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Introduction

Low-temperature phenomena are a very active frontier of physics, in super uidity, su-
perconductivity, Bose-Einstein condensates, laser-induced lowering of temperatures and
in the search for quantum computers. These topics have been recognized with several
Nobel awards in the last two decades, have revealed new aspects of quantum physics
at the macroscopic level, and have opened new technological alleys, as production of
high magnetic elds, transport of electricity with extremely low dissipation, high pre-
cision measurement of time, and construction of several quantum logic gates for future
quantum computers. Collective excitations in those systems, and in particular quan-
tized vortices is super uids, superconductors, and Bose-Einstein condensates, are an
expecially exciting challenge.

The analysis of liquid helium — liquid helium 4, but also liquid helium 3, which
needs much lower temperatures and has a much richer and complex phenomenology
than helium 4 — is one of the basic grounds for research in the eld of low-temperatures,
because of its own interest as well as because helium 4, also called helium II, is used as
a cryogenic uid at low temperatures, below 2 K. Furthermore, for many years it has
been known that liquid helium 4 has many unusual properties, which may be explained
only on the grounds of collective quantum e ects.

The behavior of liquid helium, below the lambda-point (T = 2.17 K), is very di er-
ent from that of ordinary uids. One example of non-classical behavior is the possibility
to propagate the second sound, a wave motion in which temperature and entropy os-
cillate. A second example of non-classical behavior is heat transfer in counter ow
experiments. Using an ordinary uid (such as helium I) for which is valid the Fourier’s
law, a temperature gradient can be measured along the channel, which indicates the
existence of a nite thermal conductivity. If helium II is used, and the heat ux inside
the channel is not too high, the temperature gradient is so small that it cannot be mea-
sured, so indicating that the liquid has an extremely high thermal conductivity (three
million times larger than that of helium I). This is con rmed by the fact that helium
II is unable to boil. This e ect explains the remarkable ability of helium II to remove
heat and makes it important in engineering applications: for example, liquid helium is
often used in the aerospace industry as refrigerant of highly sensitive detectors in order
to minimize thermal noise, as for instance in the exploration of the minute uctuations
of the intensity of the cosmic background microwave radiation, or in the future search
of gravitational waves. Furthermore, it is used at CERN for the refrigeration of large
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magnets required to provide the suitable curvature of the trajectories of extremely fast
particles.

In addition to the above described properties of He II related to heat transfer, there
are other features in the transport properties. For instance the thermomechanical
phenomena in which a pressure di erence corresponds to a temperature di erence, and
vice-versa. The most typical is the well known fountain e ect, whose name is due to
the fact that in the experimantal apparatus the pressure di erence is able to produce
a jet of helium similar to a fountain.

When the heat ux exceeds the critical value qc one observes the formation of
microscopic quantized vortices which imply a big decrease of the thermal conductivity
of the super uid, because of the internal friction produced by these vortices on the
normal component (Barenghi et al., 2001; Donnelly, 1991; Nemirovskii, 2013; Tsubota
et al., 2012). Therefore, an important problem to be addressed in cryogenic refrigeration
is the onset of quantized vortices. This situation is known as super uid turbulence and
was discovered in the 50s of the last century. Note that the vortices themselves are
quantum entities, and they have quantized vorticity. This means that the line integral
of the super uid velocity along any closed line around the core of the vortex is equal
to h/m4, h being Planck’s constant and m4 the mass of a helium atom. This condition
is analogous to Bohr quantization condition in the electronic orbits in atomic physics,
where 2 rmv = nh, where r is the radius of the orbit, m the electron mass and n
a natural number. In super uids, only the situation with n = 1 is found, because it
requires less energy to elongate a vortex line keeping n = 1 than keeping the length
of a vortex line but changing from n = 1 to n = 2. We have commented this point
to emphasize that the analysis of quantum vortices is a very interesting topic, at the
interface of quantum physics and physics of uids.

Super uid behaviour — both laminar and turbulent — may be described from two
di erent models: two- uid model, where the uid is assumed to be a mixture of a nor-
mal and a super uid component, each with its own density and velocity (Khalatnikov,
1989; Landau and Lifshitz, 1987); and one- uid model, with the heat ux as a vectorial
internal variable. These two models will be explained and compared in Chapter 2.
These problems have already been addressed in (Jou et al., 2002; Mongiov̀ and Jou,
2007), where a hydrodynamical model for turbulent helium II has been proposed, by us-
ing Extended Thermodynamics (E.T.) (Jou et al., 2011a; Lebon et al., 2008; Mongiov̀ ,
1993; Muller and Ruggeri, 1998) where dissipative terms are introduced, dependent on
the gradients of velocity and heat ux.

Analogously to the situation found in heat transfer, many experimental results have
been reported in helium super uid ows along capillary channels and narrow slits, where
they ow with almost no viscous e ects. The rst analysis dealts with laminar ow,
but it was realized that turbulence appears when the velocity exceeds some critical
values vc. Also in this case, a tangle of quantized vortices appears which contributes
to friction against the barycentric motion, in a similar way to what happens for heat
ux higher than qc.
The analysis of quantized vortices and of quantum turbulence in helium — as well
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as that of quantized vortices in Bose-Einstein condensates, or of electric current vortices
in superconductors — is an active topic of research, because it reveals new coherent
collective behaviors in quantum uids, and because of the practical interest to control
quantum vortices in superconductors, in which pinned vortices represent an unwanted
source of dissipation. Amongst the problems in this eld are the knowledge of how the
vortex line density L depends on the heat ux — or the current ux in superconductors
— and on the boundary conditions, or the comparison between quantum and classical
turbulence.

Indeed, the main topic of this thesis is the mesoscopic structure of quantum turbu-
lence in three main aspects:

1. the velocity pro les of normal and super uid component;

2. the structure of inhomogeneous and anisotropic tangles;

3. the mutual interaction between these two aspects in di erent ow geometries.

After many years of focusing the interest on the quantized vortices, one of the cur-
rent topics of research in super uid turbulence is the dynamical behavior of the normal
component. For instance, it is not completely known whether the normal component
is itself in a turbulent state or whether it remains in a laminar ow, in contrast to
the turbulent super uid component. In particular, counter ow situations — in which
the barycentric velocity of the total uid is zero, because of suitable opposite ows of
the normal and super uid components — have been examined in much detail, either
theoretically and experimentally. This is a particular example of a more general and
active topic, the comparison of classical and quantum turbulence.

The spatial aspects of the interaction between the vortices and the heat ux are
another interesting topic of research which has not yet been fully explored. Some ques-
tions are, for instance, the behaviour of the heat pro le near the walls, a region which
may be a specially active source of vorticity. Another question is the curvature — or
lack of curvature — of the heat pro le in the center of the channel, which is another spe-
cially sensitive region allowing the possibility to explore whether the ow of the normal
component is laminar (and has a typical parabolic velocity pro le corresponding to a
Poiseuille ow) or turbulent (and has a at pro le in the central region). Furthermore,
the description of inhomogeneous and anisotropic vortex tangles is another important
topic, because recent simulations and experiments have revealed that the usual hy-
pothesis of homogeneous and isotropic tangle is too simplistic. Exploring these aspects
requires a detailed knowledge of the mathematical consequences of the corresponding
eld equations.
The aim of this thesis is the detailed mathematical study of heat ow in super uids.

First of all we report in Chapter 1 the derivation of a phase eld model for lambda-
transition from He I to He II, when the liquid is subject to pressure and heat ux.
Besides its original aspects, this chapter is useful as an introduction to the quantum
microscopic aspects of super uidity. In Chapter 2 we provide a general presentation
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of the equations used in the following chapters, and introduce the essential physical
concepts, from a macroscopic perspective. The other three chapters explore the pro-
les of the heat ux, of the pressure and of the vortex line density in the following

characteristic ows: fully developed ow along a cylindrical channel or a slit (Chapter
3), entrance ow in a cylindrical channel or a slit (Chapter 4), axial ow of super uid
between two concentric cylinders or ow in convergent or divergent channels (Chapter
5).

In the introduction of each chapter we explain the speci c motivations for such
analysis, and we discuss the state of the art in research; at the end of each chapter we
make some remarks, that are recalled in the nal discussions of this thesis.
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Chapter 1

Super uid phase transition in the
presence of a heat ux

Helium is one of the most unique and interesting elements in physics. The helium

atom occurs in nature in two stable isotopes, 3He and 4He. In this chapter, we will

report some results on transition to super uidity in liquid 4He, as well as an original

investigation on the in uence of a heat ux on the mentioned transition.

The critical temperature of 4He is about 5.2 K at 1 atmosphere; above this critical

temperature it cannot exist as a liquid irrespective of the external pressure. Actually,

the interatomic (van der Waals) forces are too weak for liquid 4He to solidify at 0.1 MPa

(1 atm) pressure even at the lowest temperatures which have been attained. The phase

diagram of 4He is shown schematically in Figure 1.1. Besides the vapour to liquid,

and liquid to solid, phase transition, The solid phase appears only for pressures above

2.5MPa.

Figure 1.1: Phase diagram of 4He.



2 Super uid phase transition

Liquid 4He exhibits a transition from normal liquid 4He (known as liquid helium

I) to super uid liquid 4He (known as liquid helium II) when the liquid is cooled below

a critical temperature T , which is T = 2.17 K at vapour pressure. The solid phase

appears only for pressures above 2.5 MPa.

Apart from its very low mass density, liquid He I is a normal viscous liquid, instead,

liquid He II has some remarkable and unusual properties. For example, its viscosity is

extremely small and its thermal conductivity extremely high (three million times larger

than that of helium I). This new phase of 4He is similar to the superconducting state of

metals: the vanishing ohmic resistance in the motion of conduction electrons is similar

to the frictionless motion of atoms in super uid He II.

In order to describe the behaviour of the super uid state discovered in the 1930’s;

In (London, 1954) the author associated this liquid with the quantum properties of an

ideal Boson gas close to its ground state. Indeed, it is known that in a non-interacting

Boson gas the Bose-Einstein condensation takes place, as the temperature is lowered

below a critical one. This is an unusual kind of condensation in the con gurational

space: the atoms condense to their common ground state, i.e. a macroscopic fraction

of the atoms occupies in a coherent collective way the same quantum state, which is

the state of minimum energy. These considerations led Tisza to build up the famous

two- uid model having as the basis the condensate fraction as one uid and the excited

fraction as another uid, intimately mixed with each other (Tisza, 1938).

A more detailed physical basis for the two- uid model was developed in (Landau,

1941). Noting that He II is a complicated system of strongly interacting particles,

Landau argued that super uid helium cannot be considered an ideal gas, and based his

arguments on the character of the low-energy spectrum of the excitations of the system,

the so-called quasiparticles (rotons and phonons). According to Landau, He II corre-

sponds to a potential owing ground state in which quasiparticles move. The quanta of

these collective modes of the ground state form a rare ed gas which is responsible for

the thermal and viscous e ects ascribed to the presence of the normal component. The

motion of the quasiparticle gas produces the normal-super uid counter ow, the relative

motion of the “normal component” with respect to the ground state. The condensed

phase corresponds to a macroscopically occupied quantum state and can be described

by a complex macroscopic wave function . In this model the overall uid is assumed

as a mixture of normal and super uid components with respective densities n and s

and velocities vn and vs (the total density is = n + s).

Another macroscopic model to describe the anomalous behaviour of liquid helium

II is the one- uid model (Mongiov̀ , 1993, 1994, 2000a, 2001) derived by Extended

Thermodynamics (E.T.) (Jou et al., 2011a, 2010; Lebon et al., 2008; Muller and Rug-

geri, 1993, 1998). In this model the relative motion between normal and super uid

components is described by an internal variable, that macroscopically can be related
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to the heat ux. Indeed, the two di erent components (normal and super uid) are

not directly observed, but velocity and heat ux are. Usually, the thermodynamics of

He II are determined experimentally through the measurements of the sound velocities

(Maynard, 1976), that determine directly the thermodynamic derivatives which can

be integrated to give the temperature and pressure dependence of the thermodynamic

quantities , S, n/ . From these quantities, using the relations of the two- uid model,

the velocities of the normal and super uid components are also derived. Thus, the one-

uid proposal is clarely related to observations, without need of an a priori microscopic

interpretation.

As the normal liquid He I is cooled, a line of lambda-points appears at about 2

K; indeed, the temperature at which this line occurs depends on the pressure, in the

absence of heat current. But, when an external heat ux is imposed, the temperature

at which the transition occurs is lower than in the absence of it (Weichman et al.,

2001). The appearance of the critical points (a surface in the space of the variables p,

T , q2, where p is the pressure, T the temperature and q the modulus of the heat ux)

is indicative of a continuous symmetry-breaking phase transition that occurs. This

situation is characteristic of a second order phase transition.

Second-order phase transitions can be regarded as going from an ordered to a dis-

ordered state and can be macroscopically described introducing a parameter called

the order parameter. Examples of second-order phase transitions are the ferromag-

netic transition, the superconducting transition (Berti and Fabrizio, 2007a,b; Tilley

and Tilley, 1990), and the super uid transition (Fabrizio, 2010; Fabrizio and Mongiov̀ ,

2013a,b; Tilley and Tilley, 1990). From a theoretical perspective, order parameters

arise from symmetry breaking. In such cases one must introduce one or more extra

variables to describe the state of the system. In some systems the order parameter is

a real number (e.g. the magnetization in ferromagnetic materials), in other systems is

a vector (e.g. the direction in liquid-crystal phases (Berti et al., 2013)), or a complex

number, as in superconductors and super uids.

The Landau theory of second-order phase transitions (Ginzburg and Landau, 1950;

Tilley and Tilley, 1990) is a macroscopic theory that describes transformations which

involve a broken symmetry and a continuous change in the free energy. This theory was

applied to liquid 4He near the lambda-point in (Ginzburg and Pitaevskii, 1958). They

used as order parameter the macroscopic coherent wave function of the condensate

(x, t), that they assumed linked to the super uid density by the relation

s(x, t) = m4| (x, t)|2, (1.1)

where m4 is the mass of a helium atom.

However, Ginzburg and Pitaevskii studied only stationary situations, in an inertial

frame, and did not consider the in uence on the transition of the pressure and of the
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heat ux. Our aim, in this chapter, will be to build up a thermodynamic model of
4He able to describe the lambda-transition in this liquid, also in non stationary and

inhomogeneous situations under pressure and in the presence of heat ux.

For this reason in this chapter, following previous results (Fabrizio and Mongiov̀ ,

2013a,b; Mongiov̀ and Saluto, 2014), a phase eld model is built to describe the lambda-

transition, under pressure and in the presence of heat current. The model chooses as

fundamental elds the density, the temperature, the velocity, the heat ux and a phase

eld scalar function, that is the order parameter that controls the transition. Indeed,

following Landau, the transition from the liquid He I (normal state) to the liquid He II

(super uid state) induces a change in the internal structure order. The eld that

describes the structure order and controls the transition is linked to the modulus of the

collective wave function describing the quantum coherent aspects of the uid | (x)| by
the relation

f2(x, t) = m4| (x)|2 = s, (1.2)

where is the total mass density of the liquid helium. Hence the phase eld f = 0

denotes the normal state, while f = 0 describes a super uid state. Note that this

change of structure is related to a purely quantum feature, namely, the coherent of the

ground state.

As in (Fabrizio and Mongiov̀ , 2013b), in this study we consider the dependence of

the super uid transition on the heat ux. This is important, because the presence of

the heat ux involves a change in transition temperature, in agreement with the well

known analogy between superconductivity and super uidity (Tilley and Tilley, 1990;

Tinkham, 1996).

Indeed, for type II superconductors, a high magnetic eld destroys superconductiv-

ity and generates magnetic vortices. In fact, in a type-II superconductor there are two

critical values Hc1 and Hc2 of the magnetic eld. For applied eld intensity less than

Hc1, superconductor exhibits the usual Meissner e ect; for an applied eld strength

higher than Hc2 superconductivity is destroyed. In between Hc1 and Hc2 the super-

conductor allows partial penetration of the magnetic eld, in the form of an Abrikosov

vortex lattice (Abrikosov, 1957); this state is called a mixed-state vortex lattice. Each

vortex carries a quantum of magnetic eld. The supercurrent circulates around the nor-

mal (i.e. non-superconducting) core of the vortex. Abrikosov vortices tend to arrange

themselves in a ux-line (usually) triangular lattice, which however can be perturbed

by material inhomogeneities (defects/dislocations) that pin the ux lines (Maruszewski,

2008a,b; Maruszewski and Restuccia, 1999; Tilley and Tilley, 1990; Tinkham, 1996).

Similarly, the presence of heat current can generate an analogous phenomenon: for

applied heat ux less that qc1 the super uid is in the laminar regime; for a heat ux

higher that qc2 super uidity is destroyed, i.e. the liquid helium is in the normal phase
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He I. In between qc1 and qc2 the super uid is in the turbulent regime, in which a tangle

of quantized vortices is present.

1.1 Evolution equations of Liquid 4He describing the tran-

sition from He I to He II

In this section a phase eld model will be built to describe the lambda-transition, under

pressure and in the presence of heat current. The model chooses as fundamental elds

(state vector):
mass density
velocity v
temperature T
phase eld function f
heat ux q

For these elds, we consider a general set of evolution equations, adding to the balance

equations of mass, momentum and energy two additional balance equations for the

order parameter f and for the vector eld q. Then we will particularize the constitutive

relations for the elds in order to describe the material in consideration.

1.1.1 Balance equations

The starting point will be the following general set of balance equations for the density

, the baricentric velocity v, the internal energy E, the order parameter f and the heat

ux q:

(x, t) + (x, t) · v(x, t) = 0,

(x, t)v(x, t) + · Jv(x, t) = 0,

E(x, t) + E(x, t) · v(x, t) + · q(x, t) + Jv(x, t) : v(x, t) = 0,

f(x, t) + f(x, t) · v(x, t) + · Jf (x, t) = f (x, t),

q(x, t) + q(x, t) · v(x, t) + · Jq(x, t) = q(x, t).

(1.3)

In these equations E = is the internal energy density, Jv is the stress tensor, Jf

the ux of the order parameter f , Jq the ux of the heat ux; f and q are terms

describing the net supplies of the two elds f and q; in the following we will write

constitutive relations for these elds adding to those for the entropy S and the entropy

ux JS . In system (1.3) an upper dot denotes the material time derivative, while the

colon denotes the double scalar product, i.e. Jv : v = i,j[Jv]ij [ v]ji.
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Note that if one wants to describe with this set of equations both liquid helium I

and liquid helium II, these equations must reduce to the classical equations of a normal

viscous uid above the lambda-line, while su ciently below this line they must reduce

to a system of eld equations describing the super uid liquid helium II.

We will determine restrictions on the uxes by using the material objectivity princi-

ple and the second law of thermodynamics. The second law of thermodynamics states

that the rate of entropy production per unit volume, S , is a positive de nite quantity.

Accordingly, there exists a convex function S, the entropy per unit volume, and a vector

function JS , the entropy ux density, such that the rate of production of entropy S is

non-negative

QS = S + S · v + · JS 0. (1.4)

In principle, also entropy S and entropy ux JS may depend on the gradients of

the basic quantities. However, we may directly exclude the terms in , E, f , v

and q from S, because we are not considering an evolution equation for the gradients

themselves, and in this case the entropy does not depend on the gradients, as it will be

shown in equations (1.13) — see also (Cimmelli, 2009; Cimmelli and Frischmuth, 2007;

Van, 2003) —.

We assume for S and JS approximate constitutive relations to second order in q

and in the derivative of the fundamental variables, satisfying the material objectivity

principle (Muller and Ruggeri, 1998), i.e.

S = S( , E, f, q2), (1.5)

Js = 0q+ 1 + 2 E + 3 f +

4 ( · v)q+ 5 ( · q) q+ 6 q · v + 7 q · q , (1.6)

where h = h( , E, f).

Note that inequality (1.4) does not hold for any value of the fundamental variables,

but only for the thermodynamic processes, i.e., only for those values which are solution

of the system (1.3). This means that we can consider the equations (1.3) as constraints

for the entropy inequality to hold. A way to take these constraints into account was

proposed in (Liu, 1972). He showed that the entropy inequality becomes valid for

totally arbitrary values of the basic variables provided that one complements it by the

evolution equations for the elds , v, E, f and q a ected by multiplying factors ,
v, E , f and q, that are also supposed objective functions of the fundamental

elds. He called these factors Lagrange multipliers, in analogy with the extremization

problems in the presence of constraints, which is a typical situation in information

theoretical approach to equilibrium statistical mechanics.

Because our aim is to write a weakly non local model of lambda-transition, we

will choose for the uxes the following constitutive expressions, compatible with the
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material objectivity principle, i.e.

Jv = (p 1 · v 2 · q)U 1 v 2 q , (1.7)

Jq = ( 0 1 · v 2 · q)U 1 v 2 q , (1.8)

Jf = 0q+ 1 + 2 E + 3 f, (1.9)

where U is the unit matrix and angular brackets denote the deviatoric part of the

tensors v and q (for example, q<i
xj>

= 1
2

qi
xj

+ 1
2

qj
xi

1
3

qk
xk

ij). These constitutive

equations introduce new terms in the balance equations (1.3) with respect to the pre-

vious model (Fabrizio and Mongiov̀ , 2013a). Coe cients p, 0 and 0 are assumed

dependent on all the eld variables. The coe cients h, h, h, h and h are assumed

dependent on , E and f . Moreover, the coe cients h, h, h and h must reduce

to the viscosity coe cients of liquid helium I when f goes to zero, i.e. in the normal

phase; instead, in the super uid phase they must reduce to coe cients appearing in the

model proposed in (Mongiov̀ , 1993) for describing helium II (described in more detail

in the next chapter), as we will show in (1.58), (1.59), (1.61) and (1.62).

After introducing the Lagrange multipliers, one obtains from (1.4) the following

inequality, which is satis ed for arbitrary values of the eld variables

S + S · v+ · JS [ + · v] v · [ v + · Jv]

E E + E · v + · q+ Jv : v

f f + f · v + · Jf Qf

q · [q+ q · v+ · Jq Qq] 0. (1.10)

In the following subsections the consequences of inequality (1.10) on the constitutive

relations will be exploited and a set of eld equations compatible with the second law

will be written.

1.1.2 Restrictions imposed by the entropy principle

The constitutive theory is obtained substituting (1.5) and (1.6) in (1.10), taking into

account (1.3), (1.7), (1.8) and (1.9), and imposing that the coe cients of all derivatives

must vanish. In order to consider the derivatives with respect to time, we obtain
S
v
= v = 0 and

S
= ,

S

E
= E,

S

f
= f ,

S

q
= q, (1.11)

from which we can write

dS = d + EdE + fdf + q · dq, (1.12)
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where we have put q = q. Note that if we had ab initio assumed S dependent also

on the gradient of the eld variables, we would have obtained

S
= 0,

S

E
= 0,

S

f
= 0,

S

q
= 0. (1.13)

This justi es, a posteriori, our assumption that S does not depend on the gradient of

the basic variables.

Concerning the uxes, we obtain

· JS = E [ · q+ Jv : v] + f · Jf + q · [ · Jq] , (1.14)

imposing the coe cients of space derivatives of velocity to be zero, we obtain

S E(E + p) ff q · q = 0, (1.15)

imposing that the coe cients of the linear terms in the spatial derivatives of , E, f

and q have to be zero, we get

0 =
E + f

0, d 0 = d 0 +
fd 0, (1.16)

and vanishing the coe cients of the spatial derivatives of the second order, we obtain

1 =
f

1, 2 =
f

2, 3 =
f

3, (1.17)

4 = 1, 5 = 2, 6 = 1, 7 = 2. (1.18)

It remains from (1.10) the following inequality

E
1( · v)2 + ( E

2 + 4) ( · v) ( · q) + 5( · q)2 + E
1 v : v

+( E
2 + 6) v : q + 7 q : q + q ·Qq + fQf 0.

(1.19)

1.1.3 Physical meaning of the constitutive equations and of the La-
grange multipliers

Analyze now in detail the relations obtained in the previous section. Consider rst

equations (1.12) and (1.15). When we put in them f = 0 and q = 0, they reduce to

dSI = Id + E
I dE, (1.20)

SI I
E
I [E + p] = 0, (1.21)

where we have put SI = S( , E, 0, 0), I = ( , E, 0, 0), E
I = E( , E, 0, 0). So, if

we identify 1/ E
I and I/

E
I as the temperature TI and the mass chemical potential

µI of the normal liquid helium I

E
I ( , T ) =

SI

E
=

1

TI
, I( , E)

E
I ( , E)

=
SI

E

= µI , (1.22)
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equations (1.20) and (1.21) become the well known Gibbs equations of thermostatics

of liquid helium I:

TIdSI = dE µId , (1.23)

µI = E TISI + p, (1.24)

We will suppose now f = 0. Introducing the temperature of liquid helium (in the

normal and in the super uid phase) as the reciprocal of the rst-order part of the

Lagrange multiplier of the energy

E =
S

E ,f,q2
=

1

T
, (1.25)

we can write equations (1.12) and (1.15) in the following form

TdS = dE + T d + T fdf + T q · dq, (1.26)

TS = E + p+ T + Tf f + T q2. (1.27)

Note that, because we have assumed a weakly non-local model where the entropy

S is independent of the gradients of eld variables, from equation (1.26) we deduce

that also the Lagrange multipliers do not depend on the gradients. When we perform

a change of variables, substituting the temperature T to the energy density E, using

equation (1.25), we conclude that also the energy density E is independent of the

gradients, in this model. More general models where the energy and the entropy depend

on the gradients of the eld variables can be built up (see the Remarks of this chapter),

but they are beyond our aim.

Introducing the free energy G = E TS, from (1.26) we obtain

dG = SdT T d T fdf
1

2
T dq2, (1.28)

from which we get:

G
T ,f,q2

= S, G

T,f,q2
= T ,

G
f ,T,q2

= T f , G
q2 ,T,f

= 1
2 T.

(1.29)

Consider now the consequences of equations (1.16). Using de nitions (1.25), we get

d 0 = d
1

T
+ 0d

f . (1.30)

De ning:

=
f2

2
0 = 0f2

2

f

, =
f2

2
0

T
=

f2

2T 2
+ 0f2

2

f

T
, (1.31)

=
f2

2
0

f
= 0f2

2
f

f
, =

f2

2
0

q2
= 0f2

2
f

q2
, (1.32)
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equation (1.30) is written

f2

2
d 0 = d + dT + df + dq2. (1.33)

Note that above the lambda-line, where f = 0, all coe cients , , and vanish.

In particular, if we assume that coe cient 0 vanishes, it results 0/ = 0,

0/ f = 0, 0/ q2 = 0 and coe cient assumes the simple expression

=
f2

2T 2
. (1.34)

It remains to determine the expressions of the production terms Qf and Qq of the

two elds f and q.

1.1.4 Determination of the source terms

A Ginzburg-Landau type equation for the order parameter

As we have said, in this model, the entropy and the energy are objective functions of

the fundamental elds and do not depend on their gradients. To write an evolution

equation for the order parameter f , we start supposing that the free energy density G

has the simple expression

G = G1 +Gf = G1 +
1

2
ãf2 +

1

4
b̃f4, (1.35)

where G1 = G1( , T ) is the free-energy density of He I, and coe cients ã and b̃ are

general functions of the eld variables:

ã = ã( , T, q2), b̃ = b̃( , T, q2). (1.36)

In Subsection 1.2.2 we will compare the equation for the order parameter, obtained

in what follows, with that obtained from the usual Ginzburg-Landau model.

Now, following Landau, we will assume that the stable stationary state of the system

is that which minimizes the free energy, with respect to the order parameter f . One

obtains from (1.35) the simple equation:

G

f
= ã( , T, q2)f + b̃( , T, q2)f3 = 0. (1.37)

Our aim, is to write an evolution equation for the phase eld f that reduces to equation

(1.37) in homogeneous stationary states. Therefore, we will assume that the production

term in the equation of the order parameter is proportional to G/ f and we get

Qf = K
G

f
= K ã( , T, q2)f + b̃( , T, q2)f3 , (1.38)



Evolution equations 11

where K is a positive constant. Recalling equation (1.29)c, we see that with this choice,

the Lagrange multiplier f of the eld f is proportional to Qf . This result will be useful

in the exploration of the residual inequality (1.19), where the product fQf appears.

We consider now the balance equation (1.3d) for the eld f and substitute in it

relations (1.9) and (1.38), we get:

f+f ·v+ ·( 0q+ 1 + 2 E+ 3 f) = K ã( , T, q2)f + b̃( , T, q2)f3 . (1.39)

To describe lambda-transition in liquid helium, now we determine some constrains

for coe cients ã and b̃. The rst observation is that the stationary solutions of equation

(1.39), neglecting spatial inhomogeneities of the eld variables, are:

f = 0 and f2 =
ã( , T, q2)

b̃( , T, q2)
. (1.40)

The rst of them describes the normal phase, and therefore this solution must be stable

for T higher than a critical temperature Tc; instead, the second stationary solution

describes the super uid phase, and must be stable for T < Tc.

As usual in the thermodynamics of liquid helium, in the following, we will assume

the pressure p as independent variable instead of the density . Further, we will suppose

that ã depends on p, q2 and on the critical temperature Tc, while b̃ is independent of

the temperature, then we assume

ã = A(p, q2)(T Tc) and b̃ = B(p, q2), (1.41)

with A and B positive quantities. With this choice, f = 0 is stable (i.e. 2G/ f2 > 0)

for T > Tc, and f = 0 is stable for T < Tc. Experiments show that the critical

temperature Tc depends on the pressure and on the heat current. So we have:

Tc = Tc(p, q
2). (1.42)

Therefore, in the space of the thermodynamic variables (p, T, q2) we will have a surface

of lambda-points, of equation T = Tc(p, q2). The equation of this surface can be ob-

tained by using experimental data. First, we observe that in the absence of heat ux

the equation (1.42) must reduce to:

Tc(p, 0) = T (1 ap), (1.43)

where a is the slope of the line of critical points, the so-called lambda-line of Figure 1.1.

A glance to Figure 1.1 shows that coe cient a is positive. If we suppose q not too high,

equation (1.42) can be approximated by

Tc = Tc(p, q
2) T 1 ap bq2 , (1.44)
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where b can be determined from experimental data. Noting that the presence of the

heat ux can create vortices, so destroying super uidity, we deduce that also coe cient

b is a positive coe cient, i.e. the presence of q reduces the critical temperature T .

Equation (1.44) represents a plane of critical points in the space of the variables p, q2

and T , that we will call lambda-plane.

Recalling the microscopic meaning of the order parameter f (f2 = s), we can

determine the link between coe cients A and B. In fact, with the assumptions (1.41)

for ã and b̃, if we neglect spatial inhomogeneities of the eld variables, the non-zero

stationary solution of equation (1.39) is

f2 =
A(p, q2)

B(p, q2)
Tc(p, q

2) T . (1.45)

Since s/ 1, when T 0, then f must be equal to when T 0. So we infer that

B =
ATc

2
. (1.46)

Finally, putting:

1 p
+ 2

E

p
= 1̃, (1.47)

1 T
+ 2

E

T
= 2̃, (1.48)

1 f
+ 2

E

f
+ 3 = 3̃, (1.49)

we obtain the following evolution equation for f :

f + f · v+ · ( 0q+ 1̃ p+ 2̃ T + 3̃ f) =

= K A(p, q2) T Tc(p, q
2) f +

1
2
A(p, q2)Tc(p, q

2)f3 . (1.50)

Using relations (1.41) and (1.46), the free energy G becomes:

G(x, t) = G1 +
1

2
A(T Tc)f

2 +
1

4 2
ATcf

4. (1.51)

This choice of G allows us to obtain the expressions for the entropy density Sf and the

energy density Ef , that depend on the order parameter,

Sf =
G

T
=

1

2
Af2, Ef = Gf + TSf = ATc

1

4 2
f4 1

2
f2 . (1.52)

Intuitively, it is logical that the entropy of liquid helium II is lower than that of liquid

helium I, because it is microscopically more ordered, because of the quantum coherence

of the particles condensed in the fundamental state.
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Further, from equations (1.29), we get the following expressions of the Lagrange

multipliers:

= 1
T

G1 + 1
2Tf

2 A + 1
4 2 f4 1

2f
2 ATc ,

f = 1
T A(T Tc)f + 1

2ATcf3 ,

q = q = 2
T

1
2Tf

2 A
q2 + 1

4 2 f4 1
2f

2 (ATc)
q2 q.

(1.53)

A generalized Cattaneo equation for the heat ux

Following (Fabrizio and Mongiov̀ , 2013a), for the production terms Qq in the equation

for the heat ux, we will choose the expression

Qq =
1

q( , f)
q, (1.54)

with q( , f) a scalar coe cient of the dimension of time, that can be interpreted as

relaxation time of q. This coe cient depends on the order parameter f , and it results

zero above the lambda-line, while it becomes extremely high below it. As in (Fabrizio

and Mongiov̀ , 2013a), in the following we will choose for q the simple expression

q( , f) =
f2

2 f2
, (1.55)

where is a constant having the dimension of time. In this way the evolution equation

for the heat ux is:

q+q · v+ · [( 0 1 · v 2 · q)U 1 v 2 q ] =
2 f2

f2
q. (1.56)

If one assumes coe cient 0 = 0, it results 0 = ( 2/f2) T and eq. (1.56) reduces

to

q =
2

2 f2
T

f2

2 f2
{q+ q · v · [( 1 · v + 2 · q)U + 1 v + 2 q ]} . (1.57)

We will choose for the coe cients of the nonlocal terms in this equation the following

expressions:

1 = 0 T 2 , 2 = 0
f2

2
2T 3 , (1.58)

1 = 2 2 T 2 , 2 = 2 2
f2

2
2T 3 . (1.59)
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In this way, in the super uid phase, the coe cients of equation (1.57) reduce to the

coe cients used in the following chapters to describe He II as in (Mongiov̀ , 1993), that

are described in more detail in the next chapter.

Coe cient in equation (1.57) is a nonnegative coe cient (as it will be shown

in Subsection 1.1.7). In fact, when f = 0, i.e. in the normal phase, from (1.57) one

gets q = T , from which we deduce that must be identi ed with the heat

conductivity k of He I. Indeed, because both k and are nonnegative coe cients,

also is nonnegative. While in the super uid state this positive coe cient is linked

to the velocity of the second sound, as proved in (Mongiov̀ , 1993), by the relation

w2
2 = /( cV ), with cV the constant-volume speci c heat.

1.1.5 The motion equation

We consider now the balance equation for the momentum (1.3b), that, using the con-

stitutive relation (1.7), is written as

v + p · [( 1 · v+ 2 · q)U + 1 v + 2 q ] = 0. (1.60)

This equation must reduce to the classical motion equation of a normal viscous uid

above the lambda-line. Simple expressions for these coe cients that satisfy this as-

sumption are:

1 = 0, 2 =
f2

2 0 T, (1.61)

1 = 2 2, 2 = 2
f2

2 2 T. (1.62)

Note that 0 and 2 correspond to the bulk and shear viscosity, whereas 2 and 2

relate dissipation to the inhomogeneities of the heat ux and are typical of the super-

uid. They are null for usual viscous uids, in which dissipation is related to velocity

gradients. With this choice, equation (1.60) becomes

v+ p · 0 · v
f2

2 0 T · q U+ 2 2 v 2
f2

2 2 T q = 0. (1.63)

1.1.6 The temperature equation

The energy balance equation (1.3c), using the constitutive relation (1.7), can be written

as

+ ·q+ p ·v 1( ·v)2 2( ·q)( ·v) 1 v : v 2 q : v = 0.

(1.64)
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The equation for the temperature T is then obtained assuming that = (p, T, f, q2).

Taking in mind relations (1.61), (1.62), one gets the following equation

cpT + pp+ ff + 2 q2q · q = · q p · v + 0( · v)2

f2

2 0 T ( · q)( · v) + 2 2 v : v 2
f2

2 2 T q : v , (1.65)

where cp = T is the constant-pressure speci c heat of helium, whose plot is shown in

Figure 1.2; near the lambda-point it takes very high values and can be approximated

by cp = c0|T T | , with = 0.0127 ± 0.0003 (Lipa et al., 2003). Incidentally, it

is precisely this peculiar form of cp as a function of T near T the origin of the name

lambda-temperature, because it has the form of a Greek lambda. This divergence of

cp when T T is typical of second-order transitions. A tentative expression for

cV under pressure and in the presence of heat ux could be cV = c0 |T Tc|
c0 T T (1 ap bq2) .

Figure 1.2: The speci c heat of liquid 4He vs the temperature.

1.1.7 Entropy inequality

We will consider nally the residual inequality (1.19). Using de nition (1.25) and

relations (1.18), (1.58), (1.59), (1.61), (1.62), it can be written in the following way:

1

T
0( · v)2 0

f2

2
T 2 ( · v) ( · q)

f2

2 0
2T 3 ( · q)2

+
2

T 2 v : v 2 2
f2

2
T 2 v : q

2
f2

2 2
2T 3 q : q + q ·Qq + fQf 0. (1.66)
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Let’s denote:

N1 =
1
T 0( · v)2 0

f2

2 T 2 ( · v) ( · q) f2

2 0
2T 3 ( · q)2

N2 =
2
T 2 v : v 2 2

f2

2 T 2 v : q 2f2

2 2
2T 3 q : q

N3 = fQf + q ·Qq

Recalling de nitions (1.31)b, we have:

=
f2

2

1

T 2
1 0T

2
f

T
. (1.67)

We consider rst the case 0 = 0. In this case = f2

2
1
T 2 and one sees that:

N1 =
1
T 0 · v f2

2 T · q
2
,

N2 =
2
T 2 v f2

2 T q : v f2

2 T q ,

N3 = q ·Qq + fQf .

Being N1 and N2 nonnegative expressions, the entropy inequality is satis ed if it results

also N3 0.

In the case 0 = 0, the entropy inequality (1.66) will be veri ed if any Ni is semi-

de nite positive. Therefore the matrices

1
T 0

0
2 (f

2

2 T 2)
0
2 (f

2

2 T 2) f2

2 0
2 T 3

and
2
T 2 2 (f

2

2 T 2)

2 (f
2

2 T 2) 2f2

2 2
2 T 3

must be semide nite positive. Both the determinants of these matrices are negative

quantities, independent of the value of the coe cients appearing in them. Then, the

compatibility of this model with the second law of thermodynamics imposes the van-

ishing of the coe cient 0.

We will consider nally the residual inequality

N3 =
fQf + q ·Qq 0. (1.68)

Recalling that f = 1
T

G
f (equation (1.29)c) and that in (1.38) we have assumed

Qf = K G
f , we have that the rst term in N3 is positive (because K > 0). Using

relations (1.54), (1.55) and (1.67) with 0 = 0, inequality (1.68) can be written:

K
T

G
f

2
+ f2

2 T 2

2 f2

f2 q2 0, (1.69)
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and it is always veri ed because it results > 0, K > 0 and f2 2.

Moreover, because Qq is negative, also must be negative in order to have N3 > 0,

and then = f2

2
1
T 2 must be nonnegative. This is consistent with the identi cation

of as the thermal conductivity of liquid helium I (see paragraph below (1.59)).

1.2 Field equations and comparison with Ginzburg-Landau

model

In this section we summarize the main eld equations obtained in this chapter and we

compare the evolution equation for the order parameter with that obtained from the

usual Ginzburg-Landau model.

1.2.1 Evolution equations for the eld variables

Summarizing, we have obtained the following system of evolution equations for the eld

variables , v, T , f and q, able to describe both liquid helium I and liquid helium II:

pp+ TT + ff + · v = 0

v+ p 0 · v f2

2 T · q · 2 2 v f2

2 T q = 0

cpT + pp+ ff + 2 q2q · q+ · q p · v 0( · v)2 2 2 v : v

+ f2

2 0 T ( · q)( · v) 2f2

2 2 T q : v = 0

f + f · v + · ( 1̃ p+ 2̃ T + 3̃ f) +K A(T Tc)f + 1
2ATcf3 = 0

q+ q · v +
2

f2 T + 0 T 2 · v f2

2 T · q

+ · 2 2 T 2 v f2

2 T q +
2 f2

f2 q = 0

(1.70)

This system of eld equations is obtained starting from a general set of balance

equations by using Liu procedure and the production term in the equation of the order

parameter is obtained from the simple expression (1.35) for the free energy density. In

the next subsection we will point out how a similar evolution equation for the order

parameter f (the fourth equation above) can be obtained starting with a generalized

Ginzburg-Landau expression for the free energy density.
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1.2.2 Comparison with the GL equation for the order parameter

In the model of lambda-transition in liquid helium proposed in (Ginzburg and Pitaevskii,

1958), one supposes that the free-energy density G can be expanded in powers of f2

and | f |2 in the following way:

G(x, t) = G1 +Gf = G1 +
1

2
ãf2 +

1

4
b̃f4 +

1

2
| f |2. (1.71)

Considering the uid at rest and following the Ginzburg-Landau (GL) general theory

of second-order phase transitions, they assumed that the stable stationary state of the

system is that which minimizes the total free energy with respect to the phase eld f ,

obtaining an equation for the order parameter of the type

tf = A
G

f
= A ãf + b̃f3 + 2f (1.72)

Note that if one chooses for the free energy the following more general expression

G = G1 +Gf = G1 +
1

2
ãf2 +

1

4
b̃f4 +

1

2
| 1 p+ 2 T + 3 f |2 , (1.73)

and one minimizes it in a steady-state with respect to the order parameter f , one

obtains for f the following equation:

tf = A
G

f
= A ãf + b̃f3 + · [ 3( 1 p+ 2 T + 3 f)] . (1.74)

To compare this result with that obtained in our work, we note that if the uid is at

rest equation (1.70d) becomes:

tf = · ( 1̃ p+ 2̃ T + 3̃ f) K A(T Tc)f +
1
2
ATcf

3 . (1.75)

This equation is identical with equation (1.74), if one assumes Aã = KA(p, q2)(T Tc),

Ab̃ = KB(p, q2) and h̃ = A 3 h (with A a constant quantity).

1.3 Remarks

In this chapter, we have build up a macroscopic model able to describe the behaviour

of liquid 4He above and below the lambda-line, under pressure and in the presence of

heat ux. We have worked in a non-equilibrium thermodynamic framework, choosing

as fundamental elds the heat ux q in addition to the mass, momentum and energy

densities, and introducing as a new internal variable a scalar function f , linked to the

modulus of the wave function of the condensate by the equation (1.2) and whose physical
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mean is the geometrical mean between the total density of the uid and that of the

super uid component. This internal variable is the order parameter that controls the

phase transition. To determine the restrictions by the second law of thermodynamics

on the constitutive quantities we have used the Liu procedure, that uses the Lagrange

multipliers.

This model describes the behaviour of liquid helium I, when f = 0, while it reduces

to the one- uid model of liquid helium II deduced from E.T, when f/ goes to 1, as

we will see in the following chapter.

Other models were build up over the years, that reduce to the two- uid model, when

the order parameter goes to 1. Among these we recall the model proposed in (Fabrizio,

2010) and recently in the paper (Berti and Berti, 2013). The model proposed here is

a macroscopic one and the variables used can be directly measured; in contrast, the

models formulated in (Fabrizio, 2010) and (Berti and Berti, 2013) use as fundamental

variables the velocities of normal and super uid components, that are only indirectly

measured, through measures of v and q. It could be of interest to compare the results

of these two di erent points of view.

In the future it would be of interest to generalize the model presented in this chap-

ter, to describe also phenomena as the vortex formation when the imposed heat ux is

su ciently high (Donnelly, 1991) and the successive establishment of super uid turbu-

lence (Ardizzone et al., 2009). It is known indeed that a su ciently high value of the

heat ux q destroys super uidity, i.e. determines a shift of the transition, by creating a

high number of quantized vortices, in analogy with what happens in a superconductor

when a magnetic eld higher than a critical value Hc2 is applied (Tilley and Tilley,

1990; Tinkham, 1996).

Another factor which could modify the super uid transition is a rotation of the

uid. If helium I is in a cylindrical container rotating with angular velocity , the

lambda-temperature would also be lowered. In fact, there is a strong analogy between

in a super uid and H in a superconductor (even stronger than the analogy between

q and H, bacause produces ordered vortices, as it will be discussed in next chapters).

An analogous analysis to that carried out here in the presence of q could be carried

out for , but we will not do it here, because we will focus our thesis on the role of

heat ux.

In the following chapters we will consider liquid helium su ciently below the tran-

sition temperature, in such a way that it is possible to assume the order parameter

closer or equal to density of the helium II.

• The model presented in this chapter is published in:
M.S. Mongiov̀ and L. Saluto, A model of transition in liquid 4He,
Meccanica 49 2125–2137 (2014), DOI 10.1007/s11012-014-9922-0





Chapter 2

Basic equations of He II:
hydrodynamics, thermodynamics,
and vortex dynamics

In the previous chapter we have build up a macroscopic model to describe the behaviour

of liquid 4He above and below the lambda-transition line, under pressure and in the

presence of heat ux. In the following chapters we plan to study super uid helium (i.e.

we consider liquid helium su ciently below the transition temperature), in such a way

that the order parameter can be assumed constant and closer or equal to the density

of the helium. For this reason, we don’t need to consider the equation for the order

parameter.

There are two frameworks to study the motion of super uid helium: the well known

and much used two- uid model of Tisza, Landau and Khalatnikov (Khalatnikov, 1989;

Landau, 1941; London, 1954; Mendelsohn, 1956; Tisza, 1938), inspired on quantum

microscopic grounds, and the one- uid model with heat ux as an internal variable

(Mongiov̀ , 1991, 1993), derived from Extended Thermodynamics (Jou et al., 2011a,

2010; Lebon et al., 2008; Muller and Ruggeri, 1993, 1998). In this chapter we present

and compare both models, their physical assumptions and mathematical formulations,

and we establish the set of equations which will be the basis of our analysis along

the next chapters. Our aim is to obtain evolution equations for E, v, q and L on

macroscopic grounds. We will assume that the uxes of the fundamental elds in these

equations depend on the gradient of the same elds and then we will use the term

“hydrodynamics equations” for the obtained evolution equations. We will try to give

to the discussion a wide scope to get rather general forms, which will be simpli ed in the

next chapters, according to the particular physical situations which will be considered

in them.
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2.1 Hydrodynamic equations in the two- uid model

The two- uid model assumes that the overall uid is composed of normal and super uid

components with respective densities n and s and velocities vn and vs. The total

density is = n + s, and the barycentric velocity is

v = nvn + svs. (2.1)

The slope of n/ and s/ under the lambda-temperature T in shown in Figure 2.1.

It is assumed that the super uid component corresponds to a Bose-Einstein condensate

Figure 2.1: Slope of n/ and s/

with strong mutual interactions, and that it is characterized by a macroscopic coher-

ent wave function. Instead, the normal component is formed of excitations (phonons,

rotons) owing in the background of the super uid component. The super uid compo-

nent is assumed to have zero entropy and zero viscosity, and the normal component has

non-vanishing entropy and viscosity. In this model, heat ow is, therefore, a motion of

the normal component with respect to super uid component.

The densities s(T ) and n(T ) change with temperature as

s(T ) = 1 n(T ) =
T T

T

1
2

. (2.2)

At T = 0 K, the normal component disappears and the whole system is super uid.

Equation (2.2) indicates that just at T = T practically the whole uid is formed by

the normal component, whereas at T = 0 K, the normal component has disappeared

and all the uid is in the form of the super uid component.

Following the two- uid model, the heat ux would be q = nsnT (vn v), if the in-

trinsic thermal conductivity is ignored. Here sn is the entropy of the normal component
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per unit mass of the normal component. By using (2.1) for v, q may be rewritten as

q = nsnT s (vn vs). If one de nes nsn = s, this is rewritten as q = sTs(vn vs),

where s is the entropy per unit mass referred to the total mass of the uid (i.e. both

the mass of the normal component and the mass of the super uid component). Thus,

if one also takes into account a non-vanishing thermal conductivity k of the mixture,

the heat ux q is given by the relation

q = q(tf) = sTs(vn vs) k T, (2.3)

where the superscript (tf) in q(tf) indicates the two- uid model. We note that, as a

consequence of (2.3), if one assumes that the liquid helium is globally at rest (v = 0),

the heat ux q(tf) is directly linked to the velocity of the normal component as

vn = (q(tf) + k T )( Ts) 1. (2.4)

To relate (2.3) and (2.4) it has been taken into account that v = 0 implies, according

to (2.1), either vn = vs = 0, or svs = nvn (the so-called counter ow situation).

For vs = vn = 0, the heat ux (2.3) reduces to Fourier’s law, but in general, heat

transport will be due essentially to the relative motion vn vs, in such a way that the

term in k T is often neglected in (2.3). A brief discussion considering the possibility

of a nonvanishing entropy of the super uid component ss to the total entropy, namely,

s = nsn + sss, but with ss sn, will be presented in Section 3.4, in a discussion of

heat ow in very narrow channels.

On the other side, if one works in the framework of the one- uid model, the velocity

v and the heat ux q, the density and the temperature T are chosen as fundamental

variables. Thus, the heat ux q plays the role of an independent variable, with a

long relaxation time. The conceptual advantage of the one- uid model is that, in fact,

from the purely macroscopic point of view one sees only a single uid, rather than

two physically di erent uids. Indeed the variables v and q used in E.T. are directly

measurable, whereas the variables vn and vs are only indirectly measured, usually from

the measurements of q and v. The internal degree of freedom arising from the relative

motion of the two uids is here taken into account by the heat ux. In contrast, the

two- uid model directly provides a very appealing image of the microscopic helium

behavior, and therefore is the most widely known.

In the next sections, the hydrodynamic equations of the one- uid model are pre-

sented and compared with those of the two- uid model, and their thermodynamic

implications are emphasized with special attention to on the one- uid model.
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2.2 Hydrodynamic equations in the one- uid model

Extended Thermodynamics (E.T.) has been applied to formulate a one- uid model of

liquid helium II. We recall brie y here the model formulated in (Mongiov̀ , 1993), mod-

ifying it to take into account the presence of a turbulent vortex tangle. In Section 2.4

we will go to deeper detail.

2.2.1 Basic equations

The fundamental elds in the E.T. are the mass density , the barycentric velocity

v = (vi), the temperature T , the non-equilibrium stress m = (mij), and the heat ux

q = (qi). In the following, we assume the non-equilibrium part of the stress decomposed

into its trace pV (non-equilibrium pressure) or bulk viscous pressure, and its deviator

m<ij>, that is mij = pV ij +m<ij>. For the purpose of this thesis, it is su cient to

consider equations in which only linear terms are retained. The corresponding evolution

equations are, on the one side, the balance equations of mass, momentum and internal

energy (Jou et al., 2010), i.e.

+ vj
xj

= 0

vi + xj
[(p+ pV ) ij +m<ij>] = 0

+ qj
xj

+ [(p+ pV ) ij +m<ij>]
vi
xj

= 0

(2.5)

where is the speci c internal energy and p the thermostatic pressure.

These equations have a general form which does not depend on the material. In

them, the unknown quantities qi, pV and m<ij> (heat ux, bulk and shear viscous

stress) appear. Therefore, other three equations are needed, to close the system. In

classical irreversible thermodynamics, constitutive equations for the uxes qi, pV and

m<ij> are chosen, relating them to the density and the temperature T and their gra-

dients (de Groot and Mazur, 1962; Lebon et al., 2008). Instead, in the E.T. framework,

these uxes are considered independent elds, and three evolution equations for them

are written. This view is especially useful when the relaxation times of such uxes are

long, in such a way that the uxes are not completely determined by the gradients of

the classical variables.
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Neglecting non linear terms, these equations for the uxes are:

0pV + 0
vj
xj

T 0
qj
xj

= pV

2m<ik> + 2 2
v<i
xk>

2 T 2
q<i
xk>

= m<ik>

1qi + 1
T
xi

T 2
1

pV
xi

T 2
1

m<ij>

xj
= qi

(2.6)

in these equations 0, 2 and 1 are the relaxation times of the non-equilibrium pressure,

stress deviator and heat ux, respectively; 0, 2 and 1 are the coe cients which (in a

normal uid) can be identi ed respectively with the bulk viscosity, shear viscosity and

heat conductivity. Finally, and are coe cients which can be related to the moments

of uctuations (Jou et al., 2010), or to nonclassical contributions to the entropy ux.

Experiments (Mendelsohn, 1956) show that in liquid helium II the relaxation time

1 of heat ux is very long comparable to the evolution times of the usual conserved

variables, while the relaxation times 0 and 2 of the stress (trace and deviator) are

extremely small. Further, at the lambda-point and below, the heat conductivity 1 of

liquid helium becomes extremely high. This is con rmed by the fact that helium II is

unable to boil when it is heated because it di uses e ciently the received heat instead

of accumulating it.

As a consequence, the fundamental elds needed to describe the dynamical behavior

of this quantum uid are the two scalar elds and T and the two vector elds vi and

qi, as mentioned in the previous section. Constitutive relations for the trace pV and for

the deviator m<ij> of the non-equilibrium stress, depending on the derivatives of the

fundamental elds, are determined by taking in the eld equations (2.6a) and (2.6b)

the relaxation times 0 and 2 equal to zero. One gets:

pV = 0
vj
xj

+ T 0
qj
xj

, (2.7)

m<ik> = 2 2
v<i

xk>
+ 2 T 2

q<i

xk>
, (2.8)

Equations (2.7) and (2.8) contain, in addition to terms proportional to the velocity

gradient, typical of usual Newtonian uids, terms depending on the gradient of the

heat ux. The rst ones are responsible for dissipation of mechanical origin, the second

ones for dissipation of thermal origin.

The eld equations of helium II in the presence of dissipation are then obtained by

substituting relations (2.7) and (2.8) into the eld equations (2.5b), (2.5c) and (2.6c).
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The following linearized system of equations is obtained:

t +
vj
xj

= 0

vi
t + 1 p

xi

0
xi

vj
xj

T qj
xj

2
xj

2 v<j

xi>
2 T q<j

xi>
= 0

T
t + 1

cV

qj
xj

= 0

qi
t + T

xi
+ 0 T 2

xi

vj
xj

T qj
xj

+ 2 T 2
xj

2 v<j

xi>
2 T q<j

xi>
= q

i

(2.9)

where we have put = 1

1
(the quantities 1 and 1 are very high, but their ratio is

nite). As proved in (Mongiov̀ , 1993), this positive coe cient is linked to the velocity

of the second sound w2 by the relation w2
2 = / cV , with cV the constant-volume

speci c heat, as we said in the previous chapter.

The production term q
i , in the equation of the heat ux, can be supposed zero

in the laminar regime, while it depends on the imposed heat ux in the presence of

a disordered super uid vortex tangle (if q > qc); this situation, di erent by classical

turbulence, is known as quantum turbulence.

2.2.2 Comparison with two- uid model

A detailed comparison between the one- uid model and the two- uid model by Lan-

dau and Khalatnikov (Khalatnikov, 1989) was made in (Mongiov̀ , 1993). The main

di erence between the one- uid and the two- uid models is that, while the mechanical

dissipation is described in the same way in both models, the dissipation associated with

heat transfer is described and interpreted in a di erent way. Incidentally, we observe

that the terms heat ux and thermal conductivity have a slightly di erent meaning in

the two- uid theory and in the extended one. In fact in the former, the heat ux is the

second term in the right hand side of (2.3), and the small parameter k is the thermal

conductivity of the mixture, which, in the two- uid model of helium II, is supposed

similar to that of a normal uid. In the extended theory, which is a mono uid one, the

energy ux is instead identi ed with the heat ux. The parameter 1, appearing in the

third equation in (2.6), can be identi ed with the thermal conductivity only in a normal

uid, where, being zero the relaxation time 1, and also the non classical contribution

to the entropy ux ( = = 0), one arrives at a constitutive equation for q of the

Fourier type. In contrast, in the extended model of helium II, the relaxation time 1

cannot be neglected, and the heat ux q is an independent variable, so the parameter

1, which is extremely high, and which we call still (extended) thermal conductivity,

has nothing to bear with the small parameter k of the two- uid model.
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In fact, in (Mongiov̀ , 2001), in order to put into evidence the di erence between

the extended one- uid and the two- uid model, the transverse modes were analyzed.

This study leads to de ne, in a natural way, two vectorial elds u(n) = (u(n)i ) and

u(s) = (u(s)i ), that have the dimension of velocity, and that exhibit deeply di erent

behaviors in the transverse modes, namely:

u(n) = v Tq, (2.10)

u(s) = v +
T

P 1
q, (2.11)

where P = 1 + 2T 3 . Indeed, in (Mongiov̀ , 2001) it was shown that, while an

initial transversal perturbation of u(s) is almost stationary, the penetration depth of a

harmonic transversal perturbation of u(n) is almost zero. As shown in (Mongiov̀ , 2001),

under the hypothesis = 1/(ST 2) (where S = s is the entropy of liquid helium II),

no entropy transfer is associated to the eld u(s), and if one assumes = all the

dissipative phenomena, both of mechanical and thermal origin are associated only to

the eld u(n). Using the standard terminology of the two- uid model, u(s) and u(n) can

be interpreted as the velocities of the super uid and normal component respectively,

but this interpretation is not needed in the one- uid model, where u(n) and u(s) appear

in a natural way according to purely macroscopic dynamical behaviour.

The above considerations suggested that no tangential boundary condition must

be imposed on u(s), owing to its nondissipative nature, while the following boundary

condition for u(n) was postulated in (Mongiov̀ , 2001): On the walls of a container, the

tangential component of the vector eld u(n) is zero. In terms of the variables v and q,

we can write

u(n)t = vt Tqt = 0, (2.12)

where the underscript t denotes the tangential component of the vectors.

In the following we will assume that u(s) does not produce dissipation, while u(n)

behaves as an ordinary uid, subject to dissipation. As we have said, this happens

under the hypothesis

= =
1

ST 2
, (2.13)

with this assumption, the evolution equation for the heat ux in system (2.9) is written:

qi
t
+

T

xi
0S xi

vj
xj

+
1

TS

qj
xj

2S xj
2

v<j

xi>
+

2

TS

q<j

xi>
= q

i . (2.14)

In (Mongiov̀ , 2001), two scalar elds, (s) and (n), associated with u(s) and u(n),

where also introduced, which can be interpreted as the ”densities” of the super uid

and normal components in helium II. They are:

(s)

=
P 1

P
=

+ s2T
,

(n)

=
1

P
=

s2T

+ s2T
. (2.15)
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With this interpretation, one sees that:

v =
(n)

u(n) +
(s)

u(s). (2.16)

It is to note that the two elds u(n) and u(s) cannot be directly identi ed with

the velocities vn and vs introduced in the dissipative two- uid model by Landau and

Khalatnikov (Khalatnikov, 1989), indeed while in the two- uid model the objective

part of the energy ux is expressed by equation (2.3), in the one- uid model it is linked

to the velocities u(n) and u(s) by the equation

q =
P 1

P

1

ST
u(n) u(s) = (s)Ts u(n) u(s) . (2.17)

Because, as shown in (Mongiov̀ , 2001), the eld u(s) does not produce dissipation,

from this equation we deduce that in the one- uid model the dissipation of thermal

origin, that is due to the presence of the elementary excitations (phonons and rotons),

is associated only to the eld u(n). On the contrary, in the two- uid model, by inversion

of the equations (2.1) and (2.3), one has:

vn = v +
1

Ts
(q(tf) + k T ), (2.18)

vs = v n

s

1

Ts
(q(tf) + k T ), (2.19)

therefore, velocity eld vn is not associated to the dissipation of thermal origin, that in

this model is expressed by k T . This is in contrast with the two- uid model assump-

tion that the eld vn takes into account of the presence of the thermal excitations. We

conclude that the one- uid model appears to better describe the dissipative phenomena

of thermal origin.

2.3 Formation of vortex lament in super uid helium

It is known that the presence of a heat ow in super uid helium II if higher than a

critical value causes the formation of quantized vortex lines, which move inside the

super uid until a stationary situation is reached, and whose presence is usually inves-

tigated by second sound waves (Barenghi et al., 2001; Donnelly, 1991; Nemirovskii and

Fiszdon, 1995). The main attractive issue of this situation, known as super uid turbu-

lence, are quantized vortices, which are lamentous vortices, whose core dimension is

of the order of the atomic diameter of the helium atom, of the order of 1 A, due to the

rotational of super uid component whose circulation is quantized.
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From a microscopic point of view, they are described by specifying the whole de-

tailed curve of each vortex line, but from a macroscopic perspective this detailed de-

scription is lost and it is usually reduced simply to a scalar quantity L, the vortex line

length density, i.e.the average length of vortex line per unit volume, having units of

(length) 2.

Quantized vortices in super uids have been mainly studied in two typical situations:

rotating super uids and counter ow experiments, the latter meaning the presence of a

heat ux, but with zero barycentric motion. In these situations the vortices are mod-

eled, respectively, as an array of parallel rectilinear vortices or as an almost isotropic

tangle. In both cases, the mutual force between the normal component and the super-

uid due to the presence of vortex lines is well known, and the so-called vortex line

tension, due to the curvature of vortex line, is zero (Barenghi et al., 2001; Donnelly,

1991; Nemirovskii and Fiszdon, 1995; Vinen and Niemela, 2002).

Figure 2.2: Counter ow experiment

When the heat ux inside the channel exceeds a typical heat ux qc, one observes

an extra attenuation of second sound, and this attenuation grows with the square of

the heat ux. This attenuation is due to the presence of a damping force, known as

mutual friction, that nds its origin in the interaction between the ow of excitations

and a chaotic tangle of quantized vortex laments, of equal circulation , the so-called

quantum of vorticity and is given by = h/m4, with h the Planck constant, and m4

the mass of 4He atom; it results 9.97 10 4cm2/s.

In order to describe the super uid turbulence one must introduce a new indepen-

dent variable L, describing the total vortex line length per unit volume, which has

its own evolution equation. More detailed descriptions accounting for anisotropy and

polarization of the vortices will be discussed in Section 2.5. The evolution equation for

L under constant values of the counter ow velocity Vns = vn vs , (evaluated in a

volume small with respect to the channle’s dimensions and being vn and vs the veloc-

ities of the normal and super uid components) and in the absence of inhomogeneities

and of rotation was formulated by Vinen. In the simplest case, one takes the so-called
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Vinen equation:
L

t
= V VnsL

3
2 V L2, (2.20)

with V and V being the Vinen coe cient (which are functions of T and ), that

describe the rate of formation and destruction of vortex lines respectively. Equation

(2.20) was proposed in (Vinen, 1957), by combining dimensional analysis and physical

arguments. More general equations for dL/dt including the in uence of the walls, the

rotation velocity, or a velocity gradient have been proposed in (Mongiov̀ and Jou,

2007). Other generalizations will be proposed in this thesis, for inhomogeneous tangles

and for convergent (or divergent) channels, in Chapter 5.

To take into account the presence of vortices, neglecting inhomogeneities in the

vortex tangle, following (Jou et al., 2002; Mongiov̀ and Jou, 2007), we choose in the

heat ux equation in system (2.9) for the production term q
i the simple expression

q
i = KLqi with K =

1

3
BHV , (2.21)

where BHV is the dissipative coe cient of the Hall-Vinen mutual friction between the

normal and super uid components, introduced in (Hall and Vinen, 1956). Note that,

in this macroscopic hydrodynamical model, a uid particle is considered to be a small

but mesoscopic region threaded by vortex lines.

2.4 Thermodynamic basis and nonlocal model

Often one assumes that the vortex tangle is homogeneous and isotropic, and that it can

be described by introducing the scalar quantity L, the average vortex line length per

unit volume. In the one- uid model, this may be imagined as a further independent

internal variable, additional to the heat ux, mentioned before, but having a di erent

topological character: a scalar instead of a vector. The isotropy hypothesis is no

longer tenable in situations involving counter ow and rotation, or when the in uence

of the walls becomes important, as for example in ow in small channels. In this

case to describe vortex tangle one must consider a tensorial variable, as we will show

in Section 2.5. On the other side, also some experiments (Wang et al., 1987) and

simulations (Schwarz, 1985, 1988) show that the vortex tangle is always anisotropic.

Since the aim of this thesis is the mesoscopic structure of super uid turbulence, we

need equations able to deal with inhomogeneous and anisotropic tangles. Therefore,

we must generalize the set of equations (2.9) and (2.20).

A rst study of this inhomogeneous and anisotropic vortex tangles using extended

thermodynamics was made in (Jou et al., 2002). In that work, the presence of vortices

was modeled through a tensor for which a constitutive relation was written. In succes-
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sive works (Ardizzone et al., 2009; Mongiov̀ and Jou, 2007), a model of inhomogeneous

super uid turbulence was formulated, both in the linear and in the nonlinear regime.

In the hydrodynamical model proposed in (Ardizzone et al., 2009, 2011, 2013; Mon-

giov̀ and Jou, 2007) the vortex line density L is an independent eld, with its own

evolution equation. However in (Ardizzone et al., 2009, 2011, 2013; Mongiov̀ and Jou,

2007) the presence of the viscous forces was neglected and only the friction with vortex

lines was considered. Because, in our study, the presence of these forces cannot be

omitted, we will use here the system of eld equations (2.9) and (2.20) and give some

generalizations.

2.4.1 Hydrodynamical model of turbulent super uids accounting for
nonlocal e ects

Here we formulate a more general model of super uid turbulence that takes into account

also non local contributions. In particular, we want to deal with inhomogeneous vortex

tangles, and to consider tangle di usion from zones with higher L to lower L, and some

other e ects. As in (Mongiov̀ and Jou, 2007), we choose as fundamental elds the

density , the velocity v, the energy density E = , the heat ux q, and the averaged

vortex line length per unit volume L.

The starting point is a general set of balance equations for the elds , v, E =

+ 1
2 v2, q and L that are written as:

+ · v = 0

v + · Jv = 0

E + E · v + · q+ Jv · v = 0

q+ q · v + · Jq = q

L+ L · v + · JL = L

(2.22)

where Jv is the stress tensor, Jq the ux of the heat ux, and JL the ux of vortex

lines. In this system, an upper dot denotes the material time derivative. In (2.22)
q and L are terms describing the net production of heat ux and vortices (though

the ux of vortex lines has a direct and intuitive meaning, the ux of the heat ux is

more formal and less intuitive, but it is often used in non-local formulations of heat

transfer (Jou et al., 2010); for instance, in ideal gases it is related to the fourth-order

moments of the velocity distribution function with respect to the molecular velocity;

in phenomenological theories, it may be often expressed in terms of the gradient of the

heat ux, as it will be done in (5.5), with measurable coe cients).
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This system is analogous to (2.5), (2.6) and (2.20), but with the following di erences:

a) the pressure tensor is called Jv instead of m, and it is not assumed to be an

independent quantity, b) the evolution equation for the heat ux and that for the vortex

line density contain additional terms in the uxes Jq and JL, which are introduced

to describe non-local e ects (in other words, typical e ects arising in inhomogeneous

tangles).

To describe such nonlocal e ects, the constitutive equations for the uxes are as-

sumed to depend not only on the fundamental elds, but also on their rst spatial

derivative. As a consequence of the material objectivity principle (Muller and Ruggeri,

1998), the expressions of the uxes are:

Jv = (p 1 · v 2 · q)U 1 v 2 q , (2.23)

Jq = ( 0 1 · v 2 · q)U 1 v 2 q , (2.24)

JL = q+ 1 + 2 E + 3 L, (2.25)

where p, 0 and are functions of , E and L. For the sake of simplicity here the

coe cients h, h, h, h, and h are assumed constant and they have expressions

(1.58), (1.59), (1.61) and (1.62) (with f2/ 2 = 1)), relating these coe cient with 0,

2, and of system (2.9). Angular brackets denote the deviatoric part of the

tensors v and q. These constitutive equations introduce new terms in the balance

equations (2.22) with respect to the previous models (Ardizzone et al., 2009; Mongiov̀

and Jou, 2007).

Note that this model, in principle, is similar to that one presented in Chapter 1,

but here we have another variable, i.e. L, that describes the super uid turbulence,

instead of the order parameter f , that we assume constant because we are considering

that the temperature is su ciently below the transition temperature. Though f itself

may depend on T , on macroscopic grounds (f = s) this will be re ected trough the

dependence of n and s on T .

In the following of this chapter we use still the Liu method of Lagrange multipliers,

as in the previous chapter, in order to obtain some restriction on the elds equations

and to explain the meaning of the Lagrange multipliers. The method retraces the same

general steps but the details are di erent.

2.4.2 Restrictions imposed by the entropy principle

Restrictions on the constitutive equations (2.23), (2.24) and (2.25) for the uxes can be

obtained imposing the validity of the second law of thermodynamics, which states that

the rate of entropy production per unit volume is a positive de nite quantity, i.e. there

exists a convex function S, the entropy per unit volume, and a vector function JS , the

entropy ux density, such that the rate of production of entropy is non-negative.
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As in the previous chapter, following the Liu method of Lagrange multipliers, we

can consider the equations (2.22) as constraints for the entropy inequality to hold. In

the present case, the evolution equations for the elds , v, E, L and q are a ected by

multiplying factors , v, E , L and q.

In order to make the theory internally consistent, we must consider for S and JS

approximate constitutive relations to second order in q and in the gradients of the

fundamental variables:

S = S( , E, L, q2, (2.26)

Js = q+ 1 + 2 E + 3 L+ 4 ( · v)q
+ 5 ( · q) q+ 6 q · v + 7 q · q , (2.27)

where = ( , E, L) and the other h are assumed constant.

Following Liu procedure one obtains the following inequality, which is satis ed for

arbitrary values of the eld variables,

S + S · v + · JS [ + · v] v · [ v + · Jv]

E E + E · v + · q+ Jv · v q · [q+ q · v + · Jq q]

L L+ L · v + · JL L 0. (2.28)

In this expression the Lagrange multipliers are supposed objective functions of the

fundamental elds and of their rst spatial derivatives.

2.4.3 Constitutive restrictions for the uxes

The constitutive theory is obtained substituting (2.27) in (2.28), taking into account

(2.23), (2.24) and (2.25), and imposing that the coe cients of all derivatives must

vanish. After some lengthy calculations, in order to consider the derivatives with respect

to time, one must have

S v v EE q · q LL = 0. (2.29)

Because S = S + S
EE + S

LL+ S
q22q · q, we obtain the following relations:

v = 0,
S

= ,
S

E
= E ,

S

L
= L,

S

q2
=

2
, (2.30)

where we have considered the Lagrange multiplier q proportional to q: q = q.

Then, we can write the di erential of entropy as

dS = d + EdE + LdL+ q · dq. (2.31)
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This is analogous to (1.12), but here we have L instead of the order parameter f as a

variable.

Imposing the coe cients of space derivatives of velocity to be zero, we obtain

S E(E + p) LL q · q = 0, (2.32)

while with respect to the coe cients of space derivatives of q one has

E L = 0. (2.33)

Let s consider now the linear terms in q, and we obtain

= 0 L , (2.34)

E
= 0

E
L

E
, (2.35)

L
= 0

L
L

L
, (2.36)

i.e.:

d = d 0 +
Ld . (2.37)

In the next section, we will determine the implications on the constitutive quantities

imposed by relations (2.31) and (2.37). Vanishing the coe cients of the spatial deriva-

tives of the second order of , E, L and q we still get:

1 = L
1, 2 = L

2, 3 = L
3 (2.38)

4 = 1, 5 = 2, 6 = 1, 7 = 2. (2.39)

Using previous relations, we obtain the following expression for the entropy ux density

Js = ( E + L )q+ L( 1 + 2 E + 3 L)

[ 1 · v+ 2 · q+ 1 v + 2 q ] · q (2.40)

Therefore it remains the following inequality

E
1( · v)2 + ( E

2 + 4) ( · v) ( · q) + 5( · q)2 + E
1 v : v

+( E
2 + 6) v : q + 7 q : q + q · q + L L 0,

(2.41)

where the colon denotes the double scalar product, i.e. q : v = i,j q ij v ji.

Let’s denote in analogy with our analysis in Subsection 1.1.7:

A1 =
E

1( · v)2 + ( E
2 + 4) ( · v) ( · q) + 5( · q)2, (2.42)

A2 =
E

1 v : v + ( E
2 + 6) v : q + 7 q : q , (2.43)

A3 = q · q + L L. (2.44)
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If any Ai is semi-de nite positive, the inequality (2.41) is veri ed, therefore the

matrices
E

1
E

2+ 4
2

E
2+ 4
2 5

and
E

1
E

2+ 6
2

E
2+ 6
2 7

(2.45)

must be semide nite positive.

Because E = dS
dE 0, this implies for A1:

1 > 0

4 E
1 5

E
2 + 4

2
0

5 > 0
(2.46)

and for A2:
1 > 0

4 E
1 7

E
2 + 6

2
0

7 > 0

(2.47)

Finally, it must be:

A3 = q · q + L L 0 (2.48)

The restrictions obtained here are similar to those obtained in the previous chapter,

but with L instead of f , which makes that the physical meaning of L is new, as

compared to the previous chapter. For this reason, in the following section we want to

explain the physical interpretation of them.

2.4.4 Physical interpretation of the Lagrange multipliers

In this section we analyze the relations obtained in the previous section, in order to

single out the physical meaning of the constitutive quantities and of the Lagrange

multipliers.

Constitutive relations near equilibrium

We denote with any of the scalar quantities S, , E , and make the position

0( , E, 0, 0) = 0( , E), (2.49)

then, from (2.31), (2.32), (2.33) and (2.37) we obtain:

dS0 = 0d + E
0 dE, (2.50)

S0 = 0 +
E
0 (E + p), (2.51)

= E
0 , (2.52)

d = 0d 0. (2.53)
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In this way, if we can identify the reciprocal of E
0 with the thermostatics temper-

ature, we can identify equation (2.50) as the classical Gibbs equation of thermostatics,

when 0
E
0

is identi ed with the ”mass chemical potential”, µ0, i.e.

E
0 =

S0

E
=

1

T
, and µ0 =

0
E
0

= T
S0

E

. (2.54)

With this assumptions, one can write equations (2.50) and (2.51) in the following form

dS0 =
1

T
dE

µ0

T
d , (2.55)

µ0 = E TS0 + p. (2.56)

Now we want to show how the presence of vortices modi es the energy density E,

and the chemical potential µ0, and introduce a new chemical potential linked to the

vortex line.

Constitutive relations in the presence of heat ux and vortices

In this subsection the complete mathematical expressions far from equilibrium of the

constitutive functions and of the Lagrange multipliers will be analyzed.

First, we introduce the following quantity

=
1

E( , E, L, q2)
, (2.57)

which is a ”generalized temperature”, that at equilibrium (L = 0, q = 0) can be

identi ed with the local equilibrium absolute temperature T , as in the previous sub-

section. In the following we will choose as fundamental eld the quantity , instead

of the internal energy density E. In agreement with (Jou et al., 2011a), we will call

”non-equilibrium temperature”. In (Jou and Restuccia, 2013) a detailed discussion on

di erent de nitions of non-equilibrium temperature in systems with internal variables

have been made, because in equilibrium states, all the di erent de nitions of tempera-

ture lead to the same value, but in non-equilibrium they lead to di erent values.

In (Mongiov̀ and Jou, 2007) it was shown that, near equilibrium (i.e. neglecting

terms of second order in q), the quantities / E and L/ E can be interpreted

as the equilibrium mass chemical potential and the equilibrium vortex line density

chemical potential. Also in this nonlocal model we de ne as non-equilibrium chemical

potentials the quantities

µ =
E
, and µL = L

E
, (2.58)
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respectively the “mass chemical potential” and the “chemical potential of vortex line

density”. For them, we can take the expression

µ (T,C) = µ 0 +KT ln C

C
and µL(T,L) = µL0 + V ln

L

L
, (2.59)

where C and L are a reference mass density and vortex line density. The latter, L ,

de ned as the average length < l > of the vortex loops composing the tangle, divided

by the volume of the system, namely L = <l>
V , then ln L

L vanishes when there is

only one vortex loop in the whole volume, and V is the energy per unit length of the

vortex line, de ned as V = s
2

4 ln c

a0L
1
2

, with a0 the radius of vortex core and c

a constant of order 1. Usually one takes V as constant, because its dependence on

L is very mild. The coe cient C in (2.59a) is 1 for ideal systems, and it is called

the ”activity” coe cient (T,C) in non-ideal systems. The term µ 0 depends only

on temperature. Note that KT is related to the average thermal energy per particle,

whereas V is the energy per unit length of vortex line. Thus, they play analogous roles

in (2.59).

Introducing in equations (2.31), (2.32), (2.33) and (2.37) the non-equilibrium quan-

tities (2.58), one obtains:

dS = dE µ d µLdL+
1

2
dq2, (2.60)

S = E + p µ LµL + q2, (2.61)

=
1 µL , (2.62)

d = d 0
µLd . (2.63)

From equations (2.60) and (2.61), denoting with s̃ = S/ the non-equilibrium en-

tropy per unit mass, one deduces that the non-equilibrium chemical potentials µ and

µL must satisfy the relation

µ + LµL = s̃+ p+ q2. (2.64)

Then, the complete expression of the non-equilibrium Gibbs equation becomes

ds̃ = d
1
2

p µL q2 d
µLdL+

2
dq2. (2.65)

From equations (2.60) or (2.65) one can obtain the conditions on the non-equilibrium

chemical potentials and on the derivative of energy density. From (2.60) we have

dS =
1
(E µ )d +

1
E d +

1
(EL µL)dL+

1
Eq2 +

1

2
dq2 (2.66)
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and then the following relations must be veri ed for it to be an exact di erential,

E µ
=

E
E = µ

µ
(2.67)

L

E µ
=

EL µL µ

L
=

µL (2.68)

q2
E µ

=
Eq2 +

1

2

µ

q2
= 0 (2.69)

L

E
=

EL µL EL = µL
µL (2.70)

q2
E

=
Eq2

+
1

2
Eq2 = 0 (2.71)

q2
EL µL =

L

Eq2 +
1

2

µL

q2
= 0 (2.72)

In particular, (2.68) shows that µ and µL must be mutually coupled, in such a way

that expressions (2.59) should be generalized to exibit this coupling. For instance, the

functions µ 0(T ) and µL0(T ) could become µ 0(T,L) and µL0(T, ).

Finally, we consider the consequences of equations (2.62) and (2.63) which concerns

the expressions of the uxes. Using de nitions (2.57) and (2.58b), we get

d 0 = d
1

d
µL . (2.73)

It is useful to make the following positions:

= 0 =
T

µL (2.74)

= 0 =
1
2

1 + 2 µL , (2.75)

= 0

L
=

µL

L
. (2.76)

The following relation must be veri ed too:

L
=

L

µL =
µL

L
(2.77)

=
µL =

µL µL (2.78)

L
=

µL

L
=

L

µL µL (2.79)

Note that, if = 0, one gets = 0 too, and

=
1
2

, (2.80)
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and this expression is identical to that found in (Mongiov̀ , 2000a) in the study of

laminar ows of non viscous uids in the presence of heat ux near equilibrium.

The coe cient may be interpreted as

=
k 2

, (2.81)

with the relaxation time of the heat ux and k the thermal conductivity, these

quantities can be identi ed with 1 and 1 for He II, introduced in (2.6c), and their

ratio is nite. Expression (2.81) is also found in extended irreversible thermodynamics

of usual uids and solids (Jou et al., 2011a; Lebon et al., 2008), and therefore is more

general than for super uids.

2.4.5 Field equations

Introducing in system (2.22) the expressions for the uxes (2.23), (2.24) and (2.25) and

using the new variable , we obtain:

+ · v = 0

v+ · [(p 1 · v 2 · q)U 1 v 2 q ] = 0

E + E + E
LL+ E · v + · q+

+ [(p 1 · v 2 · q)U 1 v 2 q ] · v = 0

q+ q · v+ · [( 0 1 · v 2 · q)U 1 v 2 q ] = q

L+ L · v + · [ q+ 1 + 2 E + 3 L] = L

(2.82)

These are the most general evolution equations accounting for nonlocal e ects, com-

patible with the second law of thermodynamics, once q and L obeying the restriction

(2.48) are choosen.

Choice of the source terms q and L

As production terms in the equations for the heat ux q and vortex line density L in

(2.22c) and (2.22d), we choose the following expressions:

q = N1L · q+N2L
3/2 BI+B J , (2.83)

L = ˜1L
3/2 BI+B J · q 2L

2, (2.84)

where coe cients B, B , N1, N2, ˜1 and 2, vectors I and J (Donnelly, 1991; Schwarz,

1988), related to the polarization of the tangle, and tensor , related to anisotropy of

the tangle, will be de ned in Section 2.5, where a detailed microscopic motivation of
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this choice can be found. Let us emphasize that (2.84) combining with (2.22e) yields

a generalization of the Vinen equation for anisotropic tangles of vortices. Expressions

(2.83) and (2.84) of the production terms can be written in the matrix form as

q

L
= L

N1 N2

L
L

1
2 (BI+B J)

˜1L
1
2 (BI+B J) 2

LL

q

L
(2.85)

where, as a consequence of the Onsager reciprocity relations, it must be:

L˜1 = N2.

Let s consider the quantity A3, de ned in (2.44) and (2.48), that is written, accord-

ing to (2.85) as

A3 = L N1 q · · q+ ( N2 + L˜1)L
1/2 BI+B J · q L

2L 0, (2.86)

and we determine some conditions under particular hypotheses. We will suppose to

be the unit matrix U (isotropic tangle). Assume further that vector I is collinear with

q (BI = Hq̂) and J = 0 (non-polarized tangle). Under these assumptions, q and L

simplify as

q = N1Lq+N2HL3/2 q

|q|
, (2.87)

L = ˜1HL3/2|q| 2L
2. (2.88)

Then (2.88) coincides with (2.20) and the rst term in (2.87) coincides with (2.21). In

this case the quantity A3 is written

A3 = L N1 q2 +H( N2 + L˜1)L
1/2|q| L

2L 0. (2.89)

This quantity is non negative i the matrix

N1
1
2H N2 + L˜1

1
2H N2 + L˜1 L

2

(2.90)

is semide nite positive. Being positive the coe cients N1, N2, ˜1, 2, this implies

0, L 0 and 4 LN1 2 H2 N2 + L˜1
2

0.

Evolution equations for q and L

Introducing the source terms (2.83) and (2.84) in the evolution equations for q and

L in (2.82), which are the basic equations to be explored along this thesis in di erent
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physical situations, we obtain:

q + q · v + 0 · [( 1 · v + 2 · q)U+ 1 v + 2 q ] =

= N1L · q+N2L
3/2 BI+B J , (2.91)

L + L · v + · ( q+ 1 + 2 E + 3 L) =

= ˜1L
3/2 BI+B J · q 2L

2. (2.92)

These are the most general evolution equations for q and L, compatible with the second

law of thermodynamics. Here, they have a very formal aspect, but we will explore in

detail the physical meaning and consequences of each term in Section 2.5, and we will

become fully acquainted with them.

2.5 Microscopic derivation of the source terms

To determine the expressions of the source terms (2.83)–(2.84) we recall that they are

a consequence, at a microscopic level, of the interaction between the super uid vortices

and the elementary excitations; the latter, in the terminology of the two- uid model,

constitute the normal component. These interactions lead to a force Fns, named mutual

friction force, but also an additional term T tied to the vortex tension, is present.

As shown in (Donnelly, 1991; Jou et al., 2002), the microscopic expression of the

mutual friction force per unit length of the vortex is

fMF = s s × [s × (vns vi)] + s s × (vns vi), (2.93)

where s is the tangent unit vector to the position vector s( ) of the quantized vor-

tex line (being the arc-length), and are dimensionless, temperature dependent

coe cients, vns = vn vs is the microscopic counter ow velocity, vi the self-induced

velocity, that can be described in the “local induction approximation”, that is, ignoring

contributions coming from the nonlocal portion of the vortex, (Donnelly, 1991)

vi vi
(loc) = ˜ s × s , (2.94)

where s is the curvature of the quantized vortex line described by s( ), and ˜ is the

vortex tension parameter, that is linked to the energy per unit length of vortex line V

by the relation (Donnelly, 1991)

V = s
˜. (2.95)

The intensity of vi is |vi| ˜/R, with R the curvature radius of the vortex line. The

self-induced velocity is zero if the vortices are straight lines (namely, if s = 0).

In the evolution equations for the averaged velocities of normal and super uid com-

ponents (that we will denote with capital letters), the “macroscopic” mutual friction
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force Fns per unit volume which super uid and normal components mutually exert, is

obtained by averaging (2.93) over a small volume and multiplying by L. One obtains

Fns = L fMF = s L s × [s × (vns vi)] + s L s × (vns vi) , (2.96)

where angular brackets denote average. The macroscopic vortex tension force T is

expressed as (Donnelly, 1991; Jou et al., 2010)

T = L vi × s . (2.97)

Note that for straight vortex lines T = 0, because for them the induced velocity vi,

(2.94) is zero. Using the local-induction approximation and neglecting the uctuations

of the relative velocity Vns, see (Jou et al., 2010), we deduce that Fns and T can be

written

Fns = L
2

3 s ·Vns + V c1L
1/2 I+ J , (2.98)

sT = s
˜L3/2c1J = V c1L

3/2J, (2.99)

where we have introduced the tensor = s + a (Jou and Mongiov̀ , 2006), with

s 3

2
< U s s >, a 3

2
< W · s >, (2.100)

with U the unit matrix, s s the diadic product, and W the Ricci tensor (a completely

antisymmetric third-order tensor such that W · s ·Vns = s ×Vns). The vectors I

and J are de ned as (Donnelly, 1991; Schwarz, 1988)

I
s × s d

|s |d
, J

s d

|s |d
, (2.101)

and c1 =
1
L3/2 |s |d .

Observe again that the tension of the vortex line is zero in pure rotation with

parallel straight vortex lines and in isotropic tangles, but it is not so in the presence

of simultaneous counter ow and rotation (Jou and Mongiov̀ , 2004; Mongiov̀ and Jou,

2005c) or in the rst stages of the turbulence (Mongiov̀ and Jou, 2005b) or in the

transient states after sudden acceleration in plane Couette and Poiseuille ow (Jou

et al., 2008).

In homogeneous situations, the dynamical equations for the average normal and

super uid velocities, in an inertial frame, are:

n
dVn

dt
= Fns, s

dVs

dt
= Fns sT. (2.102)

The evolution equation for the counter ow velocity Vns is

s
dVns

dt
=

n
Fns + sT, (2.103)
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and can be written, using the expressions (2.98) and (2.99) for Fns and T and taking

in mind the relations = B( n/2 ), = B ( n/2 ), where BHV and BHV are the

Hall-Vinen coe cients (Donnelly, 1991)

s
dVns

dt
= L

1

3 sBHV ·Vns +
1

2 V c1L
1/2 BHV I+BHV J + V L

3/2c1J.

(2.104)

The evolution equation for the heat ux q (q = sTsVns), neglecting nonlinear

contributions and assuming a homogeneous situation, is therefore

dq

dt
= L

1

3
BHV · q+

1

2
Ts V c1L

1/2 BHV I+B J (2.105)

where we have put B = BHV +2. Here we will choose as source terms in the evolution

equation for the heat ux the right-hand side of equation (2.105).

In order to determine the source term in the evolution equation for L, we consider

the following extension of Vinen equation, proposed in (Mongiov̀ et al., 2007), where

the authors were interested to study wall e ects on the evolution of L,

dL

dt
= c1L

3/2 I+ J ·Vns
˜c2L

2, (2.106)

with c1, I and J de ned in equations (2.101), c1 in the line below (2.101), and c2 =
1
L2 |s |2d . Equation (2.106), using the variable q instead of the variable Vns, is

written
dL

dt
=

s

2
c1L

3/2 BHV I+BHV J · q
Ts2

2
V BHV c2L

2, (2.107)

where we have put:

= sTs2

n
. (2.108)

As shown in (Mongiov̀ , 1993, 2001), the coe cient determines the second sound

velocity (in the laminar regime).

Now, we will show that a modi cation of this equation is necessary to insure the

thermodynamic consistency of the evolution equations for L and for q, according to

the formalism of linear irreversible thermodynamics (de Groot and Mazur, 1962; Jou

and Mongiov̀ , 2005; Lebon et al., 2008). We analyze the consequences of the Onsager-

Casimir reciprocity relations on the evolution equations of q and L, showing that an

additional term linked to the tension of vortices must be added in the evolution equation

for vortex line density. Accordingly the evolution equations for q and Lmust be written

in terms of q = q and L in matrix form, in the following way

dq
dt

dL
dt

= L

1
3 BHV

Ts V
2 L c1L1/2 (BHV I+B J)

s
2 c1L1/2 (BHV I+B J) T s2

2 L
V c2L

q

L
(2.109)
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Further, to satisfy the Onsager-Casimir reciprocity relations, it must be:

T V
L

=
1

=
L

T V
. (2.110)

So, the evolution equation for the vortex line density L must be modi ed in

dL

dt
=

s

2
c1L

3/2 BHV I+ (BHV + 2)J · q
T s2

2
V BHV c2L

2, (2.111)

We choose nally, as production terms in the evolution equations for q and L, the

following quantities:

q = N1L · q+N2L
3/2 BHV I+B J (2.112)

L = ˜1L
3/2 BHV I+B J · q 2L

2, (2.113)

where we have put:

N1 =
1

3
BHV , N2 =

Ts V

2
c1, ˜1 =

s

2
c1, 2 =

T s2

2
V c2BHV .

These expressions coincide with (2.83) and (2.84) but they provide microscopic inter-

pretations, for the corresponding coe cients. The expressions of the production terms,

written in matrix form, are:

q

L
= L

N1 N2

L
L

1
2 (BHV I+B J)

˜1L
1
2 (BHV I+B J) 2

LL

q

L
(2.114)

2.6 Remarks

In this chapter we recalled the basic equations for the study of super uid helium in

presence of turbulence in the two frameworks of the two- uid model and of the one- uid

model, comparing the two models.

Furthermore, we have reexamined and generalized a previous thermodynamic deriva-

tion of non-local e ects in inhomogeneous vortex tangles (Mongiov̀ and Jou, 2007) to

get expressions for E, v, q and L. The main contributions have been the incorporation

of non-local terms in the evolution equation for the heat ux, namely, the terms in 1

and 1, and a detailed discussion of the physical meaning of the several terms, also

from a microscopic point of view.

• Some results are published in:
L. Saluto Nonlocal model of Super uid Turbulence: Constitutive Theory,
Bollettino di Matematica Pura e Applicata Vol. V 165–175 (2013), Aracne Ed.
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In (2.91) and (2.92) we have incorporated a way to describe the e ects of quanti-

zation, anisotropy and inhomogeneity of the vortex tangle on the evolution equations

for q and L. Finally we have provided a microscopic interpretation of the quantities

appearing in the source terms of the evolution equations for q and L.
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2.7 Appendix 2.A:

Comments on the entropy and entropy ux

In this appendix we discuss the form of the entropy and the entropy ux obtained in

(2.31) and (2.40) as compared with the expressions obtained from microscopic argu-

ments based on information theory, and also some additional aspects of the physical

meaning of the Lagrange multipliers. In particular, the discussion on E lead us to

discuss two di erent contributions to the internal energy and entropy of the system:

that of the thermal motions of normal and super uid components, and that of the

tangle, related to the kinetic energy of the rotating super uid around the vortex core.

This is helpful to have a microscopic understanding of the several terms and a wider

view on several thermodynamic formalisms.

If we choose 0 = 1 = 1 = 1 = 0 in (2.24), the expression for the entropy

ux (2.40) is written

JS = ( E + L )q+ L( 2 E + 3 L) + q ( 2 · q 2 q ) , (2.115)

and Jq is

Jq = 2( · q)U 2 q . (2.116)

Furthermore, if we consider constant, JL is written

JL = q+ 2 E + 3 L, (2.117)

and expression (2.31) for the entropy di erential becomes

dS = EdE + LdL+ q · dq. (2.118)

It is interesting to compare the expression for the entropy ux (2.115) with those ob-

tained from microscopic arguments based on maximun-entropy formalism (Dom ńguez-

Cascante and Jou, 1998; Luzzi et al., 2001, 2002). One can observe that considering

(2.116) and (2.117), (2.115) may be written in a more compact form as

JS = Eq+ LJL + q · Jq. (2.119)

Here we want comment the microscopic origin of (2.119).

In information theory one obtains the distribution function by maximizing the en-

tropy under the constraint of given average values of some quantities (in our case, E,

L and q). Then, one maximizes the combination

B f log fd E Êfd L L̂fd q · q̂fd (2.120)
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Here, Ê, L̂ and q̂ are the respective microscopic physical quantities, f is the distribution

function, and d the volume di erential of the phase space of the system. In (2.120)
E , L and q are Lagrange multipliers accounting for the constraints on the average

values for the mentioned variables. The role of these coe cients is here related to

steady state values, instead to dynamical conditions (balance laws), as in (2.28). For

ideal gases, in (Dreyer, 1987), the author compared the role of Lagrange multipliers in

information theory and in Liu’s formalism and showed their mutual consistency. Here

we do so for super uid turbulence.

The result for the f maximizing (2.120) is

f = z 1 exp EÊ LL̂ q · q̂ , (2.121)

with z the partition function related to the normalization of the distribution function,

given by

z = exp EÊ LL̂ q · q̂ d . (2.122)

As a consequence of (2.121), the expression for the Gibbs relation is exactly (2.31)

with d = 0 (i.e. constant), and the entropy ux is found to have the form (Dom ńguez-

Cascante and Jou, 1998; Luzzi et al., 2002)

JS = Eq+ LJL + q · Jq. (2.123)

Expression (2.123) has an appealing meaning, as it is related to the expression for

the entropy di erential (where the Lagrange multipliers are the conjugate variables to

the independent variables E, L and q) with the expression for the entropy ux, where

the Lagrange multipliers multiply the respective uxes of E, L and q. By combining

(2.116) and (2.117) it is seen that (2.115) may be written in exactly the same form as

(2.123).

The treatment of the entropy ux is di erent in the several thermodynamic for-

malisms going beyond local-equilibrium approximation. For instance, in EIT (Jou

et al., 2010) one directly assumes that JS is a combination of q, JL and Jq, with

respective coe cients which are not a priori identi ed with the Lagrange multipliers,

but identi ed with them a posteriori after a full identi cation of the coe cients ap-

pearing in the transport equations. Instead, in RET (Muller and Ruggeri, 1998), with

Liu procedure one must consider for JS a form like (2.27), because the uxes JL and

Jq are not taken directly as independent variables, but they are given as constitutive

quantities in (2.116) and (2.27). Eventually, both formalisms lead to the same entropy

ux, but since (2.115) — the ux in RET — and (2.123) — the ux in EIT — are

apparently so di erent, one could have the impression that RET and EIT were giving

di erent results for the entropy ux (Jou et al., 2004). Here we have shown that this is
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not so in the nonlocal model considered here. As far as we know, this is the rst time

this is explicitly shown, as previous comparisons between both formalisms (Jou et al.,

2010) did not pay enough attention to the entropy ux, but focused on entropy and on

transport equations.

Expressions (2.118) and (2.123), for the entropy di erential and for the entropy

ux, contain the Lagrange multipliers. Their physical meaning is made more intuitive

if we introduce, as in (Mongiov̀ and Jou, 2007), a ”generalized temperature” as the

reciprocal of the Lagrange multiplier of the energy as in Section 2.4.4

In terms of these form of Lagrange multipliers, (2.123) could be written as

JS =
1
q

µLJL + q · Jq, (2.124)

whose two rst terms are analogous to those of the classical theory of systems with

ow of mass (Jou et al., 2010), except for the part that and µL are those de ned in

(2.57) and (2.58b) and they may also depend on q, in contrast to the local-equilibrium

version.

Note, also, that identi cation of temperature in (2.124) is relatively ambiguous. It

is not clearly seen whether it is the temperature of the super uid, or whether it refers

to a temperature characterizing only the tangle, as it has been proposed in (Mongiov̀

et al., 2007). This question depends on the meaning of E, which may be the energy of

the uid, or the energy of the turbulent vortex tangle. The most suitable possibility

would be to consider E = Ef + Et, with Ef the energy of the uid and Et that of the

tangle, each of them with their respective absolute temperatures.

In this case, the di erential of the entropy would be

dS =
1

f
dEf +

1

t
dEt

µL

dL+ q · dq, (2.125)

with f and t the respective temperature of the uid and of the tangle, and Ef and

Et the respective energies. But the temperature of the tangle (Mongiov̀ et al., 2007)

is much higher than that of the uid, and the term in 1
t dEt may be neglected as

compared with 1
f dEf . Thus, the energy E appearing here could be taken equal to

that of the uid.

The energy of the tangle is, in fact, the kinetic energy of the super uid component

rotating around the central line of the vortex. From a microscopic perspective it is a

considerably ordered energy, but, from a macroscopic perspective, it is a considerably

disordered energy, because the vortex lines are very disordered. The temperature re-

lated to the tangle is much higher than that of the uid itself because of two reasons:

a) it is related to much higher energies than the disordered atomic energy, and b) it is

much more ordered than the random atomistic motion (Mongiov̀ et al., 2007), implying

that the tangle energy has a relatively small contribution to the entropy.
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• The considerations of this appendix are reported in:
L. Saluto, D. Jou and M. S. Mongiov̀ , Thermodynamic approach to vortex production
and di usion in inhomogeneous super uid turbulence,
Physica A 406 272–280 (2014), DOI 10.1016/j.physa.2014.03.062





Chapter 3

Longitudinal ows:
well-developed ow in long
channels

In this chapter we study the simplest ow situation, namely, the well-developed veloc-

ity pro le along cylindrical channels or along at channels between two parallel plates.

We focus our attention on counter ow situation. In principle, this is motivated by the

experiments in turbulent counter ow, although, as we will see in the next chapter, a

more realistic analysis requires considering nite channels, and the role of the entry

region. One of the motivations of this analysis is the evaluation of the e ective ther-

mal conductivity and the in uence on it of the presence of the normal component, in

channels lled with super uid helium, connecting a warmer system to a cooler system.

This is in fact one of the most complex problems in heat transport, because it does not

follow the usual Fourier’s law. Indeed, the heat ux produces a vortex tangle which,

in turn, has a deep in uence on the thermal resistance because of two di erent rea-

sons: the mutual friction between the normal component and the vortex lines, and the

modi cation of the velocity pro le of the normal component.

Though this topic has been considered many times in the literature, rigorous anal-

yses of the in uence of vortices on the form of the normal component velocity pro le

have not been done in detail, because they are not strictly necessary for a practical

analysis of heat transport, since the mutual friction with the vortex lines is, by far,

the dominating factor. However, from a conceptual perspective there is much interest

in exploring in which circumstances the ow of the normal component may be turbu-

lent, adding in this way its turbulent e ects to the peculiar quantum turbulence of the

super uid component. The analyses of this chapter are motivated by this central topic.

The aim of this chapter is to nd out some relevant stationary solutions of the

system (2.9), describing the heat transfer in counter ow experiments in a long (semi-
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in nite) cylindrical channel lled with turbulent super uid helium. In particular, we

will explore the in uence of the vortex lines on the radial distribution of the heat ow.

This is a problem which has not yet been considered with su cient depth in the previous

analyses, and which has much interest, however, because this spatial dependence may

provide additional information about the interaction between heat ux and vortex lines.

3.1 Stationary equations in cylindrical coordinates

In stationary situations, the set (2.9) of evolution equations neglecting non linear terms

in the derivative of the eld variables, can be written as:

vj
xj

= 0

qj
xj

= 0

p
xi

2
2vi

xj xj
+ 2 T

2qi
xj xj

= 0

T
xi

+ 2 T 2 2vi
xj xj

2
2T 3 2qi

xj xj
= KL0qi

(3.1)

where we have used equation (2.21) for q
i .

As we have said, we want to determine a solution of (3.1) in a semi-in nite cylindrical

channel subject to a longitudinal heat ux (Saluto et al., 2014). We will look for

solutions of system (3.1) under the simpli ed hypothesis that the super uid is at rest,

i.e. v = 0 anywhere in the channel, which is a strong version of the condition of

counter ow (a less stringent version is that v is zero on the average, but not locally at

each point of the uid) (Sciacca and Galantucci, 2015; Sciacca et al., 2014a,b). Under

this hypothesis, boundary condition (2.12) postulated in (Mongiov̀ , 2001), implies that

also the component of the heat ux q vanishes on the walls of the channel, i.e.

qt = 0. (3.2)

Note that this condition is not too restrictive, as the hydrodynamical model used here

does not give informations on microscopic level, but allows us only to study what

happens at an intermediate level; indeed in this hydrodynamical model a uid particle

is a small but mesoscopic region where both the normal and super uid components (i.e.

quasi-particles and ground state) are present. Anyway, the possibility of a heat slip

ow along the walls will be also examined in Section 3.4, for the sake of completeness,

and because this contribution may be relevant in very narrow channels.
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Under the hypothesis v = 0, system (3.1) reduces to:

qj
xj

= 0

p
xi

+ 2 T
2qi

xj xj
= 0

T
xi

2
2T 3 2qi

xj xj
= KL0qi

(3.3)

From the second and third equations of (3.3) follows that the pressure gradient p
xi

is

given by the relation
p

xi
=

1

T 2

T

xi
+

K
L0qi . (3.4)

Because of the geometry of the problems we will consider, we use cylindrical coordi-

nates (x, r, ). If isotropy with respect to is assumed, the fundamental elds depend

on the only variables (x, r), and the system (3.3) can be rewritten more explicitly as

qx
x + 1

r r (rqr) = 0

p
x 2 T 1

r r r qx
r = 0

T
x 2

2T 3 1
r r r qx

r = KLqx

p
r 2 T 1

r r r qr
r

qr
r2 = 0

T
r 2

2T 3 1
r r r qr

r
qr
r2 = KLqr

(3.5)

where we have put q = qxi + qru, with i and u the unit vectors in the axial and the

radial directions.

3.2 Heat ux pro le in longitudinal cylindrical counter-

ow

For the sake of simplicity we consider the liquid helium II subject to a longitudinal

cylindrical counter ow q i, i.e. q = iq. The normal component ows in one direction

(from hot to cold ends) and the super uid component ows in the opposite direction.

We assume that we are far from the wall where the super uid is being heated, i.e. we

are far from the so-called entrance region studied in the next chapter. In this case

equations (3.5a), (3.5d) and (3.5e) lead to:

q = q(r), p = p(x), T = T (x). (3.6)
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We look for solutions of the heat ux equation (3.5c), which is

T

x TS2

1

r r
r

q

r
=

KL
q, (3.7)

where we have used = 1/(ST 2), and we have identi ed the coe cient 2 with the

viscosity of the uid .

First of all, we consider the counter ow in the absence of vortices (namely L = 0).

Later, we consider the counter ow situation under an homogeneous value of the vortex

line density L(x, r) = L0. In Chapter 5 we will also consider inhomogeneous values of

L, dependent on q.

3.2.1 Velocity pro le in absence of vortices

In absence of vortices (L = 0), the linearized equation for the heat ux in the stationary

state, obtained from (3.7), is

T

x TS2

1

r r
r

q

r
= 0, (3.8)

where the right-hand term vanishes because L = 0. We will search for solutions of

this equation in the region x R and r [0, R], with the boundary condition (3.2),

assuming /TS2 constant. With condition (3.6), we obtain T/ x = constant, and

q(r) =
1

4

TS2 T

x
(R2 r2), (3.9)

that is a parabolic pro le of q, like the Poiseuille ow for the velocity of a viscous uid

in a straigh cylindrical tube. In this case, from equation (3.4) we get

p

x
= S

T

x
, (3.10)

from which we see that a temperature di erence between the two ends of the channel

corresponds to a pressure di erence, driving the helium ow.

3.2.2 Homogeneous presence of vortices

Let’s consider now a homogeneous stationary distribution of vortex lines everywhere in

the channel, whose length per unit volume is L0 (except in the entrance region where

can be L = L(x)), and look for the pro le of q in this situation. We will assume that

the condition (2.12) remains valid also in the presence of a homogeneous vortex tangle.

In fact in (Ardizzone et al., 2009, 2011) this condition was generalized to the case in

which a inhomogeneous vortex tangle is present, obtaining

vt +
1

TS
(1 µL) qt = 0, (3.11)



In nite channel 3D 55

where µL is the chemical potential of vortex line and a parameter that links the ux of

vortex line to the heat ux (see equation (2.25)). Also this new condition implies qt = 0

when v = 0 inside the channel. Because of the hypotheses made in the introduction

of this section, see (3.6), we look for a solution of the equation (3.7), with T = T (x)

and q = q(r). We will still assume /(TS2) constant for the sake of mathemathical

simplicity. In this hypothesis, writing

TS2

1

r r
r

q

r

KL0 q(r) =
T (x)

x
= H, (3.12)

one deduces that H must be a numerical constant, because the left-hand side only

depends on r, and the right-hand side only depends on x.

We look for solutions of this equation with the boundary condition q(R) = 0,

2q

r2
+

1

r

q

r
KL0

TS2

q =
TS2

H. (3.13)

Let’s denote:

A =
TS2

=
T 2s2

and B =
K

=
BHV

3
. (3.14)

Both A and B are positive constants, as it follows from the restrictions of the second

law. Then (3.13) can be rewritten

2q

r2
+

1

r

q

r
ABL0q = AH. (3.15)

This equation has the particular solution q = 1
BL0

H. The remaining homogeneous

equation is
2q

r2
+

1

r

q

r
ABL0q = 0. (3.16)

This is a zero-order modi ed Bessel equation, whose solutions are the modi ed Bessel

functions I0(y) and K0(y), where y = r ABL0. The general solution of (3.15) is

q(r) =
1

BL0
H + c1I0 r ABL0 + c2K0 r ABL0 , (3.17)

where c1 and c2 are numerical constants which depend on the boundary conditions.

K0(y) diverges for y = 0, and hence c2 = 0 is required. Imposing the boundary

condition, q(R) = 0, we can determine c1 from:

q(R) =
1

BL0
H + c1I0 R ABL0 = 0.

Then, remembering that H = T
x , the general solution is

q(r) =
1

BL0
1

I0 r ABL0

I0 R ABL0

T

x
, (3.18)
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where T
x is negative in the direction of x.

In order to plot this solution, we needed to evalute the quantity T
x . In (Martin

and Tough, 1983) the values of the temperature gradient measured in the experiment

are not reported, and it is only reported that the temperature di erences “would vary

from about 107 K in laminar ow to about 104 K in the fully developed T II super uid

turbulent state”. In general terms, the thermal resistance will be composed of the

resistance arising from the friction between the viscous component and the quantized

vortices of super uid (which is usually the dominant contribution) and the resistance of

the laminar viscous ow of the normal component. In fact, in the fully laminar regime,

the normal component contribution is the only contribution, and in the fully developed

turbulent regime it is relatively small, but it is not negligible in the transition laminar-

to-turbulent regime, as we point out in the following of this section. In the Poiseuille

laminar regime, according to the Landau expression, the temperature gradient is given

by (Landau, 1941; Landau and Lifshitz, 1987)

( T )Landau =
8 s

R2 2s
Vns =

8

R2T 2s2
q, (3.19)

while in presence of a homogeneous tangle of vortices, it is

( T )vort =
1

3
BHV

n

s
VnsL0 (3.20)

where Vns = vn vs is the average counter ow velocity over a cross section of the

channel. This result is obtained also in the one- uid model, neglecting the terms

in the second derivatives of q from (2.21). Indeed, we have used the sum of these

two contributions (3.19) and (3.20) to plot the solution (3.18). The values of this

contribution are reported in Table 3.6 in Section 3.3.1 for T = 1.7 K or in Tables 3.12

and 3.13 in Appendix 3.8 for T = 1.5 K and T = 1.6 K. The values of the constants A

and B for di erent temperatures, obtained from equation (3.14) using data extracted

from (Donnelly and Barenghi, 1998), are reported in Table 3.1, while the data of L0 are

extracted from (Martin and Tough, 1983). q and the other quantities are expressed in

the cgs system (cgs units are commonly used in super uid bibliography). The values

of T
x are calculated in detail in Section 3.3.

The plots of solution (3.18) in the laminar regime (absence of vortices), in the two

turbulent regimes TI and TII (corresponding to low and high vortex line densities,

respectively), and in the transition between these di erent regimes, are shown in Fig-

ures 3.1 and 3.2, that are analogous to Figures 1, 2, 3 and 4 of (Saluto et al., 2014)

where we considered only the thermal resistance due the friction between the viscous

component and the quantized vortices of super uid, i.e. the contribution (3.20), instead

of the sum of the two contributions (3.19) and (3.20) considered here.
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T A = TS2 1
B = 3

BHV

K cm s3 K g 1 (cm s3 K) 1 g

1.5 8.3 1015 1.2 1016

1.6 1.9 1016 2.2 1016

1.7 3.9 1016 3.3 1016

Table 3.1: Values of the constants A and B, de ned in (3.14) at three di erent temperatures,
extracted from the data of (Donnelly and Barenghi, 1998).

Figure 3.1-left shows the pro le of heat ux at T = 1.7 K in the transition from

absence of vortices to the TI turbulence regime (low density of vortices), note that in

the latter situation the pro le is atter because of the presence of vortices, in contrast

to the parabolic pro le in the laminar (L = 0) situation. Figure 3.1-right shows the

pro le of heat ux for T = 1.7 K and di erent values of L0 but the same values of

the counter ow velocity, in the transition region between the regimes TI and TII.

Note that di erent values of L0 correspond to the same value of the total heat ux,

in the transition regions (in the gure we have chosen the smallest and the highest

ones correspondent to Vns = 1.85 cm/s from Figure 10 of (Martin and Tough, 1983)).

Analogous behavior is obtained for di erent values of the temperature T . It is seen

that the higher the value of L0, the atter, lower and wider the velocity pro le.

Figures 3.2 show the pro le of q at three di erent temperatures and in di erent

turbulence regimes. In Figure 3.2-left, the vortex line length L0 is chosen in the rst

regime of turbulence, TI, in the Figure 3.2-right the vortex line length L0 is chosen in

the regime TII, and one can observe the progressive attening of the pro le for higher

L0. We point out that the heat ux assumes larger values for higher temperature

because terms in T are present in both coe cients of q and 2q, in particular the last

one is prevalent when L0 is higher.

As it may be noted in the gures, the solution (3.18) has a pro le that depends

on the value of L0. In absence of vortices (namely L = 0) and in the turbulent TI

regime (small values of L0) q has a parabolic pro le, which assumes maximum value
1

BL0

T
x ; in the TII regime, instead, the pro le becomes at, equal to the maximum

value 1
BL0

T
x , and falls steeply to zero near the boundary of the channel, as shown in

Figures 3.1-right and 3.2-right.

As in equation (3.10), also in this case we see that to a temperature di erence

between the two ends of the channel corresponds a pressure di erence; indeed we have

p

x
= S

T

x

I0 r ABL0

I0 R ABL0
. (3.21)

Comparing with equation (3.10) we deduce that in the presence of vortices the pressure
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Figure 3.1: Pro le of q in terms of r at T = 1.7K in the transition from absence of vortices
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Figure 3.2: Pro le of q in terms of r for L0 = 4 103 cm 2 corresponding to T
x = 1.74
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x = 1.28 10 7K/cm at 1.7K

(left); and for L0 = 4 105 cm 2 corresponding to T
x = 5.19 10 5K/cm at 1.5K, T

x =

4.65 10 5K/cm at 1.6K and T
x = 3.56 10 5K/cm at 1.7K (right).
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gradient is smaller than in the absence of them, because the function I0(x) is crescent

and the term
I0(r ABL0)
I0(R ABL0)

is always smaller than 1, for 0 < r < R.

Furthermore, equation (3.21) implies a dependence of p on r, that would imply in

turn a radial heat ux, which has been assumed to be zero at the beginning of this

section. Owing to the steady-state condition (3.3a), namely, · q = 0, the radial heat

ux qr will be of the order of (r/l)qx, qx being the longitudinal heat ux. Thus, when

the length of the channel is much longer than the radius of the channel, the radial heat

ux (and the dependence of the pressure on the radius) may be neglected. Otherwise,

the physical (and mathematical) situation becomes much richer and complex, with also

radial heat ux besides the longitudinal heat ux, or with the barycentric velocity of

the uid locally di erent from 0 (in contrast with what we have assumed here). We

aim to consider these e ects in the future, but since the current analyses of counter ow

situations assume a priori that the heat ux is longitudinal, we do not deal with this

further complicated but interesting topic here.

3.2.3 The normal uid pro le and Reynolds numbers estimation

In the one- uid model deduced from E.T. it’s possible to replace the elds q and v with

the variables u(n) and u(s), introduced in (2.10) and (2.11). In counter ow situation,

the velocity of liquid helium is zero, and only the heat ux q is present. Therefore, in

this case the pro le of the velocity of the normal component u(n) is directly linked to

the pro le of the heat ux by the relation

u(n) = Tq =
1

ST
q. (3.22)

The pro le of the normal component u(n) is shown in Figures 3.3, and 3.4, in the

various situations considered in the previous section. Also in this case, these gures

are analogous to Figures 6, 7, 8 and 9 of (Saluto et al., 2014) where we considered

only the thermal resistance due the friction between the viscous component and the

quantized vortices of super uid, i.e. the contribution (3.20), instead of the sum of the

two contributions (3.19) and (3.20) considered here.

One sees that, like in Figures 3.2, the pro le is parabolic in the regime TI and

becomes at in the regime TII. Only di erence between the pro le of q and u(n) is that

the rst has higher values at higher temperatures, while the other one has higher values

at lower temperatures. Thus, it is seen that for su ciently high values of the vortex line

density L0, the velocity pro le becomes gradually atter in the central region. To verify

whether this is a dynamical consequence of the resistance of the vortices, or whether it

corresponds to a genuine turbulence of the normal component (which is also known to

lead to at pro les at the center), we will analyze the Reynolds numbers derived from
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Figure 3.3: Pro le of u(n) in terms of r at T = 1.7K in the transition from absence of vortices

to TI turbulence, in both cases the values of L0 correspond to Vns = 1.00 cm/s (left); and
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for L0 = 4 105 cm 2 corresponding to T
x = 5.19 10 5K/cm at 1.5K, T

x = 4.65 10 5K/cm

at 1.6K and T
x = 3.56 10 5 K/cm at 1.7K (right). These gures come from Figure 3.2, by

using the relation (3.22) between u(n) and q.
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the velocity pro le we have obtained. Since the turbulence of viscous uids is related

to su ciently high value of the Reynolds number, it is illustrative to compute the value

of this number at the center of the channel. The Reynolds number is:

Rey =
(n)u(n)x 2R

, (3.23)

where is the viscosity of liquid helium II. The value of u(n)
x is related to q by u(n)

x =

q( (s)Ts) 1 as it has been said in Section 2.2.2. In Tables 3.2 we show the Reynolds

numbers corresponding to the central value of q for di erent temperature and L0 =

4 103 cm 2 in regime TI (left) as in Figure 3.2-left, and for L0 = 4 105 cm 2 in regime

TII (right) as in Figure 3.2-right. In Table 3.3 we show the Reynolds numbers for two

values of L0 in the transition to the TII turbulence, as in Figure 3.1-right, related to

the same counter ow velocity Vns = 1.85 cm/s.

L0 T q(r = 0) Rey
cm 2 K erg / (cm*s)

4 103 1.5 4.4 105 122
1.6 6.8 105 191
1.7 9.1 105 243

L0 T q(r = 0) Rey
cm 2 K erg / (cm*s)

4 105 1.5 2 106 555
1.6 2.6 106 730
1.7 2.9 106 775

Table 3.2: Reynolds numbers estimation for the ow of the normal component for values of
L0 in the regimes TI (left) and TII (right) at di erent temperatures.

For T = 1.7 K and Vns = 1.85 cm/s

L0 q(r = 0) Rey
cm 2 erg / (cm*s)

104 1.34 106 358
4.6 104 1.37 106 366

Table 3.3: Reynolds numbers estimation for the normal component in the transition between
the two regimes of turbulence.

It is seen that the normal uid is expected to be in laminar ow, because its cor-

responding Reynolds number is much lower than the critical Reynolds numbers for

viscous uids (the critical value of the Reynolds number related to the presence of tur-

bulence in a Poiseuille ow of a Newtonian uid is of the order of 1500). In this case,

the at pro le of the normal component velocity illustrated in Figures 3.1–3.4 is a con-

sequence of the interaction with the vortices, rather than from an intrinsic turbulence

of the normal uid.
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3.2.4 E ective thermal conductivity

If the solutions obtained for the heat ux (both in the laminar case or in the presence

of vortices) are integrated over the whole transversal section, i.e. from r = 0 to r = R,

one gets the total heat ux Q. Then, we have in the laminar case (L0 = 0, parabolic

pro le (3.9))

Q = q(r)d = 2
T

l

R

0

1

4

TS2

(R2 r2)dr =
R4TS2

8

T

l
, (3.24)

where T indicates the temperature di erence between the two ends of the channel,

and l the length of the channel (or, in more general terms, T/l is the modulus of the

temperature gradient). From here one can determine the average heat ux along the

channel qaverage =
Q
R2 , and one may de ne an e ective thermal conductivity as

eff =
|Q|
R2

l

T
=

R2TS2

8
, (3.25)

thus, it vanishes for R going to zero, in contrast with the usual thermal conductivity,

which depends on the material, but not on the geometry. Indeed if the radius of the

channel goes to zero, equation (3.25) implies also q = 0. In fact, it is known that inside

a very thin capillary (superleak) a heat ux must be accompanied by a matter ux in

opposite direction.

Instead, in presence of a homogeneous tangles of vortices (L0 = 0, Bessel pro le

(3.18)), we obtain

Q = q(r)d = 2
T

l

R

0

r

BL0
1

I0 r ABL0

I0 R ABL0
dr, (3.26)

and the e ective thermal conductivity becomes

eff =
Q

R2

l

T
=

1

BL0

I2 R ABL0

I0 R ABL0
, (3.27)

where I2 indicates the modi ed Bessel function of rst kind and second order.

For L = 0 the value of eff in (3.27) becomes AR2

8 = TS2 R2

8 as in (3.25). Increasing

L0, the values of eff decrease, as shown in Figure 3.5.

The Figure 3.5 is the logarithmic plot of eff vs L0 given by (3.25) in terms of L0 in

the regime TI (left) and given by Eq. (3.27) in the regime TII (right). In both gures

R is the radius of the channel and it is R = 0.5 cm and the values of the constants A

and B are taken for T = 1.7 K. These plots show as the slope of eff in the regime

TII is in good approximation hyperbolic, eff = 1
L , with = 0.9, with an error from

0.2 to 4.4 per cent. In the regime TI the slope of eff is tting by a polynomial of the

type: a + b
L

c
L , with an error from 0.2 to 1 per cent, and where a = 2.2 1012,

b = 4.9 1014 and c = 5 1015.
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Figure 3.5: Logarithmic plot of the e ective thermal conductivity eff given by Eq. (3.25) in

terms of L0 in the regime TI (left) and given be Eq. (3.27) in the regime TII (right).

3.3 Evaluation of the laminar viscous contribution to the

thermal resistance

In fully developed turbulence the thermal resistance — in other terms, the total tem-

perature gradient for a given heat ux — is due essentially to the friction between

viscous component and the quantized vortices of super uid (which is usually the dom-

inant contribution), and the contribution of the laminar ow of the normal component

to the thermal resistance can be neglected.

In a rst analysis it is a good approximation, but for a more detailed comparison

between theoretical results and the experimental data, we must take into account also

the thermal resistance due to the viscous ow of the normal component, as we did in

Section 3.2.2. In this section we do it. Carrying out this analysis, we realized that

the contribution of the normal component may in fact become considerably di erent

from the Landau expression, as a consequence of the velocity pro le being given by

(3.18) instead of the well-known Poiseuille parabolic pro le (3.9). Since for a given

value of the heat ux q the thermal resistance is proportional to the corresponding

temperature gradient, we will compare the respective temperature gradients obtained

from the Landau thermal resistance and from the thermal resistance obtained in this

section (Saluto et al., 2015).

As in Section 3.2.2, we can evaluate the temperature gradient in the Poiseuille

laminar regime as in (3.19) and the vortex contribution as in (3.20).

From equation (3.7), neglecting in it the term in the second derivative of q (which

gives the laminar contribution to the temperature gradient), as in (3.20), we obtain

( T )vort =
K

qL0 = BqL0, (3.28)

where q = q(r) is the average value of q(r) in (2.21) and using the relation q =

sTsVns, one sees that equations (3.20) and (3.28) coincide.
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By integration of (3.18) over the whole transversal area (i.e. for 0 r R), we

obtain

T =
Q

R2
BL0

I0 R ABL0

I2 R ABL0
, (3.29)

being Q the total heat ow imposed to the channel, i.e. Q = q R2 (where q is the

modulus of the average heat ux), whose experimental values can be obtained from

the gures of (Martin and Tough, 1983). This expression for the temperature gradient

reduces to the Landau form in the limit for L0 = 0, and to (3.28) for very high values

of L0 (i.e. in the regime TII).

The total temperature gradient obtained from (3.29) is smaller than that obtained

from eq. (3.28) for the vortex contribution, because

| T | = BqL0 < BqL0
I0 R ABL0

I2 R ABL0
. (3.30)

Both expressions become equal for high values of L0 or of R; this is an indication

that the right-hand side of (3.30) includes not only the vortex resistance, but also the

laminar viscous resistance due to the normal component, which becomes negligible for

wide channels.

Now, we aim to compare ( T )Landau obtained from (3.19) with ( T )lam obtained

by subtracting from the total T given in (3.29) the pure vortex contribution given by

(3.28), namely:

( T )lam = T ( T )vort = BL0
I0 R ABL0

I2 R ABL0
1

Q

R2
. (3.31)

In Tables 3.4 and 3.5, the values of Vns and L0 are extracted from Fig. 10 of (Martin

and Tough, 1983). The values for Q in the rst column are obtained from Q = q R2

with q = sTsVns, the values in the fourth column are obtained from (3.19). These

values are calculated for R = 0.05 cm (the radius of the channel used in the experiments

in (Martin and Tough, 1983)) in Table 3.4, and for R = 0.025 cm in Table 3.5. For

the other coe cients the values are extracted from (Donnelly and Barenghi, 1998). In

the appendix are also given the respective results for T = 1.5 K and T = 1.6 K. For

each value of temperature, the lowest value of Vns is the critical velocity indicated in

(Martin and Tough, 1983) as VC2 that yields the transition between regimes TI and

TII.

In order to evaluate the viscous contribution of the normal component also in a

channel with smaller radius, we have extracted from the Fig. 10 of (Martin and Tough,

1983) the values of the total heat ux imposed (through the values of Vns and relation (1)

of (Martin and Tough, 1983)) and we have calculated the corresponding values of Vns
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Q Vns L0 ( T )Landau ( T )vort T ( T )lam

erg/s cm/s cm 2 K/cm K/cm K/cm K/cm

1.13 104 1.93 4.34 104 2.80 10 7 1.86 10 6 2.25 10 6 3.87 10 7

1.56 104 2.67 1.47 105 3.87 10 7 8.73 10 6 9.64 10 6 9.12 10 7

1.80 104 3.07 2.03 105 4.46 10 7 1.39 10 5 1.51 10 5 1.27 10 6

2.45 104 4.19 4.12 105 6.07 10 7 3.84 10 5 4.07 10 5 2.37 10 6

2.79 104 4.78 5.50 105 6.93 10 7 5.85 10 5 6.14 10 5 2.92 10 6

3.42 104 5.85 8.17 105 8.49 10 7 1.14 10 4 1.18 10 4 4.53 10 6

Table 3.4: The last column shows the viscous contribution of the normal component to the
temperature gradient, for T = 1.7 K and R = 0.05 cm. The values of Vns and L0 are extracted
from Fig. 10 of (Martin and Tough, 1983) in the regime TII. The rst value of Vns is the critical
velocity indicated in (Martin and Tough, 1983) as VC2 yielding the transition between regimes
TI and TII. The values of ( T )Landau and ( T )vort are calculated from Eqs. (3.19) and (3.28)
respectively. The values of T are obtained from eq. (3.29).

and L0 from Eqs. (1) and (18) of (Martin and Tough, 1983). From these values we

have calculated the other quantities, as in Table 3.4.

Q Vns L0 ( T )Landau ( T )vort T ( T )lam

erg/s cm/s cm 2 K/cm K/cm K/cm K/cm

1.13 104 7.70 1.42 106 1.88 10 6 2.43 10 4 2.60 10 4 1.68 10 5

1.56 104 10.67 2.95 106 2.60 10 6 7.00 10 4 7.32 10 4 3.17 10 5

1.80 104 12.30 4.05 106 3.00 10 6 1.11 10 3 1.15 10 3 4.22 10 5

2.45 104 16.74 8.03 106 4.08 10 6 2.99 10 3 3.08 10 3 8.16 10 5

2.79 104 19.11 1.07 107 4.66 10 6 4.57 10 3 4.65 10 3 8.30 10 5

3.42 104 23.41 1.67 107 5.70 10 6 8.68 10 3 8.86 10 3 1.73 10 4

Table 3.5: The last column shows the viscous contribution of the normal component to the
temperature gradient, for T = 1.7 K and R = 0.025 cm. We have extracted the values of the
total heat ux imposed from Fig. 10 of (Martin and Tough, 1983) in the regime TII. From
these values we have calculated the values of Vns and L0 from Eqs. (1) and (18) of (Martin
and Tough, 1983). The values of ( T )Landau and ( T )vort are calculated from Eqs. (3.19) and
(3.28) respectively. The values of T are obtained from eq. (3.29).

Inspection of total T in the sixth column shows that it is close to ( T )vort of the

fth column in all cases, as it is shown also in Figure 3.3, where the di erent contri-

butions of T are plotted. This fact is logical, because the friction force of normal

component against the vortices is the main contribution to the normal resistance, and

the quantity
I0(R ABL0)
I2(R ABL0)

is close to 1 for high values of the argument R ABL0. How-

ever, from the point of view of the behavior of the normal component, which is the

main aim of recent studies and of the present work, the relevant aspect is that the
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Figure 3.6: Data of Tables 3.4 and 3.5 for the several contributions to the temperature gradient

in terms of Q for R = 0.05 cm (left) and for R = 0.025 cm (right).

contribution ( T )lam = T ( T )vort of the seventh column (corresponding to the

non parabolic pro le (3.18)) may be two orders of magnitude higher (in the lowest row

of Tables 3.4 and 3.5) than ( T )Landau corresponding to the parabolic pro le. There-

fore, if one actually wants to get information on the ow of the normal component,

a high precision is needed in the measurement of T . In Tables 3.8 and 3.9 in the

Appendix 3.7 we give the analogous values to Table 3.4, but for T = 1.5 K and T = 1.6

K. In Tables 3.10 and 3.11 are the analogous values to Table 3.5. It is seen there that

the lower the temperature, the lower the values of the respective laminar contributions;

this is logical because the value of the viscosity is also lower (recall that for lower

temperatures n decreases, and s increases).

3.3.1 Comparison between experimental data and the results of the
one- uid model

Starting from the model proposed in Section 3.2, we can evaluate the average value of

q(r), q, in a cross section of the channel, using equation (3.18), i.e.

q =
1

BL0

I2 R ABL0

I0 R ABL0
T. (3.32)

As we did in Section 3.2, we can choose for T
l the sum of ( T )Landau and ( T )vort,

see equations (3.19) and (3.20), to evaluate Uns = Uns = u(n) u(s) from (2.17). As

shown in Table 3.6, for T = 1.7 K, the values obtained for Uns are quite close to the

values of Vns extracted from Fig. 10 of (Martin and Tough, 1983) in the fully developed

turbulent regime (as in the last rows).

The value of Vns in the rst two rows has been chosen in the transition between

TI–TII regimes: this is the reason why we have for the same velocity two di erent

values of L0 — the same reported in Fig. 3.1-right or in Fig. 4 of (Saluto et al., 2014)
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Vns L0 ( T )Landau ( T )vort ( T )Landau+ q Uns

( T )vort

cm/s cm 2 K/cm K/cm K/cm erg / (cm*s) cm/s

1.85 104 2.69 10 7 4.12 10 7 6.80 10 7 1.52 106 2.04
1.85 4.60 104 2.69 10 7 1.89 10 6 2.16 10 6 1.31 106 1.76

1.93 4.34 104 2.80 10 7 1.86 10 6 2.14 10 6 1.37 106 1.84
2.67 1.47 105 3.87 10 7 8.73 10 6 9.11 10 6 1.88 106 2.52
3.07 2.03 105 4.46 10 7 1.39 10 5 1.43 10 5 2.17 106 2.91
4.19 4.12 105 6.07 10 7 3.84 10 5 3.90 10 5 2.99 106 4.01
4.78 5.05 105 6.93 10 7 5.85 10 5 5.92 10 5 342 106 4.60
5.85 8.71 105 8.49 10 7 1.14 10 4 1.14 10 4 4.21 106 5.65

Table 3.6: This table shown that in the fully developed regime the values of Uns are quite
close to that of Vns extracted by experimental data. Here we are reported the values only for
T = 1.7 K. The values of Vns and L0 are extracted from Fig. 10 of (Martin and Tough, 1983)
in the regime TII. The rst two row have the same value of Vns because it is chosen in the
transition between regimes TI and TII, and we have chosen two di erent values of L0. In the
third row the value Vns is the critical velocity indicated in (Martin and Tough, 1983) as VC2

yielding the transition between regimes TI and TII. The values of ( T )Landau and ( T )vort

are calculated from Eqs. (3.19) and (3.20). The values for q are calculated from (3.32), and
that for Uns from (2.17).

—. In Appendix 3.8 we report tables analogous to Table 3.6 but for T = 1.5 K and

T = 1.7 K.

If we evaluate T from (3.29) — using experimental data for the total heat ow

imposed Q—, because it depends on L0, for a xed value of Q or Vns we obtain di erent

value of the temperature gradient corresponding to the di erent values of L0. But for

the average velocity Uns we obtain the same value of Vns. In fact, one has:

Uns = u(n) u(s) = sTs q = sTs
1

BL0

I2(R ABL0)
I0(R ABL0)

T
lc

= sTs
Q
R2 = Vns. (3.33)

In Figure 3.7 the discontinuous lines correspond to Figure 4 of (Saluto et al., 2014)

where the normal component contribution was neglected in the estimation of T ; the

continous lines are those obtained with T computed from (3.29). The new lines are

more realistic, because both the parabolic and the attened pro le yield the same total

value for the integrated heat ow Q.

Because we have chosen the same values for Vns = 1.85 cm/s (slightly less than the

critical velocity indicated in Fig. 10 of (Martin and Tough, 1983), for T = 1.7 K, i.e.

Vns = 1.93 cm/s), we expect the same values for q, calculated for the two di erent

values of L0, taken in the transition region TI–TII. Our predictions are supported

by the values shown in Table 3.6, obtained using the one- uid model deduced by E.T.
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Figure 3.7: Pro le of q in terms of r for T = 1.7 K in the transition between the regimes

TI - TII. The values choosen for L0 correspond to Vns = 1.85 cm/s, which is the transition

velocity from TI to TII regime (Martin and Tough, 1983). The parabolic pro les correspond

to L0 = 104 cm 2 in the TI regime, the other to L0 = 4.6 104 cm 2 in the TII regime.

Thus, a good choice for the thermal resistance is important in the comparison of the

two mentioned models. In the case in which the values of T obtained in Section 3.2

are used to estimate Uns (instead of using ( T )Landau+( T )vort), Uns would coincide

with Vns, as in (3.33).

3.4 Ballistic regime and slip ow along the walls

In Section 3.3 it has been seen that the smaller the radii R, the higher the contribution

of the normal component to the normal resistance. But when R becomes very small,

comparable to phonon mean free path, the non-slip condition for vn at the surface

should be modi ed, by admitting some degree of slip ow, as it is usual in rare ed gas

dynamics, for the sake of illustration see (Struchtrup, 2005; Tabeling, 2005), and in

phonon hydrodynamics (Alvarez et al., 2010; Dong et al., 2014; Sellitto et al., 2010).

In this section we generalize the results of Section 3.2 to the ballistic region in

which the phonon mean free path becomes comparable to the radius of the channel

(Saluto et al., 2015). This situation is found at low temperatures (for instance, below

T = 0.7K, the mean free path is longer than 5 10 7 cm) (Greywall, 1981). In such

a case, the normal component cannot be longer considered as a usual viscous uid but

as a rare ed uid. In analogy of the description of the transition from viscous ows to

ballistic ows in gases, the non-slip condition q = 0 on the wall must be modi ed as

(Greywall, 1981; Sciacca et al., 2014b)

q(r = R) = Cl
q(r)

r |r=R
. (3.34)
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The coe cient C may be interpreted as C = (2 f)/f , f being the fraction of phonons

which undergo di usive scattering with the walls, and (1 f) the fraction undergoing

specular scattering. Thus, the expected values of C are higher than 1 (Greywall, 1981).

We will explore the situation C = 2, for the sake of illustration.

With boundary condition (3.34), the solution of (3.7) is no longer (3.18), but

q(r) =
1

BL0
1

I0 r ABL0

I0 R ABL0 + Cl ABL0 I1 R ABL0

T

x
, (3.35)

with I1 the modi ed Bessel function of rst kind and rst order. In Figure 3.4, the

pro le (3.35) is plotted (for C = 2). It may be compared to Figure 3.2-right. It is a

very at pro le but it lacks the steep velocity gradients near the walls, because the

value of q along the walls is not zero, as in Figure 3.2-right, but given by (3.34). This

reduces the viscous contribution to the thermal resistance.
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Figure 3.8: Pro le of q in terms of r for T = 1.7 K and C = 2, according to (3.35).

In the limit for L = 0, this solution reduces to

q(r) =
1

4
A(r2 R2 2ClR)

T

x
, (3.36)

where the two rst terms are the Poiseuille pro le and the last one the slip contribution.

From (3.35) by integration from r = 0 to r = R, we can de ne the e ective thermal

conductivity as (Sciacca et al., 2014a,b)

eff =
Q

R2

l

T
=

1

BL0
1

2

R ABL0

I1 R ABL0

I0 R ABL0 + Cl ABL0 I1 R ABL0
,

(3.37)

where T is still the temperature di erence at the ends of the channel and l is the
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length of the channel. Thus, we obtain

T =
Q

R2
BL0 1

2

R ABL0

I1 R ABL0

I0 R ABL0 + Cl ABL0 I1 R ABL0

1

.

(3.38)

In Table 3.7, we compare the values of T obtained from (3.38) for C = 2, with

those obtained from (3.29) (corresponding to non-slip condition C = 0), for the value

of Q and L0 of the last three rows of Table 3.4. We assume, for the sake of illustration,

that 1.53 10 2 cm at T = 1.7 K, estimated by extrapolating the relation / 0.7 =

(T/0.7)
4
3 from (Greywall, 1981).

Q L0 ( T )non slip ( T )slip
erg/s cm 2 K/cm K/cm

2.45 104 4.12 105 4.07 10 5 3.85 10 5

2.79 104 5.50 105 6.14 10 5 5.85 10 5

3.42 104 8.17 105 1.18 10 4 1.07 10 4

Table 3.7: T evaluated for three di erent values of Q and for R = 0.05 cm. The values of
( T )no slip and ( T )slip (for C = 2) are calculated from eqs. (3.29) and (3.38) respectively
(the rst one is T in Table 3.4).

It is seen that the slip ow condition leads to a lower thermal resistance than the

usual non-slip condition. This is logical, because in the non-slip condition it is imposed

that the heat ux along the walls is zero, whereas for the slip condition it is higher

than zero. In fact, the order of magnitude of the di erence between T for C = 0 and

C = 2 is comparable or higher than the laminar contribution for C = 0. According

to Table 3.7, the di erence in thermal resistance between non-slip and slip conditions

is of the order of 5% for C = 2. Higher values of C would lead to more signi cant

di erences.

This may be of special interest for the ow of helium in porous media. A future

work of interest would be to compare the e ects of this slip ow with an interesting

proposal (Fliessbach, 1991; Mongiov̀ , 2000b; Schäfer and Fliessbach, 1994) related to

a possible non-vanishing entropy sss of the super uid component, but with non-slip

condition, i.e. vanishing tangential heat ux on the walls. As in (Mongiov̀ , 2000b) the

total heat ux would be

q = nsnT (vn v) + sssT (vs v). (3.39)

The rst part is the usual one, as considered in the discussion in Section 2.1, and along

this thesis. The second one is a non-standard proposal. In principle, it is assumed that

ss sn, but in very narrow channels and without slip of the normal component, thus
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new term related to ss would be relevant. Indeed, the tangential heat ow along the

walls would be

qt = nsnT (vn v)t + sssT (vs v)t. (3.40)

In usual situations, vnt = 0 (non-slip condition), but the super uid component may have

a tangential velocity component along the walls, vst. Then, in counter ow situation, qt
would be

qt = nsnTvnt + sssTvst = sssTvst. (3.41)

Instead, if one considers that, for very narrow channels (namely, in the ballistic regime

with phonon mean free path comparable or larger than the radius of the channel), and

one consider ss = 0, the tangential heat ux would be

qt = snTvnt. (3.42)

We leave for the future the conceptually interesting comparison between (3.41) and

(3.42) interpretations. Since qt is not directly observable, one should consider the ux

across the whole (narrow) channel, yielding the total heat ux.

3.5 Stationary counter ow in narrow two-dimensional

channel

The present chapter has been devoted to a super uid ow along a cylindrical channel.

In this last section we present, for the sake of a wider generality, the results for the

ow in a two-dimensional in nitely wide channel between parallel plates separated at

distance 2a to describe heat ow along a narrow slit (see Figure 3.5). This is the two-

dimensional equivalent of the problem analyzed in Section 3.2 in axial symmetry. Some

of the results obtained here will be useful in the next chapter, and are also of interest

from a general perspective. Of course, other kinds of channels (triangular, square,

rectangular or elliptical cross sections) could be considered, but for the purpose of our

analysis, these two paradigmatic ows (axial and plane) are su cient.

A heat ux is applied in x-direction and we assume that it depends only on y; then

the equation for the heat ux from system (3.3), becomes

T

x

1

A

2q

y2
= BLq, (3.43)

where A = S2T and B = K , as in (3.14).
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Figure 3.9: An heat ux is applied in x-direction and it depends only on y.

3.5.1 Constant vortex density

A general solution of (3.43) with constant value of L0 and the non-slip heat ux bound-

ary conditions, q(±a) = 0, is:

q(y) =
1

BL0

T

x
+ C1e

y ABL0 + C2e
y ABL0 . (3.44)

Imposing the non-slip boundary conditions, namely q(±a) = 0, we obtain

C1 = C2 =
1

BL0

T

x
ea ABL0 + e a ABL0

1

and then

q(y) =
1

BL0

T

x
1

ey ABL0 + e y ABL0

ea ABL0 + e a ABL0
=

1

BL0

T

x
1

cosh (y ABL0)

cosh (a ABL0)

(3.45)

instead of the q(r) pro le in (3.18). By integration from a to a we obtain the total

heat ux, a
a q(y)dy = 2q0, i.e.

q0 =
1

BL0

T

x
a 1

tanh(a ABL0)

a ABL0
. (3.46)

The latter equation is the analogous to (3.29), but for thin at channels. In the limit

when L0 0, this goes to

q0 =
Aa3

3

T

x
. (3.47)

By using (3.46), to express T
x in terms of q0, the heat ux pro le (3.45) may be

alternatively rewritten as

q(y) = q0 1
cosh(y ABL0)

cosh(a ABL0)
a

tanh(a ABL0)

ABL0

1

. (3.48)
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Considering now the total heat ux in a section S of thickness 2a, we can de ne an

e ective thermal conductivity as

eff =
Q

S

l

T
=

1

2a

a

a
q(y)dy

l

T
=

1

BL
1

tanh(a ABL0)

a ABL0
. (3.49)

This is the analogous of (3.27) but for a wide plane channel. As well as (3.27), it shows

a reduction of eff for increasing values of L0.

3.6 Remarks

In this chapter we used the one- uid model formulated in (Jou et al., 2002), derived by

Extended Thermodynamics, that we presented in the previous chapter, to search the

in uence of vortices (L0 = 0) on the normal component velocity pro le.

In Section 3.2 it has been seen that the presence of a su ciently high vortex line

density makes that the velocity pro le of the normal component in counter ow tur-

bulence becomes very at in the central region. In fact, in this model there is not a

sudden transition from parabolic to at pro le, but a gradual one, according to the

form of the modi ed Bessel function of the zero order of the rst type.

Thus, to ascertain whether a at velocity pro le truly corresponds to a turbulent

state, it is necessary to be sure that the vortex line density is not high enough to explain

by itself the at form of the pro le.

If the normal component ow in a cylindrical duct is laminar, its velocity pro le

is expected to have the usual parabolic form of Poiseuille ow. In contrast, if it is

turbulent, the velocity pro le will be much atter in the central regions, as it is known

from usual turbulence. In order to explain which of these situations is valid, experiments

have been carried out with small suspended particles in the uid, which are expected

to visualize the form of the velocity pro le (Barenghi, 2010; Galantucci et al., 2011;

Galantucci and Sciacca, 2012, 2014; Guo et al., 2010). Experiments showed that the

marker particles distributed in a at pro le perpendicular to the ow direction. From

this observation, it was inferred that the normal uid was turbulent in its own. We

have pointed out, here, however, that a relatively at pro le of the normal uid does

not necessarily imply that its ow is turbulent. Indeed, we have shown that a simple

model for the interaction between the quantized vortices and the normal component

leads in a direct way to a velocity pro le which signi catively di ers from the parabolic

one and which is considerably at in the central region. Thus, to assert the turbulent

character of the normal component is more demanding than the observation of a at

velocity pro le, and requires other further exploration, as those based on the analysis

of velocity uctuations.
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Furthermore we reported analogous results for the normal uid velocity introduced

in the one- uid model by (Mongiov̀ , 1993). Through the comparison between the

experimental data for the relative velocity of the super uid, i.e. Vns, and the results

obtained in our model for the velocity Uns, we show how the results of the one- uid

model well agree with experimental data.

• Some results of Section 3.2 are published in:
L. Saluto, M. S. Mongiov̀ and D. Jou, Longitudinal counter ow in turbulent liquid helium:
velocity pro le of the normal component,
Z. Angew. Math. Phys. 65 531–548 (2014), DOI 10.1007/s00033-013-0372-7

In Section 3.3 we have shown that the viscous contribution of the normal component

of helium II to the thermal resistance in counter ow along a cylindrical channel in

the super uid turbulent regime may be considerably higher than the classical Landau

estimation, as seen by comparing ( T )Landau and ( T )lam (Eqs. (3.19) and (3.31)).

This is due to the fact that in presence of vortices the normal velocity pro le becomes

at at the center and steep near the walls (Saluto et al., 2014), in such a way that it

is considerably di erent than the Poiseuille parabolic pro le, which is used to derive

the well-known Landau estimation of the helium II thermal resistance. We have seen

that, although the viscous contribution is smaller than the vortex contribution, it may

be one or two orders of magnitude higher than the expected Landau contribution, in

the partially developed TII turbulent regime.

The value of this viscous contribution is negligible for wide channels but it increases

for decreasing radius — for a same value of the counter ow velocity Vns —, as it is

seen by comparing Table 3.5 (corresponding to R = 0.025 cm) and Table 3.4 (R = 0.05

cm). To obtain a detailed evaluation of the thermal resistance, the value of L0 in terms

of q and R is needed. A full self-contained analysis would require an evolution equation

for L going beyond the standard Vinen’s equation and including the in uence of the

walls, as that proposed in (Mongiov̀ and Jou, 2005a; Mongiov̀ et al., 2007).

The results obtained here are relevant because one could compare the measured

thermal resistance with that expected for laminar ow of the normal component, to

check whether the normal component is laminar or turbulent. If such a di erence

were actually observed in such a way that ( T )lam was higher than ( T )Landau, one

could apparently conclude that the normal component is not owing in a laminar way.

However, we have seen here that such a conclusion requires a detailed knowledge of

the expected laminar contribution to the thermal resistance, since such contribution

is not that expected from the parabolic velocity pro le, but from a more complex

pro le, which may yield a much higher contribution. If one ignores this fact, one could

interpret this enhanced value of thermal resistance as a proof of turbulent ow of the

normal component, but we have seen here that this is not necessarily so, because the
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modi ed velocity pro le implies such an enhancement even in absence of turbulence of

the normal component.

In Section 3.4 we have analized the particular situation in which the radius of the

channel becomes comparable or higher than the phonon mean free path. In this case,

the non-slip boundary condition for the velocity could break down, and a slip ow along

the walls is expected to arise. We have explored the mathematical consequences of this

possibility and we have found that this implies a reduction of the thermal resistance.

This may be of special interest for the analysis of heat or mass transfer in porous media,

where usually the non-slip condition process is considered, for very narrow channels,

especially at low temperature, when the phonon mean free path becomes of the order

of 500 µm.

• Some results of these two last sections are published in:
L. Saluto, D. Jou and M. S. Mongiov̀ , Contribution of the normal component to the
thermal resistance of turbulent liquid helium,
Z. Angew. Math. Phys. (2015), DOI 10.1007/s00033-015-0493-2

The hypothesis of no matter ow along the channel is made. This is not an abstract

mathematical simpli cation, but it corresponds to the well characterized and widely

studied counter ow situation. For instance, if the channel is closed at both ends,

there may be a heat ow but not a matter ow across them. In a following paper

this hypothesis will be removed, to better describing the use of super uid helium as

cryogenic refrigerant in industry.

Another interesting situation, to be studied in the future, would be a so-called

co ow situation, namely, when the total mass ow is not zero, but the super uid ows

along a channel with warmer walls, taking with it the heat; this situation is especially

interesting in refrigeration problems. From a theoretical point of view, the interaction

between a radial heat transfer and a longitudinal mass transfer would be especially

challenging, because both e ects may produce vortex tangles which will interact with

each other.

Finally, for the sake of a wider generality, in Section 3.5 we report the solution for

the heat ux equation for a ow in a two-dimensional in nitely wide channel between

parallel plates to describe heat ow along a narrow slit. Through the essential physical

results are similar to those in a cylindrical channel (non-parabolic and atter velocity

pro le, e ective thermal conductivity decreasing for increasing vortex density), the

concrete analytical expressions are di erent.
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3.7 Appendix 3.A:

Viscous contribution of the normal component

at T = 1.5 K and T = 1.6 K

For the sake of completeness, in this appendix we give the analogous of Tables 3.4 and

3.5 for two di erent values of T than that used in Section 3.3 (for T = 1.7 K), namely

T = 1.5 K (Tables 3.8 and 3.10) and T = 1.6 K (Tables 3.9 and 3.11), for the radii

R = 0.05 cm (Tables 3.8 and 3.9) and R = 0.025 cm (Tables 3.10 and 3.11)

• In these tables, the last column shows the viscous contribution of the normal

component.

• The values of Vns and L0 for R = 0.05 cm are extracted from Fig. 10 of (Martin

and Tough, 1983) in the regime TII.

In the tables related to R = 0.025 cm we have taken values of Vns of the same

order of magnitude as for R = 0.05 cm, but the values for L0 have been derived

from the equations (1) and (18) of (Martin and Tough, 1983), giving L0 in terms

of Vns and R.

• In each table, the rst value of Vns is the critical velocity indicated in (Martin

and Tough, 1983) as VC2 yielding the transition between regimes TI and TII.

• The values of ( T )Landau, ( T )vort and T are calculated from equations (3.19),

(3.28) and (3.29).

Inspection of the corresponding values indicates that the viscous contribution to

the thermal resistance is lower for lower temperatures; this is logical because for lower

temperatures n, the density of the normal component, is strongly reduced, and also

its in uence on the thermal resistance.

Q Vns L0 ( T )Landau ( T )vort T ( T )lam

erg/s cm/s cm 2 K/cm K/cm K/cm K/cm

6.84 103 2.30 2.78 104 3.33 10 7 1.56 10 6 2.23 10 6 6.67 10 7

1.04 104 3.48 1.60 105 5.05 10 7 1.36 10 5 1.57 10 5 2.11 10 6

1.29 104 4.33 2.67 105 6.29 10 7 2.83 10 5 3.15 10 5 3.23 10 6

1.49 104 5.00 4.44 105 7.26 10 7 5.44 10 5 5.91 10 5 4.71 10 6

1.79 104 6.00 5.63 105 8.71 10 7 8.25 10 5 8.91 10 5 6.57 10 6

1.94 104 6.52 6.40 105 9.46 10 7 1.02 10 4 1.09 10 4 7.24 10 6

Table 3.8: Values for T = 1.5 K and R = 0.05 cm
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Q Vns L0 ( T )Landau ( T )vort T ( T )lam

erg/s cm/s cm 2 K/cm K/cm K/cm K/cm

9.20 103 2.15 1.85 104 3.12 10 7 9.68 10 7 1.37 10 6 4.05 10 7

1.27 104 2.96 1.35 105 4.30 10 7 9.78 10 6 1.10 10 5 1.25 10 6

1.70 104 3.96 2.70 105 5.75 10 7 2.61 10 5 2.85 10 5 2.35 10 6

1.87 104 4.37 4.10 105 6.34 10 7 4.36 10 5 4.68 10 5 3.15 10 6

2.11 104 4.93 5.07 105 7.15 10 7 6.09 10 5 6.48 10 5 3.95 10 6

2.43 104 5.67 5.90 105 8.23 10 7 8.15 10 5 8.65 10 5 5.00 10 6

Table 3.9: Values for T = 1.6 K and R = 0.05 cm

Q Vns L0 ( T )Landau ( T )vort T ( T )lam

erg/s cm/s cm 2 K/cm K/cm K/cm K/cm

6.84 103 9.19 1.18 106 5.33 10 6 2.64 10 4 2.94 10 4 2.97 10 5

1.04 104 13.93 2.98 106 8.09 10 6 1.02 10 3 1.09 10 3 6.91 10 5

1.29 104 17.33 4.86 106 1.01 10 6 2.06 10 3 2.17 10 3 1.06 10 4

1.49 104 20.00 6.66 106 1.16 10 5 3.26 10 3 3.40 10 3 1.44 10 4

1.79 104 24.00 9.92 106 1.39 10 5 5.82 10 3 6.04 10 3 2.16 10 4

1.94 104 26.07 1.19 107 1.51 10 5 7.57 10 3 7.83 10 3 2.54 10 4

Table 3.10: Values for T = 1.5 K and R = 0.025 cm

Q Vns L0 ( T )Landau ( T )vort T ( T )lam

erg/s cm/s cm 2 K/cm K/cm K/cm K/cm

9.20 103 8.59 1.29 106 3.20 10 6 2.69 10 4 2.92 10 4 2.30 10 5

1.27 104 11.85 2.65 106 4.41 10 6 7.65 10 4 8.09 10 4 4.44 10 5

1.70 104 15.85 5.07 106 5.90 10 6 1.96 10 3 2.04 10 3 8.07 10 5

1.87 104 17.48 6.30 106 6.51 10 6 2.69 10 3 2.78 10 3 9.28 10 5

2.11 104 19.70 8.20 106 7.34 10 6 3.94 10 3 4.06 10 3 1.22 10 4

2.43 104 22.67 1.11 107 8.44 10 6 6.16 10 3 6.31 10 3 1.47 10 4

Table 3.11: Values for T = 1.6 K and R = 0.025 cm
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3.8 Appendix 3.B:

Data for Vns and Uns at T = 1.5 K and T = 1.6 K

For the sake of completeness, we report here the analogous results obtained in Sec-

tion 3.3.1, for T = 1.5 K and T = 1.6 K.

These tables show that in the fully developed regime the values of Uns are quite

close to that of Vns extracted by experimental data.

Vns L0 ( T )Landau ( T )vort ( T )Landau + ( T )vort q Uns

cm/s cm 2 K/cm K/cm K/cm erg / (cm*s) cm/s

2.30 2.78 104 3.33 10 7 1.56 10 6 1.89 10 6 7.39 105 1.95
3.48 1.60 105 5.05 10 7 1.36 10 5 1.41 10 5 1.19 106 3.13
4.33 2.67 105 6.29 10 7 2.83 10 5 2.89 10 5 1.51 106 3.97
5.00 4.44 105 7.26 10 7 5.44 10 5 5.51 10 5 1.77 106 4.67
6.00 5.63 105 8.71 10 7 8.25 10 5 8.34 10 5 2.13 106 5.63
6.52 6.40 105 9.46 10 7 1.02 10 4 1.03 10 4 2.33 106 6.14

Table 3.12: Values of Vns and Uns in the regime TII for T = 1.5 K

Vns L0 ( T )Landau ( T )vort ( T )Landau + ( T )vort q Uns

cm/s cm 2 K/cm K/cm K/cm erg / (cm*s) cm/s

2.15 1.85 104 3.12 10 7 9.68 10 7 1.28 10 6 1.09 106 2.00
2.96 1.35 105 4.30 10 7 9.78 10 6 1.02 10 5 1.50 106 2.74
3.96 2.70 105 5.75 10 7 2.61 10 5 2.67 10 5 2.03 106 3.72
4.37 4.10 105 6.34 10 7 4.36 10 5 4.43 10 5 2.25 106 4.14
4.93 5.07 105 7.15 10 7 6.09 10 5 6.16 10 5 2.55 106 4.69
5.67 5.90 105 8.23 10 7 8.15 10 5 8.23 10 5 2.95 106 5.40

Table 3.13: Values of Vns and Uns in the regime TII for T = 1.6 K



Chapter 4

Entrance region: longitudinal
and transversal ows

In the previous chapter we have assumed a long in nite channel, with a fully developed

ow for the normal component. The aim of the present chapter is to study the so-called

entrance ow, i.e. the region from the entrance to the tube to the region where the

velocity pro le has the fully developed (asymptotic) form. Since in this case the longi-

tudinal component qx depends not only on r (radial position) but also on x (position

along the channel), the steady state condition · q = 0, namely:

qx
x

+
1

r r
(rqr) = 0 (4.1)

(for axially symmetric ows independent of the angle ), implies the existence of a

transverse (radial) component qr(x, r). Therefore this chapter has two new aspects

with respect to the previous one: the dependence of the pro le along the tube, and the

existence of a radial component of the ow.

Flows in the entrance region are a classical topic in uid mechanics of viscous uids,

but we adapt it here to heat transport in helium II, relating the temperature gradient to

the heat ux instead of the pressure gradient to the mass ow, and using more general

equations than the viscous uid equations.

In the case of viscous uids, the starting situation is easy to understand from a

qualitative point of view and is represented in Figure 4.1. At the entry part, the uid

is assumed to have a at velocity pro le (of course, from the mathematical point of

view many other kinds of pro les at x = 0 are conceivable). However, when it becomes

in contact with the walls, a zero velocity — or at least a small velocity — is imposed

on them. This implies a steep velocity gradient in that region and, therefore, a high

viscous force in the uid, slowing it down near the wall and increasing its velocity

near the centre of the channel. The propagation of this force into the uid, towards
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the axis of the channel, will eventually lead to the parabolic Poiseuille form in the

absence of turbulent e ects, or to the attened pro le in presence of a constant density

of quantized vortices, as it has been seen in Chapter 3 ((3.18) for cylindrical channels

and (3.48) for at channels). These two situations are usually described by assuming

that the channel is su ciently long for the velocity pro les to correspond to a fully

developed situation, with vanishing radial ows, and only longitudinal ows. However,

for channels with a length shorter than 0.05ReyD, with D the diameter of the channel

and Rey the Reynolds number (Rey = vD/ , v being the average velocity of the normal

component and = / its kinematic viscosity, with the bulk viscosity coe cient and

the density of the uid), the velocity pro le has not yet arrived to the fully developed

regime (Landau and Lifshitz, 1987).

This situation is often found in actual counter ow experiments. As a consequence,

a deep analysis of counter ow requires to know whether the channel is longer or shorter

than the entrance region. In fact, in this region, temperature gradient at a given heat

ux is higher than that in a fully developed regime and therefore this region may

contribute essentially strongly to the thermal resistance.

In the classical theory of laminar viscous ow (Landau and Lifshitz, 1987; Lautrup,

2011), the length of the entrance region has the approximate form

Lentrance = KReyD, (4.2)

with K a numerical constant (of the order of 0.05 (Landau and Lifshitz, 1987)). Thus,

at Rey = 2000, for instance — more or less the limiting value beyond which turbulence

would appear — the length of the entrance region will be Le 100D. For instance, if

the diameter of the channel is 2 mm, the length of the entrance region will be 20 cm.

But, in actual fact, the length should be considerably longer — let us say, some ve

or six times longer at least — in order that the dominant pro le in most of the length

of the channel is the fully developed pro le, the entrance region being only a relatively

small zone of the total ow. This would lead to a length of the order of 1 m but, in

the usual experiments on turbulent counter ow in liquid helium the tubes are shorter

than that. In fact, the actual Reynolds number of the normal component of He II is

much smaller than 2000, of the order of 400; in this case, the actual entrance lenght

will be one order of magnitude smaller, but the in uence of the entrance region will be

still important.

We are not aware of a previous detailed consideration to this problem in helium II

counter ow, which is more complex than in usual laminar viscous ows, because of

the presence of vortex lines. An analysis of this problem is needed to interpret the

velocity pro le of the normal component, for instance, a topic which we have already

commented in the previous chapter. This pro le is needed, not only on its own, for the

sake of theoretical curiosity, but also to obtain the expression for the e ective thermal
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Figure 4.1: Developing velocity pro le in the entrance of a duct ow. One can see the entrance

region, where the velocity pro le evolves from at to parabolic.

conductivity of the super uid. In the rst section we will deal with this problem in a

phenomenological way, as an introduction to the practical interest of the entrance ow

in super uids.

A still more complicated problem would be a channel of nite length l, connecting

two wide containers, as for instance a narrow channel through a thin wall separating

two containers. In this case, the asymptotic form of the velocity pro le would be never

achieved, and one should consider also the in uence of the “exit region” besides that

of the “entrance region”.

4.1 Entrance ow and e ective heat conductivity of su-

per uid helium in short channels: laminar situation

The practical aim of this section is to obtain the suitable corrections to the well-known

Landau formula for the e ective thermal conductivity of super uid helium in situations

where the channel is not long enough to have a fully developed ow. This is relevant

from the practical point of view because it is known that, in principle, wide channels are

preferable to thin channels for an e cient heat transport (the Landau e ective thermal

conductivity is proportional to the square of the radius of the channel). However, if

the diameter of the channel is of the order or wider than l/(0.05Rey), the Landau

formula for the thermal conductivity will not be suitable. For instance, if Rey = 1000,

this implies that Landau formula will be valid only for D l/50. Therefore, an

exploration of this topic is needed. We will follow the paper (Lesniewski et al., 1996),

but introducing additional comments and details.
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In the usual two- uid model, the calculation of the e ective thermal conductivity

of helium II in a channel goes along the following lines, already proposed in (Landau,

1941), and brie y reviewed in the previous chapter. Here, we repeat a part of the

previous comments but from a more general perspective, including non-linear terms

which are specially relevant in the entrance region, but which were neglected in the

previous chapter. The velocity vn of the normal component is assumed to follow the

classical Navier-Stokes equation, namely:

vn · vn + p = 2vn, (4.3)

with the viscosity of the normal component and p the pressure. In the well-developed

ow, the non-linear term vanishes, because vn does not depend on the axial coordinate,

and because the radial component of vn is zero. In the one- uid model we could consider

q instead of vn, so that the essential results would be analogous to those obtained here.

Here we will use vn for the sake of close comparison with the bibliography on usual

uids.

According to the Gibbs equation, dG = SdT + V dp, with vanishing chemical

potential, one has

p = s T, (4.4)

with s the entropy per unit mass. This relation allows to express the pressure gradient

in terms of the temperature gradient, as was done in (3.10), which is useful in the

analysis of heat transfer.

The result of the integration of (4.3) without the rst term — i.e. in the fully

developed ow region — in a cylindrical channel of radius R and length l and assuming

vn = 0 on the wall (for r = R), is

vn(r) =
p

4l
R2 1

r2

R2
. (4.5)

This leads, after integration over the cross section from r = 0 to r = R, to the following

expression for the average normal velocity

vn =
R2

8

p

l
. (4.6)

As said in the previous chapter, the heat ux is given by q = sTvn. Thus, using

(4.4), the total heat ux across the tube will be

Q = Tsvn R2 =
2s2T R4

8

T

l
. (4.7)

This leads to the following expression for the e ective thermal conductivity (see (3.25))

eff
Q

R2

l

T
=

2s2TR2

8
. (4.8)
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As we commented in the previous chapter, this is not a true thermal conductivity

in the classical sense, i.e. as a quantity which only depends on the material, because

it also depends on the size of the tube. This feature is well known in heat transport

in nanosystems (Alvarez et al., 2010; Sellitto et al., 2010), as for instance nanowires

whose radius is comparable or smaller than the phonon mean free path.

The former derivation assumes that the ow of the normal component is well devel-

oped, but this is not true in the entrance region. In (Lesniewski et al., 1996) the authors

have made a simpli ed analysis of the in uence of the entrance region in usual uids.

Here, we apply their results to helium II, for the sake of illustration and motivation of

our further work in this chapter, where we will deal in deeper detail with this topic.

In the entrance region, the non-linear terms in the left hand side of (4.3) are di erent

from zero, and they must be taken into account. The mathematical development is

complicated, but several approximate solutions or empirical expressions are known for

classical viscous uids.

In (Lesniewski et al., 1996) the authors nd that p in a tube of length l is given

approximately by

p =
U2

2
13.74X

1
2 +

1.25 + 64X 13.74X
1
2

1 + 0.00021X 2
, (4.9)

with X a dimensionless parameter, given by

X = l
4R2 U

, (4.10)

where U is the average velocity. Note that this parameter may be rewritten in terms

of the Reynolds number as X = l
D

1
Rey , and that when Rey > 2000 the ow becomes

turbulent. When X is very high (as for instance when l is very long as compared to

the radius R times the Reynolds number), corresponding to fully developed parabolic

pro le, one has

p =
U2

2
(1.25 + 64X)

U2

2
64X = 8

Ul

R2
, (4.11)

which is just the Poiseuille expression (4.6) for p, as a function of U , , l and R. Note

that (4.10) and (4.11) may be related to (4.2) by writing (4.10) as

Lentrance = X ReyD, (4.12)

where X could be obtained by requiring that 64X 25 (in order that the 1.25 in the

parenthesis in the second member of (4.11) is less than 5% of the Poiseuille term 64X);

this yields X 0.38, which is considerably larger than the value 0.05 mentioned below

(4.2) and which is usually reported in uid hydrodynamics books (such value would be

obtained if we require 64X 1.25 instead of 25).
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In super uid helium the total heat ux Q is related to the velocity of the normal

component by the relation Q = sT R2vn. Then, taking into account (4.9) instead

of (4.6) and making the changes p = s T and Q in terms of vn, (4.11) can be

rewritten as

T =
Q2

2 2R4 2s3T 2
13.74X

1
2 +

1.25 + 64X 13.74X
1
2

1 + 0.00021X 2
. (4.13)

This leads to an e ective thermal conductivity eff = (Q/ R2)(l/ T ) given by

eff =
Q

R2

l

T
= Landau 0.214X

1
2 +

0.019X 1 + 1 0.214X
1
2

1 + 0.00021X 2

1

, (4.14)

where X is written in terms of Q as

X =
l

4

sT

Q
, (4.15)

and Landau =
2s2TR2

8 is the well-known Landau expression for the e ective thermal

conductivity.

0.2 0.4 0.6 0.8 1.0

X
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Figure 4.2: eff/ Landau vs X from equation (4.14), with X de ned in (4.15).

When l is long, or Q is small (X 1), equation (4.14) reduces to (4.8), but for short

channels the e ective thermal conductivity depends not only on R but also on l and it

is lower than the e ective conductivity derived in the fully developed regime, i.e. when

the pro le of the normal component velocity is parabolic. The form of eff/ Landau is

plotted in Figure 4.2 for the interval 0 < X < 1, where the entrance e ects are more
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visible. Note that for constant T and Q, X is proportional to the length l, according

to (4.15), and therefore, in these conditions, Figure 4.2 is equivalent to a plot of the

dependence of eff/ Landau with the length. Concerning analytic expressions for the

asymptotic behaviour for X high but not in nite, the correction to eff will be

eff = Landau(1 + 0.019X 1) 1. (4.16)

This correction is only valid for relatively high values of X and it turns to be small;

usually, the correction may be important, but the full equation (4.14) will be necessary

to account for it. For instance, the di erence with respect to (4.8) may be relevant.

As an example, for X = 1/4, eff in the short channel would be 1
1.07 0.94 times

the value predicted by (4.8), and for X = 1/9, it would be 1
1.17 0.85 times the value

predicted by (4.8). Thus, in short channels the steady Poiseuille ow has no space

enough to be settled, and the ow will be more complicated. This may in uence not

only the e ective thermal conductivity, but also the microscopic details of the vortex

tangle in the case that super uid turbulence were produced. Indeed, a strong gradient

in thermal conductivity may also indicate high gradients in the heat ux, which could

act as a source of vortices (see Section 5.3 for a discussion).

In fact, the in uence of the entrance region may also lead to wrong interpretations

of the observed results. For instance, the increase of thermal resistance for increasing

values of Q could be interpreted as being due to the appearance of some additional

vortex lines, instead of attributing it to the e ects of the entrance region. Another

risk of misinterpretation may be found in the experimental analysis of normal velocity

pro le: some observations of a relatively at pro le for the normal velocity distribution

could in part be due to the fact that the velocity pro le has not yet arrived to the

asymptotic distribution. This reason could be added to the one analyzed in the previous

chapter, namely, that the friction with vortices attens the velocity pro le. Thus, this

topic truly deserves a detailed attention.

To be more explicit, we may study the asymptotic expression in the limit of X very

small, as obtained from (4.14), which is:

eff = Landau
1

0.214X
1
2 + 0.019

0.00021X
= Landau

X
1
2

0.214
(4.17)

It is indeed seen that for short l or high Q, eff becomes very small. Furthermore, the

relation between T and Q is no longer linear, but Q becomes

Q l
1
3

T

l

2
3

= l
1
3 T

2
3 . (4.18)

Note that this dependence is di erent from that of the Gorter-Mellink law in super uid

turbulence, in which

Q l
1
3 T

1
3 . (4.19)
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Indeed, a dependence of logQ with 2
3 log T has been experimentally observed in

(Childers and Tough, 1976).

Of course, the phenomenon analyzed here is very di erent and it is not expected

that the dependence of Q with ( T/l) is the same in both cases. It is interesting to

note that a marked separation from the linear dependence of Q with ( T/l) is found in

short channels. This may be understood in Figure 4.3, where it is seen that, for a given

mass ow — or heat ow, in our case — the pressure gradient in the entrance region, is

higher — in absolute value — than in the fully developed regime. This implies, in our

case, a lower thermal conductivity, since a higher temperature gradient is required for

a given heat ux. Furthermore, for a given l, a higher value of Q will imply a smaller

e ective thermal conductivity. This reduction is not due to friction with vortices, so

that in the presence of vortices, the reduction would still be higher, because one should

add the contribution of vortex resistance to the excess resistance related to the entrance

region.

Figure 4.3: Pressure change in the entrance of a duct ow. Note that the pressure gradient

is higher in the entrance region than in the fully developed region. This implies, in our model,

that the e ective thermal conductivity for short channels will be lower than for long channels.

The dependence found in (4.18) follows after the detailed analysis leading to (4.14),

the exponents appearing in (4.18) are not obvious. Instead, from a naive dimensional

analysis of equation (4.3), for instance, one could have assumed, in the entrance region,

a behaviour of the form vn(vn/l) proportional to p; making the relation between

the ow of the normal component and the heat ux, and of the pressure gradient with

the temperature gradient, one would have been led to v2n proportional to l( T/l) and,

therefore, to Q proportional to l
1
2 ( T/l)

1
2 .
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4.2 Entrance ow and e ective heat conductivity of su-

per uid helium in short channels: turbulent situation

The situation considered in the previous section corresponds to a purely laminar sit-

uation, both for normal component and for the super uid component. In this section

we brie y analyze the order of magnitude of the parameter X introduced in (4.10) for

which turbulence in the super uid component will arise. This gives a further view on

the range of validity of the analysis of the previous section.

As it has been commented above, from the hydrodynamical point of view, the

parameter X de ned in (4.10) may be expressed in terms of the Reynolds number as

X = l
D

1
Rey . Assume that the critical value of Rey that characterises the appearance

of the turbulence in the normal component is Rey(c) = 2000; one realises that small

values of v could be due to two di erent situations (or both of them simultaneously),

namely, high values of the Reynolds number or small values of l/D. In particular we

consider both situations:

a) Rey < 2000 but l
2R < 2000, implying laminar ow,

b) Rey > 2000 and l
2R su ciently low, implying turbulent ow.

Here we are more interested in the rst situation, because we want to focus our attention

on turbulence of the normal component. There arises, however, the question about

which conditions are required to know wether super uid turbulence will arise in the

entrance region although normal turbulence is not present.

We have seen in Chapter 3 that an usual condition for quantum turbulence is that

the quantum Reynolds number is higher than a critical value, i.e. VnsD/ > Reyq1. In

counter ow, one has Vns = ( / n)vn. Then, we may rewritte X as

X =
l

4R2 v
=

1

Reyq

l

D
, (4.20)

with
n

being the kinematic viscosity of the normal component. Assume that

Reyqcritical is of the order 200 (in fact it depends on T ) (Martin and Tough, 1983).

Then, to have, for instance, X 10 2 and still being laminar ow, we need that

XReyq 2 and therefore

l

D
< 2, or

l

D
< 2 . (4.21)

The quantum of vorticity does not depends on T and has value of the order of 10 3

cm2/s. At T = 1, 5 K, the value of is 2.786*10 3. Then, to have X = 10 2 but

without quantum turbulence nor normal turbulence, one should have l
D < 2

2.79 0.71.
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Thus, it is unrealistic to consider the situation of smallX without super uid turbulence,

whereas to avoid normal uid turbulence we need for X 20 and therefore

l

D
20 (4.22)

Note that this is a very short length. Rather than to a channel or a pore across a thick

wall it could correspond to a circular hole through a very thin wall.

In summary, high values of X usually imply turbulence, at least in usual uids.

Therefore, it is logical to ask how quantum turbulence e ects can be included in a

description of entrance ows. This is the aim of the next section.

4.3 In uence of vortices on the entrance heat ow:

turbulent situation, cylindrical channels

We consider now a semi-in nite pipe of radius R, lled with He II and subject to a

longitudinal heat ux (i.e. counter ow situation), in order to search how the entry

length, i.e. the point where the central velocity has reached 99% of its terminal value,

is a ected by the presence of vortices. In more general terms, one is interested in the

evolution pro le (or the heat ux pro le qx(0, r), where x indicates the position along

the channel) at the entrance of the channel at x = 0 to the fully developed pro le vx(r)

independent of x. Usually one assume a at pro le vx(0, r) =constant at x = 0. One

usually may to describe the entrance ow is to assume vx(x, r) = f(x)vx[ (x)r]; with

f(x) and (x) determined in such a way that the total volume ow is independent

of x, and that f(x) 1 and (x) 1 for x , and f(0)vx[ (0)r] approximates

su ciently well the imposed velocity pro le at x = 0.

Here, we will follow the Addenda of the book (Lautrup, 2011), but using the variable

used in the previous chapters of this thesis. We can indi erently use the variable q of

the one- uid model or the variable vn of the two- uid model, but to a greater analogy

with the work of Lautrup we use the second one, taking in mind that it is always

possible make the change q = STvn (in the following for a simplest notation we will

use v(n) instead of vn).

Under particular boundary conditions, as those proposed by Lautrup, and assuming

that the pressure only depends on x, the Navier-Stokes equation (4.3) for the longi-

tudinal velocity of the ow v(n)x of the normal component in cylindrical coordinates,

becomes a Prandtl equation, i.e.

v(n)x
v(n)x

x
+ v(n)r

v(n)x

r
= G(x) +

r r
(r

v(n)x

r
) L(x)v(n)x (4.23)

where G(x) = 1 p, x is the direction along the axis of the pipe, L is the vortex line

density, and parameters whit dimensions (length)2/time.
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Figure 4.4: Central ow velocity as a function of 1/ . It reaches 99% of the terminal value

(u = 2 cm/s) for = 99 = 0.699861, or 1/ 99 = 1.42885 (dotted line). This gure is Figure 1-

right of the Addenda: Pipe Entrance Flow of (Lautrup, 2011), in which = .

The friction term in L(x) has not been considered in previous works, but it will

play a central role in our analysis, because it describes the frictional e ects between

the quantized vortices and the ow of the normal component.

An approximate solution can be found, de ning a function H(x) as

H(x) = v(n)x
v(n)x

x
+ v(n)r

v(n)x

r
2v(n)x + L(x)v(n)x , (4.24)

where = (x) is an unknown function of x, to be determined below, that is a

parameter of tension length with dimensions (length) 1. In terms of H the equation

(4.23) becomes

2v(n)x

r2
+

1

r

v(n)x

r
= 2v(n)x +H(x) G(x). (4.25)

Provided H only depends on x, the only solution that is regular for r 0, because of

the symmetry of the steady ow in a cylindrical channel, is

v(n)x (x, r) =
G(x) H(x)

2 + F (x)I0( r), (4.26)

where F (x) is an arbitrary function of x. It is determined by the boundary condition

v(n)x = 0 for r = ±R, and we nd

v(n)x (x, r) =
G(x) H(x)

2 1
I0( r)

I0( R)
. (4.27)

Introducing the average value qx0(x) of qx(x, r) across a section of the pipe

R

0
qx(x, r)2 rdr = R2qx0(x),

R

0
v(n)x (x, r)2 rdr = R2v(n)x0 (x) (4.28)
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Figure 4.5: Central velocity (left) and central pressure gradient (right) as function of x. The

dashed lines are the asymptotic approximations. The vertical dotted line is the 99% asymptotic

point, that indicates the end of the entrance region. This gure is the same as Figure 2 of the

Addenda: Pipe Entrance Flow of (Lautrup, 2011).

from which, assuming constant the product ST and recalling that in counter ow it is

q = STv(n), we get
G(x) H(x)

2 = v(n)x0
I0( R)

I2( R)
. (4.29)

So that:

v(n)x (x, r) =
v(n)x0

I2( R)
[I0( R) I0( r)] , (4.30)

which for small and r becomes

v(n)x (x, r) = 2v(n)x0 1
r2

R2
, (4.31)

which corresponds to the Poiseuille parabolic pro le.

The solution (4.27) corresponds to (3.18) that we found in Section 3.2 for the ow

of He II along a cylindrical channel, that in terms of v(n)x in stationary counter ow

situation is written

v(n)x (r) =
1

ST

1

BL0
1

I0 r ABL0

I0 R ABL0

T

x
, (4.32)

but in the actual analysis it is intuitive to guess that L is not homogeneous along the

channel, but depends on x, in contrast with the assumptions of Chapter 3. However,

we have assumed that most vortices are already produced in a thin very inhomogeneous

region close to the entrance plane (see Chapter 5) so that the hypothesis of L to depend

on x only in a mild form may be reasonable on a physical basis.
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The central velocity of the normal component is now obtained by setting r = 0 in

equation (4.30), i.e.

v(n)x (x, 0) u(x) =
v(n)x0

I2( R)
[I0( R) 1] . (4.33)

High values of correspond to velocity pro le close to a at pro le, i.e. close to

the entrance region, whereas small values of correspond to a parabolic pro le.

The dependence of on x must now be searched. Following Lautrup, we look rather

for the inverse function, namely x = x( ), which is easier to be obtained. To do so,

one starts from (4.23) and the energy balance equation, that in stationary counter ow

situation is · q = 0. Recall that in counter ow it is q = STv(n), assuming ST

constant, the condition on · q leads to · v(n) = 0, i.e.

v(n)x

x
+

1

r

(rv(n)r )

r
= 0. (4.34)

By combining (4.23) and (4.34), one obtains

x
(v(n)x )

2
+

1

r r
rv(n)x v(n)r = G(x) +

r r
r

v(n)x

r
L(x)v(n)x . (4.35)

As boundary conditions we use:

v(n)x = v(n)x0 ( , L) v(n)r = 0 (x = 0, 0 r R)

v(n)x = v(n)x0 ( , L) [I0( R) I0( r)]
I2( R) v(n)r = 0 (x = , 0 r R)

v(n)
x
r = 0 v(n)r = 0 (0 x , r = 0)

v(n)x = 0 v(n)r = 0 (0 x , r = R)

(4.36)

where v(n)x0 is the average velocity (that depends on and L) and R is the radius of the

pipe.

Thus, by integrating (4.35) over 0 r R, one obtains

1

R2 x

R

0
v(n)x (x, r)

2
2 rdr = G(x) +

2

R2
r

v(n)x (x, r)

r
r=R

L(x)v(n)x0 . (4.37)

The pressure gradient G(x) may be eliminated from (4.23) setting r = 0, and taking

into account the non-slip boundary conditions, one gets

G(x) = u(x)
u

x

1

r r
r

v(n)x (x, r)

r
r=0

+ L(x)u(x), (4.38)

where u(x) = v(n)x (x, 0).
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Combining (4.37) and (4.38), the global momentum balance equation becomes

x
(v(n)x )2

1

2
u2 =

2

R2
r

v(n)x

r
r=R

1

r r

v(n)x

r
r=0

L(x) v(n)x0 u(x)

(4.39)

with

(v(n)x )2 =
1

R2

R

0
(v(n)x )22 rdr (4.40)

being the average squared velocity in a cross section.

Using (4.30) and (4.33) for vx(x, r) and u(x) in (4.39), we obtain

f1( R) = (v(n)x )2
1

2
u2 =

4I0( R)I2( R) 2I21 ( R) I20 ( R) + 2I0( R) 1

2I22 ( R)
,

(4.41)

and

g1( R) =
v(n)x0
2 L

1
2

R2
r

v(n)x

r
r=R

1

r r

v(n)x

r
r=0

L(x) v(n)x0 u(x) =
I0( R) I2( R) 1

I2( R)
,

(4.42)

then, equation (4.39) can be written in a more compact form, i.e.

df1( R)

dx
=

v(n)x0
2 L

g1( R). (4.43)

In the entrance region of the channel, and especially in a relatively thin longitu-

dinal region just behind the entrance, as compared with the total entry length (see

for instance Figure 4.3 and 4.4), the temperature gradient is much higher than in the

fully developed region. Also the velocity gradients are higher in this region. Thus, it

may be expected that many vortices may appear there and that we can consider that

beyond this short length, most of vortices are present and we can consider L constant in

good approximation. In the next chapter we will discuss with more detail the possible

in uence of the velocity gradients as sources of vortices, so that we refer the reader to

Section 5.1.

Then, if consider L(x) = L, di erentiating the expression (4.43) with respect to

R, one nds

dx

d( R)
=

v(n)x0
2 L

h1( R), (4.44)

with h1( R) =
f1( R)
g1( R) . (Note that 2 and L have dimensions (time) 1 and then

v(n)x0 /( 2 L) has dimensions of length as x, while ( R) and h1( R) are dimension-

less). Integrating this last expression we can obtain implicitly x as a function of and

L.
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To have a rst glimpse of a solution, we provisionally begin by considering the

simplest situation of small L/ and small , although we will see below that L/

small is unrealistic in many situations. In any case, in this hypothetical situation one

has, for R 0, that h1( R) can be approximated with

h1( R) =
5

36
R, (4.45)

introducing this expression into (4.44) and integrating, one gets

x =
5

36
v(n)x0 R

2 log
2 L

C
, (4.46)

where C = mv(n)x0 /R, with m a numerical constant.

Note that 2, although being small, is expected to be higher than L, because for

short lengths is high. Thus, it is reasonable to assume that in (4.46) the square root

is well de ned. Note that for L = 0 one gets 0 for x . In this case, as seen

before, (4.30) yields the parabolic pro le (4.31).

Below we consider a more general situation. The expression (4.46) is valid for high

values of x. In the limit of high values of x, the quantity in the root must vanish,

and we are led to = L/ . Then, the fully developed velocity pro le becomes, by

introducing this value of into (4.30),

v(n)x (x, r) =
v(n)x0

I2 R L/
I0 R L/ I0 r L/ . (4.47)

When L tends to zero, this expression tends to the usual parabolic pro le (4.31). In

general, it coincides with (3.18).

As an application of (4.46), assume that the length of the channel is nite, but long.

Instead of = L/ we will have

2 L = Be x/x , (4.48)

where

x =
5

72

v(n)x0 R
2

=
5

288
DRey, (4.49)

with Rey =
v(n)
x0 2R

and D = 2R the diameter of the pipe. Then:

2 =
1

L+Be x/x . (4.50)

We can consider the characteristic length x as an entrance length in the presence of

L = 0, comparable with (4.2).
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The solution (4.46) is only valid for small and L/ small; but it allows us to see

that one may expect that the fully developed ow pro le will be like (4.47) instead of

a parabolic Poiseuille pro le, as it was derived in (4.31).

Expression (4.50) has more information than the fully developed value (4.47). For

instance, for x = 0, (4.50) yields 2 = ( L+B)/ . Thus, at the entrance the turbulent

ow will behave like (4.47) but as if it had an e ective vortex line density Leff =

L+(B/ ); logically this implies that the thermal resistance at the entrance region will

be higher than in the fully developed region, not only in usual viscous uids, but also

in turbulent super uids.

The thermal resistance along a tube of length l will be

T =
l

0
KLeff (x)qxdx =

l

0
K L+

B
e x/x qxdx, (4.51)

with L the true vortex density and Leff the apparent vortex density; this yields to

T = KLqxl +K
B
qxx 1 e l/x . (4.52)

If x l, this yields to T = KLqxl, a di erent value. Thus, the actual value of L

will be T/Kqxl only when l x . This is not always so in the experiments.

Finally, let us note that when L/ is not small, but becomes close to the value

L/ , h1( R) in (4.44) can be approximated with

h1( R) = A0 +A1R
L

, (4.53)

where A0 and A1 are positive constants (see Appendix 4.7). Introducing this expression

into (4.44) and integrating, one gets

x = v(n)x0 A0 L
arctanh

L
+

v(n)x0 RA1arctanh L
+ v(n)x0 RA1 log 2 L+H. (4.54)

From here it is seen that for x , tends to L/ , and the asymptotic velocity

pro le is again (4.47). However, the relation between and x, for long but nite x

will be di erent — and more complicated — than in (4.48). Expression (4.54) may be

expressed in other ways that we give here for sake of completeness, and for possible

future use.
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x = v(n)x0 A0 Larctanh L + v(n)x0 RA1 log + L +H

or

x = v(n)x0 A0 L log
1

2

L

1 L

+ v(n)x0 RA1 log + L +H.

(4.55)

4.4 In uence of vortices on the entrance heat ow:

turbulent situation, at channels

Following the same steps of the previous section, we will consider here the Navier-Stokes

equation for the ow in a plane semi-in nite channel for y [ a, a] and x [0,+ ),

under suitable particular boundary condition. The reader may skip this section, which

is analogous to Section 4.3, but we have preferred to keep it for the sake of completeness.

The Navier-Stokes equation for v(n)x becomes a Prandtl equation, i.e.

v(n)x
v(n)x

x
+ v(n)y

v(n)x

y
= G(x) +

2v(n)x

y2
L(x)v(n)x (4.56)

where G(x) = 1 p, x is the direction along the axis of the channel, y the direction

orthogonal to the walls and L is the vortex line density. The component v(n)y is related

to v(n)x by the continuity equation, i.e.

v(n)x

x
+

v(n)y

y
= 0. (4.57)

When the ow is fully developed, v(n)y tends to zero and v(n)x does not depend on x.

As a consequence, and for L = 0, (4.56) reduces to p =
2v(n)

x
2y , which leads to the

usual Poiseuille parabolic pro le.

As in previous section we can de ne a function H(x) as

H(x) = v(n)x
v(n)x

x
+ v(n)y

v(n)x

y
2v(n)x + L(x)v(n)x , (4.58)

where = (x) is an unknown function of x (with dimensions (length) 1).

As made in previous section, we impose the symmetry of the solution under y y

and the non-slip boundary condition v(n)x = 0 for y = ±a, then we nd the solution

v(n)x (x, y) =
G(x) H(x)

2 1
cosh( y)

cosh( a)
. (4.59)
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Imposing the energy balance equation, we get

G(x) H(x)
2 = v(n)x0 1

tanh( a)

a

1

, (4.60)

where v(n)x0 is the average value of v(n)x across the thickness of the channel, now so that

v(n)x (x, y) = v(n)x0 1
cosh( y)

cosh( a)
1

tanh( a)

a

1

. (4.61)

This solution is analogous to (3.48) that we found in Section 3.5 for the ow of He II

along a narrow slit, in stationary counter ow situation, i.e. in term of the velocity v(n)x

is written

v(n)(y) =
v(n)x0

ST
1

cosh(y ABL)

cosh(a ABL)
a

tanh(a ABL)

ABL

1

. (4.62)

The central velocity v(n)x (x, 0) u(x) is now obtained by setting y = 0 in equation (4.61)

u(x) = v(n)x0 [1 sech( a)] 1
tanh( a)

a

1

. (4.63)

Also in this case, high values of correspond to velocity pro le close to a at pro le,

i.e. close to the entrance region, whereas small values of correspond to a parabolic

pro le.

In order to search the dependence of on x we proceed as in the previous section,

combining (4.56) and (4.57), and choosing as boundary conditions:

v(n)x = v(n)x0 ( , L) v(n)y = 0 (x = 0, 0 y a)

v(n)x = v(n)x0 ( , L)
1 cosh(y ABL)

cosh(a ABL)

a tanh(a ABL)

ABL

v(n)y = 0 (x = , 0 y a)

v(n)
x
y = 0 v(n)y = 0 (0 x , y = 0)

v(n)x = 0 v(n)y = 0 (0 x , y = a)

(4.64)

where v(n)x0 is the average velocity (that depend on and L) and 2a is the distance

between the walls. Thus we obtain

1

a x

a

0
v(n)x (x, y)2dy = G(x) +

a

v(n)x (x, y)

y
y=a

L(x)v(n)x0 . (4.65)

In analogous way as in the previous section, we can write the global momentum

balance equation in the form

x
(v(n)x )2

1

2
u2 =

a

v(n)x (x, y)

y
y=a

2v(n)x (x, y)

y2
y=0

L(x)v(n)x0 + L(x)u,

(4.66)
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with

(v(n)x )2 =
1

a

a

0
v(n)x

2
dy, (4.67)

being the average squared velocity along x. Using (4.61) and (4.63) for v(n)x (x, y) and

u(x), we obtain

f2( a) = v(n)x

2 1

2
u2 = 1

tanh( a)

a

1 3

2
+

sech( a) 1

1 tanh( a)
a

, (4.68)

and

g2( a) =
a

v(n)x (x, y)

y
y=a

2v(n)x (x, y)

y2
y=0

L(x)v(n)x0

+ L(x)u = 1
tanh( a)

a

1 tanh( a)

a
sech( a) ,

(4.69)

then, equation (4.66) can be written in a more compact form, i.e.

df2( a)

dx
=

v(n)x0
2 L

g2( a). (4.70)

Di erentiating the resulting expression with respect to a, one nds

dx

d( a)
=

v(n)x0
2 L

h2( a), (4.71)

with h2( a) =
f2( a)
g2( a) .

As in Section 4.3 we provisionally begin by considering the simplest situation of

small L/ and small , in this hypothetical situation and for a 0, h2( a) can be

approximated with:

h2( a) =
73

700
a, (4.72)

introducing this expression into (4.71) and integrating, one gets

x =
73

700
v(n)x0 a

2 log
2 L

C
, (4.73)

where C = cv(n)x0 /a, with c a numeric constant.

Note that 2, although being small, is expected to be higher than L, because for

short lengths is high. Thus, it is reasonable to assume that in (4.73) the square root

is well de ned. Note that for L = 0 one gets 0 for x . In this case (4.61)

yields the parabolic pro le.



98 Entrance region

Below we consider a more general situation. The expression (4.73) is valid for high

values of x. In the limit of high values of x, the quantity in the root must vanish,

and we are led to = L/ . Then, the fully developed velocity pro le becomes, by

introducing this value of into (4.61),

v(n)x (x, y) = 1
tanh a L/

a L/

1

1
cosh y L/

cosh a L/
. (4.74)

When L tends to zero, this expression tends to the usual parabolic pro le. In general,

it coincides with (3.45).

As an application of (4.73), assume that the length of the channel is nite, but long.

Instead of = L/ we will have

2 L = Ce x/x , (4.75)

where

x =
73

1400

v(n)x0 a
2

=
73

5600
DRey, (4.76)

with Rey =
v(n)
x0 2a

and D = 2a the distance between the walls. Then:

2 =
1

L+ Ce x/x . (4.77)

As in (4.49) we can consider the characteristic length x as an entrance length in the

presence of L = 0, comparable with (4.2).

The solution (4.73) is only valid for small and L/ small; but it allows us to see

that one may expect that the fully developed ow pro le will be like (4.74) instead of a

parabolic Poiseuille pro le, as it was derived in Section 3.5. Expression (4.77) has more

information than the fully developed value (4.74). For instance, for x = 0, (4.77) yields
2 = ( L+C)/ . Thus, at the entrance the turbulent ow will behave, like (4.74) but

as if it had an e ective vortex line density Leff = L+(C/ ); logically this implies that

the thermal resistance at the entrance region will be higher than in the fully developed

region, not only in usual viscous uids, but also in turbulent super uids.

Finally, let us note that when L/ is not small, but becomes close to the value

L/ , h2( a) in (4.71) can be approximated with

h2( a) = B0 +B1a
L

, (4.78)
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where B0 and B1 are positive constants (see Appendix 4.7). Introducing this expression

into (4.71) and integrating, one gets

x = v(n)x0 B0 L
arctanh

L

+v(n)x0 aB1arctanh L
+ v(n)x0 aB1 log 2 L+H (4.79)

From here it is seen that for x , tends to L/ , and the asymptotic velocity

pro le is again (4.74). However, the relation between and x, for long but nite x

will be di erent — and more complicated — than in (4.75). Expression (4.79) may be

expressed in other ways that we give here for sake of completeness, and for possible

future use.

x = v(n)x0 B0 Larctanh L + v(n)x0 aB1 log + L +H

or

x = v(n)x0 B0 L log
1

2

L

1 L

+ v(n)x0 aB1 log + L +H

(4.80)

4.5 Stationary heat ux pro le in turbulent helium II in

a semi-in nite cylindrical channel

In the present section we explicitly solve the equations for the heat ux pro le in a

semi-in nite channel (from x = 0 to x = ) instead of the in nite channel of the

Section 3.2 (from x = to x = + ). In contrast to the assumption q(r) made in

Section 3.2, here it is possible to have q(x, r).

The analysis is di erent from that in Section 4.3 in two main aspects: the equations

for the heat ux components used in Chapter 3 are used, instead of the analogous of

the Navier-Stokes equation, and the boundary conditions on the temperature along the

walls of the channels are di erent, as it will be commented later on.

Under the assumption of axial symmetry around the axis of the duct and assuming

the uid at rest (i.e. v = 0), the equations for qx and qr from system (3.5) are:

T

x
2

2T 3 2qx =
K

Lqx (4.81)

T

r
2

2T 3 2qr =
K

Lqr (4.82)

The other equations of system (3.5) give us some compatibility conditions on the

solutions that will be obtain below, as that for p, i.e. (3.4).
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In this section we search for solutions of qx and qr, which in turn depend on x

and r, under the simplifying hypothesis that the temperature T = T (x, r) inside the

channel is known and, in particular, that along the walls is constant. This means that

the super uid ows along the tube in contact with an homogeneous system from which

it is extracting some heat.

Note that this is di erent from the assumption we have made in Section 3.4, where

T was not assumed to depend on r, but it was assumed to vary linearly along the walls,

in the same way as the temperature of the uid, consequently, the solutions will be

di erent from those of Section 3.4, and the heat ux will have a radial component it

had not in Section 3.4.

4.5.1 Longitudinal components of q and p

We start our analysis looking for a solution of the equation for the longitudinal heat

ux, that is written as

2
2T 3

2qx
x2

+
2qx
r2

+
1

r

qx
r

K
L0qx =

T

x
, (4.83)

where L0 is a constant value of L. This equation must satisfy the following boundary

conditions:

• qx(0, r) = q0(r)

• qx(x,R) = 0

• limx qx(x, r) < +

Furthermore, we assume that the temperature T is constant along the walls of the

cylinder:

T (x,R) = T0
T

x
(x,R) = 0. (4.84)

Equation (4.83) has the particular solution q0(x, r) = KL0

T
x , that satis es the

boundary condition qx(x,R) = 0, because of equation (4.84). It remains to solve the

following homogeneous equation

2
2T 3

2q1
x2

+
2q1
r2

+
1

r

q1
r

K
L0q1 = 0, (4.85)

with the boundary conditions:

• q1(0, r) = q0(r) KL0

T
x (0, r) = q(0)1 (r)

• q1(x,R) = KL0

T
x (x,R) = 0



Semi-in nite channel 3D 101

• limx q1(x, r) < +

where q1(x, r) indicates the solution of (4.85) and then the solution of equation (4.83)

will be the sum of q0(x, r) and q1(x, r).

Let us introduce the positive quantity C0 =
KL0

2
2T 3 , whose dimensions are (length) 2

(as L0) and that coincides with the quantity ABL0 of the Section 3.2, with A and B

de ned in (3.14) under the hypothesis = 1/(ST 2).

As in Section 3.2, we assume C0 constant; then the last equation can be written

2q1
x2

+
2q1
r2

+
1

r

q1
r

C0q1 = 0. (4.86)

Now we look for a solution of this equation, in the form of separation of variables,

i.e.

q1(x, r) = P (x)Q(r).

By substituting this expression in equation (4.86), we obtain the following two equa-

tions, one depending only on x and the other one depending only on r. Then both

equations must be equal to a constant M with dimension (length) 2

P

P
C0 = M, (4.87)

Q

Q
+

1

r

Q

Q
= M. (4.88)

We will suppose rst, M = 0; in this situation the solution of the equation (4.88)

that satisfy the boundary condition Q(R) = 0 is Q(r) = 0 and we have the solution

q1(x, r) identically null.

Let’s de ne the new dimensionless variable y := |M |r in the equation (4.88), it

becomes a zero-order Bessel equation for the new quantity Q̃(y) (dependent on the sign

of M)

Q̃ +
1

y
Q̃ ± Q̃ = 0, (4.89)

with the boundary condition, for r = R, Q̃ |M |R = 0.

If M < 0 then equation (4.89) is a zero-order modi ed Bessel, whose solutions are

the Bessel function I0(y) and K0(y), and the general solution of the equation (4.89) is:

Q̃(y) = c1I0(y) + c2K0(y), (4.90)

butK0(y) goes to in nite for y = 0, and hence c2 = 0 is required. Moreover, I0(y) is not

zero for all y and the boundary conditions are satis ed only for c1 = 0. In conclusion

M has to be necessarily positive.
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In this way equation (4.88) is a zero-order Bessel equation, and its solutions are

the Bessel function J0(y) e Y0(y). Again, Y0(y) goes to in nite for y = 0, and thus the

solution is:

Q̃(y) = c1J0(y). (4.91)

For the solution (4.91), the boundary conditions are veri ed for any yi, zero of the

function J0, so that we have the following eigenvalues for M

Mi =
yi
R

2
. (4.92)

Now we consider equation (4.87), for any egenvalue Mi, in the form

P (C0 +Mi)P = 0, (4.93)

since (C0 +Mi) > 0, the general solution of equation (4.93) is:

Pi(x) = c1e
x C0+Mi + c2e

x C0+Mi . (4.94)

By assuming c2 = 0, the solution does not diverge and goes to zero for large x, i.e.

lim
x

Pi(x) = 0, (4.95)

whereas the boundary condition, for x = 0, must be veri ed by the general solution of

the equation (4.86). The most general separate solution of the equation (4.86) is:

q(i)1 (x, r) = cJ0( Mir)e
x C0+Mi , (4.96)

for any value of Mi depending on the zeros of the Bessel function J0, and for x = 0 this

solution must correspond to q(0)1 (r), that is:

q(i)1 (0, r) = cJ0
yi
R
r = q(0)1 (r).

Note that the decaying exponential contains interesting information on how q1(x, r)

decays to zero, i.e. how steeply the solution q0(x, r) is approached as the uid separates

from x = 0. In other words, it yields information on the length of the entrance region,

in analogy with (4.49) (cylindrical channels) and (4.49) ( at channels) but for di erent

lateral boundary conditions.

If the function q(0)1 (r) is not a Bessel function then we look for a solution in the

form

q1(x, r) =
i=1

ciq
(i)
1 =

i=1

ciJ0
yi
R
r e

x C0+(
yi
R )2

, (4.97)
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where the coe cients ci are found by expanding q(0)1 (r) in a Fourier-Bessel series, when-

ever it is possible (see for details (Watson, 1922)), i.e.

q(0)1 (r) =
i=1

ciJ0
yi
R
r ,

and

ci =
2

R2J2
1 (yi)

R

0
rq(0)1 (r)J0

yi
R
r dr.

Finally, we get

qx(x, r) = q0(x, r) + q1(x, r) = KL0

T

x
+

i=1

ciJ0
yi
R
r e

x C0+(
yi
R )2

(4.98)

and from equation (3.4), we obtain that the pressure gradient has to satisfy the following

condition

p

x
=

1

T 2

T

x
+

K
L0qx =

KL0

T 2
i=1

ciJ0
yi
R
r e

x C0+(
yi
R
)2
. (4.99)

The second term on the right hand of (4.98), i.e. q1(x, r), is shown in Figure 4.6

and the plot is achieved by choosing a particular function q(0)1 (r) = 109[ r2 + (0.05)2]

and setting the constants C and L0 according to the experimental data.
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r cm
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Figure 4.6: Pro le of q1(x, r) for q
(0)
1 (r) = 109[ r2+ (0.05)2] and for di erent values of

x.

It is evident that it goes quickly to zero and hence the function qx(x, r) becomes

proportional to the gradient of the temperature T , as also shown in the Table 4.1 (in

which the order of magnitude of q1(x, r) and
p
x for r = 0 are shown). Furthermore the

value of p
x goes very quickly to zero.
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x [cm] 0 0.01 0.015 0.02 0.05 0.1 0.5
q1(x, 0) [erg/(cm2 s) ] 106 106 105 103 10 1 10 8 10 63

p
x(x, 0) [ g/(cm2 s2) ] 1 1 10 1 10 3 10 7 10 14 10 69

Table 4.1: Approximated values of q1(x, 0) and
p
x with respect to x.

4.5.2 Transversal components of q and p

Now we will look for the solution for qr. The radial components of the heat ux are an

important ingredient in entrance ows but here they still have an additional relevance,

because the boundary conditions chosen here, which imply a thermal contact and heat

exchange with the lateral walls. This may be the case, for instance, in heat exchangers,

where lateral heat ow is especially relevant. In these situations, an equation for

qr(x,R) will be needed to describe the lateral heat exchange across the wall. This

consideration makes the analysis of super uid counter ow more realistic than in the

more usual situations in which it is assumed that the lateral wall is adiabatic.

The solution for qr must satisfy the relation (3.4), i.e.

p

r
=

1

T 2

T

r
+

K
L0qr . (4.100)

Furthermore, they must be compatible with the solution (4.98) and (4.99) obtained

for qx(x, r) and p/ x. Whenever the function q(0)1 (r) admits the di erentiability of

its Fourier-Bessel expansion, we can di erentiate equation (4.99) with respect to r and

(4.100) with respect to x, under the hypothesis T 2 constant, and we obtain

qx
r

=
qr
x
,

from which

qr(x, r)

x
=

KL0 x

T

r
i=1

ci
yi
R
J1

yi
R
r e

x A+(
yi
R )2

, (4.101)

because J0( ) = J1( ), where J1( ) is the Bessel function of order 1.

By integrating eq.(4.101) with respect to x (from x0 to x) the following expression

is obtained

qr(x, r) = qr(x0, r)
KL0 r

T (x, r) +
KL0 r

T (x0, r)+

+
i=1

ci
yi
R
J1

yi
R
r

e
x A+(

yi
R )2

e
x0 A+(

yi
R )2

A+ (yiR )2
+ f(r) , (4.102)

where the values of f (r), qr(x0, r) and T (x0, r) will depend on the physics of the prob-

lem.
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Finally we get

p

r
=

1

T 2

T

r
+

K
L0qr =

KL0

T 2
qr(x0, r) + KL0 r

T (x0, r)+

+
i=1

ci
yi
R
J1

yi
R
r

e
x A+(

yi
R )2

e
x0 A+(

yi
R )2

A+ (yiR )2
+ f(r) . (4.103)

The functions T (x, r) and f(r) will be chosen using the boundary conditions on T and

p.

4.6 Remarks

In this chapter we have explored in detail some additional aspects that are relevant for

the estimation of the e ective thermal conductivity of super uid helium in relatively

short cylindrical channels, i.e. the e ects of the entrance region, where there are strong

inhomogeneiteis in the longitudinal heat ow which imply, in turn, the presence of

radial heat ow. One of the relevant aspects is the transition from a at velocity pro le

at x = 0 to a fully developed pro le at the end of the entrance region. In particular, we

have seen that for short channels (much shorter than the entry length) the heat ow

Q is proportional to R2l
1
3 ( T/l)

2
3 . Note that this is di erent from the dependence in

( T/l)
1
3 in fully developed turbulence of the Görter-Mellink expression.

Since the topic of the modi cations of Landau expression for thermal conductivity

in short channels is not very well known, we have examined the situation in order

to complement the phenomenological Lesniewski study (Lesniewski et al., 1996). In

practical situations, in order that the e ects of the entrance region on the thermal

conductivity may be neglected and Landau formula be valid, it is needed that the

length of the tube is at least some 10 or 20 times the entrance length, in order that

the well developed region truly dominates over the entrance region. Thus, the strict

validity of the Landau formula requires considerably long tubes.

• Some results of the rst part of this chapter are published in:
L. Saluto and D. Jou, E ective thermal conductivity of super uid helium in short chan-
nels,
Bolettino di Matematica Pura e Applicata Vol. VI 153–163 (2013), Aracne Ed.

• Some results of the last section are published in:
L. Saluto, Stationary heat ux pro le in turbulent helium II in a semi-in nite cylindrical
channel,
Bollettino di Matematica Pura e Applicata Vol. V 133–144 (2012), Aracne Ed.
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In the future, we plan to study the interaction between entrance e ects and su-

per uid turbulence, namely, how the strong gradient in velocity found in the entrance

region may act as a supplementary source of vortex lines.

In Section 4.3 and 4.4, the ow in the entrance region has been studied in detail,

following the Lautrup approach but incorporating to it the in uence of the vortices.

We have assumed that the vortices are generated in the strongly steep region close to

x = 0, at that from where L may be considered as independent of x.

Finally, in Section 4.5 we have also studied the problem of entrance region but with

two main di erences with respect to Section 4.3 and 4.4, because the basic equations

were di erent from the modi ed Navier-Stokes equations, and because the boundary

conditions assumed temperature constant along the walls. In particular, we have de-

termined some particular stationary solutions of the heat ux equation in counter ow

experiments in a semi-in nite cylindrical channel lled with turbulent super uid he-

lium.

The solution obtained for the longitudinal component of q in (4.98) depends on

T and on the data q(0)1 (r) at x = 0, but as shown in Table 4.1 the transition so-

lution q1(x, r) goes quickly to zero and the solution obtained depends essentially on

T . For the transversal component it is necessary particularizing the functions f(r),

qr(x0, r) and T (x, r) to analyze the solutions obtained. The chosen boundary conditions

(constant temperature and zero heat ux on the lateral walls of the channel) simulate

a channel, lled with super uid helium, contained in a sample at constant tempera-

ture. The arbitrary functions mentioned above can be determined imposing additional

boundary conditions to describe a particular experiment. Such particular situations

could be the comparison between an insulating lateral wall or a well-conducting lateral

wall; the rst situation may be of special theoretical interest for the analysis of the

counter ow turbulent tangle of quantized vortices, and the microscopic mechanisms of

vortex breaking and recombination, whereas the second one will be much more realistic

in heat exchangers.

Some topics for future research could be, for instance, whether the critical velocity

for instability of the laminar state, could be di erent in the entrance region than in

the asymptotic region; or whether some vortices could be formed there, but which

would disappear in the asymptotic region. These are left for the future because of their

mathemathical complexity.
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4.7 Appendix 4.A

In this appendix we give the results for the coe cients A0, and A1 in (4.53) and for

B0, and B1 in (4.78). In each of these let b = L/ .

The coe cient A0 and A1 in equation (4.53) are:

A0 = h1 R L/ = h1(Rb) =

= I1(Rb) I21 (Rb)
8

R2b2
+ 2 3I20 (Rb) +

4

Rb
I1(Rb) (I0(Rb) 1) + 1 +

I3(Rb) I20 (Rb) + 2I21 (Rb) 2I0(Rb) (I2(Rb) + 1) + 1 ·

2I22 (Rb) (I0(Rb) I2(Rb) 1)
1

(4.104)

A1 = h1 R L/ = h1(Rb) =

= 4R4b4I50 (Rb) + 2R3b3I40 (Rb) R3b3 + 14I1(Rb) Rb +

R2b2I30 (bR)[R4b4 + 8I1(Rb) 3Rb 2I1(Rb) R2b2 + 5 +

2RbI21 (Rb) Rb R2b2 + 1 R2b2 + 4 + I1(Rb) 5R4b4 24R2b2+

2 R2b2 + 2 I1(Rb) Rb R2b2 + 8 2I1(Rb) R2b2 + 7 24 +

RbI20 (Rb) R2b2I1(Rb) 5R2b2 12 2RbI21 (Rb) 3R4b4 + 25R2b2 + 36 +

8I31 (Rb) R4b4 + 8R2b2 + 14 R3b3 R2b2 2 + I0(Rb)I1(Rb)

I1(Rb) R6b6 + 10R4b4 + 48R2b2 + 4I1(Rb) I1(Rb) R2b2 + 2

3R2b2 8 +Rb R4b4 + 13R2b2 + 16 R3b3 3R2b2 + 8 ·

R6b6I32 (Rb) [I0(Rb) I2(Rb) 1]2
1

(4.105)

The coe cient B0 and B1 in equation (4.78) are:

B0 = h2 a L/ = h2(ab) =

= sech3(ab) [cosh(ab) 4]
tanh2(ab)

(ab)2
2a2b2sech(ab) + 3 +

tanh(ab)

ab
sech(ab) 2a2b2 + 3sech(ab) + 4 1 ·

2ab
1 tanh(ab)

ab

2

sech(ab)
tanh(ab)

ab

1

(4.106)
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B1 = h2 a L/ = h2(ab) =

= sech(ab) 7a2b2 + sech(ab) 2ab sinh(ab) a2b2 + 6 + 5 +

tanh(ab)

ab
13 2a2b2 + sech3(ab) 13a2b2 + 11 + sech2(ab)

tanh(ab)

ab
6a4b4 a2b2 6 + 2a4b4 + a2b2 4

sech(ab)
tanh(ab)

ab
3a4b4 + 9a2b2 + 1 + 7a2b2 + 19 +

tanh(ab)

ab
+ 8 7

tanh(ab)

ab
1 ·

2(ab)4 1
tanh(ab)

ab

3

sech(ab)
tanh(ab)

ab

2 1

(4.107)



Chapter 5

Radial counter ow and vortex
di usion and production

In this chapter we focus our attention on pure radial ows and ows in convergent

channels, where inhomogeneity of the heat ux and of the vortex line density have a

special relevance. Our aim here is to study the role of these inhomogeneities. Radial

ow between two concentric cylinders, where a central heat source supplies heat to

helium and is carried out along the radial direction from the internal to the external

cylinder, is the simplest model of inhomogeneous ow, because heat ux has a single

component, the radial one, and depends on a single coordinate, the radial one. A second

aspect of this chapter is the emphasis on the vortex dynamics, whereas in Chapter 3

and 4 the vortex density has been assumed as a given quantity and the interest has

been focused on the heat ow.

A salient feature of radial ows (and of some other ows as for instance the ow in

divergent-convergent channels) is that the average speed of the normal component (and

also that of the super uid component) changes along the axis (or with the distance to

the heat source). This adds a new complexity to our analysis and, in particular, we are

led to ask what is the in uence of the mentioned acceleration on vortex production and

destruction, and on the structure of the vortex tangle. One may also ask, furthermore,

whether helium counter ow in convergent - divergent channels could also yield some

heat recti cation.

Another appealing aspect of radial ow is that the dependence of Vns with the

position allows one to have the several regimes of turbulence TII or TI and laminar

ow simultaneously in the same experiment (see Figure 5.2-right) and that the radial

dependence of Vns is relatively simple. A second aspect of interest concerns the de -

nition of the quantum (and the classical) Reynolds number, because here there is not

a single well-de ned spatial scale as in cylindrical or plane channels: one can use the

external radius or the local radius to de ne the Reynolds numbers. A third aspect
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comes from the inhomogeneity which allows the possibility of analyzing the role of a

velocity gradient (or, alternatively, the super uid acceleration) as an additional source

of vorticity and the role of vortex di usion.

One could guess as a formal but reasonable illustration, an evolution equation for

the vortex line density of the tentative form

dL

dt
= V VnsL

3
2 + Vns · L+ Vns · T V L2 +D 2L, (5.1)

with and dimensionless parameter. In Section 5.6 a much more general expres-

sion will be examined, but here we write this simple version for the sake of a concrete

illustration. The last term in (5.1) corresponds to vortex di usion, which was previ-

ously considered in (Tsubota et al., 2003), from computer dynamic simulations, and

found that, at T close to 0 K, D 10 1 (note indeed that the quantum of vorticity

= h/m has dimension of (length)2(time) 1, which are the dimensions of the di usion

coe cient). Also Nemirovskii has computed D in (Nemirovskii, 2010), using a kinetic

model and an equation for the evolution of L in which only the di usive term appears.

He found the coe cient D 2.2 at zero temperature, a value higher than that found

by Tsubota, probably because Nemirovskii considered a pure di usive situation (results

for D at higher temperatures are not yet available, to our knowledge). A simple form

of equation (5.1), with = = 0, has also been considered by Nemirovskii to analyze

the propagation of turbulence fronts in (Nemirovskii, 2011), adding a term of the form

(LVL), where VL is the drift velocity of the vortex front (see below eq.(5.49)). In (Ne-

mirovskii, 2010) also the evolution and decay of inhomogeneous super uid turbulence

are studied.

5.1 Thermodynamic approach to vortex production and

di usion in inhomogeneous super uid turbulence

Recent experimental and numerical results lead us to consider inhomogeneous and

anisotropic tangles (Nemirovskii, 2010, 2011, 2013), with special emphasis on the role

of vortex di usion. Here we will consider inhomogeneous situations, where the tangle

may still be described by L, but L may change from point to point in the volume of the

tangle. In this case, the evolution equation for L must be written taking explicitly into

account the contributions of inhomogeneity, as for instance a di usion ux of vortices

(already considered by some authors), or an additional contribution to vortex formation

or destruction (not considered up to now).

This may be especially relevant in studies of strongly inhomogeneous ows, as for

instance radial ows or ows in convergent or divergent channels (Castiglione et al.,

1995; Kafkalidis et al., 1994a; Klinich III et al., 1997; Murphy et al., 1993), in the dif-
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fusion contribution to the decay of vortex tangles in narrow channels (Kondaurova and

Nemirovskii, 2012) or in the entrance region to channels. The description of anisotropic

situations would require to use a tensor instead of a scalar — see (Jou et al., 2011b)

—, as mentioned in Chapter 2 to take into account the di erent properties of vortices

in the di erent spatial directions, and we will not consider it here.

Non-equilibrium thermodynamic methods have been used to describe the constitu-

tive equations of homogeneous super uid turbulence (Ardizzone et al., 2009; Geurst,

1989, 1992; Jou et al., 2002; Jou and Mongiov̀ , 2005; Mongiov̀ and Jou, 2007). In

recent papers several non-homogeneous e ects were already considered in the equation

for L (Ardizzone et al., 2009; Mongiov̀ and Jou, 2007). Here, we reexamine the ther-

modynamical derivation of those equations from a more general perspective, allowing

for the explicit role of inhomogeneities. Since inhomogeneities in the heat ux are ex-

pected to be deeply coupled with those in vortex density, the aim of building a model

with both kinds of inhomogeneities seems well-motivated in radial ows and in chan-

nels with non-homogeneous cross-section. For instance, several observations in some of

these channels (Castiglione et al., 1995; Kafkalidis et al., 1994a) show for the vortex

line density some features which cannot be described by a local form of the Vinen’s

equation, because they depend not only on the modulus of the heat ux but also on

its relative orientation with respect to the direction of convergent (or divergent) cross-

section. Then, the roles of L and their relative direction with respect to q, as well as

that of q itself, should be incorporated into a wider, more inclusive formalism.

5.1.1 Balance Equations

The basic variables we will use are internal energy E (per unit volume), vortex line

density L, and heat ux density q. The barycentric velocity v is assumed to be zero

(counter ow situation) and the mass density is assumed to stay constant (otherwise,

both and v should be included as independent variables, as in the model recalled in

Chapter 2, in particular in Section 2.4). In these hypotheses, system (2.22) reduces to:

E + · q = 0

q+ · Jq = q

L+ · JL = L

(5.2)

where the upper dot indicates the time derivatives, Jq being the ux of the heat ux,

and JL the ux of vortex line density; q and L are the net production of heat ux

and of vortices per unit time and volume, respectively.
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We start our analysis from an entropy S and an entropy ux JS of the form

S = S(E,L,q, E, L, q), (5.3)

JS = JS(E,L,q, E, L, q). (5.4)

The motivation to include the gradients is to describe non-local e ects. In fact, we

may exclude the terms in E, L and q from S, because we are not looking for

an evolution equation for the gradients themselves, and it is known (Cimmelli, 2009;

Cimmelli and Frischmuth, 2007) that in this case the entropy does not depend on the

gradients, as shown in Section 1.1.2 (see equation (1.13)). This result allows us to

simplify our presentation and to focus directly on the purely non-local contributions

to the transport equations, which are known to be deeply related to the entropy ux

(Cimmelli, 2009; Cimmelli and Frischmuth, 2007; Jou et al., 2010; Muller and Ruggeri,

1998) rather than to the entropy itself. Restrictions on the constitutive equations

for the uxes Jq and JL can be obtained imposing the validity of the second law of

thermodynamics, as we did in Section 2.4.2.

As a consequence of the material objectivity principle (Muller and Ruggeri, 1998)

the expressions of the uxes, Jq and JL, are:

Jq = 2( · q)U 2 q , (5.5)

JL = q+ 2 E + 3 L, (5.6)

where is a function of E and L, while 2, 2, 2 and 3 are supposed constants. These

are the simplest vector and tensor depending on q, E and L and their rst-order deriva-

tives (higher-order terms, for instance E, L or 2 E, 2 L, could contribute

to the uxes, but they are beyond the rst-order local e ects we are considering here).

As production terms in the equations for the heat ux q and vortex line density L,

we choose the following expressions, more general than those proposed in Section 2.4.5

(see equations (2.87) and (2.88))

q =
1

1
q N1Lq+N2L

3/2 q

|q|
+ ˜1 E + ˜2 L, (5.7)

L = 1L
3/2|q| 2L

2 + ˜3 q · E + ˜4 q · L. (5.8)

The latter expression, neglecting the terms dependent on the gradients, is the well-

known Vinen expression for the vortex production-destruction rates (Barenghi et al.,

2001; Donnelly, 1991; Nemirovskii, 2013; Nemirovskii and Fiszdon, 1995; Tsubota et al.,

2012; van Sciver, 2012), with 1 and 2 being coe cients related to the rate of vortex

creation and destruction per unit volume (see below equation (5.17)). They are linked

to Vinen’s coe cients V and V by the relations 1 = V ( sTs) 1 and 2 = V .

The terms independent of the gradients in equation (5.7) were derived in a previous
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thermodynamic analysis in (Mongiov̀ and Jou, 2007), where these terms describe the

friction between vortices and the normal component, but here they are taken as macro-

scopic hypotheses, with 1 the relaxation time of the heat ux, and N1 and N2 being

friction coe cients depending on temperature. The terms in N1 and N2 depend on q

in two di erent ways: the former is proportional to the heat ux, while the second one,

depends only on the direction of q, but not on its value. The new terms considered in

this chapter are those in ˜1, ˜2, ˜3 and ˜4 in (5.7) and (5.8). Note that the last two

terms in expression (5.8) could be written in the form of the terms in and in (5.1)

by expressing q in terms of Vns and E in terms of T and L.

5.1.2 Second law restrictions

To exploit the restriction imposed by the second law of thermodynamics, as in the pre-

vious chapters, we consider the equations (5.2) as constraints for the entropy inequality

to hold. Taking these constraints into account, one obtains the following inequality,

which must be satis ed for arbitrary values of the eld variables,

tS+ ·JS E E + · q q ·[q+ · Jq q] L L+ · JL L 0. (5.9)

We choose for S and JS expression like (2.26) and (2.27) of Section 2.4.2, and

suppose that S depends on q only through its modulus. Following the Liu procedure

of Lagrange multipliers, as in Section 2.4.2, we obtain the following expression for the

entropy ux density

JS = ( E + L )q+ L( 2 E + 3 L) + q( 2 · q 2 q ), (5.10)

and from (5.9) it remains the following inequality

3( · q)2 + 4 q : q + q · q + L L 0. (5.11)

This inequality is valid for any value of elds and of their spatial derivatives and its

positiveness requires 3 > 0 and 4 > 0. Furthermore, in situations with homogeneous

values of q (i.e. vanishing gradients of q), it also requires that:

q · q + L L 0, (5.12)

that coincides with (2.48). This last inequality may be written explicitly by taking into

account the form (5.7) and (5.8) for the production terms, and one has

1

1
+N1L q2 + N2L

3
2 |q|+ ˜1q · E + ˜2q · L

+ L
1L

3
2 |q| 2L

2 + ˜3q · E + ˜4q · L 0. (5.13)
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We have just seen in Section 2.4.2 that L < 0 and < 0. Therefore, the rst

term of the rst line and the second term of the second line will be always positive

provided 1 > 0, N1 > 0 and 2 > 0. Further, the sum of the terms in N2 and L
1

will also be positive if N2 + L
1 > 0, because L

3
2 |q| is positive. Being 1 positive,

as it describes vortex formation in the Vinen’s equation, N2 ought to be negative. The

remaining terms could be positive or negative, and therefore they cannot contribute to

the entropy production and should vanish identically. This requires that:

˜1 +
L˜3 = 0, ˜2 +

L ˜4 = 0. (5.14)

The coe cients ˜3 and ˜4 are linked to ˜1 and ˜2, but their concrete signs do

not follow from (5.14). We will keep on the discussion on their physical meaning in

Section 5.2.

5.2 Field equations accounting for non-local e ects

In order to predict the behavior of the observable elds E (related to the temperature),

q and L, we must take into account the expressions for the uxes in their evolution

equations.

Substituting the constitutive relations (5.5) and (5.6) for the uxes and the expres-

sions of the source terms (5.7) and (5.8) in the evolution equations (5.2), and assuming

E = E(T,L) and = (T,L), we obtain

cV T +
E

L
L = · q, (5.15)

q 2 ( · q) 2
2q =

1

1
q N1Lq+N2L

3
2
q

|q|
+ ˜1 cV T +X L, (5.16)

L = 1L
3
2 |q| 2L

2 +D 2L · q 2 cV
2T + Y q · T +X q · L, (5.17)

where cV is the constant-volume speci c heat, and

X = ˜1
E

L
+ ˜2, X = ˜4 + ˜3

E

L L
, Y = ˜3 cV T

. (5.18)

Here D = 2
E
L 3 is the di usion coe cient of vortex lines. The coe cients 2

and 2 may also be written in terms of the viscosity and the entropy of the normal

component, but we do not need it now (Saluto et al., 2014).

Equations (5.16) and (5.17) are the evolution equations of q and L. Simpler forms

of (5.16) and (5.17) have just been used in this thesis, taking 1 = , N2 = 0, ˜1 = 0

and X = 0 in (5.16) and D = 0, = 0, ˜3 = 0 and X = 0 in (5.17). The terms in 1,

D, and ˜i are clearly related to inhomogeneity, whereas the terms in Ni follow from

a thermodynamic analysis as in (Mongiov̀ and Jou, 2007).
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The coe cient 2 in (5.17) plays a role analogous to the so called thermal-di usion

coe cient in the Soret e ect in matter di usion. Indeed, if we take = 0 (for the sake

of simplicity), expression (5.6) for the vortex di usion may be written as

JL = 2 cV T D L. (5.19)

The term in T in this equation expresses a coupling between temperature eld and

vortex density eld, analogous to the coupling between T and the di usion ux of

matter in thermodi usion.

In steady states, and according to (5.15), one must have ·q = 0. In this case, the

equations (5.16) and (5.17) reduce to

2
2q =

1

1
q N1Lq+N2L

3
2
q

|q|
+ ˜1 cV T +X L, (5.20)

1L
3
2 |q| 2L

2 +D 2L 2 cV
2T + Y q · T +X q · L = 0. (5.21)

We pay close attention to these equations below.

5.2.1 Equation for the heat ux

If the term X L in equation (5.20) is neglegible with respect to the other terms (this

is exactly true for homogeneous vortex tangles in which L = 0), then equation (5.20)

becomes
1

1
q+N1Lq N2L

3
2
q

|q|
= ˜1 cV T + 2

2q, (5.22)

that is a generalization of the equations studied in Chapter 3. In a linear approximation

and in absence of vortices and neglecting inhomogeneities in q, one must obtain the

Fourier’s law, i.e. q proportional to T with a negative coe cient, then recalling the

meaning of the thermal conductivity k, we have:

k

1
= ˜1 cV . (5.23)

It follows ˜1 < 0. The term inN1Lq is related to the friction between the tangle and the

normal component of the uid and, in well developed conditions, it is proportional to

|q|3, because L is proportional to |q|2. The term inN2 is another frictional contribution,

and it is also proportional to |q|3. Thus the heat ux q across the tangle is proportional

to ( T )1/3, because the frictional term becomes dominant (this correspond to so-called

Gorter-Mellink regime in heat transport in He II).

In Chapter 3 we have considered a homogeneous L, but here we are interested in

a more general analysis allowing L to depend on the position. Therefore we must

considering also the term X L in equation (5.20) obtaining

1

1
q+N1Lq N2L

3
2
q

|q|
=

k

1
T +X L+ 2

2q. (5.24)
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One sees that the heat ux has contributions from a term in T , corresponding to the

energy carried out by the uid itself, and from a term in L, which could be interpreted

as the energy carried out by the tangle itself, i.e. by the vortices which go from higher

to lower L, in a separate way from the T contribution. We pay further attention on

it in Section 5.2.3.

5.2.2 Equation for the vortex line density

Now we comment the new terms in ˜3 and ˜4, through X and Y , appearing in

equation (5.21) describing the evolution of L, in order to identify some of their possible

observable consequences.

According to (5.14)

˜3 = L
˜1 = L

k

1

1

cV
=

1
LT 2

1

cV
, (5.25)

where we have taken into account the identi cation (5.23) of k and (2.81) of . Since
L < 0, it follows that ˜3 > 0.

Introducing the last expression for ˜3 in (5.18), equation (5.17) becomes

L = 1L
3/2|q| 2L

2 + PL|q|2 +D 2L+X q · L+ Y q · T, (5.26)

where P = 1
k N1

1
LT 2 T . The two last terms come from the new coupled

e ects relating T and q. In (5.26) we have assumed a very high thermal conductivity

and we have simply taken

T = 1

k
N1L q. (5.27)

From this we get

2T = 1

k
N1 ( L · q+ L · q) . (5.28)

In steady-state, it must be · q = 0, and then equation (5.26) becomes

1L
3/2|q| 2L

2 + PL|q|2 = D 2L X q · L, (5.29)

where X = X + 2
˜1
N1 = ˜4 + ˜3

E
L L + 2

˜1
N1.

The term in q · L in (5.26) is especially appealing because it indicates that a

vortex density gradient could contribute not only to vortex di usion, but also to vortex

creation (or destruction), in inhomogeneous vortex tangles. We illustrate this aspect

in Section 5.2.3.



Field equations 117
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Figure 5.1: Channel lled with super uid He II; perpendicular to the channel, in direction y,

a heat ux q(x) which depends on x is imposed. This implies that L, proportional to q2, will

also depend on x. According to (5.24), this inhomogeneity of L should contribute to the heat

transfer along x, although T is constant along x.

5.2.3 Proposal of experiment

We propose here an experiment to check the physical e ects of the new terms proposed

in the evolution equations (5.24) for the heat ux and (5.29) for the vortex line density.

In order to study the e ects of the term in L in (5.24), we propose the following

experiment. Take a parallelepipedic channel lled of He II, with its elongated site in

direction x, as in Figure 5.1. Perpendicular to the channel, in direction y, we impose a

heat ux whose intensity depends on x: q(x) = q(x)̂j. According to the two rst terms

in (5.8) or in (5.21), corresponding to Vinen’s equation, this will produce along the

channel an L(x) pro le proportional to the local value of |q|2. The experiment must

be made in such a way that the He II temperature T is constant along the channel, i.e.

it does not depend on x. Now, according to (5.24), one should have a heat ux q = q î

along the x-axis as a consequence of the inhomogeneity of L; this term, proportional to

L, would be absent in homogeneous tangles. This could allow to explore the energy

carried by the vortices which migrate from higher to lower L.

This ow would correspond to a di usion ux of vortices, carrying vortex energy

from regions of high L to those of low L. Then, this experiment would allow to measure

the vortex di usion coe cient D as well, appearing in equation (5.21) (note that in

this situation the last term in (5.21) is negligible, because the dominant heat uxes

are perpendicular to L, indeed, also the term in 2T is negligible because of (5.28)).

Then, equation (5.21) reduces to:

1L
3
2 |q| 2L

2 +D 2L+ Y q · T = 0. (5.30)

Still another experiment could be settled along the lines of a situation examined

in (Kondaurova and Nemirovskii, 2012), where the authors have studied the in uence

of vortex di usion in the decay of vortex tangles in relatively narrow channels. After
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suddenly switching o the heat ow, a part of the vortices annihilated by mutual

interaction amongst them but another part annihilated on the walls. This produced

an inhomogeneity leading more vortices towards the walls, in such a way that di usion

considerably contributed to the decay. In fact, they observed that in nite boxes the

escape process is not purely di usive, but it has also a ballistic contribution, namely,

a direct ow from the bulk to the walls, without loop collisions inside the bulk, but

only on the walls. In the situation studied by them, our additional terms in (5.17),

especially the two latter terms, would not contribute to the decay, because q would be

set to 0. However, if q was suddenly reduced to a non-vanishing value (instead of 0),

the last term in (5.17) would imply a further contribution to the decay. In particular,

since L points from the walls to the interior of the container, the last term in (5.17)

would imply a di erent rate of decay in the walls parallel to q (for which the term in

q · L would be zero), than in the walls perpendicular to q (where the mentioned term

would be di erent from zero, and would have a di erent sign in the wall where the heat

ux enters into the container and the wall through which it would exit from it).

5.3 Radial counter ow

Here we consider a radial counter ow from a cylindrical wall of radius r0 at temperature

T0 to another concentric cylinder of radius r1 at temperature T1. This is a classical

situation in heat management. For instance, in the context of Fourier’s law, and for

constant thermal conductivity k, the heat removed from the internal cylinder per unit

time and unit cylinder length is:

Q =
2 k

k
r0h0

+ k
r1h1

+ ln( r1r0 )
(T0 T1), (5.31)

where h0 and h1 are the corresponding heat transfer coe cients between the uid and

the walls. However, our situation is much more complicated because we assume that

the space between r0 and r1 is lled with super uid helium — in a cryogenic device,

for instance —. An analogous situation has been studied in (Campbell, 1987) where

super uid 4He is in a rotating annulus driven by a radial counter ow. As in (Campbell,

1987) we obtain an heat ux dependent only on r.

Though our inspiration comes from a practical situation, our motivation is basically

theoretical, and it is focused on the role of quantum super uid turbulence in heat

transport.

Recall that, according to Vinen equation, the vortex-line density L depends on the

local value of q(r) (for q > qcrit) as

L
1
2 (q) = V

V
|Vns| =

V

V

|q|
sTs

= 1

2
|q|, (5.32)
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Figure 5.2: Left: Heat ows axially from the inner cylinder (the hotter one), at xed temper-

ature T0, to the outer colder one. The radial temperature pro le T (r) depends on the heat ow

and the vortex density radial distribution. Right: Example of vortex inhomogeneity. Since

the heat ow is higher near the center, the vortex line density will also be higher there, and

it will decrease towards the borders; thus, one can observe simultaneously several regimes of

turbulence in the same experiment. As a consequence of the inhomogeneity, vortex di usion

will arise.

this expression comes from (5.1) with = = 0 and D = 0 (or from equation (5.29)

with P = 0, D = 0 and x = 0), and implies

L

r
= 2 1

2
L

1
2

q

r
. (5.33)

Then we can write the equation for the radial component of the heat ux from equation

(5.24), taking in mind the relation (5.23) between k and 1,

T

r

2qr
r2

+
1

r

qr
r

qr
r2

=
KL

qr
1

k
qr + 2X 1

2
L

1
2

qr
r
, (5.34)

here the coe cient is linked to 1, the coe cient X to X, and the coe cient K is

linked to N1 and N2.

In steady-state situations, the heat ux q must have the form q = qrr̂, where

qr = q(r) = /r, (5.35)

with a constant. This follows from the condition ·q = 0 of energy balance equation

in steady-state, and it may be intuitively understood because the total heat owing

radially away from the internal cylinder must satisfy the relation 2 rq(r) = 2 = cost

equal to the total heat ow supplied by the internal cylinder per unit length. This gives

the physical meaning of .



120 Radial counter ow and vortex di usion

In this case the Laplacian of q(r), i.e. the terms in parenthesis in equation (5.34),

is equal to 0 (from (5.35)), and q
r = /r2. Then, taking in mind equation (5.33),

equation (5.34) becomes

T

r
=

KL 1

k
2X 1

2

L
1
2

r
q(r), (5.36)

this last expression reduces to the Fourier’s law in absence of vortices, i.e. when L = 0.

We will take the expression (5.32) for L as a reference for comparison with situation

in which non local terms are taken into account as in (5.1). The strategy we will apply

is the following one: we impose a value of and obtain the local values of q and the

temperature radial gradient T
r , in order to obtain the full heat pro le as a function of

r. From here, and given values of the heat transfer coe cients h0 and h1, of the internal

and external cylindrical surface, we obtain T (r) and, in particular, T at the external

surface T1(r1). Since we know , the heat extracted from internal cylinder per unit

length of the cylinder and unit time will be Q = 2 ; since we know the corresponding

temperature T1 we will be able to calculate Q as a function of T0 T1. This could do

numerically.

The result will be di erent if we use a generalization of the Vinen equation, adding

non local terms. For example if the gradient of Vns or of q also contributes as an

additional source of vortices, as commented in (5.1), namely if:

dL

dt
= 1qL

3
2 2L

2 +
dq

dr
L, (5.37)

one will have for the steady state:

2L 1qL
1
2

dq

dr
= 0, (5.38)

in Section 5.6 the term in |dq/dr|L will be written in the more general invariant form,

( q : q)
1
2L, but here dq/dr is the only nonvanishing component of q.

Since q = /r, |dq/dr| = /r2, L would depend on r as

L
1
2 = 1

2 2
q 1 + 1 +

4 2
2
1q

2

dq

dr
= 1

2 2r
1 + 1 +

4 2
2
1

. (5.39)

Thus, the dependence of L with the radius would be the same as for = 0, but the

coe cient would be di erent, implying a higher value of L. This would be one of the

consequences of the assumption that a gradient of q acts as an additional source of

vortices.
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5.4 Vortex di usion and hysteresis cycle in radial quan-

tum turbulence

In this section we study the in uence of vortex di usion (described by the last term

of equation (5.1)) in radial counter ow between two concentric cylinders at di erent

temperatures.

In this case, L is no longer homogeneous but depends on the radial distance r to

the axis, and, as a consequence, vortex di usion plays a role (Nemirovskii, 2010, 2011;

Tsubota et al., 2003) which, in turn, in uences the temperature pro le. The origin

of inhomogeneity of vortex-line density is the inhomogeneity of the heat ux itself.

Because of the geometry of the ow, the heat ux is maximum near the center and

decreases towards the external wall. The source of vortices is everywhere (corresponding

to the source term of the local Vinen’s equation), but more intense in the inner region.

5.4.1 Hydrodynamical model

Also in this section, as in the previous, we use as fundamental elds the temperature

T , the vortex line density L, and the heat ux q. In these conditions, the system is

described by equations (5.15)–(5.17), in the simpli ed form:

cV T = · q (5.40)

q =
k
q N1Lq+N2L

3
2
q

|q|
T L (5.41)

L = 1L
3
2 |q| 2L

2 +D 2L+ · ( q) (5.42)

with k thermal conductivity, k/ the relaxation time of the heat ux, i.e. 1 in (5.16),

1 and 2 the rates of vortex formation and destruction, respectively, a coupling

coe cient between heat ux and the gradient of L, and the other coe cients have the

same meaning as in (5.15)–(5.17). Here, we will pay a special attention to di usion

e ects in inhomogeneous vortex tangles arising in radial counter ow.

5.4.2 Application to radial counter ow

Here we apply equations (5.40)–(5.42) to a steady-state counter ow of He II between

two concentric cylindrical walls at di erent temperatures. The inner cylinder (the

hotter one) is at xed temperature T0 (Figure 5.2-left). The temperature pro le T (r)

between both cylinders will depend on heat ux, thermal conductivity, and the vortex

line density pro le L(r).

The steady state situation requires · q = 0 according to (5.40). Since we can

consider an axial symmetry for the problem, the heat ux has only a radial component

qr (which will be called here as q), this implies that q = /r, as mentioned in (5.35).
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Here we will study the behavior of L(r), which could be obtained experimentally

from the attenuation coe cient of second sound. Introduction of q = /r in (5.42) and

assuming constant, allows to obtain L(r) from

1 r
L

3
2 2L

2 +D 2L = 0. (5.43)

If the temperature gradients are small, 1, 2 and D (which in principle depend on

temperature) may be taken as constant. In this case, one sees easily that equation (5.43)

admits the solutions:

L(r) = 0 and L(r) = 2
2

r2
, (5.44)

with

= 1

2 2
1 + 1 +

16D 2
2
1

2
. (5.45)

If D = 0 one recovers the result = 1

2
, of the usual Vinen equation, i.e.

L(r) =
2
1
2
2

2

r2
. (5.46)

If we compare the di erent expression of L obtained above, i.e. (5.39) (corre-

sponding to increased heat production but with vanishing di usion) and (5.44)–(5.45)

(corresponding to di usion, but without an increase in the vortex production) with

expression (5.32), we note that in the rst two cases the value of L is increased with

respect to (5.32). It is interesting to note that the dependence of the additional terms

as a function of is di erent in both situations: it changes as 1 if the excess of L is

due to a source of vortices proportional to the gradient of the heat ux in (5.39), and

as 2 if it is due to di usion in (5.45). Thus, a comparison of the results for L with

di erent values of could allow us to separate both kinds of contributions.

Equation (5.45) shows that the di usion of vortices increases the local values of

L as compared with the situation with D = 0, especially at relatively low values

of the heat ux. The di usion contribution will be specially relevant when 1/ 2 is

small (as compared to D/ 1
2, or in other terms when D is higher than 2/ 1

2)

because in that case the second term inside the root will be high. This increase may

be intuitively understood as the result of a di usive ow of vortices from the inner

cylinder (where q is higher and therefore the vortex production is higher) to the outer

cylinder, where they will disappear when colliding against the external wall. Thus, the

term in 1 accounts for the ”native” vortices, as meaning that they were produced in

the same point being considered, in contrast with the term in D, which accounts for the

“visiting” or “migrating” vortices in that point. For small heat ux or high di usion,

the “migrating” vortex population is higher than the native vortex population.
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When vortex di usion e ects become dominating, the vortex line density pro le

(5.44) takes the form

L(r) =
4D

2r2
. (5.47)

In this regime, L is independent of the heat ux, but it keeps the same dependence

1/r2 on the radius than in (5.44) for D = 0. Thus, the in uence of the vortex di usion

is focused on the local values of L(r) rather than on the form of the spatial steady

distribution. In the limit of low , (5.43) with D = 0 would lead to L = 0, but for

D = 0 it leads for L to (5.47).

5.4.3 Possible hysteresis cycle

The remark (5.45) of the di erent values of L in the presence or absence of di usion

suggests the possibility of hysteresis when the heat ux is increased from zero to some

maximum value, at a rate su ciently higher than the di usion rate, and is subsequently

lowered to zero, at a rate su ciently lower than the di usion rate. In the rst case,

di usion will not have time to act during the process, so that L will be given by

(5.44)–(5.45) with D = 0 (the ”native” population will predominate), i.e. L(r) =
2
1
2
2

2

r2 .

In contrast, in the slow process, di usion will always act and L will be described by

(5.44)–(5.45) with D = 0.

The situation is presented in Figure 5.3, where we have considered the dimensionless

quantities Lr2, 0 and D̃, de ned by the following relations:

0
1

2 2
,

˜0 = 0 1 + 1 + D̃ 1
( 0 )2 ,

D̃ 4D
2
.

(5.48)

In this notation, for D = 0, one has, from (5.46) Lr2 = 4( 0 )2.

The initial situation of the cycle corresponds to L = 0 and = 0 (state A). The

quick increase of produces the corresponding increase of L (from A to B). From

B to C the heat ux is no longer changed and di usion plays a central role. As in

(Nemirovskii, 2011), one can see that, if one considers the drift velocity of the vortex

front, in equation (5.42), i.e.

L

t
+ (LVL) = 1L

3
2 |q| 2L

2 +D 2L+ · ( q) (5.49)

a locally increase of the value of L corresponds to the propagation of a vortex front, from

the inner to the outer regions, with a speed proportional to q D 2
1/ 2 (see Section 5.5).

When slowly decreases (from C to D), the nal value of L will be given by (5.47),
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Figure 5.3: Hysteresis cycle. The value of Lr2 (vertical axis) as a function of the dimensionless

expression for the heat ux 0 . The value of L for fastly increasing heat ux (A to B),

corresponding to eq. (5.46), is di erent from that for slowly decreasing heat ux (C to D),

corresponding to eqs. (5.44)-(5.45) with D = 0. The values of 0 = 1.28 10 4 s3/(cm*g) for

T = 1.5 K and D = 2.2 cm2/s have been taken from (Nemirovskii, 2010) for D, from (Sciacca

et al., 2008a) for 2, and from (Martin and Tough, 1983) for the ratio 1/ 2.

i.e. Lr2 = D̃. Of course, this value will not last very much, because in the absence of

the driving heat ux, L will decay as

dL

dt
= 2L

2 +D 2L. (5.50)

This decay process corresponds to stage D to A.

The paths followed by the vortex line density during increase and decrease of the

heat ux will not be the same, which is the de ning feature of hysteresis. From B

to C the heat ux is no longer changed and di usion plays a central role, by locally

increasing the value of L through the propagation of a vortex front from the inner to the

outer regions. From D to A (in the absence of the heat ux, i.e. for = 0) turbulence

decays and tangle disappears, in this stage the energy of the tangle decrease because

it is turned into heat or, that is the same, internal energy of the uid. This hysteresis

cycle is analogous to those arising in magnetic systems, in which magnetization for

increasing magnetic elds is di erent from that for decreasing magnetic elds. The

role of the motion of magnetic domain walls, one of the reasons of magnetic hysteresis,

would be played in our case by the propagation of a vortex front during the stage B to

C. Along this stage, the region with higher L near the inner cylinder would propagate

towards the outer cylinder as a nite-speed front.

The characteristic time D of the di usion process is of the order of 1
D = D( r) 2,
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with r r1 r0, the separation between both cylinders of respective radii r1 and

r0. Then the rate of increase of the heat ux (or of ) from A to B, should be faster

than / = D( r) 2 1
D in order that di usion has no time enough to act, and the

decrease of the heat ux from C to D should be su ciently slower than this rate (in

absolute value) for di usion to have time enough to act.

A more realistic description of this possible hysteresis cycle should take into account

that in order to go from the initial laminar regime (with L = 0) to the turbulent

regime (L = 0), should overcome a threshold value (in analogy with what is observed

in counter ow along cylindrical tubes), instead of setting directly at = 0, as in

Figure 5.3.

The existence of such a threshold for could be obtained from a more general

equation than (5.42) as for instance:

dL

dt
= 1|q|L

3
2 2L

2 3

( r)2
L+D 2L+ · ( q). (5.51)

The third term has been added here in analogy with the extension of Vinen’s equa-

tion proposed in (Mongiov̀ and Jou, 2005a) to account for a threshold in heat ux

for transition to laminar-to-turbulent transition in counter ow along cylindrical tubes.

From (5.50), the critical value of the heat ux required to go from laminar (L = 0) to

turbulent (L = 0) situation is:

q2 =
2
critic

r2
=

4 2 3
2
1( r)2

. (5.52)

Because critic is proportional to r, it is higher at large distances from the hotter

cylinder. From this follows, for instance, that vortices will ll the region where r is

su ciently small, i .e. for r smaller than critic/q. If this value of r is higher than

the radius of the external cylinder, all the regions between the cylinders will be lled

with vortices; if this value of r is intermediate between the radii of the internal and

the external cylinders, only the region between the internal cylinder and this value of

r will be lled with vortices.

This threshold would slightly modify the curves of Figure 5.3 by giving an horizontal

part to the lower line from = 0 to = critic. For > critic, the lower curve would

generically increase as the curve AB in Figure 5.3. However, this would not essentially

modify the generic possibility of the hysteresis cycle pointed out here.

5.4.4 Behaviour of the temperature pro le

The temperature pro le is another relevant quantity of the situation we are considering.

The expression for T (r) may be obtained by introducing in (5.41) the expressions for

q(r) and L(r) found above. When the dependence of T is taken into account, the L
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and T pro les become strongly coupled quantities, because the several coe cients in

equations (5.41) and (5.42) depend on temperature. If, anyway, the gradients are small

and the coe cients may be considered as approximately constant, the pro le for T may

be obtained from (5.41), which, for q
t = 0, takes the form

T

r
=

L

r k
q N1Lq +N2L

3
2 . (5.53)

The terms with the coe cients N1 and N2 correspond to the friction between the

normal component and the vortices. The term in L/ r may be interpreted as the

energy transported by the vortices which move from regions of higher L to those of

lower L. Some of these vortices are destroyed in the latter regions and their energy

becomes internal energy of the uid. This would be the energetic aspect of vortex

di usion. We will not consider this problem in detail, because at this moment we will

focus only on the simpler situation, but solving it is relevant for an understanding of

heat transfer between both cylinders.

Since the thermal conductivity k is very high, the second term on the right-hand side

may be neglected. Taking in mind equation (5.44), i.e. L(r) = 2 2

r2 with expressed

by (5.45), and assuming that the heat ux q = /r goes from the inner cylinder to the

outer one (see Figure 5.2-left), equation (5.53) becomes

T

r
=

3

r3
2

2 N1 2 +
N2 3 , (5.54)

in accordance with the properties of the heat transport in stationary He II, described

by the well-known Gorter-Mellink law, T/ r
3

r3 = q3. Observe that the quantity in

parenthesis depend on , that assumes di erent values in the paths A-B and C-D in the

Figure 5.3. This implies that to the hysteresis cycle in the line density L corresponds

a hysteresis cycle for the temperature.

Note that in the linearized version of (5.53), the temperature pro le would depend

on r as r 2, analogously to L(r). This dependence is di erent from the one expected

from Fourier’s law; in this case, one would have k T
r = q and since q = /r, a

temperature pro le of the form

T (r) = T (r0) + k
log

r0
r

, (5.55)

with r0 the radius of the internal cylinder. Instead, the dominating in uence of the

friction terms in N1 and N2 in (5.53) leads to a much steeper decrease of T for in-

creasing values of the radius r. This makes that, in a further analysis, the temperature

dependence of the coe cients appearing in (5.43) and in (5.53) should be explicitly

considered, leading to more complicated equations.
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5.5 Vortex front propagation

In this section we study the propagation of a discontinuous vortex front as a consequence

of vortex di usion and vortex production. The concrete motivation is to study the

fragment B-C of the hysteresis cycle presented in Section 5.4.3.

Consider the mentioned ow between two concentric cylinders. After a relatively

fast process from A to B in Figure 5.3, one has everywhere the vortex density pro le

(5.46). From now on the heat ux is kept unchanged, and we want to study the transi-

tion from the pro le (5.46) to the di usion-in uenced pro le (5.44)–(5.45). We assume

that the corresponding process is the propagation of a vortex front from the internal

cylinder (highest contribution) to the external one (see Figure 5.2-right). Accordingly,

the time to go from states B to C would correspond to such propagation process. Then,

for r < rf (t), we consider L given by (5.44) whereas for r > rf (t), it is given by (5.46),

with rf (t) being the position (radius) of the front. We want to describe how rf (t)

evolves with time from rinternal to rexternal.

5.5.1 Propagation velocity

In one dimensional case, i.e. when the front propagates along the x-axis, the equation

for the vortex line density has the form (Nemirovskii, 2011)

L(x, t)

t
+

x
(L(x, t)VL) = D

2L(x, t)

x2
+ F (L(x, t)) (5.56)

where the second term on the left-hand side is related to the drift of the vortex tangle

as a whole due to polarization of vortex loops, and it was introduced for the rst time

in (van Beelen et al., 1988) and further explored in (Nemirovskii, 2011). The rst term

in the right-hand side is due to the di usion of the vortices and the second one is the

source term.

In the more simple situation, F (L) must have the form of the source term in the

classical Vinen’s equation, i.e.

F (L) = V |Vns|L
3
2 V L2, (5.57)

but it could be di erent (for instance, if velocity gradient terms act as a supplementary

vortex source). The propagation velocity of the front will depend on the form of F (L).

In principle, the quantity VL is a very complicated functional of the whole vortex

laments con guration, independent of the vortex line density L(x, t), however for slow

hydrodynamic processes, it is routinely accepted that the equilibrium is established and

all characteristics of the vortex tangles depends on the instantaneous value of the vortex

line density L(x, t), or, which is equally, on the relative velocity Vns. In particular a

simple expression for VL is:

VL = vs + cLILVns, (5.58)
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where cL and IL are the so-called structure parameters of the vortex tangle, obtained

(for counter ow turbulence) in (Schwarz, 1988). In (Sciacca et al., 2008b) the authors

give a more general expression for VL, that takes into account that the velocity of the

vortices is not exact collinear with the counter ow velocity, but we use here the simple

expression (5.58).

Following (Nemirovskii, 2011) one can look for a solution of (5.56) in a form of a

steady propagating pro le, i.e.

L(x, t) = L(x V t) = L( ), (5.59)

with V the velocity of the front, we can write (5.56) as

(V VL)
L

= D
2L
2
+ F (L). (5.60)

In a rst moment one can consider V = V VL and add the drift velocity in the nal

result and assume that far before the front (formally = ) the vortices are absent,

i.e. L = 0, and behind the front there is well developed turbulence and the vortex line

density takes its equilibrium value.

In (Nemirovskii, 2011) was found numerically an eigenvalue for V , that is:

V = 0.8|Vns| D
2
V

V
= 0.8

D
, (5.61)

where has dimensions of time, and it characterizes the rate of change of the vortex

line density. Reintroducing the drift velocity, one obtains

V = n + cLIL |Vns| ± 0.8|Vns| D
2
V

V
. (5.62)

This last expression for V shows how to determine the speed of propagation of the

front with the use of the characteristics of super uid turbulence in the counter owing

helium II. This would be the propagation speed of the vortex front, in such a way that

the characteristic time from state B to state C in Figure 5.3 would be given by the

separation betwen the internal and the external cylinders divided by the average value

of (5.62). These results can be extended to other cases, for example, rotating helium.

5.6 Non-local generalizations of Vinen equation and ap-

plication to convergent channel

In this section we aim to generalize the evolution equation for L by including in it terms

in q, which, to our knowledge, have not been considered before by other authors.
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The intuitive idea is that a gradient of the heat ux, and not only the heat ux, could

contribute to the vortex production (or destruction). A generic possibility is to write

L

t
+ · [LVL] = 1qL

3
2 2L

2 + q · L+ F( q)L +D 2L, (5.63)

where 1, 2, , and D are coe cients with suitable dimensions, while F( q) is a

scalar functional of q, as for instance [( q) : ( q)]
1
2 or û · ( q) · û, with û the unit

vector in a given direction, i.e. that of the heat ux q or that of the Schwarz vector

I, a characteristic vector introduced in (Schwarz, 1988), de ned as in (2.101). As it

is known, in Schwarz derivation of Vinen equation, the rst term in the right hand

size of equation (5.63) is substituted with q · IL
3
2 = I0qL

3
2 (Schwarz, 1988). From a

mathematical point of view, the presentation in terms of I · q rather than in terms of

the modulus of q is more elegant, and it is more convenient as a starting point for our

analysis in this section.

The di usion term in D and the term in were just considered above from a

thermodynamic point of view. In this section we focus our attention on the term in ,

that describes the role of the heat gradient as vortex source. In the well known Vinen

equation, the vortex source is considered to be related to heat ux modulus |q| = q but

independent of heat gradients (which in the two uid model are related to gradients

of the counter ow velocity). However the heat ux gradients are expected to act as

natural source of vorticity, and therefore of vortex lines, in addition to the usual term

in 1.

In this section we consider several di erent ways of generalizing Schwarz-Vinen

equation with di usion e ects, namely:

dL

dt
= ˜Vns · IL

3
2 V L2 +D 2L (5.64)

in the presence of Vns and L. Here we use the counter ow speed Vns rather than

q (that has been introduced in (5.63)) because it is more well known, in the context

of two- uid model of turbulence. In the one- uid model, using q instead of Vns seems

more natural and more closely related to observational quantities. Anyway, since in

counter ow q = ssTVns, going from one formalism to the other is not di cult. In

the following of this section we will use V rather than Vns for the sake of simplicity.

Di usion e ects are the most direct and intuitive non-local contribution to the dy-

namics of the vortices, but other non-local e ects may appear, related to the production

or destruction of vortices, as seen in (5.63). We will proceed our exploration in a sys-

tematic way. First, we will expand up to second order in L 1/2 (the average distance

among vortex lines) the production and destruction terms in Vinen equation. Second,

we will incorporate other possible terms following from dimensional analysis.

We assume, for the sake of simplicity, that the e ects of the temperature gradient

are much less than the e ects of the gradients of V and L, so that they can be neglected.
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5.6.1 Series expansion of the production and destruction terms

Taking into account that the average separation between vortex lines in the tangle

is of the order of L
1
2 , it may be expected that the creation and destruction processes

will be a ected by inhomogeneities of V and L, because vortices from x and from

x+ will collide with vortices at x, and, therefore, their e ects should be considered,

instead of considering only the interactions of vortices already at x. The non-local

contributions will be specially relevant for small values of L, where the mean free path

= L
1
2 is long.

The expansion up to second order in dx = L 1/2û (with û an arbitrary unit vector)

of the creation term ˜Vns · IL
3
2 of (5.64) is given by:

L

t prod

= ˜ V · IL
3
2 + Lû · [( V) · I+V · ( I)]

+
1

2
L

1
2 û · [( ( V)) · I+ 2 V : I+V · ( ( I))] · û

+ (V · I)
3

2
û · L+

3

8
L

3
2 | L|2 +

3

4
L

1
2

2L

+
3

2
L

1
2 [I · ( V) · L+V · ( I) · L] . (5.65)

On the other side the destruction term V L2 of (5.64) is approximated by:

L

t destr

= V L2 + 2L
1
2 û · L+ L 1| L|2 + 2L . (5.66)

Thus, a non local extension of (5.64) is obtained substituting to Schwarz-Vinen original

production and destruction terms the expressions (5.65) and (5.66).

Assuming V and I collinear and I constant, a non-local hydrodynamical extension

of equation (5.64) would be

L

t
= ˜I V L

3
2 + Lû · ( V) · û+

1

2
L

1
2 û · [ ( V)] · û

+
3

2
V û · L+ V

3

8
L

3
2 | L|2 +

3

4
L

1
2 2L +

3

2
L

1
2 û · V · L

V L2 + 2L
1
2 û · L+ L 1| L|2 + (D V ) 2L. (5.67)

Here, we want to consider situations where the heat ux has approximately only

one component and depends only on one coordinate. This is the case of radial ows, in

an exact sense, and of convergent channels in an approximate sense. In this simpli ed
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situation one is V = V x̂, I = Ix̂, the previous equation becomes

L

t
= ˜I V L

3
2 +

V

x
L+

1

2
L

1
2

2V

x2
+

3

2
L

1
2

V

x

L

x

+ V
3

2

L

x
+

3

8
L

3
2

L

x

2

+
3

4
L

1
2

2L

x2

V L2 + 2L1/2 L

x
+ L 1 L

x

2

+ (D V )
2L

x2
. (5.68)

To these terms still other terms could be added in principle. Note that a much

simpler equation than this one was proposed by Gueurst in (Geurst, 1989, 1992; Geurst

and van Beelen, 1994), by incorporating only the term in L 1( L/ x)2 and the di usion

term in D( 2L/ x2) as additional contributions to the Vinen equation. Our expression

is more general and systematic.

Thus, equation (5.68) is a simple and direct implementation of an evolution of L

starting from Vinen equation, but other kinds of term not coming from such a non-local

extension may also contribute, in principle, to such non-local extension.

Dimensional analysis and additional non-local terms

On dimensional grounds one may directly incorporate to (5.64) terms depending on

L and on V, up to second order, and requiring that they have the correct physical

dimensions. Later on, one must consider their physical meaning, their compatibility

with the second law of thermodynamics, their agreement or lack of agreement with

experimental observations, and their microscopic bases.

Up to this order, a simple generalization is:

dL

dt
= V V L

3
2 V L2+D 2L 1V· L 2

V 2

L
| L|2 3L [( V) : ( V)]

1
2 , (5.69)

where we have put ˜I = V , and where we have chosen, for the functional F( V),

the expression 3L [( V) : ( V)]
1
2 . This term will be a production term (if 3 < 0)

or a destruction term (if 3 > 0) and it is due to the inhomogeneity of the ow and in

V. When it is expressed in terms of q, it plays a role analogous to the term in in
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(5.63). Thus, a possible generalized non-local equation should be

L

t
= V V L

3
2 V L2 2 V L

1
2 û · L

+ D V +
3

4
V V L

1
2 2L

V
1

L
2
V 2

L
+

3

8
V V L

3
2 | L|2

+
3

2
V û 1V · L+

3

2
L

1
2 û · V · L

3 [( V) : ( V)]
1
2 L+ V Lû · ( V) · û

+
1

2
V L

1
2 û · [ ( V)] · û. (5.70)

5.6.2 Application to averaged one-dimensional description of conver-
gent channels

The situation that we are considering, is represented in Figure 5.4. A constant heat

ow Q is imposed in the direction of x-axis, r indicates the width of the channel and it

depends on the position x, while the thickness h of the channel is considered constant.

x

Q

Figure 5.4: A constant heat Q is imposed in the x-direction. The channel has a constant

height h, and a variable width r(x) = x, where is the slope of the walls with respect to the

axis of the channel. Then Q = Q1r1
r(x) .

In this situation, one has from the energy balance equation

q(x)hr(x) = AQ, (5.71)

with A constant, and therefore

q(x) =
AQ

hr(x)
=

A

r(x)
, (5.72)
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where A = AQ
h is constant. Because in counter ow it is q = sTsV we obtain also

V (x) =
B

r(x)
, (5.73)

where B = A /( sTs).

Since in (5.70) there are many terms, we begin by considering them independently:

we will separately consider term in L, in L · L, in 2L, and terms containing V,

( V) and V · L, in order to understand their physical consequences in a given

physical situation, which is a necessary step to propose suitable experiments to check

the equations. According with Vinen equation, line density L, at each point x, should

be given by:

L(x) = V

V

2

V 2(x), (5.74)

with the local counter ow velocity V (x) dependent on x as in (5.73). Local perturba-

tions, due to the presence of these terms, with respect to Vinen’s prediction shall be

analyzed in detail. In particular, we will assume that the opening angle is relatively

small, and determine the several terms that must be added to the classical expression

(5.74) for L, in terms of and x (or and r).

Di erent contributions of additional terms one by one

In the following we consider some of the additional terms in the equation (5.70) one by

one.

• Only a term in L

We will start with a term in L (ignoring all the other terms), as in the following

expression,
L

t
= V V L

3
2 V L2

1V · L. (5.75)

In the steady state, if one considers a perturbation L of the homogeneous solution

of (5.75), Lh given by Lh = ( V / V )2V 2(x), namely L = Lh(x)+L , one would

have, from the linearized version of (5.75),

3

2 V V L
1
2
h L 2 V Lh L = ± 1V

Lh

x
, (5.76)

where for sake of simplicity we have assumed L independent of x. Note that the

sign of the term in the right-hand side will depend on whether heat ux goes to

the right of Figure 5.4 (positive sign) or it goes to the left (negative sign).
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Then, one obtains

L = ±2 1

V V
V

V x
V

V

2

V 2 = ±4 1

V

V

x
= 4 1

V

B

r2
, (5.77)

where from Figure 5.4 we have found V
x = B

r2 .

• Only a term in | L|2

A second contribution in order to modify Vinen equation can be the following

L

t
= V V L

3
2 V L2

2
V 2

L
| L|2. (5.78)

In this case, one obtains

L = 8 2

V
2

V

x

2

= 8 2

V
2

B
2 2

r4
. (5.79)

• Only a term in 2L

Adding only a term proportional to 2L, one has

L

t
= V V L

3
2 V L2 +D 2L, (5.80)

and then:

L = 4
D

V

1

V 2

V

x

2

+ V
2V

x2
= 4

D

V

3 2

r2
. (5.81)

• Only a term in [ V : V]
1
2

Adding only the term in [ V : V]
1
2 , or equivalently the term in x̂ · ( V) · x̂,

that in this case leads to the same result, one has

L

t
= V V L

3
2 V L2

3L[ V : V]
1
2 , (5.82)

and then:

L = 2 3

V

V

x
= 2 3

V

B

r2
. (5.83)

• Only the term in x̂ · [ ( V)] · x̂

Adding only the term in x̂ · [ ( V)] · x̂, one has

L

t
= V V L

3
2 V L2 +

1

2
V L

1
2 x̂ · [ ( V)] · x̂, (5.84)

and then:

L =
1

V x

V

x
= 2

2

r2
. (5.85)
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q

Figure 5.5: Heat ux along x-axis in a channel with varying transversal section. In steady

states, the change in the transversal area implies a corresponding change of the average heat

ux across the section.

• Only the term in x̂ · V · L

Adding only the term in x̂ · V · L, one has

L

t
= V V L

3
2 V L2 +

3

2
L

1
2 x̂ · V · L, (5.86)

and then:

L =
6

V V 2

V

x

2

= 6
2

V r2
. (5.87)

Final result

The nal result of this analysis would be that the perturbation with respect to Vinen’s

solution would have the form

L = ±4 1

V

B

r2
8 2

V
2

B
2 2

r4
+ 4

D

V

3 2

r2
+ 2 3

V

B

r2
+ 2

2

r2
+ 6

2

V r2
. (5.88)

Other terms can be added choosing other di erent additional terms.

Note the possible signs of the rst term, which could lead heat recti cation in

convergent or divergent channels. Since B depends in Q and h, and r depends on

x, we have obtained L (Q,h, , x). The parameter V is known from steady-state

homogeneous situations. Coe cients 1, 2, 3, V and V may be obtained and

checked.

In particular, we can observe in Figure 5.5 (where we have represented the longi-

tudinal section of a channel) that the heat ux density q will be higher in the narrow

transversal section than in the wide transversal section, since the total heat ow in the

steady state must be homogeneous.
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5.7 Remarks

In this chapter we have generalized a previous thermodynamic derivation of non-local

e ects in inhomogeneous vortex tangles (Mongiov̀ and Jou, 2007). The two main

contributions have been the incorporation of non-local terms in the evolution equa-

tion (5.16) for the heat ux (namely, the terms in 2 and 2) and in the evolution

equation for vortex line density (5.17).

In Section 5.2.3 we have proposed an experiment in which the contribution of L

to the heat ux could be checked and observed. This would be a typical e ect of

inhomogeneous vortex tangles and, to our knowledge, has not yet been searched for.

Thus, it is seen that inhomogeneous vortex tangles may exhibit new physical e ects

which have not received attention up to now, but which could clarify the role of vortices

in energy transfer.

In Sections 5.3–5.4 we have focused our attention on radial turbulent counter ows

in He II between two concentric cylindrical walls, a situation which, up to now, has

not yet received experimental attention, in contrast to the turbulence between two

concentrical walls at the same temperature but with di erent rotation speeds. The

situation studied here is characterized by inhomogeneous heat ux, dependent on the

radius, and therefore provides a simple and promising situation for the analysis of

inhomogeneous tangles. We have considered that inhomogeneities in L may contribute

not only to vortex di usion but also to vortex creation.

Furthermore we have shown vortex di usion to increase the local values of vortex

line density, because of a di usive vortex ow from hotter to colder cylinder. Here we

have focused our attention on the behavior of L described by (5.42), under a steady

heat ux, described by equation (5.40). The in uence of D on the L pro le has been

explicitly shown in (5.45). In particular, in Section 5.4.3 we have explored the possibility

of hysteresis under a relative fast increase of heat ux followed by a slow decrease of

it. To our knowledge, the physical situation considered here has not yet been explored

experimentally. It would be an interesting situation for the analysis of vortex di usion,

easier than in a ow along a cylindrical channel from a practical point of view.

In Section 5.6 we have generalized in a systematic way the Vinen equation up to

second-order in non-local terms, in order to identify all possible contributions. We have

applied such equation to the analysis of vortex-density distribution in helium ow along

convergent channels in terms of the total heat ow, the opening angle, and the position

along the channel.

In the future we aim to compare our theoretical predictions (5.88) to the experi-

mental observations carried our some years ago in convergent (or divergent) channels

(Castiglione et al., 1995; Kafkalidis et al., 1994a,b; Klinich III et al., 1997; Tough et al.,

1994); this would allow to obtain information on the several coe cients appearing in
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(5.88). In fact, to identify in detail such coe cients one should enlarge the mentioned

experiments by considering channels with di erent opening angles, and with di erent

width and thickness. It would also be interesting to explore whether heat recti cation

e ects are observed in convergent channels. On the other side, it would be interesting

to implement the microscopic analysis by Kondaurova and Nemirovskii (Kondaurova

and Nemirovskii, 2012) for the decay of a vortex tangle by vortex di usion to the walls

to the situation mentioned here, where vortices appear in one wall and disappear in

the opposite wall.

Some results of this chapter are published in:

• L. Saluto, D. Jou and M. S. Mongiov̀ , Thermodynamic approach to vortex production
and di usion in inhomogeneous super uid turbulence,
Physica A 406 272–280 (2014), DOI 10.1016/j.physa.2014.03.062

• L. Saluto, M. S. Mongiov̀ and D. Jou, Vortex di usion and vortex-line hysteresis in radial
quantum turbulence,
Physica B 440C 99–103 (2014), DOI 10.1016/j.physb.2014.01.041

• L. Saluto and M. S. Mongiov̀ , Inhomogeneous vortex tangles in super uid turbulence:
ow in convergent channels,

submitted to CAIM, Special Session: Constitutive Equations for Heat Conduction in
Nanosystems and Non-equilibrium Processes.
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At the end of each chapter we have discussed in detail the respective results. Here, we will
summarize the ten main results, from a general perspective. We will also point out the open
problems suggested by this thesis and will recall the publications that have stemmed from it.

Main results

• In Chapter 1, we have build up a macroscopic model to describe the behaviour of liquid
4He above and below the lambda-transition line, under pressure and in the presence of
heat ux. We have worked in a non-equilibrium thermodynamic framework, choosing
as fundamental elds the heat ux q in addition to the mass, momentum and energy
densities, and introducing as a new internal variable a scalar function f , linked to the
modulus of the wave function of the condensate by the equation (1.2) and which is
the geometrical mean between the total density of the uid and that of the super uid
component and is used as the order parameter of this transition. The original aspect
is considering the e ect of q on the transition, and, reciprocally, the in uence of the
transition on the thermal conductivity and the heat ux relaxation time.

• In Chapter 2 we recalled the basic equations for the study of super uid helium in presence
of turbulence in the two frameworks of the two- uid model and the one- uid model,
comparing the two models. The main contributions have been the incorporation of non-
local terms in the evolution equation for the heat ux, and a detailed discussion of the
physical meaning of the several terms, also from a microscopic point of view.

• In Chapter 3 it has been seen that the presence of a su ciently high vortex line density
makes that the velocity pro le of the normal component in counter ow turbulence becomes
very at in the central region.

Thus, to ascertain whether a at velocity pro le truly corresponds to a turbulent state,
it is necessary to be sure that the vortex line density is not high enough to explain by
itself the at form of the pro le.

Furthermore we reported analogous results for the normal uid velocity introduced in the
one- uid model. Through the comparison between the experimental data for the relative
velocity of the super uid, i.e. Vns, and the results obtained in our model for the velocity
Uns, we show how the results of the one- uid model agree with experimental data.

• In Section 3.3 we have shown that the viscous contribution of the normal component of
helium II to the thermal resistance in counter ow along a cylindrical channel in the super-
uid turbulent regime may be considerably higher than the classical Landau estimation.

This is due to the fact that in presence of vortices the normal velocity pro le becomes at
at the center and steep near the walls, in such a way that it is considerably di erent than
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the Poiseuille parabolic pro le, which is used to derive the well-known Landau estimation
of the helium II thermal resistance. It may be one or two orders of magnitude higher
than the expected Landau contribution, in the partially developed TII turbulent regime.

• In Section 3.4 we have analized the particular situation in which the radius of the channel
becomes comparable or smaller than the phonon mean free path. In this case, the non-slip
boundary condition for the velocity could break down, and a slip ow along the walls
is expected to arise. This implies a reduction of the thermal resistance. This may be of
special interest for the analysis of heat or mass transfer in porous media, with very thin
channels or at low temperatures, because below 1 K the phonon mean free path becomes
of the order of 100 µm.

• In Chapter 4 we have explored in detail the main physical features of the so-called en-
trance region, i.e. the region where the heat ux pro le or the velocity pro le has not
yet reached the asymptotic form independent of the position along the channel. Fur-
thermore, we have estimated the relative in uence of this region on the e ective thermal
conductivity of helium II in relatively short channels. In these situations, the radial heat
ow cannot be neglected, besides the longitudinal heat ow.

We have determined some particular stationary solutions of the heat ux equation in
a semi-in nite cylindrical channel lled with turbulent super uid helium, under several
boundary conditions, as for instance constant temperature and zero heat ux on the
lateral walls of the channel, in order to simulate a channel, lled with super uid helium,
contained in a vessel with constant homogeneous temperature on the lateral walls.

• In Chapter 5 we have reexamined and generalized a previous thermodynamic derivation
of non-local e ects in inhomogeneous vortex tangles. In particular, we have considered
three main e ects: vortex di usion, the coupling of a gradient in vortex line density
with the heat ux, and the in uence of non-local terms on the vortex production rate.
The two latter e ects have been considered here for the rst time. We have proposed
an experiment in which the contribution of L to the heat ux could be checked and
observed. This would be a typical e ect of inhomogeneous vortex tangles.

• In Sections 5.3–5.4 we have focused our attention on radial turbulent counter ows in He
II between two concentric cylindrical walls, a situation which, up to now, has not yet
received experimental attention, in contrast to the turbulence between two concentrical
walls at the same temperature but with di erent rotation speeds. The situation studied
here is characterized by inhomogeneous heat ux, dependent on the radius, and therefore
provides a useful benchwork for the analysis of inhomogeneous tangles. Furthermore, we
have shown that the in uence of di usion contribution to the steady-state vortex line
distribution has a di erent dependence on the heat ux that the in uence of non-local
contribution to vortex production.

• In radial turbulent counter ow vortex di usion is shown to increase the local values of
vortex line density, because of a di usive vortex ow from hotter to colder cylinder. We
have considered the possibility of hysteresis under a relative fast increase of heat ux
followed by a slow decrease of it. To our knowledge, the physical situation considered
here has not yet been explored experimentally.

• We have generalized the Vinen equation in a systematic way to incorporate all possible
second-order non-local contributions, and we have applied it to radial heat ows and to
heat ow in convergent (or divergent) channels. In particular, the relative direction of
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the heat ux with respect to the narrowing direction could have an in uence on the
vortex line density; this could lead to so-called heat recti cation in such geometries, thus
allowing to extend the ideas of the so-called ”phononics” to super uid helium. Finally, we
have analized the several physical consequences of the generalized equation to the vortex
density distribution of helium ow in convergent channels, in terms of the divergence
angle, the value of the total heat ow, and the position along the channel.

Main open problems

Our thesis has been a rst detailed exploration of the normal velocity pro le and heat ux
pro le. However, the problem is much wider and complex than the situations we have been
able to deal with. From this point of view, the main drawback of our thesis has been to
consider situations with constant (homogeneous) vortex line density in Chapters 3 and 4, and
studying its in uence on heat ux pro le. This is of course interesting and non-trivial, but it is
much desirable to go beyond this and to consider the detailed coupling between inhomogeneous
vortex line densities and inhomogeneous heat uxes. To some extent, we have already begun
this approch in the last chapter, especially in radial heat ows.

In science, every limitation of one work is a source of inspiration for future works. This is
a stimulus to mention some of the future works that could be done as a future prolongation of
this thesis.

• Concerning the role of a heat ux on the super uid transition, would be of interest to
generalize the model presented in Chapter 1, to describe also phenomena as the vortex
formation when the imposed heat ux is su ciently high and the successive establishment
of super uid turbulence. It is known indeed that a su ciently high value of the heat ux
q destroys super uidity, i.e. determines a shift of the transition, by creating a high
number of quantized vortices, in analogy with what happens in a superconductor when
a magnetic eld higher than a critical value Hc is applied.

Another factor which could modify the super uid transition is a rotation of the uid.
If helium I is in a cylindrical container rotating with angular velocity , the lambda-
temperature would also be lowered. In fact, there is a strong analogy between in a
super uid and H in a superconductor (even stronger than the analogy between q and
H), because produces ordered vortices. An analogous analysis to that carried out here
in the presence of q could be carried out for .

• The hypothesis of no matter ow along the channel has been made. This is not an
abstract mathematical simpli cation, but it corresponds to the well characterized and
widely studied counter ow situation. For instance, if the channel is closed at both ends,
there may be a heat ow but not a matter ow along it. This hypothesis should be
removed, to better describing the use of super uid helium as cryogenic refrigerant in
industry, by means of the ow of helium along tubes through the system that should
be refrigerated. From a theoretical point of view, the interaction between a radial heat
transfer and a longitudinal mass transfer would be especially challenging, because both
e ects may produce vortex tangles which will interact with each other.

• Though the laminar and the fully developed regimes are well known, the transition be-
tween them is still an open topic. In particular, the topic of the modi cations of Landau
expression for thermal conductivity in short channels is not very well known. In practical
situations, in order that the e ects of the entrance region on the thermal conductivity
may be neglected and Landau formula be valid, it is needed that the length of the tube
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is at least some 10 or 20 times the entrance length, in order that the well developed
region truly dominates over the entrance region. Thus, the strict validity of the Landau
formula requires considerably long tubes. This happens not only for the laminar regime,
but also for the turbulent regime. The analysis of the so-called “entrance region” is a
di cult mathemathical and physical problem. However, its study is unavoidable, because
in many actual counter ow experiments the length of the channels is only twice or three
times the length of the entrance regions. Despite of this, all the theoretical analyses we
are aware of ignore the e ects of the entrance region and assume that the asymptotic
regime is valid everywhere along the channel.

In the future, we also plan to study the interaction between entrance e ects and super uid
turbulence, namely, how the strong gradient in velocity found in the entrance region may
act as a supplementary source of vortex lines.

• Some other topics for future research could be, for instance, whether the critical velocity
for instability of the laminar state, could be di erent in the entrance region than in the
asymptotic region; or whether some vortices could be formed there, but which would
disappear in the asymptotic region. Furthermore, the analysis of situations where the
ow of the normal components becomes also turbulent is a relevant open topic. To

analize the interaction between classical turbulence of normal component and quantum
turbulence of super uid component is an experimental and theoretical challenge.

• Comparison with experiments should include analysis of the convergent and divergent
ows. We have found a very general equation for vortex line density including the several

di erent kinds of second-order admissible term. The consistency with experiments and
with the second law of thermodynamics should be checked.

• Comparison of mechanical and hydrodynamical e ects of quantum super uid vortices
in Helium with quantum electromagnetic vortices in superconductors would be another
interesting topic in the future. Instead of the quantization of vorticity, one has quantiza-
tion in the magnetic ux. These vortices are often pinned at the walls of superconductor
layers. One could then take a thin layer of supe uid He II between two parallel walls;
make it rotate to produce an array of vortices perpendicular to the layer; and study their
e ects on the ow of super uid, in analogy to previous works on the mechanical e ects
on electromagnetic vortices. (Maruszewski, 2007, 2008a; Maruszewski et al., 2007, 2012).
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Appendix A

Bessel functions

A.1 De nitions

In mathematics, Bessel functions are special functions, which are solutions of a particular type
of linear di erential equations of the second order, known as Bessel equation. The expressions,
identities and properties of the Bessel functions reported in this appendix can be found more
in details in (Abramowitz and Stegun, 1972) and (Bowman, 1958).

The ordinary Bessel equation has the form

x2 d
2y

dx2
+ x

dy

dx
+ (x2 n2)y = 0, (A.1)

or equivalently, dividing by x2,

d2y

dx2
+

1

x

dy

dx
+ 1

n2

x2
y = 0. (A.2)

In these equations n indicates the order of the solution, because of the Bessel di erential
equation is second-order, so there must be two classes of solution, usually called the Bessel
function of the rst kind Jn(x) and Bessel function of the second kind Yn(x) (a Bessel function
of third kind, more commonly called a Hankel function, is a special combination of the rst and
second kinds). Bessel equation has a regular singularity at 0 and an irregular singularity at .
Several related functions are also de ned by slightly modifying the de ning equations.

Another type of Bessel di erential equation is the modi ed Bessel equation, i.e.

x2 d
2y

dx2
+ x

dy

dx
(x2 + n2)y = 0, (A.3)

or equivalently, dividing by x2,

d2y

dx2
+

1

x

dy

dx
1 +

n2

x2
y = 0. (A.4)

Also in this case n indicates the order of the solution and we have two class of solution, usually
called the modi ed Bessel function of the rst kind In(x) and modi ed Bessel function of the
second kind Kn(x).
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The argument of these functions can be real or complex.

If n = 0, the modi ed Bessel di erential equation (A.3) becomes

x2 d
2y

dx2
+ x

dy

dx
x2y = 0, (A.5)

which can also be written as
d

dx
x
dy

dx
= xy. (A.6)

A.2 The Bessel function of rst kind Jn(x)

Any Bessel function can be de ned in di erent ways, in terms of the generating function, or by
the contour integral, or still in terms of a con uent hypergeometric function of the rst kind,
or by its Taylor series expansion.

Let’s de ne now the Bessel function of the rst kind Jn(x) by its Taylor series expansion
around x = 0 and then we express the other functions in terms of Jn(x). Then:

Jn(x) =
m=0

( 1)m

m! (n+m+ 1)

x

2

2m+n
, (A.7)

where is the Gamma function, a shifted generalization of the factorial function to non-integer
values, i.e. (n) = (n 1)! for any n non-integer.

• Asymptotic forms for the Bessel functions are:

Jm(x)
1

(m+ 1)

x

2

m
(A.8)

for x 1 or

Jm(x)
2

X
cos(x

m

2 4
) (A.9)

for x |m2 1
4 |.

• A derivative identity is:
d

dx
(xmJm(x)) = xmJm 1(x). (A.10)

• An integral identity is:
u

0
u J0(u )du = uJ1(u). (A.11)

• Some sum identities are:

k= Jk(x) = 1

(J0(x))2 + 2 k=1(Jk(x))
2 = 1

(A.12)
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For particular values of n the function Jn(x) becomes a trigonometric function. For instance,
the Bessel functions of order ±1/2 de ned as:

J1/2(x) =
2
x sinx,

J 1/2(x) =
2
x cosx,

so that the general solution for n = ±1/2 is:

y = a0J 1
2
(x) + a1J 1

2
(x). (A.13)

Indeed, the function Jn(x) has some particular properties as the trigonometric function, for any
value of n, one has:

J n(x) = ( 1)nJn(x)

J0(x) = J1(x)

Jn(x) =
Jn 1 Jn+1

2 for x = 0

(A.14)

A.2.1 The other Bessel functions in terms of Jn(x)

The other Bessel functions in terms of Jn are expressed as:

Yn(x) =
Jn(x) cosn J n(x)

sinn
(A.15)

In(x) = i nJn(ix) (A.16)

Kn(x) =
2

I n(x) In(x)

sinn
=

in

2

Jn(ix) ( 1)nJ n(ix)

sinn
(A.17)

A.3 Some properties and identities for the modi ed Bessel

functions of rst kind

Here some of the properties and identities used in Chapter 3 and 4 for the modi ed Bessel
function of rst kind In(x) are recalled. The rst one is:

d

dx
In(x) = In 1(x)

n

x
In(x) =

n

x
In(x) + In+1(x). (A.18)

In particular, for n = 0 and n = 1, one has:

d

dx
I0(x) = I1(x),

d

dx
I1(x) = I0(x)

1

x
I1(x) =

1

x
I1(x) + I2(x).
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Another identity is:

In(x) =
2(n+ 1)

x
In+1(x) + In+2(x) = In 2(x)

2(n 1)

x
In 1(x). (A.19)

In particular, we have used the following:

xI0(x) = 2I1(x) + xI2(x),

xI2(x) = xI0(x) 2I1(x).
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A.4 Plots of the di erent kinds of Bessel functions
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Figure A.1: Bessel functions of rst -Jn(x)- and second kind -Yn(x)- for n = 0, 1, 2, 3, 4 and 5.
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