The saturation value of τ decreases, of course, with the increase of the intensity
of thermal fluctuations.

Looking at the graphs of MST vs γCL (panel c), trapping phenomena are observed
when γCL → 0 and γG → 0. For γG ≥ 1, that is when the Gaussian thermal noise intensity
is comparable with the time average of the potential barrier height (∆U i0=0.5 ' 1, see
Eq. (2.41)), trapping events disappear and thermally activated processes drive the
switching events. For i0 = 0.9 (panel d) all the curves show a nonmonotonic behavior,
which is the signature of the NES effect. Low thermal noise intensities do not affect the
behavior of the NES curve, with respect to the case of absence of thermal noise, till their
value is lower than γG ' 0.2. This is the value of the CL noise intensity corresponding
to the maximum of τ versus γCL, γMax

CL ' 0.2 (see panel c of Fig. 2.9). In other words,
thermal fluctuations affect the behavior of NES curve for γG & γMax

CL . The maximum of
the curve decreases and it is shifted towards higher CL noise intensities, because of the
larger spatial region of the potential profile spanned by the phase string before reaching
the boundaries [−π, π].

For CL noise intensities γCL & 1, all the curves of MST vs γCL (see panels c and
d) coalesce together with a power-law behavior given by Eq. (2.42), with µ(α) ∼ 0.9.
When the structure of the potential profile becomes irrelevant for the dynamics of the
phase string, that is when the noise intensity γCL is greater than the time average of the
potential barrier heights (∆U i0=0.5 ' 1 and ∆U i0=0.9 ' 0.4), the MST has a power-law
dependence on the noise intensity.

The curves of MST as a function of ω in panels e and f of Fig. 2.11 reproduce the
typical RA behavior (see panels c and dof Fig. 2.8). Again, all the curves of MST are
lowered for increasing thermal fluctuation intensities. Specifically, for i0 = 0.5 (panel e),
the minimum of the curve decreases and it is shifted towards higher values of the driving



40 2. Long JJ: the effects of the non-Gaussian noise

frequency. The resonant rate escape, that is the resonant frequency at the minimum,
increases by increasing the overall noise intensity, being fixed the height of the average
potential barrier (∆U i0=0.5 ' 1). For i0 = 0.9 (panel f), there is not any potential barrier
for about half period of the external driving force, and therefore the switching process is
accelerated, and the position of the minimum is slightly affected by thermal fluctuations.

2.7 Conclusions

I have investigated the influence of both thermal fluctuations and external non-
Gaussian noise sources on the temporal characteristics of long-overlap JJs. I studied how
random fluctuations with different α-stable (or Lévy) distributions affect the supercon-
ducting lifetime of long current-biased Josephson junctions. The study was performed
within the framework of the sine-Gordon equation. Specifically I analyzed the mean
switching time (MST) of the phase difference across the junction, from a minimum of
the tilted washboard potential, as a function of different parameters of the system and
external random and periodical driving signals. I found nonmonotonic behaviors of the
superconducting lifetime τ as a function of noise intensity γ, driving frequency ω and
junction length L.

In particular, in the behaviour of the MST, I observed noise induced phenomena
such as stochastic resonant activation and noise enhanced stability, with different char-
acteristics depending on both the bias current distribution along the junction and the
length of the superconducting device. Moreover, temporary trapping of the phase string
in the metastable state with Gaussian thermal and CL noises gives rise to an oscillating
behavior of the time evolution of the probability P (t). The analysis of the MST as a
function of the junction length revealed that the soliton dynamics plays a crucial role
in the switching dynamics from the superconducting to resistive state. In more detail,
I studied the relationship between creation and propagation of solitons and different
features of the mean switching time. This analysis has demonstrated the existence of two
different dynamical regimes. One, occurring for short junction, is characterized by the
movement of the phase string as a whole. The other one, occurring for junction whose
size exceeds a critical length, in which the kink (or antikink) creation is allowed.

Moreover, for high values of the bias current, there is a length in which the two
regimes take place simultaneously. Finally I found that, choosing an inhomogeneous
distribution of the bias current along the junction, the cells located at the junction edges
behave as generators of solitons. In these conditions the escape from the metastable
superconducting state is strongly affected by the soliton dynamics. The analysis of the
contemporaneous presence of Cauchy-Lorentz and thermal noise sources gives rise to
modifications in the soliton dynamics and noise induced effects observed in the transient
dynamics of JJs in the presence of non-Gaussian, Lévy type noise sources. Moreover
oscillating pairs of soliton-antisoliton (breathers) induced by the noise have been observed.

Our findings, which are important to understand the physics of fluctuations in long-
overlap Josephson junctions to improve the performance of these devices, could help to
shed new light on the general context of the nonequilibrium statistical mechanics. In fact,
JJs are good candidates for probing relevant physics issues in metastable systems [8].
Moreover, the mean switching time from one of the metastable states of the potential
profile encodes information on the non-Gaussian background noise. Therefore, the
statistical analysis of the switching times of JJs can be used to analyze weak signals in
the presence of an unknown non-Gaussian background noise.

The results presented in this chapter are published in Ref. [10].



Chapter 3

Long JJ: breathers detection

I consider a long Josephson junction excited by a suitable external ac-signal, in order
to generate, control and detect breathers. Studying the nonlinear supratransmission
phenomenon in a nonlinear sine-Gordon sinusoidally driven chain, Geniet and Leon [12,
13] explored the bifurcation of the energy transmitted into the chain and calculated a
threshold A(ω) for the external driving signal amplitude, at which the energy flows into
the system by breathers modes. I numerically study the continuous sine-Gordon model,
describing the dynamics of the phase difference in a long Josephson junction, in order to
deeply investigate the “continuous limit” modifications to this threshold. Wherever the
energy flows into the system due to the nonlinear supratransmission, a peculiar breathers
localization areas appear in a (A, ω) parameters space. The emergence of these areas
depends on the damping parameter value, the bias current, and the waveform of driving
external signal. The robustness of generated breathers is checked by introducing into the
model a thermal noise source to mimic the environmental fluctuations. Presented results
allows one to consider a cryogenic experiment for creation and detection of Josephson
breathers.

The chapter is structerd as follows. Section 3.1 presents an introduction about
the phenomenon of nonlinear supratransmission, recalling the JJ frameworks in which
this effect cames into view. Section 3.2 contains details about the SG model and the
description of the driving signal used to excite breathers into the system. The collection
of results is presented in section 3.3, including a deep discussion about the emerging
features. In section 3.4 the conclusions are drawn.

3.1 Nonlinear supratransmission and breathers

The behavior of a nonlinear system excited by an external sinusoidal driving and the
bifurcation of the energy transmission into the system were deeply studied by Geniet
and Leon [12, 13]. The Floquet theorem [149] states that, for linear waves in a periodic
structure, a forbidden gap of frequency exists. The frequency gap between acoustic and
optical branches in the vibration modes of a diatomic chain well embodies this picture.
Waves with frequencies within this forbidden range esponentially vanish in the medium
(evanescent waves). In nonlinear systems excited by plane waves, the appearance of gap
solitons [150] and the localization of energy due to nonlinear instability are matter of
many systems [151–156]. If the nonlinear medium, characterized by a forbidden band
gap (FBG), is irradiated to one end by a sinusoidal drive, with frequency within the
gap, the energy transmission can be supported. This phenomenon is called nonlinear
supratransmission (NST) and is nowadays reported in several other contexts, from Bragg
media [157, 158], coupled-wave-guide arrays (nonlinear Schrödinger model) [159, 160],

41
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optical waves guide arrays [161], Fermi-Pasta-Ulam model [162], Klein-Gordon (KG) elec-
tronic network [163], chains of coupled oscillators [164], discrete inductance-capacitance
electrical line [165] to generic multicomponent nonintegrable nonlinear systems [166].
The manifestation of NST in both SG and KG equations, points out that this process
is not dependent on the integrability, but is a feature of systems possessing a natural
forbidden band gap. Geniet and Leon found a very simple rule proving an explicit formula
for the bifurcation diagram in the (ω,A) parametric space: the energy flows into the
medium as soon as the amplitue A of the driving, at frequency ω, exceeds the maximum
amplitude of the static breather of the same frequency. This energy then travels through
the system by means of plasma waves and nonlinear localized excitations, that is solitons,
antisolitons and breathers. Geniet and Leon extended the results, obtained for a SG
chain, to its continuous version, used to describe a long Josephson junction (LJJ) whose
extremity is subjected to a sinusoidal excitation (Neumann boundary condition). The
soliton solutions are strongly stable, maintaining their shape after collisons or reflections,
and producing clean evidences in the I-V characteristics of the junction. A breather is
another travelling SG solution formed by a soliton-antisoliton bounded couple, oscillating
in an internal frame with a proper internal frequency. The magnetic flux associated
with a breather is zero, as the voltage difference across the junction. Indeed, considering
that the time variations of ϕ produce a voltage difference across the junction according
to the a.c. Josephson relation, the rapid oscillations of the breather phase results in
a mean voltage close to zero (or beyond the sensitivity of nowadays high frequencies
oscilloscopes). Other pratical difficulties exist: i) a breather has to be efficently generated
and trapped, for a sufficent long time, in a confined area to allow measurements, ii)
it decays esponentially in time, even more so considering the damping affecting the
system, and iii) an applied bias current tends to split the breather in a soliton/antisoliton
couple. These are the reasons that underlie the lack of experimental evidences and
confirmations of breathers in LJJ. Observations of breathers, called rotobreathers, in
Josephson junctions (JJ) are reported only using “Josephson ladders”, i.e. a ladder
composed by small JJs [167–171]. Our investigation points towards an experimental
setup devoted to the exclusive generation and detection of breathers in LJJ. The influence
of the environment should be take into account to well describe a real experimental
framework. Bodo et al [14, 163, 172] enhanced the deterministic analisys developed by
Geniet and Leon in a discrete SG chain, using a sinusoidal excitation corrupted by an
additive white Gaussian noise. Considering driving amplitude below the critical value,
they highlighted the generation of noise induced breathers, with a probability depending
on the noise intensity. To check the robustness of the generated breathers, a Gaussian
white source is added to the perturbed SG model, to mimic the environment effect on
the breather’s dynamics. The percentage of surviving breather, including a white noise
source of given amplitude, is calculated.

3.1.1 The nonlinear SG chain

The pioneers in the context of NST were Geniet and Leon [12, 13]. They explored
the bifurcation of energy transmitted in a discrete SG chain composed by N damped
coupled oscillators, initially at rest

ün − c2(un+1 − 2un + un−1) + sinun = −γ(n)u̇n n = 1, ..., N (3.1)

with Dirichlet boundary condition at the origin of the chain,

u0(t) = A sin(ωt) un(0) = 0 u̇n(0) = 0. (3.2)
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Figure 3.1: Representation of un(t) as a function of time for n = 60 in the case ω = 0.90 for
two amplitudes. [12]

The damping coefficent γ is used to model a semi-infinite chain with an absorbing
boundary. The parameter c is the coupling factor. Geniet and Leon [12, 13] deduced,
exciting the JJ in the forbidden frequencies gap (ω < 1), a threshold As(ω)

As(ω) = 4 arctan

[
c

ω
arccosh

(
1 +

1− ω2

ω

)]
, (3.3)

above which NST accours and the system permits the energy transmission by means of
nonlinear modes generation (breathers, kinks, antikinks).

Geniet and Leon checked the qualitative definition of the bifurcation threshold by
means of numerical simulations of Eq. (3.1) with the boundary condition Eq. (3.2) by
varying, at given frequency ω, th amplitude A around the above value As = 1.803 (for
c = 4). Observing the motion of only one element of the chain, the appearence of NST
can be easily proved. In Fig. 3.1 the motion of the 60th site of a chain, composed by
200 elements driven at frequency 0.9 at amplitudes A = 1.78 (no NST) and A = 1.79
(NST) for a coupling factor c2 = 16, is shown. Each large oscillation in the right panel
of Fig. 3.1 corresponds to a breather passing by the site. Two of them are generated and
cross the site 60 at times 120 and 160.

The Fig. 3.2a shows, by systematic exploration of the chain, the lowest A values for
which NST is seen in numerical simulations, and it is obtained for 200 particles with a
coupling c2 = 100 for a typical time of 200. The points in this figure are compared to
the theoretical threshold expression 3.2 (continuous curve). Good agreement, between
calculation and theoretical predictions, exists, apart for the discrepancies for A values
within the range [0.18− 0.33].

Moreover, Geniet and Leon numerically evaluated the energy flowing into the sys-
tem [13], for a generic nonlinearity deriving from a potential energy V (un) (for the SG
case V (un) = 1− cosun). Starting from the energy density

Hn =
u̇2
n

2
+

c2

2
(un+1 − un)2 + V (un) n = 1, ...,∞ (3.4)

and considering the evolution equation, that follows the conservation law

∂Hn

∂t
+ (Jn+1 − Jn) = 0 (3.5)

with the current
Jn = −c2u̇n(un − un−1), (3.6)

the total energy of the system reads

E =
∞∑
n=1

Hn +
c2

2
(u1 − u0)2, (3.7)
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(a) (b)

Figure 3.2: The bifurcation diagrams in the (A,ω) plane. The crosses indicate the lowest
values of amplitude for which nonlinear supratransmission is seen in numerical simulations. a)
Discrete SG chain, the solid curve is the threshold Eq. (3.3). b) Continuous SG, the solid curve
is the threshold Eq. (3.13). [12]

including also the potential energy associated with the coupling between the first particle
u1 and the boundary u0. The chain is supposed infinite with un(t)→ 0, that is Jn → 0,
as n→∞.

Taking the time derivative

∂E

∂t
=
∞∑
n=1

∂Hn

∂t
+ c2u̇1(u1− u0) + c2u̇0(u0− u1) =

∞∑
n=1

∂Hn

∂t
− J1 + c2u̇0(u0− u1) (3.8)

and using the Eq. (3.5) to explicit the sum over n of Hn

∂H1

∂t
+
∂H2

∂t
+ ...+

∂Hn

∂t
= (J1 −��J2) + (��J2 −��J3) + ...+ (��Jn − Jn+1) = J1 − Jn+1,

the Eq. (3.8) becomes

∂E

∂t
= [J1 − Jn→∞]− J1 + c2u̇0(u0 − u1) = −Jn→∞ + c2u̇0(u0 − u1) =

= c2u̇0(u0 − u1). (3.9)

The energy injected Ei into the system during a time T is

Ei = c2

∫ T

0

u̇0(u0 − u1)dt. (3.10)

The continuous version of the Eq. (3.1) subjected to a costant torque, for the variable
x = n/c and 1/c→ 0, is

utt + γut + sinu = ib + uxx. (3.11)

Including the boundary condition, called Neumann bundary condition

∂xu|x=0 = B sin(ωt) (3.12)

the resulting threshold is [12, 13]

Bs = 2(1− ω2). (3.13)

The Bs expression is calculated imposing that the system adapts its phase profile to
the breather derivative, i.e. the derivative of the Eq. (2.9), at the boundary ∂xu|x=0 =
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Figure 3.3: Picture of a breather generated in a mechanical pendula chain driven at one end
at a frequency in the forbidden band gap. [13]

∂xub|x=0. Varying the position of the breather’s center to maximize ∂xub|x=0, the simple
expression for the maximum amplitude (see Eq. (3.13)) is obtained. Geniet and Leon
solved the discrete system, with no applied bias (ib = 0), for a chain of 60 particles with
an absorbing boundary on the last 30, and with a coupling factor c2 = 25. The results
in Fig. 3.2b show good agreement with the theoretical threshold Bs, except perhaps the
low frequencies and close to the plasma (phonon) band (ω ∼ 1).
They also experimentally realized the phenomenon of NST, using a mechanical pendula

chain driven on a boundary by a periodic torque [13]. A picture of the breather generated
by the boundary driving at the frequency in the FBG is shown in the Fig. 3.3. This
breather is obtained using a chain formed by 48 pendula of angular eigenfrequency
ω0 = 15 Hz (upper value of the FBG) by driving the system at frequency 12.7 Hz,
corresponding to ω = 0.85 in normalized units. The measured coupling costant was
c = 32.

Bodo et al [14, 172] enhanced the deterministic analysis described hitherto, studying
noise induced breathers, in an externally driven SG chain, excited using a driving sugnal
with amplitude below the deterministic threshold. They considered a driving sinusoidal
excitation “corrupted” by a white Gaussian noise η(t) of root mean square (RMS) value,
replacing the first boundary condition in Eq. (3.2) with:

u0(t) = e−
t−t0
20π/ω [Asin(ωt) + η(t)]H(t− t0) (3.14)

where H(t) is the Heaviside function and t0 corresponds to the time at which the breather
reaches the 50th cell. With this modified boundary condition, only one breather can be
generated. In order to investigate the noise influence on the NST, they calculated over
200 numerical realizations the probability to generate a breather mode as a function
of the RMS. The results vaying the amplitude of the sinusoidal driving are shown in
Fig. 3.4a. The curves contained in this picture have a staircase profile. The probability
to find a breather is first zero, but, reached a RMS critical value, rapidly increases
until a breather is definitely generated. In order to determine the appropriate amount
of noise for generating a breather, two RMS critical values σ10% and σ90% are defined,
corresponding to the noise intensity giving probabilities of 10% and 90%, respectively.
The corresponding curves are shown in Fig. 3.4b. Below the first curve, the noise is
not sufficient to generate a breather, conversely beyond the second curve a breather is
surely induced into the medium. Between these two curves, a breather is created with a
probability in the range [σ10%;σ90%].
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(a) (b)

Figure 3.4: a) Probability of generating a breather versus the RMS noise amplitude for
different amplitudes of the sinusoidal driving. The probability is estimated over 200 simulations.
(1) A = 1.23, (2) A = 1.2, (3) A = 1.15, (4) A = 1.1, (5) A = 1, (6) A = 0.9. b) Bifurcation
diagram of the SG chain subjected to a noisy sinusoidal excitation. (1) Critical noise value σ10%

for which a breather is generated with 10% probability versus the amplitude. (2) Critical noise
value σ90% for which a breather is generated with 90% probability versus the amplitude. These
two critical curves define three regions of parameters that allow us to generate a breather with
a given probability. Parameters: N = 4000, m = 500, b = 140, ω0 = 1, c = 10, Ω = 0.95. . [14]

3.2 The continuous SG model

To describe the dynamics of the LJJ used to generate breathers, the SG equation [62,
79] is used, including the quasiparticle tunneling term and an additional stochastic
contribution iTN(x, t), but neglecting the surface resistance of the superconductors,

ϕtt(x, t) + γϕt(x, t)− ϕxx(x, t) = ib − sin(ϕ(x, t)) + iTN(x, t), (3.15)

where a simplified notation has been used, with the subscripts of ϕ indicating the partial
derivative in that variable. The SG equation is expressed in terms of the dimensionless
x and t variables, that are the space and time coordinates normalized respectively to
the Josephson penetration depth λJ and to the inverse of the plasma frequency ωp of
the junction. The damping parameter is γ = (ωpRNC)−1, and it will be set hereafter to
a small value to work in underdamped regime, in particular γ ≤ 0.5. Higher damping
parameters drastically and rapidly reduce the amplitude and the velocity of the breathers,
making it hard to detect them.

Eq. (3.15) is solved imposing the following boundary conditions

ϕx(0, t) = f(t) ϕx(L, t) = 0 (3.16)

where f(t) is the external driving pulse used to excite the LJJ and generate the breathers.

3.2.1 The driving signal

Previous authors [12, 14] studied a junction excited by a sinusoidal external signal.
Gaussian or rectangular pulses irradiating the system cannot generate breather modes,
but can excite only solitons and antisolitons. Indeed, recalling the relation between the
external magnetic field and the x−derivative of the phase (see Eq. (2.22)), a Gaussian
pulse resembles the profile of the x−derivative of a soliton, i.e. a fluxon (see Fig. 2.3b).



3.3. Numerical results 47

�
� �� ��� ��� ��� ��� ���

��
��

��

��

��

�

�

�

�

�	
��


�����������	
�

�������

�������
�
���
������

�������

�

�
���

�

(a)

�
� ��� ���� ���� ����

��
��

��

��

�

�

�

�

�	
��


�����������	
�

��������

��������

��������
�
���
������

�
��
���

������

�
����

�
��
���

�

(b)

Figure 3.5: a) External sinusoidal pulse, with amplitude smoothly increasing/reducing
according to Gaussian profiles during the switching on/off regimes of the pulse. b) Train of
identical modulated sinusoidal pulses spaced by TPulses.

Instead, the x−derivative of a breather is more similar to an oscillation period of a
sinusoidal envelope. For this reason a sinusoidal signal have to be used to excite breather
modes. In our model, one end of the junction is driven by a sinusoidal pulse f(t)

f(t) = A(t) sin(ωt). (3.17)

with amplitude A(t) and frequency ω lower than 1, that is, due to the time normalization,
lower than the JJ plasma frequency ωp:

To well reproduce a meaningful experimental signal, see Fig. 3.5a, that is without
abrupt variations during the switching on/off regimes, the driving amplitude A(t) is
smoothly increased/reduced according to Gaussian profiles:

A(t) =



A e−
(t−T−)2

σ2 with t < T−

A T− ≤ t ≤ T+

A e−
(t−T+)2

σ2 with t > T+

where A is the maximum amplitude, T± and σ are the centers and the tails of the
Gaussian envelopes, respectively, so that the pulse duration is Texp = T+−T−. Hereafter,
the value of the Gaussian tails will be imposed to σ = 20. A real experimental realization
needs a train of identical pulses, to exite the multiple generation of breathers. The signal
to use is shown in Fig. 3.5b, where TPulses is the distance between consecutive pulses.

3.3 Numerical results

The deterministic analysis is carried out setting iTN(x, t) = 0 in the Eq. (3.15). The
lenght of the junction is hereafter imposed to L = 50λJ , a typical value for the commonly
used LJJ. The integration of the stochastic differential Eq. (3.15) is performed, within
the Ito scheme, by a finite difference method. Time and space steps are ∆x = ∆t = 0.005
and the maximum observation time is set to Tmax = 300. As initial condition, the string
is at rest in the first washboard potential valley.
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The analysis is performed varying the driving amplitude A and frequency ω in the
ranges A ∈ [0− 2.5], with ∆A = 0.01, and ω ∈ [0− 1] (i.e. ω ≤ ωp in not normalized
units), with ∆ω = 0.01, respectively.

To follow the evolutions of breathers, it is easier to focus the attention only on one
element, i.e. a cell, of the string. To avoid misreading due to boundary reflections, a
reference cell far from the edges is chosen, in our analysis xref = 20. To detect a breather
is useful calculate the time average of the phase of this reference cell, ϕxref , and the
dispersion of the ϕxref (t) values from this average value, that is the standard deviation
(SD), σϕ. Three different cases can arise:

1. ϕxref ' 0 and σϕ ' 0
absence of NST, there are not nonlinear excitations travelling through the medium;

2. ϕxref ' 0 and σϕ . 1
only breathers are excited;

3. ϕxref � 1 and σϕ � 1
every combinations of solitons, antisolitons and breathers travell through the
medium.

A refined bifurcation diagram can be create by plotting the σϕ as a function of (A, ω),
neglecting the σϕ � 1 values obtained in presence of at least one moving soliton (case
3). A collection of these diagrams is presented in the left panels of the Figs. 3.6, 3.8
and 3.9. A different bifurcation diagram can be obtained by plotting the energy injected
Ei into the system, according to Eq. (3.10), as a function of (A, ω). A collection of these
diagrams is presented in the right panels of the Fig. 3.6, 3.8 and 3.9.

The panels of the Fig. 3.6 are obtained setting the damping parameter γ = 0.02
and the bias current ib = 0.0, and varying the duration of the external pulse, so that
Texp = {1 (panels a and b), 5 (c and d), 10 (e and f), 20 (g and h), 35 (i and l)}. In
each left panel, the light grey background indicates the absence of breathers modes
exclusively generated into the junction. In detail, for low (A, ω) values (below the
threshold Bs, see Eq. (3.13)) there is not NST effect (case 1), while above the threshold
every kind of nonlinear excitations can propagate through the medium. The colored spots
highlight the exclusive presence of breathers (case 2), resulting in a new and unexpected
localization of the breathers in branches. Plasma waves, generated by the external signal
and resulting from the breathers decay, are also observed with the breathers. Between
these breathers-branches, every combination of kinks, antikinks, breathers and plasma
waves are detected, but due to the stable nature of solitons and the damping of the
medium, after a short time only soliton solutions survive inside the system. The branches
for high amplitude values, that is A & 1, corresponde to multiple generation of stationary
and moving breathers. The situation for low frequencies (∼ 0.2) and high amplitude is
consistent with Geniet and Leon’s results [12].

The analisys of the energies injected into the system is displayed in the right panels
of Fig. 3.6. Each of them shows a large black area, sign of the lack of NST (no energy
flows into the system). Over the bifurcation threshold, the energy flux is evidenced by a
colorful region, in which branches structures, similar to that found in the σϕ diagrams,
can be noted. The breathers tend to localize in “border regions” where Ei significantly
changes (i.e. between areas with a color change). Moreover, this suggests that the
breathers prefer to localize into isoenergetic regions of (A, ω) parameter space, where
the energy is slightly lower than the sorrounding areas. In these more intense (from the
energetic point of view) sorrounding regions, solitons and antisoliton can be generated.
Indeed, according to the Eq. (2.20), the energy of a breather is lower than the energy of
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Figure 3.6: Bifurcation diagrams for σϕ (left panels) and injected energies Ei (right panels) as
a function of amplitude A and frequency ω of the driving signal, setting γ = 0.02 and varying
the duration of the pulse Texp. From the top, Texp = {1 (panels a and b), 5 (c and d), 10 (e
and f), 20 (g and h), 35 (i and l)}.
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Figure 3.7: Bifurcation thresholds Eq. (3.13) [13] and 3.22, setting t = Texp.

a kink-antikink couple. I can suppose that breathers are generated if Ei is within the
range [Eb; 2Es[ (see Eq. (2.20), that is:

Eb = 16γ
√

1− ω2 ≤ Ei < 16γ = 2Es. (3.18)

Increasing the pulse duration Texp, more energy comes into the system, and the breathers
branches tend to disappear, because the condition expressed by the Eq. (3.18) is hardly
realized.

The breathers branches seems start from well-defined points of the bifurcation
threshold. Following [12], Eq. (3.13) is obtained supposing that, at the boundary, the
system adapts to the stationary breather derivative centered in (−x0), ∂xϕ(x, t)|x=0 =
∂xϕb(x, t)|x=0, that is

ϕb(x, t) = 4 arctan

{
k

ω

sin (ωt)

cosh [k(x− x0)]

}
(3.19)

∂xϕb(x, t)|x=0 = 4
k2

ω

sin (ωt) sinh(kx0)

cosh2(kx0) + k2/ω2 sin2(ωt)
. (3.20)

Here, ω2 + k2 = 1 is the dispersion relation for evanescent waves. Varying the position
x0, Eq. (3.20) has a maximum for x0 = xm given by

sinh2(kxm) = 1 + k2/ω2.

so that:

∂xϕb(x, t)|x0=xm
= 2

k2

ω

sin(ωt)√
1 + k2

ω2 sin2(ωt)
. (3.21)

The expression of the threshold Bs is obtained by calculating the maximum amplitude
of Eq. (3.21), i.e. imposing sin(ωt) = 1,

Bs = 2
k2

ω

1√
1 + k2/ω2

= 2
k2

ω

√
ω2

ω2 + k2
= 2

k2

�ω
�ω = 2(1− ω2).

Instead, maintaining the sinusoidal dependences and using the dispersion relation, from
the Eq. (3.21) the maximum amplitude becomes

B̃s =
2(1− ω2)√

1 + ω2 cot(ωt)
. (3.22)
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Figure 3.8: Bifurcation diagrams for σϕ (left panels) and injected energies Ei (right panels) as
a function of amplitude A and frequency ω of the driving signal, setting γ = 0.02 and Texp = 20
and varying the bias current value ib. From the top, ib = {0 (panels a and b), 0.05 (c and d),
0.1 (e and f), 0.15 (g and h), 0.2 (i and l)}.
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The Eqs. (3.13) and (3.22), for t = Texp, are plotted in Fig. 3.7. Exciting the junction
with a signal of limited duration, the energy flows into the medium by breather modes,
only for the (A, ω) values for which the curves in Fig. 3.7 touch each other.

The bifurcation diagrams of dispersion and energy-injected presented in Fig. 3.8 are
calculated setting γ = 0.02 and Texp = 20 and varying the bias current value ib. In
detail, ib = {0 (panels a and b), 0.05 (c and d), 0.1 (e and f), 0.15 (g and h), 0.2 (i
and l)}. Investigations of breathers excited in a biased SG equation was developed by
Lomdahl et al [173]. A positive (negative) driving force accelerates a kink (antikink) to
the right and an antikink (kink) to the left, so that a large driving force, i.e. greater
then a threshold value [173], causes the breather to split in a kink-antikink pair. The
breathers-branches in the left panels of Fig. 3.8 disappear increasing the bias current,
as a sign of the breathers splitting into kink-antikink couples due to the bias current
increase.

Bifurcation diagrams for σϕ and injected energies Ei, setting Texp = 20, i0 = 0 and
varying the damping parameter γ, are shown in the left and right panels of Fig. 3.9,
respectively. The damping parameter values are γ = {0 (panels a and b), 0.001 (c and
d), 0.01 (e and f), 0.02 (g and h), 0.2 (i and l)}.

By increasing the damping up to γ ≤ 0.02, the breathers density on the graph increases.
Probably, a high damping parameter value makes easier to realize the energy condition
expressed by Eq. (3.18). This is true under the assumption that the breather should be
able to propagate for a sufficent time along the medium (the experimental requirement for
our purposes is that it reachs the junction edge opposite to the excited one). Indeed, due
to its unstable nature, a breather tends to rapidly decay in amplitude and to move more
and more slowly. Recently, Johnson and Biswas [174], deeply explored the dynamics of a
breather solution of a perturbed SG equation, including in the perturbation many terms,
taking into account different physical phenomena in JJs (dissipation, inhomogeneity of
local inductance and capacitance, diffusion, losses due to a current along the barrier,
high order spatial dispersion). They found the integral of motion and used it in soliton
perturbation theory to derive the differential equation dv/dt governing the breather
velocity. For JJs in which only dissipation is considered, dv/dt can be solved exactly in
terms of an initial velocity v(0) = v0, obtaining the velocity of a breather v(t) normalized
to the initial value

v(t)

v0

=
e−γt√

1 + v2
0(e−2γt − 1)

, (3.23)

where v(t) and v0 are both normalized to the Swihart velocity. The breather velocity as
a function of time t, for γ ∈ [0.01− 0.05], is plotted in Fig. 3.10a, setting v0 = 0.9. The
rapid decay of the breather is evident.

Integrating the Eq. (3.23) the distance covered by a breather in a time t is

x(t) =
1

γ

[
arcsinh

(
v0√

1− v2
0

)
− arcsinh

(
v0√

1− v2
0

e−γt

)]
. (3.24)

The time required to reach the position x(t) = L is

t(x=L) = −1

γ
ln

[
cosh (γL)− sinh (γL)

v0

]
(3.25)

and this espression diverge for

cosh (γL) =
sinh (γL)

v0

that is tanh (γL) = v0. (3.26)
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Figure 3.9: Bifurcation diagrams for σϕ (left panels) and injected energies Ei (right panels)
as a function of amplitude A and frequency ω of the driving signal, setting Texp = 20 and
varying the damping parameter γ. From the top, γ = {0 (panels a and b), 0.001 (c and d),
0.01 (e and f), 0.02 (g and h), 0.2 (i and l)}.
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Figure 3.10: a) Breathers speeds, normalized to the intial value v0, see Eq. (3.23), as a
function of the time t, for γ ∈ [0.01−0.05] and setting v0 = 0.9. b) Maximum distances covered
by a breather, see Eq. (3.27), as a function of the initial speed v0 for γ ∈ [0.01− 0.05]. The
legend in panel b refers to both graphs.

The maximum distance covered by a breather in a time t→∞ is

Lmax =
arctgh (v0)

γ
. (3.27)

The maximum distance Lmax as a function of the initial speed v0 for γ ∈ [0.01− 0.05] is
plotted in Fig. 3.10b. This picture shows that, depending to the initial speed and to the
damping value, breathers can never reach the right junction edge (a dash-dotted line is
placed in correspondence of Lmax = 50 to mark the value setted in the analysis).

The panel (i) of Fig. 3.9 shows only plasma waves and very slow solitons. Indeed, in
absence of applied bias current, this value of damping is sufficient to slow the soliton up
to stop it.

To check the robustness of the generated breathers, a nonzero noise amplitude is
considered. The stochastic investigation is developed performing N = 103 numerical
realizations, setting the (A, ω) parameters corrisponding to the deterministic creation
of breathers. In the SG model, see Eq. (3.15), a white noise contribute iTN , with the
well-known statistical properties〈

iTN
(
t̃
)〉

= 0
〈
iTN

(
t̃
)
iTN

(
t̃+ τ̃

)〉
= 2

kT

RN

δ (τ̃) . (3.28)

is included.
Thermal fluctuations can provide the system with an amount of energy large enough

to create a kink-antikink couple instead of a breather, or to break a breather into a
kink-antikink couple. The percentages of surviving breathers, after N numerical realiza-
tions, as a function of the amplitude A (varying in the range A ∈ [0.4− 1.5]) and of the
frequency ω (varying in the range ω ∈ [0.55− 0.85]), are shown in Fig. 3.11. The noise
amplitudes are γTN = 10−4 (panel a) and γTN = 10−3 (panel b). For large A values,
little amount of thermal energy can be enough to destroy a breather, i.e. for A & 1,
breathers can be detected with a probabilty less then ∼ 20%. Anyway, suitable (A, ω)
values ranges exist in which breathers are still generated by external excitation with
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(a)

(b)

Figure 3.11: Percentage of surviving breathers as a function of amplitude A and frequency ω
of the external drive, setting γTN = 10−4 (panel a) and γTN = 10−3 (panel b), and performing
N = 103 numerical realizations. The legend in panel b refers to both pictures.

high probabilities, despite of the thermal influence.

3.4 Conclusions

I explore the breathers generation and propagation in a long Josephson junction ex-
ternally irradiated by a suitable excitation, changing the amplitude A and the frequency
ω of the exciting external signal. The analysis is computationally developed in the
framework of the damped and biased continuous sine-Gordon equation, using a sinusoidal
pulse with amplitude A(t) smoothly increasing/reducing, according to Gaussian profiles,
during the switching on/off regimes of the pulse. To include the environmental influence,
a Gaussian white noise source is inserted into the model. Taking a cue from the results
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of Ref. [12] on the nonlinear supratransmission (NST) in a discrete sine-Gordon chain, I
obtained two kinds of bifurcation diagrams, plotting the dispersion of the phase values of
a reference cell, and the energy injected into the system as a function of A and ω. These
pictures clearly shows a parameters region in which no energy flows into the medium
(that is without NST) and a region in which energy travels through the junction by
means of SG nonlinear excitations, i.e. kinks, antikinks, breathers and plasma waves.
When NST occurs, I highlighted a new peculiar localization of the breathers in branches,
in which soliton modes are not excited. The density of these breathers-branches on a
(A, ω) parametric space is strongly dependent on the duration of the pulse, the applied
bias current and the damping of the system. Increasing the pulse duration more energy
is pumped into the system and the energetic conditions, giving an excited breather, are
hardly satisfied. Therefore, breather-branches tend to disappear increasing the pulse
duration. Similarly, increasing the applied bias current the breather-branches tend to
vanish because the current stretches a breather up to split it into a kink-antikink couple.
The damping parameter has also to be carefully set, because an appropriate value favors
the breathers formation but a too high damping value rapidly annihilates a generated
breather. The deterministic analysis is improved including a white noise contribute, to
evaluate the percentage of breathers resisting to the thermal effects. Combination of
(A, ω) exists in corresponce of which breathers are induced with high probability, despite
the noise influence.



Chapter 4

Short graphene-based JJ

I study by numerical methods the phase dynamics in ballistic graphene-based short
Josephson junctions. A superconductor-graphene-superconductor system exhibits super-
conductive quantum metastable states similar to those present in normal current-biased
JJs. I explore the effects of thermal and correlated fluctuations on the escape time from
these metastable states, when the system is stimulated by an oscillating bias current in
the presence of Gaussian white and coloured noise sources. Varying the intensity and
the correlation time of the noise source, it is possible to analyze the behavior of the
escape time from a superconductive metastable state in different temperature regimes.
Moreover, dynamical regimes characterized by the dynamic resonant activation effect, in
the absence of noise source, and the stochastic resonant activation phenomenon, induced
by the noise, can be distinguished. Noise enhanced stability is also observed in the system
investigated. For low initial values of the bias current, the dynamics resonant activation
shows new double-minimum structures.

4.1 Graphene and Josephson junctions
The possibility of obtaining graphene [175], by extraction of single layers from

graphite, paved the way for a new generation of superconductive graphene-based devices.
In particular, the evidence of proximity-induced superconductivity [17, 18], due to the
one-atom thick nature of graphene, promoted the realization of superconductor-graphene-
superconductor (SGS) structures. The refractoriness of graphene to the surface oxidation
in natural environment favours the realization of highly transparent contacts with the
superconductive electrodes. Furthermore, superconductivity in graphene, pure or doped,
was predicted and explored [176, 177] and new devices, as dc-SQUIDs [178, 179], prox-
imity Josephson sensors [180], or bolometers based on superconductive tunnel junction
contacts [181], were fabricated using graphene. The charge carriers in graphene are
massless quasiparticle, the Dirac fermions, with pseudo-spin half and linear energy dis-
persion [182]. The band structure shows contact points, called Dirac points, beetwen the
conduction and valence bands [182]. These peculiar electronic properties [182] give rise
to interesting phenomena, such as specular Andreev reflection [183], unusual propagating
modes along graphene channels [184], oscillatory dependence of the Josephson current on
the barrier thickness and applied bias voltage [185]. Titov and Beenakker [186] predicted,
in the limit of zero temperature, the behavior of critical current and current-phase
relationship (CΦR) for a short ballistic SGS system. Taking a cue from these results,
Lambert et al. [187] derived the expression of the washboard potential for a suspended
graphene junction.

Different aspects of graphene-based junctions in noisy environment were already
examined by several authors. Miao et al. [20] took into account the noise induced prema-

57
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Figure 4.1: Schematic view of a suspended SGS device. The electrons forming a Cooper pair,
when they enter graphene, move into different K-valleys, represented as orange cones. In the
short-junction regime, L�W .

ture switching in underdamped SGS JJ at finite temperature. Specifically, in Ref. [20] the
reduction of the critical current and variations in the product ICRN were experimentally
observed and theoretically explained considering non-negligible the thermal fluctuations.
Other authors [17, 188] suggested a supercurrent reduction by premature switching
induced by thermal and electromagnetic noise. Coskun et al. [16] systematically studied
the thermally activated dynamics of phase slip in SGS JJs throught the measurement of
the switching current distribution. They found an anomalous temperature dependence of
the switching current dispersion due to nontrivial structure [186, 189] of the Josephson
current. A simple stochastic model to explore the electrodynamics of an underdamped
graphene JJ was proposed by Mizuno et al. [15]. They stressed the importance of realizing
high quality suspended SGS structures, to prevent disorders due to the conventionally
used substrates, whereby a flow of supercurrent at high critical temperature can be
obtained. The SGS junction is a good candidate for the fabrication of gate-tunable phase
qubits [190, 191]. In Ref. [190] the study of the stochastic switching current distribution
in a SGS junction for low temperatures allowed to highlight the macroscopic quantum
tunneling and energy level quantization, similarly to conventional JJs. Moreover, Lee et
al. [190] studied the switching current distribution in both quantum and thermal regime,
building up a computational analysis based on the pure resistively and capacitively
shunted junction (RCSJ) model for a conventional JJ [62], that is a SNS or a SIS
junction. Considering a range of temperatures in which the dynamics is exclusively ruled
by thermal fluctuations, Lee et al. [190] observed disagreement between the experimental
and fitted temperatures. To understand this discrepancy, they invoked the misuse, in
their model, of the pure sinusoidal Josephson current distribution, neglecting however
any noise induced effects on the escape rate from the superconductive state.

My work fits well into this scenario, since it aims to study how thermal fluctuations
affect the dynamical behavior of a SGS junction. In particular, I study the influence of
Gaussian (white or colored) noise sources on the switching dynamics from the supercon-
ductive metastable state to the resistive one in a suspended graphene-based short JJ,
considering the proper CΦR [186]. In this chapter I explore therefore the transient
dynamics of an underdamped SGS junction, considering the simultaneous action of
an external driving force oscillating with frequency ω, and a stochastic signal which
represents a random force of intensity γ. I focus our analysis on the mean permanence
time in the superconductive state. The study is performed fixing the initial values of the
applied bias current i0 and the correlation time τc of the colored noise source, and varying
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the frequency ω and the noise intensity γ. Whenever possible, results are compared with
those obtained for normal JJs. The similarities in the behavior of the graphene-based and
normal junctions allow to interprete our results referring to conventional JJ quantities,
such as plasma frequency (Eq. (4.4)).

The chapter is organized as follows. The next section includes an overview about the
physical model used. In Sec. III the theoretical results are shown and analyzed. The
Sec. IV contains a probability density function (PDF) analysis of the escape times, by
focusing on the appearance of noise induced non-monotonic effects in the mean switching
times. In Sec. V conclusions are drawn.

4.2 The Model

The dynamics of a JJ can be explored looking at the time evolution of the order
parameter ϕ. According to the RCSJ model and including the environmental influence,
the equation of motion for ϕ is

ϕtt(t) + β
J
ϕt(t) = ib(t)− iϕ(t) + if (t) (4.1)

where ib(t) and iϕ(t) are the bias and supercurrent respectively, both normalized to
the critical current of the junction Ic. The term if(t) represents the stochastic noise
contribution. The subscripts of ϕ denote partial derivatives in time. The use of normalized
variables allows to extend, in a direct and simple way, the theoretical results to different
experimental settings. Eq. (4.1) is in accordance with the Johnson approach [62],
since it includes a damping parameter β

J
= (ωp0RNC)−1, multiplied by ϕt(t), and

assumes the time variable normalized to the inverse of the zero-bias plasma frequency
ωp0 =

√
2πIc/(Φ0C) (RN and C are the normal resistance and capacitance of the junction,

and Φ0 = h/2e is the magnetic flux quantum). Introducing the parameter β
C

= β
J

−2,
Eq. (4.1) can be alternatively arranged in the Stewart-McCumber framework [62],
according which a term β

C
ϕtt(t) is included in the equation, and the time variable is

normalized to the inverse of the JJ characteristic frequency ωc = ω2
p0
RNC. The JJ

behavior can be depicted as the motion of a “phase particle” with mass m = C(Φ0/2π)2

rolling down along washboard potential. For a conventional current biased junction, the
normalized supercurrent and washboard potential have the well-known expressions

iϕ(t) = sin(ϕ(t)) (4.2)

U(ϕ, t) = −EJ0 [cos(ϕ(t)) + ib(t)ϕ(t)] , (4.3)

where EJ0 = Φ0Ic/2π is the Josephson coupling energy, that is the energy initially stored
in the junction. The bias current represents the slope of this potential. Eq. (4.2) is
the d.c. Josephson relation. In the limit of small amplitude oscillations, the JJ plasma
frequency corresponds to the oscillation frequency in the bottom of a potential well,
modified by the presence of a bias current according to

ω
P

(t) = ωp0
4

√
1− i2b(t). (4.4)

Titov and Beenakker [186] calculated the CΦR and critical current for a ballistic
graphene-based junction at the Dirac point. They addressed the problem in the frame-
work of the Dirac-Bogoliubov-de Gennes (DBdG) equation [183, 192]. Considering the
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Figure 4.2: Washboard potential for conventional (see Eq. (4.3)) and graphene (see Eq. (4.9))
JJs (solid and dashed lines, respectively), for different initial values of the bias current: a
i0 = 0.0; b i0 = 0.5; c i0 = 0.9. It is also shown the initial position (bottom of the potential
well) of the “phase particle”. Blue and pink dotted-dashed lines indicate the left and right
absorbing barriers, respectively.

Josephson current at zero temperature [193]

I(ϕ) = −4e

~
d

dϕ

∫ ∞
0

dε
∞∑
n=0

ρn(ε, ϕ)ε, (4.5)

supposing an “ideal” normal-metal-superconductor interface and taking infinite mass
boundary conditions [194] they obtained the following expressions

iϕ(t) =
I(ϕ)

Ic
=

2

1.33
cos
(ϕ

2

)
tanh−1

[
sin
(ϕ

2

)]
(4.6)

Ic = 1.33
e∆0

~
W

πL
, (4.7)

where W and L are the linear dimensions of the device (see Fig. 4.1), that is the length
of the superconductive plates and their separation, respectively. Furthermore ∆0 is the
superconductive excitation gap, e the electron charge and ~ the reduced Plank’s constant.
Eqs. (4.6) and (4.7) refer to the short-junction regime, in which L is smaller than the
superconducting coherence length ξ (the distance at which a Cooper pair spreads), and
to junctions with short and wide normal region, i.e. L � W . I recall that the simple
CΦR given in Eq. (4.6) is obtained in the limit of zero temperature. Hagimásy et al. [189]
calculated a more general formula for finite temperature T and arbitrary junction length
(for more details about I(ϕ, T ) see Appendix C). However, an analytic expression for
the Josephson current, such as that given in terms of washboard potential, can not
be obtained except for T = 0. Indeed, for vanishing temperature the expression by
Hagimásy et al. correctly converges to that obtained by Titov and Beenakker. Instead,
for T → Tc, the non-sinusoidal supercurrent derived by Hagimásy et al. in both long and
short junction regime, converges to a sinusoidal behavior. In the short junction limit, cf.
Fig. 1a and Fig. 3a in Ref. [189], as long as T . Tc/4, the critical current and i(ϕ) hardly
change, so that Titov and Beenakker’s formula remains valid [195]. This temperature
threshold can be also deduced from the gap equation of the BCS theory, cf. Eq. C.13
in Appendix C. Thi analysis is therefore strictly valid in a wide range of temperature
values, and represents a good approximation for temperatures far from the critical value.
For completeness, in the long junction limit (L� W ), the Josephson current reduces to

I(ϕ) =
e∆

~
tanh

(
∆

2T

)
e−πL/W sinϕ = Ic(T ) sinϕ, (4.8)



4.2. The Model 61

showing the same ϕ-dependence of conventional JJs (see Appendix C).
Lambert et al. [187] obtained from the expression of the current Eq. (4.6), for a SGS,

the following washboard-like potential

Ũ(ϕ, t) = − EJ0

{
− 2

1.33

{
2 sin

(
ϕ(t)

2

)
tanh−1

[
sin

(
ϕ(t)

2

)]
+

+ ln

[
1− sin2

(
ϕ(t)

2

)]}
+ ib(t)ϕ(t)

}
. (4.9)

The analytic knowledge of the potential allows to well impose the initial condition and
the thresholds for the escape time calculations. As well as the conventional U(ϕ, t)

(see Eq. (4.3)), the potential Ũ(ϕ, t) consists of a tilted sequence of wells. In the
superconductive state the particle lies in a well, while in the resistive state it rolls down
along the potential. When this happens, a non-zero mean voltage V across the junction
appears, according to the a.c. Josephson relation, see Eq. 1.5. Furthermore, depending
on the damping parameter value, the phase diffusion state, that is an escape event with a
retrapping in the first subsequent minimum, could be established. When ib(t) ≥ 1, that
is when the applied bias current exceeds the critical value, both potentials (Eqs. (4.3)
and (4.9)) lose their “maxima and minima” structures and the particle tends to freely
slip.

I explore the response of the system to the simultaneous action of both d.c. and a.c.
current sources. The bias current, composed by a constant term, i0, representing its
initial value, and an oscillating part whose frequency ω is normalized to ωp0 , is therefore
given by

ib(t) = i0 + A sin(ωt). (4.10)

with maximum and minimum values given by

i±b = i0 ± A, (4.11)

respectively.
By choosing properly the values of i0 and A, within a period it is possible to achieve

values of ib(t) greater than 1. A direct comparison between the potentials for normal
and graphene-based JJ is given in Fig. 4.2 for i0 = 0.0 (panel a), 0.5 (panel b), 0.9
(panel c). Here it is worth noting that differences, though small, between the graphene
and normal JJ curves are detectable. Fig. 4.2 shows also the initial condition for the
fictitious particle, which is located in the potential minimum. The system leaves the
superconductive regime when the particle reaches one of the nearest maxima. Two
absorbing barriers are therefore placed in correspondence to these maxima, as highlighted
in Fig. 4.2 (see dotted-dashed lines). Recording for each realization the escape times tesc,
i.e. the time required to pass a barrier, for an enough large number N of realizations,
the mean first passage time (MFPT) is defined as

τ =
1

N

N∑
i=1

tesci . (4.12)

The oscillating force acting on the system, ib(t), and stochastic fluctuations, if (t), due
to the environmental influence, drive the switching dynamics. Two different mechanisms
can therefore cause overcome of the potential barrier: the macroscopic quantum tunneling
or the thermally activated passage. These processes are triggered in distinct ranges of
temperature so that, for vanishing values of the bias and damping, a threshold value
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Mizu- Coskun [16] Du [17] Heer- English [19] Miao [20]
no [15] schee [18] Samples

A/B/C/D

iC mA 100 10 800 10 71/107/39/160 110
βC 76 16
C pF 1 12-50
RN Ω 500 10
T K 3 0.4 0.2 0.3 0.01 0.3
TCO K 0.02 [8-17]·10−3 0.12-1.2
γC 1.3 1.7 0.01 1.3 6/4/11/3·10−3 0.11
ωP0 GHz 17 0.8-1.6 102-103

Table 4.1: Experimental values of different JJ parameters, calculated or directly acquired by
various published works [15–20].

exists, TCO = ~ωp0/2πk (k is the Boltzmann constant), called crossover temperature. In
a damped system, when a polarization current is applied, this value is slightly reduced,
becoming [40]

T ?CO = ~ωR/2πk, (4.13)

where ωR = ωP
{√

1 + α2 − α
}

, α = (2ωPRNC)−1 ∝ β
J
. For T < T ?CO the system

undergoes a quantum tunneling regime. On the other hand, for T > T ?CO, the system
works in the thermal activation regime.

Here quantum effects are not taken into account. In this condition, when thermal
fluctuations are neglected, the phase can remarkably change merely as the applied current
approaches the critical value Ic (the system moves into a resistive regime). Conversely,
considering noise effects, transitions along the potential can occur also applying a current
much smaller than Ic. As already pointed out, the phase dynamics is affected by dissipa-
tive phenomena, responsible for peculiarities of the system, ranging from overdamped
(high viscosity β

J
� 1) to underdamped (low viscosity β

J
� 1) condition. Table 4.1

shows a collection of few experimental values, for different graphene-based JJs, calculated
or, whenever possible, directly acquired by different published works [15–20]. Blank
cells indicate not available values. The values of the parameters β

C
= β

J

−2 suggest that
these systems often [15, 16] work in underdamped conditions. Moreover, the comparison
between the working temperature T and the crossover value T ?CO underlines the thermally
activated switching behavior of these junctions [15, 16, 20].

The noise source. − An exhaustive analysis of a real device has to take into account
environmental fluctuations continuously affecting the system, such as unpredictable
variations of current and temperature. Thus the deterministic RCSJ model can be
improved by considering the presence of the stochastic current if(t) (see Eq. (4.1)), in
a first approximation modeled using a Gaussian “white” noise source. The stochastic
non-normalized current If

(
t̃
)

is therefore characterized by the well-known statistical
properties of a Gaussian random process〈

If
(
t̃
)〉

= 0
〈
If
(
t̃
)
If
(
t̃+ τ̃

)〉
= 2

kT

RN

δ (τ̃) , (4.14)

where T is the temperature. Using normalized current and time, the correlation function
becomes

〈if (t)if (t+ τ)〉 = 2γ(T )δ (τ) , (4.15)
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where the dimensionless amplitude γ(T ) is proportional to the temperature T . The
expression of γ(T ) depends on the approach used to manage Eq. (4.1)

McCumber) γc(T ) =
kT

RN

ωc
I2
c

=
2e

~
kT

Ic
=
kT

EJ
(4.16a)

Johnson) γp(T ) =
ωp0
ωc
γc(T ) (4.16b)

It is worth noting that the noise intensity can be also expressed as the ratio between the
thermal and Josephson coupling energies (see Eq. (4.16a)). Few γc values, calculated for
several experimental settings, are shown in Table 4.1. More in general, if (t) can represent
a Gaussian colored noise, modeled as an exponentially correlated noise source. Specifically,
in this work the noise source is described by the well-known Ornstein-Uhlenbeck (OU)
process [196]

dif (t) = − 1

τc
if (t)dt+

√
γ

τc
dW (t), (4.17)

where γ and τc are the intensity and correlation time of the noise source, respectively,
and W (t) is the Wiener process, characterized by the well-known statistical properties:
〈dW (t)〉 = 0 and 〈dW (t)dW (t′)〉 = δ (t− t′) dt.

The correlation function of the OU process is

〈if (t)if (t′)〉 =
γ

2τc
e−
|t−t′|
τc , (4.18)

and gives γ δ(t− t′) in the limit τc → 0.

Computational details. − The stochastic dynamics of the system is explored inte-
grating Eqs. (4.1) and (4.17) by a finite difference method. Specifically, the stochastic
differential equation (4.17) is integrated within the Ito scheme. The time step is fixed at
∆t = 10−3 and the maximum time, for which equations are integrated, is tmax = 100, i.e.
a time large enough to catch every nonmonotonic behavior. A collection of first passage
times is obtained iterating the procedure for a sufficiently large number of realizations
N = 104. The initial condition to solve Eq. (4.1) is set at the bottom of a valley of the
potential given in Eq. (4.9), closer to ϕ = 0. During the oscillation of the potential the
two absorbing barriers change their position, following the displacements of the maxima
closer to the initial valley. The analysis is performed in the underdamped regime, setting
β
J

= 0.1 (corresponding to β
C

= 100). Four different values of i0, in the range 0 ≤ i0 < 1,
are used. The time periodical component of ib(t), oscillates with values of the frequency
ω ranging within the interval [0.01− 10]. In our analysis the intensity γ of the colored
noise source if(t) varies in the range [10−4 − 102], with the correlation time, τc, set at
different values.

4.3 The Analysis

The analysis is performed studying the behavior of the MFPT, τ , as a function of the
noise intensity γ and frequency ω of the oscillating term in the bias current. In Eq. (4.10)
i0 = 0.0, 0.1, 0.5, 0.9, corresponding to vanishing, small, intermediate and high values,
respectively, of the initial slope of the washboard potential. The slope of the potential,
that is the value of ib(t), is directly related to the height of the potential barriers, so
that, increasing the value of ib(t), the right barrier’s height decreases, getting zero when
ib(t) ≥ 1. The normalized amplitude of the oscillating term of the bias current is set at



64 4. Short graphene-based JJ

��

���

����

����

����

����

���

���

���

���

�

	


�
�

�

�

��

���

����

����

����

����

���

���

���

���

�

�

�

�

��

���

����

����

����

����

���

���

���

����
���

�

	


�
�

�

�

��

���

����

����

����

����

���

���

���

����
���

�

�

�

�

���

��� ���

���

�	
�

�	��

�	��


	��


	
�

��

�	��

�	��


	
�

�	��

�	��

�	��

���

��	
�

�
	��

��	��



	��


�	
�

��	��

��	��

��	��


�	
�

��	
�

��	
�

����

Figure 4.3: MFPT as a function of both ω and γ, for τc = 0.0 and different initial values of
the bias current: a i0 = 0.0 (no slope); b i0 = 0.1 (small slope); c i0 = 0.5 (intermediate slope);
d i0 = 0.9 (high slope). The legend in panel d refers to all pictures.

A = 0.7 in all numerical realizations.
The values of τ are shown in three-dimensional plots to highlight the simultaneous

presence of different nonmonotonic effects. The values of γ are proportional, through
Eqs. (4.16), to the temperature of the system, so that varying the noise intensity in the
interval γ = [10−4− 102] corresponds to explore a wide range of temperatures. The noise
amplitude values, calculated in different contexts and presented in the Table 4.1, fall
within this range. The values of the frequency ω are chosen in such a way to investigate
different regimes of alternate current: i) quasi-direct current (ω � 1); ii) high-frequency
alternate current (ω � 1); iii) alternate current oscillating at the characteristic plasma
frequency of a conventional junction (ω = 1). Recalling that the driving frequency is
normalized to the plasma frequency, the values of ωP0 included in Table 4.1 make it
possible to give a quantitative estimation of the values taken on by ω. The correlation
time of the colored noise source takes the values τc = 0 (i.e. white noise), 1, 5, 10. The
results, shown in Fig. 4.3, were obtained using a white noise source, that is setting
τc = 0.0, and for different values of the initial bias current (slope of the potential), i.e. i0
= 0.0 (panel a), 0.1 (panel b), 0.5 (panel c), 0.9 (panel d). First I can note that an overall
lowering of τ values occurs, as i0 increases. In other words, changes in the maximum
slope of the potential cause modifications in the height of the barriers (see Fig. 4.2). The
presence of two absorbing barriers allows to take into account the complete evolution
of the phase particle from the initial state. Considering highly tilted potential profile
(panel c of Fig. 4.2), the particle rolls down exclusively overcoming the right barrier.
Instead, with small value of the initial bias current (panel a of Fig. 4.2), the possibility
of escaping over the left-side barrier causes interesting phenomena. In particular, for
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Figure 4.4: MFPT as a function of ω, for γ = 10−4, τc = 0.0, and different initial values of the
bias current: i0 = 0.0, 0.1, 0.5, 0.9. Solid and dotted lines represent results for a graphene-based
JJ (indicated as GJJ) and a normal JJ (indicated as NJJ), respectively.

i0 = 0.0, the height of the left and right barriers takes on the same values within an
oscillation period, so that the particle can escape through the left or right barrier with
equal probability. In all panels of Fig. (4.3) it is evident a nonmonotonic behaviour,
characterized by a minimum, which indicates the presence of a resonant activation (RA)
phenomenon [3, 4, 123–130]. This effect is robust enough to be detected in a large range
of γ values, even if it tends to be suppressed (the minimum in the curves of MFPT vs ω
is less pronounced) as the intensity, γ, of thermal fluctuations increases. In particular,
two different kinds of RA can be distinguished:

• the dynamic resonant activation, which occurs as the external driving frequency
is close to the natural characteristic frequency of the system, that is the plasma
frequency of the JJ [71, 72, 131];

• the stochastic resonant activation, which occurs for driving frequency close to the
inverse of the average escape time at the minimum, i.e. the mean escape time over
the potential barrier in the lowest configuration [9, 30].

The dynamic RA is evident only in the absence of noise source (γ = 0) and in quasi-
deterministic regime (γ � 1), when the dynamics depends mainly by the profile of the
washboard potential of the system. Increasing the noise intensity, the stochastic RA
tends to overcome every dynamic RA effect. Fig. 4.4 shows the behaviour of the MFPT
vs ω, with the noise intensity fixed at such a value (γ = 10−4) that the dynamic RA effect
can be clearly observed and studied as a function of the initial bias current i0. More
in detail, Fig. 4.4 displays results obtained for graphene-based (solid lines) and normal
(dotted lines) JJs for γ = 10−4. The MFPT values in correspondence of the RA minima
are almost junction-type independent, even if the RA valleys for normal JJ are shifted
towards higher frequencies. In particular, the dynamic RA minima for small i0 become
narrower passing from SGS to SNS junction. In Fig. 4.4, for i0 = 0.0 a single-minimum
dynamic RA is present in ω0.0

dRA
' 0.81. The RA effect becomes more structured, slightly

increasing the initial bias current. Indeed, for i0 = 0.1 the same effect occurs with the
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Figure 4.5: MFPT as a function of γ, for different values of ω, i0 and τc. In detail: a i0 = 0,
ω = 0.44; b i0 = 0.1, ω = 0.44; c i0 = 0.1, ω = 1.0; d i0 = 0.5 and ω = 0.6; e i0 = 0.5, ω = 1.08;
f i0 = 0.9, ω = 1.18. The legend in panel d refers to all pictures.

presence of two minima located at ω0.1
dRA
' 0.75, 0.95 (see Fig. 4.4). These minima are

connected with two resonance phenomena occurring in the system. Specifically, the
oscillating potential can “tune” with the plasma oscillations for two different values of
ω, one corresponding to escape events towards left, which occur at the lowest slope,
i(t) = i−, the other one corresponding to escape events towards right, which occur at the
highest slope, i(t) = i+. This double-resonance effect can be further explained, noting
that non-vanishing values of the initial bias current (i0 6= 0) introduce an asymmetry,
e.g. with i0 = 0.1 the highest and lowest slope are respectively

∣∣i+b ∣∣ = 0.8 and
∣∣i−b ∣∣ = 0.6.

For these configurations the plasma frequencies, calculated according to Eq. (4.4), are
ω0.1
P

(i+b ) ' 0.77 and ω0.1
P

(i−b ) ' 0.90. These values, even if they do not coincide, are
very close to the frequencies ω0.1

dRA
for which the RA minima are observed. The small

discrepancies between ω0.1
dRA

and the two frequencies ω0.1
P

(i+b ) and ω0.1
P

(i−b ) can be related
to the fact that the conventional JJ plasma frequency was used. Due to the symmetry
of the potential for i0 = 0.0 respect to the horizontal position, the minima observed for
i0 = 0.1 seem to merge in the larger minimum located, for vanishing bias current, at
ω0.0
dRA
' 0.81 (see Fig. 4.4). Indeed in this situation, the highest and lowest slope have the

same absolute value,
∣∣i+b ∣∣ =

∣∣i−b ∣∣ = 0.7. Accordingly, in these configurations the plasma
frequencies take on values ω0.0

P
(i+b ) = ω0.0

P
(i−b ) ' 0.85, very close to that for which the

RA minimum is observed.

The suppression of the dynamic RA, as the noise intensity increases, is evident in the
curves obtained for i0 = 0.1. In particular, the stochastic RA emerges at γ0.1

sRA
' 0.005,

with the minimum located in ω0.1
sRA
' 0.7. Using these small values of bias current, a

trapping phenomenon occurs for ω ≥ 1. These trapping phenomena however disappear
for higher values of the noise intensity. For i0 = 0.5, 0.9 the potential is tilted enough
to lose the wells structure, in the lowest configuration. If i0 = 0.5 the double-minimum
dynamic RA is still present around the frequencies ω0.5

dRA
' 0.72, 1.02, but the MFPT

value in the first RA minimum is smaller than that calculated for i0 = 0.1. This is due to
the fact that for i0 = 0.5 the virtual particle, i.e. the phase difference between the wave
functions of the two superconductors, is able to leave the potential well in a shorter time,
escaping through the right potential barrier. The slope i0 = 0.5 in fact is sufficient to
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Figure 4.6: MFPT as a function of γ, for ω = 0.75, i0 = 0.0, and different values the noise
correlation time: τc = 0.0, 1.0, 5, 10. Lines and symbols represent results for a normal JJ (NJJ)
and a graphene-based JJ (GJJ), respectively.

produce a right-side escape event already after a quarter of an oscillation period (indeed
τ ' Tp/4), whereas for i0 = 0.1 the particle needs one complete oscillation to pass the
same barrier. On the other hand, the values of τ in the second RA valley for i0 = 0.1 and
i0 = 0.5 are almost equal, since the particle needs more than one complete oscillation
(for both slopes τ ' Tp + 3Tp/4) to escape from the left potential barrier.

Setting i0 = 0.9, the dynamic RA is just hinted and only the minimum around
ω0.9
dRA
' 1.6, corresponding to a highly sloping potential, is evident. For high potential

slopes, trapping phenomena at high frequencies are still present. Specifically they appear
for frequencies larger than the following threshold values: ω0.5

thr ' 1.2 and ω0.9
thr ' 2.4.

Increasing the value of the bias current, the right potential barrier decreases. As a
consequence, trapping phenomena can occur only if the potential oscillates at higher
frequencies. Furthermore, the parabolic approximation (linearization of the potential at
the bottom of the well) used to calculate the plasma frequency (see Eq. (4.4)) fails for a
highly tilted potential.

In all panels of Fig. 4.3 the presence of another noise induced effect, known as noise
enhanced stability (NES) [4, 10, 54–58, 133–141] can be noted. Indeed the curves of τ vs
γ are characterized by a nonmonotonic behavior with the presence of a maximum.More
in detail, can be noted that the τ vs γ behaviour shows the presence of NES for any
frequency taken in an interval around the different frequencies ωi0

dRA
. This suggests that

the origin of this nonmonotonic effect can lie in the resonance phenomenon, involving
the plasma frequency, previously discussed about the RA effect. Specifically, for i0 = 0.0
this effect occurs for ω

NES
∈ [0.43− 0.87]. For each value i0 = 0.1, 0.5 of the bias current,

there are two ωi0
dRA

frequencies and, correspondingly, two different ranges of frequencies
giving evidence of NES effects.
In detail: ω(1)

NES
∈ [0.42 − 0.78] and ω(2)

NES
∈ [0.84 − 1.02] for i0 = 0.1, and ω(1)

NES
∈

[0.24− 0.77] and ω(2)
NES
∈ [0.97− 1.14] for i0 = 0.5.

Using highly tilted potential, i.e. i0 = 0.9, there is only one RA minimum and, according
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Figure 4.7: Panels a, b, c and d: PDFs as a function of the time t, varying ω. Every picture
is obatined fixing the values of γ = 10−4, τc = 0 and i0 = {ai0 = 0, bi0 = 0.1, ci0 = 0.5,
di0 = 0.9}. The MFPT versus ω curves corresponding to the dynamic RA effects (see solid
lines in Fig. 4.4) are also shown. The PDF and t axes are logarithmic. Panel e: Semi-log plot
of the PDFs as a function of the time t, normalized to the washboard oscillation period Tp,
setting i0 = 0.1 and ω = ω0.1

dRA
= {0.75, 0.95}. The inset shows the same PDF data in function

of the bias current ib(t).

to the correspondence previously observed, only one range of frequencies (ω
NES

∈
[0.4−2.4]) for which the NES phenomenon is found. According to this analysis, the curves
of Fig. 4.5, obtained for different values of the noise correlation time (τc = 0.0, 1.0, 5, 10,)
show the presence of NES for values of ω chosen in the intervals given above. In all
curves, as τc increases, the maxima are shifted towards higher values of the noise intensity.
Moreover, the MFPT values around the NES maxima tend to slightly reduce for low
slopes (small values of i0) of the oscillating potential (panels a, b and c of Fig. 4.5) and
to increase for high slopes (panels d, e and f of the Fig. 4.5).

These features, i.e. the shift towards higher frequencies and modification in the
maxima of MFPT for increasing values of τc, are present also in a conventional JJ. In
Fig. 4.6, where i0 = 0.0 and ω = 0.75, it is possible to observe that for a normal JJ
respect to a graphene junction:

• i) the NES maxima are broadener;

• ii) the phase particle remains confined in the potential well for longer time, i.e. the
τ values are slightly higher;

• iii) the NES effect appears for lower noise intensities.

Conversely, the behaviors of normal and graphene JJs coincide for larger values of the
noise intensity γ, since the specific potential profile becomes irrelevant due to the strength
of random fluctuations.

4.4 Probability Density Functions
To deeply understand the behavior of the MFPT, I expand further the theoretical

analysis discussing the PDFs of the switching times P (tesc). The distributions of the
escape times is often studied in many unstable physical systems, in which noise enhanced
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Figure 4.8: PDF as a function of the time t, normalized to the washboard oscillation period
Tp, varying γ. Every picture is obatined fixing the values of ω, i0 and τc = 0. In detail: a i0 = 0,
ω = 0.44; b i0 = 0.1, ω = 0.44; c i0 = 0.1, ω = 1.0; d i0 = 0.5 and ω = 0.6; e i0 = 0.5, ω = 1.08;
f i0 = 0.9, ω = 1.18. Every picture shows also the MFPT versus γ curve corresponding to NES
effect (see solid lines in Fig. 4.5) obtained using the same values for the other parameters. The
PDF and γ axes are logarithmic. The legend in panel b refers to all pictures.

of stability [54] and resonant activation [123] are observed. The analisys of PDF data
supports investigations in many frameworks, as financial market data [197–199], polimer
dynamics [200, 201] and other biological systems [202].
The parameters of the system and noise source are set in such a way to put in evidence
nonmonotonic effects in the MFPT data. Every PDF is constructed performing Nexp =
107 numerical realizations (experiments), and each curve is normalized to unity. Whenever
possible, the time t was normalized to the oscillation period Tp. This allow to compare
the passage times with the different slopes taken on by the potential during its oscialltory
motion.

The panels a, b, c and d of Fig. 4.7 show P (tesc) as a function of time t, for
different values of the bias current i0 = {a) 0, b) 0.1, c) 0.5, d) 0.9}. These results
allow to explore the switching dynamics in correspondence of peculiar points of τ vs
ω curves (see solid lines on the t-ω planes of Fig. 4.7 and in Fig. 4.4), calculated for
γ = 10−4. Setting ω = ωi0

dRA
, the resonance-like dynamics results in single-peack PDFs,

centered around the MFPT values. This suggests that, in all numerical realizations,
the phase particle tends to follow almost the same trajectory to escape from the initial
metastable state. In particular, the panel e of Fig. 4.7 shows the PDF calculated setting
ω = ω0.1

dRA
= {0.75, 0.95}, as a function of the normalized time t/Tp. As already noted,

setting ω = 0.75, that is the value corresponding to the first dynamic RA minimum,
the particle tends to escape through the right barrier after almost one oscillation of the
washboard potential. Conversely, setting ω = 0.95, that is in correspondence of the
second dynamic RA minimum, the left-side escapes occur when t ' 1.6Tp. These peaks
show asymmetry and fat tails. The asymmetry is more pronunced in low frequency
data, because the time that the washboard spends in the configurations supporting the
escape events get longer reducing the oscillation frequency. The inset in the panel e
of Fig. 4.7 shows the PDFs plotted as a function of the bias current ib(t) to compare,
at least qualitatively, these data with the switching current probability P (Ic), often
studied in the JJ framework. The shape of these single peak PDFs recalls the thermally
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activated switching current distribution in SGS systems (see Refs. [16, 190]). The PDFs
for frequencies within the dynamic RA minima are still formed by single peaks, but
tend to broaden moving from ω = ω

dRA
(see panels a and b of Fig. 4.7). Far from these

frequencies, that is when the τ values grow, the PDFs show multi-peaks structures,
suggesting that the trajectories followed by the phase particle in the various experiments
are very different from each other. This occurs also for ω = 0.81 and i0 = {0.1, 0.5},
that is in correspondence of the narrow maximum located beetwen the two RA minima
(see panels b and c). In high frequency experiments, trapping phenomena occurs. In
particular, for i0 = 0 and ω = 0.87 almost 21% of the experiments give entrapment,
whereas for i0 = 0.1 and ω = 1.01 this occurs in ∼ 2% of the experiments. Increasing i0,
the width of the peaks reduces, but the multi-peak structures in high frequency PDFs are
still evident as well as the trapping phenomena. In detail, setting i0 = 5 and ω = 1.13,
the probability that the phase particle undergoes a trapping is ∼ 4%, and for i0 = 9 and
ω = 2.1 is ∼ 23%. Panels a - f of Fig. 4.8 show P (tesc) as a function of the normalized
time t/Tp obtained setting system and noise parameters in analogy with those set in
panels a - f of Fig. 4.5, that is: panel a i0 = 0, ω = 0.44, panel b i0 = 0.1, ω = 0.44,
panel c i0 = 0.1, ω = 1.0, panel d i0 = 0.5 and ω = 0.6, panel e i0 = 0.5, ω = 1.08 and
panel f i0 = 0.9, ω = 1.18. These PDFs allow to explore the NES effects put in evidence
in Fig. 4.5 (see solid curves on the t-ω plane of panels of Fig. 4.8). The creation of NES
maxima is due to the possibility that random fluctuations confine the particle inside
the well, also when the washboard is in optimal configurations for escape events. In
correspondence of the NES maxima, the PDFs are composed by long regular sequences
of sharp peaks with decreasing amplitude. Multi-peak distributions of escape times with
exponentially decaying envelopes characterize other experimental analises [54].
For small potential slopes (see panels a, b and c) the peaks have exponential decay and
are well spaced. For γ ≤ 10−1 these sequences are formed by two peaks per period,
corresponding to right- and left-side escapes. Increasing the noise amplitude, that is
for γ ≥ 1, the peaks tend to get lower and broaden, up to merge into a larger single
distribution. The low frequency PDFs (panels a, b and d) for γ = 1, 10 and 100 show
peaks spreading over almost 2, 1 and 0.5 periods, respectively. In higher frequency PDFs
(panels c, e and f) the width of these peak is twice, that is they spread over almost 4,
2 and 1 periods for γ = 1, 10 and 100, respectively. The PDFs in the panel d don’t
show regularity because, the potential is very sloped and its frequency is not enough to
cause the particle staying in the intial state for long time. Panels e and f regard again
highly tilted potentials, but the frequency is high enough to trap for long times the phase
particle inside the initial well, generating interesting periodic peak structures. Every
period contains two peaks, the first one narrow, due to the right-side escapes, the second
one strongly asymmetric and wavy shaped, representing the left-side escapes (in panel e
the two peaks are so close to appear as one).

4.5 Conclusions

I explored the influence of thermal fluctuations on the behavior of a ballistic graphene-
based Josephson junction in the short-junction regime. In particular, I analyzed how
random fluctuations affect the lifetime of the superconductive state in an underdamped
current-biased JJ. The analysis was performed within the framework of the resistively and
capacitively shunted junction (RCSJ) model, using a proper non-sinusoidal current-phase
relation, characteristic of graphene. Specifically I investigated the mean first passage
time (MFPT) of the phase particle, i.e. the phase difference across the junction, initially
placed in a minimum of the tilted washboard-like potential. In particular, I studied the
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MFPT as a function of different parameters of the system and external perturbations,
i.e. Gaussianly distributed random fluctuations and periodical driving signal. I found
nonmonotonic behavior of the lifetime, τ , of the superconductive state as a function
of the noise intensity γ, driving frequency ω and fixing the initial value of the bias
current i0. These results indicate the presence of noise induced phenomena, such as
stochastic resonant activation (RA) and noise enhanced stability (NES) with different
features, strongly depending on the initial value, i0, of the bias current. In particular, I
observed ranges of parameters in which MFPT show evidence of dynamic and stochastic
RA, including a multi-minimum RA effect in the low-noise-intensity regime. Finally, I
observed changes in the behaviour of MFPT, when the white noise source is replaced
by a coloured noise source with different values of the correlation time τc. The study is
integrated by the probability density function analisys of the escape times, to relate the
MFPT behavior with the trajectories covered by the phase particles to escape from the
metastable state.
Our study provides information on the role played by random (both thermal and
correlated) fluctuations in the switching dynamics from the superconductive state to
the resistive one of a graphene-based JJ. The results obtained can help to better
understand the role of fluctuations in the electrodynamics of new generation graphene-
based superconductive devices, such as Josephson junctions, Josephson sensors, dc-
SQUIDs and gate-tunable phase qubits, contributing to improve their performances.
In conclusion this work, which is well placed in the framework of the nonequilibrium
statistical mechanics, due to the presence of an emerging material, such as graphene,
with unique electrical properties, presents relevant and interesting results from several
points of view.
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Chapter 5

Conclusions

The macroscopic quantities that can be experimentally measured in Josephson
junctions are directly related to their microscopic order parameter ϕ. Thus, the study
the dynamics of ϕ allows us to study the electrodynamics of the junction. The order
parameter can be depicted as a “phase particle” in a metastable state. The permanence
or the escape from this metastable state defines the superconducting properties of the
system. This work sheds light on the phase dynamics of two kind of Josephson junction
(JJ): a long-overlap JJ and a graphene-based JJ. This work can be divided in three
principal sections: an analysis of the effects of Gaussian and non-Gaussian noise sources
on the mean lifetime of the superconducting state in long JJ, the investigation of a
method to generate and identify breathers in properly excited long JJ and the study of
a particular type of junction, composed by two superconducting electrodes suspended on
a graphene layer.

The influence of both thermal fluctuations and external non-Gaussian noise sources
on the temporal characteristics of long-overlap JJs was investigated. Different α-stable
(or Lévy) distributions affecting the superconducting lifetime of long current-biased
Josephson junctions are considered. The study is developed within the framework of
the sine-Gordon equation. Specifically, the mean switching time (MST) of the phase
difference across the junction, from a minimum of the tilted washboard potential, as
a function of different parameters of the system and external random and periodical
driving signals, is analyzed. Nonmonotonic behaviors of the superconducting lifetime
τ as a function of noise intensity γ, driving frequency ω and junction length L are
found. In particular, it is observed that the behaviour of the MST is affected by noise
induced phenomena such as stochastic resonant activation and noise enhanced stability,
with different characteristics depending on both the bias current distribution along the
junction and the length of the superconducting device. The analysis of the MST as a
function of the junction length reveales that the soliton dynamics plays a crucial role in
the switching dynamics from the superconducting to resistive state. In more detail, the
relation between creation and propagation of solitons and different features of the mean
switching time is studied. This analysis has demonstrated the existence of two different
dynamical regimes. One, occurring for short junction, is characterized by the movement
of the phase string as a whole. The latter, occurring for junctions whose size exceeds
a critical length, in which the kink (or antikink) creation is allowed. Finally, choosing
an inhomogeneous distribution of the bias current along the junction, the cells located
at the junction edges behave as generators of solitons. In these conditions the escape
from the metastable superconducting state is strongly affected by the soliton dynamics.
The contemporaneous presence of Cauchy-Lorentz and thermal noise sources induces
modifications in the soliton dynamics and noise induced effects observed in the transient
dynamics of JJs in the presence of non-Gaussian noise sources. Besides oscillating pairs
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of soliton-antisoliton (breathers) induced by the noise have been observed.
The results of this work, which are important to understand the physics of the

fluctuations in long-overlap Josephson junctions to improve the performance of these
devices, can shed light on the general context of the nonequilibrium statistical mechanics.
In fact, JJs are good candidates for probing relevant physics issues in metastable
systems [8]. Moreover, the mean switching time from one of the metastable states of the
potential profile encodes information on the non-Gaussian background noise. Therefore,
the statistical analysis of the switching times of JJs can be used to analyze weak signals
in the presence of an unknown non-Gaussian background noise.

The breathers generation and their propagation in a long JJ externally irradiated by a
suitable excitation, as a function of the maximum amplitude A and the frequency ω of the
exciting signal, is studied. The analysis is computationally developed in the framework
of the damped and biased continuous sine-Gordon equation, using a sinusoidal pulse
with amplitude A(t) smoothly increasing/reducing during the switching on/off regimes
of the pulse, according to Gaussian profiles. To include the environmental influence, a
Gaussian white noise source is inserted into the model. Follow the Geniet and Leon
results [12] about the nonlinear supratransmission (NST) in a discrete sine-Gordon chain,
different kinds of bifurcation diagrams are constructed, plotting the dispersion of the
phase values, of a references cell, and the energy injected into the system as a function
of A and ω. These diagrams clearly shows in (A, ω) parameters space the presence of an
area in which no energy flows into the medium, that is without NST, while in the rest of
the (A, ω) space the energy is allowed to travel through the junction by means of SG
nonlinear excitations: kinks, antikinks, breathers and plasma waves. When NST occurs,
a new peculiar localization of the breathers in (A, ω) branches is evident. The density
of these breathers-branches on a (A, ω) parametric space is strongly dependent on the
duration of the pulse, the applied bias current and the damping of the system. Increasing
the pulse duration more energy is pumped into the system and the energetic conditions
that are necessary to excite a breather, are hardly satisfied. Therefore, breather-branches
tend to disappear increasing the pulse duration. Similarly, increasing the applied bias
current the breather-branches tend to vanish, because the current stretchs a breather up
to split it into a kink-antikink couple. The damping parameter has also to carefully set,
because while an appropriate value favors the breathers formation a too high damping
value rapidly annihilate generated breathers. The deterministic analysis is improved
including a white noise contribute, to evaluate the percentage of breathers resistent to
thermal effects. Combinations of (A, ω) values exists,for which breathers are created
with high probability, despite of the noise influence.

This study fills the void left by the absolute lack of experimental works devoted to the
breathers detection in long JJ. Many impediments affect their detection, from the difficulty
in efficently generating and trapping them, to the lack of macroscopic experimental
evidence of breathers motion in a junction (neither sign on the I-V characteristic or
magnetic flux associated with them). The detection of breathers mode in a LJJ is an
open challenge in the context of the long junctions.

The influence of thermal fluctuations on the behavior of a ballistic graphene-based
Josephson junction in the short-junction regime is explored. In particular, the analysis
was performed within the framework of the resistively and capacitively shunted junction
model, using a proper non-sinusoidal current-phase relation which is characteristic of
graphene. Specifically, the mean first passage time (MFPT) of the phase particle as a
function of different parameters of the system and external perturbations, i.e. Gaussianly
distributed random fluctuations and periodical driving signal, is studied. Nonmonotonic
behaviors of the lifetime of the superconductive state appear as a function of the noise
intensity γ, driving frequency ω and fixing the initial value of the bias current i0. These



75

results indicate the presence of noise induced phenomena, such as resonant activation
(RA) and noise enhanced stability (NES) with different features, strongly depending on
the initial value, i0, of the bias current. In particular, we observed ranges of parameters in
which MFPT show evidences of dynamic and stochastic RA, including a multi-minimum
RA effect in the low-noise-intensity regime. Finally, changes in the behaviour of MFPT
are observed when the white noise source is replaced by a coloured noise source with
different values of the correlation time τc. The study is integrated by the probability
density function analisys of the escape times, to relate the MFPT behavior with the
trajectories covered by the phase particles to escape from the metastable state.
Our study provides information on the role played by random (both thermal and
correlated) fluctuations in the switching dynamics from the superconductive state to
the resistive state of a graphene-based JJ. The results obtained can help to better
understand the role of fluctuations in the electrodynamics of new generation graphene-
based superconductive devices, such as Josephson junctions, Josephson sensors, dc-
SQUIDs and gate-tunable phase qubits, contributing to improve their performances.
In conclusion, this analysis, which is well placed in the framework of the nonequilibrium
statistical mechanics, due to the presence of an emerging material, such as graphene,
with unique electrical properties, presents relevant and interesting results from several
points of view.
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Appendix A

Algorithm for the simulation of the
α-stable distribution

A.1 Stable Variables and Distributions

Stable random variables follow the so-called α-stable distributions. These distributions
are very important because, as stated by the Central Limit Theorem, they constitute
the limiting laws of normalized sums of independent, identically distributed random
variables. The stable distributions are described by their characteristic function φ(k),
that is the Fourier transform of the distribution function P (X) of the random variable
X:

log φ(k) =

{
−σα|k|α{1− iβ k

|k| tan πα
2
}+ iµk, α 6= 1

−σ|k|{1 + iβ k
|k|

2
π

log |k|}+ iµk, α = 1 .
(A.1)

where α ∈ (0, 2], β ∈ [−1, 1], σ > 0 and µ ∈ R. An α-stable distribution is denoted by
Sα(σ, β, µ). X ∼ Sα(σ, β, µ) indicate a random variable with distribution characterized
by Lévy index, or characteristic exponent, α, scale parameter σ, asymmetry parameter,
or skewness, β and location parameter µ. When σ = 1 and µ = 0 the distribution is
called standard stable. The probability density function P (X) of stable random variables
exist and are continuous. Only few of these distributions are known in closed form, they
are reported in table A.1.

Distribution α β

Gaussian S2(σ, 0, µ) 2 0
Cauchy-Lorentz S1(σ, 0, µ) 1 0
Lévy-Smirnov S1/2(σ, 1, µ) 1/2 1

Lévy-Smirnov (reflected)S1/2(σ,−1, µ) 1/2 -1

Table A.1: Stable distributions and corresponding values of the characteristic parameters.

A.2 Simulation Algorithm

The computer simulation of α-standard stable variables is performed following the
Chambers-Mallows-Stuck method [120]. The simulation of a random variable X ∼
Sα(1, β, 0) with scaling parameter σ = 1 and location parameter µ = 0 for α ∈ (0, 2] and
β ∈ [−1, 1], is obtained with the following steps:
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• generate a random variable V uniformly distributed on (−π
2
, π

2
) and an independent

exponential random variable W with mean 1;

• for α 6= 1 compute

X = Sα,β ×
sin(α(V +Bα,β))

(cos(V ))1/α
×
(
cos(V − α(V +Bα,β))

W

) (1−α)
α

(A.2)

where:

Bα,β =
arctan(β tan πα

2
)

α
(A.3)

Sα,β =
(

1 + β2 tan2 πα

2

) 1
2α

(A.4)

• for α = 1 compute

X =
2

π

((π
2

+ βV
)

tanV − β log

(
W cosV
π
2

+ βV

))
(A.5)



Appendix B

Numerical solution of the
sine-Gordon equation

The dynamics of Long Josephson junctions is described by the sine-Gordon equation.
The sine-Gordon equation is a second-order partial differential equation:

βϕtt + ϕt − ϕxx = i(x, t)− sinϕ. (B.1)

with boundary conditions given by:

ϕx(0, t) = ϕx(L, t) ≡ η. (B.2)

In what follow, η = 0 in equation (B.2). The numerical integration of equation (B.1) is
performed using an implicit finite-difference method. In order to do this, first the long
junction is divided into many small sections of length ∆x = h = L/N , where N is the
number of sections and L is the length of the junction. Then, the time was divided into
many short time intervals ∆t = k = T/M where T and M are the observation time and
the number of intervals, respectively. The partial derivative are approximated using the
Euler formalism. The phase ϕ(x, t) is denoted ϕmn = ϕ(nh,mk) where x = nh, t = mk,
n and m are the discrete space and time index, respectively. The expression for the
partial derivative of equation (B.1) are derived:

ϕt =
1

2k
(ϕm+1

n − ϕm−1
n ) +O(k2),

ϕx =
1

2h
(ϕmn+1 − ϕmn−1) +O(h2),

ϕtt =
1

k2
(ϕm+1

n − 2ϕmn + ϕm−1
n ) +O(k2),

ϕxx =
1

2h2
(ϕm+1

n+1 − 2ϕm+1
n + ϕm+1

n−1 + ϕm−1
n+1 − 2ϕm−1

n + ϕm−1
n−1 ) +O(h2 + k2).

The ranges of variation of indexes n and m are n = 1, 2, ...N and m = 1, 2, ...M .
Neglecting the terms O(k2), O(h2), O(h2 + k2) and substituting the expression for the
partial derivative in the sine-Gordon equation (B.1), a system of equations is obtained
under the variation of n and m:

c1ϕ
m+1
n+1 + c2ϕ

m+1
n + c1ϕ

m+1
n−1 =

= −c1(ϕm−1
n+1 + ϕm−1

n−1 ) + c3ϕ
m−1
n + c4ϕ

m
n + c5(sinϕmn − i(nh,mk)),

n = 1, 2, ...N, m = 1, 2, ...M,
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where:

c1 = −k2, c2 = 2βh2 + h2k + 2k2,

c3 = −2βh2 + h2k − 2k2, c4 = 4βh2, c5 = 2h2k2.

Using the derived expressions for the partial derivative, the boundary conditions B.2 are
written in the form:

ϕm2 − ϕm0
2h

= 0, for ϕx(0, t) = 0,

(B.3)
ϕmN+1 − ϕmN−1

2h
= 0, for ϕx(L, t) = 0,

where x = 0 corresponds to n = 1 and x = L to n = N . From expressions B.3, it is
derived:

ϕm2 = ϕm0 , and ϕmN+1 − ϕmN−1. (B.4)

The expressions of equations B.3 in correspondence of n = 1 and n = N are obtained
substituting the conditions B.4 in B.3:

for n = 1, 2c1ϕ
m+1
2 + c2ϕ

m+1
1 =

= −c1(ϕm−1
2 + ϕm−1

0 ) + c3ϕ
m−1
1 + c4ϕ

m
1 + c5(sinϕm1 − i(nh,mk)),

(B.5)

for n = N, 2c1ϕ
m+1
N−1 + c2ϕ

m+1
N =

= −c1(ϕm−1
N+1 + ϕm−1

N−1) + c3ϕ
m−1
N + c4ϕ

m
N + c5(sinϕmN − i(nh,mk)).

To take into account the colored noise signals in the system B.3, an expression of
the Ornstein-Uhlenbeck process in terms of finite increments was derived. The finite
increment, ∆ζ, of the Ornstein-Uhlenbeck process (equation (4.17)) is written as:

∆ζ = −ζ(n,m)

τc
k − 1

τch
√

2γhk
. (B.6)

where τc and γ are the correlation time and the colored noise intensity, respectively. The
expression for the Ornstein-Uhlenbeck process at the m-th time step is then given by:

ζ(n,m) = ζ(n,m− 1) + ∆ζ. (B.7)

Considering expressions B.6 and B.7, then and m range of variation, the system B.3 and
the boundary conditions B.5 become:

for n = 2, ...N − 1, m = 1, 2, ...M,

c1ϕ
m+1
n+1 + c2ϕ

m+1
n + c1ϕ

m+1
n−1 = −c1(ϕm−1

n+1 + ϕm−1
n−1 ) + c3ϕ

m−1
n +

c4ϕ
m
n + c5(sinϕmn − i(nh,mk)) + 2h2k2ζ(n,m)W,

for n = 1, m = 1, 2, ...M,

2c1ϕ
m+1
2 + c2ϕ

m+1
1 = −c1(ϕm−1

2 + ϕm−1
0 ) + c3ϕ

m−1
1 + (B.8)

c4ϕ
m
1 + c5(sinϕm1 − i(nh,mk)) + 2h2k2ζ(1,m)W,

for n = N, m = 1, 2, ...M,

2c1ϕ
m+1
N−1 + c2ϕ

m+1
N = −c1(ϕm−1

N+1 + ϕm−1
N−1) + c3ϕ

m−1
N

+c4ϕ
m
N + c5(sinϕmN − i(nh,mk)) + 2h2k2ζ(N,m)W.
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where W represents a Wiener process with zero mean value and variance equal to
one. Solving the system B.10 corresponds to calculate the values ϕm+1

n in each point
n = 1, 2...N at time m+ 1, with initial condition given by the values ϕmn and ϕm−1

n where
n = 1, 2...N . The matrix representing the system B.10 has non-zero elements only in
the major, upper minor and lower minor diagonals. This tridiagonal matrix has a form
given by: ∥∥∥∥∥∥∥∥∥∥∥

c2 2c1 0 . . . 0
c1 c2 c1 . . . 0
...

. . . . . . . . .
...

0 . . . c1 c2 c1

0 . . . 0 2c1 2c2

∥∥∥∥∥∥∥∥∥∥∥

∥∥∥∥∥∥∥∥∥∥∥

ϕm+1
1

ϕm+1
2

...
ϕm+1
N−1

ϕm+1
N

∥∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥∥∥

A1

A2
...
AN−1

AN

∥∥∥∥∥∥∥∥∥∥∥
, (B.9)

where

An = −c1(ϕm−1
n+1 + ϕm−1

n−1 ) + c3ϕ
m−1
n +

c4ϕ
m
n + c5(sinϕmn − i(nh,mk)) + 2h2k2ζ(n,m)W,

for n = 2, ...N − 1, m = 1, 2, ...M,

A1 = −c1(ϕm−1
2 + ϕm−1

0 ) + c3ϕ
m−1
1 + (B.10)

c4ϕ
m
1 + c5(sinϕm1 − i(nh,mk)) + 2h2k2ζ(1,m)W,

for n = 1, m = 1, 2, ...M,

AN = −c1(ϕm−1
N+1 + ϕm−1

N−1) + c3ϕ
m−1
N

+c4ϕ
m
N + c5(sinϕmN − i(nh,mk)) + 2h2k2ζ(N,m)W.

for n = N, m = 1, 2, ...M.

The system B.9 is solved using the tridiagonal algorithm that is a simplified form of
Gaussian elimination. The solutions corresponds to the phase values, ϕm+1

n , calculated in
each point x (n = 1, 2...N) of the phase string at the time m+1. The initial conditions
chosen in the simulation are ϕmn = arcsin i0 and ϕm−1

n = arcsin i0 for n = 1, 2...N .
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Appendix C

Current-phase relation and critical
current in graphene

The principal steps to obtain a correct current phase relation for graphene based JJ
are outlined hereafter [16, 186, 189]. The above considerations apply to short junction
in sense of proximity effect, L� ξ, where ξ is the superconducting coherence length.

From thermodinamic considerations, the equilibrium Josephson current is related to
the free energy F , knowing its dependences on the phase difference across the junction,
according to the equation:

IS (ϕ) =
2e

}
dF

dϕ
. (C.1)

Starting from the Bogolubov-de Gennes (BdG) approach, Bardeen et al [203] derived
the expression for F:

F = −2T
∑
n

ln
[
2cosh

( εn
2T

)]
+

∫
ddr|∆|2/V (C.2)

resulting in a generalization of the formula used in BCS model, for the case ∆ = const.
The sum over n have a correspondence on the free energey calculations for an ensamble
of ferminons with energy εn. As in the Hartree-Fock approximation, this term counts
the interation twice, so that the other term,

∫
ddr|∆|2/V corrects this double counting.

Differentiating Eq. C.2

IS = −4e

}
∑
εn<∆

dεn
dϕ

tanh
εn
2T
− 8eT

}

∫ ∞
∆

dε ln
[
2cosh

ε

2T

] dρ
dϕ

(C.3)

obtained considering that the bulk energy ∝ |∆|2 is independent of the phase ϕ. The
sum over n was devided into:

• the sum over the discrete positive eigenvalues εn(ϕ) (n = 1, 2, ...) of BdG equations,

• the integration over the continuos spectrum with density of states ρ(ε, ϕ).

Eq. contains a factor 2 taking into account the two valleys in graphene. The state with
ε > ∆ contribute to the Josephson current [204], but their contribute to IS can be
negleted respect the contribution coming from the Andreev bounds state, with energy
below the gap ε < ∆. Considering a supercondutor-graphene system, the Andreev levels
can be found from the BdG equations, in the form [186]

[(ihvσ · ∂ − µ)⊗ τz] ~ψ = ε~ψ (C.4)
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where ~ψT = (ψe, ψh) is the electron (hole) wave functionin a vector, dot product is
defined as σ · ∂ = σx∂x + σy∂y, and the symbol ⊗ indicates direct matrices product
between the isospin (σ) and the electron-hole space (τ).

Chemical potential µ is measured respect to the Dirac points, so that µ = 0 cor-
responds to undoped graphene. At the SG interfaces, located in r± = (±L/2, y), the
electron-like and hole-like wavefunctions are related each other by Andreev processes.
Mathematically this can be expressed as

ψh (r−) = U (ε)ψe (r−) , ψh (r+) = U−1 (ε)ψe (r+) (C.5)

U (ε) = exp (−iϕ/2 + iβσx) , β = arccos (ε/∆) . (C.6)

Assuming hard wall boundary conditions in the y-direction, the ky-component of the
particle wave vector become quantized ky = qn = (n + 1/2)π/W . From the Fourier
trasfomation of Eq. C.4, the dispersion relation for the Andreev levels is

cosϕ =

(
cos2 χ+

sin2 χ

cos2 χ

)
cos 2β − sin2 χtan2γ (C.7)

where χ = kL, k = (µ/~v) cos γ, γ = arcsin(~vqn(µ).
Considering

εn (ϕ) = ∆
√

1− |tn|2 sin2 (ϕ/2) (C.8)

where |tn|2 is the transmission coefficent in the nth transversal channel

|tn|2 =
k2
n

k2
n cos (knL) + (µ/}v)2 sin2 (knL)

, kn =

√
1− |tn|2 sin2(ϕ/2), (C.9)

Eq. C.7 can be solved analitically.
At the Dirac point, kn → iqn, all channels are evanescent, and

|tn|2 =
1

cosh2 (qnL)
. (C.10)

Knowing Eq. C.8, Eq.C becomes [189]

IS (ϕ) =
e∆2

}
∑
εn<∆

|tn|2 sinϕ

εn (ϕ)
tanh

εn (ϕ)

2T
. (C.11)

Close to the neutrality points, that is when µ� ETh, where ETh = ~v/L is the Thouless
energy, Eq. C.10 is a good approximation for the transmission coefficent. Moreover, if
W � L the summation in Eq. C.11 can be replaced by an integration, that is

∑
n →

W
πL

∫∞
0
dx with qnL → x. Using a dimensionless variable z =

√
1− sin2(ϕ/2)/ cosh2 x,

the Eq. C.11 becomes:

IS (ϕ) =
2e∆0(T )W

π}L

∫ 1

cos(ϕ/2)

dz
cos (ϕ/2) tanh z∆0(T )

2T√
z2 − cos2 (ϕ/2)

. (C.12)

The temperature dependence for the gap |∆| = ∆0(T ) for s-wave superconductors is:

ln
∆0(0)

∆0(T )
= 2

∞∑
n=1

(−1)n+1K0

[
n

∆0(T )

kBT

]
, (C.13)



87

where K0(x) is the zero order Bessel function, ∆0(0) = (eγ/π)kBTc = 0.567kBTc and this
γ is the Euler’s constant. There is no analytical expression for the integral in Eq. C.12,
except for the zero temperature limit [186, 205]:

IS (ϕ) =
e∆0(0)W

π}L
cos (ϕ/2) ln

(
1 + sin (ϕ/2)

1− sin (ϕ/2)

)
. (C.14)

This equation, calculated in the ballistic limit of graphene, coincides with the results of
Kulik and Omelyanchuk for disordered SNS junction [205]. For the longer junctions case,
L� W , all transmission are exponentially suppressed, |tn|2 ≈ e−qnL, and the summation
in C.11 reduces to a geometrical progression to the leading order in |tn|2, resulting in:

IS (ϕ) =
e∆

}
tanh

(
∆

2T

)
e−πL/W sinϕ = Ic(T ) sinϕ. (C.15)

Considering high doping, ETh � µ� ∆, full expression for tn is necessary to calculate
IS(ϕ). In this case, there is no analytical expression for IS(ϕ) but the critical current
can be estimates as:

IC ' Nch
e∆

}
, Nch =

µW

π}v
(C.16)

where Nch is the number of propagating transversal channel.
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