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“Quelli che s’innamorano di pratica, sanza scienza, son come ’l nocchiere, ch’entra
in navilio sanza timone o bussola, che mai ha certezza dove si vada.

Sempre la pratica dev’esser edificata sopra la bona teorica. . . ”1

1Leonardo Da Vinci (1452-1519).
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Preface

This manuscript summarizes my main research activity in this last triennium.
It adheres to a common procedure of solving a scientistic problem. That is,
introduction to the problem, selection of the mathematical and physical tools
to model the problem, proposed solution, and experimental/numerical vali-
dation.

The main topics considered are the characterization and the modeling of
the mechanical behavior of real materials, and the stochastic dynamics with
special regards to the characterization of the stochastic processes. To address
these two different kinds of problem an advanced mathematical tool is used.
In particular, the differential calculus with non-integer operators offers sev-
eral new mathematical tools that permit obtaining advanced results.

Therefore, two different topics are studied: mechanical modeling of ma-
terials, and stochastic characterization of random process. Both arguments
are used in order to pursue one final aim. That is, the structural dynamics of
real structures and structural elements built with advanced material. This is an im-
portant goal that regards many physical and engineering problems. Indeed,
in several mechanical and engineering problems it is needed to perform the
dynamic analysis of such structures that are increasingly complex, and made
with advanced materials. For such structures the classical models and the
common tools of the structural dynamics are unable to provide an accurate
description of the real problem. Obviously, to perform this kind of dynamical
analysis it is necessary to define properly the global model of the structure, to
describe correctly the real mechanical behavior of the building materials, and
to simulate the external forced processes that load the structures during their
life.

The characterization of the mechanical behavior of real building materi-
als is obtained with the aid of recent advanced models which involve frac-
tional operators in the constitutive stress-strain relation. This kind of model

xi



xii Preface

is known as fractional viscoelasticity. The choice of this kind of stress-strain
model is due to the fact that the fractional viscoelasticity allows to obtain the
best agreement with experimental observations for a plethora of materials.
After such choice, it is necessary to define the global mechanical model of the
structure. In this work both continuous and discretized models of structures
with fractional viscoelastic constitutive law are considered.

To complete the dynamic analysis it is needed to represent the real external
loads and the corresponding output in terms of displacements of the consid-
ered structures. In many cases of engineering interest the external loads are
adequately modeled as random processes (earthquake excitation, wind ve-
locity field, ocean-waves actions, impact loading, etc.). To perform this char-
acterization, the classical tools of stochastic dynamics are developed by using
fractional calculus. In particular, the fractional operators permit obtaining a
new stochastic characterization of the inputs (external actions) and outputs
(displacements) process.

Declaration

This manuscript contains the main part of my own research performed at
the Department of Civil, Environmental, Aerospace and Materials Engineer-
ing, University of Palermo, and at the Department of Civil and Environmen-
tal Engineering, Rice University; the research was carried out from January
2012 through December 2014. The thesis contains my own results, and where
stated, some developments from the work done in collaboration.

Francesco Paolo Pinnola
Palermo, December 2014



Introduction

Aims and reasons

The main purpose of this thesis is to provide a new way to correctly perform
stochastic analysis of structures with viscoelastic constitutive law. The reason
for this kind of problem relates the fact that structures with viscoelastic ma-
terials are built in many areas of mechanical, civil and aerospace engineering.
To perform this kind of stochastic analysis there are two fundamental prob-
lems. That is, the mechanical description of the viscoelastic phenomenon, and
the correct representation of the external loads. Both of these problems are ad-
dressed and solved by the proposed modeling that involves some advanced
mathematical tools.

The reason to describe materials as viscoelastic is given by the fact that
the elastic model, commonly used to describe the mechanical behavior in the
classic approach of the mechanics of materials is an idealization of the real me-
chanical behavior. Indeed, many materials are not completely elastic but have
a mechanical behavior intermediate between the purely elastic behavior, that
is typical of the solids, and the purely viscous behavior, which is common in
the fluids. This phenomenon is known as viscoelastic behavior and is typical
of many different materials used in various engineering fields. Moreover, in
recent years complex materials, increasingly used in engineering applications,
have been obtained with the aid of sophisticated industrial processes aiming
to enhance stiffness and strength of materials. For these latter materials the
elastic models do not yield an adequate representation of the real mechanical
behavior and the modeling through viscoelastic laws is always greater. Be-
sides, the viscoelastic properties cannot be neglected when it is necessary to
evaluate the long-term effects in the structures. For example, concrete and
some kinds of rocks, that are commonly modeled as elastic-brittle materials,
for long observation times they also show viscoelastic behavior. Viscoelas-

xiii



xiv Introduction

tic materials, commonly used in the engineering fields, are woods, pultruded
elements, elastomers, fibre-reinforced-polymers, resins, bio-inspired materi-
als, etc.. Other materials which have viscoelastic properties are some kinds of
rocks, bitumens, bones, rubbers, biologic tissues, etc..

There are different ways to model the stress-strain relation of the viscoelas-
tic material but the best results, compared to the experimental investigation
are given by the use of fractional operators in the stress-strain relation.

!"#$%&'()*%$'+)%"#"'%,-#(.%//0+/ 12+,-3,4+*()0%#$%&'1#-/3"5+*%,(-&$($-56+$($+7%,+/

After the choice of the correct way to model the stress-strain relation (the
local model), to perform the dynamic analysis it is necessary to properly model
the structure. In other words, it is needed to pass from the local stress-strain
relation model to the global load-displacement model. In this manuscript two
different global models are considered: the continuous model of the beam,
and the discretized multi-degree-of-freedom system with lumped parame-
ters. The first one represents the continuous viscoelastic structural elements
(rods, beam, etc.); the second one is capable of describing the structures with
viscoelastic devices which can be modeled as frames (building, space frame,
etc.).

The last step of the dynamic analysis involves the modeling of the external
loads. The choice to perform the dynamic analysis as stochastic is justified by
the fact that the external loads acting on the structures are well modeled as
random processes. For this reason some tools of the stochastic mechanics will
be introduced and developed with the aid of the fractional calculus.

Mathematical tools

In addition to the common tools of the mechanics (eigenvalue analysis, Monte
Carlo simulation, step-by-step integration, etc.), an important tool, widely
used in this manuscript, is the fractional calculus. It is no more than the
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generalization of the ordinary differential and integral calculus to the non-
integer derivatives and integrals. The theory of non-integer order derivation
goes back to seventeenth century, when in 1695 Leibniz, in his letter, asked
about the meaning of half derivative to L’Hôpital. With this event the study
of derivatives and integrals with arbitrary order began, and this study has
continued to the end of nineteenth century by Liouville, Grünwald, Letnikov e
Riemann.

Despite the fact that fractional calculus has existed for more than two hun-
dred years, in the engineering and physics fields its application has been rela-
tively limited. Perhaps, the main reason of this limitation is due to the fact that
this kind of operators have no obvious geometrical meaning. This implies that
in some physical application there is no obvious mechanical interpretation of
the analytical law which involves fractional operators. In the present work
this powerful tools is used to describe the viscoelastic stress-strain relation of
the real materials, and in stochastic mechanics to perform a new description
of the random processes by the complex spectral moments.

Fractional constitutive laws

Several scientists have been experimentally demonstrated that the best way to
describe the viscoelastic behavior of real materials is by fractional operators
in the stress-strain relation. After an accurate study of the existent results, and
with the aid of some experimental investigations performed at the laboratory
of the Department of Civil, Environmental, Aerospace and Materials Engi-
neering of University of Palermo, it is possible to assert that the elastic model
and the classic models of viscoelasticity are unable to fully describe the vis-
coelastic phenomenon. For this reason it is needed to introduce an advanced
model which involves the fractional differential operators in the stress-strain
relation σ(t)− ε(t).

The fractional constitutive law also contains the the perfect elastic model
and the purely Newtonian one. Indeed the fractional law contains these two
behavior as bounded cases. This kind of model is able to give a good agree-
ment with the experimental observations, and excellent results can be ob-
tained by the best-fitting of experimental test with the aid of few parameters.
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Continuous and discrete models

After the choice of the local stress-strain relation, the dynamic analysis of real
structures is driven by introducing a proper global model which must be able
to describe the behavior in terms of displacements and loads u(t)− q(t).

Two kinds of global models are considered, the continuous systems and
the discretized one with lumped parameters. In both cases, the choice of
fractional operators in the local stress-strain relation leads to have fractional
differential equations in the global displacement-load relations when the dy-
namic analysis is performed. This kind of differential equations are more dif-
ficult to solve respect to the integer-orders one. For this reason new methods
to solve this kind of equations are developed and provided in this manuscript.

(t)
(t)

f (t)
2

f (t)
1

f (t) r

(t)
(t)

stress-strain relation 

!

!""
#! "#$

fractional Kelvin-Voigt 
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v(z,t)

LOCAL MODEL GLOBAL MODEL

x (t)

x (t)
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2
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Continuous system
fractional partial di!erential equation 
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Discrete system
coupled fractional di!erential 
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f (t) - x (t)
. . . . . . . 

f (t) - x (t)
f (t) - x (t)

 r  r

 2  2

 1  1

As continuous system, the Euler-Bernoulli beam with fractional dampers
is considered; while, as discretized case, the case of shear-type multi-degree-
of freedom system with fractional viscoelastic elements is discussed.

The dynamic analysis of a continuous Euler-Bernoulli beam with frac-
tional dampers leads to a partial fractional differential equation in term of
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the displacements u(z, t), and the external loads q(z, t) as

ρ
∂2

∂t2 u(z, t) + C(β)J
∂4∂β

∂z4∂tβ
u(z, t) + EJ

∂4

∂z4 u(z, t) = q(z, t), (1)

where u(z, t) denotes the displacements function in the time t along the beam
axis z, J is the moment of inertia of the cross section, ρ is the mass density, C(β)
and β are characteristic coefficients of the fractional stress-strain relation, and
E is the Young’s modulus. This problem is solved by the proposed eigen-
analysis with the aid of the eigenfunction of the classic elastic Euler-Bernoulli
beam and the solution of a set of uncoupled fractional differential equations in
the modal space. The analysis is conducted considering both stochastic and
deterministic loads. Structural elements that can be modeled as continuous
Euler-Bernoulli beams with viscoelastic dampers are the pultruded elements,
which are composed by fibers with elastic-brittle behavior into a matrix with
pronounced viscoelastic behavior.

The discretized multi-degree-of-freedom system with lumped parameters
with fractional viscoelastic elements leads to a set of coupled fractional differ-
ential equations that rule the motion of the model as

Mx(t) +
n

∑
j=1

Cj

�
Djβx

�
(t) + Kx = f(t), (2)

where M and K are the matrix of mass and stiffness, respectively, Cj are the
matrices that contain the parameters of the fractional viscoelastic elements,
jβ are the fractional orders involved, x(t) represents the vector of nodal dis-
placements, and f(t) is the vector of the forced loads. In the general case such
coupled system cannot be decoupled by the classical methods. For this rea-
son, a novel method based on complex eigenanalysis in the expanded state
variables domain.

Stochastic characterization of the response

The external loads in the structures are often well modeled as stochastic pro-
cesses. In this manner the response in terms of function (in the continuous
model) or vector (in the discretized models) displacements is stochastic as
well. In order to characterize the response from a stochastic point of view the
fractional calculus provides some important tools that are also discussed in
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this thesis, with particular emphasis on the characterization of the structures
with fractional viscoelastic constitutive law forced by Gaussian white noise.

In particular, with the aid of the complex spectral moments, that are re-
lated to the fractional integrals of the power-spectral density function, it is
possible to obtain a complete characterization of the stochastic processes. This
method is used in conjunction with other results to provide a new description
of the stochastic response of the fractional multi-degree-of-freedom system
under Gaussian white noise.

Organization of the thesis

This thesis comprises six Chapters. The first two Chapter contain some con-
cepts about the advanced mathematical tools used. In particular, Chapter 1 is
devoted to the introduction of some special functions needed to understand
the basic concept about the mathematical tools used in fractional calculus.
This Chapter also contains the property of the integral transforms.

Chapter 2 introduces the fractional calculus. The fractional derivatives
and integrals and their properties are discussed extensively. Particular atten-
tion is devoted to this kind of differential calculus since it represents the main
used tool in the following Chapters.

Chapter 3 recalls the concepts inherent in the linear stress-strain relations
of the viscoelasticity. In particular, the different ways to model this kind of
phenomenon, the classic models (Kelvin-Voigt, Maxwell, SLS, etc.), the inte-
gral representation of the viscoelasticity and the fractional stress-strain rela-
tion are discussed. The capabilities of the fractional model are also shown.

Chapter 4 presents the mechanical interpretation of the fractional stress-
strain relation. In particular, with the aid of the recent developments in the
fractional viscoelasticity, this Chapter demonstrates that the analytical law
which involves fractional operators in the stress-strain constitutive law has
a mechanical counterpart. This is an important aspect from an engineering
point of view, since it shows that the fractional operators in the mechanical
law are more than simple mathematical tools because they also have the cor-
responding physical meanings.

Chapter 5 discusses the dynamic analysis of real structures with fractional
viscoelastic constitutive law. In particular, it deals with two different cases:
the continuous structural elements, and the discrete system. In the first part
the dynamic analysis of continuous fractional viscoelastic beam is considered.
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Whereas, the second part is devoted to the analysis of multi-degree of free-
dom systems with lumped parameters endowed with fractional viscoelastic
devices. For the latter case a new state variable transformation is proposed to
simplify the solution. In both cases the forced loads are modeled as stochastic
processes and the corresponding responses of the systems (continuous and
discrete) are obtained by the step-by-step integration and the Monte Carlo
simulation.

In the Chapter 6 a stochastic representation of the random processes by the
complex spectral moments is presented. This method is used in conjunction
with the expanded state variable analysis, introduced in the previous Chap-
ters, to provide a new representation of the stochastic response of the multi-
degree-of-freedom system endowed with fractional viscoelastic devices.





Notation

In order to make easier the reading of this manuscript, it is showed below the
mainly used symbols and acronyms (in order of appearance).

f (t) function of the real variable t
�
Dα

a+ ·
�
(t) Grünwald-Letnikov fractional differintegral of order α

�
Dα

a+ ·
�
(t) Riemann-Liouville fractional derivative of order α

�
Iα
a+ ·

�
(t) Riemann-Liouville fractional integral of order α

�
CDα

a+ ·
�
(t) Caputo’s fractional derivative of order α

(Iα·) (t) Riesz fractional integral of order α

(Hα·) (t) complementary Riesz fractional integral of order α

α or β real differintegration order

γ complex integral order

a lower bound of the fractional operator

t time variable and/or upper bound

z or s complex variable

j or i imaginary unit j = i =
√
−1

N set of the natural numbers

Q set of the rational numbers

xxi
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R set of the real numbers

C set of complex numbers

∗ convolution product

L{} L
−1{} Laplace transform operator and its inverse

F{} F
−1{} Fourier transform operator and its inverse

M{} M
−1{} Mellin transform operator and its inverse

FL(s) Laplace transform of f (t)

FF(ω) Fourier transform of f (t)

FM(s) Mellin transform of f (t)

�() real part of complex number

�() imaginary part of complex number

Γ(z) Euler gamma function

Eα,β(z) Mittag-Leffler function

W(z, α, β) Wright function

Jν(z) and Yν(z) first and second kind Bessel functions

Iν(z) and Kν(z) first and second kind modified Bessel functions

δ(t) generalized Dirac delta function

U(t) Unit step function

rect(t) rectangular function

σ(t) stress history

ε(t) and γ(t) axial and shear strain history

Φ(t) relaxation function

Ψ(t) creep function
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G(t) shear relaxation function

J(t) shear creep function

T Cauchy stress tensor

ε deformation tensor

Jσ linear invariant of T

Jε linear invariant of ε

Td deviatoric part of the stress tensor

εd deviatoric part of the deformation tensor

E Young’s modulus

G shear modulus

ν Poisson’s ratio

K bulk modulus

EV elasto-viscous

VE visco-elastic

H(ω) transfer function

I identity matrix

M mass matrix

C damping matrix

Cβ matrix of the coefficients of fractional terms with order β

K stiffness matrix

x(t) vector of displacements xj(t)

FSDOF fractional single-degree-of-freedom

FMDOF fractional multi-degree-of-freedom
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H(ω) transfer matrix

z(t) vector of state variables zj(t)

Φ matrix of eigenvectors

φj jth eigenvector

λ eigenvalue

Ψ matrix of complex eigenvectors

ψj jth complex eigenvector

g(t) Green function

E[·] expectation operator

W(t) Gaussian white noise process

wk(t) kth realization of the Gaussian white noise

S0 power spectral density of the Gaussian white noise W(t)

X(t) stochastic process

xk(t) kth realization of the stochastic process X(t)

σ2
X stationary variance of the stochastic process X(t)

RX(τ) correlation function of the process X(t)

CF correlation function

SX(ω) power spectral density of the process X(t)

PSD power spectral density

RXY(τ) cross-correlation function of the processes X(t) and Y(t)

CCF cross-correlation function

SXY(ω) cross-power spectral density of the process X(t) and Y(t)

CPSD cross-power spectral density
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MX(γ − 1) complex moment of order γ − 1 of the process X(t)

CFM complex fractional moment

ΛX(−γ) spectral complex moment of order −γ of the process X(t)

CSM complex spectral moment





Chapter 1

Special functions and integral
transforms

This Chapter introduces some special functions, the knowledge of which is
necessary to fully understand the fractional calculus and the topics reported
in what follows.

Further, other concepts about the integral transforms of Laplace, Fourier
and Mellin are discussed. In particular, some properties of the mathematical
transforms for the ordinary differential calculus are introduced. The knowl-
edge of those properties will expedite the application of the transforms to the
fractional differential calculus, that will be discussed in the next Chapter.

1.1 Special functions

Knowledge of some special functions is indispensable to understand frac-
tional calculus. This section reports briefly these special functions and its
properties. In particular, the special functions discussed are the Euler gamma
function, the Mittag-Leffler, and the Wright functions. Other insights about
this argument can be found in [20, 53–55, 64, 77, 83, 91, 99].

1.1.1 Euler gamma function

One of the fundamental special functions of fractional calculus is the Euler
gamma function Γ(z). This function generalizes the concept of factorial n! for
non-integer and/or complex value of n. Indeed, this function was obtained

1
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from an interpolation problem placed in a letter from Christian Goldbach (1690-
1764) to the young Leonhard Euler (1707-1783): find a simple formula to evaluate
the factorials also for non-integer number.

The gamma function, in the positive half-plane of z, is defined by integral

Γ(z) :=
� ∞

0
e−ttz−1 dt; (1.1)

the integral converges in the right side of the complex plane (that is with
�(z) > 0); indeed, if z = x + jy

Γ(x + jy) =
� ∞

0
e−ttx−1+jy dt =

� ∞

0
e−ttx−1ejy log (t) dt

=
� ∞

0
e−ttx−1 {cos [y log (t)] + j sin [y log (t)]} dt,

(1.2)

the expression in the square brackets is bounded ∀t; convergence at infinity
is given by e−t, and if x = �(z) > 1 also the convergence at the origin is
provided. The gamma function is a meromorphic function, it has simple poles

�4

�2

0

2

4

��z��x
�2

�1

0

1

2

��z��y
0
1
2
3

4

���z��

Figure 1.1: Absolute value of the Euler gamma function on the Gauss plane (|Γ(z)|
for z ∈ C).

for x = −n (with n = 1, 2, 3, . . . ) and it is continuous and positive for real and
positive values of z (that is for �(z) > 0). Figure 1.1 shows the absolute value
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of gamma function on the Gauss plane (|Γ(z)| for z ∈ C), it can be seen the
presence of isolated singularities for x = −n.

Another representation of the Euler gamma function has been provided
by Gauss, in the form

Γ(z) := lim
n→∞

n!nz

z(z + 1) . . . (z + n)
. (1.3)

From the integral formulation of gamma function in Eq. (1.1) some com-
mon integral forms can be readily obtained. The most known one is

√
π = Γ

�
1
2

�
=

� ∞

0
t−

1
2 e−t dt. (1.4)

The Table 1.1 shows some common values of the Euler gamma function.

Γ
�
− 3

2
�
= 4

3
√

π Γ(1) = 1

Γ(−1) = ±∞ Γ
� 3

2
�
= 1

2
√

π

Γ
�
− 1

2
�
= −2

√
π Γ(2) = 1

Γ(0) = ±∞ Γ
� 5

2
�
= 3

4
√

π

Γ
� 1

2
�
=

√
π Γ(3) = 2

Table 1.1: Common values of Γ(x) for − 3
2 ≤ x ≤ 2

.

Properties of gamma function

A fundamental property of the gamma function is that

Γ(z + 1) = zΓ(z), (1.5)
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which can be demonstrated by integration by parts. Specifically

Γ(z + 1) =
� ∞

0
e−ttz dt =

�
− e−ttz�t=∞

t=0 + z
� ∞

0
e−ttz−1 dt = zΓ(z), (1.6)

and by taking into account of Eq. (1.5), and by knowing that Γ(1) = 1,

Γ(2) = 1Γ(1) = 1 = 1!
Γ(3) = 2Γ(2) = 2 · 1! = 2!
Γ(4) = 3Γ(3) = 3 · 2! = 3!
· · · · · · · · · · · · · · ·

Γ(n + 1) = nΓ(n) = n · (n − 1)! = n!

(1.7)

that property can be readily seen in Figure 1.2(a). Indeed, it shows the graph

!4 !2 2 4
x

!5

5

10

"!x"

(a) Γ(x)

!4 !2 2 4
x

!2

!1

1

2

3

4

1

" !x"

(b) Γ(x)−1

Figure 1.2: Euler gamma function and its inverse for x ∈ R.

of the function Γ(x) for x ∈ R; the red dots have as abscissa x = n (with
n ∈ N) and as ordinate Γ(n) = (n − 1)!.

In the next Chapter, in the definitions of fractional operator, there will be
the inverse gamma function, that is Γ(x)−1. The graph of this function for x ∈ R

is shown in Figure 1.2(b). It can be seen that the trend of the inverse gamma
function is oscillating for negative values of x and it tends to zero for x → ∞.
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Moreover, observe that the function Γ(z) does not have zero finite values, then
its inverse is an integer function.

A particular property of the gamma function is given by the relation

Γ(z)Γ(1 − z) =
π

sin πz
; (1.8)

this Eq. (1.8) is known as Euler’s reflection formula.
Moreover, the following relation holds:

Γ(z)Γ
�

z +
1
2

�
= 21−2z√π · Γ(2z); 2z �= 0,−1,−2, . . . . (1.9)

that is known as duplication formula. This formula is a special case of the mul-
tiplication theorem

Γ(z)Γ
�

z +
1
m

�
Γ
�

z +
2
m

�
. . . Γ

�
z +

m − 1
m

�
= (2π)

m−1
2 m( 1

2−mz)Γ(mz).

(1.10)
The derivative of gamma function can be expressed by the product of itself

and other functions. Indeed,

Γ�(z) = Γ(z) · ψ0(z),

where ψ0 is the polygamma function of order 0. In particular,

Γ�(1) = −γ,

where γ is the Euler-Mascheroni constant (γ = 0, 57721566).

1.1.2 Mittag-Leffler function

The swedish mathematician Magnus Gustaf (Götta) Mittag-Leffler introduced
in the 1903 the special function Eα(z). That function is defined by the power
series

Eα(z) :=
∞

∑
k=0

zk

Γ(αk + 1)
. (1.11)

Eq. (1.11) represents the Mittag-Leffler (M-L) function in one-parameter (α)
form. Another definition, that plays an important role in the fractional calcu-
lus, is the two-parameters M-L function, defined by:

Eα,β(z) :=
∞

∑
k=0

zk

Γ(αk + β)
; (α > 0, β > 0). (1.12)
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From the definition in Eq. (1.12), some particular cases can be readily ob-
tained. Specifically,

E1,1(z) =
∞

∑
k=0

zk

Γ(k + 1)
=

∞

∑
k=0

zk

k!
= ez, (1.13)

E1,2(z) =
∞

∑
k=0

zk

Γ(k + 2)
=

∞

∑
k=0

zk

(k + 1)!
=

1
z

∞

∑
k=0

zk+1

(k + 1)!
=

ez − 1
z

, (1.14)

and

E1,3(z) =
∞

∑
k=0

zk

Γ(k + 3)
=

∞

∑
k=0

zk

(k + 2)!
=

1
z2

∞

∑
k=0

zk+2

(k + 2)!
=

ez − 1 − z
z2 . (1.15)

For α = 1 and generic value of β, M-L becomes:

E1,m(z) =
1

zm−1

�
ez

m−2

∑
k=0

zk

k!

�
. (1.16)

It can be seen that if the parameter β = 1, the two-parameters M-L function
becomes the one-parameter one. Indeed,

Eα,1(z) =
∞

∑
k=0

zk

Γ(αk + 1)
≡ Eα(z). (1.17)

As shown in Eqs. (1.13)-(1.15) the M-L function is related to some particu-
lar functions for certain values of the parameters α and β. Also the hypergeo-
metric sine and cosine are particular cases of the M-L function:

E2,1(z2) =
∞

∑
k=0

z2k

Γ(2k + 1)
=

∞

∑
k=0

z2k

(2k)!
= cosh(z); (1.18)

E2,2(z2) =
∞

∑
k=0

z2k

Γ(2k + 2)
=

1
z

∞

∑
k=0

z2k+1

(2k + 1)!
=

sinh(z)
z

. (1.19)

Another particular case can be obtained by setting α = 1
2 and β = 1:

E 1
2 ,1(z) =

∞

∑
k=0

zk

Γ( k
2 + 1)

= ez2
erfc(−z), (1.20)

where erfc(−z) represents the complementary error function, that is defined as

erfc(z) =
2√
π

� ∞

z
e−t2

dt. (1.21)

Other properties and applications of M-L function can be found in [6, 55, 64,
74, 91, 99].
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1.1.3 Wright function

Useful function to solve the linear fractional differential equation is the Wright
function [6, 53]. It is closely related to the two-parameters M-L and is defined
as

W(z; α, β) :=
∞

∑
k=0

zk

k!Γ(αk + β)
; (1.22)

for α = 0 and β = 1, the Wright function becomes:

W(z; 0, 1) =
∞

∑
k=0

zk

k!Γ(1)
=

∞

∑
k=0

zk

k!
= ez. (1.23)

If β = 1 − α the Wright function becomes the Mainardi’s function [6, 74]. It is
denoted by M(z; α), and defined as

W(−z;−α, 1 − α) = M(z; α) :=
∞

∑
k=0

(−1)kzk

k!Γ[−α(k + 1) + 1]
. (1.24)

1.2 Bessel functions

This section briefly introduces the Bessel functions. The concepts reviewed
in this part are needed to understand the some developments in the ensuing
Chapters. Other details about this special functions can be found in [29, 56,
88, 96].

1.2.1 Functions of the first and the second kind

The first two kinds of Bessel functions are defined as canonical solutions of
the Bessel equation. That is,

z2 d2yν(z)
dz2 + z

dyν(z)
dz

+ (z2 − ν2)yν(z) = 0. (1.25)

It can be noted that the Eq. (1.25) represents an ordinary differential equa-
tion of second order, for which two linear independent solutions must exist at
least. Other solutions in a finite domain can be represented by linear combi-
nation of the two linear independent solutions. A possible solution of Bessel
equation is

Jν(z) = zν
∞

∑
k=0

ckzk. (1.26)
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Using the Eq. (1.26) in Eq. (1.25) and placing ν � 0 yields

Jν(z) :=
� z

2

�ν ∞

∑
n=0

(−1)n � z
2
�2n

n!Γ(n + ν + 1)
(1.27)

The Eq. (1.27), first solution of Eq. (1.25), is known as Bessel function of first
kind. The Figure 1.3 shows this kind of function for some values of ν.

2 4 6 8 10 12 14
z

�0.4

�0.2

0.2

0.4

0.6

0.8

1.0

JΝ�z�

Figure 1.3: Bessel function of first kind for ν = 0, 1, 2, 3.

For non-integer values of ν the function J−ν(z) becomes the second solu-
tion of the Eq. (1.25). This second solution is linear independent by Jν(z), it is
denoted by Yν(z) and it can be expressed by linear combination of Jν(z) and
J−ν(z). Specifically,

Yν(z) :=
Jν(z) cos(πν)− J−ν(z)

sin(πν)
; (1.28)

this equation is known as Bessel function of second kind or Neumann function.
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2 4 6 8 10 12 14
z

�1.0

�0.5

0.5

YΝ�z�

Figure 1.4: Bessel function of second kind for ν = 0, 1, 2, 3.

Figure 1.4 shows the second solution of the Bessel function for certain val-
ues of ν. Comparing the two graphs it can be seen that the functions Jν(z)
have finite values at the origin (for z = 0), while the functions Yν(z) have
singularities at z = 0.

Observe that for the particular case in which ν = 1/2, the linear indepen-
dent solutions of the Bessel equations becomes

J 1
2
(z) =

cos(z)√
z

, Y1
2
(z) =

sin(z)√
z

. (1.29)

This implies that at least some solutions of the Bessel equation may have os-
cillating trends, suggesting a similarity between the Bessel functions and the
trigonometric functions.

1.2.2 Modified Bessel functions

The adjective “modified" denotes the Bessel functions with imaginary argu-
ment. Their equation is obtained by replacing z with jz in the Eq. (1.25). That
is,

z2 d2wν(z)
dz2 + z

dwν(z)
dz

+ (z2 − ν2)wν(z) = 0. (1.30)

The first solution of the Eq. (1.30) is

Iν(z) := e−j π
2 ν Jν(z ej π

2 ) =
∞

∑
k=0

� z
2
�ν+2k

k!Γ(k + ν + 1)
(1.31)
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this solution is known as the modified Bessel function of the first kind. Similarly
to the previous Bessel function, if ν is non-integer, then I−ν(z) is linear inde-
pendent of Iν(z). The linear combination of Iν(z) and I−ν(z) permits to obtain
the second solution of Eq. (1.30), that is denoted by Kν(z) and defined as

Kν(z) :=
π [I−ν(z)− Iν(z)]

2 sin(πν)
, (1.32)

the Eq. (1.32) is called modified Bessel function of second kind or rather Basset
function. If the first and second kind Bessel function were related to the sine
and cosine function, the modified Bessel function are similar to the hypergeo-
metric function cosh(z) and sinh(z).

1 2 3 4 5
z

5

10

15

20

25

IΝ�z�

(a) Iν(z)
1 2 3 4 5

z

0.5

1.0

1.5

2.0

2.5

3.0

3.5

KΝ�z�

(b) Kν(z)

Figure 1.5: Modified Bessel functions for ν = 0, 1, 2, 3.

Figure 1.5 shows the modified Bessel function for ν = 0, 1, 2, 3. Observe
that for real and positive values of z the functions Iν(z) and Kν(z) are real
function, but their trends are not oscillating. In particular, Iν(z) is a monoton-
ically increased function, that becomes zero for z = 0 if ν > 0. While, Kν(z)
has a singularity at the origin, and tends to zero when z → ∞.

1.3 Laplace transform

The function FL(s) of the complex variable s = γ + jη, defined as

FL(s) = L{ f (t); s} :=
� ∞

0
e−st f (t) dt (1.33)
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is known as the Laplace transform of the function f (t). This transform allows
switching the study of a function in the real variable t to the study in a com-
plex space of variable s.

For the existence of the integral introduced in Eq. (1.33), the function f (t)
must be of exponential order α. This means that two positive constants M and
T exist, these constants are such that:

e−αt| f (t)| ≤ M, ∀ t > T, (1.34)

the inequality in Eq. (1.34) implies that the function f (t) must not grow faster
then an exponential function of order α when t → ∞.

From the Laplace transform FL(s) is possible to obtain the original func-
tion f (t) by the inverse Laplace transform. Specifically,

f (t) = L
−1{FL(s); t} :=

1
2π j

� c+j∞

c−j∞
estFL(s) ds, (1.35)

where c ∈ �(s) > c0, and c0 belongs to the right plane of the absolute con-
vergence of the Laplace integral. Observe that f (t), from the inverse Laplace
transform, is obtained by performing the integral along the imaginary axis,
since the real part of s remains constant.

1.3.1 Properties of the Laplace transform

The Laplace transform of the summation of two functions f (t) and g(t) is
equal to the summation of the transformations FL(s) and GL(s). That is,

L{ f (t) + g(t); s} = FL(s) + GL(s) (1.36)

the Eq. (1.36) is obtained by assuming that for both functions the Laplace
transform exists. The Eq. (1.36) represents the property of Laplace transform
known as additivity.

Consider two function f (t) e g(t), for which the Laplace transform exists;
for all λ, µ ∈ C the following relation holds:

L{λ f (t) + µg(t); s} = λL{ f (t); s}+ µL{g(t); s} = λFL(s) + µGL(s)
(1.37)

from which is possible to observe that the operator L{. . . } is linear.
Consider the convolution of two function f (t) e g(t), which are equal to

zero for t < 0:

f (t) ∗ g(t) =
� t

0
f (t − τ)g(τ) dτ =

� t

0
f (τ)g(t − τ) dτ, (1.38)
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the Laplace transform of this convolution is equal to the product of the Laplace
transform of the two involved functions. That is,

L{ f (t) ∗ g(t); s} = FL(s)GL(s); (1.39)

the Eq. (1.39) holds true provided that FL(s) and GL(s) exist.
Next, consider the Laplace transform of a derivative of integer order n of

the function f (t). That is,

L{ f (n)(t); s} = snFL(s)−
n−1

∑
r=0

sn−r−1 f (r)(0) = snFL(s)−
n−1

∑
r=0

sr f (n−r−1)(0);

(1.40)
the Eq. (1.40) is obtained by integrating by parts under the assumption that
the Laplace transform of f (n)(t) exists. The proof of Eq. (1.40) is trivial for
n = 1:

L{ f �(t); s} = sFL(s)− f (0) (1.41)

Another property of the Laplace transform FL(s) is related to its deriva-
tive. Specifically,

d
ds

L{ f (t); s} =
d
ds

FL(s) =
d
ds

� ∞

0
e−st f (t) dt =

� ∞

0

d
ds

e−st f (t) dt

= −
� ∞

0
e−st(t f (t)) dt = −L{t f (t); s}.

(1.42)

For a fixed value of s0 ∈ C, the relation

L{es0t f (t); s} = L{ f (t); s − s0} = FL(s − s0) (1.43)

holds. This Eq. (1.43), known as frequency shifting, can be readily proved by
the definition of Laplace transform:

L{es0t f (t); s} =
� ∞

0
e−stes0t f (t) dt = L{ f (t); s − s0}. (1.44)

Moreover, for all t0 > 0, if f (t) = 0 for all t < 0, the following property holds
true:

L{ f (t − t0); s} = e−s t0L{ f (t); s} = e−s t0FL(s) (1.45)

the Eq. (1.45) is known as time shifting.
For all a > 0, the following relation

L{ f (at); s} =
1
a
L

�
f (t);

s
a

�
=

1
a

FL

� s
a

�
(1.46)

holds.
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1.3.2 Application to differential equations

The Laplace transform allows to solve the differential equations with constant
coefficients under assigned initial condition.

A not-homogeneous differential equation of order n, with constant coeffi-
cient ck, can be expressed in the form

n

∑
k=0

Ck
dkx(t)

dtk = f (t), (1.47)

with appended initial conditions:

x(0) = x0; x�(0) = x�0; . . . x(n−1)(0) = x(n−1)
0 ; (1.48)

for the uniqueness of the solution of the Eq. (1.47) the initial conditions must
be n.

By performing the Laplace transform of Eq. (1.47):

L{x(t); s} = XL(s), (1.49)

L{x�(t); s} = sXL(s)− x(0) = sXL(s)− x0, (1.50)

L{x��(t); s} = s2XL(s)− sx(0)− x�(0) = s2XL(s)− sx0 − x�0, (1.51)

and setting
L{ f (t); s} = FL(s), (1.52)

from Eq. (1.47) is obtained that:

XL(s)(c0 + c1s + c2s2 + · · ·+ cnsn)− Pn−1(s) = FL(s), (1.53)

where Pn−1(s) is a polynomial in s of order n − 1 that contains the summation
of all contributions of the initial conditions. Eq. (1.53) yields

XL(s) =
FL(s) + Pn−1(s)

(c0 + c1s + c2s2 + · · ·+ cnsn)
; (1.54)

by performing the inverse Laplace transform of the Eq. (1.54), the solution
x(t) of the differential equation (1.47) is given in the form:

x(t) = L
−1{XL(s); t} =

1
2π j

� c+j∞

c−j∞
estXL(s) ds. (1.55)
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Example Consider the homogeneous differential equation

x��(t) + 7x�(t) + 8x(t) = 0

with the initial conditions:

I.C.

�
x(0) = 2,
x�(0) = 5.

By performing the Laplace transform of the given differential equation,
one obtains:

s2XL(s)− 2s − 5 + 7sXL(s)− 14 + 8XL(s) = 0,

XL(s)(s2 + 7s + 8)− (2s + 19) = 0,

XL(s) =
2s + 19

(s2 + 7s + 8)
,

the solution x(t) is given by the inverse Laplace transform of XL(s).

1.4 Fouirer transform

The Fourier transform of the continuous and fully integrable function f (t) is
defined as

FF(ω) = F{ f (t); ω} :=
� ∞

−∞
ejωt f (t) dt; (1.56)

and it permits to express a mathematical function of time t as a function of
frequency ω.

Starting from the knowledge of the Fourier transform FF(ω), the function
f (t) can be determined by the inverse Fourier transform. That is,

f (t) = F
−1{FF(ω); t} :=

1
2π

� ∞

−∞
e−jωtFF(ω) dω. (1.57)

Clearly, the Fourier transform is nothing else that a particular case of the
Laplace transform, in which the lower bound of the integral has been modi-
fied (from 0 to −∞), and the variable s = −jω has been introduced.

Some books report other definitions of the Fourier transform and its in-
verse as

FF(ω) = F{ f (t); ω} :=
1

2π

� ∞

−∞
e−jωt f (t) dt,



1.4 Fouirer transform 15

F
−1{FF(ω); t} :=

� ∞

−∞
ejωtFF(ω) dω;

or even
FF(ω) = F{ f (t); ω} :=

1√
2π

� ∞

−∞
ejωt f (t) dt;

F
−1{FF(ω); t} :=

1√
2π

� ∞

−∞
e−jωtFF(ω) dω.

These latter ones are the definition used by the software Mathematica©. In the
following the definition in Eq. (1.56) for the Fourier transform, and the defini-
tion in Eq. (1.57) for the inverse Fourier transform will be used.

The Eq. (1.56) is a complex function of a complex variable, then, by using
the Euler formula, it can be distinguished the real from the imaginary part of
FF(ω). Specifically,

F{ f (t); ω} =
� ∞

−∞
ejωt f (t) dt

=
� ∞

−∞
cos (ωt) f (t) dt + j

� ∞

−∞
sin (ωt) f (t) dt.

(1.58)

The first part of the Eq. (1.58) is defined as the cosine-transform Fc{ f (t); ω}
and it represents the real part of the Fourier transform �(F). While, the sec-
ond part, known as the sine-transform Fs{ f (t); ω}, denotes the imaginary
part of the transform �(F).

From the Eq. (1.58) some useful observations can be drawn. Specifically,
if f (t) is even ⇒ Fs = 0 ⇒ FF(ω) = Fc{ f (t); ω}, the Fourier transform
is real and even; and if f (t) is odd ⇒ Fc = 0 ⇒ FF(ω) = Fs{ f (t); ω}, the
Fourier transform is imaginary and odd.

Example: Consider the generalized Dirac delta function δ(t), by performing
the Fourier transform of this function

F{δ(t); ω} = 1,

this result cab be obtained by using the Euler formula. Indeed,
� ∞

−∞
δ(t) cos(ωt) dt + j

� ∞

−∞
δ(t) sin(ωt) dt,

the second part is zero since the δ(t) is an even function, then for the sampling
property of Dirac delta: �

cos(ωt)
�

t=0 = 1.
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1.4.1 Properties of the Fourier transform

The Fourier transform has the additivity property

F{ f (t) + g(t); ω} = FF(ω) + GF(ω), (1.59)

under the assumption that for both functions f (t) and g(t) the Fourier trans-
form exists.

Both the operators F{. . . } and F
−1{. . . } are linear. Thus,

F{λ f (t) + ηg(t); ω} = λFF(ω) + ηGF(ω); ∀λ, η ∈ C. (1.60)

Consider the Fourier transform of the convolution:

f (t) ∗ g(t) =
� ∞

−∞
f (t − τ)g(τ) dτ =

� ∞

−∞
f (τ)g(t − τ) dτ, (1.61)

for two function f (t) and g(t), which are defined in the range (−∞, ∞), the
Fourier transform of their convolution is equal to the product of the trans-
forms. That is,

F{ f (t) ∗ g(t); ω} = FF(ω)GF(ω), (1.62)

under the assumption that the transforms FF(ω) and GF(ω) exist. The prop-
erty in Eq. (1.62) will be useful to obtain the Fourier transform of the fractional
operators.

Another useful property is related to the Fourier transform of the deriva-
tive of the function f (t). In this regard, considering a continuous and n-
derivable function, the Fourier transform yields

F{ f (n)(t); ω} = (−jω)nFF(ω), (1.63)

where n represents the derivation order.
The derivative of the Fourier transform is represented by

F{tn f (t); ω} = (−j)n dn

dωn FF(ω); (1.64)

note that no all Fourier transforms FF(ω) admit derivative of order n.
Considering t0 ∈ R, the Fourier transform yields

F{ f (t + t0); ω} = e−jωt0FF(ω), (1.65)
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while, assuming that ω0 ∈ C, the Fourier transform provides

F{ejω0t f (t); ω} = F{ f (t); ω + ω0} = FF(ω + ω0) (1.66)

such expression can be readily proved:

F{ejω0t f (t); ω} =
�

R
ejω0t f (t)ejωt dt =

�

R
f (t)ej(ω+ω0)t dt = FF(ω + ω0).

(1.67)
By considering ∀ a ∈ R�{0} the relation

F{ f (at); ω} =
1
|a|F

�
f (t);

ω

a

�
=

1
|a|FF

�ω

a

�
(1.68)

holds true. Other insights and application of this integral transform can be
found in [6].

1.4.2 Application to differential equations

Similarly to the case of the Laplace transform, by making the Fourier trans-
form of differential equation in the time domain it is possible to obtain a poly-
nomial equation in the frequency domain, for which the solution is readily
evaluated.

Consider the generic solution of non-homogeneous differential equation
with constant coefficients. That is,

c0x(t) + c1
d
dt

x(t) + · · ·+ cn
dn

dtn x(t) = f (t), (1.69)

under the assumptions that the function f (t), the solution x(t) and its deriva-
tive, admit the Fourier transform, the Eq. (1.69) in the frequency domain be-
comes:

c0XF(ω)+ c1(−jω)XF(ω)+ c2(−jω)2XF(ω)+ · · ·+ cn(−jω)nXF(ω) = FF(ω)
(1.70)

from which one obtains

XF(ω) =
FF(ω)

∑n
k=0 ck(−jω)k , (1.71)

the function
H(ω) =

1
∑n

k=0 ck(−jω)k
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is known as transfer function.
If the solution x(t) of the differential equation (1.69) exists, this solution

can be obtained by the inverse Fourier transform of XF(ω): +

x(t) = F
−1{XF(ω); t} =

1
2π

� ∞

−∞
FF(ω)H(ω)e−jωt dω. (1.72)

Note that the inverse Fourier transform does not depend of the initial condi-
tion.

1.5 Mellin transform

Another useful mathematical transform is the well known Mellin transform.
Consider a function f (t) defined in a range (0, ∞), its Mellin transform is

FM(γ) = M{ f (t); γ} :=
� ∞

0
f (t)tγ−1 dt, γ = ρ + jη, (1.73)

where γ ∈ C. This integral transform has a power-law as kernel.
Vice-versa, from the knowledge of transformed function FM(γ), the given

function f (t) can be obtained by performing the inverse Mellin transform.
That is,

f (t) = M
−1{FM(γ); t} :=

1
2π j

� ρ+j∞

ρ−j∞
FM(γ)t−γ ds, (0 < t < ∞), (1.74)

where −ρ1 < ρ < −ρ2. This means that ρ must belong to a particular range
(−ρ1, −ρ2), that is known as fundamental strip of the Mellin transform. This
particular mathematical interval will be discuss in the next subsection.

Observe that the inverse Mellin transform in Eq. (1.74) is performed by
integrating the function FM(γ)t−γ along the imaginary axis. Therefore, it can
be rewritten as

f (t) =
t−ρ

2π

� +∞

−∞
FM(γ)t−jη dη; (−ρ1 < ρ < −ρ2), (1.75)

and that integral does not depend of selected ρ, provided that it belongs to
the fundamental strip.

By the definition in Eq. (1.73) it is possible to assert that the gamma func-
tion Γ(γ), for ρ ≥ 0, can be consider as a particular case of the Mellin trans-
form. Indeed, the Mellin transform of the exponential function e−t leads to:

M{e−t; γ} =
� ∞

0
e−ttγ−1 dt = Γ(γ). (1.76)
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Example: Consider the rectangular function:

rect(t) =






1 → 0 < t < 1,
1
2 → t = 1,
0 → t > 1;

its Mellin transform is

RM(γ) =
� ∞

0
tγ−1rect(t) dt;

the integral absolutely converges if ρ > 0, its solution is

RM(γ) =

�
tγ

γ

�1

0
=

1
γ

.

The inverse Mellin transform gives

rect(t) =
1

2π j

� ρ+j∞

ρ−j∞

1
γ

t−γ ds; ρ > 0.

1.5.1 The fundamental strip

The integral in Eq. (1.73) converges if � (γ) = ρ belongs to the fundamental
strip, that is, if −ρ1 < ρ < −ρ2. The bounds of the fundamental strip, denoted
by ρ1 e ρ2, depend on the given function f (t). In particular, ρ1 represents the
order of the given function at the origin, then when t → 0; while ρ2 is the
order of the function when t → ∞.

In other words, if the function f (t) is a continuous function in the range
(−∞, ∞), and if it is such that

lim
t→0

f (t) = O (tρ1) , (1.77)

and
lim
t→∞

f (t) = O (tρ2) , (1.78)

then the Mellin transform of the function f (t) exists for any γ ∈ C such that ρ
lies in the fundamental strip. Further, if there is a constant C > 0, such that

� ∞

−∞
|FM(ρ + jη)| dη < C, ∀ρ : −ρ1 < ρ < −ρ2, (1.79)

the inverse Mellin transform FM(γ) exists and the Eq. (1.74) yields the given
function f (t).
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Example - fundamental strip: Consider the rational function:

f (t) =
1

1 + t
.

To evaluate the fundamental strip, it is necessary to determine the limits

lim
t→0

1
1 + t

= 1 ⇒ tρ1 = 1 ⇒ ρ1 = 0,

lim
t→∞

1
1 + t

=
1
∞

⇒ tρ2 = ∞−1 = 0 ⇒ ρ2 = −1.
(1.80)

Then, for the considered function the fundamental strip is 0 ÷ 1.
Other examples of Mellin transform of common functions and their fun-

damental strip can be found in [85, 118].

1.5.2 Properties of the Mellin transform

A fundamental property of the Mellin transform is

M {tα f (t); γ} = M { f (t); γ + α} = FM(γ + α). (1.81)

Further, consider the Mellin convolution:

f (t) ∗ g(t) =
� ∞

0
f (tτ)g(τ) dτ, (1.82)

the Mellin transform of this convolution yields

M

�� ∞

0
f (tτ)g(τ) dτ; γ

�
= FM(γ)GM(1 − γ). (1.83)

Moreover, taking into account of the property in Eq. (1.81) yields

M

�
tλ

� ∞

0
τµ f (tτ)g(τ) dτ; γ

�
= FM(γ + λ)GM(1 − γ − λ + µ). (1.84)

Another useful property is obtained by making the Mellin transform of
the product of the derivative of function f (t) by the variable t. That is,

M

�
t

d
dt

f (t); γ

�
= −γFM(γ). (1.85)
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By integrating repeatedly by parts the following relations about the Mellin
transform of the integer-order derivative can be obtained:

M{ f (n)(t); γ} =
� ∞

0
f (n)(t)tγ−1 dt

=
�

f (n−1)(t)tγ−1�∞
0 − (γ − 1)

� ∞

0
f (n−1)(t)tγ−2dt

=
�

f (n−1)(t)tγ−1�∞
0 − (γ − 1)M

�
f (n−1)(t); γ − 1

�

= · · ·

=
n−1

∑
r=0

(−1)r Γ(γ)
Γ(γ − r)

�
f (n−r−1)(t)tγ−r−1

�∞

0

+ (−1)n Γ(γ)
Γ(γ − n)

FM(γ − n)

=
n−1

∑
r=0

Γ(1 − γ + r)
Γ(1 − γ)

�
f (n−r−1)(t)tγ−r−1

�∞

0

+
Γ(1 − γ + n)

Γ(1 − γ)
FM(γ − n).

(1.86)

Moreover, if f (t) and �(γ) = ρ are such that the first part of Eq. (1.86) is equal
to zero, the Mellin transform of the integer-order derivative of the function
f (t) becomes:

M{ f (n)(t); γ} =
Γ(1 − γ + n)

Γ(1 − γ)
FM(γ − n). (1.87)

For an a > 0, the following relations holds true:

M { f (at); γ} = a−γFM(γ), (1.88)

M { f (ta); γ} =
1
a

FM

�γ

a

�
, (1.89)

M { f (ta); γ} =
1
a

FM

�
−γ

a

�
, (1.90)

M {tα f (ta); γ} =
1
a

FM

�
γ + α

a

�
, (1.91)
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M
�

tα f (t−a); γ
�
=

1
a

FM

�
−γ + α

a

�
. (1.92)

Another property is given by the integer-order derivative of the Mellin
transform:

M
�

log(t)n f (t); γ
�
= FM

(n)(γ) where n = 1, 2, 3, . . . (1.93)

The Mellin transform is strictly related to the Fourier transform:

M {F { f (t); ω} ; γ} = Γ(γ) cos
�πγ

2

�
M { f (t); 1 − γ} . (1.94)



Chapter 2

Fractional Operators

“Thus it follows that d1/2x will be equal to x
√

dx : x, an
apparent paradox, from which one day useful consequences
will be drawn.”

G. W. Leibniz, letter to G. A. L’Hôpital
Hannover, Germany, Sept. 30th 1695.

This Chapter deals with the Fractional Calculus, a branch of mathematical anal-
ysis that extends the classical integro-differential calculus to non-integer or-
der operators. The fractional operators represent the core of this Chapter. In
particular, the derivatives and integrals of fractional order, their fundamental
properties, and some numerical examples about this mathematical tools will
be introduced and defined. Moreover, the integral transforms introduced in
the previous Chapter will be applied to fractional derivatives and fractional
integrals.

The fractional operators introduced in this Chapter are just those required
to understand the concepts of fractional viscoelasticity next, but there are
other definitions of fractional derivatives and integrals, i.e. the definition of
E.L. Post, A. Marchaud, etc.. Further details can be found in [16, 53–55, 64–
66, 77, 83, 91, 99].

2.1 Brief history

As can see from the the epigraph, the first question about the fractional deriva-
tive dates back to the classical derivative, when, in the 1695, the German math-

23
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ematician and philosopher Gottfried Wilhelm von Leibniz introduced the con-
cept of half-derivative in a letter to his French colleague Guillaume de L’Hôpital.
After that first idea, the first systematic studies have been made only half cen-
tury later, and they involved several mathematicians, such as Fourier, Laplace,
Lacroix and Euler.

Probably, the first one who used fractional calculus in a mathematical
problem was N. H. Abel. He studied in the 1823 the tautochrone curve by
the integral � t

a
(t − τ)−

1
2 f (τ) dτ,

which is similar to the fractional integral that will be introduced by Riemann
later. But the main breakthrough has been made by the French mathemati-
cian Joseph Liouville, who in the 1832 formulates the first definition of frac-
tional derivative. He defined a derivative of non-integer order considering
an exponential series expansion of the function and operating by a singular
element of the summation. In particular, Liouville considered the derivative
of exponential function:

dn

dtn eat = aneat n ∈ N,

and he extended the derivation considering an order n = α with α is a non-
integer number, and obtaining

dα

dtα
eat = aαeat, α ∈ R+.

Subsequently, around the 1835, he expressed the generic function f (t) as a
summation of exponential with infinity terms, and he defined the derivative
of fractional order as series

(Dα f ) (t) =
∞

∑
j=0

cjaα
j eajt,

where f (t) = ∑∞
j=0 aα

j eajt.
An important contribution was provided in the 1847 by the 22-years-old

George Friedrich Bernhard Riemann, who introduced a definition of fractional
integration by generalizing the Taylor series. That is,

(Iα
a+ f ) (t) =

d−α

dt−α
f (t) =

1
Γ(α)

� t

a
(t − τ)α−1 f (τ) dτ.
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The definitions of Liouville and Riemann have been unified with the aid
of Cauchy integration formula in the manuscript of the 1869 by N. Ya. Sonin
entitled “On Differentiation with Arbitrary Index”. This is probably the first
document in which the two definitions appear unified. Other contributions to
this unification were provided by A. Krug, and Aleksey Vasilievic Letnikov, the
latter one in the 1872 extended the work of Sonin by his paper “An Explanation
of the Theory of Differentiation of Arbitrary Index”.

Next, during the collaboration with Letnikov, in the 1867 Anton Karl Grün-
wald overcame the limits of Liouville definition, obtaining a more complete
definition. Indeed, the Grünwald-Letnikov derivative has been obtained with
the aid of the difference quotient. In the 1930 the mathematician Emil Leon Post
extended the definition of Grünwald and Letnikov.

Recently, around 1967, Michele Caputo provided a new mathematical for-
mulation that represents a good tool to solve some physical problems.

2.2 Fractional derivatives and integrals

By considering the classical derivation and integration operators:

dn f (t)
dtn ; . . .

d2 f (t)
dt2 ;

d f (t)
dt

; f (t);
� t

a
f (τ) dτ;

� t

a

� τ1

a
f (τ) dτ dτ1; . . . (In

a+ f ) (t),
(2.1)

it can be observed that the derivation/integration orders, denoted by n, are
all natural numbers (n ∈ N). The fractional calculus extends these concepts
for all n ∈ R. Indeed, the operators with real order α can be obtained as a sort
of interpolation of the sequence of classical operators in Eq. (2.1).

The fractional derivative can be denoted by

(Dα
a+ f ) (t), (2.2)

where a is the lower bound, t is the derivation variable and α is the “frac-
tional” order. Another common-used notation is that one provided by Davis,
for which the derivative is denoted by aDα

t f (t).
The fractional integral, or arbitrary-order integral, corresponds to assume in

the previous operator a negative value as order α. This integration operator is
denoted by

(Iα
a+ f ) (t) =

�
D−α

a+ f
�
(t), (2.3)

according to the Davis’ notation the fractional integral is denoted by aIα
t f (t).
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A fractional differential equation is an equation which involves some frac-
tional derivatives. Similarly, in a fractional integral equation the fractional inte-
grals appear. A fractional order system involves fractional differential/integral
equations.

The main definitions of fractional operators will be introduced in the next.

2.2.1 The Grünwald-Letnikov differintegral

Starting from the definition of integer-order n derivative the Grünwald-Letnikov
definition is readily obtainable. Before this definition, it is needed to introduce
an operator that contains derivative and integral at the same time. In this re-
gard, by considering the classical definition of the derivative of a continuous
function f (t) as a limit of difference quotient:

d f (t)
dt

= f �(t) := lim
h→0

f (t)− f (t − h)
h

. (2.4)

Applying this definition twice, the second order derivative is given as

d2 f (t)
dt2 = f ��(t) := lim

h→0

f �(t)− f �(t − h)
h

= lim
h→0

1
h

�
f (t)− f (t − h)

h
− f (t − h)− f (t − 2h)

h

�

= lim
h→0

f (t)− 2 f (t − h) + f (t − 2h)
h2 .

(2.5)

Similarly, the third-order derivative is

d3 f (t)
dt3 = f ���(t) := lim

h→0

f (t)− 3 f (t − h) + 3 f (t − 2h)− f (t − 3h)
h3 . (2.6)

Observe that if the derivation order increases, more distant values of the func-
tion appear in the calculus. Taking into account that the coefficients in Eqs. (2.4-
2.6) follow the binomial coefficients rule with alternating signs, the derivative of
order n can be found by induction as

f (n)(t) =
dn f (t)

dtn := lim
h→0

1
hn

n

∑
r=0

(−1)r
�

n
r

�
f (t − rh), (2.7)
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where (n
r) represents the binomial coefficient:

�
n
r

�
:=

n(n − 1)(n − 2) . . . (n − r + 1)
r!

. (2.8)

The Eq. (2.7) is the generalized integer-order derivative. Now, in order to obtain
the differintegral operator, it is needed to introduce the generalized integral. In
this regard, consider the definition of integral as Riemann summation:

d−1 f (t)
[d(t − a)]−1 ≡ f (−1)(t) :=

� t

a
f (t) dt = lim

h→0

�
h

N−1

∑
r=0

f (t − rh)

�
, (2.9)

the integral represents the area under the integrand function, which can be
evaluated as summation of N rectangles with infinitesimal base h, and with
surface h f (t). The fixed lower bound permits to get an uniques solution of
the integral. As was done for the second-order derivative, the second-order
integral is

d−2 f (t)
[d(t − a)]−2 ≡ f (−2)(t) := lim

h→0

�
h2

N−1

∑
r=0

(r + 1) f (t − rh)

�
, (2.10)

the third-order becomes

d−3 f (t)
[d(t − a)]−3 ≡ f (−3)(t) := lim

h→0

�
h3

N−1

∑
r=0

(r + 1)(r + 2)
2

f (t − rh)

�
, (2.11)

and by induction, the generalized integer-order integral is

d−n f (t)
[d(t − a)]−n ≡ f (−n)(t) := lim

h→0

�
hn

N−1

∑
r=0

�
r + n − 1

r

�
f (t − rh)

�
. (2.12)

Now, it is needed the unification of the two operators in Eq. (2.7) and in
Eq. (2.12). For the generalized integral, the base h can be expressed as h =
(t − a)/N, where a is a real constant (the lower bound of the integral). The
same expression can be used for the increment h of the derivative operator in
Eq. (2.7). Such choice leads to

dn f (t)
dtn = lim

N→∞

��
t − a

N

�−n N−1

∑
r=0

(−1)r
�

n
r

�
f
�

t − r
�

t − a
N

���
, (2.13)
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for the derivative of order n. While the integral of order n is

d−n f (t)
d(t − a)−n = lim

N→∞

��
t − a

N

�n N

∑
r=0

�
r + n − 1

r

�
f
�

t − r
�

t − a
N

���
. (2.14)

The two definitions in Eq. (2.13) and in Eq. (2.14) are still not unified. In
order to do this, it is necessary to use a property of the binomial coefficient.
Such coefficient, denoted by C(n, k), is usually defined as

C(n, k) =
�

n
r

�
:=

n!
(n − r)!r!

. (2.15)

It has the property
�

n
r

�
=

�
n

n − r

�
= (−1)r

�
r − n − 1

r

�
, (2.16)

and with the aid of such property, it is possible to prove that the derivative in
Eq. (2.13) and the integral in Eq. (2.14) are equivalent. Indeed, the relation

(−1)r
�

n
r

�
=

�
r − n − 1

r

�
, (2.17)

holds true for n ∈ N.
In order to extend the definition of derivation and integration to the real

and/or complex order, it is necessary to generalize the binomial coefficient
with the aid of the Euler gamma function. This special function, introduced
in the previous Chapter, is strictly related to the binomial coefficients, accord-
ing to the property in Eq. (1.7). Using such property, the Eq. (2.17) can be
expressed through the gamma function as

�
r − α − 1

r

�
=

(r − α − 1)!
(−α − 1)!r!

=
Γ(r − α)

Γ(−α)Γ(r + 1)
, (2.18)

observe that in this latter case the real number α ∈ R in the binomial coeffi-
cient appears.

The derivation (2.13) and the integration (2.14) for integer-value of the or-
der n have been defined previously. Now, the extension to non-integer order
cases can be readily obtained replacing the Eq. (2.18) in the Eq. (2.13). In this
way the Grünwald-Letnikov differintegral is given as

(Dα
a+ f ) (t) := lim

N→∞

��
t − a

N

�−α 1
Γ(−α)

N−1

∑
r=0

Γ(r − α)
Γ(r + 1)

f
�

t − r
�

t − a
N

���
.

(2.19)
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Such definition has some useful advantages respect than the other next defi-
nitions. Indeed,

• the integral or the derivative of the function f (t) not explicitly appear;

• it permits to get the approximate numerical solutions of several frac-
tional derivatives and integrals (e.g. see [49]);

• it is readily applicable to various function.

2.2.2 The Riemann-Liouville definition

The definition of integral by Cauchy (Augustin-Louis, French mathematician
and engineering, 1789-1857) is

(In
a+ f ) (t) =

d−n f (t)
d(t − a)−n :=

� t

a

� τn−1

a
. . .

� τ1

a
f (τ) dτ dτ1 . . . dτn−1

=
1

(n − 1)!

� t

a
(t − τ)n−1 f (τ) dτ

(2.20)

in this way the multiple integral is represented as a convolution integral in
which the kernel is (t − τ)n−1. By using the property of the Euler gamma
function the Cauchy multiple integral formula can be generalized to the non-
integer order case, obtaining the Riemann-Liouville (RL) definition. In this re-
gard, by replacing the factorial (n − 1)! with the gamma function, and the
integer order n with generic order α (real or complex), the following relation
holds:

(Iα
a+ f ) (t) =

d−α f (t)
d(t − a)−α

:=
1

Γ(α)

� t

a
(t − τ)α−1 f (τ) dτ. (2.21)

The Eq. (2.21) is known as Riemann-Liouville fractional integral, since �(α) > 0,
and it holds true for α ∈ C. According the Davis notation, the integral is
also denoted by aIα

t f (t). In particular, this integral represents the left-sided
integral, since the lower bound is the parameter a, and then t > a. The right-
sided integral can be obtained chosen as lower bound the integration variable
t. That is,

(Iα
b− f ) (t) :=

1
Γ(α)

� b

t
(τ − t)α−1 f (τ) dτ, (2.22)

in this case the parameter b is such that b > t. For the Davis notation the
right-sided integral is also denoted by tIα

b f (t).
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The left-sided (2.21) and right-sided R-L (2.22) integrals with lower/upper
bound ∓∞ can be write as convolution

(Iα
± f ) (t) :=

1
Γ(α)

� ∞

−∞
τα−1
± f (t − τ)dτ =

1
Γ(α)

� ∞

0
τα−1 f (t ± τ)dτ, (2.23)

where �(α) > 0, (Iα
+ f ) (t) and (Iα

− f ) (t) denote the left-sided and right-sided
R-L integral, respectively. The Eq. (2.23) represents the fractional integrals on
the whole real axis.

The Riemann-Liouville fractional derivative can be readily obtained from the
definition of R-L fractional integral. In particular, by considering that the
derivative of order n can be represented as the derivative of order n+m of the
m-order primitive function, the non-integer order the definition is obtained:

(Dα
a+ f ) (t) :=

1
Γ(n − α)

�
d
dt

�n � t

a

f (τ)
(t − τ)α−n+1 dτ, (2.24)

where (n − 1) < �(α) < n. The Eq. (2.24) represents the left-sided derivative,
since t > a. Instead, chosen an upper bound b : t < b, the right-sided derivative
is defined as

(Dα
b− f ) (t) :=

1
Γ(n − α)

�
− d

dt

�n � b

t

f (τ)
(τ − t)α−n+1 dτ. (2.25)

For the Davis notation the right-sided and left-sided derivative are denoted
by aDα

t f (t) and tDα
b f (t) respectively.

In the previous definitions appear the backward difference (t − τ) in the
convolution integral. If the forward difference (t + τ) is chosen, then another
definition, known as Weil differintegral operator, is obtained.

Observe that the R-L derivative of a constant is not zero, indeed:

Dα
0+c =

c t−α

Γ(1 − α)
. (2.26)

The Courant-Hilbert differintegral

Another definition was proposed by Courant and Hilbert in the 1962. That is,

d 1
2 f (t)

d(t − a) 1
2

:=
1√
π

d
dt

� t

a

f (τ)√
t − τ

dτ. (2.27)

This operator is known as Courant-Hilbert differintegral, and it is nothing else
that a particular case of Eq. (2.24) with α = 1

2 .
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2.2.3 Riesz fractional integrals

The Riesz fractional integral, denoted by (Iα f ) (t), is defined as

(Iγ f ) (t) :=
1

2νc (α)

� ∞

−∞

f (τ)
|t − τ|1−α

dτ, (2.28)

where νc (α) = Γ (α) cos (απ/2). The Eq. (2.28) holds true for �(α) > 0, and
�(α) �= 1, 3, 5, . . . .

The complementary Ries integral, denoted by (Hα f ) (t), is defined as

(Hγ f ) (t) =
1

2νs (α)

� ∞

−∞

f (τ) sgn (t − τ)

|t − τ|1−α
dτ, (2.29)

where νs (α) = Γ (α) sin (απ/2). The Eq. (2.29) is valid for �(α) > 0, and
�(α) �= 2, 4, 6, . . . .

The Riesz integrals are related to the R-L definitions. Indeed, simple math-
ematical considerations lead to:

(Iα f ) (t) =
Γ (α)

2νc (α)
[(Iα

+ f ) (t) + (Iα
− f ) (t)] , (2.30)

(Hα f ) (t) =
Γ (α)

2νs (α)
[(Iα

+ f ) (t)− (Iα
− f ) (t)] , (2.31)

where (Iα
+ f ) (t) and (Iα

− f ) (t) are expressed in Eq. (2.23).

2.2.4 Caputo’s approach

Another definition has been provided by Michele Caputo, and it is applied to
solve several physical problems.

The Riemann-Liouville definition represents an accurate mathematica tool,
but often it is unsuitable to solve and/or to model real physical problems. In
particular, the solution of fractional differential equations with R-L deriva-
tives can be found if the initial conditions are expressed as the involved frac-
tional operators. Such derivatives, having no physical meaning, are unknown
in the physical problems, then they do not permit to represent also the initial
condition of those problems.

The Caputo’s approach [18, 19], overcomes the limitations of the R-L def-
inition. Since, it permits to define the fractional derivative and/or integral of
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the function f (t) by using initial conditions expressed as integer-order deriva-
tive. In this manner, when there is a fractional differential equation with Ca-
puto’s fractional operators, the solution can be evaluated by the knowledge of
a certain number of initial conditions expressed as the classical way. To model
the mechanical behavior of real materials, the fractional derivation is common
used in the rheology. In this physical field there are some problems in which
the initial conditions are known in terms of integer-order derivatives (e.g. the
deformation rate is the first-order derivative in time of the strain history). The
Caputo’s formulation permits to solve this kind of problems, providing an
accurate modeling of the phenomena.

M. Caputo, around the 1967, provided the following definition of frac-
tional operator:

(CDα
a+ f ) (t) :=

1
Γ(n − α)

� t

a

f (n)(τ)
(t − τ)α+1−n dτ, (2.32)

which is known as Caputo’s differintegral and it is valid for n − 1 < α < n. The
Eq. (2.32) is obtained as a kind of interpolation of the integer-order derivative.
Indeed, if α → n the Eq. (2.32) leads to n-order derivative of the function f (t).
In this case, the Caputo’s derivative of a constant is zero.

In certain cases, in which the function f (t) has particular properties when
t → −∞, and under specific initial conditions, the R-L derivative and the
Caputo’s one coincide.

2.3 Properties of fractional operators

The properties of classical derivation and integration can be extended to the
fractional operators. This shows that the integer-order differential/integral
calculus is nothing else that a subset of the fractional calculus.

This section introduces just three fundamental property of the fractional
operators, that is, the linearity that concerns the summation of two operators;
the Leibniz rule that affects the product; and the semigroup property, which is
useful for multiple integration and derivation.

2.3.1 The linearity

The fractional derivative is a linear operator. Considering two function f (t)
and g(t), and two parameters λ, µ ∈ C, the following relation holds:

(Dαλ f + µg) (t) = λ (Dα f ) (t) + µ (Dαg) (t), (2.33)
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this property of fractional derivative is a consequence of its definition.
In order to show this property, consider the Grünwald-Letnikov defini-

tion, for which:

�
Dα

a+λ f + µg
�
(t) = lim

h→0
nh=t−a

h−α
n

∑
r=0

(−1)r
�

α

r

�
[λ f (t − rh) + µg(t − rh)]

= λ lim
h→0

nh=t−a

h−α
n

∑
r=0

(−1)r
�

α

r

�
f (t − rh) + µ lim

h→0
nh=t−a

h−α
n

∑
r=0

(−1)r
�

α

r

�
g(t − rh),

(2.34)

that leads to

(Dα
a+λ f + µg) (t) = λ (Dα

a+ f ) (t) + µ (Dα
a+g) (t). (2.35)

The property can be proved considering the other definitions.

2.3.2 The Leibniz rule

Take two function f (t) and ϕ(t), the Leibniz rule permits to evaluate the n-
derivative of their product:

dn

dtn [ϕ(t) f (t)] =
n

∑
r=0

�
n
r

�
ϕ(r)(t) f (n−r)(t), (2.36)

where (n
r) represents the binomial coefficient, and ϕ(r)(t) is the r-order deriva-

tive.
In order to demonstrate that the Leibniz rule is still available for fractional

operators, let consider the Grünwald-Letnikov derivative of order α ∈ R:

(Dα
a+ ϕ f ) (t) =

n

∑
r=0

�
α

r

�
ϕ(r)(t)

�
Dα−r

a+ f
�
(t)− Rα

n(t), (2.37)

which is obtained under the assumptions that n ≥ α + 1, that the function
f (τ) is continuous in the range [a, t], and that ϕ(τ) admits n + 1 continuous
derivatives in the domain [a, t]. The second term of the Eq. (2.37) is

Rα
n(t) =

1
n!Γ(−α)

� t

a
(t − τ)−α−1 f (τ) dτ

� t

τ
ϕ(n+1)(ξ)(τ − ξ)n dξ, (2.38)

and represents a sort of remainder, which is due to the fact that the summation
in Eq. (2.37) does not have infinite terms, but it is truncated at finite number



34 2. Fractional Operators

n. By using infinite terms in the summation, the Leibniz rule for fractional
derivatives becomes:

(Dα
a+ ϕ f ) (t) =

∞

∑
r=0

�
α

r

�
ϕ(r)(t)

�
Dα−r

a+ f
�
(t)(t). (2.39)

Also in this case, the shown property can be proved by other definitions of
fractional derivative.

2.3.3 The semigroup rule

Considering a function f (t), which is integrable for both order α1 and α2, with
�(α1) > 0 and �(α2) > 0, then the following relation holds:

�
Iα1
a+Iα2

a+ f
�
(t) =

�
Iα2
a+Iα1

a+ f
�
(t) =

�
Iα1+α2
a+ f

�
(t), (2.40)

this property is still available for right-sided integration, then:
�
Iα1
b−Iα2

b− f
�
(t) =

�
Iα2
b−Iα1

b− f
�
(t) =

�
Iα1+α2
b− f

�
(t). (2.41)

The Eq. (2.40) is known as semigroup property. Observe that the integration is
also commutative.

Take an α : �(α) > 0, then:

(Dα
a+Iα

a+ f ) (t) = f (t),
(Dα

b−Iα
b− f ) (t) = f (t).

(2.42)

The Eqs. (2.42) can be proved by the R-L definition. Indeed, by using this
definition from the first of Eqs. (2.42), the following equality holds:

(Dα
a+Iα

a+ f ) (t) =
dn

dtn

��
D−n+α

a+ Iα
a+ f

�
(t)

�
= f (t), with n = �(α) + 1 (2.43)

the latter operation, between derivative and integral, is not commutative,
therefore:

(Iα
a+Dα

a+ f ) (t) �= f (t),
(Iα

b−Dα
b− f ) (t) �= f (t).

(2.44)

Another particular case can be obtained if �(α) > �(γ) > 0:
�

Dγ
a+Iα

a+ f
�
(t) =

�
Iα−γ
a+ f

�
(t),

�
Dγ

b−Iα
b− f

�
(t) =

�
Iα−γ
b− f

�
(t)

(2.45)



2.4 Laplace transform of fractional operators 35

Moreover, considering an α : �(α) > 0 and an n ∈ N, then:

dn

dtn (Dα
a+ f ) (t) =

�
Dα+n

a+ f
�
(t),

dn

dtn (Dα
b− f ) (t) = (−1)n �Dα+n

b− f
�
(t).

(2.46)

2.4 Laplace transform of fractional operators

In this section the introduced concepts about the Laplace transform are ex-
tended to the fractional operators. This mathematical transformation is use-
ful in order to solve the fractional differential equations. For this reason it is
commonly used when the fractional calculus is applied to describe physical
phenomena.

2.4.1 Laplace transform of Riemann-Liouville fractional derivative

The Laplace transform of the Riemann-Liouville fractional derivative of order
�(α) > 0 with lower bound a = 0 is

L {(Dα
0+ f ) (t); s} = sαFL(s)−

n−1

∑
r=0

sr
��

Dα−r−1
0+ f

�
(t)

�

t=0
, (2.47)

where α : n − 1 ≤ α < n.
In this mathematical transformation the values of the R-L fractional deriva-

tives at the origin appear. In the physical problems described by fractional dif-
ferential equations, the R-L formulation cannot be used, since this fractional
derivative at the origin have no physical meaning.

2.4.2 Laplace transform of Caputo’s fractional derivative

The Laplace transform of the Caputo’s fractional derivative leads to:

L {(CDα
0+ f ) (t); s} = sαFL(s)−

n−1

∑
r=0

sα−r−1 f (r)(0), (2.48)

where α : n − 1 ≤ α < n.
Observe that in this case the integer derivatives at the origin appear. This

is an important characteristic of this kind of fractional derivatives, since the
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Eq. (2.48) can be applied to solve physical problems in which the Caputo’s
fractional derivatives appear, and when the initial conditions are given in
terms of integer derivative. Under a physical point of view, the difference
by the Eq. (2.47) and the Eq. (2.48) is crucial, since the integer-order derivative
at the origin has a physical meaning (e.g.: if x(t) is the displacement function,
x�(0) is the initial velocity, f ��(0) is the initial acceleration).

2.4.3 Laplace transform of Grünwald-Letnikov fractional derivative

Applying the Laplace transform to the Grünwald-Letnikov definition, the fol-
lowing relation is given:

L {(Dα
0+ f ) (t); s} =

f (0)
s1−α

+
1

s1−α [sFL(s)− f (0)] = sαFL(s), (2.49)

where 0 ≤ α < 1, and the lower bound is a = 0. The assumption about the
chosen order is due to the fact that the Laplace transform for α > 1 does not
exist in this case in classical sense.

2.5 Fourier transform of fractional operators

In some physical problems, expressed by fractional differential equations, is
useful to apply the Fourier transform. In this section the previous concepts
about this mathematical transformation are extended to fractional derivatives
and integrals.

2.5.1 Fourier transform of fractional integral

Considering the R-L fractional integrals on the whole real axis, that is with
lower bound a = −∞, and order α : 0 < α < 1, the previous definitions leads
to:

(Iα
+ f ) (t) =

�
D−α

+ f
�
(t) :=

1
Γ(α)

� t

−∞
(t − τ)α−1 f (τ)dτ, (2.50)

by performing the Forier transform of (2.50), the following relation holds:

F
��

D−α
+ f

�
(t); ω

�
= (iω)−αFF(ω) (2.51)

where α ∈ R.
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By using the Eq. (2.51) to left and right-sided fractional integrals (Iα
+ f ) (t),

the Fourier transform becomes:

F {(Iα
± f ) (t); ω} = (∓iω)−α FF (ω) , (2.52)

where:
(∓iω)−α =

�
cos

�απ

2

�
± i sgn (ω) sin

�απ

2

��
|ω|−α . (2.53)

The Eq. (2.51), obtained from the R-L definition, is still available for the Grünwald-
Letnikov

�
D−α

+ ·
�
(t) and the Caputo’s definition

�
CD−α

+ ·
�
(t).

For the Riesz fractional integral and its complementary, by performing the
Fourier transform to the Eq. (2.30) and Eq. (2.31) and by using the Eq. (2.53),
the following relations hold:

F {(Iα f ) (t) ; ω} = |ω|−α FF (ω) , (2.54)

F {(Hα f ) (t) ; ω} = i sgn (ω) |ω|−α FF (ω) . (2.55)

2.5.2 Fourier transform of fractional derivative

As it was done in the previous case, consider the fractional derivative with
lower bound a = −∞:

(Dα
+ f ) (t) =

1
Γ(n − α)

� t

−∞

f (n)(τ)
(t − τ)α+1−n dτ =

�
Dα−n

+ f (n)
�
(t), (2.56)

under the assumption that the function f (t) is derivable n-times, and where
α : n − 1 < α < n.

The Fourier transform of Eq. (2.56), taking into account the Eqs. (2.51) and
(1.63), is

F {(Dα
+ f ) (t); ω} = (−iω)αFF(ω). (2.57)

That expression is common used to solve several physical problem. For ex-
ample, the equation of the harmonic oscillator with fractional dampers is

ẍ(t) + a (Dα
+x) (t) + bx(t) = g(t), (2.58)

it has been studied by H. Beyer and S. Kempfle [13], by the Fourier transform.
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2.6 Mellin transform of fractional operators

The Mellin transform is the more related to the fractional operators among the
all integral transformations. This fact is due to the power-law kernel of this
transforms. Indeed, some fractional operators can be considered as Mellin
transforms of some particular functions. This section shows how this mathe-
matical transformation modifed the fractional derivatives and integrals in the
Mellin domain.

2.6.1 Mellin transform of Riemann-Liouville fractional integral

In order to apply the Mellin transform to the R-L fractional integral, consider
the case in which the lower bound is a = 0 and take τ = tξ:

(Iα
+ f ) (t) =

1
Γ(α)

� t

0
(t − τ)α−1 f (τ)dτ =

tα

Γ(α)

� 1

0
(1 − ξ)α−1 f (tξ)dξ

=
tα

Γ(α)

� ∞

0
f (tξ)g(ξ) dξ,

(2.59)

where

g(t) =

�
(1 − t)α−1, 0 ≤ t < 1,
0, t ≥ 1.

The Mellin transform of the function g(t) can be expressed by the gamma
function:

M{g(t); s} =
Γ(α)Γ(s)
Γ(α + s)

. (2.60)

Taking into account the Eqs. (1.84), (2.59), and (2.60), the Mellin transform
of the fractional integral becomes:

M {(Iα
0+ f ) (t); s} =

Γ(1 − s − α)
Γ(1 − s)

FM(s + α), (2.61)

where FM(s) denotes the Mellin transform of the function f (t). Observe that
Eq. (2.61) can be readily obtained by placing n = −α into the Eq. (1.87).

2.6.2 Mellin transform of Riemann-Liouville fractional derivative

Considering 0 ≤ n − 1 < α < n and a = 0, by virtue of the R-L definition in
Eq. (2.24) the following relation holds:

(Dα
0+ f ) (t) =

dn

dtn

�
D−n+α

0+ f
�
(t),
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As was done in the evaluation of the Mellin transform of integer-order deriva-
tive, in Eq. (1.86), it can be introduced a function g(t) =

�
Dn−α

0+ f
�
(t). More-

over, taking into account the previous definition in Eq. (2.61), the Mellin trans-
form of the R-L fractional derivative is given as

M {(Dα
0+ f ) (t); s} =M

�
dn

dtn

�
Dα−n

0+ f
�
(t); s

�
= M

�
g(n)(t); s

�

=
n−1

∑
r=0

Γ(1 − s + r)
Γ(1 − s)

�
g(n−r−1)(t)ts−r−1

�∞
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=
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(2.62)

or:

M {(Dα
0+ f ) (t); s} =

n−1

∑
r=0

Γ(1 − s + r)
Γ(1 − s)

��
Dα−r−1

0+ f
�
(t)ts−r−1

�∞

0
+

+
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Γ(1 − s)
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(2.63)

If 0 < α < 1, then the Eq. (2.63) becomes:

M {(Dα
0+ f ) (t); s} =

��
Dα−1

0+ f
�
(t)ts−1

�∞

0
+

Γ(1 − s + α)
Γ(1 − s)

FM(s − α). (2.64)

Moreover, if f (t) and �(s) are such that all terms in the square brackets in the
Eq. (2.63) become zero, then the Mellin transform takes the following simpler
form:

M {(Dα
0+ f ) (t); s} =

Γ(1 − s + α)
Γ(1 − s)

FM(s − α). (2.65)
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2.6.3 Mellin transform of Caputo’s fractional derivative

The Mellin transform of the Caputo’s fractional derivative is

M {(CDα
0+ f ) (t); s} =M

��
CD−n+α

0+ f (n)
�
(t); s

�

=
n−1

∑
r=0

Γ(1 − s − n + α + r)
Γ(1 − s)

�
f (n−r−1)(t)ts+n−α−r−1

�∞

0

+
Γ(1 − s + α)

Γ(1 − s)
FM(s − α),

(2.66)

that equation can be proved by the previous case.
If 0 < α < 1, Eq. (2.66) becomes:

M {(CDα
0+ f ) (t); s} =

Γ(α − s)
Γ(1 − s)

�
f (t)ts−α

�∞
0 +

Γ(1 − s + α)
Γ(1 − s)

FM(s − α)

Moreover, if f (t) and �(s) are such that the first term of the Eq. (2.66) is equal
to zero, the Mellin transform of the Caputo’s derivative becomes:

M {(CDα
0+ f ) (t); s} =

Γ(1 − s + α)
Γ(1 − s)

FM(s − α). (2.67)

2.7 Some examples of fractional derivatives

This section reports some examples of fractional derivatives and integrals of
common function. In particular, it will be considered operators with real dif-
ferintegration order α ∈ R. More examples can be found in the Appendix.

2.7.1 Unit step function

Consider the Unit step function, denoted by U(t), and defined as

U(t) =

�
0, t < 0,
1, t > 0.

(2.68)

By the Eq. (2.24), the R-L definition applied to the Unit step function U(t)
leads to

(Dα
0+U) (t) =

t−α

Γ(1 − α)
, (2.69)
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Figure 2.1: Fractional derivative of the Unit step function U(t) with t ≥ 0, a = 0, and
differentiation order −1 < α < 1.

where the lower bound of the fractional derivative is a = 0.
The Figure 2.1 shows the fractional derivative of the function U(t) for 0 <

t < 1, with fractional order α ∈ [−1, 1]. It can be observed that for α = 0 the
graph represents the Unit step function, for α = 1 the first-order derivative
is shown (the delta Dirac function), instead, for α = −1 the primitive, i.e. the
ramp function is given. All fractional values represent the fractional derivative
(for 0 < α ≤ 1) or the fractional integral (for −1 ≤ α < 0).

2.7.2 Power-law function

Consider the following power-law function:

f (t) = (t − a)ν, (2.70)

where ν ∈ R. By choosing a value n such that n − 1 ≤ α ≤ n, the R-L
definition in Eq. (2.24) leads to:

(Dα
a+ f ) (t) =

dn

dtn

�
D−n+α

a+ f
�
(t). (2.71)

By placing γ = n − α the following relation holds:
�

D−γ
a+ (t − a)ν

�
(t) =

Γ(1 + ν)
Γ(1 + ν + γ)

(t − a)ν+γ, (2.72)
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and by simple manipulation the equation

(Dα
a+(t − a)ν) (t) =

Γ(1 + ν)
Γ(1 + ν − α)

(t − a)ν−α (2.73)

holds true, under the assumptions that ν > −1.



Chapter 3

Linear viscoelastic stress-strain
constitutive law

This Chapter introduces some concepts about the linear viscoelasticity, with
special regard to the classical modeling approach, based on the discrete me-
chanical models (springs and dashpots). Another formulation, known as Boltz-
mann superposition principle, is also introduced. In the end of the Chapter, the
fractional viscoelastic model, based on the fractional calculus, is presented,
and the advantages of this kind of modeling are discussed.

3.1 Preliminary remarks

The main characteristic of solids is that they have own shapes, in particular
the elastic solid shows a deformation if there is an external load, but that de-
formation disappears when the external load finish, and the solids recover the
original shape. Instead, the liquids do not have own shapes, it means that the
internal stress does not depend of the deformation (that also is indefinable).
In particular, for the newtonian liquids the internal stress linear depends on
the deformation rate by a characteristic parameters of the liquid (visosity).

The viscoelasticity denotes a typical behavior of such materials that shown
solid and liquid characteristic at the same time. In other words, the viscoelas-
tic material is characterized by two bounder behavior: the solid-elastic be-
havior and the liquid-viscous one. This is a common behavior of polymeric
materials [43, 62, 78, 92, 106], biological tissues [89, 90, 131], bones [30], mor-
tars [121], resins [43], wood [63], asphalt and bitumen mixture [1, 34], some

43
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kind of rocks [132], ecc.
In the structural engineering the study of the viscoelastic properties of

materials is an important research field. This is due to the fact that the vis-
coelasticity allows to predict the long-time effect in the structures and it also
permits to characterize the real stress-strain relation of all construction mate-
rials. Moreover, in recent years complex materials, obtained with the aid of
sophisticated industrial processes aiming to enhance stiffness and strength of
materials, are increasingly used in engineering applications. For this kind of
materials the mechanical characterization needs to consider the viscoelastic
properties.

In order to describe the viscoelastic behavior is needed to consider the time
variable. For this reason it will be introduced the stress history and the strain
history. Moreover, these properties of real materials will be investigated with
introducing time dependent measures of stress (relaxation test) and/or strain
(creep test).

Any real material shows a time-dependent stress-strain relation, for this
reason the viscoelasticity represents an important aspect that cannot be ne-
glected when the mechanical characterization is performed.

3.2 The elastic Hooke’s model

The linear elastic stress-strain relation used to describe the mechanical behav-
ior of the solid is

σ = Eε, (3.1)

where σ represents the stress (Pascal), ε denotes the strain, and E is a char-
acteristic coefficient of the material (Pascal). The Eq. (3.1), known as Hooke’s
law, is commonly modeled by a perfect spring with constant stiffness E, as
represented in Figure 3.1(a).

The Hooke’s law represents a stress-strain relation in which the involved
mechanical quantities do not depend of the time. Indeed, if the elastic solid
is subjected in the time to a constant stress σ, the corresponding deforma-
tion ε does not depend by time. Moreover, if the imposed stress goes to zero,
the deformation becomes null without loss of energy. This means that the
expended work during the loading phase is totally recovered during the un-
loading phase.
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Figure 3.1: Hooke’ model.

3.3 The viscous Newton-Petroff model

The viscous model, used to describe the stress-strain relation in the liquid, is
represented by the relation

σ(t) = µε̇(t), (3.2)

where σ(t) is the stress history, ε̇(t) is the strain rate (sec−1), and µ is a charac-
teristic parameter of the liquid, known as viscosity (Pascal sec = 10 Poise). The
viscosity depends on the material and is also variable with temperature.

The Eq. (3.2) is common represented by a dashpot with viscosity as damp-
ing coefficient µ as shown in Figure 3.2(a).
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Figure 3.2: Newton-Petroff model.

The Eq. (3.2) is known as Newton-Petroff law, and shows that the stress
σ(t) does not depend of the strain ε(t) but of its temporal rate. The external
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energy is not accumulated by the fluid (that is unable to return to the initial
configuration) and then it is entirely converted into heat. In other words, the
viscous fluid flows in an irreversible manner under the effect of an external
stress.

It should be stated that there are other kinds of fluids, known as non-
Newtonian, in which there is not a proportional link between the stress σ(t)
and the deformation rate ε̇(t).

3.4 The viscoelastic model

The viscoelastic materials have a particular behavior intermediate between
the purely elastic one and the perfect Newtonian. All materials are viscoelas-
tic, that is, whether in a solid is applied a constant load can be observed that
the corresponding deformation history increases, i.e. it flows (Creep), or if it
is applied a constant deformation, the stress history decays (Relaxation). Ob-
viously, these phenomena are more evident in some materials, like rubbers,
polymers, biological tissues, but less evident in other materials, like steel,
rocks.

The classical way to describe this particular behavior is by some mechan-
ical models in which there are perfect springs and dashpots assembled each
other.

3.4.1 The Maxwell model

The Maxwell model is depicted in Figure 3.3(a). It is composed by a perfect
spring with stiffness E, and a dashpot with coefficient µ connected in series.
Assume with εe(t) the elongation of the spring and with ε(t) the total elonga-
tion of the Maxwell model. The stress-strain relation is given by the following
two equations:

σ(t) = Eεe(t), σ(t) = µ[ε̇(t)− ε̇e(t)], (3.3)

properly combining the two equations the following relation is obtained:

µσ̇(t) + Eσ(t) = Eµε̇(t), (3.4)

that can be expressed in canonical form

σ̇(t) + νσ(t) = Eε̇(t), (3.5)
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Figure 3.3: Maxwell model.

where
ν =

E
µ

(sec−1).

For such equation has to be added the initial condition at t = 0 (σ(0) = σ0).
The set of initial condition and the Eq. (3.5) allow to get the stress history
caused by an imposed strain history ε(t). The solution of the differential equa-
tion in Eq. (3.5) is the summation of the homogeneous σom(t) and the partic-
ular solution σp(t), the latter depends on the forced strain history ε̇(t). That
is,

σ(t) = Be−νt + σp(t), (3.6)

where B is an integration constant which depends on the initial condition σ0
and of σp(t)|t=0. Assuming ε̇(t) = 0, ∀t > 0, the following relation holds:

σ(t) = σ0e−µt, (3.7)

this equation shows that the stress history decays under a constant strain his-
tory, this phenomenon can be experimentally observed. The physics of this
system can be summarized as follows: applying a constant deformation in a
specimen, at the origin t = 0 the spring adsorbs the all stress and assumes a
deformation configuration, in which the total strain is elastic εe(0) = σ(0)/E,
in the initial step the dashpot behavior is the same of a rigid element, because
the incompressible fluid in the dashpot does not have time to flows inside the
chamber. After this step, the fluid inside the dashpot chamber flows, the to-
tal deformation remains constant but the elastic deformation εe(t) decays, the
spring starts to release the stored energy. At t = ∞, the elastic deformation is
entirely transferred to the dashpot, thus εe(t) = 0.
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3.4.2 The Kelvin-Voigt model

Another classical way to model the viscoelastic behavior is by the Kelvin-Voigt
model. This is obtained by the connection in parallel of a perfect spring with
a ideal dashpot. This model is depicted in Figure 3.4(a).

E

(t)

(t)

(a) Spring and dashpot con-
nected in parallel

1 2 3 4
t

0.05
0.10
0.15
0.20
0.25
0.30
Σ�t�, Ε�t�

(b) Constant imposed stress and strain

Figure 3.4: Kelvin Voigt model.

In this case the stress in the spring and in the dashpot are different but the
deformation is the same. The stress in the spring, denoted by σe(t), and the
stress in the dashpot, denoted by σµ(t), are given by the following expression:

σe(t) = Eε(t), σµ(t) = µε̇(t). (3.8)

For the equilibrium the following relation

σ(t) = σe(t) + σµ(t),

holds true, then:
µε̇(t) + Eε(t) = σ(t), (3.9)

this equation can be rewritten in the canonical form:

ε̇(t) + νε(t) =
σ(t)

µ
. (3.10)

The initial condition is ε(0) = ε0. Assuming that σ(t) = 0, the output in terms
of deformation history under an imposed stress history at t = 0 is ε(t) =
ε0e−νt.
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3.4.3 Other classical models

By increasing the simple elements (spring and dashpot) in the Kelvin-Voigt
and/or in the Maxwell model, it is possible to obtain some complex model,
that are used to accurately describe the viscoelastic phenomenon. Such mod-
els, known as SLS (Standard Linear Solid) or Zener model, are depicted in Fig-
ure 3.5.

E1

(t)

E2
(t)

(a)

E2

(t)

E1 (t)

(b)

Figure 3.5: Sandard Linear Solid or Zener models.

The model depicted in Figure 3.5(a) is obtained by the connection in par-
allel of a spring with a Maxwell model. The stress-strain relation is given by
the following differential equation:

σ̇(t) + Cσ(t) = Aµε̇(t) + CE1ε(t), (3.11)

where
A =

E1 + E2

µ
, C =

E2

µ
.

The model, depicted in Figure 3.5(b), obtained by the connection in series
of a spring with a Kelvin-Voigt model, is characterized by the following stress-
strain relation:

σ̇(t) + Aσ(t) = E1[ε̇(t) + Cε(t)] (3.12)

where the coefficients A e C are the same of the previous case.
These two models are more able to describe the experimental results but

are more complex because there are more coefficients to calibrate in order to
obtain a best fitting of experimental data.
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Other models can be obtained combining Maxwell and Kelvin-Voigt model,
in this casese the stress-strain relation contains a lot of coefficients. The num-
ber of parameters increases with the complexity of the model. In the general
case the stress-strain relation of this multi-element models can be expressed as

n

∑
k=0

ak
dk

dtk σ(t) =
m

∑
k=0

bk
dk

dtk ε(t) (3.13)

where the numbers of parameters m and n depend on the complexity of the
model. It can be seen that the Eq.s (3.5), (3.10), (3.11) and (3.12) are particular
case of the Eq. (3.13).

Note that the increase of the elements in the model leads to an improve-
ments of the description of the experimental evidence but it also could lead to
a loss of the physical meaning of the involved parameters. Indeed, it is possi-
ble to obtain negative stiffness and viscosities of some elements in the model
from the best-fitting of experimental data. Among the multi-element models
the more reliable are those depicted in Figure 3.5(b). Other complex models
can be found in [22, 48, 74, 106].

3.5 The creep and the relaxation function

The creep function is the response in terms of deformation history under of uni-
tary stress history. Such function, denoted by Ψ(t), is monotonically increas-
ing function. In the linear viscoelasticity field the following relation holds:

ε(t) = Ψ(t)σ0 (3.14)

where σ0 is a constant imposed stress. The function Ψ(t) is the response in
terms of strain history for an imposed stress history σ(t) = U(t), where U(t)
represents the unit step function. In other words the creep function is the unit
step response in terms of deformation. Figure 3.6 shows the imposed stress
history and the corresponding creep function Ψ(t). This function depends on
the considered material.

The relaxation function, denoted by Φ(t), is the stress history caused by
an imposed unitary strain history ε0 = 1. In the linear viscoelasticity the
following relation holds:

σ(t) = Φ(t)ε0 (3.15)

where ε0 is a constant imposed deformation. The function Φ(t) is the unit step
response in terms of stress.
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Figure 3.6: Creep function.

Figure 3.7 shows the imposed unitary strain history and the corresponding
relaxation function Φ(t). That function is monotonically decreasing function.

1 2 3 4
t

0.5

1.0

1.5

2.0
Ε�t�

(a) Imposed strain history
1 2 3 4

t
0.2
0.4
0.6
0.8
1.0
1.2
1.4
��t�

(b) Relaxation function

Figure 3.7: Relaxation function.

The functions Φ(t) and Ψ(t) contain all informations about the viscoelastic
behavior of the materials. It is useful to observe that both creep and relaxation
functions are positive ∀t ≥ 0, while are null for t < 0.

3.5.1 The Boltzmann superposition principle

Consider the creep experiment, in which the imposed stress history is like that
one shown in Figure 3.8(a). For t = t1 the stress is σ(t) = σ1H(t − t1), while
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Figure 3.8: Imposed stress history and corresponded strain

for t > t2 the total stress is σ1 + σ2, then the imposed stress is

σ(t) = σ1H(t − t1) + σ2H(t − t2), (3.16)

the creep function Ψ(t) is defined for t ≥ 0, then the strain response under the
imposed stress in Eq. (3.16), depicted in Figure 3.8(a), is given as

ε(t) = σ1Ψ(t − t1), (3.17)

for all t : t1 < t < t2. For t > t2 the strain history can be obtained considering
two contributions:

ε(t) = σ1Ψ(t − t1) + σ2Ψ(t − t2). (3.18)

The Eq. (3.18) is valid if the system is linear, and since Ψ(t) �= 0 for t ≥ 0, and
then Ψ(t − ti), with ti = t1, t2, it is different from zero only if t ≥ t1.

The Eq. (3.18) is obtained for two jumps in the imposed stress history. If in
the imposed stress history there are n jumps in the time steps t1, t2, . . . , tn−1
of σ1, σ2, . . . , σn, the stress-strain relation becomes:

ε(t) =
n

∑
j=1

σjΨ(t − tj), (3.19)

this equation represents the superposition principle that is available in linear
viscoelasticity.

If the input in terms of stress history is a continuous law, it is possible
to discretize the imposed stress history, considering time increments ∆t and
stress increments ∆σ, as shown in Figure 3.9. Considering infinitesimal in-
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Figure 3.9: Continuous imposed stress history and response.

crements, that is, if ∆t → 0, then the stress increment becomes infinitesimal
∆σ → dσ(t), and the summation in Eq. (3.19) becomes an integral:

ε(t) =
� t

0
dσ(τ)Ψ(t − τ) =

� t

0
σ̇(τ)Ψ(t − τ) dτ. (3.20)

If at t = 0 the imposed stress is different from zero, i.e. σ(0) = σ0, the
strain history is given as

ε(t) =
� t

0
σ̇(τ)Ψ(t − τ) dτ + σ0Ψ(t). (3.21)

Eq. (3.20) is a convolution (or faltung), it represents that the strain-history re-
sponse at a certain time depends on all the past imposed stress. In other
words, the material has memory of the past, then the stress history, as re-
sponse, is a function of the entire imposed stress history. The Eq. (3.21) rep-
resents the integral formulation of linear viscoelasticity, introduced by Ludwig
Boltzmann and Vito Volterra.

Consider the relaxation test in which there is an imposed strain history,
the corresponding stress history can be found by using the relaxation function
and using the same principle. That is,

σ(t) =
� t

0
ε̇(τ)Φ(t − τ) dτ + ε0Φ(t) (3.22)

where ε(0) = ε0 is the initial value at t = 0 of the imposed deformation.
The two functions Φ(t) and Ψ(t) have to be related each other. In order to

show this link, consider a quiescent viscoelastic system forced by an imposed
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stress history σ(t) with σ0 = 0, by the Eq. (3.20) the corresponding strain his-
tory ε(t) can be found. After that, by evaluating the derivative of the strain
response ε̇(t) and putting it into the Eq. (3.22) it is possible to found the re-
laxation function such that restitutes the given imposed σ(t). In the Laplace
domain the Eq.s (3.21) and (3.22), for σ0 = 0 e ε0 = 0, lead to:

ΨL(s)ΦL(s) =
1
s2 (3.23)

where ΨL(s) and ΦL(s) are the Laplace transforms of the creep and relaxation
function respectively. The Eq. (3.23) represents the link between the two func-
tions in the Laplace domain, from this relation it is possible to evaluate one
of the functions just with the knowledge of the other. In this way, if from the
experimental tests the function Ψ(t) is determined, it is possible to obtain the
function Φ(t), and vice-versa.

3.5.2 Creep and relaxation function for the Maxwell model

Consider a constant deformation ε(t) = U(t), then ε̇(t) = δ(t). In this case,
the stress history obtained from the Maxwell equation (3.5) represents the re-
laxation function σ(t) = Φ(t), indeed:

Φ̇(t) + νΦ(t) = Eδ(t), (3.24)

placing the initial condition:

Φ(0) = σ0 = E,

the following relation is obtained

Φ(t) = Ee−νt. (3.25)

The creep function can be obtained from Eq. (3.23) as follows:

Ψ(t) =
ν

E
t +

1
E

, (3.26)

Therefore, the Boltzmann integrals for the Maxwell models are:

σ(t) = E
� t

0
e−ν(t−τ) ε̇(τ) dτ, (3.27)
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ε(t) =
ν

E

� t

0

�
(t − τ) +

1
ν

�
σ̇(τ) dτ. (3.28)

Figure 3.10 shows the functions Φ(t) and Ψ(t) for the Maxwell model.
From such Figure can be observed that the relaxation function decays with ex-
ponential law, showing an acceptable correspondence with the experimental
evidence. Instead, the creep function follows a trend that is not experimen-
tally validated.
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Figure 3.10: Relaxation and creep function for the Maxwell model.

Observe that the Eq. (3.32) is a convolution integral with exponential ker-
nel. This kind of kernel is common of the ordinary differential equation with
integer order operators. At this kind of integer-order differential equation
corresponds stress-strain relation with exponential kernel.

3.5.3 Creep and relaxation function for the Kelvin-Voigt model

Consider the creep test in which the imposed stress history is constant. That
is, σ(t) = U(t). With the aid of the Eq. (3.10), obtained from the Kelvin-Voigt
model, and by taking into account that in this case the strain history repre-
sents the creep function ε(t) = Ψ(t), the following differential equation can
be readily found:

Ψ̇(t) + νΨ(t) =
U(t)

µ
(3.29)

placing the following initial condition:

Ψ(0) = ε0 = 0,
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the following relation holds:

Ψ(t) =
1
E
(1 − e−νt); ∀t ≥ 0. (3.30)

By using the relation in the Laplace domain, in the Eq. (3.23), also the relax-
ation function is readily found:

Φ(t) = E
�

1 +
δ(t)

ν

�
, (3.31)

the Boltzmann superposition integrals for the Kelvin-Voigt model are:

σ(t) = E
� t

0

�
1 +

1
ν

δ(t − τ)

�
ε̇(τ) dτ (3.32)

ε(t) =
1
E

� t

0

�
1 − e−ν(t−τ)�σ̇(τ) dτ (3.33)

The trend of the functions Φ(t) and Ψ(t) are depicted in Figure 3.11. In this
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Figure 3.11: Relaxation and creep function of the Kelvin-Voigt model.

case the creep function increases along as exponential law, showing an agree-
ment with the experimental tests, but the relaxation function is not able to
describe the experimental evidence. It follows that also the Kelvin-Voigt is an
inconsistent model.

3.6 The fractional-order viscoelastic model

From the previous sections, it is possible to observe that the classic models are
not able to completely describe the viscoelastic behavior of real materials. In-
deed, the Kelvin-Voigt model is able to describe the creep test, but it is unable
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to describe the relaxation phenomenon; vice-versa the Maxwell model well
approximates the relaxation tests, but it is unable to describe the creep test.
These classic models are needed to describe the same material for the two dif-
ferent tests, creep and relaxation. This is physically unacceptable since leads
to have two different models to describe the same material. Moreover, by us-
ing as creep function the Kelvin-Voigt function in Eq. (3.30) and as relaxation
function that one obtained from Maxwell model in Eq. (3.25) the relation the
Laplace domain in Eq. (3.23) is violated.

However, there is another way to describe the viscoelasticity of real mate-
rials that is able with a simple model to completely describe this phenomenon
and shows a good agreement with the experimental evidence. This more effi-
cient model needs the fractional operators in the stress-strain relation.

3.6.1 The Nutting’s experience

The process that has led to the mechanical description of viscoelastic phe-
nomenon has been long. It has regarded some decades and it involved various
scientists. Probably, P. G. Nutting has produced the first spark, his experimen-
tal investigation [82], reported below, has been a relevant source of inspiration
for other scientists.

Around the 1921, Nutting focused his experimental observation to the vis-
coelastic behavior of materials. He conducted several experiments that led
him to assert that the two equations used to describe perfectly-elastic solids
and perfectly-viscous fluids, seemingly completely different, they actually
were two special cases of a single general law. Moreover, he observed that
the stress and the strain history during the relaxation and the creep test do
not follow an exponential-law, as it is obtained from classic model, but they
have power-law trends.

Two different kinds of function have been provided from Nutting’s exper-
imentation. The time evolution of displacements u under a constant strength,
and the relation between the displacements for the imposed strengths F(t) at
a fixed time. The first kind, dispacement-time u − t shows a proportional re-
lation between the displacement and the n-order power of the time tn, that
implies a linear relation in the logarithmic scale. That is,

log u ∝ log t

where the order n is independent of the imposed strength. From the displacement-
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strength relation u − F another similar relation has been drawn:

log u ∝ log F

then the displacement is proportional to the mth power of the imposed strength
Fm.

From the previous results, Nutting proposed a power-law ables to well-
represent the mechanical quantity u and F in the time from the experimental
evidences. This simple empirical law, appropriate to perform the best-fitting
of experimental tests on various materials, is

u = atnFm (3.34)

that represents the evolution in the time t of the displacement u caused by an
assigned history load F. The two orders n and m depend on the temperature
and are characteristic of the considered material but are independent of the
u, t, F and of the geometry of the specimen. The coefficient a depends on the
considered material and on the kind of test.

Note that the Hooke’s law in Eq. (3.1) is a particular case of the Eq. (3.34)
with n = 0 and m = 1. Instead the law of Newton-Petroff in Eq. (3.2) for
the perfectly-viscous fluid is another particular case of the Eq. (3.34) where
n = m = 1. Nutting also observed that the order n ranges from 0.2 ÷ 0.91,
and m from 0.75 ÷ 3.5. When the order n is close to zero the materials show
a solid behavior, on the other hand when n is close to 1 the materials have a
behavior similar to the fluids.

Nutting’s experience shows how the classic models, even if they are ob-
tained as complex assembly of several classic elements, are not able to de-
scribe the viscoelastic behavior of the real materials. Indeed, by the Kelvin-
Voigt model or by the Maxwell model is impossible to obtain such kind of
relation in Eq. (3.34). In order to solve this problem and to obtain a complete
model able to describe both the creep and the relaxation phenomena, in the
1936-1938 A. N. Gemant proposes to use the fractional derivative in the stress-
strain relation to correctly describe the mechanical behavior of real materials
[50, 51].

3.6.2 The spring-pot

In the 50s of the last century, Scott Blair G. W. and Caffyn J. E. introduce the frac-
tional stress-strain relation in which the fractional derivative appears [109].
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This new model, known as spring-pot, is able to explain the Nutting’s results
under mathematical point of view. The representation of this model is de-
picted in Figure 3.12.

C ,  
(t)

(t)

Figure 3.12: The spring-pot.

The stress-strain relation of this kind of model, introduced by Scott Blair
[109–111], is

σ(t) = E (Dα
0+ε) (t), (3.35)

where α : 0 ≤ α ≤ 1 and E are characteristic coefficients of the material.
Later, A. N. Gerasimov [52] introduced a similar expression that generalizes

the stress-strain relation with the aid of the Caputo’s fractional derivative, as
follows:

σ(t) = k (CDα
+ε) (t), (3.36)

also in this case α : 0 � α � 1 and k are characteristic coefficients of the mate-
rial. Both E in the Eq. (3.35)and k in the Eq. (3.36) have the same mechanical
meaning, and they can be defined as generalized viscosities. Scott Blair’s rela-
tion in Eq (3.35) and the Gerasimov’s expression in Eq. (3.36) coincide if the
considered system is quiescent, that is if ε(t) = 0, ∀ t � 0.

Another formulation has been introduced from G. L. Slonimsky [112]:

ε(t) =
1
k
(Iα

0+σ) (t), (3.37)

where the Riemann-Liouville fractional integral of the stress history
�
Iα
0+σ

�
(t)

appears. For quiescent system also this expression coincides with the Scott
Blair’s one.
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By using the previous expression is possible to summarize the fractional
stress-strain relation of the spring-pot as below:

σ(t) = C(α) (CDα
0+ε) (t), (3.38)

and the inverse relation:

ε(t) =
1

C(α)
(Iα

0+σ) (t), (3.39)

where C(α) e α : 0 � α � 1 can be obtained from a best-fitting of experimental
data. It is useful to stress that if the order α = 0 the fractional stress-strain
relation becomes the Hooke’s law in Eq. (3.1), and when α = 1 the fractional
model returns the Newtonian one in Eq. (3.2).

The order α denotes which phase is predominant in the mechanical behav-
ior of the material. In other words, if α is close to the zero value the material
exhibits an elastic predominant phase, vice-versa when α is close to 1 the ma-
terial is more similar to a newtonian fluid. The coefficient C(α), proportional
coefficient between the stress history and the fractional derivative of the strain
history, cannot be defined as stiffness E nor as viscosity µ, but it has to follow
the following dimensional expression:

C(α) = Eηα, (3.40)

where E is the elastic modulus (Pascal) and η is a characteristic time of the
materials (sec).

The relations in Eq.s (3.38) and (3.39) represent a mathematical model that
has a perfect correspondence with the experimental results of Nutting. As it
will show in the next section, this fractional model of viscoelasticity is able to
describe creep and relaxation phenomena, and the obtained creep and relax-
ation function respect their fundamental relaxation in the Laplace domain.

3.6.3 The integral formulation of fractional viscoelasticity

Another way to obtain the fractional stress-strain relation of the spring-pot in
Eq.s (3.38) and (3.39) is by the Boltzmann superposition principle, by choosing
the proper Kernel in the convolution integral. According to the Nutting’s
experience and to the more recent experimental tests [42, 43], the correct way
to represent the relaxation function decay as a power-law, therefore:

Φ(t) ∝ t−α, (3.41)



3.6 The fractional-order viscoelastic model 61

that is,
Φ(t) = ναt−α, (3.42)

where α : 0 � α � 1 and the coefficient ν(α) is related to the coefficient C(α)
by the following relation:

ν(α) =
C(α)

Γ(1 − α)
. (3.43)

By taking into account the Eq. (3.40) the relaxation function becomes:

Φ(t) =
C(α)

Γ(1 − α)
t−α =

E
Γ(1 − α)

�
t
η

�−α

. (3.44)

In order to show how this power-law is capable to fit the experimental re-
sults, consider the relaxation test of epoxy resin shown in Figure 3.13(a). With
the aid of a power-law like the one shown in Eq. (3.42) the best-fitting in Fig-
ure 3.13(b).
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Figure 3.13: Best-fitting of relaxation data of epoxy resin.

The Figure 3.13(b) show a perfect agreement between the theoretical curve
and the experimental results. In particular, in this case the obtained order of
the power-law is α = 0.043 [43].

By placing the Eq. (3.44) into the kernel of the Boltzmann integral in Eq. (3.22)
the following relation holds:

σ(t) =
C(α)

Γ(1 − α)

� t

0
ε̇(τ)(t − τ)−α dτ = C(α) (CDα

0+ε) (t) (3.45)
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that is the first fractional relation in Eq. (3.38) of the spring-pot. In other
words, if it is placed a power-law in kernel of the Boltzmann superposition
integral the fractional operators directly appears, as obtained from Gerasi-
mov.

From the knowledge of the relaxation function, the creep function is di-
rectly determined with the aid of the relation in the Laplace domain in Eq. (3.23).
The Laplace transform of the power-law relaxation function Φ(t) in Eq. (3.44)
is

ΦL(s) = C(α)sα−1, (3.46)

by the Eq. (3.23) the creep function in the Laplace domain ΨL(s) is given as

ΨL(s) =
1

C(α)sα+1 , (3.47)

by the inverse Laplace transform the creep function is given:

Ψ(t) = L
−1{ΨL(s); t} =

1
C(α)Γ(1 + α)

tα =
1

E Γ(1 + α)

�
t
η

�α

. (3.48)

Unlike classical models, also the creep function is still able to describe the real
mechanical behavior of material. In order to show this, consider the creep
experiment on the same epoxy resin considered before. Figure 3.14(a) shows
the experimental data obtained from a creep test. By using the Eq. (3.48) to fit
these experimental data the perfect overlap between the experimental results
and the theoretical curve is obtained, as shown in Figure 3.14(b).
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Figure 3.14: Best-fitting of creep function of epoxy resin.



3.6 The fractional-order viscoelastic model 63

Also in this case the best-fitting is obtained with the same value of the param-
eter α = 0.043.

The Eq. (3.48) as kernel in the Boltzmann integral in Eq. (3.20) leads to:

ε(t) =
1

C(α)Γ(1 + α)

� t

0
σ̇(τ)(t − τ)α dτ, (3.49)

integrating by parts and by using the property of the Euler gamma function
in Eq. (1.5) the following relation holds true:

ε(t) =
α

C(α)Γ(1 + α)

� t

0
σ(τ)(t − τ)α−1 dτ

=
1

C(α)Γ(α)

� t

0
σ(τ)(t − τ)α−1 dτ =

1
C(α)

(Iα
0+σ) (t),

(3.50)

that is the second fractional relation of the spring-pot in Eq. (3.39), obtained
from Slonimsky [112].

The shown treatise proves the capabilities of the fractional model. The
spring-pot is able to describe with two parameters C(α) and α two viscoelastic
phenomena, the creep and relaxation are captured with the same model. This
is a remarkable advantage respect to the other classical models.

3.6.4 The generalized fractional models

The spring-pot represents a generalized model which contains the Hookean
and Newtonian behavior as bounded cases. Indeed, if the order of the in-
volved operator is α = 0 the spring-pot becomes a perfect spring, and when
α = 1 the model restitutes the perfect dashpot. By using this new model is
possible generalized the other models of classical viscoelasticity. As example,
the fractional Maxwell model can be obtained by placing the spring-pot in
place of the dashpot, obtaining the following fractional differential equation
in the stress-strain relation:

σ(t) + a1 (Dασ) (t) = b0 (Dαε) (t), (3.51)

where the characteristic parameters of the material are a1, α, and b0.
By the same substitution in the Kelvin-Voigt model the generalized Kelvin-

Voigt is obtained. The stress-strain relation of this model is

σ(t) = b0ε(t) + b1 (Dαε) (t), (3.52)
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also in this case the characteristic parameters of the materials are three.
The fractional Zener model, known as 5-parameters model (α, β, a1, b0

and b1), has the following stress-strain relation:

σ(t) + a1 (Dασ) (t) = b0ε(t) + b1

�
Dβε

�
(t), (3.53)

usually, the experimental evidence has shown that α = β. Morevoer, with a
thermodynamical approach R. L. Bagley and P. J. Torvik have proved that the
5-parameters model must have α = β, in this manner the model becomes the
4-parameters model with the following relation:

σ(t) + a1 (Dασ) (t) = b0ε(t) + b1 (Dαε) (t), (3.54)

where the characteristic parameters are α, a1, b0 and b1.
Generalizing the Eq. (3.13) with fractional operators the generic fractional

stress-strain relation of the fractional multi-elements model is obtained as
n

∑
k=0

ak (Dαk σ) (t) =
m

∑
k=0

bk

�
Dβk ε

�
(t), (3.55)

where can be happen that n = m, and αk = βk.

3.6.5 Characteristic times and apparent modulus

“The mountains flowed before the Lord, the One of Sinai,
before the Lord, the God of Israel.”

Bible, Judges 5:5.

Obviously that prophetic phrase, in the Bible, contains a non-scientific mes-
sage, nevertheless in the 1964 Markus Reiner bestows a physical meaning to
this expression. Since in that message is summarized the particular behav-
ior that all solids show when the observation times become very long (in this
case the observation time becomes timeless “before the Lord”). Indeed, also
the rocks, that constitute the mountains, flow in a long period. In particular,
Reiner in his original paper [93] wrote:

“Deborah knew two things. First, that the mountains flow, as everything
flows. But, secondly, that they flowed before the Lord, and not before
man, for the simple reason that man in his short lifetime cannot see them
flowing, while the time of observation of God is infinite. We may therefore
well define a non-dimensional number the Deborah number”
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Based on this assertion, to classify the viscoelastic solids, in rheology it is com-
mon to use a dimensionless parameter called Deborah number, in honor of the
homonymous prophetess who uttered the phrase in the epigraph. This num-
ber is defined by the ratio of the relaxation time η, which characterizes the
fluidity of the material, and the observation time t, characteristic of the exper-
iment:

De =
η

t
. (3.56)

The relaxation time η is a characteristic parameter of the material. It is not easy
to found experimentally, and depends on the mechanical model. Usually, it
can be see as the ratio between the viscosity [Pa · sec] and the stiffness [Pa] of
the material.

η =
µ

E
, [sec]. (3.57)

The Deborah’s number represents an useful experimental parameter. Indeed,
it indicates when the tested material exhibits viscoelastic properties. In other
words, it denotes the time, during the experiment, when the solid material
start to flow and to show the fluid characteristic. Low values of De denote
a behavior similar to viscous liquids, while values of De tending to infinity
describe a material similar to the ideal elastic solids.

The relaxation time is readily evaluable for classic viscoelastic model, but
it is not easy to found for the fractional model, since it is inside the parameter
C(α) of the fractional differential equation of the spring-pot. Consider the
creep and relaxation functions in the Eq.s (3.44) and (3.48) and introduce two
characteristic times for both functions, denoted with TR e TC, respectively.
After that, it is possible to write:

Φ(t) = E
�

t
TR

�−α

(3.58a)

Ψ(t) =
1
E

�
t

TC

�α

(3.58b)

where the two characteristic times contain η, indeed:

TR = ηΓ(1 − α)−1/α (3.59a)

TC = ηΓ(1 + α)1/α (3.59b)

where TR and TC denote the characteristic time of the relaxation and the character-
istic time of the creep. In particular, they denote when the rheological behavior
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becomes perfectly elastic, then at such times the following proportional rela-
tions hold:

σ(t) = E
�

t
TR

�−α

ε(0) = Eε(0), t = TR; (3.60a)

ε(t) =
1
E

�
t

TC

�α

σ(0) =
1
E

σ(0), t = TC. (3.60b)

In the relaxation test for t < TR the considered material shows a mechanical
behavior stiffer than the perfectly elastic one, while for t > TR the material
has a more deformable behavior. An analogous behavior there is in the creep
test for TC. Both the characteristic times contain the time η that is not easy
to found, since from the best-fitting of the experimental data is possible to
evaluate the parameters α and C(α), into the latter one there is the time η
but it is not deducible. By virtue of these observations only the trends of the
normalized characteristic times TR and TC in η are know, obtaining that:

TR

η
= Γ(1 − α)−1/α, (3.61a)

TC
η

= Γ(1 + α)1/α. (3.61b)

Figure 3.15 shows the trends of the normalized characteristic times TR and TC
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Figure 3.15: Normalized characteristic times.
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for 0 � α � 1. Some notable values can be found:

lim
α→0

TR

η
= lim

α→0

TC
η

= e−γe ∼= 0.5615,

lim
α→1

TR

η
= 0, lim

α→1

TC
η

= 1,
(3.62)

where γe is the Euler-Mascheroni constant (γe = 0.57722). Both functions
exhibit quasi-linear trends, then it is possible to rewrite

TC − TR = η
�
Γ(1 + α)1/α − Γ(1 − α)−1/α

�
≈ ηα, (3.63)

that expression allows to found the following approximated relations:

TR ≈e−γe(1 + α),
TC ≈e−γe(1 − α) + α.

(3.64)

It is possible to observe that for the purely elastic behavior α = 0, the relax-
ation time coincide with the creep time, and being η = 0 the system instantly
reaches the elastic deformation (or the tension in the relaxation test). Instead,
when α = 1 the behavior is different for the creep and the relaxation test. In-
deed, if the imposed deformation is ε(0) = ε0 the corresponded stress will
be null σ(t) = Φ(t)ε0 = E(TR/t)ε0 = 0, instead, if the imposed tension is
σ(0) = σ0 the corresponded deformation will be ε(t) = Ψ(t)σ0 = σ0t/E, then
its linearly increases in the time.

After finding the characteristic times is possible to observe a particular re-
sult obtained for the product between the relaxation function Φ(t) in Eq. (3.44)
and the creep function Ψ(t) in Eq. (3.48):

Φ(t)Ψ(t) =
�

TR

TC

�α

=
1

Γ(1 + α)Γ(1 − α)
=

sin (απ)
απ

, (3.65)

that product is obtained by using the Euler’s reflection formula in Eq. (1.8),
and it is a function just of the order α. By using the Eq. (3.65) the following
relations are found:

Φ(t) =
1

Ψ(t)

�
sin(απ)

απ

�
, (3.66a)

Ψ(t) =
1

Φ(t)

�
sin(απ)

απ

�
, (3.66b)
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these expressions permit to fully characterize the mechanical behavior of real
material by the knowledge of the results of one kind of test (creep or relax-
ation).

Consider the Eq. (3.60a) for ∀t, it is possible to define a time-variable elastic
modulus that follows the proportional link between the imposed deformation
and corresponded stress. Similarly, consider the creep in Eq. (3.60b), it is pos-
sible to found another function that permits to hold such proportional relation
true, therefore:

ER(t) = E
�

t
TR

�−α

, (3.67a)

EC(t) = E
�

t
TC

�−α

, (3.67b)

where ER(t) is the apparent relaxation modulus, that coincides with the Young’s
modulus when t = TR; EC(t) denotes the apparent creep modulus, that for
t = TC becomes, also in this case, the Young’s modulus. The apparent mod-
ulus are functions of the elastic modulus E, that is contained in C(α). This
parameter also contains the terms ηα. The two parameters inside C(α), E and
η are not separable in the fractional model, but some useful considerations
can be drawn by the observation of the normalized curves of the apparent
modulus depicted in Figure 3.16. In particular, the Figure 3.16(a) shows the
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Figure 3.16: Normalized relaxation and creep function for some values of α.

trend of the relaxation function normalized for t/TR, while the Figure 3.16(b)
shows the creep function normalized for t/TC. Both curves pass through the
point (1, 1) but they have different curvature. Based on this observation two
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characteristic points in which the curves have the maximum curvature can
be found. Such knee points denote two particular times t∗, which indicate a
changing in the mechanical behavior of the material. These times are related
to the characteristic times TR and TC and to the order α by the following rela-
tion:

t∗

TI
=

�
α
√

1 + 2α√
2 + α

� 1
α+1

∼= α, (3.68)

where TI indicates the generic characteristic time (I = R for the relaxation,
and I = C for the creep).

The knee point certainly denotes a changing in the viscoelastic behavior
of the material, and represents a characteristic point of the material, on this
concept will be back later.

3.6.6 Triaxial stress-strain relation

This section extends the previous uniaxial stress-strain relations to the triax-
ial case [23, 71, 72, 81, 120]. In order to do this, consider the tridimensional
continuous solid with volume V, delimited by the boundary surface S (see
Figure 3.17), the Cauchy stress tensor T, and the deformation tensor ε, of a

Figure 3.17: Continuum of Cauchy.
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generic point P ∈ V are defined as

T =




σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33



 , ε =




ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33



 . (3.69)

where the terms in the diagonals σii and ε ii with i = 1, 2, 3 are the axial stresses
and axial strains, respectively; instead the other terms σij and ε ij with i, j =
1, 2, 3 and i �= j are the shear stresses and shear deformation, respectively.
Commonly, another way to denote these latter quantity is τij = σij for the
shear stress, and 2ε ij = γij for the shear deformation. Moreover, the following
relations, for the non-diagonal terms, hold:

σij = σj,i, ε ij = ε j,i, (3.70)

from these relations follows that the tensors T and ε are symmetric.
Let Jσ = σii and Jε = σii (i = 1, 2, 3) be the linear invariants and J̄σ = σii/3,

J̄ε = ε ii/3. The Cauchy stress tensor T and the deformation tensor ε may be
decomposed into the deviatoric part and the volumetric ones as follows

T = J̄σI + Td; ε = J̄εI + εd (3.71)

where I is the identity matrix. Td and εd are the so called deviatoric part of
the stress and strain tensor, respectively.

For linear elastic isotropic material the constitutive law for the volumetric
part is written as

Jσ = 3KJε (3.72)

where K is the bulk modulus K = E/3(1 − 2ν) being E and ν the Young’s
modulus and the Poisson’s ratio, respectively. While for the deviatoric part

Td = 2Gεd (3.73)

where G is the shear modulus G = E/2(1 + ν).
For a purely viscous Newtonian fluid the volumetric deformation remain

constant that is J̇ε = 0, and then the only significative constitutive equation is

Td = 2G1ε̇d (3.74)

where G1 is the coefficient of viscosity of the fluid. For a purely fractional vis-
coelastic material, by denoting εd

ve the deviatoric part of the purely viscoelastic
strain tensor, we assume that Eq. (3.74) is substituted by

Td(t) = 2Gβ

�
CDβ

0+εd
ve

�
(t) (3.75)
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where
�

CDβ
0+ ·

�
(t) is the Caputo’s fractional derivative.

For real viscoelastic material can be assumed that εd is composed by two
terms, the first one is elastic εd

e and the second is the purely viscoelastic one
εd

ve, that is
εd = εd

e + εd
ve. (3.76)

Assuming that εd
e = Td1/2G according to Eq. (3.73), from Eq. (3.76) yields

�
CD0+εd

�
(t) =

�
CDβ

0+εd
e

�
(t)+

�
CDβ

0+εd
ve

�
(t) =

1
2G

�
CDβ

0+Td
�
(t)+

1
2Gβ

Td(t)

(3.77)
while for the volumetric component, due to the hypothesis Jε is constant in
time

�
CDβ

0+Jε
�
(t) = 0, the constitutive law remains that expressed in Eq. (3.72).

The inverse relationship is written in the form

εd(t) =
1

2G
Td(t) +

1
2Gβ

�
Iβ
0+Td

�
(t) (3.78)

where
�

Iβ
0+Td

�
(t) is the Riemann-Liouville fractional integral.





Chapter 4

Mechanical model of fractional
viscoelasticity

The previous Chapter has shown how the fractional viscoelastic model is the
best way to fully characterize the real mechanical behavior of materials. The
limit of this kind of models is in the mechanical interpretation of the fractional
operators. Indeed, this kind of operators do not have a geometric representa-
tion, and this aspect directly implies a lack of mechanical meaning when they
are used to describe a physical phenomena. This absence for that powerful
mathematical model has certainly limited its use in the engineering and me-
chanical fields. Several works have regarded the mechanical description of the
fractional stress-strain relation [7–10, 59, 60, 100–102]. Recently, in [45] the ex-
act mechanical models of such materials have been extensively discussed ob-
taining two intervals for β: i) Elasto-Viscous (EV) materials for 0 ≤ β ≤ 1/2;
ii) Visco-Elastic (VE) materials for 1/2 ≤ β ≤ 1. These two ranges correspond
to different continuous mechanical models.

In this Chapter a discretization scheme, based upon the continuous mod-
els proposed in [91], and useful to obtain a mechanical description of frac-
tional derivative, is presented. It is shown that the discretized models are
ruled by a set of coupled first order differential equations involving symmet-
ric and positive definite matrices. Modal analysis shows that fractional order
operators have a mechanical counterpart that is ruled by a set of Kelvin-Voigt
units and each of them provides a proper contribution to the overall response.
The robustness of the proposed discretization scheme is assessed in the Chap-
ter for different classes of external loads and for different values of β ∈ [0, 1].

Many details and extension of this kind of mechanical interpretation of

73
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the mathematical model with fractional operators can be found in [38–40].
Moreover, the continuous and discretized models shown in this Chapter are
also used for other physical problem in which fractional operators appear [2,
3].

4.1 The mechanical description of fractional law

According to the previous Chapter the time-dependent behavior of fractional
viscoelasticity may be introduced starting from the so-called relaxation func-
tion G(t) that represents the stress σ(t) for assigned shear strain history γ(t) =
U(t), being U(t) the unit step function. In virtue of Boltzmann superposition
principle the stress-strain constitutive law is given as

σ(t) =
� t

0
G (t − τ) dγ(τ) =

� t

0
G (t − τ) γ̇(τ) dτ. (4.1)

Eq. (4.1) is valid for γ(0) = 0. If γ(0) = γ0 �= 0, then the additional contri-
bution given as G(t)γ0 has to be added in Eq. (4.1). The stress-strain relation
described in Eq. (4.1) involves a convolution integral with kernel G(t). In the
context of the viscoelastic materials, the functional class of G(t) is of power-
law type. That is,

G(t) =
C(β)

Γ(1 − β)
t−β, (4.2)

where C(β)/Γ(1 − β) and β are parameters that depend of the materials at
hand and may be evaluated by a proper fit of experimental results. Introduc-
ing Eq. (4.2) in Eq. (4.1) the stress-strain relation is obtained as

σ(t) = C(β)
�

CDβ
0+γ

�
(t), (4.3)

where
�

CDβ
0+γ

�
(t) is the Caputo’s fractional derivative of order β. Advanced

engineering materials such as biological polymer, foams and gels show β ∈
]0, 1[.

The reciprocal stress-strain relation may be obtained starting from the creep
function J(t), that represents the strain γ(t) for the assigned stress history
σ(t) = U(t). The Boltzmann superposition principle leads to the stress-strain
relation in the form:

γ(t) =
� t

0
J (t − τ) dσ(τ) =

� t

0
J (t − τ) σ̇(τ) dτ, (4.4)
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that holds as the initial stress σ(0) = 0. If σ(0) = σ0 �= 0, then the additional
contribution J(t)σ0 has to be added in Eq. (4.4). Eq. (4.4) is a convolution
integral with kernel J(t) and in Laplace domain an algebraic relation among
the Laplace transform of relaxation GL(s) and the Laplace transform of creep
JL(s) function exists as shown in Eq. (3.23). It follows that as G(t) is assigned
as in Eq. (4.2), the corresponding creep function J(t) may be readily obtained
in the form:

J(t) =
t β

C(β)Γ(1 + β)
. (4.5)

Substitution of such an expression in Eq. (4.4) yields:

γ(t) =
1

C(β)

�
I β
0+σ

�
(t), (4.6)

where
�

I β
0+σ

�
(t) is the Riemann-Liouville fractional integral of order β.

Inspection of Eqs. (4.3) and (4.6) reveals that, as soon as we assume that
J(t) (or G(t)) is of power-law type, then the constitutive law of the materials
is ruled by fractional operators, so the name fractional viscoelastic materials.

In a previous study [91] it has been shown that, from a mechanical prospec-
tive, it must be distinguished among values of order β = βE ∈ [0, 1/2] and
values of order β = βV ∈ [1/2, 1]. Such a difference is reflected into the dif-
ferent mechanical models beyond βE and βV . In more details there are two
different mechanical models that exactly restitute the stress-strain relation ex-
pressed in Eq. (4.3) or in Eq. (4.6). As 0 ≤ β = βE ≤ 1/2 the mechanical model
is a massless indefinite fluid column resting on a bed of independent springs
as shown in Figure 4.1(a) and in this case is referred so elasto-viscous material.
If, instead, 1/2 ≤ β = βV ≤ 1 the exact mechanical model is represented by
indefinite massless shear-type column resting on a bed of independent dash-
pots as shown in Figure 4.1(b), this model is referred to visco-elastic material.

The correspondence of these mechanical models and fractional order oper-
ators has been proved by introducing a z vertical axis as shown in Figure 4.1
and denoting σ(z, t) the shear stress (in the fluid or in the cantilever beam)
and γ(z, t) the normalized displacement field [91]. Moreover let σ(0, t) =
σ(t) and γ(0, t) = γ(t) the stress applied on the top of the model and the
corresponding strain, respectively. The stress-strain relation in Eq. (4.3) is cap-
tured by the stress σ(t) on the upper lamina and its correspondent transverse
displacement γ(t) (normalized displacement at the top). All the mechani-
cal characteristics, viscosity of fluid cE(z) and external stiffness kE(z) for the
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Figure 4.1: Continuous fractional models.

model in Figure 4.1(a) (0 ≤ β ≤ 1/2) as well as shear modulus kV(z) and
external viscous coefficient of external dashpots cV(z) for the model in Fig-
ure 4.1(b) (1/2 ≤ β ≤ 1), vary along the z axis with power-law.

In more details, define G0 and η0 the reference values of the shear modulus
and viscosity coefficient. For the EV materials (β ∈ [0, 1/2]) the stiffness and
the viscous coefficients decay with power-laws:

kE(z) =
G0

Γ(1 + α)
z−α, cE(z) =

η0

Γ(1 − α)
z−α, (4.7)

with 0 ≤ α ≤ 1, whereas the VE materials (β ∈ [1/2, 1]) the mechanical
characteristics of the model in Figure 4.1(b) reads:

kV(z) =
G0

Γ(1 − α)
z−α, cV(z) =

η0

Γ(1 + α)
z−α. (4.8)

The governing equation of the continuous model depicted in Figure 4.1(a)
is written as

∂

∂z

�
cE(z)

∂γ̇(z, t)
∂z

�
= kE(z)γ(z, t), (4.9)

while the equilibrium equation of the continuous model depicted in Figure 4.1(b)
is written as

∂

∂z

�
kV(z)

∂γ(z, t)
∂z

�
= cV(z)γ̇(z, t). (4.10)

The solution of the differential equations in Eq. (4.9) and (4.10) can be solved
by Laplace transform. In this way the solution γL(z, s) in Laplace domain
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involves the modified first and second kind Bessel functions, denoted respec-
tively with Iβ(·) and Kβ(·), and defined in Eq. (1.31) and in Eq. (1.32). In
particular, for EV case the relation is

γL(z, s) = zβ

�
BE1 Iβ

�
z�

τE(α)s

�
+ BE2Kβ

�
z�

τE(α)s

��
, (4.11)

with τE(α) = −η0Γ(α)/(Γ(−α)G0) and β = (1 − α)/2; while for VE case:

γL(z, s) = zβ

�
BV1 Iβ

�
z
�

τE(α)s
�
+ BV2Kβ

�
z
�

τE(α)s
��

, (4.12)

with τV(α) = −η0Γ(−α)/(Γ(α)G0) and β = (1 + α)/2. The constants of inte-
gration BEi and BVi with i = 1, 2 are obtained by imposing the following pairs
of boundary conditions, for the EV and VE case respectively:

(EV)






lim
z→0

cE(z)
∂γ̇(z, t)

∂z
= σ(0, t) = σ(t),

lim
z→∞

γ(z, t) = 0
(4.13a)

(VE)






lim
z→0

kV(z)
∂γ(z, t)

∂z
= σ(0, t) = σ(t),

lim
z→∞

γ(z, t) = 0
(4.13b)

and by making the inverse Laplace transform, the fractional stress-strain rela-
tion in Eq. (4.6) is obtained, that is to say:

γ(t) =
1

CE(β)

�
Iβ
0+σ

�
(t) (EV) (4.14a)

γ(t) =
1

CV(β)

�
Iβ
0+σ

�
(t) (VE) (4.14b)

where the coefficients CE(β) and CV(β) are

CE(β) =
G0 Γ (β) 22β−1

Γ (2 − 2β) Γ (1 − β)
(τE(α))

β, 0 ≤ β ≤ 1/2, (4.15a)

CV(β) =
G0 Γ (1 − β) 21−2β

Γ (2 − 2β) Γ (β)
(τV(α))

β, 1/2 ≤ β ≤ 1. (4.15b)
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Note that, if the boundary condition applied to the top layer of the model
(see Eqs. (4.13a) and (4.13b)), respectively, for EV and VE materials, involves
Dirichlet specifics. That is,






lim
z→0

γ(z, t) = γ(t),

lim
z→∞

γ(z, t) = 0.
(4.16)

The evaluation of the stress at the top lamina in terms of the transverse
displacement field yields:

σ(t) = CE(β)
�

CDβ
0+γ

�
(t) (EV)

σ(t) = CV(β)
�

CDβ
0+γ

�
(t) (VE)

(4.17)

as reported in [91].

4.2 The discretization of fractional viscoelastic model

The mechanical representation of fractional order operators discussed in pre-
vious section may be used to introduce a discretization scheme that corre-
sponds to evaluate fractional derivative. The two cases corresponding to
β ∈ [0, 1/2] and β ∈ [1/2, 1] will be analyzed in this section.

4.2.1 Discrete model of elasto-viscous material

By introducing a discretization of the z-axis as zj = j�z into to the governing
equation of the EV material in Eq. (4.9) yields a finite difference equation of
the form:

�
�z

�
cE(zj)

�γ̇(zj, t)
�z

�
= kE(zj)γ(zj, t), (4.18)

so that, denoting kEj = kE(zj)�z and cEj = cE(zj)/�z the continuous model
is discretized into a dynamical model constituted by massless shear layers,
with horizontal degrees of freedom γ(zj, t) = γj(t), that are mutually inter-
connected by linear dashpots with viscosity coefficients cEj and resting on a
bed of independent linear springs kEj.

The stiffness coefficient kEj and the viscosity coefficient cEj reads:

kEj =
G0

Γ(1 + α)
z−α

j �z, cEj =
η0

Γ(1 − α)

z−α
j

�z
, (4.19)
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Figure 4.2: Discretized counterpart of the continuous model Figure 4.1(a)
EV case.

with α = 1 − 2β.
The equilibrium equations of the generic shear layer of the model read:

�
kE0γ1(t)− cE0�γ̇1(t) = σ(t),
kEjγj(t) + cEj−1�γ̇j−1(t)− cEj�γ̇j(t) = 0, j = 1, 2, . . . , ∞,

(4.20)

where γ1(t) = γ(t) and �γ̇j(t) = γ̇j+1(t)− γ̇j(t). By inserting Eqs. (4.19) in
Eqs. (4.20), at the limit as �z → 0, the discrete model reverts to Eq. (4.9). That
is the discretized model presented in Figure 4.2 represents a proper discretiza-
tion of the continuous EV counterpart.

As soon as z increase γ(z, t) decay and limz→∞ γ(z, t) = 0 it follows that
only a certain number, say n, of equilibrium equation may be accounted for
the analysis. It follows that the system in Eqs. (4.20) may be rewritten in the
following compact form:

pEAγ̇(t) + qEBγ(t) = vσ(t), (4.21)

where:

pE =
η0

Γ(1 − α)
�z−(1+α), qE =

G0

Γ(1 + α)
�z1−α. (4.22)

In Eq. (4.21):

γT(t) =
�

γ1(t) γ2(t) . . . γn(t)
�

, vT =
�
1 0 0 . . . 0

�
, (4.23)
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where the apex T means transpose. The coefficient matrices A and B are

A =





1−α −1−α 0 . . . 0
−1−α 1−α + 2−α −2−α . . . 0

0 −2−α 2−α + 3−α . . . 0
...

...
... . . . ...

0 0 0 . . . (n − 1)−α + n−α




, (4.24)

B =





1−α 0 0 . . . 0
0 2−α 0 . . . 0
0 0 3−α . . . 0
...

...
... . . . ...

0 0 0 . . . n−α




. (4.25)

The matrices A and B are symmetric and positive definite (in particular B
is diagonal) and they may be readily constructed for an assigned value of
α (depending of the derivative order β) and for a fixed truncation order n.
Moreover Eq. (4.21) may now be readily integrated by using standard tools of
dynamic analysis how it will be shown later on.

4.2.2 Discrete model of visco-elastic material

As the fractional order derivative is β = βV ∈ [1/2, 1] the mechanical de-
scription of the material is the represented by the continuous model depicted
in Figure 4.3 and ruled by Eq (4.10).

By introducing a discretization of the z-axis in intervals �z in governing
equation of the VE materials in Eq. (4.10) yields a finite difference equation of
the form:

�
�z

�
kV(zj)

�γ(zj, t)
�z

�
= cV(zj)γ̇(zj, t), (4.26)

that corresponds to a discretized mechanical representation of fractional deriva-
tives. The mechanical model is represented by a set of massless shear layers
with state variables γ(zj, t) = γj(t) that are mutually interconnected by linear
springs with stiffness kVj = kV(zj, t)/�z resting on a bed of independent lin-
ear dashpots with viscosity coefficient cVj = cV(zj, t)�z. Stiffness and dash-
pot coefficients are

kVj =
G0

Γ(1 − α)

z−α
j

�z
, cVj =

η0

Γ(1 + α)
z−α

j �z, (4.27)
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Figure 4.3: Discretized counterpart of the continuous model Figure 4.1(b)
VE case.

with α = 2β − 1.
The set of equilibrium equations reads:

�
cV0γ̇1(t)− kV0�γ1(t) = σ(t),
cVjγ̇j(t) + kVj−1�γj−1(t)− kVj�γj(t) = 0, j = 1, 2, . . . , ∞.

(4.28)

Thus, considering the contributions of the first n shear layers the differential
equation system may be written as

pVBγ̇(t) + qVAγ(t) = vσ(t), (4.29)

where:

pV =
η0

Γ(1 + α)
�z1−α, qV =

G0

Γ(1 − α)
�z−(1+α), (4.30)

while γ, v and the matrices A and B have already been defined in sect. 4.2.1.
Up to now, a shear stress and a subsequent shear deformation as in the

Couette problem have been considered, but exact governing equations, and
then exact mechanical models, for the axial stress and axial deformation are
the same how is depicted in Figure 4.4 for both EV and VE case. Also in this
case as ∆z → 0 (continuous problem) both the fractional EV and VE continu-
ous are restored.

In the next section the modal analysis of dynamical system, ruled by Eq.
(4.21) and Eq. (4.29), will be performed leading to a set of decoupled system
of first order differential equations.
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Figure 4.4: Continuous and discretized fractional axial models.

4.3 The modal analysis of the discrete models

The observations reported in previous section lead to conclude that, what-
ever class of viscoelastic materials is considered, the time-evolution of the
material system may be obtained by the introduction of a proper set of in-
ner state variables, collected in the vector γ(t) and ruled by a set first-order
linear differential equations. In this perspective the mechanical response of
fractional viscoelastic materials may be obtained in terms of the vector γ(t)
by means of the decoupling set of eigenmodes of the differential equations
system reported in Eq. (4.20) for EV materials or in Eq. (4.28) for VE materi-
als. Since the different mechanical models correspond to Elasto-Viscous and
Visco-Elastic materials, as discussed in previous section, these two cases will
be dealt separately in the following.

4.3.1 Elasto-viscous materials

The governing equation of EV case is reported in Eq. (4.21). First, consider the
homogeneous case with σ(t) = 0. Performing the coordinate transformation

B1/2γ(t) = x(t), (4.31)

and premultiplying by B−1/2, the differential equation for the unknown vec-
tor x is

pED ẋ(t) + qEx(t) = ṽσ(t), (4.32)
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where ṽ = B−1/2v, D is the dynamical matrix D = B−1/2A B−1/2, defined as

D =





1 −
� 2

1
� α

2 0 . . . 0 0
−

� 2
1
� α

2 1 +
� 2

1
�α −

� 3
2
� α

2 . . . 0 0
0 −

� 3
2
� α

2 1 +
� 3

2
�α . . . 0 0

...
...

... . . . ...
...

0 0 0 . . . 1 +
� n−1

n−2
�α −

� n
n−1

� α
2

0 0 0 . . . −
� n

n−1
� α

2 1 +
� n

n−1
�α





,

(4.33)
D is symmetric and positive definite. It may be obtained straightforwardly
once n and α are fixed. Let Φ be the modal matrix whose columns are the
orthonormal eigenvectors of D. That is,

ΦTD Φ = Λ, ΦTΦ = I, (4.34)

where I is the identity matrix and Λ is the diagonal matrix collecting the
eigenvalues λj > 0 of D. The eigenvalues λj are ordered in such a way that
λ1 < λ2 < · · · < λn.

Introduce the modal coordinate vector y(t) defined as

x(t) = Φ y(t), y(t) = Φ−1 x(t), (4.35)

By placing Eq. (4.35) into Eq. (4.32) and premultiplying for ΦT, a decoupled
set of differential equations is obtained:

pEΛ ẏ(t) + qEy(t) = v̄σ(t), (4.36)

where v̄ = ΦT ṽ = ΦTB−1/2v = ΦTv. The jth equation of Eq. (4.36) reads:

ẏj(t) + ρj yj(t) =
φ1,j

pEλj
σ(t), j = 1, 2, 3, . . . n, (4.37)

where ρj = qE/pEλj > 0 and φ1,j is the jth element of the first row of the matrix
Φ. Eqs. (4.37) represent a decoupled set of Kelvin-Voigt units, as is shown in
Figure 4.5, and the solution of Eq. (4.37) is provided in the form:

yj(t) = yj(0) e−ρj t +
φ1,j

pEλj

� t

0
e−ρj(t−τ)σ(τ) dτ, (4.38)
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where yj(0) is the jth component of the vector y(0) related to the vector of
initial conditions γ(0) as

y(0) = ΦTB1/2γ(0). (4.39)
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Figure 4.5: Kelvin-Voigt elements in modal space (EV case).

Solution of the differential equation system in Eq. (4.21) may be obtained
as the modal vector y(t), that is evaluated solving Eq. (4.38). From the Eqs. (4.31)
and (4.35) the vector γ(t) gives

γ(t) = B−1/2Φy(t). (4.40)

To find the relation among the shear stress and the normalized transverse
displacement of the upper lamina, it is necessary to evaluate the first element
of vector γ(t). That is,

γ(t) = vTγ(t). (4.41)

4.3.2 Visco-elastic materials

Modal analysis of the differential equations system representing the behavior
of VE material is quite similar to previous section. In this case we substitute
Eq. (4.31) in Eq. (4.29) and we perform left premultiplication by B−1/2 that
reads:

pV ẋ(t) + qVD x(t) = ṽσ(t), (4.42)
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where D is the dynamical matrix defined in previous section. The dynamical
equilibrium equation in modal coordinate reads:

pV ẏ(t) + qVΛ y(t) = v̄σ(t), (4.43)

the equilibrium of jth Kelvin-Voigt from Eq. (4.43) is

δj ẏj(t) + yj(t) =
φ1,j

qVλj
σ(t), j = 1, 2, 3, . . . n, (4.44)

where δj = pv/qVλj > 0. In this case the problem in the modal coordinates is
decomposed in a set of Kelvin-Voigt units as shown in Figure 4.6.
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Figure 4.6: Kelvin-Voigt elements in modal space (VE case).

The solution in terms of modal coordinates is

yj(t) = yj(0) e−t/δj +
φ1,j

δj qVλj

� t

0
e−(t−τ)/δj σ(τ) dτ. (4.45)

The stress-strain relations between shear stress σ(t) and normalized dis-
placement γ(t) may be obtained as in previous section (see Eq.s (4.38) and
(4.41)).

The case of β = 1/2, that is common to both EV and VE mechanical ana-
logues, is a critical value and some additional considerations may be with-
drawn from its analysis as it will be shown in the next section.
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4.3.3 The critical value of β : β = 1/2

The case of β = 1/2 is of particular interest since eigenvalues and eigenvec-
tors are given in closed form. It follows that the role played by the truncation
depth of z and the number of laminae may be evidenced.

The case β = 1/2 may be treated in two different ways, or by assuming
β = 1/2 starting from the EV case, or by assuming β = 1/2 starting from the
VE case. Starting from the EV-model we get:

kEj = G0�z, cEj =
η0

�z
, (4.46)

consequently the Eqs. (4.22) take the following form:

pE =
η0

�z
, qE = G0�z, (4.47)

and the equilibrium equation system in compact form, similarly to the Eq. (4.21),
reads:

η0

�z
Aγ̇(t) + G0�z Bγ(t) = vσ(t), (4.48)

where the matrices A and B assume the following particular form:

A =





1 −1 0 . . . 0
−1 2 −1 . . . 0
0 −1 2 . . . 0
...

...
... . . . ...

0 0 0 . . . 2




, (4.49)

and
B = I. (4.50)

The eigenvalues λj and the normalized eigenvectors φj of particular tridi-
agonal matrix A can be evaluated with some manipulations from other works
[67, 129]. In particular, such eigenvalues and eigenvectors are:

λj = 2 − 2 cos
�

2j − 1
2n + 1

π

�
, j = 1, 2 . . . , n (4.51)

φk, j =

�
4

2n + 1
cos

�
(2j − 1)(2k − 1)

2(2n + 1)
π

�
, j, k = 1, 2 . . . , n. (4.52)
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Using the Eq. (4.52) can be readily calculate the modal matrix Φ, obtaining
the following equation in the modal space:

η0

�z
Λẏ(t) + G0�z y(t) = v̄σ(t), (4.53)

where v̄ = ΦTv and the jth equation of the system (4.53), corresponding to the
equilibrium equation of the jth Kelvin-Voigt unit in the modal space, reads:

ẏj(t) +
G0�z2

η0λj
yj(t) =

φ1,j�z
η0λj

σ(t), j = 1, 2, . . . , n. (4.54)

The solution of jth equation in modal space of EV-model is

yj(t) = yj(0) e
− G0�z2

η0λj
t
+

φ1,j�z
η0λj

� t

0
e
− G0�z2

η0λj
(t−τ)

σ(τ) dτ, (4.55)

and the normalized transverse displacement of the upper lamina is obtained
as

γ(t) = vTΦ y(t)

=
n

∑
j=1

�
φ1,jyj(0) e

− G0�z2
η0λj

t
+

φ2
1,j�z
η0λj

� t

0
e
− G0�z2

η0λj
(t−τ)

σ(τ) dτ

�
.

(4.56)

Exactly the same result is achieved as we work out on the governing equation
of the VE material behavior reported in section 4.2.2.

4.4 Numerical examples

In this section a numerical applications is presented for different values of β.
Consider that the system is forced by a constant stress case σ(t) = σ0U(t). The
fractional integral in Eq. (4.6) may be evaluated in closed form and it returns
the creep function given in Eq. (4.5).

In Figure 4.7 the results for σ(t) = σ0U(t) and different values of β ∈
[0, 1/2], (EV case) are contrasted with exact solution reported in Eq. (4.6). For
this case we select �z = 0.001 and n = 1500, where �z is the discretization
step and n is the number of layers considered (total truncation depth is h̄ =
n�z = 1.5), moreover it is assumed G0 = 1 and η0 = 1.
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Figure 4.7: Creep test of EV model with σ0 = 1: comparison between the exact and
approximate solution.

In Figure 4.8 the results for σ(t) = σ0U(t) and different values of β ∈
[1/2, 1] (VE case) are contrasted with exact solution in Eq. (4.6), the discretiza-
tion step selected is �z = 0.02, n = 1500 (total depth h̄ = 3). It may be seen
that exact solutions are matched with that obtained by the discretization pro-
cedure for a large time, moreover for β = 1/2 the solution obtained with EV
case exactly coalesces with that obtained for VE case.

In order to investigate further the role played by truncation depth h̄ =
n�z and by the number of laminae n, the critical case β = 1/2 is addressed.
The creep function obtained with the discretized model reads:

γ(t) =
n

∑
j=1

�
φ2

1,j�zσ0

η0λj

� t

0
e
− G0�z2

η0λj
(t−τ)

U(τ) dτ

�

=
σ0 n
G0 h̄

n

∑
j=1

�
φ2

1,j

�
1 − e

G0 h̄2

η0λj n2 t
��

.

(4.57)

Eq. (4.57) shows that the discretized model provides a solution in terms of
the sum of exponentials. The sum, tends asymptotically, by increasing the
observation time, to the following limit:

lim
t→∞

γ(t) =
σ0 n
G0 h̄

n

∑
j=1

φ2
1,j = a(n, h̄) (4.58)
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Figure 4.8: Creep test of VE model with σ0 = 1: comparison between the exact and
approximate solution.

while the exact solution, given by Eq. (4.5) is the power-law type solution:

γ(t) = σ0 J(t) =
σ0

G0 Γ(1.5)

�
G0

η0
t
�0.5

(4.59)

showing that Eq. (4.59) does not denote an asymptotic behavior for t → ∞. It
follows that Eq. (4.57) is able to represent the exact solution only for a certain
interval of time t∗ that depends on the number of laminae as well as on the
depth h̄ selected for the analysis.

In order to predict a reference time t∗ such that the solution obtained by
the discretization model and the exact one are nearly coincident, we may refer
to Figure 4.9 where the asymptotic value a(n, h̄), the discretized solution and
that obtained by creep function are reported. We observe that at time t̄n, h̄ the
exact solution reaches the asymptotic one. In more details placing the equality
of the Eq. (4.59) and the asymptotic value a(n, h) we obtain the following limit
time t̄n, h̄:

t̄n, h̄ =

�
Γ(1.5)a(n, h̄)

σ0

�2

η0 G0. (4.60)

The solution obtained by discretization is always smaller than its asymptotic
value. It follows that the reference time t∗, at which the response is well ap-
proximate, may be expressed in the form:

t∗ = ν t̄n, h̄ (4.61)
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Figure 4.9: Comparison between power-law function and summation of exponen-
tials.

with ν � 1. From these observations follows that the larger is the observation
time the more the number of layers n and the larger truncation depth h̄ will
be.

Other examples of the discretized model of the fractional viscoelasticity
can be found in [38–40].

4.5 Conclusions

Fractional viscoelastic constitutive laws are characterized by fractional opera-
tors of order β : 0 ≤ β ≤ 1. The order β may be found by creep or relaxation
test that exhibit a power-law with exponent β. Two different continuous me-
chanical models leading to fractional stress-strain relation have been found.
For 0 ≤ β ≤ 1/2 the predominant behavior is the elastic one as compared
with the viscous behavior. Its mechanical correspondent is a massless unde-
fined column of Newtonian fluid resting on a bed of independent springs. For
1/2 ≤ β ≤ 2 the viscous properties are predominant with respect to the elas-
tic ones. Its mechanical correspondent is a massless undefined shear column
resting on a bed of independent dashpots. In both cases the various coeffi-
cients decay with a power-law that is related to the characteristic value of β.

Discretization leads to an infinite set of coupled differential equations ruled
by symmetric and positive definite matrices. As a conclusion, truncation of
the depth of the columns and discretization lead always to a set of Kelvin-
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Voigt elements in a self-similar arrangement [73]. It follows that the discretiza-
tion always corresponds to asymptotic value in contrast with the power-law
creep function of viscoelastic materials. As a consequence, discretized model
produces accurate results only for prescribed observation time. However nu-
merical examples performed for different values of β and different forcing
functions produce accurate results in a reasonable long time and then the pro-
cedure outlined in the Chapter may be used for fractional calculations.

In this Chapter the physical representation of the fractional constitutive
law exists has been found. Therefore, the fractional operator in the stress-
strain relation is more than a convenient mathematical tool that permits to
obtain a good best-fitting of the experimental results. Indeed, it has an hierar-
chical mechanical model.





Chapter 5

Dynamics of structures with
fractional viscoelastic behavior

5.1 Preliminary remarks

The previous Chapter has shown that the mathematical model of fractional
viscoelastic material has a mechanical counterpart. This is an important goal
under a physical/engineering point of view. Indeed the existence of a me-
chanical model of relation with fractional operators means that the fractional
stress-strain relation is more than a mathematical tool, but it well describes
the physics of the real matter which does not follow the ideal elastic or fluid
behavior. After showing that the best way to describe the behavior of real
material, and after introducing the mechanical interpretation of this behav-
ior, this Chapter shows the dynamic analysis of such structures builded with
viscoelastic material forced by deterministic and stochastic loads.

The dynamic analysis of real structures can be driven by introducing a
proper model of that well approximate the behavior in terms of displacement
and loads. This kind of problems occurs in many areas of mechanical, civil
and aerospace engineering. To perform this analysis is needed to define the lo-
cal stress-strain relation (depending on the materials which used to build the
structures), the global model of the structure, and the description of the exter-
nal action (load or imposed displacement). Obviously, the considered model
to describe the stress-strain relation of the real materials is the fractional one.
This chose leads to have the fractional operators also in the equation of motion
of the global structure. This global model has been obtained considered the

93
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structures as continuous or discrete. The continuous case, shown in the first
part of this Chapter the considered viscoelastic structural element is the Euler-
Bernoulli beam with fractional dampers forced by stochastic load. Whereas,
as discretized case is considered the case of shear-type multi-degree-of free-
dom system endowed with fractional viscoelastic elements under determinis-
tic and stochastic loads. As the next sections show, the presence of fractional
viscoelastic elements leads to have fractional partial differential equations in
the continuous systems, and sets of coupled fractional differential equation
in the discretized system with lumped parameters. Both problems are more
complicate to solve respect the classic integer-order case, and for this reason is
needed to introduce new methods to solve them. In the following these new
methods are shown.

5.2 Continuous fractionally damped beam

This section aims at introducing the governing equation of motion of a con-
tinuous fractionally damped system under generic input loads, no matter the
order of fractional derivative. Moreover, particularizing the excitation as a
random noise, the evaluation of the power spectral density performed in fre-
quency domain stresses relevant features of such a system. To asses the accu-
racy of results the variance response evaluated trough power spectral density
function, has been contrasted with Monte Carlo simulations in time domain.
In these formulations, the normal-mode approach is used to reduce the dif-
ferential equation of a fractionally damped continuous beam into a set of infi-
nite equations each of which describes the dynamics of a fractionally damped
spring-mass-damper system.

5.2.1 Vibration of Euler-Bernoulli beam modeled using fractional
Kelvin-Voigt

Let consider an isotropic homogeneous viscoelastic Euler-Bernoulli beam of
length L depicted in Figure 5.1, referred to the axes x, y, z, with origin located
at the centroid of the cross section, and x and y are principal axes of inertia of
the cross section. All external spatially distributed loads, denoted by qy(z, t),
are assumed to act in y-direction, thus orthogonally to the z-axis.

The dynamic equilibrium equation for vibrations v(z, t) in the y-direction
of the length dz of the beam is readily obtained by equating the inertial force
to the sum of the forces exerted by the other parts of the beam and the external
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(a) Layout of the beam

2. Flexural vibration of Euler–Bernoulli beam modeled using
fractional Kelvin–Voigt model

Let us consider an isotropic homogeneous viscoelastic Euler–
Bernoulli beam of length L (Fig. 1), referred to the axes ðx; y; zÞ with
the origin located at the centroid of the cross section, and ðx; yÞ
being the principal axes of inertia of the cross section. All external
spatially distributed loads, denoted as qyðz; tÞ, are assumed to act in
the y-direction, thus orthogonally to the z-axis.

The dynamic equilibrium equation for vibrations vðz; tÞ in the
y-direction of the length dz of the beam is readily obtained by
equating the inertia force to the sum of the forces exerted by the
other parts of the beam and the external forces (Fig. 1b)

∂2Mx z; tð Þ
∂z2

¼ ρ zð ÞA zð Þ
∂2v z; tð Þ

∂t2
$qy z; tð Þ ð1Þ

with ρðzÞ being the mass density of the material, AðzÞ the cross
sectional area, Mxðz; tÞ the bending moment and Tyðz; tÞ the shear in
the section at abscissa z and at time t, related by ∂Mxðz; tÞ=∂z¼ Tyðz; tÞ.

In virtue of the Euler–Bernoulli hypothesis, that is neglecting
rotary inertia and shear deformation, the cinematic and the
mechanic relations read respectively

εðy; z; tÞ ¼ $y
∂2vðz; tÞ
∂z2

ð2Þ

sðy; z; tÞ ¼
Mxðz; tÞ
IxðzÞ

y ð3Þ

where IxðzÞ is the moment of inertia of the cross section with
respect to the x-axis.

As aforementioned, this paper deals with vibrations of a
viscoelastic beam, to capture the main features of a viscoelastic
behavior, like relaxation and creep phenomena, it requires to
introduce the proper constitutive law.

According to Nutting [5] and Gemant [6], a more realistic
description of creep and/or relaxation is given by a power law
function with a real order exponent, confirming experimental data
by Di Paola et al. [4]

As soon as we assume a power law function for creep as kernel
of the Boltzmann integral [20,21], the constitutive law, relating axial
strain εðy; z; tÞand the stress sðy; z; tÞ, is ruled by a Riemann Liouville
fractional integral with order equal to that of the power law

εðy; z; tÞ ¼
1
Cβ

ðD$β
0þ sÞðy; z; tÞ 0oβo1 ð4Þ

where Cβ and β are characteristic coefficients depending on the
material at hand and ðD$β

0þ sÞðy; z; tÞ is the Riemann–Liouville frac-
tional integral defined as

ðD$β
0þ f ÞðtÞ ¼

1
ΓðβÞ

Z t

0

f ðtÞ
ðt$tÞ1$β

d t ð5Þ

ΓðdÞ being the Euler–Gamma function.
Viceversa, starting from the relaxation function, the s$ε

constitutive law is ruled by its inverse operator that is the Caputo's
fractional derivative

sðy; z; tÞ ¼ CβðCD
β
0þ εÞðy; z; tÞ 0oβo1 ð6Þ

where the symbol ðCD
β
0þ εÞðtÞ is the Caputo's fractional derivative

defined as

ðCD
β
0þ f ÞðtÞ ¼

1
Γð1$βÞ

Z t

0

_f ðtÞ
ðt$tÞβ

d t ð7Þ

in which a dot over a function denotes differentiation with respect
to time ðtÞ.

Notice that the constitutive law in Eq. (6) interpolates the
purely elastic behavior ðβ¼ 0Þand the purely viscous behavior
ðβ¼ 1Þ, and is represented in literature by a springpot element as
depicted in Fig. 2.

Further, viscoelastic behavior is also described using a more
general model called the fractional Kelvin–Voigt model, that is a
spring in parallel with a springpot as shown in Fig. 3

whose constitutive law is given by

sðy; z; tÞ ¼ EðzÞεðy; z; tÞþCβðCD
β
0þ εÞðy; z; tÞ ð8Þ

where EðzÞ is the spring constant.
Then, introducing the expression of the bending moment Mxðz; tÞ

into Eq. (1), leads to the flexural motion equation in the following
form, having taken into account Eqs. (2,3,8)

ρðzÞAðzÞ
∂2vðz; tÞ

∂t2
þ

∂2

∂z2
EðzÞIxðzÞ

∂2

∂z2
½vðz; tÞ'

! "

þ
∂2

∂z2
CβIxðzÞ

∂2

∂z2
½ðCD

β
0þ vÞðz; tÞ'g¼ qyðz; tÞ

!
ð9Þ

Notice that Eq. (9) covers all cases from a pure classical elastic
continuum beam (if the springpot is not present) up to the pure
fractionally damped continuum beam (if the spring is not present),
moreover for the limit cases β¼ 0 and β¼ 1 the fractional Kelvin–
Voigt model reverts to the model with two springs in parallel and to
a Kelvin–Voigt model (a spring in parallel with a dashpot) respec-
tively, as discussed by Di Lorenzo et al. [26].

Fig. 1. Euler–Bernoulli beam: (a) layout of the beam; and (b) free body diagram of
the beam. Fig. 2. Springpot element: fractional model.

S. Di Lorenzo et al. / Probabilistic Engineering Mechanics 35 (2014) 37–4338

(b) Free body diagram of the beam

Figure 5.1: Euler-Bernoulli beam.

forces Figure 5.1(b):

∂2Mx(z, t)
∂z2 = ρ(z)A(z)

∂2v(z, t)
∂t2 − qy(z, t), (5.1)

where ρ(z) is the mass density of the material, A(z) is the cross sectional area,
Mx(z, t) is the bending moment, the latter is related to the shear in the section
at abscissa z and at time t Ty(z, t), by the relation:

∂Mx(z, t)
∂z

= Ty(z, t). (5.2)

By virtue of the Euler-Bernoulli hypothesis, that is neglecting rotary in-
ertia and shear deformation, the kinematic and the mechanic relations read
respectively:

ε(y, z, t) = −y
∂2v(z, t)

∂z2 , (5.3a)

σ(y, z, t) =
Mx(z, t)

Jx(z)
y, (5.3b)

where Jx(z) is the moment of inertia of the cross section with respect to the
x-axis.

As aforementioned, this section deals with vibrations of a viscoelastic beam,
then to capture the main features of a viscoelastic behavior, like relaxation and
creep phenomena, it requires to introduce the proper constitutive law. Ac-
cording to Nutting [82] and Gemant [50, 51], and to the previous Chapters the
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more realistic description of creep and/or relaxation is given by a power-law
function with real order exponent.

As soon as we assume a power-law function for creep as kernel of Boltz-
mann integral, the constitutive law, relating axial strain ε(y, z, t) and the stress
σ(y, z, t), is ruled by the Riemann-Liouville fractional integral in the stress-
strain relation with order equal to that of the power-law, as follows:

ε(y, z, t) =
1

C(β)

�
Iβ
t,0+σ

�
(y, z, t) (5.4)

where C(β, z) and β : 0 � β � 1 are characteristic parameters of the material.
Vice-versa, starting from the relaxation function, the stress-strain constitu-

tive law is ruled by the Caputo’s fractional derivative:

σ(y, z, t) = C(β, z)
�

CDβ
t,0+ε

�
(y, z, t). (5.5)

As the previous Chapter 3 have shown the Eq.s (5.4) and (5.5) represent the
stress-strain relation of the spring-pot. Further, viscoelastic behavior is also
described using a more general model called fractional Kelvin-Voigt model.
By using this latter model, according to the Eq. (3.52), the stress-strain relation
in the continuous beam is

σ(y, z, t) = E(z)ε(y, z, t) + C(β, z)
�

CDβ
t,0+ε

�
(y, z, t). (5.6)

where E(z) is the Young’s modulus.
Then, placing the expression of the bending moment Mx(z, t) into Eq. (5.1),

and taking into account the Eq.s (5.1)-(5.3b), the following relation holds:

ρ(z)A(z)v̈(z, t)+
∂2

∂z2

�
E(z)Jx(z)

∂2v(z, t)
∂z2 + C(β, z)Jx(z)

∂β∂2v(z, t)
∂tβ∂z2

�
= qy(z, t).

(5.7)
Notice that Eq. (5.7) covers all cases from a pure classical elastic continuum

beam (if the spring-pot is not present) up to the pure fractionally damped con-
tinuum beam (if the spring is not present), moreover for the limit cases β = 0
and β = 1 the fractional Kelvin-Voigt model reverts to the model with two
springs in parallel and to a Kelvin-Voigt model (a spring in parallel with a
dashpot) respectively. Once the governing equation of motion has been intro-
duced, the flexural vibrations, solution of this differential equation, are eval-
uated following the traditional approach:

v(z, t) =
∞

∑
k=1

ξk(t)φk(z), (5.8)
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that represents the displacement function as a linear combination of the nor-
mal mode shapes of the undamped free vibration of the system φk(z), de-
pendent on the constraints only (boundary conditions). The coefficients in
the linear combination are the modal coordinates ξk(t). They are functions of
time and take into account the behavior of the fractionally damped model.

5.2.2 Numerical solution in the time domain

Assume that the cross section A(z) of the beam, the elastic modulus E(z), the
mass density ρ(z), and the moment of inertia Jx(z), are all constant quantities,
then the canonical form of equation of motion in Eq. (5.7) assumes the form:

ρAv̈(z, t) + EJx
∂4v(z, t)

∂z4 + C(β)Jx
∂β∂4v(z, t)

∂tβ∂z4 = qy(z, t), (5.9)

introducing solution in Eq. (5.8) into Eq.(5.9) it leads to:

∞

∑
k=1

ξ̈k(t)φk(z)+
EJx

ρA

∞

∑
k=1

ξk(t)φ
(4)
k (z)+

C(β)Jx

ρA

∞

∑
k=1

�
CDβ

0+ξk

�
(t)φ(4)

k (z) =
qy(z, t)

ρA
,

(5.10)
then, multiplying both sides of Eq. (5.10) by φj(z) and integrating in dz from
0 to L, the following relation is obtained:

∞

∑
k=1

ξ̈k(t)
� L

0
φj(z)φk(z)dz +

EJx

ρA

∞

∑
k=1

ξk(t)
� L

0
φj(z)φ

(4)
k (z)dz+

+
C(β)Jx

ρA

∞

∑
k=1

�
CDβ

0+ξk

�
(t)

� L

0
φj(z)φ

(4)
k (z)dz =

1
ρA

� L

0
qy(z, t)φj(z)dz.

(5.11)

Taking into account the orthogonality condition

� L

0
φj(z)φk(z)dz = δjk, (5.12)

where δjk is the Kronecker delta defined as

δjk =

�
1, for j = k,
0, for j �= k,

(5.13)
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the governing differential equation in terms of yj(t) is obtained as

ξ̈ j(t) +
EJx

ρA
Rjξ j(t) +

C(β)Jx

ρA
Rj

�
CDβ

0+ξ j

�
(t) =

1
ρA

� L

0
φj(z)qy(z, t)dz, (5.14)

where Rj =
� L

0 φj(z)φ
(4)
j (z)dz.

In time domain, Eq. (5.14) may be solved placing the initial conditions of
quiet, and adopting any integration method in conjunction with a discretiza-
tion form of the fractional derivative. In this regard, according to the works of
Schmidt & Gaul [49, 103–105], and Spanos & Evangelatos [115], the fractional
operator can be discretized using the definition of Grünwald-Letnikov (GL)
in Eq. (2.19) and the properties of binomial coefficient. That is,

�
CDβ

0+ξ j

�
(t) = lim

∆t→0
∆t−β

N

∑
s=0

GLsξ j(t − s∆t), (5.15)

being GLs coefficients evaluate with a recursive relation:

GLs =
s − β − 1

s
GLs−1; GL0 = 1. (5.16)

Once the coefficients of the linear combination ξ j(t) are determined, the frac-
tionally damped beam vibrations may be simply evaluated through Eq. (5.8).

5.2.3 Stochastic analysis in frequency domain

As aforementioned the crux of the determination of the vibrations of a frac-
tionally damped beam is the evaluation of yj(t). To aim at this, just solve
Eq. (5.14) that is valid for arbitrary forcing function, and therefore, it is also
useful for random excitation. For instance, dealing with a random ground
acceleration w(t), Eq. (5.14) may be rewritten as

ξ̈ j(t) +
EJx

ρA
Rjξ j(t) +

C(β)Jx

ρA
Rj

�
CDβ

0+ξ j

�
(t) = −Pjw(t), (5.17)

where Pj =
� L

0 φj(z)dz represents the modal participation coefficient. Solu-
tion of Eq. (5.17) returns ξ j(t) in time domain, but it is possible to operate in
frequency domain by performing the Fourier transform, therefore:

ΞFj(ω) = Hj(ω)(−Pj)WF(ω) (5.18)
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where Hj(ω) is the transfer function of the viscoelastic system, defined as

Hj(ω) =

�
−ω2 +

EJx

ρA
Rj +

C(β)Jx

ρA
Rj(iω)β

�−1
. (5.19)

Further, assume that w(t) is a realization of the Gaussian white noise process
characterized by the following power spectral density (PSD):

S0 = lim
T→∞

1
2πT

E [W∗
F
(ω, T)WF(ω, T)] , (5.20)

where the star means complex conjugate, and E [·] is the expectation opera-
tor. Based on the above considerations, the diagonal elements, of the power
spectral density Hermitian matrix of the modal responses ΞF,j(ω), are:

SΞj(ω) = lim
T→∞

1
2πT

E
�
Ξ∗
Fj(ω, T)ΞFj(ω, T)

�
= H∗

j (ω)Hj(ω)P2
j S0, (5.21)

while the elements outside the main diagonal are

SΞjΞk(ω) = H∗
j (ω)Hk(ω)PjPkS0. (5.22)

Finally, since the vibrations of the beam are defined as in Eq. (5.8) the PSD
Sv(ω, z) is

Sv(ω, z) = lim
T→∞

1
2πT

E [V∗
F
(ω, T; z)VF(ω, T; z)] =

∞

∑
k=1

∞

∑
j=1

φk(z)φj(z)SΞjΞk ,

(5.23)
and the variance σ2

v (z) of the transversal displacement of the beam is deter-
mined according to the relation:

σ2
v (z) =

� ∞

−∞
Sv(ω, z)dω. (5.24)

5.2.4 Numerical application

Previous subsection presented formulations for the deterministic and stochas-
tic of a fractionally damped beam to arbitrary excitations and boundary condi-
tions. For application purposes, in this section a cantilever beam is considered
under a Gaussian white noise ground motion with S0 = 3 × 107/2 πN2s.

Choosing the more general viscoelastic constitutive law, as the fractional
Kelvin-Voigt model it is taken that the mass density is ρ = 500 kg/m3, the
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Figure 5.2: Cantilever beam and its eigenfunctions.

length of the beam is L = 10 m, the area of rectangular cross-section is A = 1
m2 , the moment of inertia of the cross section with respect to the x-axis is
Jx = 0.021 m4. The fractional Kelvin-Voigt model parameters are selected
as β = 0.8, C(β) = 3 × 108 Nsβ/m, E = 150 GPa. In particular, the last
three terms have been deducted from an overlapping of results obtained by
Zhu et al. [133]. Then, the first step in developing flexural vibrations is the
determination of the particular form of the eigenfunctions φk(z) relative to a
cantilever undamped beam, according to Meirovitch [75], is

φk(z) =Bk {[sin(λkz)− sinh(λkz)] [sin(λkL)− sinh(λkL)] +
+ [cos(λkz)− cosh(λkz)] [cos(λkL)− cosh(λkL)]} ,

(5.25)

where λk are the eigenvalues of of the cantilever beam while Bk are constants.
The layout of the cantilever beam and the trend of its first four eigenfunc-
tions is shown in Figure 5.2, the coefficients Bk are determined fulfilling the
orthogonality condition in Eq. (5.12).

Once the eigenfunctions φk(z) are known, it is possible to evaluate coeffi-
cients Pj and Rj, after that the stochastic response in terms of PSD Sv(ω, z) of
the transversal displacement through in Eq. (5.23) can be found.

Figure 5.3(a) shows Sv(ω, z) having considered four eingenfunctions since
these results coalesce with those obtained considering forty eingenfunctions.
It is apparent that, as we move towards the tip, PSD response values grow;
this is more appreciable in Figure 5.3(b) where PSD of the transversal displace-
ment of the beam for fixed cross sections z are depicted, and in Figure 5.4(b)
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Based on the above considerations, the diagonal elements of
the power spectral density Hermitian matrix of the modal
responses YjðωÞ, are

Syjj ¼ lim
T-1

1
2πT

E ½YjðωÞYj
nðωÞ% ¼HjðωÞHj

nðωÞP2
j S0 ð23Þ

Fig. 4. (a) Cantilever beam; and (b) Eingenfunctions for cantilever beam.

Fig. 5. Power spectral density of the transversal displacement.

Fig. 7. Stationary displacement variance.

Fig. 8. Tip displacement variance: Monte Carlo simulation (solid line), Stationary
displacement variance (dashed line).

Fig. 9. Influence of fractional order derivative β on Svðω; βÞ.

Fig. 10. Variance s2v ðβÞ vs β.
Fig. 6. Power spectral density of the transversal displacement of the beam at fixed
cross section z.
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Figure 5.3: Power spectral density of transversal displacement.

where the stationary displacement variance σ2
v (z) at each cross-section has

been plotted. In particular the maximum value of σ2
v (z) = 71 correspondent

to the tip is well contrasted by results of Monte Carlo simulation Figure 5.4(a).
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ary variance (dashed line)
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(b) Stationary displacement variance

Figure 5.4: Displacement variance

For this purpose the Monte Carlo simulations have been performed inte-
grating Eq. (5.11) via the central difference scheme using a time step ∆t =
0.0005 s with a GL discretization of fractional derivative using Eq.s (5.15) and
(5.16), retaining 800 terms [47, 115]. White noise samples are obtained by the
harmonic superposition method by Shinozuka and Deodatis [107]. Thus, the
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generic sample wk(t) of the excitation process is

wk(t) =
N

∑
i=1

�
4S0∆ω cos (ωit + φi) , (5.26)

where N = 10000, ∆ω = 0.01 and φi are N realizations of a random variable
uniformly distributed in [0, 2π].

5.3 Lumped-parameter systems with fractional viscoela-
stic devices

In this section the dynamic analysis of discretized model with lumped pa-
rameters with fractional viscoelastic terms is presented. Usually, this problem
is represented by a set of coupled fractional differential equations, and the
solution can not readily be found in the general case. This kind of problem
that is known as the analysis of fractional multi-degree-of-freedom systems
(FMDOF) has been solved in the time domain by using the step-by-step nu-
merical approach [108], and in the frequency domain by using the approxi-
mate modal superposition method [69].

The analysis of FMDOF systems has been considered in several articles
in which the authors have investigated the improvements of fractional vis-
coelastic devices in the frame structures [46, 68, 86]. FMDOF systems may
also appear in the study of continuous systems with fractional constitutive
law like in the previous case and [31, 32, 44]. In fact, this kind of problem
leads to a fractional multi-degree-of-freedom system in the discretized form
[97, 103–105]. From these articles, it can be concluded that the analysis of
FMDOF systems is more cumbersome with respect to the classical one. In cer-
tain previous efforts the integration of the equation of motion with fractional
terms has been carried by finite difference schemes [83, 84] or by the modified
Newmark algorithm [115] and/or by using modal analysis; these approaches
often lead to considerable computational burden.

A novel method to perform the analysis of the FMDOF system is pre-
sented in this section. The method is derived modifying the traditional com-
plex modal analysis in the state variables domain to obtain a set of uncoupled
fractional differential equations. The sole limitation of the presented method
regards the involved fractional orders, since the state variable analysis can
be performed for FMDOF system only in the case in which all the derivative
terms are rational.
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5.3.1 Fractional multi-degree-of-freedom systems

The equation of motion of a quiescent single-degree-of-freedom linear frac-
tional system (FSDOF) is

mẍ(t) + cβ

�
Dβ

0+x
�
(t) + kx(t) = f (t), t � 0, (5.27)

where f (t) is the forcing function, x(t) is the response of the system, m is the
mass, cβ is the coefficient of fractional term, k is th e stiffness, and

�
Dβ

0+x
�
(t)

is the fractional derivative of x(t), defined in Eq. (2.24). This kind of dynam-
ical system is known as fractional oscillator [70, 80, 116, 130]. The fractional
r-degree-of-freedom system is described by a coupled system of fractional dif-
ferential equations of various FSDOF [68, 86, 97]. This kind of problem can be
cast in the form

Mẍ(t) +
l

∑
i=1

CiDβi x(t) + Kx(t) = f(t), (5.28)

where M and K are the mass and the stiffness matrices; Ci is the matrix of
the coefficients cβi of the involved fractional terms of order βi; x(t) is a vector
which describes the response of the systems; and f(t) is the vector of loading.

Consider next the simpler quasi-static problem, in which the terms of the
vector f(t) vary in time slowly to the extent that the inertial force may be
neglected. Thus, assuming that the involved fractional terms are all of the
same order of derivation β1, the equation of motion becomes

C1Dβ1 x(t) + Kx(t) = f(t). (5.29)

This kind of system related to the eigenvectors φj of the matrix

K−1C1 = D, (5.30)

where D is the dynamical matrix. Assume that the modal matrix Φ, where
columns are the eigenvectors φj, is also normalized with respect to C1. That
is

ΦTC1Φ = I, ΦTKΦ = UD, (5.31)

where I is the identity matrix, and UD is a diagonal matrix whose elements
are posistive, since K is positive definite.
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Making the modal transformation

x(t) = Φy(t), (5.32)

inserting Eq. (5.32) in Eq. (5.29), and premultiplying by ΦT, Eq. (5.29) yields

I Dβ1 y(t) + UDy(t) = g(t), (5.33)

where g(t) = ΦTf(t) is the forcing vector in the modal space, and y(t) is
the vector of the modal displacements that contains the terms yj(t). Clearly,
Eq. (5.33) represents a set of uncoupled differential equations that may be
readily solved.

Once yj(t) is found for j = 1, 2, . . . , r, then x(t) can be obtained using
Eq. (5.32). This kind of modal transformation can diagonalize the system in
Eq. (5.28) in some particular cases in which all the matrices can be represented
by a linear combination of the matrices K and C1.

The next section describes a method to decouple the system in Eq. (5.28) in
the case in which all the involved matrices are arbitrary. The method is based
on a proper transformation/augmentation in the state variables domain of
fractional MDOF system.

5.3.2 State variable analysis of fractional MDOF

There are various fractional terms in the Eq. (5.28). By assuming that all frac-
tional orders are rational, it is possible to represent the generic fractional order
in Eq. (5.28) as βi = ai/bi where ai, bi ∈ N with i = 1, 2, . . . , l. Thus, the sys-
tem in Eq. (5.28) can be rewritten as the following sequential linear differential
equations of fractional orders:

n

∑
j=1

CjDjαx(t) + Kx(t) = f(t), (5.34)

where α is chosen such that nα is equal to the maximum order that appears
in the system of equations, and such that all involved orders in Eq. (5.28) can
be represented as βi = diα where di ∈ N. In this case nα = 2 and the corre-
sponding matrix Cn = M is the matrix of the mass; all matrices in Eq. (5.34)
have dimension r × r. Introducing the vector of state variables

zT(t) =
�

xT(t) DαxT(t) D2αxT(t) . . . Dα(n−1)xT(t)
�

, (5.35)



5.3 Lumped-parameter systems with fractional viscoelastic devices 105

and appending to Eq. (5.34) the n − 1 identities

n−1

∑
j=1

Cj+1DαD(j−1)αx(t) =
n−1

∑
j=1

Cj+1Djαx(t),

n−2

∑
j=1

Cj+2DαD(j−1)αx(t) =
n−2

∑
j=1

Cj+2Djαx(t),

...
...

...
...

CnDαx(t) = CnDαx(t),

(5.36)

then a set of r × n coupled differential equations is readily cast in the form

ADαz(t) + Bz(t) = g(t), (5.37)

where gT(t) =
�
fT(t) 0 . . . 0

�
, A and B are symmetric matrices defined as

A =





C1 C2 . . . Cn−1 Cn
C2 C3 . . . Cn 0
...

... . . . ...
...

Cn−1 Cn . . . 0 0
Cn 0 . . . 0 0




,

B =





K 0 . . . 0 0
0 −C2 . . . −Cn−1 −Cn
...

... . . . ...
...

0 −Cn−1 . . . 0 0
0 −Cn . . . 0 0




.

(5.38)

Next, it is possible to decompose z(t) in the orthogonal basis of the eigen-
vectors of A and B. Specifically, consider the equations

ΨTAΨ = UD, ΨTBΨ = VD, (5.39)

where UD and VD are diagonal matrices. Further, making the complex modal
transformation

z(t) = Ψy(t), (5.40)

a new set of decoupled fractional differential equation is derived in the form

UDDαy(t) + VDy(t) = µ(t), (5.41)
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where µ(t) = ΨTg(t). Clearly, once the decoupled set is found, the fractional
differential equations can be readily solved. It can be seen that the state vari-
able problem in Eq. (5.37) has a greater number of involved variables with
respect to the problem cast in terms of displacements in Eq. (5.34) of the nodal
analysis. However, this apparent increase of the computational burden is bal-
anced by the fact that the maximum involved order in the state variable do-
main is smaller than the maximum order in the nodal analysis. Further, the
system in Eq. (5.34) is a set of coupled in the general case, vis-a-vis the system
in Eq. (5.37) leads readily to the set of uncoupled equations in Eq. (5.41).

From this result it becomes clear that for application the method it is nec-
essary to modify Eq. (5.28) to obtain the sequential differential form as in
Eq. (5.34). To elucidate the procedure for obtaining a sequential differential
from the given set of coupled fractional differential equations, consider the
dynamical problem in which all of the involved fractional derivatives have
the same order β. In this case, the Eq. (5.34) becomes

Mẍ(t) + CβDβx(t) + Kx(t) = f(t); (5.42)

the number of terms and the minimum fractional order α in the summation
of the Eq. (5.34) depend of the order β. Next, assume that β = 0.5. In this
particular case, also the order α = β, and the sequential form is given as

4

∑
j=1

CjDj0.5x(t) + Kx(t) = f(t), (5.43)

where C4 = M, C3 = C2 = 0 and C1 = Cβ . Clearly, the smaller the order α is,
the higher the number of terms is. However, since C3 = C2 = 0, the system
(5.43) can be rewritten as

C4D2x(t) + C1D0.5x(t) + Kx(t) = f(t). (5.44)

Further, taking as the state vector

zT(t) =
�

xT(t) D0.5xT(t) D1xT(t) D1.5xT(t)
�

, (5.45)

and considering Eq. (5.44) and the identity relations in Eqs. (5.36), the follow-
ing system of fractional differential equations in the state variables domain is
found:

ADαz(t) + Bz(t) = g(t), (5.46)
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where the matrices A and B become, for that particular case, as follows

A =





C1 0 0 M
0 0 M 0
0 M 0 0
M 0 0 0



 , B =





K 0 0 0
0 0 0 −M
0 0 −M 0
0 −M 0 0



 . (5.47)

Clearly, Eq. (5.46) can be solved by the complex modal analysis described in
Eqs. (5.39-5.41) and the state variables vector z(t) can be determined. It is
worth noting that if in Eq. (5.42) α = 1, the vector of state variables is the
classical one zT(t) =

�
xT(t) ẋT(t)

�
.

Obviously, the method is applicable exactly when the involved orders are
rational. However, even if in the general case α ∈ R, it could yield reasonable
results by approximating α as fraction. To demonstrate the applicability of the
proposed method some numerical results are discussed next.

5.3.3 Numerical applications of fractional SDOF

First, consider the FSDOF system described in Eq. (5.27) forced by determin-
istic load. This case has been already discussed by Bonilla et al. [14] by using
the fractional Wronskian method, and by Suarez and Shokooh [117]. Alterna-
tively, Eq. (5.27) may also be solved by using the Green function g(t)

g(t) =
1
m

∞

∑
j=0

− 1
j!

�
k
m

�j
t2j+1E(j)

2−β,2+jβ

�
−

cβ

m
t2−β

�
, (5.48)

where E(j)
λ,µ(z) is the derivative of order j of the two-parameters Mittag-Leffler

function that is defined as

E(j)
λ,µ(z) =

dj

dzj Eλ,µ(z) =
∞

∑
l=0

(l + j)!zl

l!Γ(λl + λj + µ)
. (5.49)

Specifically, assuming that the system in Eq. (5.27) is quiescent at t = 0, the
solution x(t) is given by integral

x(t) =
� t

0
g(t − τ) f (τ)dτ. (5.50)

Note that Eq. (5.50) may be computationally demanding since there are two
summation with infinity terms as kernel in the convolution integral.
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FSDOF under deterministic load

Using the state variable analysis proposed in this section the solution becomes
straightforward. To show this, suppose that the involved fractional order is
β = 1/2. Then the minimum fractional order that is involved in the state
variable analysis is α = β = 1/2 and the state variable vector is

zT(t) =
�

x(t),
�

D0.5x
�
(t), ẋ(t),

�
D1.5x

�
(t)

�
. (5.51)

Further, the matrices involved in the state variable equations in the Eq. (5.46)
become

A =





cβ 0 0 m
0 0 m 0
0 m 0 0
m 0 0 0



 , B =





k 0 0 0
0 0 0 −m
0 0 −m 0
0 −m 0 0



 . (5.52)

Furthermore, performing the state variable analysis, the set of four uncoupled
equations

uj
�

Dα
0+yj

�
(t) + vjy(t) = µj(t), j = 1, 2, 3, 4, (5.53)

is derived. Note that the unit step response of the Eq. (5.53) involves a Mittag-
Leffler function, but with only one parameter Eβ(·). That is,

Gj(t) =
1
vj

�
1 − Eα

�
−

vj

uj
tα

��
= − 1

vj

∞

∑
k=1

�
−vj/ujtα

�k

Γ (αk + 1)
. (5.54)

Clearly, the solution in terms of the modal displacements yj(t) can be obtained
by the Boltzmann superposition integral as

yj(t) =
� t

0
Gj(t − τ)µ̇j(τ)dτ =

� t

0
gj(t − τ)µj(τ)dτ, (5.55)

where g(t) is Dirac delta response, in other words the time derivative of G(t).
The displacement x(t) is given as the first term of the state variable vector z(t)
defined in Eq. (5.40). It can be seen that the solution of Eq. (5.55) is more con-
venient to obtain vis-a-vis Eq. (5.50). If the order of fractional derivative is dif-
ferent than β = 1/2, the described procedure remains the same. Clearly, the
vector of state variables and the matrices A and B must be properly changed.
For example, consider that the order β = 3/4; in this case the state variable
vector has dimension eight, and the minimum fractional involved order is
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Figure 5.5: Unit step response of the fractional single-degree-of-freedom system.

α = 1/4. The matrices A and B must be generated by the procedure described
in Eq.s (5.38).

In the Figure 5.5 the unit step responses of the FSDOF with different frac-
tional differential orders are shown. In particular the chosen coefficients are
m = k = 1, cβ = 1/2. Clearly, if the order β is equal to one, the state variable
analysis becomes identical to the classic dynamic case, and the state variables
become the displacement x(t) and its first derivative ẋ(t).

FSDOF under stochastic load

In this section the problem of FSDOF systems driven by stochastic input is car-
ried out in order to show the capabilities of the proposed method also to per-
form the stochastic analysis in time domain. Consider the case in which the
FSDOF in Eq. (5.27) is forced by a zero-mean Gaussian white noise. For this
case the state variable vector and the involved matrices are the same described
in Eq. (5.51) and Eq. (5.52). In this case, being the displacement a stochastic
response process, it will be denoted by the capital letter X(t), while the kth

realization of such process will be denoted by xk(t). Then the procedure to
obtain a set of fractional differential equations of order α is still the same of
the previous subsection. The solution of jth equation in the complex modal
space is readily found by Boltzmann superposition integral in Eq. (5.55). That
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is,

yj(t) = ψ1j

� t

0
gj(t − τ)wk(τ)dτ, (5.56)

where wk(t) denotes the kth realization of the zero-mean Gaussian white noise
process W(t), and ψ1j is the element of the first row and the jth column of
modal matrix Ψ. In order to perform the analysis in the time domain the
Eq. (5.56) can be solved by step-by-step integration.

Once obtained the solution of the set of fractional differential equations in
the complex space the vector of state variable is readily found by the modal
transformation in Eq. (5.40). That is,

zj(t) =
n

∑
k=1

ψjkyi(t), k, j = 1, 2, . . . n, (5.57)

where zj(t) is the jth element of vector z(t) and n is the number of state vari-
ables.

The system is forced by zero-mean Gaussian white noise characterized by
the following power spectral density (PSD)

S0 = lim
T→∞

1
2πT

E [W∗
F
(ω, T)WF(ω, T)] , (5.58)

with WF(ω) denoting the truncated Fourier transform of the Gaussian white
noise; the asterisk representing complex conjugation; and E [·] being the ex-
pectation operator. The stationary response of the FSDOF system driven by
white noise is readily found by spectral analysis, in fact the power spectral
density of the response is given as

SX(ω) =
S0

| − mω2 + cβ(iω)β + k|2
, (5.59)

and the variance σ2
X of the displacement X(t) is determined according to the

relation
σ2

X =
� ∞

−∞
SX(ω)dω. (5.60)

The stationary response in the frequency domain can be used as benchmark
for the proposed method. Specifically, using the described modal transforma-
tion in the state variable space the set of n solutions in Eq. (5.56) are readily
found by step-by-step integration. Subsequently, the displacement response
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can be obtained by modal transformation in Eq. (5.57). In this way the station-
ary and non-stationary response in time domain can be found.

In order to perform this state variable analysis in time domain of FSDOF
driven by Gaussian white noise a Monte Carlo simulation is undertaken next.
As first step, it is necessary to generate a certain number of random realiza-
tions of Gaussian white that forced the system. Later, the response and its
statistics can be evaluated.

Stationary displacement variance

Monte Carlo Simulation
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Figure 5.6: Displacement variance of FSDOF system.

Consider, as example, the FSDOF system with the same parameters of the
previous section in which the fractional order is β = 1/2. The chosen pa-
rameter to carried out the Monte Carlo simulation are: number of realizations
N = 5000, S0 = 1, temporal step for the step-by-step integration ∆t = 10−2.
Figure 5.6 shows the comparison between the displacement variance obtained
by the application the proposed state variable analysis to perform the Monte
Carlo simulation and the stationary variance obtained by Eq. (5.60). In partic-
ular, for this case, by numerical integration of Eq. (5.60) the stationary variance
is σ2

X = 1.209.
The Monte Carlo simulation could be directly performed by the step-by-

step integration of the equation of motion in Eq. (5.27), rather than solve four
fractional differential equations in the modal space for each realization xi(t)
of the response process X(t). However, this way is not recommended because
is not easy to solve the Eq. (5.50) when the involved kernel is that one in
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Eq. (5.48). Others possible ways to find the numerical solution xi(t) of the
given problem directly by Eq. (5.27) are by finite differences [83], modified
Newmark algorithmic [115], etc.. All of the cited methods can be used in
addition to the presented state variable analysis to reduce the computational
effort.

5.3.4 Numerical applications of fractional MDOF

Consider the two-degree-of-freedom system in Figure 5.7, which is typical of
shear type structures with fractional viscoelastic terms. Next, the preceding
concepts of the new complex modal analysis in the state variables domain
are used to determine the solution of the fractional multi-degree-of-freedom
system. The fractional terms are represented by spring-pots in the figure. The
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x  (t)2
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x  (t)2
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Figure 5.7: Fractional two-degree-of-freedom system.

equations which govern motion of given system in Figure 5.7 are





m1 ẍ1(t) + cβ1

�
Dβ1 x1

�
(t)− cβ2

�
Dβ2 x2 − x1

�
(t)+

+ k1x1(t)− k2(x2 − x1)(t) = f1(t),

m2 ẍ2(t) + cβ2

�
Dβ2 x2 − x1

�
(t) + k2(x2 − x1)(t) = f2(t),

(5.61)

where the lumped parameters of the system are the stiffness of the springs
kj; the coefficients of the spring-pots cβ j and their related orders β j; and the
mass of the layers mj with j = 1, 2. Each equation contains both unknowns
x1(t) and x2(t). The equations are therefore coupled and in this form must be
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solved simultaneously. A way to decouple the system by the fractional state
variable analysis is shown next.

FMDOF under deterministic load

Consider the case in which β1 = 3/4 and β2 = 1/2. In this case the cou-
pled equations of motion are the same as expressed in Eq. (5.61). The rational
order α that permit to rewrite the set of given equations as the sequential lin-
ear differential equations of fractional order in Eq. (5.34) is α = 1/4, and the
involved matrices in the nodal space are

K =

�
k1 + k2 −k2
−k2 k2

�
, C2 =

�
cβ2 −cβ2

−cβ2 cβ2

�
,

C3 =

�
cβ1 0
0 0

�
, C8 = M =

�
m1 0
0 m2

�
.

(5.62)

Other matrices involved are C1 = C4 = C5 = C6 = C7 = 0; and the vector of
state variables is

zT(t) =
�

xT(t) D
1
4 xT(t) D

1
2 xT(t) D1xT(t) D

3
4 xT(t)D

5
4 xT(t) D

3
2 xT(t) D

7
4 xT(t)

�
.

(5.63)
The dimension of the problem in the state variable domain is r × n = 16. For
simplicity, considered that f1(t) = 0 and f2(t) is

f2(t) =

�
sin(t), 0 < t < 2π,
0, otherwise.

(5.64)

Further, the chosen parameters of the two-degree-of-freedom system in Fig-
ure 5.7 are m1 = 1, m2 = 3/4, cβ1 = cβ2 = 1, k1 = 3/2 and k2 = 1/2. These
parameters are chosen in order to obtain three matrices of coefficients which
are linearly independent. In this case is not possible to decoupled the set of
given equations by a simple modal transformation in Eq. (5.32). Therefore,
in this case, the presented fractional state variable analysis shows all its po-
tentialities. The uncoupled equations in the modal space are integrated by
using the Boltzmann superposition integral in Eq. (5.55). Moreover another
approaches to solve the fractional differential equations relies on the Mellin
transform has been used. For this example the following parameters of dis-
cretized Mellin transform have been chosen: ρ = 1, η̄ = 100 and ∆η = 0.5
(see the cited articles pertaining to the method [15, 35]). In this manner, the
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displacements x1(t) and x2(t) are readily determined. The displacements of
the two layers obtained by the complex modal analysis are shown in the Fig-
ure 5.8. In particular, the figure shows the displacements obtained with the
two different methods to integrate the set of uncoupled equations.

x2�t�x1�t�

0 5 10 15 20
�2.0

�1.5
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�0.5
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1.5

t

x�t�

Figure 5.8: Displacements x1(t) and x2(t) of the dynamical system.

FMDOF under stochastic input

Next, assume that the fractional two-degree-of-freedom system shown in Fig-
ure 5.7 is forced by a stochastic input. In particular, consider that the involved
fractional orders are the same in the preciding case and that the f1(t) = 0 and
f2(t) = W(t). Obviously, also in this case, the frequency domain solution is
readily obtainable. Specifically, the Fourier transforms of the Eqs. (5.61) yields

XF(ω) = H(ω)FF(ω) (5.65)

where XF(ω) and FF(ω) are the Fourier transforms of the vectors x(t) and
f(t), respectively. Further, the non-diagonal transfer matrix H(ω) is defined
by its inverse as

H−1(ω) =K(ω) =

�
k11 k12
k21 k22

�
,

k11 = k1 + k2 + cβ1(iω)β1 + cβ2(iω)β2 − m1ω2,

k21 = k12 = −k2 − cβ2(iω)β2 ,

k22 = k2 + cβ2(iω)β2 − m2ω2,

(5.66)
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where i is the imaginary unit. The terms (iω)β j with j = 1, 2 in Eq. (5.66) are
due to the Fourier transform of the fractional operators that are involved in
the Eq. (5.61). By this transformation it is clear that the fractional derivative
term introduces in the system dynamics both effective damping and effective
stiffness frequency dependent terms. In fact, the following relation holds

(iω)β = |ω|β
�

cos
�

βπ

2

�
+ isgn(ω) sin

�
βπ

2

��
. (5.67)

The spectral matrix of the inputs is denoted with S f (ω), and based on the
preceding assumption it becomes

S f (ω) =

�
0 0
0 S0

�
, (5.68)

where S0 is expressed in Eq. (5.59).
Based on the above considerations, the spectral matrix SX(ω) of the re-

sponse can be expressed as

SX(ω) = H∗(ω)S f (ω)HT(ω), (5.69)

where

SX(ω) =

�
SX1(ω) SX1X2(ω)

SX2X1(ω) SX2(ω)

�
, (5.70)

with the elements of the matrix SX(ω) expressed as

SXjXk(ω) = lim
T→∞

1
2πT

E
�

X∗
F,j(ω, T)XF,k(ω, T)

�
, j, k = 1, 2. (5.71)

Similarly to the FSDOF system, the solution in the frequency domain in
Eq. (5.71) can be used as a benchmark for the proposed method. In fact,
the stationary and non-stationary response can be evaluated by the proposed
state variable analysis in addition of the classic Monte Carlo simulation. In
particular, the introduced concepts of modal transformation are used to ob-
tain a set of uncoupled differential equations in the state variable domain.
For the integration of the equation in the modal space is possible to use the
step-by-step integration method showed in the previous section. Similarly
to the previous case, the variances obtained by Monte Carlo simulation and
fractional state variable analysis are compared to those obtained by numerical
integration of the PSDs in Eq. (5.69).
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Figure 5.9: PSDs of the response X1(t) and X2(t).

The chosen parameters for this examples are m1 = 5/4, m2 = 1, cβ1 = 3/4,
cβ2 = 1/3, β1 = 3/4, β2 = 1/2, k1 = 1.8, and k2 = 1. The parameters for the
Monte Carlo simulations are: N = 104, S0 = 1, ∆t = 10−1.

Σx2
2

Σx1
2

0 10 20 30 40 50 60
0.0

0.5

1.0

1.5

2.0

2.5

3.0

t

Σxj
2

Figure 5.10: Variances of displacements of two-degree-of-freedom system, Monte
Carlo simulation (continuous line), Stationary displacement variance
(dotted line).

Figure 5.9 shows the PSDs of the displacements that are in the diagonal
terms of the matrix SX(ω). Figure 5.10 shows the comparison between the
displacement variance obtained by the application of the proposed state vari-
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able analysis to perform the Monte Carlo simulation and the stationary vari-
ance. For this case, by numerical integration of PSDs in the matrix SX the
stationary variances are σ2

X1
= 0.627 and σ2

X2
= 2.802.

5.4 Conclusions

In the first part of this Chapter the analysis of continuous fractional viscoelas-
tic Euler-Bernoulli beam has been dealt, performing the study either in fre-
quency or in time domain. The viscoelastic behavior has been taken into ac-
count by fractional Kelvin-Voigt model that is the proper model for capturing
the viscoelasticity phenomena since it exhibits an intermediate behavior be-
tween elastic and viscous. Numerical results have been carried out consider-
ing a cantilever beam under stochastic loads, no matter the order of fractional
derivative, rather so you can appreciate the influence of fractional derivative
order beta on PSD response. The latter, stresses the damping effect in reducing
PSD amplitude for higher values of the fractional derivative order.

In the second part, the analysis of single-degree and multi-degree-of-free-
dom systems with fractional viscoelastic elements in the equation of motion
have been pursued. This kind of problem is characterized for the presence of
a set of coupled fractional differential equations that govern the motion of the
system. It has been pointed out that this kind of problem is more complex
to solve vis-a-vis the analysis of multi-degree-of-freedom system with integer
order derivatives. The analysis has been based on a novel approach using
an augmented state variables transformation. The method, based on com-
plex modal analysis in the state variable domain, is applicable if the involved
fractional terms have rational order. This assumption is necessary since only
in this case it is possible to find an appropriate state variables vector. Note,
however, that for engineering applications all real orders can be reasonably
approximated by rational orders. By the proposed method the set of coupled
fractional differential equations has been decoupled in a proper fractional
state variable domain. This transformation has led to a new set of fractional
equations which are uncoupled and more convenient to solve. Therefore, a
drastic reduction of the computational effort is achieved. To elucidate the ap-
plicability of the method several numerical examples have been considered
which have confirmed the effectiveness of the method both for deterministic
and stochastic system excitations.





Chapter 6

Stochastic processes represented
by fractional calculus

6.1 Preliminary remarks

This Chapter deals with the characterization of stochastic processes by the
fractional calculus. As it is shown in the previous Chapter, in many cases of
engineering and physics interest it is important the characterization of stochas-
tic processes. Usually for Gaussian processes the stochastic characterization is
obtained by the correlation function (CF) and by its Fourier transform, namely
the power spectral density (PSD). However in many cases, although the PSD
is known in analytical form, it is not possible to obtain the analytical form of
the correlation function with the inverse Fourier transform operator.

Another way to partly represent the stochastic process is given by the spec-
tral moments (SMs). These quantities are the moments of order k ∈ N of the
one-sided power spectral density, and they have been introduced by Vanmar-
cke [119]. These quantities can be used for the prediction of the first excursion
failure, fatigue failure, for statistical distribution of peaks and ranges [87] and
so on [57, 58, 61]. Many applications and useful information about classical
spectral moments can be found in [11, 12, 17, 76, 79, 95, 113, 114]. The limit
of these entities is that they are not able to fully represent the stochastic pro-
cesses. Indeed, the limit of such quantities is due to the fact that for k large
the SMs may diverge [25, 87] and then they are not useful quantities for re-
constructing the power spectral density.

Recently [25], the representation of the power spectral density and correla-

119
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tion function has been pursued by using complex spectral moments (CSMs).
The latter are the spectral moments of complex order γ ∈ C of the power
spectral density. The appealing of such moments is related to the fact that
real part of the order �(γ) remains constant and only the imaginary part �[γ]
runs, then no divergence problems occurs. These complex spectral moments
are related to the fractional moments (FMs) of the correlation function, and
these latter entities are the Mellin transform [85, 99] of the correlation function.
The knowledge of the spectral fractional moments and/or the fractional mo-
ments permits to reconstruct the correlation function and the power spectral
density in whole domain. This important result has been obtained by using
Mellin transform theorem [64, 85, 91, 99]. Moreover, the fractional moments
are related to the fractional operator [64, 91, 99] of the correlation function, in
particular the Mellin transform is the Riesz complex integral of the correlation
function at the origin. This fact permits to interpret the representation of the
correlation function by the inverse Mellin transform as a generalized Taylor
series.

The capabilities of the fractional moments and complex spectral moments
are also applied for the characterization of random variables [24, 26, 37], for
the digital simulation of the random processes [27, 98], for the solution of
the Fokker-Planck equation [36], Kolmogorov-Feller equation [33] and for the
solution of the Einstein-Smoluchowski equation [4].

This Chapter extends the application field of the method in [25]. In par-
ticular, in [25] it has been shown how to manipulate SMs in order to charac-
terize the PSD and (symmetric) correlation of a process, while this Chapter
shows how to characterize also multivariate processes with complex cross-
power spectral density and asymmetric cross-correlation function. Particular
attention is devoted to the characterization of the response process of the frac-
tional linear oscillator forced by Gaussian white noise.

6.2 Cross-correlation function by complex fractional mo-
ments

Consider X1(t) and X2(t) two stationary zero-mean Gaussian random pro-
cesses, for which the cross-correlation function is denoted by RX1X2(τ), and its
Fourier transform, termed as cross-power spectral density function (CPSD), is
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SX1X2(ω). The cross-correlation is defined as

RX1X2(τ) = E [X1(t)X2 (t + τ)]

=
� ∞

−∞

� ∞

−∞
px1x2(x1(t), x2(t + τ))x1x2dx1dx2

(6.1)

where E [·] represents the ensemble average. Usually, the cross-correlation is
neither even nor odd, so, for simplicity, it is possible to decompose RX1X2(τ)
into an even function u(τ) and an odd function v(τ) as follows

RX1X2(τ) =
1
2
[RX1X2(τ) + RX1X2(−τ)] +

1
2
[RX1X2(τ)− RX1X2(−τ)]

= u(τ) + v(τ).
(6.2)

By using the definition in Eq. (1.73), the Mellin transform of the even function
u(τ) for the positive half-plane of τ is

Mu+(γ − 1) = M {u(τ)U(τ), γ} =
� ∞

0
u+(τ)τγ−1dτ (6.3)

where U(t) is the unit step function and γ ∈ C with γ = ρ + iη, while for the
negative half-plane the Mellin transform leads to

Mu−(γ − 1) = M {u(τ)U(−τ), γ} =
� 0

−∞
u−(τ)(−τ)γ−1dτ. (6.4)

The terms Mu+(γ − 1) and Mu−(γ − 1) may be interpreted as the Complex
Fractional Moments (CFMs) of half-function u+(τ) and u−(τ) respectively.

From the Eqs. (6.3) and (6.4) it is noted that Mu+(γ − 1) = Mu−(γ − 1),
because u(τ) is even. Whereby the u(τ) may be obtained as the inverse Mellin
transform:

u(τ) =
1

2πi

� ρ+iη

ρ−iη
Mu+(γ − 1)|τ|−γdγ; τ ∈ R. (6.5)

Similarly, it is possible to define the Mellin transform of odd part of cross-
correlation v(τ), for which for the positive half-plane of τ the Mellin trans-
form yields

Mv+(γ − 1) = M {v(τ)U(τ), γ} =
� ∞

0
v+(τ)τγ−1dτ (6.6)
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and for negative value of τ the Mellin transform becomes

Mv−(γ − 1) = M {v(τ)U(−τ), γ} =
� 0

−∞
v−(τ)(−τ)γ−1dτ. (6.7)

In this case Mv+(γ − 1) = −Mv−(γ − 1) because v(τ) is an antisymmetric
function. By using the inverse Mellin transform the given function v(τ) can
be restored by its CFMs, that is

v(τ) =
sgn(τ)

2πi

� ρ+iη

ρ−iη
Mv+(γ − 1)|τ|−γdγ; τ ∈ R. (6.8)

Based on the previous results and remembering Eq. (6.2) the cross-correlation
can be represented in the whole domain by using the CFMs Mu+(γ − 1) and
Mv+(γ − 1) in the following form

RX1X2(τ) =
1

2πi

� ρ+iη

ρ−iη
[Mu+(γ − 1) + sgn(τ)Mv+(γ − 1)] |τ|−γdγ

=
|τ|−ρ

2π

� ∞

−∞
[Mu+(γ − 1) + sgn(τ)Mv+(γ − 1)] |τ|−iηdη

(6.9)

In Eq. (6.9) the integral in the inverse Mellin transform is performed along
the imaginary axis, then ρ = �(γ) remains fixed for which dγ = idη. This
is possible provided ρ belongs to the so called fundamental strip (FS) of the
Mellin transform (see Appendix A), since both Mu+(γ − 1) and Mv+(γ − 1)
are holomorph in this strip. It is important to underline that integral in Eq.
(6.9) is independent of the value of ρ selected, provided that it belong to the
FS.

There is a relation between CFMs and fractional operators. In order to
show this relation, consider the Riemann-Liouville integral with complex or-
der γ of a function f (t), defined in Eq. (2.23). This integral at the origin t = 0
is related to the Mellin transform of the function f (t):

Γ (γ)
�
Iγ
± f

�
(0) = M f± (γ − 1) . (6.10)

From Eq. (6.10) and by taking into account the properties between the Riemann-
Liouville integral and the Riesz integrals in Eqs. (2.30) and (2.31), it is easy to
demonstrate the relation between fractional operators of cross-correlation at
the origin and CFMs, indeed

(IγRX1X2) (0) =
MR+

X1X2
(γ − 1) + MR−

X1X2
(γ − 1)

2Γ(γ) cos
�γπ

2
� =

Mu+(γ − 1)
Γ(γ) cos

�γπ
2
� ; (6.11a)
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(HγRX1X2) (0) =
MR+

X1X2
(γ − 1)− MR−

X1X2
(γ − 1)

2Γ(γ) sin
�γπ

2
� =

Mv+(γ − 1)
Γ(γ) sin

�γπ
2
� . (6.11b)

In this way, the cross-correlation may be expressed in the form:

RX1X2(τ) =
|τ|−ρ

2π

� ∞

−∞
Γ(γ)

�
cos

�γπ

2

�
(IγRX1X2) (0)+

+sgn(τ) sin
�γπ

2

�
(HγRX1X2) (0)

�
|τ|−iηdη.

(6.12)

The integrals in Eq. (6.9) and Eq. (6.12) may be discretized in order to obtain
the approximate form of given function RX1X2(τ), namely

RX1X2(τ) ≈
∆η|τ|−ρ

2π

m

∑
k=−m

[Mu+(γk − 1) + sgn(τ)Mv+(γk − 1)] |τ|−ik∆η

=
∆η|τ|−ρ

2π

m

∑
k=−m

Γ(γk)
�
cos

�γkπ

2

�
(Iγk RX1X2) (0)+

+sgn(τ) sin
�γkπ

2

�
(Hγk RX1X2) (0)

�
|τ|−ik∆η

(6.13)

where the exponent γ is discretized in the form γk = ρ + ik∆η, ∆η is the
discretization step of the imaginary axis, and m is the truncation number in
the summation, that is chosen in such a way that any term n > m in the
summation has a negligible contribution. It is to be stressed that CFMs Mu+

and Mv+ are complex quantities whose real part is even and imaginary part
is odd in η axis. This means that Mu+(γk − 1) = M∗

u+(γ−k − 1) and Mv+(γk −
1) = −M∗

v+(γ−k − 1), then the summation of 2m + 1 terms in Eq. (6.13) can
be substituted by a summation of m + 1 terms (k = 0 ÷ m). Note that the
Eq. (6.13) is a not-divergent summation, because ρ remains fixed, and this is
a very important aspect when it is necessary to restore the given function in a
large domain of τ.

By Eq. (6.12) it can be asserted that Eq. (6.13) is a sort of a Taylor series,
since knowing the (fractional) operators at the origin of the given function,
then the function may be reconstructed. Moreover, Eq. (6.13) does not diverge
for τ → ∞, since the real part of the exponent γ remains fixed and only the
imaginary part runs.

Obviously, the representation of the correlation function RX(τ) of a single
process X(t) is more easy to represent by CFMs. In order to do this be enough
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to simplify the Eq.s (6.9) and (6.12) taking into account that the correlation
function is symmetric v(τ) = 0, then

RX(τ) =
|τ|−ρ

2π

� ∞

−∞
Mu+(γ− 1)|τ|−iηdη ≈ |τ|−ρ∆η

2π

m

∑
k=−m

Mu+(γk − 1)|τ|−ik∆η .

(6.14)

6.3 Cross-power spectral density function by complex
spectral moments

In this section the introduced representation by fractional moments will be
applied to restore the cross-power spectral density function.

Consider the CPSD; it is denoted by SX1X2(ω) and defined from the cross-
correlation by the following definition

SX1X2(ω) =
1

2π
F {RX1X2(τ); ω} =

1
2π

� ∞

−∞
RX1X2(τ)e

iωτdτ

=
1

2π

� ∞

−∞
RX1X2(τ) [cos(ωτ) + i sin(ωτ)] dτ

=
1
π

�� ∞

0
u(τ) cos(ωτ)dτ + i

� ∞

0
v(τ) sin(ωτ)dτ

�

=
1

2π
[uF(ω) + ivF(ω)]

(6.15)

where uF(ω) and vF(ω) are the Fourier transform of even part u(t) and odd
part v(t) of cross-correlation, respectively, and they represent the real and the
imaginary part of CPSD.

Another expression of SX1X2(ω) may be obtained from Eq. (6.9) by using
the definition in Eq. (6.15), obtaining the following relationship

SX1X2(ω) =
|ω|ρ−1

2π2

� ∞

−∞
Γ(1 − γ)

�
sin

�γπ

2

�
Mu+(γ − 1)+

+isgn(ω) cos
�γπ

2

�
Mv+(γ − 1)

�
|ω|iηdη

(6.16)

which can be discretized as

SX1X2(ω) ≈|ω|ρ−1∆η

2π2

m

∑
k=−m

Γ(1 − γk)
�
sin

�γkπ

2

�
Mu+(γk − 1)+

+isgn(ω) cos
�γkπ

2

�
Mv+(γk − 1)

�
|ω|ik∆η .

(6.17)
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As already underlined for Eq. (6.13), since real and imaginary parts of CFMs
are even and odd, respectively, summation of 2m + 1 terms can be substituted
by a summation of m + 1 terms.
Another representation of the CPSD is given by the knowledge of complex
spectral moments (CSMs). These entities are neither else that the spectral coun-
terpart of CFMs. The classical definition of spectral moments has been in-
troduced by [119], and the generalization of these quantities with fractional
exponent, just call complex spectral moments (CSMs), has been given by [25].
The CSMs are defined as

Λu+(−γ) =
� ∞

0
� {SX1X2(ω)}ω−γdω =

� ∞

0
uF(ω)ω−γdω (6.18a)

Λv+(−γ) =
� ∞

0
� {SX1X2(ω)}ω−γdω =

� ∞

0
vF(ω)ω−γdω. (6.18b)

By using the definitions of CFMs, in Eqs. (6.3) and (6.6), and using some prop-
erties of Fourier transform of fractional operators (see section C.1), may be
readily demonstrated that the following identities

Mu+(γ − 1) =
Γ(γ) cos(γπ/2)

π
Λu+(−γ)

Mv+(γ − 1) =
Γ(γ) sin(γπ/2)

π
Λv+(−γ).

(6.19)

hold true. This is a very useful result, since in many cases of engineering
interest, like wind velocity processes, ocean waves, earthquake processes, and
so on, the action in the structures under this kind of processes is defined by the
spectral properties in frequency domain rather than by the correlation or cross
correlation function in time domain. As a consequence the CFMs, in virtue of
Eqs. (6.19), may be easier calculated by Eqs. (6.18) from the knowledge of
CSMs.

By using the Eqs. (6.19) the following expression is readily found from
Eq. (6.17)

SX1X2(ω) =
|ω|ρ−1

4π2

� ∞

−∞
[Λu+(−γ) + isgn(ω)Λv+(−γ)] |ω|iηdη (6.20)

this expression represents another exact representation of CPSD. In Eq. (6.20)
the following properties have been used

cos
�γπ

2

�
sin

�γπ

2

�
Γ(γ)Γ(1 − γ) =

π

2
(6.21)
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The discretized form of Eq. (6.20) is given as

SX1X2(ω) ≈ ∆η|ω|ρ−1

4π2

m

∑
k=−m

[Λu+(−γk) + isgn(ω)Λv+(−γk)] |ω|iη . (6.22)

Because of Eqs. (6.19) the CSMs can be also used to represent the cross-
correlation, obtaining the following expression

RX1X2(τ) =
|τ|−ρ

2π2

� ∞

−∞
Γ(γ)

�
cos

�γπ

2

�
Λu+(−γ)+

+sgn(τ) sin
�γπ

2

�
Λv+(−γ)

�
|τ|−iηdη,

(6.23)

or in discretized form

RX1X2(τ) ≈
∆η|τ|−ρ

2π2

m

∑
k=−m

Γ(γk)
�
cos

�γkπ

2

�
Λu+(−γk)

+sgn(τ) sin
�γkπ

2

�
Λv+(−γk)

�
|τ|−ik∆η .

(6.24)

Then also the CSMs represent another way to describe random process in time
and frequency domain. As a conclusion if the CPSD is known then we may
evaluate the complex spectral moments Λu+ , Λv+ and with these quantities
both cross-correlation and CPSD may be readily reconstructed by Eqs. (6.24)
and (6.22), respectively. Similarly to the correlation function in the previous
section, also in this case the representation of the power spectral density PSD
of X(t) is a particular case of the Eq. (6.20). In particular, by placing vF(ω) =
0, then Λv+(−γ), obtaining that

SX(ω) =
|ω|ρ−1

4π2

� ∞

−∞
Λu+(−γ)|ω|iηdη ≈ |ω|ρ−1∆η

4π2

m

∑
−m

Λu+(−γk)|ω|ik∆η .

(6.25)

6.4 The fractional oscillator under Gaussian white noise

The concepts about the CFMs and SMs, described in the previous section, can
be used to characterize the stochastic response process of the dynamical sys-
tems in which fractional operators appear. Consider the equation of motion
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of the single-degree of freedom fractional oscillator in Eq. (5.27). If the ex-
ternal force f (t) = W(t) is a zero-mean Gaussian white noise such equation
becomes:

mẌ(t) + cβ

�
Dβ

0+X
�
(t) + kX(t) = W(t), t � 0, (6.26)

where X(t) denotes the stochastic response process in terms of displacements.
In order to fully describe such output response process in probabilistic setting
the PSD or the correlation function CF have to be evaluated. For the case of
linear systems with integer order operators both PSD and CF are known in
closed form. Instead, if fractional order operators are present in the equation
of motion, the PSD of the response is already known by the Eq. (5.59), while
the CF has to be evaluated in approximated form by the inverse fast Fourier
transform of the PSD.

The method to represent the PSD and CF by complex spectral moments
presented in the previous sections is also limited, since either if the PSD is
given, its spectral moments defined in Eq. (6.18a) cannot be evaluate in closed
form by the following integral:

ΛX(−γ) =
� ∞

0
SX(ω)ω−γdω = S0

� ∞

0

ω−γdω

| − mω2 + cβ(iω)β + k|2
. (6.27)

The evaluation of this integral gives the fully characterization of the response
process X(t), since the knowledge of the complex spectral moments with the
aid of the relation in Eq.s (6.19) and Eq. (6.14) also the CF can be reconstructed.

In order to obtain the solution of the integral in Eq. (6.27), the expanded
state variable space and the relative complex modal transformation described
in the previous Chapter can be useful. Indeed, by the state variable expansion
and the modal transformation in Eq. (5.57) the response process can be write
as follow:

X(t) =
n

∑
j=1

ψ1jYj(t), j = 1, 2, . . . n, (6.28)

in which n is the number of the state variable, which depends on the order α
that allows to rewrite the system as sequential linear differential equation, ψ1j
is the first term of the jth eigenvector, and Yj(t) is the stochastic response of
the half fractional oscillator in the complex modal domain. The evaluation of
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the PSD of the process represented by the Eq. (6.28) yields

SX(ω) = lim
T→∞

1
2πT

E [X∗
F
(ω, T)XF(ω, T)]

=
n

∑
j=1

n

∑
k=1

ψ∗
1jψ1k lim

T→∞

1
2πT

E
�
Y∗
Fj(ω, T)YFk(ω, T)

�
,

(6.29)

in the Eq. (6.29) the PSD and the CPSD of the n half fractional oscillators in
the complex modal space are involved. Then, by introducing the following
generic CPSD of the processes Yj(t)

SYjYk(ω) =
ψ∗

1jψ1kS0
�
u∗

j (−iω)α + v∗j
��

uk(iω)α + vk

� , (6.30)

where the apex ∗ denotes the complex conjugate, ul and vl with l = j, k denote
the diagonal terms of the matrices UD and VD, respectively (see Eq.s (5.39)).
By placing the PSD and CPSD, defined in Eq. (6.30), into the Eq. (6.29), the
following relation is directly obtained

SX(ω) =
n

∑
j=1

n

∑
k=1

ψ∗
1jψ1kSYjYk(ω)

= S0

n

∑
j=1

n

∑
k=1

�
ψ∗

1jψ1k

�2

�
u∗

j (−iω)α + v∗j
��

uk(iω)α + vk

� ,

(6.31)

the Eq. (6.31) permits to obtain the correlation function of output process of
fractional oscillator X(t) as a linear combination of a certain number of output
responses of a set of half fractional oscillators. Moreover, the Eq. (6.31) allows
to evaluate the SM in Eq. (6.27), indeed the spectral moments of the PSD and
CPSD of the half oscillators can be evaluated in closed form, then

ΛX(−γ) =
n

∑
j=1

n

∑
k=1

ψ∗
1jψ1k

� ∞

0
SYjYk(ω)ω−γdω

= S0

n

∑
j=1

n

∑
k=1

�
ψ∗

1jψ1k

�2 � ∞

0

ω−γdω�
u∗

j (−iω)α + v∗j
��

uk(iω)α + vk

�

=
n

∑
j=1

n

∑
k=1

ψ∗
1jψ1kΛYjYk(−γ).

(6.32)
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SMs of the fractional half oscillators in Eq. (6.32) depend on the order α, such
fractional order permits to rewrite the system as fractional sequential differ-
ential equation. Some exact expressions of ΛYjYk(−γ) for different value of α
are reported in the section C.2. After the definition of the SM by the Eq. (6.32)
is possible to obtain also the CFM by using the relation in Eq.s (6.19):

MX(γ − 1) =
Γ(γ)

π
cos

�γπ

2

� n

∑
j=1

n

∑
k=1

ψ∗
1jψ1k

� ∞

0
SYjYk(ω)ω−γdω

=
Γ(γ)

π
cos

�γπ

2

� n

∑
j=1

n

∑
k=1

ψ∗
1jψ1kΛYjYk(−γ).

(6.33)

After that, both CF and PSD of the fractional oscillator response process can
be handled by the Eq. (6.14) and Eq. (6.25) respectively. In this way, another
stochastic characterization of the response of the fractional system is obtained
by using an eigenvector expansion in the state variable space and by the in-
troduced concepts about the complex spectral moments.

Obviously, the presented method to evaluate in closed form the spectral
moments can be extended to the multi-degree-of-freedom system by using the
same concepts in the previous Chapter. The next section shows some numer-
ical examples of the method for the characterization of the response output of
single and multi-degree-of-freedom system with fractional derivative driven
by Gaussian white noise.

6.5 Numerical examples

The examples in the previous Chapter have shown the way to carry out the
stochastic dynamical analysis of the fractional viscoelastic systems with the
aid of state variable transformation and Monte Carlo method. In this section a
new stochastic characterization of the output response processes of fractional
system is presented. In particular, the expanded state variable analysis is used
in conjunction with the complex spectral moments in order to find the corre-
lation and the cross-correlation of the response processes of fractional SDOF
and MDOF.

6.5.1 Correlation function of fractional oscillator with β = 1/2

Consider the stochastic fractional differential equation in Eq. (6.26) in which
the fractional order is β = 1/2. In this case the PSD is known in closed form
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and it can be obtained from the Eq. (5.59) as follow

SX(ω) =
S0

| − mω2 + c1/2
√

iω + k|2
, (6.34)

while the CF is unknown and can be obtained by the inverse fast Fourier
transform or by Monte Carlo simulation. Another way to obtain the CF is
by using the method in the previous section, that is, the complex spectral mo-
ment representation in conjunction with the fractional state variable analysis.

By using the state variable analysis described in the previous Chapter the
order α which permits to obtain the sequential differential system in Eq. (5.34)
is α = β = 1/2. The minimum number of state variable is n = 4, and vector z
is

zT(t) =
�

X(t),
�

D(0.5)X
�
(t), Ẋ(t),

�
D(1.5)X

�
(t)

�
, (6.35)

the matrices A and B are the same in the Eq. (5.52), and the matrix Ψ is still
the same of the previous case, and it represents the matrix of the complex
eigenvector of the following matrix

D = A−1B =





0 −1 0 0
0 0 −1 0
0 0 0 −1

1/k 1/cβ 0 0



 . (6.36)

The knowledge of the eigenvectors matrix Ψ allows to perform the modal
transformation in Eq. (5.40) and to obtain the diagonal matrices UD and VD.
In this way is possible to rewrite the PSD by the Eq. (6.31) in terms of Yj(t) as
follows:

SX(ω) =
4

∑
j=1

4

∑
k=1

ψ∗
1jψ1kSYjYk(ω) =

4

∑
j=1

4

∑
k=1

S0

�
ψ∗

1jψ1k

�2

�
u∗

j
√
−iω + v∗j

��
uk
√

iω + vk

� ,

(6.37)
and then the spectral moments Λ(−γ) can be evaluated as

ΛX(−γ) =
4

∑
j=1

4

∑
k=1

ψ∗
1jψ1kΛYjYk(−γ), (6.38)
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where, in this case, ΛYjYk(−γ) is

ΛYjYk(−γ) = S0ψ∗
1jψ1k

� ∞

0

ω−γdω�
u∗

j
√
−iω + v∗j

��
uk
√

iω + vk

�

=
S0ψ∗

1jψ1k2π csc (2πγ)

u∗
j uk

�
v∗j uk + iu∗

j vk

�





−v∗j uk




(−1)

3
4 u∗

j

v∗j




2γ

+ iu∗
j vk

�
(−1)

1
4 uk

vk

�2γ





(6.39)

where γ = ρ + iη with ρ ∈ (0, 1). Placing the Eq. (6.39) into the Eq. (6.25) is
possible to obtain the PSD in approximate form:

SX(ω) ≈ |ω|ρ−1∆η

4π2

m

∑
k=−m

ΛX(−γk)|ω|ik∆η . (6.40)

In the Figure 6.1 the comparison between the exact PSD of the system and
the approximated one obtained by Eq. (6.40) is shown. Such Figure shows
the perfect agreement between the exact and approximated solution. For this
example the chosen parameters are: m = k = 1, c1/2 = 1/4, and S0 = 1. The
discretized parameters are ρ = 1/8, ∆η = 1/5, and m = 500.
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Figure 6.1: Exact (continuous line) and approximated PSD (dotted line).
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Moreover, from the knowledge of SMs in Eq. (6.38) is possible to obtain the
CFMs by Eq. (6.33), then by using the Eq. (6.14) also the CF of X(t) is given as

RX(τ) ≈
|τ|−ρ∆η

2π2

m

∑
k=−m

ΛX(−γk)Γ(γk) cos
�γkπ

2

�
|τ|−ik∆η . (6.41)

The approximated CF RX(τ) by complex spectral moments is shown in Fig-
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Figure 6.2: Approximated CF by CSMs.

ure 6.2, in which the same parameters for the discretization of the PSD are
used. In particular, such Figure shows the comparison between the solution
obtained by the Eq. (6.2) in dotted line, and the solution obtained by dis-
cretized inverse Fourier transform (see the Appendix B) in continuous line.

Note that the limit for γ → 0 of the complex spectral moments is related
to the variances of the process, indeed the following relation holds

2 lim
γ→0

ΛX(−γ) = σ2
X =

� ∞

−∞
SX(ω)dω = RX(0), (6.42)

by the numerical integration of the PSD or by such limit the results is the
same, and for this particular case σ2

X = 16.3558.

6.5.2 Two-degree-of-freedom system under white noise

If a multi-degree-of-freedom system is considered, the previous concepts are
still valid and the method is the same. Consider two coupled fractional linear



6.5 Numerical examples 133

oscillators as the system in Figure 5.7, driven by a zero-mean Gaussian white
noise process W(t). The equation of motion in matrix form is

Mẍ(t) +
l

∑
j=1

CjDβ j x(t) + Kx(t) = f(t), (6.43)

where the vector of the displacements x(t) contains the two response pro-
cesses as follows

xT(t) = [X1(t) X2(t)] . (6.44)

Assuming that the forced vector is fT(t) = [0 W(t)], and its spectral matrix,
denoted by S f (ω), is the same in Eq. (5.68). In terms of response Xj(t) the
spectral matrix is defined as in Eq. (5.70), that is,

SX(ω) = H∗(ω)S f (ω)HT(ω) =

�
SX1(ω) SX1X2(ω)

SX2X1(ω) SX2(ω)

�
, (6.45)

where two terms in the diagonal are the PSD of the process X1(t) and X2(t),
respectively; whereas the other terms SX1X2 = S∗

X2X1
are the CPSD of the two

process. Also in this case the PSD and CPSD are known in closed form but
the CF and CCF can be evaluated in approximated form by the inverse fast
Fourier transform or by Monte Carlo simulation. As was done in the previ-
ous case, another way to represent both PSD and CF (and the crossed coun-
terparts) is by complex spectral moments. Also in this case the CSMs of the
four terms in the matrix SX(ω) cannot be directly evaluated by the Eq. (6.18),
but it is necessary to solve this problem by using the state variable domain
and the complex modal transformation. In this way is possible to evaluate the
four complex spectral moments of the two PSD and the two CPSD. In order
to do this, assuming that the involved orders are β1 = 1 and β2 = 1/2, the
Eq. (6.46) can be rewritten in sequential form

4

∑
j=1

CjDj 1
2 x(t) + Kx(t) = f(t), (6.46)

where the involved matrices are C3 = 0,

K =

�
k1 + k2 −k2
−k2 k2

�
, C1 =

�
c1/2 0

0 0

�
, C2 =

�
c1 −c1
−c1 c1

�
, C4 =

�
m1 0
0 m2

�
.

(6.47)



134 6. Stochastic processes represented by fractional calculus

By the aforementioned assumptions the state variable vector is

zT(t) =
�
zT

1 (t) zT
2 (t) zT

3 (t) zT
4 (t)

�
=

�
xT(t) D

1
2 xT(t) D1xT(t) D

3
2 xT(t)

�

= [Z1(t) Z2(t) Z3(t) Z4(t) Z5(t) Z6(t) Z7(t) Z8(t) ]

=
�

X1(t) X2(t) X(0.5)
1 (t) X(0.5)

2 (t) Ẋ1(t) Ẋ2(t) X(1.5)
1 (t) X(1.5)

2 (t)
�

,

(6.48)

then the number of state variable in this case is still n = 4 but the dimension of
the vector z(t) is r × n = 8, where r = 2 is the number of degrees of freedom
of the system. In terms of state variables the spectral matrix Sz(ω) contains
more terms than SX(ω), indeed, by virtue of Eq. (6.48):

Sz(ω) =





SX(ω) SXX(α) (ω) SXẊ(ω) SXX(2α) (ω)
SX(α)X(ω) SX(α) (ω) SX(α)Ẋ(ω) SX(α)X(2α) (ω)
SẊX(ω) SẊX(α) (ω) SẊ(ω) SẊX(2α) (ω)

SX(2α)X(ω) SX(2α)X(α) (ω) SX(2α)Ẋ(ω) SX(2α) (ω)



 , (6.49)

where each one block has dimension r = 4, the dimension of the matrix is
n × r = 16, and the first submatrix is SX(ω). In terms of modal coordinates
Yj(t) the matrix in Eq. (6.49) can be rewritten as

Sz(ω) = lim
T→∞

1
2πT

E
�
Z∗
F
(ω)ZT

F
(ω)

�

= lim
T→∞

1
2πT

E
�
Ψ∗Y∗

F
(ω)

�
ΨYF(ω)

�T
�

= lim
T→∞

1
2πT

E
�
Ψ∗Y∗

F
(ω)YT

F
(ω)ΨT

�

= Ψ∗ lim
T→∞

1
2πT

E
�
Y∗
F
(ω)YT

F
(ω)

�
ΨT

= Ψ∗Sy(ω)ΨT

(6.50)

where Sy(ω) is the spectral matrix of the response process Yj(t) of the set of
n × r = 16 half fractional oscillators in the complex modal space. Also in this
case the complex spectral moments of any terms of the matrix Sy(ω) can be
evaluated in closed form while the complex spectral moments of terms of the
matrix SX(ω) are unknown.

In order to find the matrix Ψ in Eq. (6.50) it is necessary to find the dynam-
ical matrix D in Eq. (6.36). Taking into account the Eq.s (5.38) the matrices A
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and B become

A =





C1 C2 0 M
C2 0 M 0
0 M 0 0
M 0 0 0



 , B =





K 0 0 0
0 −C2 0 −M
0 0 −M 0
0 −M 0 0



 , (6.51)

in this way, the system in the state variable domain as that one in Eq. (5.37)
is obtained. The matrix Ψ has to contain the eigenvectors of the following
matrices:

D = A−1B =





0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1

k1+k2
m1

− k2
m1

c1/2
m1

0 c1
m1

− c1
m1

0 0
− k2

m2

k2
m2

0 0 − c1
m2

c1
m2

0 0





. (6.52)

By that modal transformation a set of uncoupled differential equations with
complex coefficients of the type in Eq. (5.53) is obtained and the spectral ma-
trix in terms of output of fractional half oscillators in Eq. (6.50) is given. Now
the spectral matrix of the processes Yj(t) can be evaluated, in this case, to
complete describe the system it is necessary to define the matrix of complex
spectral moments Λy(−γ). The complex spectral moments of the state vari-
ables can also be evaluated as

Λz(−γ) = Ψ∗Λy(−γ)ΨT, (6.53)

this matrix has the same dimension of Sz(ω). All terms of the matrix Λy(−γ)
are defined by the same expression in the previous case (see Eq. (6.39)). In
order to fully characterize the two response processes it is needed to evaluate
the first block of the matrix Sz(ω), that contains the matrix SX in Eq. (6.45).
The characterization in terms of complex spectral moments is complete given
by the first block of Λz(−γ). That is,

ΛX(−γ) =

�
ΛX1(−γ) ΛX1X2(−γ)

ΛX2X1(−γ) ΛX2(−γ)

�
. (6.54)
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Figure 6.3: PSDs of the response X1(t) and X2(t), exact (continuous line) and approx-
imate solution (dotted line).

This four terms of modal coordinates are

ΛXl Xm(−γ) =
8
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j=1

8
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ψ∗
l jψmkΛYjYk(−γ)
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√

iω + vk

� ,

(6.55)

where the solution of the integral is the same in Eq. (6.39). Such entities in the
Eq. (6.55) are able to represent PSD, and CF by the previous expressions. In
particular with the aid of the Eq.s (6.40) and (6.41) the PSDs and CFs can be
readily obtained.

Assume as parameters of the system S0 = 1, k1 = 3/2, k2 = 1, c1 =,
c2 = 1.1, m1 = 2, m2 = 1, and as parameters of the discretization ∆η = 1/4,
ρ = 1/8 and m = 100. The PSDs of the two displacements X1(t) and X2(t)
are depicted in Figure 6.3. In particular, the continuous lines denote the exact
PSDs, the dotted lines represent the approximate solutions obtained by the
Eq. (6.40). By using the complex spectral moments also the CPSD SX1X2(ω)
can be readily obtained with the evaluation of the complex spectral moments
ΛX1X2(−γ) and with the aid of the Eq. (6.22). The real and imaginary part of
the CPSD are shown in the Figure 6.4. Also in this case the continuous lines
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Figure 6.4: Real and imaginary part of CPSD of the response X1(t) and X2(t), exact
(continuous lines) and approximate solution (dotted lines).

represent the exact solutions, and the dotted lines represent the approximate
representations with the complex spectral moments.

As in the previous case, the complex spectral moments permit to obtain
also the correlation function. In order to do this, it is necessary to use the
Eq. (6.19) to obtain the complex fractional moments of the two correlation
functions RX1(τ) and RX2(τ). In this way also the CFs can be evaluated.
The Figure 6.5 and Figure 6.6 show the comparison between the complex
fractional moments representation of the correlation functions, obtained by
Eq (6.24), and the solution obtained with the discretized inverse Fourier trans-
form.

6.6 Conclusions

A new way to fully represent the CF, CCF, PSD and CPSD by CFMs and/or by
CSMs has been pursued in this Chapter. It has been shown how it is possible
to evaluate this complex entities starting from the knowledge of the correla-
tion and cross-correlation (CFMs) or by the given PSD or CPSD (CSMs). These
entities are strictly related to the Mellin transform and the knowledge of the
CFMs permits to restore the correlation and the cross-correlation by the in-
verse Mellin transform. On the other hand, the inverse Mellin transform of
the CSMs yields the CPSD.
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Figure 6.5: CF of the response X1(t), discretized inverse Fourier transform (continu-
ous lines) and CFMs representation (dotted lines).
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Figure 6.6: CF of the response X2(t), discretized Fourier transform (continuous lines)
and CFMs representation (dotted lines).
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It has been shown that both kinds of fractional quantities, CFMs and CSMs,
are related by a simple relation obtained by using the properties of the Fourier
transform. In other word, the CSMs are nothing else that the spectral counter-
parts of the CFMs. It means that just the knowledge of one of the two kinds
of moments permits to restore the other one and that allows to fully represent
both cross-correlation function and CPSD. Then, it is independent the choice
to evaluate the CFMs or the CSMs because both quantities have all informa-
tion in time and in frequency domain. This is a very important result because
in many physics and engineering problems is known the CPSD but it is un-
known the cross-correlation function and the presented method permits to
independently operate.

Many properties in this Chapter have been obtained thanks to the rela-
tionships by the Mellin transform and the fractional operators. In particular
these relations permit to interpret the discretized inverse Mellin transform as
a truncated complex fractional Taylor series. Moreover, this kind of series
does not diverge, since the involved quantities have complex fractional order
which real part is fixed and just imaginary part runs.

Particular attention has been devoted to the case of fractional systems. In-
deed, by the CSMs in conjunction with the expanded state variable analysis,
described in the previous Chapter, the characterization of the output response
of fractional system under Gaussian white noise has been found. In particular
two examples have been reported, the first one is the characterization of the
stochastic response of the fractional oscillators, the second example the char-
acterization of two-degree-of-freedom forced by white noise has been consid-
ered. The method can be used also to characterize other stochastic process,
like the response of classic linear oscillators [5], ocean waves [25], earthquake
processes, and wind velocity field [5].





Concluding remarks

This thesis contains some new methods to perform the stochastic dynamic
analysis of structures with viscoelastic constitutive law. After the prelimi-
nary introduction to this kind of mechanical problem, in the first part of this
manuscript, some concepts about the mathematical tools have been provided.
In particular, the main properties of the fractional calculus and the integral
transforms have been reported.

The concepts inherent the viscoelastic stress-strain relation have been also
discussed, and the reasons about the choice of the fractional viscoelastic model
for the characterization of the real mechanical behavior of the building mate-
rials have been presented. Subsequently, the problems that this choice implies
in the global models in terms of displacement-load relation have been intro-
duced. In this regard, some new methods have been developed to perform the
stochastic analysis of continuous and discrete fractional viscoelastic systems
correctly.

In particular, the analysis of continuous fractional viscoelastic Euler-Ber-
noulli beam has been pursued, performing the study either in frequency and
in time domain. The viscoelastic behavior has been taken into account by
using the fractional Kelvin-Voigt model. It is a proper model that is able to
capture the viscoelasticity phenomena of a plethora of materials. The frac-
tional stress-strain relation has led to a fractional partial differential equation
that rules the motion of the continuous viscoelastic beam. To perform the
stochastic analysis of such system a proper eigenanalysis and the Monte Carlo
method have been used. Some numerical results have been obtained consid-
ering a cantilever beam driven by stochastic loads.

As discrete systems, the fractional oscillator and the fractional multi-de-
gree-of freedom system have been considered. The analysis of this kind of
dynamical systems leads to have a set of coupled fractional differential equa-
tions that govern the motion. It has been pointed out that this kind of prob-
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lem is more complex to solve vis-a-vis the analysis of multi-degree-of-freedom
system with integer order derivatives. The analysis has been based on a novel
approach using an augmented state variables transformation. The method,
based on complex modal analysis in the state variable domain, is applicable
if the involved fractional terms have rational order. This assumption is neces-
sary since only in this case it is possible to find an appropriate state variables
vector. Note, however, that for engineering applications all real orders can be
reasonably approximated by rational orders. By the proposed method the set
of coupled fractional differential equations has been decoupled in a proper
fractional state variable domain. This transformation has led to a new set
of fractional equations which are uncoupled and more convenient to solve.
Therefore, a drastic reduction of the computational effort is achieved.

The latter part of the manuscript contains a new characterization of the
dynamical response processes of the fractional viscoelastic systems under a
stochastic point of view. In particular, a way to fully represent the corre-
lation function and power spectral density (and their crossed counterparts)
by the complex spectral moments (CSMs) and/or by the complex fractional
moments (CFMs) has been pursued. The way to characterize the stochastic
process with the aid of these complex entities it has been shown. Further,
the relations between the CFMs and/or the CSMs, the Mellin transform and
the fractional Riesz integrals have been introduced to provide some useful
consequences. In this manner, it has been shown that the CSMs are noth-
ing else that the spectral counterparts of the CFMs, and they are related by
a simple relation. This implies that the choice is independent for evaluating
CFMs or CSMs because both quantities have all informations in time and in
frequency domain. Some properties of CFMs and CSMs have been obtained
thanks to the relationships by the Mellin transform and the fractional oper-
ators. In particular, these relation permit to interpret the discretized inverse
Mellin transform as a truncated complex fractional Taylor series. This kind of
series does not diverge, since the involved quantities have complex fractional
order which real part is fixed and just imaginary part runs.

This elegant stochastic characterization has been applied to the case of
fractional systems forced by Gaussian white noise. Usually, the normal sta-
tionary processes are characterized by the power spectral density, commonly
known in closed form, but the correlation can be evaluated only in approxi-
mated form by the inverse fast Fourier transform. Using the CSMs in conjunc-
tion with the expanded state variable analysis, described in the previous part,
the characterization of the output response of fractional system under Gaus-
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sian white noise has been found. In this way it has been possible to obtain
both the power spectral density and the correlation of the response process
of the fractional system. The stochastic responses of single fractional oscilla-
tor and multi-degree-of-freedom system endowed with fractional viscoelastic
devices have been considered in the numerical examples, in which the capa-
bilities of the fractional calculus have been widely shown.





Appendix A

Tables of fractional derivatives

Some Riemann-Liouville fractional derivatives of common functions are re-
ported below. The chosen differentiation orders are reals α ∈ R, then the
corresponding fractional integral can be readily found placing −α as order in
the shown results.

A.1 Fractional operators with lower bound a = −∞

f (t) (Dα
+ f ) (t), (t > 0, α ∈ R)

U(t − b)

�
(t−b)−α

Γ(1−α) , (t > b)
0, (0 ≤ t ≤ b)

U(t − b) f (t)

��
Dα

b+ f
�
(t), (t > b)

0, (t ≤ b)

eλt λαeαt (λ > 0)

eλt+µ λαeαt+µ (λ > 0)

sin(λt) λα sin
�

λt + πα
2

�
(λ > 0, α > −1)
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cos(λt) λα cos
�

λt + πα
2

�
(λ > 0, α > −1)

A.2 Fractional derivatives with lower bound a = 0

f (t)
�
Dα

0+ f
�
(t), (t > 0, α ∈ R)

U(t) t−α

Γ(1−α)

U(t − b)

�
(t−b)−α

Γ(1−α) , (t > b)
0, (0 ≤ t ≤ b)

U(t − b) f (t)

�
bDα

t f (t), (t > b)
0, (0 ≤ t ≤ b)

δ(t) t−α−1

Γ(−α)

tη Γ(η+1)
Γ(η+1−α) tη+α (η > −1)

eλt t−αE1,1−α(λt)

cosh (
√

λt) t−αE2,1−α(λt2)

sinh (
√

λt)√
λt

t1−αE2,2−α(λt2)

ln (t) t−α

Γ(1−α)

�
ln(t) + ψ(1)− ψ(1 − α)

�

tγ−1 ln (t) tγ−α−1Γ(γ)
Γ(γ−α)

�
ln(t) + ψ(γ)− ψ(γ − α)

�
(�(γ) > 0)



Appendix B

Main used commands in
Mathematica

This Appendix contains some commands of Wolfram Mathematica© used in
this thesis. Other details about the special functions, the integral transform,
and their commands can be found in [122–128].

B.1 Special functions

Euler gamma function

Gamma[x]
Gamma[x+I*y]
Plot[Gamma[x],{x,...,...}]
Plot3D[Abs[Gamma[x+I*y]],{x,...,...},{y,...,...}]

Mittag-Lefflerfunction

ML[z_]=MittagLefflerE[a,z]
ML[z_]=MittagLefflerE[a,b,z]

Wright function

W[z_]=Sum[(z^k)/(k!Gamma[a*k+b]),{k,0,Infinity}]
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B.2 Bessel functions

First and second kind function

I[z_]=BesselJ[n, z]
Y[z_]=BesselY[n, z]

Modified first and second kind function

I[z_]=BesselI[n, z]
K[z_]=BesselK[n, z]

B.3 Integral transforms

B.3.1 Laplace transform and its inverse

F[s_]=LaplaceTransform[f[t],t,s]
f[t_]=InverseLaplaceTransform[F[s],s,t]

B.3.2 Fourier transform and its inverse

Fe[om_]=Sqrt[2*Pi]FourierTransform[f[t],t,om]
f[t_]=Sqrt[(2*Pi)^(-1)]InverseFourierTransform[Fe[om],om,t]

where om = ω denotes the frequency.

Discretized transform and its inverse

Fe[om_]=Dt*Sum[f[j*Dt](Cos[j*Dt*om]+I Sin[j*Dt*om]),{j,-m,m}]
f[t_]=Dom*Sum[F[j*om](Cos[j*Dom*Dt]-I Sin[j*Dom*Dt]),{j,-m,m}]

where Dt = ∆t and Dom = ∆ω are the frequency and the time step, respec-
tively.

B.3.3 Mellin transform and its inverse

Fm[s_]=Integrate[f(t)t^(s-1),{t,0,Infinity},
Assumptions->-a<Re[s]<-b]

f[t_]=1/(2*Pi*I)*Integrate[Fm[s]t^(-s),
{s,Re[s]-I*Infinity,Re[s]+I*Infinity}]
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B.4 Fractional operators

B.4.1 Grünwald-Letnikov

Limit[(((t-a)/N)^alfa)/(Gamma[-alfa])*Sum[(Gamma[r-alfa])
/(Gamma[r+1])*f[t-(r(t-a)/N)],{r,0,N-1}],N->Infinity]

B.4.2 Riemann-Liouville

1/(Gamma[-alfa])Integrate[(t-tau)^(-alfa-1)f[tau],{tau,a,t}]

B.4.3 Caputo

1/(Gamma[alfa-n])Integrate[(t-tau)^(-alfa+n-1)Dt[f[tau],
{tau,n}],{tau,a,t}]





Appendix C

Complex fractional moments

C.1 Properties and relation with fractional calculus

In this Appendix the concepts about the connection between Mellin and Fou-
rier transform and Riesz fractional integrals will be explained. First the Fourier
transform of the Riesz integrals in Eqs. (2.54) and (2.54) are reported

F {(Iγ f )(t); ω} = |ω|−γ fF(ω), (C.1)

F {(Hγ f )(t); ω} = isgn(ω)|ω|−γ fF(ω) (C.2)

Relationships (C.1) and (C.2) can be readily obtained by some simple algebraic
manipulation. Now consider that f (t) is a non-symmetric function, then it is
possible to divide it into an even function u(t) = ( f (t)+ f (−t))/2 and an odd
function v(t) = ( f (t)− f (−t))/2; taking into account Eqs. (C.1) and (C.2) it
is possible to write the Riesz fractional integrals of f (t) in terms of inverse
Fourier transform

(Iγ f )(t) =
1

2π

� ∞

−∞
|ω|−γ fF(ω)e−iωtdω

=
1

2π

� ∞

−∞
|ω|−γ[uF(ω) cos(ωt)− i vF(ω) sin(ωt)]dω

(C.3)

(Hγ f )(t) =
i

2π

� ∞

−∞
sgn(ω)|ω|−γ fF(ω)e−iωtdω

=
i

2π

� ∞

−∞
|ω|−γsgn(ω)[vF(ω) cos(ωt)− i uF(ω) sin(ωt)]dω

(C.4)
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where uF(ω) and vF(ω) are the Fourier transform of u(t) and v(t), respec-
tively. Since u(t) is a real even function uF(ω) is real and even, while since
v(t) is a real odd function vF(ω) is imaginary and odd. By particularizing
Eqs. (C.3) and (C.4) for t = 0, one obtains

(Iγ f )(0) =
1

2π

� ∞

−∞
|ω|−γuF(ω)dω =

Λu+(−γ)
π

(C.5)

(Hγ f )(0) =
i

2π

� ∞

−∞
sgn(ω)|ω|−γvF(ω)dω = i

Λv+(−γ)
π

(C.6)

Eq. (C.5) shows that, since Riesz integral is a symmetric operator, it selects
in t = 0 the real partuF(ω) of fF(ω) and we can interpret it as the moment
of order −γ of uF(ω), namely Λu+(−γ); analogously for the complementary
Riesz integral, Eq. (C.6) show that it select only the imaginary part vF(ω) of
fF(ω) and we can interpret it as the moment of order −γ of vF(ω), namely
Λv+(−γ). On the other hand from Eqs. (2.28) and (2.29)

(Iγ f )(0) =
1

2νc(γ)

� ∞

−∞

f (t̄)
|t̄|1−γ

dt̄ =
1

νc(γ)

� ∞

0
t̄γ−1u(t̄)dt̄ =

Mu+(γ − 1)
νc(γ)

,

(C.7)

(Hγ f )(0) =
1

2νs(γ)

� ∞

−∞

f (t̄)sgn(t̄)
|t̄|1−γ

dt̄ =
1

νs(γ)

� ∞

0
t̄γ−1v(t̄)dt̄ =

Mv+(γ − 1)
νs(γ)

,

(C.8)
where νc(γ) = Γ(γ) cos(γπ

2 ) and νs(γ) = Γ(γ) sin(γπ
2 ). Eqs. (C.7) and (C.8)

show that Riesz integrals in zero can be related to the Mellin transform of u(t)
and v(t); Mellin transforms can be interpreted as moments of order γ − 1 of
the even part u(t) and odd part v(t) of f (t), namely Mu+(γ− 1) and Mv+(γ−
1), respectively. Then by comparison of Eqs. (C.5) and (C.6) with Eqs.(C.7)
and (C.8), relationships (5.34) between moments of order γ − 1 of f (t) and
moments of order −γ of its Fourier transform fF(ω) are readily found, and
here are reported for reading simplicity

Mu(γ − 1) =
νc(γ)

π
Λu(−γ),

Mv(γ − 1) =
νs(γ)

π
Λv(−γ).

(C.9)

C.2 Some exact CSMs for fractional half oscillators

As it is shown in the Chapter 6, the complex spectral moments of the response
of a fractional oscillator forced by Gaussian white noise is obtained as a sum-
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mation of a certain number of CSMs of the response of a set of half fractional
oscillators in the complex modal space. The cross power spectral density of
this kind of half oscillators is

SYjYk =
S0ψ∗

1,jψ1,k
�
u∗

j (−iω)α + v∗j
� �

uk(iω)α + vk

� , (C.10)

the corresponding CSM is defined as

ΛYjYk =
� ∞

0
SYjYk ω−γdω = a

� ∞

0

ω−γdω�
u∗

j (−iω)α + v∗j
�
[uk(iω)α + vk]

, (C.11)

where a = S0ψ∗
1,jψ1,k. Some analytical results of the CSMs for different values

of the fractional order α are reported below:

α = 1/2, �(γ) ∈ (0, 1)

ΛYjYk(−γ) =
a2π csc (2πγ)
ukv∗j + iu∗

j vk





−

v∗j
u∗

j




(−1)

3
4 u∗

j

v∗j




2γ

+ i
vk
uk

�
(−1)

1
4 uk

vk

�2γ




(C.12)

α = 1/4, �(γ) ∈ (1/2, 1)

ΛYjYk(−γ) =
a4iπ csc (4πγ)
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(C.13)

α = 1/5, �(γ) ∈ (3/5, 1)

ΛYjYk(−γ) =
a5iπ csc (5πγ)
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α = 1/10, �(γ) < 1

ΛYjYk(−γ) =
a10iπ csc (10πγ)
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