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“Repetition is the only form of permanence

that nature can achieve.”1

1G. Santayana, Soliloquies in England, 1922.
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Preface

In the last decades, the concept of “optimization” has reached considerable

value in many different fields of scientific research and, in particular, it has

assumed great importance in the field of structural mechanics, as one can

see through the large scientific literature produced on the topic of “structural

optimization”(see e.g. [24, 52, 81]).

The present study describes and shows the scientific path followed in the

three years of doctoral studies.

The state of the art concerning the optimization of elastic plastic structures

subjected to quasi-static loads was already well established at the beginning

of the Ph.D. course. Actually, it was already faced the study of structures

subjected to quasi-static cyclic loads able to ensure different structural be-

haviors in relation to different intensity levels of the applied loads (see e.g.

[1, 2, 6, 47, 57]).

In such a scientific context and with the aim to refer to cases of great

practical interest, e.g. civil and industrial buildings affected by catastrophic

events such as earthquakes and strong wind loads, the research effort has been

addressed to reach an optimal design problem formulation for elastic perfectly-

plastic structures subjected to static and dynamic loads, rigorously taking

into account the dynamic and random nature of the loads and the non-linear

behavior of the material.

Solving a structural optimization design problem means the reaching, among

all the feasible designs, of the one which minimizes or maximizes a suitable cho-

sen quantity according to given constraints usually representing some required

behaviors for the structure. The formulation of the relevant search problem

requires the choice of the structural model together with the definition of some

parameter used as design variables, the choice of an objective function, and
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Preface

the imposition of suitable admissibility conditions.

In particular, the minimum volume of resistant structure has been chosen

as objective function for a structure constituted by beam elements, in the hy-

pothesis of small strains and displacements. The cross sections of the beams

have been completely defined by means of a geometric parameter (thickness)

used in the optimization problem as design variable. Furthermore the admissi-

bility conditions of the problem have been used to impose different structural

behaviors.

As known, a structure made of elastic plastic material subject to loads,

which are variable in a quasi-static and/or in a dynamic manner, can exhibit

five different structural behaviors depending on the relevant load intensity: the

purely elastic behavior in which the structure does not suffer any plastic strain

and the stress does not reach the yielding condition at no point; the elastic

shakedown behavior in which the structure responds in an elastic manner af-

ter a first initial phase where there is the production of some limited plastic

deformations; the plastic shakedown or low cycle fatigue behavior in which

one can assist in the cycle to the production of plastic deformation of opposite

sign that can lead to fatigue failure; the ratchetting or incremental collapse

behavior for which there is the production of increasing plastic deformations

along the load path; finally, the instantaneous collapse behavior for which the

structure is immediately transformed into a mechanism.

Some practical considerations permit to say that a civil or industrial build-

ing made of elastic perfectly plastic material must behave in an elastic manner

for permanent loads, must shake down for a combination of permanent and

exceptional loads with low intensity, in such a way to exploit all the ductility

resource that the structure possesses beyond the elastic limit, and should not

instantaneously collapse for a combination of permanent and exceptional loads

with high intensity. In particular, the adaptation behavior and the instanta-

neous collapse are studied by means of the shakedown theory and limit analysis

respectively. This choice is particularly fruitful since both are first-order the-

ories which do not require the solution of incremental elastic plastic analysis

problems. It is useful to remember that the shakedown theory is based on

a dual couple of theorems. These theorem, commonly known as Melan [65]

and Koiter [60] theorems, permit to establish if the shakedown occurs in the

structure subjected to quasi-static loads just looking at the elastic response.

xiv



Even the limit analysis is founded on a dual couple of well-known theorems

which allow to identify the origin of a local or global mechanism of plastic zones

(instantaneous collapse) for a structure subject to a monotonically increasing

quasi-static load.

Referring to the classical shakedown theory and to international standards,

the optimal design problem has been first formulated by modeling the seismic

load through the response spectrum and calculating the purely elastic response

through the modal combination. This response from a theoretical point of view

has been idealized as the response to a quasi-static and perfectly cyclic load.

Obviously, in order to simultaneously impose the shakedown and the collapse

behavior, two different seismic responses, related to different probabilities of

exceedance during the life of the structure, have been considered.

This approach has been used for the optimal design formulation of struc-

tures subjected to wind and seismic loads. In order to take into account some

dangerous phenomena for the optimal structures such as the bucking and the

P − ∆ effects, various specializations have been proposed. Furthermore, the

optimization of existing buildings equipped with seismic isolation system has

been studied.

In order to more rigorously formulate the optimal design problem of struc-

tures subjected to seismic loads, a further scientific development has been

reached making reference to the so-called “dynamic shakedown theory” which

allows a better formulation of the optimal design problem of structures subject

to dynamic actions.

This theory was born with the pioneering work of Ceradini [19]. Then it has

experienced an enormous theoretical development in the eighties and nineties,

and in the present thesis, it is used in the optimal design problem in order to

take into account the real dynamic nature of seismic and wind loads.

The Ceradini’s theorem is an extension in the dynamic range of the Melan’s

one. However, there are some theoretical differences. The former investigates

the conditions under which a structure made of elastic plastic material sub-

jected to a single dynamic and infinite load history, eventually shakes down

(“restricted shakedown”), while the latter considers the same structure but

subjected to an unknown quasi-static load within a given load domain. These

difference can be overcome by the “unrestricted shakedown theory” in which

the dynamic loads are conceived to appertain to a particular excitation domain

xv
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so that the structure is exposed to an infinite and unknown sequence of poten-

tially active excitations like in the classical theory. Following the unrestricted

dynamic shakedown approach a complete optimal design formulation has been

given.

The bibliographic study conducted on “dynamic shakedown” during the

last part of the Ph.D. course have led to a new and original interpretation of

the dynamic shakedown analysis problem in a probabilistic key. This modeling

has paved the way to an additional and unexpected scientific improvement of

the optimal design with the dynamic shakedown criterion in which the loads

are modeled in all their stochastic nature. It should be noted, that optimal

design problem with probabilistic constraints are placed in that recent line

of research called Reliability-based design optimization (RBDO). An RBDO

problem is formulated as a minimum volume problem with deterministic and

probabilistic constraints. The research in this topics are still in progress and

perhaps they will constitute the subjects of future developments.

Finally, consolidated linearization techniques have been used for the so-

lution of formulated problems with continuous variables while a new heuris-

tic algorithms, suitably modified and adapted for multi-constrained problems,

have been used for the solution of the formulated design problems with both

continuous and discrete variables.

It is worth remarking that this thesis contains the main part of the research

done by Pietro Tabbuso at the Department of Civil, Environmental, Aerospace

and Materials Engineering, University of Palermo. Furthermore, it contains

original results, and some outcomes from the work done in collaboration [7–

13, 49, 71–73].

Outline of the thesis

This thesis is composed of six chapters. After the present preface, in Chap-

ter 1 the classical quasi-static shakedown theory, on which the first optimal

design formulations have been developed, is recalled. In particular, the clas-

sical shakedown theorems together with the methods for the determination of

the shakedown safety factor are reported.

In Chapter 2, the dynamic shakedown analysis is discussed following its his-

torical evolution. Furthermore, an original probabilistic assessment of dynamic

xvi



shakedown is given. This chapter constitutes the basis for a second group of

optimal design formulations and paves the way for future developments.

Chapter 3 constitutes the core of the thesis because it collects all the pro-

posed optimal design formulations. First, some optimal design formulations of

structures subjected to idealized quasi-static loads are proposed and then, an

unrestricted shakedown design is formulated for seismically excited buildings.

Obviously an optimization problem, whether it is formulated with contin-

uous or discrete variables, has to be solved with appropriate computational

procedures. In addition to the consolidated linearization techniques, in this

thesis, reference has been made to a new heuristic algorithms, called harmony

search method, and some improvements have been proposed. All these issues

are briefly discussed in Chapter 4.

Chapter 5 collects all the most significant numerical applications which

concern frame structures. After a probabilistic dynamic shakedown analysis of

a structure subject to wind load, the minimum volume design is searched with

all the proposed formulations. In some cases the Bree diagram of the obtained

structure is plotted and the special structural features are discussed.

Finally, some conclusive comments are reported in Chapter 6.
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Chapter 1

The classical shakedown theory

In this first chapter, the fundamental relations that govern the analysis problem

of elastic perfectly plastic continua subjected to quasi-statically variable loads

are reported and, thereafter, the basic concepts of the classical shakedown

theory are shown together with the methods to obtain the shakedown safety

factor.

1.1 The elastic perfectly plastic problem

Let consider an elastic perfectly plastic solid body of volume V and surface S

(Figure 1.1) in the hypothesis of small strains and displacements, referred to a

rectangular Cartesian coordinate system xi, (i = 1, 2, 3).

It is subjected to body forces Fi, to surface tractions Ti applied on the

part S1 of S, to imposed displacements ui = Ui on S2 = S − S1, and also

to imposed strains ϑij in V (for instance of thermal origin), varying all these

actions in a quasi-static manner so that time is not the physical time, but just

some parameter specifying the loading sequence.

Denoting with σij the Cauchy stress tensor, the equilibrium equation are:

σij,j + Fi = 0 in V, (1.1)

σijnj = Ti on S1 (1.2)

where nj is the unit external normal of S. Further, denoting with εij the strain

tensor, the compatibility equations are:

εij = eij + pij + ϑij in V, (1.3)

1



1 The classical shakedown theory

x

x

x

ϑ

V

U

T

S2

S1

F

ij

i

i

i

Figure 1.1: Sketch of an elastic perfectly plastic solid body.

εij =
1

2
(ui,j + uj,i) in V, (1.4)

ui = Ui on S2 (1.5)

where eij and pij are the elastic and the plastic strains. The elastic behavior

of the material is described by Hooke’s law:

eij = Cijhkσhk in V or, equally (1.6)

σij = Eijhkehk in V (1.7)

where Cijhk is the usual (constant, symmetric and positive definite) compliance

tensor while Eijhk = C−1
ijhk is the elasticity tensor.

The elastic range in the stress space is defined by the following inequality:

ϕ(σij) ≤ 0 in V (1.8)

where ϕ = ϕ(σij) is a convex yield function independent of plastic strain. The

plastic strain rates are given by the usual normality rule:

ṗij =
∂ϕ

∂σij
λ̇ in V (1.9)

2



1.2 The classical shakedown theorems

together with the side equations

ϕ ≤ 0 λ̇ ≥ 0 in V, (1.10)

ϕλ̇ = 0 ϕ̇λ̇ = 0 in V, (1.11)

where the over dot means time derivative.

Equations (1.1) to (1.11) govern the so-called elastic perfectly plastic prob-

lem. Solving this problem, at least in principle, it’s possible to known, through

the use of some step by step procedures, the response of the elastic perfectly

plastic continuum in terms of stresses, strains and displacements, when the

loading history is fully specified.

1.2 The classical shakedown theorems

An elastic plastic structure, subjected to variable or cyclic loads, can exhibit

different behaviors. When the intensity of applied loads is sufficiently low,

so that all the inequalities (1.8) are strictly satisfied in each point of V , the

structural response is purely elastic and hence the deformation is completely

recovered during the unloading. When at least in one point of the body, the

relation (1.8) holds as equality, there is the production of plastic deformations,

according to the flow rules expressed by the relations (1.9) to (1.11), and the

structural behavior could be one of four types: elastic shakedown, alternating

plasticity or plastic shakedown, ratchet or incremental collapse and instanta-

neous collapse (Figure 1.2).

Elastic shakedown means that the structure, after a first transient phase

in which some plastic deformation appear over the body, is able to react in an

elastic manner and the possible production of plastic deformation is a stable

phenomenon (Figure 1.2a). Indeed, if the plastic deformations do not stop

but, maintaining the same absolute value, they change theirs sign at every

cycle, the structure could fail for low-cycle fatigue and the name given to this

behavior is alternating plasticity or plastic shakedown (Figure 1.2b). It may

also happen that the plastic strains continue to develop in every cycle so that

the structure becomes unserviceable due to large displacements and excessive

strains, so it is said that the structure is exposed to ratchet or incremental

collapse (Figure 1.2c). Finally, the structure could instantaneously collapses if

3



1 The classical shakedown theory

the loads intensities are higher than the loads-carrying plastic capacity so that

plastic strains are unconstrained at first cycle (Figure 1.2d).

pij =
∫ t
0 ṗij(τ) dτ

t

(a) Elastic shakedown;

pij =

t

∫ t
0 ṗij(τ) dτ

(b) Alternating plasticity;

pij =

t

∫ t
0 ṗij(τ) dτ

(c) Incremental collapse;

pij =

t

∫ t
0 ṗij(τ) dτ

(d) Instantaneous collapse;

Figure 1.2: Structural behaviors beyond the elastic limit.

It is easy to understand that the elastic shakedown is a safe criterion to

treat elastic-plastic structures because it permits the developing of some plastic

strain in a first transient phase allowing the structure to respond in an elastic

manner during the stationary response.

Before to continue, let make some remarks on the applied loads. Generally

speaking, loads are random in nature as well as random is their evolution in

4



1.2 The classical shakedown theorems

time. Furthermore the structures could be subject to different independent load

histories. If one wants to treat quasi-static loads in a deterministic manner, a

simple way could be to estimates the maximum and minimum value that they

assume for each independent load history and than to refer to the so-called

“load domain”. Every load path inside the loads domain will be called in the

following “admissible load history” (ALH). At least in principle, solving the

problem shown in section (1.1) for every admissible load history, it is possible

to say if the structures is able to shake down or not. Indeed, being the real load

history not known, there are infinite ALHs, and therefore, it is not possible to

solve infinite analysis problems.

A dual couple of well-known theorems permit to say if a structure shakes

down or not, overcoming the difficult related to an incremental elastic plastic

analysis. One of them is the static theorem given first, in a general form

by Melan [65] whose extended the work of Bleich [14] who proved the static

shakedown theorem for a system of beams of ideal I -cross sections.

The static shakedown theorem or Melan’s theorem, in its form suitable to

the present context, can be stated as follows:

Theorem 1.2.1. a necessary and sufficient condition for an elastic perfectly

plastic structures to shake down is that there exist a time independent self-

stress field ρij that superimposed to the purely elastic (fictitious) stress history

σEij nowhere violates the yielding law:

ϕ
(
σEij(t) + ρij

)
< 0 in V (1.12)

for any admissible load history inside the domain.

When the load domain is convex and could be represented, without loss of

generality, trough a simplex Π of m vertices each of which will be called “basic

load condition”, using the “convex hull theorem” (see e.g. [61, 74]), there is

a notable simplification on the shakedown condition. In fact, for an elastic

plastic structure subjected to loads within a convex loads domain whose basic

loads are denoted with F bi , T bi , ϑbij , U
b
i , b = 1, 2, . . . ,m,

Theorem 1.2.2. a necessary and sufficient condition for shakedown is that

there exist a time independent self-stress field ρij that superimposed to the

purely elastic stress response to any basic load conditions σ
E(b)
ij nowhere violates

5



1 The classical shakedown theory

the yielding law:

ϕ
(
σ
E(b)
ij + ρij

)
< 0 ∀b ∈ I(m), in V. (1.13)

In this way the shakedown is ensured for any quasi-static load history Fi(t),

Ti(t), ϑij(t), Ui(t) inside the convex loads domain that is possible to construct

as a linear convex combination of the basic load conditions:

Fi(t) =
m∑

b=1

µb(t)F bi , (1.14)

Ti(t) =
m∑

b=1

µb(t)T bi (1.15)

ϑij(t) =
m∑

b=1

µb(t)ϑbij (1.16)

Ui(t) =

m∑

b=1

µb(t)U bi (1.17)

where the coefficients µb(t) are required to satisfy the admissibility conditions

that are:

µb(t) ≥ 0 ∀b ∈ I(m), (1.18)
m∑

b=1

µb(t) = 1. (1.19)

being t a parameter specifying the loading sequence.

In 1950 Neal [69] presented a shakedown analysis method for frames by ana-

lyzing possible mechanisms of plastic flow extended in a special form for beams

and frames by Neal and Symonds [70]. It was Koiter [60], who formulated a

general kinematic approach to shakedown for continuous solid body.

Before to show the Koiter’s theorem in its suitable form to the case of

body subjected to a convex load domain, let define the plastic accumulation

mechanism (PAM). This is a set of m plastic strain fields p̄bij , related to the

m basic load conditions, such that the work done by them is positive and that

their result is compatible:

p̄ij =
m∑

b=1

p̄bij =
1

2
(ūri,j + ūrj,i) in V, ūri = 0 on S2. (1.20)
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1.3 The shakedown safety factor

being ūri the residual displacement field related to p̄ij .

The kinematic shakedown theorem or Koiter’s theorem can be stated as

follows:

Theorem 1.2.3. a necessary and sufficient condition for an elastic perfectly

plastic structures to not shake down is that the total external work done by the

basic loads is greater than the total plastic dissipation work:

m∑

b=1

∫

V

σ
E(b)
ij p̄bij dV >

m∑

b=1

∫

V

D
(
p̄bij

)
dV (1.21)

where

D
(
p̄bij

)
= σbij p̄

b
ij (1.22)

is the unit volume plastic dissipation related to the bth plastic strain field.

In equation (1.22) σbij is the stress field corresponding to p̄bij trough the plastic

flow rules.

It is worth noticing that the shakedown theory is a generalization of the

limit analysis whose objective, as known is to evaluate, through a dual couple of

well-known theorems, the origin of a local or global mechanism for a structure

subject to a monotonically increasing quasi-static load. In fact, when one refers

to a single basic load condition of the load domain and hence, the convex

domain degenerates in a single vertex, the Melan and Koiter theorems are

identical to the theorems of limit analysis.

1.3 The shakedown safety factor

With the aim to define a suitable safety index with respect to the shakedown

of a structure subjected to an ALH, let consider that the convex domain Π,

already defined in section (1.2), can expand or shrink homotetically depending

on a single parameter ξ, so that:

F̄ bi = ξF bi ∀b ∈ I(m), (1.23)

T̄ bi = ξT bi ∀b ∈ I(m), (1.24)

ϑ̄bij = ξϑbij ∀b ∈ I(m), (1.25)

7



1 The classical shakedown theory

Ū bi = ξU bi ∀b ∈ I(m), (1.26)

being F̄ bi , T̄ bi , ϑ̄bij , Ū
b
i the amplified basic load conditions.

When this parameter will take that particular limit value ξ∗, called shake-

down limit multiplier, such that for all values ξ ≤ ξ∗ the body elastically

shakes down under the load domain amplified by ξ, it will assume the mean-

ing of shakedown safety factor against the global crisis of the structure and

its value is a significant measure of the structural safety. The determination

of ξ∗ is achieved through the application of the Melan’s theorem or Koiter’s

theorem. These theorems are here recalled in the form of the lower bound and

upper bound theorem for shakedown, because it is more appropriate to the

purposes of the present thesis.

The lower bound theorem may be stated as follows: a number ξs > 0 is a

statical load multiplier if, correspondingly, a self-equilibrated generalized stress

field, ρij , can be found such that the stress field σ̂bij = ξsσ
E(b)
ij +ρij , being σ

E(b)
ij

the purely elastic stress response to bth basic load condition, are each plastically

admissible, i.e.

ϕ
(
σ̂bij

)
≡ ϕ

(
ξsσ

E(b)
ij + ρij

)
< 0 ∀b ∈ I(m), in V. (1.27)

From the above theorem it is possible to say that no statical load multiplier

can be greater than the limit load multiplier, so ξs ≤ ξ∗.
The upper bound theorem may be stated as follows: a number ξc > 0 is a

kinematical load multiplier if it identifies with the ratio between the total plas-

tic dissipation promoted in the structure by a plastic accumulation mechanism

and the total external work done by the basic loads and that mechanism, i.e.

ξc =

m∑

b=1

∫

V

D
(
p̄bij

)
dV

/
m∑

b=1

∫

V

σ
E(b)
ij p̄bij dV (1.28)

From the above theorem it is possible to say that no kinematical load

multiplier can be lower than the limit load multiplier, so ξc ≥ ξ∗.
The lower bound and upper bound theorem permit to write:

ξ∗ = max ξs = min ξc (1.29)

and so, the limit load multiplier or shakedown safety factor can be determined

as the greatest statical multiplier or the lowest kinematical multiplier.
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1.3 The shakedown safety factor

On the basis of the lower bound theorem, and hence on the Melan’s theo-

rem, the shakedown safety factor can be determined trough the solution of the

following mathematical programming problem:

ξ∗ = max
ξs, ρij

ξs (1.30a)

subjected to:

ϕ
(
σ̂bij

)
≡ ϕ

(
ξsσ

E(b)
ij + ρij

)
≤ 0 ∀b ∈ I(m), in V (1.30b)

ρij,j = 0 in V, ρijnj = 0 on S1. (1.30c)

On the other hand, making reference to the upper bound theorem and

hence to the Koiter’s theorem, it’ s possible to determinate the shakedown

safety factor with the following mathematical programming problem:

ξ∗ = min
p̄bij ,ū

r
i

ξc = min
p̄bij ,ū

r
i

m∑

b=1

∫

V

σbij p̄
b
ij dV (1.31a)

subjected to:

p̄ij =

m∑

b=1

p̄bij =
1

2
(ūri,j + ūrj,i) in V, ūri = 0 on S2, (1.31b)

m∑

b=1

∫

V

σbij p̄
b
ij dV = 1. (1.31c)
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Chapter 2

The dynamic shakedown theory

The concept of shakedown for quasi-static variable loads (Chapter 1) was first

introduced in the thirties by the Austrian engineers Bleich [14] and Melan [65]

which proposed the first “static” shakedown theorem. The second “kinematic”

shakedown theorem is due to Koiter [60] who generalized the work of Neal and

Symonds [70].

The introduction of dynamic shakedown concept was proposed by Ceradini

[19] in 1969, who enunciated and proved the first dynamic shakedown theorem

for elastic perfectly plastic solid bodies. This theorem is equivalent, as far as

dynamic range is concerned, to the Bleich-Melan’s theorem and reduces to it

if inertia and damping forces may be neglected. Very similar arguments was

the subject of a study published by Ho [55] in 1972. The second dynamic

shakedown theorem for elastic perfectly plastic bodies is due to Corradi and

Maier [30]. A theoretical reorganization of dynamic shakedown is due to Poliz-

zotto [75], who first proposed a distinction between restricted and unrestricted

dynamic shakedown. Restricted shakedown deals with a specified load history

, while “unrestricted” is shakedown dealing with a load scheme allowing for

load repetition. A complete and general treatment of dynamic shakedown for

structures with an elastic-plastic rate-independent material model is object of

a recent survey by Polizzotto et al. [79].

In the following sections, the Ceradini’s theorem will be first recalled in its

original form. Later, the theoretical aspect related to the “restricted” and to

the “unrestricted” dynamic shakedown will be introduced, and consequently

the related methods for the determination of the dynamic shakedown safety
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2 The dynamic shakedown theory

factor. It is worth noticing that the “kinematical type” dynamic shakedown

theorem (see e.g. [30]) will be here disregarded because it does not represent a

dual theorem of the Ceradini’s one. Actually, for completeness, a dual kinemat-

ical dynamic shakedown theorem will be presented in the unrestricted dynamic

shakedown context. Finally, a new probabilistic assessment of dynamic shake-

down will be given.

2.1 The Ceradini’s theorem

In this section the Ceradini’s theorem will be given in its original form [19].

At this purpose, first, the governing equations of the dynamic elastic perfectly

plastic analysis problem will be introduced. Then, a fictitious linear elastic

analysis will be defined. The latter permit the right enunciation of the Cera-

dini’s theorem whose proof is here disregarded for brevity.

Let consider an elastic perfectly plastic solid body of volume V and surface

S, referred to a rectangular Cartesian coordinate system xi, (i = 1, 2, 3) in the

hypothesis of small strains and displacements (Figure 2.1). It is subjected to

the following external actions variable in the infinite time interval t [0,+∞]:

body forces Fi(t), surface tractions Ti(t) applied on free surface S1 of S, im-

posed displacements ui(t) = Ui(t) on the constrained part S2 of S, and imposed

strains (e.g. thermal strains) ϑij(t).

It is assumed that: the loading process varies so rapidly in time that inertia

and damping forces cannot be neglected, the material satisfy the Drucker’s

stability conditions, the plastic deformations are instantaneous and the yield

surface is fixed and bounded in all directions.

Let σij(t), εij(t), ui(t), be the stress tensor, the strains tensor and the

displacement components of the real dynamic elastic plastic body’s response

to the external actions with the given initial conditions ui(0) = u0
i , u̇i(0) = u̇0

i .

The equilibrium is expressed by the following equations:

σij,j(t) + Fi(t) = µüi(t) + χu̇i(t) in V, (2.1)

σij(t)nj = Ti(t) on S1, (2.2)

where µ = µ(x) is the mass density, χ = χ(x) is the viscous damping coefficient

and nj is the unit external normal to S1. The compatibility equations are:

εij(t) = eij(t) + pij(t) + ϑij(t) in V, (2.3)
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Figure 2.1: Sketch of an elastic perfectly plastic solid body under dynamic actions.

εij(t) =
1

2
[ui,j(t) + uj,i(t)] in V, (2.4)

ui(t) = Ui(t) on S2, (2.5)

being eij(t) and pij(t) the elastic and the plastic strains. Furthermore, the

elastic behavior of the material is described by Hooke’s law:

eij(t) = Cijhkσhk(t) in V or, equally (2.6)

σij = Eijhkehk in V, (2.7)

where Cijhk is the compliance tensor and Eijhk its inverse.

The elastic range is defined by the following inequality:

ϕ(σij) ≤ 0 in V, (2.8)

being ϕ the yield functions. Moreover, the elastic perfectly plastic behavior is

governed by the following flow rules:

ṗij =
∂ϕ

∂σij
λ̇, λ̇ ≥ 0, ϕλ̇ = ϕ̇λ̇ = 0, in V. (2.9)

At least in principle, using the eqs. (2.1) to (2.9), it is possible to solve

the analysis problem of the referenced elastic-perfectly plastic continuous, and

13



2 The dynamic shakedown theory

then, to check if the body shakes down or not. Instead, Ceradini proved that

it is possible to establish the conditions under which the body shakes down

starting from a fictitious purely elastic response of the same body.

At this purpose, let consider a fictitious purely elastic response to the given

external actions with arbitrary initial conditions ūi(0) = ū0
i , ˙̄ui(0) = ˙̄u0

i . Quan-

tities referring to fictitious response will be represented with a bar superscript.

It is quite obvious that the fictitious response differs from the real one because

the plastic strains are neglected and because the arbitrary initial conditions.

As a consequence, inertia and damping forces are different in the real process

and in the fictitious one.

So, assuming that the material behavior is indefinitely elastic, the fictitious

response is governed by the following set of equations. The equilibrium is held

by:

σ̄ij,j(t) + Fi(t) = µ¨̄ui(t) + χ ˙̄ui(t) in V, (2.10)

σ̄ij(t)nj = Ti(t) on S1, (2.11)

the compatibility is expressed by:

ε̄ij(t) = ēij(t) + ϑij(t) in V, (2.12)

ε̄ij(t) =
1

2
[ūi,j(t) + ūj,i(t)] in V, (2.13)

ūi(t) = Ui(t) on S2 (2.14)

and the elasticity is described by:

ēij(t) = Cijhkσ̄hk(t) in V or, equally (2.15)

σ̄ij = Eijhkēhk in V. (2.16)

The first dynamic shakedown theorem or Ceradini’s theorem [19, 20] was

establishes both as a sufficient condition that as a necessary and sufficient

condition.

Let show first that a sufficient dynamic shakedown condition:

Theorem 2.1.1. if a fictitious response σ̄ij(t), ε̄ij(t), ūi(t) and a time inde-

pendent residual stress distribution ρij may be found so that:

ϕ (σ̄ij(t) + ρij) < 0 in V, t ∈ [0,+∞] , (2.17)

than the dynamic shakedown will occur in the real response.
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2.1 The Ceradini’s theorem

The latter theorem has been enunciated as a sufficient condition because the

condition (2.17) may be violated during the first transient phase.

In fact, let consider that the magnitude of external actions decreases mono-

tonically in time after a first phase of high intensity. If the structure shakes

down, plastic deformations will cease at a certain instant t∗ even if the condi-

tion of equation (2.17) is violated during the interval [0, t∗].
In this case the dynamic shakedown theorem can be enunciated as a nec-

essary and sufficient condition:

Theorem 2.1.2. a necessary and sufficient condition for dynamic shakedown

is that there exist a fictitious response σ̄ij(t), ε̄ij(t), ūi(t), a time independent

residual stress distribution ρij and a finite time t∗ ≥ 0 such that the resulting

stress field nowhere violates the yielding condition in the structure at any time

t ≥ t∗ so that:

ϕ (σ̄ij(t) + ρij) < 0 in V, ∀t ≥ t∗. (2.18)

Ceradini proved that the sufficient condition, above exposed theorem (2.1.1),

became also necessary when the external actions are periodic, in other word:

if the external actions are periodic and if the body in the real dynamic process

shakes down, then at least a fictitious response must exist which superimposed

to a suitable residual stress distribution satisfy the inequalities (2.17). It is

noteworthy that the proofs of the above theorems (2.1.1,2.1.2) were given first

for undamped structures and then for structures in which the viscous damping

is considered (see e.g. [19, 20]).

A particular mention should be made of the work of Gavarini [41], who

proved the following theorem in the case of periodic external actions:

Theorem 2.1.3. a necessary and sufficient condition for dynamic shakedown

for a structure subjected to periodic external actions is that there exist a ficti-

tious stress response σ̄sij(t), a time independent residual stress distribution ρij
such that the resulting stress field nowhere violates the yielding condition

ϕ
(
σ̄sij(t) + ρij

)
< 0 in V, t ∈ [0,+∞] , (2.19)

being σ̄sij(t) the steady-state stress history.

The Gavarini’s theorem results very useful in practical applications, in fact,

in the case of discrete structures with linearized yield surface, the determi-
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nation of the shakedown safety factor can be bring back to a simple linear

programming problem (see e.g. [21]).

Finally, it is important to recall that the dynamic shakedown theorems re-

main valid even for that particular load history made by load cycles spaced out

by intervals such that the body is brought at rest thanks to internal damping,

as proved by Ceradini [19] in his first work. This fact will be used later in

order to define a probabilistic assessment of dynamic shakedown and in the

unrestricted dynamic shakedown context.

2.2 A unified treatment of dynamic shakedown

The classical shakedown theory (Chapter 1), is deeply rooted on the concept

that all the load combinations, potentially active at the present time, remain

potentially active in the future and no load condition, different from those

expressed by the load domain, are allowed in the future. This means that all

future potential events are simple repetitions of the present ones. The actual

possibility of loads to be repeated any number of times in the future creates

a kind of permanent load history typical of quasi-static shakedown theory in

such a way that the structure eventually adapts. In contrast with quasi-static

shakedown, dynamic shakedown, as proposed by Ceradini [19, 20], has been

associated with loading histories fully specified at all times from t = 0 to

t = +∞.

On comparing them, one notices that they have two different approach to

consider the loading history.

In Ceradini’s approach, the loads repetition is not allowed and the shake-

down depends only in the future loading events, not on the present nor on the

past ones. Therefore, the Ceradini’s theorem has a more restricted meaning

than the classical shakedown one.

For the above reasons and with the aim to establish a link between the

classical and the dynamic shakedown theory, Polizzotto [75] proposed a theo-

retical reorganization of shakedown dealing with dynamic agencies. He made a

distinction between “restricted” and “unrestricted” dynamic shakedown. Re-

stricted shakedown deals with a specified load history , while “unrestricted” is

shakedown dealing with a load scheme allowing for load repetition.

In other words, with restricted dynamic shakedown only the load conditions
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acting after a long term are responsible of the shakedown occurrence, whereas

the loads acting in a first phase are irrelevant with respect to shakedown since

they constituted isolated unrepeatable load conditions that in any case may

produce only finite plastic deformations. With unrestricted dynamic shake-

down, all load conditions are equally responsible of the shakedown occurrence

because every individual load is always potentially active during the structure’s

life.

2.2.1 The restricted dynamic shakedown

The Ceradini’s theorem belongs to the restricted dynamic shakedown theory,

in fact, it refers to a single infinite load history. Making reference to the work

of Polizzotto [76] and considering the elastic perfectly plastic problem posed

in the section (2.1), for the purpose of the present subsection let recall the

Ceradini’s theorem in a more general form:

Theorem 2.2.1. a necessary and sufficient condition for dynamic shakedown

is that there exist a finite time, t∗ ≥ 0, and some initial condition, (ū0
i , ˙̄u0

i ,

p̄0
ij), such that the purely elastic stress response to the given load history, σ̄ij(t),

proves to be inside the yield surface at any subsequent time, t ≥ t∗, so that:

ϕ (σ̄ij(t)) < 0 in V, ∀t ≥ t∗. (2.20)

Considering that the initial plastic strains give rise to a residual stress

distribution and that the initial displacement and velocity govern the free-

vibration motion, let the stress response σ̄ij(t) in equation (2.20) be given in

the form:

σ̄ij(t) = σ̄Eij(t) + σ̄Fij(t) + ρij (2.21)

where σ̄Eij(t) is the purely elastic response to the loads Fi(t), Ti(t), ϑij(t), with

arbitrary but fixed initial conditions, σ̄Fij(t) is the stress history associated

with a free motion or natural vibration of the structure considered as purely

elastic and ρij is a time-independent self-stress field. With a change of the time

variable:

t = t∗ + τ (2.22)

the inequality (2.21) can be rewritten as:

ϕ
(
σ̄Eij(t

∗ + τ) + σ̄Fij(τ) + ρij
)
< 0 in V, ∀τ ≥ 0, (2.23)
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in which σ̄Eij(t
∗ + τ), τ ≥ 0, is the elastic stress response truncated backward

at time t∗, that is the elastic stress response to the loads Fi(t
∗+ τ), Ti(t

∗+ τ),

ϑij(t
∗+ τ), τ ≥ 0, with arbitrary but fixed initial conditions specified at τ = 0,

while σ̄Fij(τ) is a free-motion stress field with initial conditions specified at

τ = 0. In the following, a finite time t∗ ≥ 0 for which the inequality (2.23)

holds as equality will be called “separation time” because ideally it separates

the elastic plastic phase to the purely elastic one.

With the above considerations an alternative form of the shakedown theo-

rem can be formulated:

Theorem 2.2.2. a necessary and sufficient condition for dynamic shakedown

is that there exist a finite time, t∗ ≥ 0, a free motion stress field σ̄Fij(τ), and a

time-independent self-stress field, ρij, such that the sum of these stresses with

the elastic stress response truncated backward at t∗, σ̄Eij(t
∗ + τ), proves to be

inside the yield surface at any time τ ≥ 0.

This alternative form of the shakedown theorem is completely equivalent to

the previous one.

As proved by Polizzotto [76] if there exist a separation time, t∗, and hence

the structure shakes down, every time of the interval, J(t∗) = {t : t ≥ t∗}, is a

separation time. Furthermore, for a structure which shakes down, the shortest

separation time is a lower bound with respect to the adaptation time ta.

From a physical point o view, the free-motion stress σ̄Fij , are representative

of the dynamic effect produced by the plastic strains over the body’s motion

during the transient phase up to the adaptation time ta. The analogous static

effect are represented by ρij . As shown before, in Ceradini’s approach [19, 20],

these effects are simulated by means of fictitious initial conditions fixed at

remote time t = 0.

With the new definition of the restricted dynamic shakedown theorem

(2.2.2), it is easy to understand that the actual initial conditions associated

with the loading history have no influence on the capacity of the structure to

adapt to the given load history. In fact, assuming that in (2.23) σ̄Eij is asso-

ciated with zero initial conditions, the analogous response in case of nonzero

initial conditions, say σ̄E1
ij , can be expressed as σ̄E1

ij = σ̄Eij + σ̄EFij , with σ̄EFij be-

ing the free-motion stress generated by the mentioned initial conditions. Thus,
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inequality (2.23) becomes:

ϕ
(
σ̄Eij(t

∗ + τ) + σ̄EFij (τ) + σ̄Fij(τ) + ρij
)
< 0, in V, ∀τ ≥ 0, (2.24)

which coincides with (2.23) because the addend σ̄EFij (τ)+ σ̄Fij(τ) does represent

a free-motion stress field like σ̄Fij(τ). This fact is beneficial because the actual

initial conditions, like the initial residual stresses, are hardly known in practice.

Another issue is that the Ceradini’s theorem looks for the conditions under

which the overall plastic dissipation work does not diverge with time, treating

the load in an infinite interval. So, if the load act in a finite interval, the plastic

dissipation work cannot diverge and hence the theorem is defective.

In fact, let consider that the load history has a finite duration, say 0 ≤
t ≤ T , always it is possible to choose a time t∗ > T , such that σ̄Eij is a free-

motion stress and thus the inequality (2.23) can be always satisfied by taking

σ̄Fij = −σ̄Eij . In other word, for T finite, shakedown always occurs because after

t∗ > T no further plastic strains can be produced and the theorem gives no

indication about whether shakedown occurs before the given loading history

extinguishes.

With the aim to define a suitable shakedown safety factor, let the given

loads, Fi(t), Ti(t), ϑij(t), be multiplied by a positive scalar, ξ, and let the

following problem:

ξ∗ = max
(ξ, σ̄Fij , ρij)

ξs (2.25a)

subjected to:

ϕr
(
ξσ̄Eij(t

∗ + τ) + σ̄Fij(τ) + ρij
)
≤ 0 (r = 1, 2, . . . ,m), in V, ∀τ ≥ 0,

(2.25b)

be solved for a fixed separation time t∗. The maximum value of ξ, ξ∗ (t∗),
determined by solving the problem (2.25), specifies the interval of the load

amplifier, 0 ≤ ξ ≤ ξ∗, for which the fixed t∗ is a separation time, and hence

the structure shakes down. In particular the meaning of ξ∗ can be stated as

follow:

- for any ξ < ξ∗ (t∗), the structure shakes down and its minimum adapta-

tion time is not greater than t∗;

- for any ξ > ξ∗ (t∗), the structure does not shake down and its minimum

adaptation time is greater than t∗;
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- for any ξ = ξ∗ (t∗), the structure shakes down and its minimum adapta-

tion time is equal to t∗.

The optimal value of ξ∗ (t∗), which will be called “safety factor for fixed min-

imum adaptation time” in the following, turns out to be a non-decreasing

function of t∗, in fact increasing t∗ is equivalent to reducing the number of

constraints in the problem (2.25).

ξ∗

t∗

X

(a) Asymptotic case, non-

periodic loading;

ξ∗

t∗

X

(b) Costant case, periodic load-

ing;

ξ∗

t∗

X

(c) Intermediate case, non-

periodic loading followed by

a periodic one;

ξ∗

t∗
T

(d) Unbounded case, loading of

limited duration;

Figure 2.2: Typical shapes of the curve ξ = ξ∗ (t∗) representing the shakedown safety

factor for fixed separation time.

Typical shapes of the function ξ = ξ∗ (t∗) are shown in Figure 2.2. When

the forcing function is a non-periodic one, which becomes less heavy as the time
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elapses, the function ξ∗ (t∗) increases monotonically and it reaches a maximum,

X, for t∗ → ∞, as shown in Figure 2.2a. In Figure 2.2b, ξ∗ (t∗) is a constant.

This important case corresponds to a periodic loading, assuming that the back-

ward truncated elastic stress response σ̄Eij(t
∗ + τ) is the steady-state response.

When the loading history becomes periodic after some time has elapsed, the

function ξ∗ (t∗) increases first and then remains constant. This case, as shown

in Figure 2.2c, is an intermediate case of the two ones above. Finally, in Figure

2.2d, ξ∗ (t∗) exists only for 0 ≤ t ≤ T , while ξ∗ →∞ when t∗ → T . This case

is relevant to a forcing function that act for a finite interval and it is called

unbounded case.

It is now possible to define the “shakedown safety factor” of the structure sub-

jected to the given loading history as the maximum value, X, of the multiplier

ξ such that for any ξ < X there exists some finite t∗ for which the problem

(2.25) has solutions. Since ξ∗ (t∗) is, for every finite t∗, the maximum value of ξ

for which the problem (2.25) has solutions and since ξ∗ (t∗) is a non-decreasing

function, the shakedown safety factor for restricted dynamic shakedown can be

found as follow:

X = lim
t∗→∞

ξ∗ (t∗) = max
(t∗)

ξ∗ (t∗) . (2.26)

It is noteworthy, that a dual problem can be set in which one looks for the

minimum adaptation time for a fixed load multiplier. In the author’s opinion

such a problem has no practical interest because it can be simply substituted

by a real dynamic elastic plastic analysis.

2.2.2 The unrestricted dynamic shakedown

In real applications, all the load histories are known only for finite time in-

tervals, and infinite duration load histories (e.g. periodic loading) are just

extrapolations of finite duration. To respond to this necessity, a theoretical

development of dynamic shakedown theory was given by Polizzotto [75] who

treated the unrestricted shakedown theory, following an interesting idea pro-

posed by Ceradini [19] in his first paper devoted the dynamic shakedown.

Polizzotto [75] noted that the loading history of limited duration (called

excitations) had to be introduced in the loading scheme, and that they should

to be repeated any number of times. In this way, he could built a dynamic

shakedown theory consistent with the classical one.
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2 The dynamic shakedown theory

In fact, as pointed out by Ceradini [19], when the infinite load history is

allowed to be any sequence of excitations, belonging to a set of excitations,

Ω, with indefinite intervals of zero-load between two subsequent excitations in

which the structure can be consider motionless thanks to damping, the dynamic

shakedown condition is simplified in the sense that t∗ = 0. Furthermore the

fictitious free vibration stress history σ̄F can be neglected and the fictitious

stress history σ̄E is now associated with the same initial condition of the given

loadings. In the following this sequence of excitations will be called “indefinite

load history”.

With this premises Polizzotto [75] established the “unrestricted” dynamic

shakedown theory consistent with the classical one. He build a loading scheme

that is a straight-forward generalization of that used in the quasi-static shake-

down replacing the static load by the excitation and the static load domain

by the excitation domain. Any sequence of excitations within this domain is

permitted and every two subsequent excitations being separated by a zero-

load period of arbitrary lengths. In this way, the link between the classical

and the dynamic shakedown theory is established. It is worth noting that the

unrestricted dynamic shakedown theory has been applied to many themes of

structural engineering (see e.g. [10, 15, 16]).

In fact, if the duration of all excitations tends to become infinitely small,

the excitations, considered as a periodic actions each with an infinitely large

frequency and a null period, tend to become static load and, therefore the

above load scheme is transformed into a static one.

Let now refer to the elastic perfectly plastic solid body, already defined

at the beginning of the section (2.1), and, for more clarity, let consider the

forces acting upon the structure and the generic stress response with a compact

notation, so that:

P = {Fi, Ti, ϑij , Ui}, (2.27)

σ = {σij}. (2.28)

Let define Π a set of finite dynamic excitations each of which is represented by

a vectorial function P = P (τ), where τ is the time variable, 0 ≤ τ ≤ tf , and tf
the final instant of the excitation. By hypothesis, all the excitations have the

same length. This condition, for instance, can be easily met by the addition of

a zero-load queues to the shorter excitation.
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2.2 A unified treatment of dynamic shakedown

Without loss of generality, one can assume that Π is a bounded region

of the multidimensional space that can be represented as a simplex of n ver-

tices. These vertices represent the “basic excitations”, that is a discrete set of

assigned excitations (Figure 2.3), denoted as:

Pk = Pk(τ), k = 1, 2, . . . , n, 0 ≤ τ ≤ tf . (2.29)

Thus the typical excitation P (τ) as belonging to the convex domain Π can be

represented as a linear convex combination of the basic excitations Pk(τ), that

is

P (τ) =

n∑

k=1

µkPk(τ) (2.30)

where the coefficients µk are required to satisfy the admissibility conditions,

that are:

µk ≥ 0 for k = 1, 2, . . . , n, (2.31a)

n∑

k=1

µk = 1. (2.31b)

An admissible loading history (ALH), P̂ (t), being t ≥ 0 the general time

variable, can be constructed to have the shape of a sequence of admissible ex-

citations. The analytic representation of an ALH can be given in the following

form:

P̂ (t) =

n∑

k=1

µ
(p)
k Pk(q) + P 0 (2.32)

where P 0 is a fixed (permanent) load and where both p and q are function of

t:

p = p(t) = 1 + Int (t/tf ) (2.33a)

q = q(t) = t− tf Int (t/tf ) (2.33b)

In particular, p is the excitation ordering index while q is the partial time

variable. Here, the function Int (x) gives the maximum integer not greater

than x. With this representation the time axis is subdivided into intervals of

equal length tf ordered sequentially according to the integer values given by

the function p(t). It is worth noting that the coefficients µ
(p)
k of equation (2.32)

must satisfy the admissibility conditions (2.31) for every p value.
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2 The dynamic shakedown theory

Varying the coefficients µ
(p)
k in all admissible ways, all the potentially active

load histories are then obtained. A sketch of such dynamic load model with

zero permanent load is shown in Figure 2.4. It is worth noting that in this

figure the zero-load periods have been disregarded.

Such a load scheme has the possibility for every admissible excitations to

be unlimitedly repeated. As a consequence the condition for (unrestricted)

dynamic shakedown identify with the classical quasi-static ones, that are the

Bleich-Melan theorem (1.2.1) and the Koiter-Neal-Symond theorem (1.2.2),

but with the difference that in the present context a fictitious dynamic elastic

stress response is involved.

In order to enunciate the unrestricted dynamic shakedown theorems, let

consider just the basic load conditions instead of all the admissible ones.

P1

P2

P3

Pn

Π

Excitation space

Figure 2.3: Sketch of the excitation domain Π whose vertices are the basic excitations

Pk(τ).

The unrestricted dynamic shakedown theorem of static type, in its form

suitable to the present context, consider the fictitious dynamic elastic stress

response to the basic excitations, σ̄Ek , the elastic response to the permanent

load, σ0, together with a time-independent self stress field ρ (expressed here

in a compact notation). It can be phrased as follow:

Theorem 2.2.3. for an elastic perfectly plastic structure subjected to an ad-

missible load history belonging to a given excitation domain Πk, and to fixed

load, the unrestricted dynamic shakedown occurs if, and only if, there exist a

time independent self-stress field, ρ, such that, on superposing it to the basic
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P̂ (t)

t

q q q

P (3)(q)P (2)(q)P (1)(q)

tf tf tf

Figure 2.4: Sketch of an admissible load history.

elastic stress responses, σ̄Ek + σ0, the resulting stresses nowhere violate the

plastic yielding condition:

ϕ
(
σ̄Ek (τ) + σ0 + ρ

)
< 0 in V, 0 ≤ τ ≤ tf . (2.34)

being, k = 1, 2, . . . , n.

The unrestricted dynamic shakedown theorem of kinematic type, in its form

suitable to the present context, beside the fictitious dynamic elastic stress

response to the basic excitations, σ̄Ek + σ0, considers plastic accumulation

mechanism (PAM), that is a set of plastic strain rate fields, ṗk(τ), 0 ≤ τ ≤ tf ,

k = 1, 2, . . . , n, such that the corresponding ratchet strain fields ∆p, given by:

∆p =

n∑

k=1

∫ tf

0
ṗk(τ) dτ in V (2.35)

be a compatible field with zero displacement on S2. It can be phrased as follow:

Theorem 2.2.4. for an elastic perfectly plastic structure subjected to an ad-

missible load history belonging to a given excitation domain Πk and to fixed

load, the unrestricted dynamic shakedown occurs if, and only if, the energy

inequality
n∑

k=1

∫ tf

0

∫

V

[
D (ṗk)−

(
σ̄Ek + σ0

)
: ṗk

]
dV dτ > 0 (2.36)
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2 The dynamic shakedown theory

is satisfied for all PAMs, being D the plastic dissipation function.

Let all the admissible excitations be defined within a scalar multiplier ξ > 0,

that is

P (τ) = ξP̃ (τ), (2.37)

where P̃ (τ) denotes the excitations belonging to a reference domain Π̃. In this

way, even the basic excitations, P̃k(τ), of Π̃ can be expressed in the following

form:

Pk(τ) = ξP̃k(τ). (2.38)

The unrestricted dynamic shakedown safety factor ξ∗ (or limit load multi-

plier) is that particular value of ξ, such that the dynamic shakedown occurs

for all ξ ≤ ξ∗, while does not for all ξ > ξ∗.
Two alternative approach for the determination of ξ∗ depending on the

referenced theorem are available. The first approach, called static approach

because it is based on the unrestricted dynamic shakedown theorem of static

type (2.2.3), permit to evaluate ξ∗ as the maximum value of ξ for which the

condition (2.34) written with σ̄Ek (τ) = ξσ̃Ek (τ) can be satisfied, namely

ξ∗ = max
ξ, ρ

ξ (2.39a)

subjected to:

ϕr
(
ξσ̃Ek (τ) + σ0 + ρ

)
≤ 0 in V, 0 ≤ τ ≤ tf , (2.39b)

and to the conditions of self-equilibrium on ρ.

The kinematic approach to unrestricted dynamic shakedown, according to

the theorem (2.2.4), is obtainable writing σ̄Ek (τ) = ξσ̃Ek (τ), and looking for

that PAM such as minimize the ratio between the total plastic dissipation

reduced by the total work of fixed load, and the total external work done by

the excitations P̃k, namely

ξ∗ = min
ṗk

n∑

k=1

∫ tf

0

∫

V
D (ṗk) dV dτ −

∫

V
σ0 : ∆p dV (2.40a)

subjected to:
n∑

k=1

∫ tf

0

∫

V
σ̃Ek : ṗk dV dτ, (2.40b)
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and to the compatibility conditions on

∆p =

n∑

k=1

∫ tf

0
ṗk dτ (2.41)

2.3 A probabilistic assessment of dynamic shake-

down

As already mentioned at the beginning of the section (2.2.2), an interesting

idea about the practical application of dynamic shakedown theory is present in

the first paper of Ceradini [19] dedicated to dynamic shakedown. In that paper,

the case of loading scheme made of excitations paused by arbitrary interval in

which the structure can be considered motionless due to to internal damping

is reported.

For such load, called in this thesis arbitrary load history, when it is allowed

to be any sequence of excitations belonging to a set of excitations, Ω, with

arbitrary time intervals of zero-load between two subsequent excitations, the

dynamic shakedown condition of the Ceradini’s theorem (2.1.2) is simplified

in the sense that t∗ = 0. Furthermore, for an arbitrary load history, the

intervals of no-motion make neglegible the free vibration stress history σ̄F , so

the fictitious stress history σ̄E can be associated with the same initial condition

of the given loading.

The following theorem, in its form suitable to the present context can be

stated:

Theorem 2.3.1. a necessary and sufficient condition for an elastic perfectly

plastic structure to dynamically shakes down when subjected to an arbitrary

load history, and to fixed load, is that there exist a time independent self-

stress field and a fictitious elastic stress response, such that on superposing

these stresses, the resulting stress nowhere violate the yielding condition during

every excitation of the arbitrary load history.

The latter theorem is a straightforward extension of the Melan’s theorem

(1.2.1) to dynamics, the only difference is that inertia and damping forces are

involved in the determination of the stress response.
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f̂ (t)

t

f(τ) f(τ) f(τ) f(τ) f(τ) f(τ) f(τ) f j(τ)

Figure 2.5: Sketch of an arbitrary excitation history f̂(t).

Let consider an arbitrary excitation history, f̂(t), made by a sequence of j

excitations, f i(τ), i = 1, 2, . . . , j, paused by an arbitrary interval of no motion.

Every single excitation, f i(τ), is allowed to be repeated any number of time

and by hypothesis all the excitations have the same length, tf . An example of

f̂(t) is sketched in Figure 2.5.

Let σ̄i(τ), i = 1, 2, . . . , j, the fictitious elastic response to the ith excitation

f i(τ). On the basis of the theorem (2.3.1), and considering an elastic perfectly

plastic structure subjected to the arbitrary load history, f̂(t), it is possible to

find the related shakedown safety factor, solving the following problem:

ξ∗ = max
ξ, ρ

ξ (2.42a)

subjected to:

ϕ
(
ξσi(τ) + σ0 + ρ

)
≤ 0 in V, 0 ≤ τ ≤ tf , i = 1, 2, . . . , j, (2.42b)

and to the conditions of self-equilibrium on ρ, being ϕ the yield functions, and

σ0 the fictitious elastic response to fixed loads.

With the aim to define a probabilistic shakedown safety factor for an elastic

perfectly plastic structure dynamically excited by a stochastic load, let con-

sider for simplicity the following normal stochastic process with assigned power
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t

T T T T T T T T

f̂1(t)

Figure 2.6: Sketch of a normal stochastic process for a single realization of the ran-

dom variable.

spectral density S(ω):

f(t) =

l∑

i=1

Ci cos (ωit+ Φi) (2.43)

where Ci =
√

2S(ωi)∆ω is the maximum power for any circular frequency ωi,

∆ω = ωc/l is the sample frequency (being ωc the cut-off frequency and l a

suitable number of cosine waves) and Φi is a random phase angle uniformly

distributed in 0÷ 2π.

For a single realization of the random variable Φi, one obtains a forcing

function f̂1(t), as sketched in Figure 2.6, whose period is T = 2π/∆ω. The part

of the function inside the period T will be called in the following “stationary

segment”.

In real applications, one can consider the stationary segments as well as

isolated excitations paused by intervals of no motion. For this reason, the

forcing function, f̂1(t), constituted by an infinite repetition of the stationary

segment, f1(τ), 0 ≤ τ ≤ T , can be viewed as an arbitrary excitation history, as

sketched in Figure 2.7. In the last figure, for more clarity, the derived arbitrary

excitation history has the same name of the original one. It is quite obvious

that the set Ω related to f̂1(t) is constituted by a single excitation that is f1(τ),
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f̂ (t)

t

f(τ) f(τ) f(τ) f(τ) f(τ) f(τ) f(τ) f(τ)



Figure 2.7: Sketch of an arbitrary excitation history derived from a single realization

of the random variable of the normal stochastic process.

0 ≤ τ ≤ T .

For an elastic perfectly plastic structure dynamically excited by f̂1(t), once

determined the stress response σ1(τ) of the structure to a stationary segment

of the non-amplified load f1(t) it’s possible to find throughout the solution of

the problem (2.42) the shakedown safety factor, or shakedown multiplier, ξ1.

In particular, if ξ1 ≥ 1 the structure will shake down, if ξ1 < 1 it will not shake

down.

Let consider another realization of the random variable for which one ob-

tains a sample f̂2(t) or its equivalent representation, as sketched in Figure 2.8.

Also in this case, it’s possible to know the shakedown safety factor ξ2.

Let now shuffle the stationary segments of the first f̂1(t) and the second

f̂2(t) arbitrary short excitation history in a new one f̂1,2(t) (Figure 2.9) for

which is possible to find a shakedown multiplier ξ1,2. Evidently, the shakedown

multiplier ξ1,2 will coincide with the lower multiplier between ξ1 and ξ2. For

instance, if ξ1 < ξ2 than ξ1,2 ≡ ξ1 because the plastic demand induced on

the structure by a stationary segment of f̂1(t) is greater than that induced by

any stationary segments of f̂2(t). Obviously this operation may be repeated

countless time due to the possible infinite realizations.

This means that every time one simulates a sample of the type f1(t) and
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f̂ (t)

t

f(τ) f(τ) f(τ) f(τ) f(τ) f(τ) f(τ) f(τ)



Figure 2.8: Sketch of an arbitrary excitation history derived from a second realiza-

tion of the random variable of the normal stochastic process.

finds the corresponding multiplier ξ1, actually (in the context of dynamic shake-

down), is watching in a time window of an arbitrary short excitation history

for which the observed event is that with the greater plastic demand and also

the one with the lower shakedown multiplier.

The concept of “arbitrary excitation history” guarantees the validity of

founded the shakedown multiplier that, as known, has no sense for a single

load history with finite time duration (see e.g. [78, 79]). Moreover, this rep-

resentation is a realistic one to model wind loads on buildings, in fact, the

wind blows for finite intervals paused by period for which the structure can be

considered motionless. It should be noted that the concept of dynamic exci-

tation domain [79] has been here neglected because a probabilistic assessment

of dynamic shakedown multiplier can’t be established when loads belong to a

convex domain of excitations as explained by De Martino and Di Paola [32].

The concept of structural reliability is based on the definition of a limit

state function that separates the safe region from the unsafe one for a structure

standing in an uncertain environment.

In this section, the dynamic shakedown has been chosen as limit state,

in other words, it’s considered as safe that structural behavior in which the
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t

f(τ) f(τ) f(τ) f(τ) f(τ) f(τ) f(τ) f(τ)

f̂1,2(t)

Figure 2.9: Shuffled arbitrary excitation history.

structure is able to react in a purely elastic manner after that some plastic

deformations have been produced. If the structure exceeds this limit, it could

suffer very dangerous phenomena as the incremental collapse (excessive accu-

mulation of plastic strain) or the alternating plasticity collapse (production of

plastic strain in the cycle with the possibility of failure for fatigue) or it may

even instantaneously collapse.

To better understand the failure region, it can be useful to show the dif-

ferent structural behaviors that a structure made of elastic perfectly plastic

material can have in the steady-state response through the Bree-like diagram.

As one can see in Figure 2.10, indicating with ξ and ξ0 the dynamic load mul-

tiplier and the fixed load multiplier respectively, it is possible to distinguish

five different structural behaviors: purely elastic (E ), elastic shakedown (S ),

low cycle fatigue or plastic shakedown(F ), incremental collapse or ratcheting

(R) and instantaneous collapse (I ). The presence of fixed load or quasi-static

one does not affect the discussion so far produced.
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ξ

ξ0

E

S

F
R

I

Figure 2.10: Typical Bree-like diagram.

Once defined the failure region, let θ ∈ Rn a vector that contains all the

uncertain parameters regarding both the structural behavior and the load con-

ditions. Let q : Rn 7→ [0,∞) be a prescribed probability density function (PDF)

representing the values that the set of uncertain parameters θ = [θ1, θ2, · · · , θn]

can assume. Without loss of generality this parameters can be assumed as

independent so that q(θ) =
∏n
j=1 qj(θj), where qj : Rn 7→ [0,∞) is the one-

dimensional PDF for each θj . The failure probability can be formulated in a

generic form as

P (F ) =

∫
IF (θ) q(θ) dθ (2.44)

where F ⊂ Rn is the failure region specified as the exceedance of an uncertain

load multiplier ξ over its shakedown value ξ∗ so that F = {θ : ξ(θ) > ξ∗(θ)},
IF : Rn 7→ {0, 1} is an indicator function that is IF (θ) = 1 when θ ∈ F

and IF (θ) = 0 otherwise. Due to the large number of uncertainties involved,

this problem is very complex to solve and usually the solution is reached with

methods based on simulation. These tools are robust and they are able to

provide the probability of failure of an uncertain structure with stochastic load

conditions.
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Chapter 3

Optimal design of structures

This chapter is devoted to the formulations of the optimal design of elastic

perfectly plastic structures subjected to dynamic loads.

As known, the two fundamental problems of structural mechanics are the

analysis and the design problem. In the first problem, the structure and the

applied loads are fully described as well as the safety criterion that has to be

satisfied. In the second, the geometry of the structure or other parameters are

free variables, and consequently, only the loads scheme is fully known. Gener-

ally speaking, also in this case, the material characteristics can be considered

known as well as the safety criterion to respect. To solve an analysis problem,

one has to determinate the complete response of the structure to the applied

loads, and then, to verify that this response satisfy (locally and/or globally)

some chosen safety criteria. Solving a structural design problem means the

reaching, among all the feasible designs, of the one which minimizes or maxi-

mizes a chosen quantity (e.g. the cost, the volume, the stiffness etc.) according

to some required conditions for the structure.

To formulate an optimal design problem, one has to make three different

decisions each of which assumes a crucial role in the overall process:

1. Selection and definition of the structural model;

2. Choice and definition of the eligibility criterion for the optimization prob-

lem to solve;

3. Choice of the solution procedure.
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The first decision concerns the choice and the related formalization of the

structural model, namely, the choice of the structural type, of the loads model,

and, of the constitutive material behavior.

The second operation is related to the definition of the optimization prob-

lem to solve together with the constrains that the optimal design has to respect.

This decision making is the most important among the above described phases:

obviously, a wrong formulation can led to bad results and, in addition it can

require prohibitive computational costs. For the mathematical formalization

of an optimal design problem, three basic elements have to be introduced:

a) the design variables;

b) the objective function;

c) the constraint equations.

In an optimization problem, it is usually required to modify the structural

geometry through the variation, within a prescribed range, of suitable design

parameters which completely describe the structure. These parameters are

referred to as design variables and they can define the geometry, the topology

or the shape of a structural system. Furthermore, the design variables can

be distinguished in continuous or discrete variables. The former can assume

any value within a continuous range of variation while the latter employ values

belonging to a list of allowable parameters. The computational effort related

to the solution of an optimization problem formulated with discrete variables

is more difficult from a computational point of view than a problem with

continuous variable. Nevertheless, recent heuristic methods permit to solve

discrete variable problems saving computational time reposing on the powerful

of modern computers.

The objective function is a function (or functional) of the design variables.

The different values that the objective function can assume, permit to compare

different designs and to choose the best one in accordance with the particular

adopted criterion. In structural optimization, the minimum volume, being pro-

portional to the cost of the structure, is the most frequently adopted objective

function.

Often it is also necessary to define more than a single objective function.

For this type of problems the optimum is no longer represented by a single
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value, but by the so-called “Pareto’s optimum”. There are some techniques

that allow to bring back a multi-objective problem into a single-objective one.

One of these consists in the definition of a composite objective function, i.e. a

function that is a linear combination of the other according to suitable weight

coefficients. Another technique is to choose a single objective function among

the others and turning the other functions into constraints of the problem.

Another key element in the mathematical formulation of the optimal design

problem is represented by so-called constraint equations. A design is defined

feasible if it satisfies certain conditions regarding local and/or global behavior

of the structure and, if necessary, specific limits on the design variables. The

latter are, in general, represented by technological constraints which ensure no

execution difficulty and, above all, that no theoretical hypotheses are violated.

However, the former are more important because they represent the safety

criterion that the design has to respect.

The typical optimal design formulation can be expressed as follow:

f∗ = min
x
f(x) (3.1a)

subjected to:

gj(x) ≤ 0 j = 1, 2, . . . , ng (3.1b)

hk(x) = 0 k = 1, 2, . . . , nh (3.1c)

where f(x) is the objective function to minimize, x is the vector of design

variables, while gj and hk represent respectively the inequality and the equality

constraints.

As already said, the last and decisive decision is the choice of procedures for

the numerical solution of the problem. The optimal design problem is indeed

a constrained minimization problem. The search for the optimal solution has

to be done among all feasible designs, i.e. among those that satisfy all the

constraints of the problem. Over the past decades, many algorithms to solve

optimization problems have been proposed, and many of these are included as

subroutine of the most common numerical software.

In the present thesis reference has been made to the so-called “sizing op-

timization problem with stress constraints” in which the minim volume of a

frame structure has been searched treating as variables the thicknesses of the

cross sections of all the beam elements. The structure has been considered
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subjected to multiple loads combination and thus different stress constrains

have been imposed to the optimal design formulations.

3.1 Optimal design of frames under quasi-static cyclic

loads

In this section, a first group of formulations are proposed idealizing the seismic

loads on the structure as a perfect cyclic quasi-static load and taking into

account inertia and damping effects in an approximate way trough the use of

the response spectrum method. Furthermore, other formulations taking into

account dangerous phenomena such as buckling, P-∆ effects are exposed.

3.1.1 General formulation

Let consider a (discrete) elastic perfectly plastic plane frame, constituted by nb
Euler-Bernoulli beam elements and nn free nodes in the range of ”small” dis-

placements and deformations, subjected to an assigned loading history variable

in time quasi-statically.

The vth element geometry is fully described by the s components of the vec-

tor tv so that t =
[
tT1 , t

T
2 , . . . , t

T
nb

]T
represents the nb×s super-vector collecting

all the design variables. It is worth noting that here and in what follows, the

apex (·)T means transpose of the relevant quantity.

Let introduce the nf -vectors u and F̄ collecting the nodes’ displacements

and the loads acting upon them, the nd-vectors q and Q grouping the gener-

alized strains and stresses respectively, being nf = 3 · nn the total number of

degrees of freedom of the free nodes and nd = 6 ·nb the number of total stresses

and strains at the end of the beams.

Geometric compatibility between strains and nodes’ displacements can be

imposed:

q = Cu (3.2)

being C a compatibility matrix depending on the geometry only.

Let assume that for each element plastic deformations can occur just at

plastic nodes, which are conceived as sources from which plastic strains spread

within the element volume according to fixed shape function (see e.g. [28, 29]).
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3.1 Optimal design of frames under quasi-static cyclic loads

Generally plastic nodes and element nodes are not coincident so the vector q

can be expressed as:

q = e+Gpp (3.3)

being e the elastic strain vector at element nodes, p the plastic strain vector

at plastic nodes and Gp a matrix which applied to the plastic strains provides

element nodal strains.

The elasticity equations read:

Q = Dee+Q∗ (3.4)

where De is the block diagonal matrix containing all the elastic stiffness ma-

trices of the nb beam elements constituting the structure and Q∗ is the vector

collecting the perfectly clamped element generalized stresses.

Equilibrium at element nodes is expressed by nf equations:

CTQ = F̄ (3.5)

where CT is the equilibrium matrix.

Using eqs. (3.2) to (3.5) and after some simple manipulations, one can

obtains the following equilibrium equation in terms of displacements and plastic

strains:

Ku−Bp = F (3.6)

in which K = CTDeC is the structure stiffness matrix, B = CTDeGp is the

so-called pseudo-force matrix and F = F̄ + F ∗ is the equivalent nodal load

vector being F ∗ = −CTQ∗ the vector collecting the loads directly acting upon

the elements. Furthermore the generalized stress response evaluated at the

plastic nodes P = GT
pQ is given by:

P = BTu−Dp+ P ∗ (3.7)

being D = GT
pDeGp the block diagonal stiffness matrix related to the plastic

nodes and P ∗ = GT
pQ
∗ the analogous of P but just due to F ∗.

Internal stresses at each cross section of the structure cannot lie outside of

the yield surface, hence the vector P has to respect the following inequality:

ϕ = NTP −R ≤ 0 (3.8)
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where ϕ is the piece-wise linearized yield vector, N is block diagonal matrix

of unit external normal to the piece-wise linear convex yield surface and R is

the plastic resistance vector. When at least one of inequalities (3.8) holds as

equality, plastic strain can occur according to the following plastic flow rules:

ṗ = Nλ̇, λ̇ ≥ 0, ϕT λ̇ = 0, ϕ̇T λ̇ = 0 (3.9)

in which λ represent the vector of plastic multipliers and the over dot means

time derivative of the relevant quantity. It is worth noting that time is not the

physical time, but just some parameter specifying the loading sequence.

For an assigned loading history, eqs. (3.6) to (3.9) govern the analysis prob-

lem of elastic perfectly plastic plane frames. This problem is usually solved by

means of a step-by-step procedure (see e.g. [45]).

Very often structures are subjected to the contemporaneous action of fixed

and cyclic loads. Therefore, let denote with F0 the reference fixed mechanical

load and with Fc the reference mechanical and/or kinematical cyclic load vary-

ing in a quasi-static manner. Let assume that the cyclic load identifies with a

convex polygonal load path with vertices corresponding to a set of m mutually

independent load vectors, say Fci, ∀i ∈ I(m) ≡ {1, 2, . . . ,m}.
For assigned element geometry vector t and loads, it is possible to know

the purely elastic (fictitious) stress response in the following manner:

u0 = K−1F0, (3.10)

P0 = BTu0 + P ∗0 , (3.11)

and

uci = K−1Fci ∀i ∈ I(m), (3.12)

Pci = BTuci + P ∗ci ∀i ∈ I(m). (3.13)

On the basis of the classical shakedown theory (1.2) and of the limit anal-

ysis, it is possible to formulate a minimum volume design problem which con-

temporary satisfy different limit conditions (see e.g. [44, 46, 48]). In particular,

referring to different intensity levels of loads, trough the use of some positive

scalar parameters ξ ≥ 0, it is possible to impose to the optimal structure dif-

ferent behaviors, so that the optimal design problem with stress constraints

can be formulated as follow:

V ∗ = min
t,ρ,ρi

V (t) (3.14a)
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3.1 Optimal design of frames under quasi-static cyclic loads

subjected to:

ϕe = NT (ξe1P0 + ξe2Pci)−R ≤ 0, (3.14b)

ϕsi = NT (ξs1P0 + ξs2Pci + ρ)−R ≤ 0 ∀i ∈ I(m), (3.14c)

ATρ = 0, (3.14d)

ϕli = NT (ξl1P0 + ξl2Pci + ρi)−R ≤ 0 ∀i ∈ I(m), (3.14e)

ATρi = 0 ∀i ∈ I(m). (3.14f)

In this problem, equation (3.14a) represents the so-called “objective func-

tion” posed in terms of volume V (function of the design variable vector t)

whose optimal value is V ∗.
Further, eqs. (3.14b) to (3.14f) represent the so-called “stress constraints”

of the design problem. In particular, equation (3.14b), as one can see, is

utilized to impose an elastic behavior to the structure when it is subjected to

the amplified loads ξe1F0 and ξe2Fci, ∀i ∈ I(m), being ξe1 and ξe2 two suitable

chosen positive scalars.

Equation (3.14c) is utilized to imposed the shakedown behavior to the struc-

ture when it subjected to the loads ξs1F0 and ξs2Fci,∀i ∈ I(m), being ξs1 and

ξs2 two chosen multipliers. In fact, being ρ an arbitrary self-stress vector,

equation (3.14c) represents the admissibility condition required by the Melan’s

theorem. In addition, the mentioned self-stress condition is imposed by equa-

tion (3.14d) in which AT is the equilibrium matrix related to the plastic nodes

(see e.g. [46, 48]). In particular, A = CpC is a compatibility matrix with

Cp matrix that when applied to element node displacements provides plastic

strains evaluated at strain points (CpGp = I = GT
pC

T
p ).

As mentioned in Chapter 1, the shakedown analysis is a generalization of the

limit one. In fact, when it is possible to find an independent self-stress vector for

each admissibility condition related to each basic load condition, the Melan’s

theorem become the lower bound theorem of limit analysis in which multiple

load conditions are considered. This fact is exploited in equation (3.14e) to

prevent the instantaneous collapse of the structure when it is subjected to the

loads ξl1F0 and ξl2Fci,∀i ∈ I(m), where ξl1 and ξl2 are two chosen parameters.

Moreover, in this equation, ρi, ∀i ∈ I(m), are a set of independent self-stress

vectors constrained to respect the self-stress conditions trough the equation

(3.14f).
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3 Optimal design of structures

In problem (3.14) ϕe, ϕsi, ϕli represent the plastic potential vectors re-

lated to the elastic, to the shakedown and to the instantaneous collapse limit

respectively. It is worth noting that further constraints can be imposed on the

design variables as shown later on this chapter.

3.1.2 Formulation for frame under seismic loads

In this context, the aim of the present subsection is to provide an appro-

priate formulation of the optimal design problem for structures subjected to

earthquakes or strong winds. As reported in many international structural

standards, a useful technique to evaluate the seismic response of structures is

the so-called “response spectrum” method.

As known, since only a few degrees of freedom are dynamically significant,

to know the seismic response of the structure some condensation procedures

can be adopted transforming a consistent system into a lumped one (e.g. shear

type frame). In order to evaluate the seismic response of the structure let refer

to the lumped system just subjected to an horizontal ground acceleration ag.

The frame is modeled as a Multi-Degree-Of-Freedom (MDOF) structure, such

that the total number of degrees of freedom is equal to nf with nf < nn × 3

The dynamic equilibrium equations can be written in the following form:

Müf (t) + V u̇f (t) +Kfuf (t) = −Mτag(t), (3.15)

being τ the (nf × 1) influence vector; uf represents the displacement vector

related to the structure dynamic degree of freedom and the following initial

conditions uf (0) = 0, u̇f (0) = 0 hold.

In equation (3.15) M and V are the mass and damping matrices (with

dimensions nf × nf ), respectively. In addition Kf is a condensed stiffness

matrix of order nf obtained as:

Kf = ETKE, (3.16)

where E is an appropriate condensation and/or reordering matrix. Further-

more, M , A and Kf are assumed to be positive definite matrices, üf (t) and

u̇f (t) are the acceleration and velocity(nf × 1) vectors of the system, respec-

tively, and the over dot means time derivative of the relevant quantity.
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3.1 Optimal design of frames under quasi-static cyclic loads

As it is usual, the dynamic characteristics of the structural behavior are

identified in terms of natural frequencies as well as damping coefficients. In

this framework, as usual, the following coordinate transformation is adopted:

uf (t) = Φy(t), (3.17)

being y(t) the modal displacement vector and Φ the so-called modal matrix

of order (nf × nf ), normalized with respect to the mass matrix and whose

columns are the eigenvectors of the undamped structure, given by the solution

to the following eigenproblem:

K−1
f MΦ = ΦΩ−2, (3.18a)

ΦTMΦ = I, (3.18b)

ΦTKfΦ = Ω2, (3.18c)

In equations (3.18), besides the already known symbols, I represents the iden-

tity matrix while Ω2 is a diagonal matrix listing the square of the natural

frequencies of the structure.

Once the modal matrix Φ has been determined, the structure can be defined

as a classically-damped one if

ΦTV Φ = Ξ (3.19)

is a diagonal matrix whose jth component is equal to 2ζjωj , being ωj and ζj
the jth natural frequency and the jth damping coefficient, respectively. It is

worth noting that in the present subsection all the structural modes are taken

into account and no truncation technique is used.

Making reference to the so-called seismic response spectra S(T ) (with T

period of the structure), commonly used in earthquake engineering (see e.g.

[23, 25, 68]), once the natural frequencies and the modal matrix are known,

the displacement vector due to the jth mode can be determined as follow:

ufj = Φj

ΦT
jMτS (Tj)

ω2
j

, (3.20)

and the complete response of the MDOF system is obtainable combining in a

full quadratic way all the mode’s responses trough the following relation:

E` =

√∑

k

∑

j

ρjkEj`Ek` (3.21)
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3 Optimal design of structures

where E` is the typical `th component of the combined effect of the evaluated

quantity uf or P = BTEuf . In equation (3.21) Ej` and Ek` represent the `th

components of the effect related to the jth and kth mode respectively, while

ρjk is the correlation coefficient between jth and kth modes:

ρjk =
8ζ2β

3/2
jk

(1 + βjk)
[
(1 + βjk)

2 + 4ζ2βjk

] (3.22)

in which βjk = Tk/Tj , being Tj and Tk the periods of the jth and kth mode.

The solution of the seismic analysis problem obtained by referring to ap-

propriate response spectra allows to model the seismic load as a perfect cyclic

(quasi-static) one, accounting just for the relevant response peak values ob-

tainable by equations (3.20) and (3.21). This idealization of the structural

response is necessary to specialize the problem (3.14) to the case of structures

subjected to earthquake loading. It is worth noting that, although quasi-static

field, the response spectrum takes into account inertial and damping effects.

Now, once assumed that the structure can suffer the action of fixed and

seismic loads (as above modeled), it is necessary to individuate appropriate

admissible load combinations which characterize some prefixed limit state of

the structure during its lifetime. Therefore, as usual, three admissible load

combinations of fixed and seismic loads are chosen, and in particular:

1. the first combination is given by the action of the solely fixed loads F0.

When the structure is subjected to this load combination the elastic stress

response P0 can be evaluated trough the equations (3.10) and (3.11);

2. the second combination characterizes the so-called serviceability condi-

tions; it is given as superimposition of reduced fixed loads Fs0 = ξs0F0,

0 < ξs0 < 1, and seismic actions of relatively low intensity. In particular,

the seismic effects are related with the response spectra Ss defined as

a function of a high up-crossing probability in the structure’s lifetime.

When the structure is subjected to this load combination the elastic

stress response to the fixed load Ps0 can be evaluated trough the equa-

tions (3.10) and (3.11), while the elastic stress response to the seismic

loads Ps can be evaluated trough the equations (3.20) and (3.21);
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3.1 Optimal design of frames under quasi-static cyclic loads

3. finally, the third combination characterizes the so-called ultimate load

conditions; it is given as superimposition of reduced fixed loads Fl0 =

ξl0F0, 0 < ξl0 < 1, and seismic actions of high intensity. In particular,

the seismic effects are related with the response spectrum Sl defined

as function of a low up-crossing probability in the structure’s lifetime.

When the structure is subjected to this load combination the elastic

stress response to the fixed load Pl0 can be evaluated trough the equations

(3.10) and (3.11), while the elastic stress response to the seismic loads Pl
can be evaluated trough the equations (3.20) and (3.21);

In correspondence of each load combination a related limit state must be

imposed on the structure behavior, and in particular:

1. the structure must behave in a purely elastic manner when subjected to

the first load combination;

2. the structure must respond eventually in an elastic manner when sub-

jected to the second load combination (i.e. the structure must shakes

down);

3. the structure must prevent the instantaneous collapse when subjected to

the last load combination.

Taking into account all the remarks previously reported it is possible to for-

mulate an optimal design problem for elastic perfectly plastic frames subjected

to the above described combinations of fixed and seismic loads.

In order to generalize. let assume that the design variables can alternatively

belong to a continuous and/or to a discrete domain, so that the minimum

volume design problem can be formulated as follows:

V ∗ = min
t,ρ,ρi

V (t), (3.23a)

subjected to:

td ∈ Td, (d = 1, 2, . . . , nd), (3.23b)

tmin
c ≤ tc ≤ tmax

c (c = nd + 1, nd + 2, . . . , nb × s), (3.23c)

Ht ≥ h̄, (3.23d)
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3 Optimal design of structures

ϕe = NTP0 −R ≤ 0, (3.23e)

ϕsi = NT
[
Ps0 + (−1)iPs + ρ

]
−R ≤ 0 (i = 1, 2), (3.23f)

ATρ = 0, (3.23g)

ϕli = NT
[
Pl0 + (−1)iPl + ρi

]
−R ≤ 0 (i = 1, 2), (3.23h)

ATρi = 0 (i = 1, 2). (3.23i)

In problem (3.23), eqs. (3.23b) to (3.23d) represent suitably imposed tech-

nological constraints to the design variables. In particular, in equations (3.23b)

and (3.23c) td (d = 1, 2, . . . , nd) are the design variables related to the discrete

domains Td, while tc (c = nd + 1, nd + 2, . . . , nb × s) are the ones related to

continuous domains with defined lower tmin
c and upper tmax

c bounds. Finally,

in equations (3.23d) H is the so-called technological constraint matrix and h̄

a technological vector.

3.1.3 Formulation considering element slenderness

In section (3.1) the considered load combinations and the particular structure

typology are related with a response that can be strongly influenced by other

dangerous effects, as well as some other limits can be imposed to ensure the

full usability of the relevant structure subjected to seismic actions. The cited

dangerous effects (P-∆ effects and buckling) will be taken into account in the

relevant optimization problem as specified in the present subsection.

Dealing with structures constituted by slender elements, it is advisable to

suitably take into account the risk of buckling as well as the P-Delta effects.

For the relevant described frame it suffices that these dangerous effects be

accounted for the pillars.

In order to take into account the so-called P-∆ effects, a suitable distribu-

tion of bending moments acting on the structural nodes has been considered.

Such nodal load distribution is determined by multiplying the global vertical

nodal forces times the drifts at each story deduced by the elastic response to

the relevant standard loads of the structure in its initial configuration (Fig-

ure 3.1). The elastic response to the defined bending nodal loads represents a

suitable approximate evaluation of the searched P-∆ effects.
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3.1 Optimal design of frames under quasi-static cyclic loads

Figure 3.1: Structural scheme utilized for the computation of the P-∆ effects

Furthermore, the following approach can be utilized in order to take into

account the buckling effect on the pillars, determining the approximate value

of the relevant critical load.

Let us assume a shear type behavior for the frame. The critical load of the

typical pillar can be obtained by referring to the scheme plotted in Figure 3.2,

in which d2z = dz(H) is the transversal elastic displacement of the 2th extreme

of the typical pillar, kt is the spring stiffness computed as the total floor shear

stiffness, E is the material Young’s modulus and Imin is the minimum moment

of inertia of the relevant pillar cross section.

The total potential energy functional related to the typical pillar sketched

in Figure 3.2 can be written as follows:

V =
1

2

∫ H

0

(
EImind

′′
z

2
− Pd′z

2
)
dx. (3.24)

By imposing the stationariness of the above defined functional, the following

differential equation is obtained:

EImind
′′′′
z − Pd

′′
z = 0. (3.25)
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Figure 3.2: Beam mechanical scheme utilized for the computation of limit buckling

load.

The general integrals of equation (3.25), here skipped for the sake of brevity,

can be particularized by imposing the following boundary conditions:

d1z = dz(0) = 0, (3.26a)

d1y = −d′1z = −d′z(0) = 0, (3.26b)

d2y = −d′2z = −d′z(H) = 0, (3.26c)

d
′′′
z (H) + α2d

′
z(H)− kt

EImin
dz(H) = 0, (3.26d)

in which α2 = P/EImin, as usual, and kt is the total floor shear stiffness.

The resulting equation system can provide a non trivial solution (in terms

of integration constants) only if the related coefficient matrix is a singular one.

Therefore, imposing the singularity of the cited matrix, and neglecting the

trivial solution α = 0, the following relation holds:
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3.1 Optimal design of frames under quasi-static cyclic loads

Figure 3.3: Sketch of equation (3.29).

cotβ − secβ =
2kt

EImin

H3
− ktβ

, (3.27)

where β = αH has been defined.

Equation (3.27) cannot be solved in a closed form. So, putting:

γ =
ktH

3

EImin
, (3.28)

it is possible to define a function:

f (β, γ) =
2γ

β3 − γβ
− cotβ + secβ, (3.29)

the zeros of which represent the solution of equation (3.27).

In order to obtain the solution, function f (β, γ) in equation (3.29) has been

sketched in Figure 3.3 for suitably chosen ranges of the relevant variables. To

the aim of the chapter, it is of interest to obtain the first value of β for which
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(a) Sketch of equation (3.29) for dif-

ferent values of γ: (black) γ = 1;

(red) γ = 5; (green) γ = 10; (blue)

γ = 40; (dashed blue) γ = 50; in

the range 0 ≤ β ≤ 3.

(b) Sketch of equation (3.29) for dif-

ferent values of γ: (black) γ = 1;

(red) γ = 5; (green) γ = 10; (blue)

γ = 40; (dashed blue) γ = 50; in

the range 1 ≤ β ≤ 1.5.

Figure 3.4: Sketches of equation (3.29) for different values of γ

f (β, γ) is equal to zero. In order to do that, an examination Figure 3.3 suggests

to focus the attention in the range 0 < β ≤ 5.

Therefore, f (β, γ) has been sketched in Figure 3.4a for different values

of γ by varying β. An examination of this figure shows that for γ > 10 all

the sketched functions seem to possess the same zeroing β. This remark is

confirmed by an examination of Figure 3.4b in which the same functions as in

Figure 3.4a have been reported zooming in the range 1 ≤ β ≤ 1.5.

An examination of this graphs suggests that the zero of equation (3.29) can

be assumed given for β ∼= 1.125 , so that the critical load for the pillar plotted

in Figure 3.2 can be given by:

Pcr = 1.266
EImin

H2
, (3.30)

It is worth noticing that if the frame contains some cross bracing ele-

ment, even for it the buckling effect must be taken into account. Obviously,

in this case the limit load is provided by the well-known Eulero’s formula

Pcr = π2EImin/`
2, being ` the length of the relevant cross bracing element and

Imin the minimum moment of inertia of its cross section.

Taking into account all the remarks previously reported and considering

the optimal design formulation (3.23) of section (3.1), the following improved
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design problem accounting for element slenderness can be formulated:

V ∗ = min
t,ρ,ρl1,ρl2

V (t), (3.31a)

subjected to:

td ∈ Td, (d = 1, 2, . . . , nd), (3.31b)

tmin
c ≤ tc ≤ tmax

c (c = nd + 1, nd + 2, . . . , nb × s), (3.31c)

Ht ≥ h̄, (3.31d)

ϕe = N̄T
(
P0 + P̃0

)
− R̄ ≤ 0, (3.31e)

ϕs1 = N̄T
(
Ps0 + Ps + P̃s1 + ρ

)
− R̄ ≤ 0, (3.31f)

ϕs2 = N̄T
(
Ps0 − Ps + P̃s2 + ρ

)
− R̄ ≤ 0, (3.31g)

ATρ = 0, (3.31h)

ϕl1 = N̄T
(
Pl0 + Pl + P̃l1 + ρl1

)
− R̄ ≤ 0, (3.31i)

ϕl2 = N̄T
(
Pl0 − Pl + P̃l2 + ρl2

)
− R̄ ≤ 0, (3.31j)

ATρl1 = 0, ATρl2 = 0. (3.31k)

In problem (3.31), besides the already known symbols, N̄ is the matrix

of the unit external normals to the elastic domain and R̄ is the plastic resis-

tance vector both defined taking into account the pillar slenderness. Actually,

depending on the slenderness of the relevant element, the shape of the limit

domain can change and, as a consequence, matrix N̄ and vector R̄ change; in

particular, vector R̄ will assume as suitable limit for the axial force, alterna-

tively, the minimum between the values N0 = σyA, being σy the material yield

stress and A the measure of the relevant cross section area, and Pcr/η with Pcr
given in equation (3.30) and η appropriate safety factor.

Furthermore, vector P̃0 collects the element node stress response related to

the P-∆ effects when just the first load combination act. Vectors P̃s1 and P̃s2
collect the element node stress response related to the P-∆ effects when the

second load combination acts in the two opposite loading directions. Finally,

P̃l1 and P̃l2 collect the element node stress response related to the P-∆ effects

when the third load combination acts in the two opposite loading directions.
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3.1.4 Formulation for structures with limited ductility

Due to the complexity of the relevant structural problem to be formulated,

where some constraints will be introduced related with quantities character-

izing the structure behavior above the elastic limit, even if an elastic plastic

analysis is not effected, it needs to recall some fundamentals related to the

inelastic response of the structure as synthetically reported here after.

Let refer to the structure model as above described and let it be subjected

to a known quasi-statically load F = F (t), variable in time in the interval

0 ≤ t ≤ tf . Furthermore, as usual, a finite number of cross sections are chosen

as points (strain points) in which the plastic admissibility conditions have to

be satisfied.

The elastic plastic structural response at time t is governed by the following

relations:

Ku−Bp = F , (3.32a)

P = BTu−Dpp+ P ∗, (3.32b)

ϕ = NTP −R ≤ 0, (3.32c)

ṗ = Nλ̇, (3.32d)

λ̇ ≥ 0, ϕT λ̇ = 0, ϕ̇T λ̇ = 0, (3.32e)

p =

∫ t

0
Nλ̇(τ) dτ. (3.32f)

The solving set can be deduced from equations (3.32) with appropriate

replacements:

−ϕ = R−NT
(
BTK−1F + P ∗

)
−NT

(
BTK−1B −Dp

)
N

∫ t

0
λ̇(τ) dτ

(3.33a)

−ϕ ≥ 0, λ̇ ≥ 0, ϕT λ̇ = 0, ϕ̇T λ̇ = 0, (3.33b)

and must be satisfied for all t 0 ≤ t ≤ tf .

At least in principle equations (3.33), plus the appropriate initial conditions

at t = 0, can be integrated with respect to time t in order to obtain the vectors

ϕ and λ̇, and, trough equations (3.32), the elastic plastic structural response.
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Anyway, in practice, in order to obtain a numerical solution it is necessary

that the problem becomes discrete also with respect to time, subdividing the

time axis into f sub-intervals with the same width δt = tf/f . During the

typical sub-interval k, ((k − 1)δt ≤ t ≤ kδt), the unknown time function λ̇(τ),

∀τ = (t− (k − 1)δt) ∈ (0, δt), is modeled so as to be expressed in terms of time

independent unknown non-negative vector Y k, i.e.:

λ̇(τ) = h(τ)Y k, Y k ≥ 0 (3.34)

where h(τ) is a square dimensional matrix with non-negative entries and such

that: ∫ δt

0
h(τ) dτ = I (3.35)

being I the identity matrix.

Due to the modeling problem (3.34) and (3.35), elastic unloading can occur

just at the discretization instants, every element remains either in the elastic

regime or in the elastic plastic one during each step, and the equation ϕ̇T λ̇ = 0

in (3.33b) become meaningless.

Equations (3.33) can not be satisfied at some instant τ ∈ (0, δt), however,

they must be satisfied in an integrated, holonomic form (see e.g. [45]), i.e.:

Zk ≡ −ϕk = −
∫ δt

0
hT (τ)ϕT (τ) dτ = SY k + bk (3.36a)

Zk ≥ 0, Y k ≥ 0,
(
Y k
)T
Zk = 0 (3.36b)

A step-wise constant shape for λ̇ is very often chosen h(τ) = h = I (1/δt). In

such a case, it results:

S = −NT
(
BTK−1B −Dp

)
N = −NTGT

p

(
DCK−1CTD −D

)
NGp

(3.37a)

bk = R+ S
k−1∑

j=1

Y j −NTBTK−1F k −NTP ∗k (3.37b)

where S is a time-independent symmetric structural matrix which transforms

plastic activation Y k into the opposite of the plastic potential ϕk, and bk is a

known vector depending on the pertinent loading at step k and on the sum of
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3 Optimal design of structures

the increments of the plastic activation intensity vectors accumulated at step

k − 1.

In virtue of the effected time discretization, problem (3.33) transforms into

the following sequence of linear complementarity problems:

Zk ≥ 0, Y k ≥ 0,
(
Y k
)T
Zk = 0, (k = 1, 2, . . . , f). (3.38)

It is worth noting that in the case of perfect plasticity S is a semi-defined

positive matrix (see e.g. [63]) and as a consequence, neither the existence of

a bounded solution Y k, nor its uniqueness is guaranteed. If equations (3.37a)

admit an unbounded solution Y k (at least somewhere in the structure) , in-

stantaneous collapse occurs; if they admit a vanishing solution solution Y k,

the full structure is elastic; if they admit a finite no vanishing solution Y k,

the structure exhibits an elastic plastic behavior. In this last case, every two

solutions to the same problem must differ by a stress-less (i.e. compatible,

corresponding to a mechanism) set of plastic deformations (see e.g. [63]).

On the basis of the above considerations, problem (3.23) may be rewritten

in the following form:

V ∗ = min
t,Y ,Yi

V (t), (3.39a)

subjected to:

td ∈ Td, (d = 1, 2, . . . , nd), (3.39b)

tmin
c ≤ tc ≤ tmax

c (c = nd + 1, nd + 2, . . . , nb × s), (3.39c)

Ht ≥ h̄, (3.39d)

ϕe = NTP0 −R ≤ 0, (3.39e)

ϕsi = NT
[
Ps0 + (−1)iPs

]
− SY −R ≤ 0 (i = 1, 2), (3.39f)

Y ≥ 0, (3.39g)

ϕli = NT
[
Pl0 + (−1)iPl

]
− SYi −R ≤ 0 (i = 1, 2), (3.39h)

Yi ≥ 0, (i = 1, 2). (3.39i)

It should be noted that this problem formulation (3.39) is completely equivalent

to the previous one (3.23) substituting just the self-stress vectors ρ with the

fictitious plastic activation intensity vectors Y .
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3.1 Optimal design of frames under quasi-static cyclic loads

The results obtainable by means of the described analyses are very consis-

tent but, unfortunately, they cannot give complete information with respect to

relevant ductility and/or functionality limits. Actually, as known, due to the

special loading model assumed in the present case, the amount of plastic defor-

mation occurring during the transient phase can be provided just by making

recourse to suitable bounding techniques based on the perturbation method

[74]. With particular reference to the elastic shakedown behavior, a chosen

measure of the plastic deformation can be bounded by means of the following

relation:

|Ū | ≤ 1

2ω
Ŷ TSŶ (3.40a)

ω > 0 (3.40b)

where |Ū | is the kinematic quantity to be bounded, ω > 0 is the perturbation

multiplier and Ŷ is the plastic multiplier vector related to the perturbed yield

domain.

In this way, problem (3.39) can be improved in order to take into account

limited ductility by means of equations (3.40):

V ∗ = min
t,Ŷ ,Yi,ω

V (t), (3.41a)

subjected to:

td ∈ Td, (d = 1, 2, . . . , nd), (3.41b)

tmin
c ≤ tc ≤ tmax

c (c = nd + 1, nd + 2, . . . , nb × s), (3.41c)

Ht ≥ h̄, (3.41d)

ϕe = NTP0 −R ≤ 0, (3.41e)

ϕsi = NT
[
Ps0 + (−1)iPs

]
− SŶ + ωR̂−R ≤ 0 (i = 1, 2), (3.41f)

Ŷ ≥ 0, (3.41g)

ϕli = NT
[
Pl0 + (−1)iPl

]
− SYi −R ≤ 0 (i = 1, 2), (3.41h)

Yi ≥ 0, (i = 1, 2). (3.41i)

1

2
Ŷ TSŶ + ω

(
|Ute|max − Ūt

)
≤ 0 (3.41j)

ω > 0 (3.41k)
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where, besides the already known symbols, R̂ is the linear perturbation mode

vector , Ūt is the imposed bounding value on the total chosen displacement and

|Ute|max the elastic part of the relevant displacement, computed as maximum

absolute value of the response related to the combination of load characterizing

the serviceability conditions.

3.2 Optimal design of frames under dynamic loads

In this section, a second group of optimal design problem formulations are

presented making reference to the so-called “repeated seismic excitation model”

in which seismic waves are represented trough a spectral decomposition as a

convex domain of excitations. With this special load model it is possible to

formulate an optimization problem in which the seismic actions are treated

in all their dynamic nature. Furthermore, some special formulations for base-

isolated structure are exposed.

3.2.1 General formulation

Let consider an elastic perfectly plastic frame structure constituted by nb Euler-

Bernoulli beams. The vth element geometry is fully described by the s com-

ponents of the vector tv so that t =
[
tT1 , t

T
2 , . . . , t

T
nb

]T
represents the nb × s

super-vector collecting all the design variables. The structure is subjected to

mechanical nodal forces as well as to mechanical and/or kinematical element

loads, all actions varying in time interval [0, tf ] dynamically.

For an assigned structure design (t = t̄) and for an assigned load history,

in the hypothesis of small displacements and deformations the elastic perfectly

plastic structure behavior is described by the following relations:

Mü+ V u̇+Ku−Bp = F ∀t ∈ [0, tf ] , (3.42a)

P = BTu−Dpp+ P ∗ ∀t ∈ [0, tf ] , (3.42b)

ϕ = NTP −R ≤ 0 ∀t ∈ [0, tf ] , (3.42c)

ṗ = Nλ̇ ∀t ∈ [0, tf ] , (3.42d)

λ̇ ≥ 0, ϕT λ̇ = 0, ϕ̇T λ̇ = 0, ∀t ∈ [0, tf ] , (3.42e)

u = u0, u̇ = u̇0, p = p0, for t = 0, (3.42f)
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3.2 Optimal design of frames under dynamic loads

where, besides the already known symbols, u0, u̇0, p0, represent the initial

conditions in terms of displacement, velocity, and plastic strains respectively.

When the load history and the initial conditions are known, it is always

possible (at least in principle) to obtain the exact elastic plastic response of the

structure by integrating the equations (3.42). Effectively, to obtain the solution

is necessary to discretize the problem with respect to time, subdividing the time

axis into small intervals. The solution can be reached making reference to direct

methods based on the concept of tangent stiffness, or by indirect methods,

such as the mode superposition methods, that may refer to the Colonnetti’s

decomposition principle (see e.g. [17, 43, 50, 77]).

Let assume now that F , as function of time t, is identified with any load

path that does not exceed a given excitation domain Π of convex polygonal

shape with vertices corresponding to a set of n mutually independent nodal

excitations of finite duration, say ξFk(τ), k ∈ I(n) ≡ {1, 2, . . . , n}, 0 ≤ τ ≤ tf ,

where ξ > 0 is the load multiplier and tf is the final instant of each basic

excitation.

On changing ξ, Π expands or shrinks homothetically with respect to the

reference excitation domain, obtained for ξ = 1. A load path inside Π, ob-

tained as linear convex combination of the basic excitations Fk, constitutes an

admissible loading history (ALH), that is a potentially active load history for

the structure.

On choosing a special ALH, the consequent response of the structure can be

obtained, for instance, by a step-by-step procedure based on the equation set

(3.42), plus the appropriate initial conditions at t = 0, but this is not the job

here. This operation, in fact, should be carried out on all the infinite ALHs

belonging to Π, in order to establish some safety margins for the structure.

On the contrary, making reference to the “unrestricted dynamic shakedown

theorems” (subsection 2.2.2), it is possible to assess the condition under which

the structure has the ability to eventually shake down in the elastic regime (or

adapt to the loads) when subjected to loads arbitrarily varying within Π.

In particular, the static type theorem (2.2.3) and the kinematic type theo-

rem (2.2.4) permit to known that particular value of ξ, called shakedown safety

factor ξ∗, such that dynamic shakedown occurs for all ξ ≤ ξ∗, while does not

for all ξ > ξ∗. For the computation of ξ∗, in subsection (2.2.2), two alternative

approaches, based on these theorems, have been given.
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3 Optimal design of structures

For the purpose of the present section, making reference to frame structures

and using the notation of this chapter, let recall the first (static) approach. Let

indicate with Pk(τ), k ∈ I(n) ≡ {1, 2, . . . , n}, 0 ≤ τ ≤ tf , the purely elastic

(fictitious and dynamic) response to the basic excitations Fk(τ), and with P0

the purely elastic (fictitious) response to a fixed (permanent) load F0.

With the above positions the shakedown safety factor can be evaluated with

the following linear programming problem:

ξ∗ = max
ξ, ρ

ξ (3.43a)

subjected to:

ϕ = NT (P0 + ρ) + ξP̌ −R ≤ 0, (3.43b)

ATρ = 0, (3.43c)

where:

P̌ = max
k∈I(n)

max
0≤τ≤tf

NTPk(τ) (3.44)

is the elastic envelope stress vector which select for each yielding mode the

maximum of the plastic demand in time [26, 27, 64].

On the basis of the unrestricted dynamic shakedown theory, it is possible

to formulate a minimum volume design problem which satisfy the shakedown

limit conditions. In particular, referring to different intensity levels of loads,

trough the use of some positive scalar parameters ξ ≥ 0, it is possible to impose

to the optimal structure different behaviors, so that the optimal design problem

with stress constraints can be formulated as follow:

V ∗ = min
t,ρ

V (t) (3.45a)

subjected to:

ϕe = ξe1N
TP0 + ξe2P̌ −R ≤ 0, (3.45b)

ϕs = ξs1N
TP0 + ξs2P̌ +NTρ−R ≤ 0, (3.45c)

ATρ = 0, (3.45d)

where equation (3.45b) represents the stress constraint on the elastic behavior,

equation (3.45c) the stress constraint on the shakedown behavior and equation

(3.45d) the so-called equilibrium condition.
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3.2 Optimal design of frames under dynamic loads

In contrast to what has been done for the optimal design of frames sub-

jected to cyclic loads (section 3.1), the formulation (3.45) does not include

any constraints on the instantaneous collapse condition. Indeed, if the instan-

taneous collapse must be prevented for each ALH, no load Fk(τ), k ∈ I(n),

within the interval [0, tf ] should be a plastic collapse load. This operation, al-

though theoretically possible, is unfeasible from a practical standpoint, as one

can see from the following formulation in which just the instantaneous collapse

is prevented:

V ∗ = min
t,ρlkτ

V (t) (3.46a)

subjected to:

ϕlkτ = NT (ξl1P0 + ξl2Pk(τ) + ρlkτ )−R ≤ 0, ∀k ∈ I(n), ∀τ ∈ [0, tf ] ,

(3.46b)

ATρlkτ = 0, ∀k ∈ I(n), ∀τ ∈ [0, tf ] . (3.46c)

Adopting a time discretization, the problem (3.46) could be solved with clas-

sical techniques, but the number of variables to manage would be huge.

An approximate technique to prevent the instantaneous collapse for the

optimal structure is to select from the stress response Pk(τ), k ∈ I(n), 0 ≤
τ ≤ tf , a finite number of peak stress response Pz, z ∈ I(w) ≡ {1, 2, . . . , w},
according to a suitable criterion, as described in the next section.

In this way, a unitary formulation of the design problem for structure sub-

jected to dynamic loads can be done by enriching the problem (3.45) with

a further constraint which allows to prevent the instantaneous collapse in an

approximate manner:

V ∗ = min
t,ρ

V (t) (3.47a)

subjected to:

ϕe = ξe1N
TP0 + ξe2P̌ −R ≤ 0, (3.47b)

ϕs = ξs1N
TP0 + ξs2P̌ +NTρ−R ≤ 0, (3.47c)

ATρ = 0, (3.47d)

ϕlz = NT (ξl1P0 + ξl2Pz + ρlz)−R ≤ 0 ∀z ∈ I(w), (3.47e)

ATρlz = 0 ∀z ∈ I(w), (3.47f)
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3 Optimal design of structures

3.2.2 Formulation considering repeated seismic loads

With the aim to specialize the optimal design formulation (3.47) to the case

of frame structures subjected to seismic action let recall the so-called “seismic

excitation model” proposed by Borino and Polizzotto [15].

A seismic wave can be represented as a time history of the ground accel-

eration üg(τ), 0 ≤ τ ≤ tf and, usually it is expressed as a superposition of r

single frequency wave components of the discrete spectrum ωi:

üg(τ) =

n∑

i=1

E(τ) (αi cosωiτ + βi sinωiτ) ∀i ∈ I(r) (3.48)

in which αi and βi are two constants representing both power an phase of each

wave component and tf is the final instant of acceleration history. Furthermore,

E(τ) is an envelope shape function aimed at modeling the evolutive character

of the seismic wave, that typically is given by:

E(τ) =
τ

tmax
exp

(
1− τ

tmax

)
(3.49)

where tmax is the instant of expected maximum acceleration intensity.

Equation (3.48) represents a two-parameter family of waves. A convex

domain of excitations Π of this wave family is obtained by allowing αi, βi
to range each within the closed interval [−ci,+ci], where the r scalars ci are

given. This means that the point (αi, βi) of the (αi, βi)-plane ranges within a

square Ωi of side 2ci and center at origin (Figure 3.5). A subset of Π is then

composed of r-frequency waves as (3.48), each of which is represented by r

points (αi, βi), one for every square Ωi, and possesses a maximum power not

exceeding 2
(
c1

2 + c2
2 + . . .+ cr

2
)
.

With the aim to describe an admissible excitation history belonging to the

convex domain of excitations Π, let adopt the following positions:

c0 =
r∑

i=1

ci (3.50)

and

νi =
ci
c0
, ∀i ∈ I(r), (3.51)
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αi

βi

ψi1ψi2

ψi3 ψi4

ψ̄i1ψ̄i2

ψ̄i4ψ̄i3

Ωi Ω̄i

2ci

2c0

Figure 3.5: Square Ωi of edge 2ci whose point (αi, βi) represent the ith spectral

component of seismic wave and square Ω̄i of edge 2c0.

so that the four vertices of each square Ωi, that are the basic wave components,

can be obtained as:

ψij(τ) = νiψ̄ij(τ), j = 1, 2, 3, 4, ∀i ∈ I(r), (3.52)

where:

ψ̄i1(τ) = c0E(τ) (+ cosωiτ + sinωiτ) ∀i ∈ I(r) (3.53a)

ψ̄i2(τ) = c0E(τ) (+ cosωiτ − sinωiτ) ∀i ∈ I(r) (3.53b)

ψ̄i3(τ) = c0E(τ) (− cosωiτ + sinωiτ) ∀i ∈ I(r) (3.53c)

ψ̄i4(τ) = c0E(τ) (− cosωiτ − sinωiτ) ∀i ∈ I(r) (3.53d)

are the vertices of an external square Ω̄i of edge length 2c0, as one can see in

Figure 3.5.

In this way, in perfect analogy with the repeated excitation model described

in Chapter 2, an admissible excitation history can be obtained as a linear

convex combination of the basic excitations ψij , j = 1, 2, 3, 4, ∀i ∈ I(r). So we

can write:

üg(τ) =
r∑

i=1

4∑

j=1

γijνiψ̄ij(τ) ∀i ∈ I(r), (3.54)
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where the coefficients γij are required to satisfy the admissibility conditions:

γij ≥ 0 for j = 1, 2, 3, 4 ∀i ∈ I(r), (3.55)

4∑

i=1

γij = 1 ∀i ∈ I(r). (3.56)

Equation (3.54) may be rewritten in the following form by setting χij =

γijνi:

üg(τ) =
r∑

i=1

4∑

j=1

χijψ̄ij(τ) (3.57)

where the new coefficients χij have to respect the following admissibility con-

ditions:

χij ≥ 0 for j = 1, 2, 3, 4 ∀i ∈ I(r) (3.58a)

n∑

i=1

4∑

j=1

χij = 1 (3.58b)

4∑

j=1

χij = νi ∀i ∈ I(r) (3.58c)

Equation (3.57) under the constraints (3.58) is a representation of an ad-

missible loading history belonging to Π. Every ALH has a complete spectrum

ω1, ω2, . . . , ωr and it is obtained as a linear convex combination of 4r basic

waves (Figure 3.6).

However, it is in general computationally convenient to disregard constraint

(3.58c), with the consequence that (3.57) becomes a linear convex combination

of only the 4r basic single frequency wave (3.53) but with the disadvantages

that there is a magnification of the maximum power related to each wave

component.

The frequencies ωi are chosen coincident with the r natural frequencies of

the structure whereas the parameters ci are taken as:

ci =
√

8ζiωiSg (ωi) ∀i ∈ I(r) (3.59)
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α1 α2 αr

β1 β2 βr

ω1 ω2 ωr

2c0 2c0 2c0

ψ̄11

ψ̄12

ψ̄13

ψ̄14

ψ̄21

ψ̄22

ψ̄23

ψ̄24

ψ̄r1

ψ̄r2

ψ̄r3

ψ̄r4

ω

Figure 3.6: Three-dimensional space (ω, α, β) of single frequency seismic wave.

where the ζi coefficients denote the damping ratios of the structure and Sg (ωi)

is given by:

Sg (ωi) =

[
1 + 4ζ2

g (ωi/ωg)
2
]
S0

[
1− (ωi/ωg)

2
]2

+ 4ζ2
g (ωi/ωg)

2
∀i ∈ I(r). (3.60)

Here Sg (ω) denotes the power spectral density function of a simple oscillator,

with natural frequency ωg and damping ratio ζg, which according to the Kanai

and Tajimi ground filter model (see e.g. [87]) simulates the ground response

to seismic wave from the deep rock bed with uniform power density Sw.

For the further developments, it is convenient to rewrite the repeated seis-

mic excitation model as described by equations (3.57), (3.58a) and (3.58b) with

the substitution of the couple indices i and j there appearing with a single one,

say k = 1, 2, . . . , n. Thus, on relabelling the basic excitations (3.53) as ψ̄k(τ)

the preceding excitation model is now given in the form:

üg(τ) =

n∑

k=1

χkψ̄k(τ) ∀k ∈ I(n), (3.61)

where the coefficients χk must satisfy the admissibility conditions

χk ≥ 0 ∀k ∈ I(n), (3.62a)
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n∑

k=1

χk = 1. (3.62b)

As shown in section (3.2) for the optimal design formulation, what matters

to impose shakedown and limit constraints are the basic excitations histories

ψ̄k(τ), and consequently the related purely elastic response.

At this purpose, let consider an elastic perfectly plastic frame whose behav-

ior is described by the equations (3.42) subgected to the kth horizontal ground

acceleration ψ̄k(τ), 0 ≤ τ ≤ tf . In order to evaluate the purely elastic seismic

response of the structure (thus assuming p = 0), let refer a lumped lumped

system obtained trough standard condensation procedures. The equilibrium

equation is:

Müf (τ) + V u̇f (τ) +Kfuf (τ) = −Mτ ψ̄k(τ), (3.63)

where uf represents the displacement vector related to the structure dynamic

degree of freedom, Kf = ETKE is the condensed stiffness matrix, being E a

suitable condensation matrix, τ is the influence vector.

Equation (3.63) together with the appended initial conditions, here as-

sumed as uf (0) = 0 and u̇f (0) = 0, may be solved by the classical modal

analysis techniques.

Let be Φ the modal matrix whose columns are the eigenvectors of the

dynamic matrix Kf
−1M normalized with respect to M . Due to the symmetry

of the matrices M and Kf the eigenvectors are orthogonal with respect to M

and Kf , that is:

ΦTMΦ = I, (3.64)

ΦTKfΦ = Ω2
D, (3.65)

where I is the identity matrix and Ω2
D is a diagonal matrix whose diagonal

elements are the square of the natural radian frequencies ωr. Let assume that

the system is classically damped, then:

ΦTV Φ = ΛD, (3.66)

where ΛD is a diagonal matrix whose diagonal elements are 2ζrωr, being ζr
the damping ratio in the modal space. By means of the modal transformation:

uf (τ) = Φy(τ), (3.67)
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3.2 Optimal design of frames under dynamic loads

equation (3.63) is rewritten in the decoupled form:

ÿr(τ) + 2ζrωr ẏr(τ) + ω2
ryr = gr(τ), (3.68)

where

gr(τ) = ΦT
rMτ ψ̄k(τ), (3.69)

is the forcing function of the rth oscillator in the modal space. In equation

(3.69) Φr is the rth eigenvector. Integrating the equations of motion (3.68) for

all the decoupled oscillators, it is possible to obtain uf (τ) trough the coordinate

transformation (3.67), and hence the response of the system to the kth seismic

input ψ̄k(τ) in terms of structure node displacements uk(τ) = Euf (τ) and

generalized stresses Pk(τ) = BTuk(τ).

Now, once assumed that the structure can suffer the action of fixed and

seismic loads (as above modeled), it is necessary to individuate appropriate

admissible load combinations which characterize some prefixed limit state of

the structure during its lifetime. Therefore, as usual, three admissible load

combinations of fixed and seismic loads are chosen, and in particular:

1. the first combination is given by the action of the solely fixed loads F0

for which it is possible to known the elastic stress response P0, imposing

p = 0 and neglecting damping and inertia forces;

2. the second combination characterizes the so-called serviceability condi-

tions; it is given as superimposition of reduced fixed loads Fs0 = ξs0F0,

0 < ξs0 < 1, and a repeated seismic excitation model ψ̄sk(τ), k ∈ I (n),

0 ≤ τ ≤ tf whose power spectral density function Ssg is regulated by

a low uniform power density Ssw. When the structure is subjected to

this load combination the purely elastic stress response to the fixed load

Ps0 and the purely elastic stress response Psk(τ) to the kth basic seismic

input ψ̄k(τ), can be evaluated trough the above exposed techniques;

3. finally, the third combination characterizes the so-called ultimate load

conditions; it is given as superimposition of reduced fixed loads Fl0 =

ξl0F0, 0 < ξl0 < 1, and a repeated seismic excitation model ψ̄lk(τ),

k ∈ I (n), 0 ≤ τ ≤ tf whose power spectral density function Slg is

regulated by a high uniform power density Slw. When the structure is

subjected to this load combination the purely elastic stress response to
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the fixed load Pl0 and the purely elastic stress response Plk(τ) to the kth

basic seismic input ψ̄k(τ), can be evaluated trough the above exposed

techniques.

In correspondence of each load combination a related limit state must be

imposed on the structure behavior, and in particular:

1. the structure must behave in a purely elastic manner when subjected to

the first load combination;

2. the structure must respond eventually in an elastic manner when sub-

jected to the second load combination (i.e. the structure dynamically

shakes down);

3. the structure must prevent the instantaneous collapse when subjected to

the last load combination.

As reported in the previous subsection (3.2.1) in order to prevent the in-

stantaneous collapse in an approximate way, some peak stress responses have

to be selected from the stress response Plk(τ), k ∈ I (n), 0 ≤ τ ≤ tf . Therefore

let define:

Pl1 = max
k∈I(n)

max
0≤τ≤tf

Plk(τ), (3.70)

Pl2 = min
k∈I(n)

min
0≤τ≤tf

Plk(τ), (3.71)

Pl3 = GNPl1 +GMPl2, (3.72)

Pl4 = GNPl2 +GMPl1, (3.73)

with GN and GM suitably defined matrices which extract the relevant axial

forces and bending moments by the peak vectors Pl1 and Pl2.

Taking into account all the remarks previously reported it is possible to

formulate an optimal design problem subjected to dynamic (seismic) loads.

Let assume that the design variables can alternatively belong to a continu-

ous and/or to a discrete domain, so that the minimum volume design problem

can be formulated as follows:

V ∗ = min
t,ρ,ρl1,ρl2,ρl3,ρl4

V (t) (3.74a)
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subjected to:

td ∈ Td, (d = 1, 2, . . . , nd), (3.74b)

tmin
c ≤ tc ≤ tmax

c (c = nd + 1, nd + 2, . . . , nb × s), (3.74c)

Ht ≥ h̄, (3.74d)

ϕe = NTP0 −R ≤ 0, (3.74e)

ϕs = NTP0s + P̌ +NTρ−R ≤ 0, (3.74f)

ATρ = 0, (3.74g)

ϕl1 = NT (P0l + Pl1 + ρl1)−R ≤ 0, (3.74h)

ϕl2 = NT (P0l + Pl2 + ρl2)−R ≤ 0, (3.74i)

ϕl3 = NT (P0l + Pl3 + ρl3)−R ≤ 0, (3.74j)

ϕl4 = NT (P0l + Pl4 + ρl4)−R ≤ 0, (3.74k)

ATρl1 = 0, ATρl2 = 0, ATρl3 = 0, ATρl4 = 0. (3.74l)

3.2.3 Formulations for base isolated structures

Seismic loads on the structure are sometimes catastrophic events. As known,

numerous techniques are available in order to reduce the seismic effect on the

structures and base-isolation is one of them (see e.g. [11]).

The main feature of the base isolation systems is that to increase the first

natural period of the whole structure-base isolation system in such a way to

make the structure less sensitive to seismic actions. This effect can be obtained

by means of different approaches, alternatively adopting a passive control, an

active control or a semi-active control. Basically, these approaches rely on

introducing some devices between the soil foundations and the overhanging

structure. These devices must possess suitable mechanical characteristics such

that to increase the first natural period of the isolated structure through a

decoupling of the structure motion from the soil one. The differences among

the above referenced systems lie in the fact whether the mechanical features of

the device can change, depending on the load history, or not. Clearly, passive

control devices are such that their characteristics do not change depending on

that of the seismic action, while the active control ones are able to do that.
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3 Optimal design of structures

To the author’s knowledge, the base isolation system is, at present, one

of the most efficient and economic technique based on passive devices, able

to decouple the ground motion from the super-structure one, such that the

structural damage is prevented.

Aim of the present subsection is to formulate two optimal design prob-

lems: the first one is formulated as the search for the optimal stiffness features

(design variables) which minimize the displacement of a base isolation system

for a structure with known geometry and such that the overhanging structure

behaves elastically under the action of the solely fixed loads and eventually

exhibits an elastic shakedown behavior for the combination of fixed loads and

repeated seismic loads.

In the second proposed formulation suitable parameters defining the struc-

tural geometry as well as the stiffness and damping features of the related

base isolation system play the role of design variables and the optimal search

problem will be formulated as the minimum volume of the isolated structure

constrained to behave elastically when subjected to the solely fixed loads and

to elastically shake down when subjected to the combination of fixed loads and

repeated seismic loads.

Before to show the proposed formulations, considering that an isolated

structure is a non-classically damped one, let show the method to find the

linear elastic response of the relevant structure.

So, let consider a base-clamped frame with lumped masses subjected to re-

peated seismic loads, which equation of motion (3.63) is here rewritten without

the subscript f for the sake of clarity:

Mü(τ) + V u̇(τ) +Ku(τ) = −Mτ ψ̄k(τ), (3.75)

where the vector τ is the already defined influence vector.

If one want to equip this structure with an isolation system (assumed to

have an equivalent linear behavior) has to treat the isolated structure as a

dynamical system with substructure (see e.g. [68]). At this purpose let consider

that the isolation system is characterized by the following parameters: mass

mb, damping coefficient vb and stiffness kb. The niso equation of motion of the
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3.2 Optimal design of frames under dynamic loads

isolated system can be written in the following way:

[
mtot τTM

τTM M

] [
üb
ü

]
+

[
vb 0

0 V

] [
u̇b
u̇

]
+

[
kb 0

0 K

] [
ub
u

]
= −

[
mtot

Mτ

]
ψ̄k(τ),

(3.76)

that can be also written in a compact form:

Misoüiso + Visou̇iso +Kisouiso = Fiso(τ) (3.77)

being mtot = mb + τTMτ the total mass of the system and ub the absolute

displacement at the isolation level.

It is worth noting that the base isolation system damping coefficient vb can

be computed once assigned the relevant isolation system damping ratio ζb, so

that the following quantity can be determined:

ωb =

√
kb
mtot

, (3.78)

vb = 2mtotωbζb, (3.79)

where ωb is the natural frequency related to the base isolation system (as

known, the related period can be easily deduced Tb = 2π/ωb).

It should be observed that the mass, damping and stiffness matrices in

equation (3.77) do not satisfy the Caughey-O’Kelly condition [18] namely, the

relevant system is not a classically damped one. As a consequence, the elastic-

dynamic analysis has to be effected in the state-space variable as synthetically

described in the following.

Let introduce the state-space variable vector y = |uisoT u̇Tiso|T , so equa-

tion (3.77) can be rewritten in the following form:

Âẏ + B̂y = F̂ (τ), (3.80)

that is explicitly:

[
Viso Miso

Miso 0

] [
u̇iso
üiso

]
+

[
Kiso 0

0 −Miso

] [
uiso
u̇iso

]
=

[
Fiso(τ)

0

]
. (3.81)

Solving the eigenvalue problem:

ÂΨα = −B̂Ψ, (3.82)
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3 Optimal design of structures

in which α is a diagonal matrix containing the eigenvalues and Ψ is the modal

matrix normalized with respect to Â, it is possible to decouple the system

adopting the coordinate transformation y = Ψx and than, to solve a system

of 2niso first order differential equations with complex coefficients. Generally

speaking, in non-classically damped systems the elements of α and Ψ are

complex and appear in conjugate pairs. As usual (see, e.g. [68]) for any

complex eigenvalue αj = βj+iγj , it is possible to identify the natural frequency

as ωj =
√
β2
j + γ2

j , and the damping ratio as ζj = −βj/ωj corresponding to a

classically damped system.

The solution of the system (3.77) together with the corresponding initial

conditions provides the structural response in terms of horizontal displace-

ments. Once these last are known, the complete frame node displacement vec-

tor can be determined utilizing the appropriate reordering matrix, and eventu-

ally the related element generalized stress vector P due to the dynamic actions.

In order to formulate a base isolation system minimum displacement design

problem, let us consider a frame structure with known geometry subjected

to fixed and repeated seismic loads. Aim of the present formulation is to

determine the optimal values of the base isolation stiffness which minimizes

the base isolation displacement and such that the structure behaves elastically

for fixed loads and eventually shakes down for the load combination defined by

the simultaneous presence of fixed and high level seismic actions.

The design problem can be written in the following form:

u∗b = min
kb,ρ

ub(kb) (3.83a)

subjected to:

kb ≥ kmin
b (3.83b)

ub = max
k∈I(n)

max
0≤τ≤tf

(|ub0|+ |ubk(τ)|) (3.83c)

ϕe = NTP0 −R ≤ 0, (3.83d)

ϕs = NTP0s + P̌ +NTρ−R ≤ 0, (3.83e)

ATρ = 0, (3.83f)

being ub the base isolation system total displacement, ub0 the base isolation

system displacement related to the fixed loads, kb the stiffness of the base
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3.2 Optimal design of frames under dynamic loads

isolation system and kmin
b the assigned minimum value for the defined stiffness

and where the seismic response is obtained by means of the modal complex

analysis above described.

A second formulation of the optimal design problem is now proposed. It is

related to the search of the minimum volume design of the structure provided

with a base isolation system with damped and stiffness features variable within

assigned ranges. Following the same approach as before, the design problem

can be written in the following form:

V ∗ = min
t,ρ

V (t) (3.84a)

subjected to:

kmin
b ≤ kb ≤ kmax

b (3.84b)

ζmin
b ≤ ζb ≤ ζmax

b (3.84c)

ϕb = Pb −Rb ≤ 0 (3.84d)

td ∈ Td, (d = 1, 2, . . . , nd), (3.84e)

tmin
c ≤ tc ≤ tmax

c (c = nd + 1, nd + 2, . . . , nb × s), (3.84f)

Ht ≥ h̄, (3.84g)

ϕe = NTP0 −R ≤ 0, (3.84h)

ϕs = NTP0s + P̌ +NTρ−R ≤ 0, (3.84i)

ATρ = 0, (3.84j)

being kmin
b and kmax

b , ζmin
b and ζmax

b assigned lower and upper bounds of stiff-

ness and damping ranges related to the base isolation system. In equation

(3.84d) a mechanical constraint on the limit capacity of the isolation system

is introduced, where Pb is the maximum absolute value of the shear force due

to the combination of fixed and seismic actions and Rb is the base isolation

system resistance. It is worth noticing that the value assigned to Rb usually

depends on the maximum allowed base isolation system displacement, so that

the solution to problem (3.84) provides a complete design coherent with the

technological requirements satisfied through the solution to problem (3.83).
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Chapter 4

Computational procedures

Since 1970 structural optimization has been the subject of intensive research.

In this field, one of the most important aspect is represented by the computa-

tional procedures adopted to solve the optimization problem. From the above

disclosure, it is clear that the optimal design problems formulated in Chap-

ter 3 are non-linear mathematical programming ones. This kind of problems

are usually solved making reference to iterative procedures consisting in the

linearization of the original functions by using their derivatives with respect to

the design variables. In this way, an approximate problem whose optimality

conditions are the same of the initial problem can be constructed. So, utilizing

this iterative procedure the actual optimal solution can be reached. In the

present thesis, this procedure has been widely used to solve problems involving

continuous variables and it is an extension to the present context of what done

by Giambanco et al. [46].

On the other hand, one of the objectives of this thesis was to provide op-

timal design formulations that could be as much as possible consistent with

real-world applications. In practice, in sizing optimization problem with stress

constraints the design variables belong to a discrete set of variables and so the

problem requires combinatorial optimization methods based on probabilistic

searching. During the last three decades there has been a growing interest in

problem solving systems based on algorithms that rely on analogies to nat-

ural processes. The best-known algorithms in this class include evolutionary

programming [39], genetic algorithms [51], evolution strategies [83], ant colony

optimization [38], particle swarm optimization [59] and harmony search method

[42].
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4 Computational procedures

None of the above algorithms had been used in the past for sizing optimiza-

tion of structures with shakedown and instantaneous collapse constraints, and

therefore the choice to use in the present thesis the harmony search is based

on a recent comparative study [54] of the above algorithms for optimization

problems with only elastic stress constraints, in which the harmony search re-

sults to be a good compromise between convergence and performance. The

harmony search method has been specialized to solve problems as formulated

in Chapter 3 involving discrete variables but the procedures presented in the

following can be easily extended to problems involving continuous variables.

4.1 Iterative technique

Let recall the optimal design problem formulation (3.39) assuming that all the

design variables can vary in a continuous range whose bounds are represented

by tmin and tmax:

V ∗ = min
t,Y ,Yi

V (t), (4.1a)

subjected to:

tmin ≤ t ≤ tmax, (4.1b)

Ht ≥ h̄, (4.1c)

ϕe = NTP0 −R ≤ 0, (4.1d)

ϕsi = NT
[
Ps0 + (−1)iPs

]
− SY −R ≤ 0 (i = 1, 2), (4.1e)

Y ≥ 0, (4.1f)

ϕli = NT
[
Pl0 + (−1)iPl

]
− SYi −R ≤ 0 (i = 1, 2), (4.1g)

Yi ≥ 0, (i = 1, 2). (4.1h)

Due to the high non linearity of the relevant search problem an appropri-

ate iterative technique has been utilized as described in the following; it is

a specialization of an already proposed one in the framework of the elastic

shakedown design [46].

The proposed technique is based on the main assumption that all the quan-

tities depending on the design variables can be expressed as a linear functions
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4.1 Iterative technique

of these variables, i.e. as the sum of their values at the previous step plus the

product of their partial derivatives with respect to the design variables times

the increments of the design variables.

At each step, the computational procedures is constituted by three subse-

quent phases and at each phase some variables are assumed as known while

the other ones are brought up to date, so that at the end of all phases all the

variable values are updated. Obviously, the procedure stops when the rele-

vant design variable values at two subsequent steps differ less than a suitably

assigned tolerance.

It is worth noting that, as stated by Giambanco et al. [46], the design

reached by means of this iterative technique coincides with the design obtain-

able by solving problem (4.1) because the design and behavioral variable values

obtained by means of the proposed technique fulfill all the Kuhn-Tucker equa-

tions related to the original design problem (4.1).

Making reference to problem and to the kth typical step, the three relevant

phases are described as follows:

1. the purely elastic response of the structure is evaluated utilizing the de-

sign variable values tk−1 obtained at the end of the previous step (t0 = t0
is the initial design):

P0
(k−1) = BT (k−1)

K−1(k−1)
F0

(k−1) + P ∗0
(k−1) (4.2a)

Ps0
(k−1) = BT (k−1)

K−1(k−1)
Fs0

(k−1) + P ∗s0
(k−1) (4.2b)

Psj
(k−1) = BT (k−1)

EΦ(k−1) ΦT (k−1)
Mτ [Ss (Tj)]

(k−1)

ω2
j

(k−1)
(4.2c)

Ps`
(k−1) =

√∑

j

∑

k

ρjkPs`j
(k−1)Ps`k

(k−1) (4.2d)

Pl0
(k−1) = BT (k−1)

K−1(k−1)
Fl0

(k−1) + P ∗l0
(k−1) (4.2e)

Plj
(k−1) = BT (k−1)

EΦ(k−1) ΦT (k−1)
Mτ [Sl (Tj)]

(k−1)

ω2
j

(k−1)
(4.2f)

Pl`
(k−1) =

√∑

j

∑

k

ρjkPl`j
(k−1)Pl`k

(k−1) (4.2g)
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2. the increments ∆t(k) of the design variable values and the remaining

variables of problem (4.1) are obtained by the solution of the following

linearized minimum search problem:

min(
∆t(k),Y (k),Y

(k)
i

) ∂V

∂t

∣∣∣∣
(k−1)

∆t(k) (4.3a)

subjected to:

tmin ≤ t(k−1) + ∆t(k) ≤ tmax, (4.3b)

H
(
t(k−1) + ∆t(k)

)
− h̄ ≥ 0, (4.3c)

ϕe
(k) = ϕe

(k−1) +
∂ϕe
∂t

∣∣∣∣
(k−1)

∆t(k) ≤ 0, (4.3d)

ϕsi
(k) = ϕsi

(k−1) +
∂ϕsi
∂t

∣∣∣∣
(k−1)

∆t(k) ≤ 0 (i = 1, 2), (4.3e)

Y k ≥ 0, (4.3f)

ϕli
(k) = ϕli

(k−1) +
∂ϕli
∂t

∣∣∣∣
(k−1)

∆t(k) ≤ 0 (i = 1, 2), (4.3g)

Yi
k ≥ 0 (i = 1, 2), (4.3h)

where the partial derivative with respect to t are related with all the

quantities depending on it (N , P0, P0s, Ps, P0l, Pl, R) except for the

matrix S. Actually, in order to obtain the linearized form of the relevant

search problem the terms:

∂S

∂t

∣∣∣∣
(k−1)

Y (k), (4.4a)

∂S

∂t

∣∣∣∣
(k−1)

Y
(k)
i (i = 1, 2), (4.4b)

in equations (4.3e) and (4.3g) respectively, have been disregarded. The

neglecting of these terms does not influence the obtainable optimal de-

sign (see e.g. [46]) while the variables Y (k), Y
(k)
i , (i = 1, 2), appear in

ϕsi
(k−1), ϕli

(k−1), (i = 1, 2), respectively.
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4.1 Iterative technique

3. The design variable values are updated by

t(k) = t(k−1) + β(k)∆t(k) (4.5)

where the elements of the diagonal matrix β(k) are suitably chosen weight

coefficients which can also vary at each step.

Clearly, the procedure stops when ∆t(k) = 0 within a suitably prefixed toler-

ance.

This procedure has been used to solve all the optimal design problems

when they involved continuous design variables. Nevertheless, a further com-

putational aspect has to be shown for the optimal design problem of structure

with limited ductility.

As it is easy to observe, problem (3.41) is a strongly non-linear one and, as

a consequence, it can be solved only making recourse to appropriate simplified

and/or approximate methods. It is worth noticing that the main non linear-

ity is related to the presence of the constraints (3.41j, 3.41k); actually, if no

bounds are prescribed the remaining problem, even if non-linear, can be solved

by making recourse to the above linearization method (when it involves just

continuous variables). In order to computationally solve the complete prob-

lem (3.41), a simple parametric approach is proposed, later on tested in the

application stage.

Let assume for the optimal design problem formulation (3.41) that all the

design variables can vary in a continuous range whose bounds are represented

by tmin and tmax. In this way the minimum volume problem can be solved in

an approximate way, operating two subsequent steps:

1. at first the following problem is solved for a suitably chosen number of

assigned values of the perturbation multiplier ω̄, i.e. with the above

exposed iterative technique:

min
t,Ŷ ,Yi

V (t), (4.6a)

subjected to:

tmin ≤ t ≤ tmax, (4.6b)

Ht ≥ h̄, (4.6c)
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ϕe = NTP0 −R ≤ 0, (4.6d)

ϕsi = NT
[
Ps0 + (−1)iPs

]
− SŶ + ω̄R̂−R ≤ 0 (i = 1, 2), (4.6e)

Ŷ ≥ 0, (4.6f)

ϕli = NT
[
Pl0 + (−1)iPl

]
− SYi −R ≤ 0 (i = 1, 2), (4.6g)

Yi ≥ 0, (i = 1, 2). (4.6h)

2. Subsequently, the minimum structural volume is determined as function

of the solely variable ω:

V ∗ = min
ω

V (ω), (4.7a)

1

2
Ŷ T (ω)SŶ (ω) + ω

(
|Ute|max − Ūt

)
≤ 0, (4.7b)

It should be noted that if the problem had been formulated with discrete

variables the first step of this procedure had to be faced with another solution

procedure, such as the one that will be shown in the next section.

4.2 The harmony search algorithm

The harmony search (HS) algorithm was proposed by Geem et al. [42] by adopt-

ing the idea that existing meta-heuristic algorithms are found in the observation

of natural phenomena. In particular this algorithm is based on natural musical

performance processes that occur when a musician searches for a better state

of harmony, such as during jazz improvisation. In fact, when jazz musicians

play together they select the musical notes in their instruments to give the

best overall harmony with the rest of the group. Each musician plays notes,

remembering what he had played in a previous session. Sometimes he prefers

to improvise a few notes, and if the result is aesthetically pleasing, it will re-

main in the memory of all the musicians, who will use this harmony for a later

session. In other words, jazz improvisation seeks to find musically a perfect

state of harmony as determined by an aesthetic standard, just as the optimiza-

tion process seeks to find a global solution (a perfect state) as determined by

an objective function. The pitch of each musical instrument determines the

78



4.2 The harmony search algorithm

aesthetic quality, just as the objective function value is determined by the set

of values assigned to each decision variable.

For optimization, people have traditionally used gradient-based algorithms

that give right information in order to find the right direction to the optimal

solution. On the contrary, HS does not require differential gradients, thus it can

consider discontinuous functions as well as continuous functions and moreover

it can handle discrete variables as well as continuous variables.

For the purpose of the present thesis, this algorithm has been used to

solve optimal design problems involving discrete variables. In order to show

the algorithm procedures, let consider the following standard optimal design

problem in which the vector of the design variables t is a row one:

V ∗ = min
t,Y ,Yi

V (t), (4.8a)

subjected to:

ti ∈ Ti ≡ {ti(1), ti(2), . . . , ti(q)} ∀i ∈ I (nd) (4.8b)

HtT ≥ h̄, (4.8c)

ϕe = NTP0 −R ≤ 0, (4.8d)

ϕsi = NT
[
Ps0 + (−1)iPs

]
− SY −R ≤ 0 (i = 1, 2), (4.8e)

Y ≥ 0, (4.8f)

ϕli = NT
[
Pl0 + (−1)iPl

]
− SYi −R ≤ 0 (i = 1, 2), (4.8g)

Yi ≥ 0, (i = 1, 2). (4.8h)

where ti is the ith discrete variable that can assume one of the q values within

the discrete set Ti and nd is the total number of discrete variables.

The solution of the described optimum design problem can be reached in

seven basic steps which are summarized in the following and sketched in Figure

4.1:

1. Harmony search parameters are initialized.

The HS algorithm parameters that are required to solve the optimiza-

tion problem (4.8) are specified in this step. In particular, HMS is the

number of solution vectors simultaneously handled in the algorithm and
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START

Initialize the algorithm parameters

Initialize the harmony memory
(HM)

Uniform random variables
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objective function
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NO

NO

NO

YES

YES

Figure 4.1: Basic flowchart diagram for Harmony Search algorithm.80



4.2 The harmony search algorithm

it represents the size of the harmony memory matrix, HMCR is the rate

(0 ≤ HMCR ≤ 1) where the algorithm picks one value randomly from

harmony memory matrix, thus, (1− HMCR) is the rate where HS picks

one value randomly from total value range, PAR (0 ≤ PAR ≤ 1) is the

rate where the harmony search tweaks the value which was originally

picked from memory, thus, (1 − PAR) is the rate where the algorithm

keeps the original value obtained from memory, and finally, MI is the

maximum number of iterations.

Originally fixed parameter values were considered by Geem et al. [42].

However, some researchers have proposed changeable parameter values.

Degertekin [33], in order to increase the algorithm performances, sug-

gested that PAR may decrease linearly with iterations:

PAR (I) = PARmax −
(
PARmax − PARmin

) I

MI
(4.9)

being I the iteration number and PARmax, PARmin two suitable param-

eters. In fact, the search space to be explored should be vast in the first

stages of the algorithm and should be then limited within a neighborhood

of the optimum design.

2. Harmony memory matrix HM is initialized.

Each row of the harmony memory matrix contains the values of an “har-

mony t”, i.e. the values of the design variables which are randomly se-

lected from the design pool and the value of the objective function V (t).

Hence the matrix has nd + 1 columns and HMS rows which number is

selected in the first step. So, the harmony memory matrix can be written

in the following form:

HM =




t
(1)
1 t

(1)
2 · · · t

(1)
nd V

(
t(1)
)

t
(2)
1 t

(2)
2 · · · t

(2)
nd V

(
t(2)
)

...
. . .

...
...

t
(HMS)
1 t

(HMS)
2 · · · t

(HMS)
nd V

(
t(HMS)

)




(4.10)

It is worth mentioning that just the feasible designs which satisfy the

constraints (4.8c) to (4.8h) are inserted into the harmony memory ma-

trix. Indeed, some authors suggest to insert those designs having a small
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unfeasibility in the matrix using a penalty on their objective function

(see e.g. [62, 82]).

The solution vectors contained by the harmony memory matrix are sorted

so that the volume corresponding to the first solution vector t(1) is the

minimum and t(HMS) is the worst. In other words, the feasible solutions

are sorted in descending order according to their objective function V (t).

Furthermore, at this stage the iteration number is set I = 1.

3. A new harmony t(new) is improvised.

In generating a new harmony matrix the new value of the ith design

variable can be chosen from any discrete value within the range of the

ith column of the harmony memory matrix with the probability HMCR

which varies between 0 and 1. In other words, the new value of ti can

be one of the discrete values of the column vector
[
t
(1)
i , t

(2)
i , . . . , t

(HMS)
i

]T

with the probability of HMCR. The same is applied to all other de-

sign variables. In the random selection, the new value of the ith design

variables can also be chosen randomly from the entire pool with the prob-

ability of 1−HMCR. This sub-operation called, “memory consideration”,

is effected generating a random number (rn) uniformly distributed over

the interval [0, 1] and than:

t
(new)
i ←−





ti ∈
[
t
(1)
i , t

(2)
i , . . . , t

(HMS)
i

]T
if rn ≤ HMCR

ti ∈ Ti ≡ {ti(1), ti(2), . . . , ti(q)} if rn > HMCR

(4.11)

where, as above stated q is the total number of values in the design set

Ti.

If the new value of the design variable is selected from among those of

harmony memory matrix (first choice in 4.10), this value is then checked

whether it should be pitch-adjusted. This sub-operation can be effected

using the pitch-adjustment parameter PAR as the defined in the first step

and other random number (rn) uniformly distributed over the interval
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[0, 1] so that:

pitch adjusting decision←−





Yes if rn ≤ PAR

No if rn > PAR

(4.12)

Supposing that the new pitch-adjustment decision for t
(new)
i came out to

be yes from the test and if the value selected for t
(new)
i from the harmony

memory is the kth element in the general discrete set Ti, then the neigh-

boring value k+ 1 or k− 1 is taken for new t
(new)
i . This operation permit

to escape local minima and improves the harmony memory for diversity

with a greater change of reaching the global optimum.

4. Check on the eligibility of t(new) to be stored in harmony memory matrix.

After the definition of the new harmony vector t(new), the related value

of the objective function V
(
t(new)

)
is calculated. If this value is better

than the worst harmony vector in the harmony matrix, in that case it is

eligible to be included in the harmony matrix and the following step can

be effected. If it is worse than the worst harmony vector in the harmony

matrix and a new iteration is required, so that the iteration number is set

I + 1 and step (3) is repeated. It is worth noting that this check is done

before to control that all the constraints (4.8c) to (4.8h) are satisfied,

because from a computational point of view this operation requires less

time computing than the following one.

5. Constraints handling.

Once the new harmony vector t(new) is obtained using the above men-

tioned rules, it is then checked whether it violates problem constraints.

If the new harmony vector is unfeasible, it is discarded, the iteration

number is set I + 1 and step (3) is repeated.

In particular, as one can see, the problem (4.8) is a multi-constrained

one involving a technological constraint (4.8c), a constraint on the elas-

tic stresses (4.8d), constraints on the shakedown behavior (4.8e,4.8f) and

constraint preventing the instantaneous collapse (4.8g,4.8h). So, the fea-

sibility is checked by four subsequent sub-operation:
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a) first of all, the linear technological constraint (4.8c) is checked.

If Ht(new)T ≥ h̄, the following sub-operation can be conducted.

When, at least one of the value Ht(new)T − h̄ is less than zero a new

iteration is required.

b) for the referenced structure subjected to the first load combination

the purely elastic response to the applied loads is calculated in terms

of generalized stresses P0. IfNTP0 ≤ R the following sub-operation

can be conducted. When, at least one of the value NTP0 − R is

greater than zero a new iteration is required.

c) for the referenced structure subjected to the second load combina-

tion in order to control if it is able to shake down, a shakedown

analysis has to be conducted. Once the purely elastic responses Ps0
and Ps are calculated the following linear programming problem has

to be solved:

ξs = max
ξ,Y

ξ, (4.13a)

subjected to:

ϕs1 = NT [Ps0 + ξPs]− SY −R ≤ 0, (4.13b)

ϕs2 = NT [Ps0 − ξPs]− SY −R ≤ 0, (4.13c)

Y ≥ 0. (4.13d)

If ξs ≥ 1 the following sub-operation can be conducted. If ξs < 1 a

new iteration is required.

d) for the referenced structure subjected to the third load combination

in order to control if it is able to prevent the instantaneous collapse, a

limit analysis has to be conducted. Once the purely elastic responses

Pl0 and Pl are calculated the following linear programming problem

has to be solved:

ξl = max
ξ,Y1,Y2

ξ, (4.14a)

subjected to:

ϕl1 = NT [Pl0 + ξPl]− SY1 −R ≤ 0, (4.14b)

ϕl2 = NT [Pl0 − ξPl]− SY2 −R ≤ 0, (4.14c)
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4.2 The harmony search algorithm

Y1 ≥ 0, Y2 ≥ 0. (4.14d)

If ξl ≥ 1 the structure satisfy all the above constraints and following

step can be effected. If ξl < 1 a new iteration is required.

6. Harmony memory matrix is updated.

After that it has been controlled that the the new harmony t(new) satisfies

all the constraints the harmony memory matrix is updated. In step

(4), the eligibility of t(new) has been checked and rated in terms of the

objective function value, so it is included in the harmony memory matrix

and the worst harmony (e.g. t(HMS)) is excluded from it:

HM =




t
(1)
1 t

(1)
2 · · · t

(1)
nd V

(
t(1)
)

t
(2)
1 t

(2)
2 · · · t

(2)
nd V

(
t(2)
)

...
. . .

...
...

t
(new)
1 t

(new)
2 · · · t

(new)
nd V

(
t(new)

)



. (4.15)

The harmony memory matrix is then sorted again in descending order

by the objective function value, the iteration number is set I+1 and step

(3) is repeated.

7. Termination criterion.

Steps (3) to (6) are repeated until the termination criterion which is the

pre-selected maximum number of iteration MI is reached. This number

is selected large enough so that within this number of the design iteration

no further improvement is observed in the objective function.
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Chapter 5

Case studies

In the framework of numerical applications, special reference is made to steel

frame structures. Several case studies have been proposed and the most sig-

nificant are exposed in the present chapter. They are described in a sequence

following the developments of the thesis: starting with a probabilistic dynamic

shakedown analysis, going on the optimal design of frames subjected to cyclic

loads, and finally, the optimal design of frames subjected to dynamic loads.

5.1 A probabilistic dynamic shakedown analysis

In this section, the concepts shown in section (2.3) are explored trough a nu-

merical application related to steel frames subjected to wind loads.

The plane steel frame considered in this application is constituted by five

floors and two spans. As shown in Figure 5.1 the topology of the frame is

fully described by the span lengths (here assumed as L1 = 600 cm, L2 =

400 cm) and by the inter-story height (H = 400 cm). The material model,

above assumed as elastic perfectly plastic (Figure 5.2), is completely defined

trough the yield stress σy and the Young modulus E. For each element, these

two parameters are considered as uncertainties. In particular a log-normal

distribution is assigned both for yield stress (mean 235 MPa and standard

deviation 15 MPa) and for elasticity modulus (mean 210 GPa and standard

deviation 10 GPa). Obviously, this choice makes aleatory both the stiffness

and the resistance of the structure.

All the elements constituting the frame have a box cross section (Fig-
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Figure 5.1: Five floors steel frame: geometry and load conditions

ure 5.3a) with length b = 200 mm, height h = 300 mm and constant thickness

t = 10 mm. Furthermore, as one can see in Figure 5.1, two rigid perfectly

plastic hinges are located at the extremes of each element and an additional

one is positioned in the middle of all beams. As known, the convex yielding

domain of a plastic hinge depends on the particular cross section chosen and it

can be piece-wise linearized. In the present example, as shown in Figure 5.3b,

the yielding domain has been assumed in such a way to consider the interaction

between the bending moment M and the axial stress N . It’s worth noticing

that the yielding axial stress can be obtained as Ny = σyA and the yielding

bending moment as My = σyMp, being A and Mp the area and the plastic

moment of the cross section.

When the structure is subjected to to an arbitrary excitation history (see

e.g. section 2.3), which stationary segment F (t), 0 ≤ t ≤ T induces the

maximum plastic demand in time on the structure, the fictitious elastic stress
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5.1 A probabilistic dynamic shakedown analysis

Figure 5.2: Elastic perfectly plastic material model

(a) (b)

Figure 5.3: (a) Box cross section of the beam elements; (b) Typical rigid perfectly

plastic domain of the plastic hinges.

response can be determined integrating the following equation of motion:

Mü(t) + V u̇(t) +Ku(t) = F (t) (5.1)

and than the elastic stress response can be deduced:

P (t) = BTu(t) + P ∗(t) (5.2)

where M , V , K are the mass, the damping and the stiffness matrices respec-

tively, u is the displacement vector and the over dot means time derivative.

Furthermore, P is the the stress vector at the strain points, B is the so-called
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pseudo-force matrix and P ∗ is the analogous of P but due to the loads acting

upon the elements considered perfectly clamped.

As already explained in this thesis, in common applications of engineering

interest can be useful to adopt lumped masses structural model and static con-

densation procedures, in order to take into account the dynamically significant

degree of freedom of the system only. This fact does not affect the discussion

carried out so far as the dynamic shakedown theorem is based on the linear

dynamic steady-state response. So, in the present section the structural model

of masses lumped at each floor has been chosen. The lumped mass of each floor

has been calculated through the following relation M = q0 ∗(L1 +L2)/g, where

g is the acceleration of gravity and q0 and L1 + L2 are the dead loads and the

length of each floor respectively, as one can see in Figure 5.6. The horizontal

displacements of the floors have been chosen as dynamically significant degree

of freedom. Let define ut the vector of horizontal floor displacement and ur
the vector collecting the rest of displacements so that the following equation

can be written:

u = E

[
ut
ur

]
(5.3)

being E a suitable reordering matrix, also able to impose kinematic constraints

(e.g. that the nodes of the same floor have the same horizontal displacement).

In this way, the following static condensation procedures of equation of

motion, useful to evaluate the response of the uncertain system under stochastic

excitation can be adopted:

[
Mtt 0

0 0

] [
üt
ür

]
+

[
Ctt 0

0 0

] [
u̇t
u̇r

]
+

[
Ktt Ktr

Krt Krr

] [
ut
ur

]
=

[
F̂ (t)

0

]
(5.4)

where Ctt is the damping matrix of the reduced system whose a constant

damping ratio ζ is imposed in the modal space, Ktt, Ktr, Krt, Krr are suitable

sub matrices obtained from the reordered external stiffness matrix ETKE of

the complete system, and F̂ (t) is the forcing function. Furthermore Mtt is the

lumped mass matrix. After simple manipulation of equation (5.4) the solving

set is made by a reduced system of differential equation and a set of algebraic

ones:

Mttüt +Cttu̇t + K̄ut = F̂ (t) (5.5a)

ur = −K−1
rr Krtut (5.5b)
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5.1 A probabilistic dynamic shakedown analysis

where K̄ = Ktt −KtrK
−1
tt Krt is the condensed stiffness matrix. In this way

the complete vector of displacements u can be obtained simply reordering the

vectors ut and ur. In the proposed application the damping ratio ζ is given

with a log-normal distribution with mean 0.05 and standard deviation 0.65 (see

e.g. [53]).

Furthermore, F̂ (t) is assumed to be a stationary segment of a stochastic

wind process. Among the several methods available in literature (see e.g. [22,

35, 36, 58]), the model for the simulation of wind velocity fields proposed by

Deodatis [34]. As known, the forcing function F̂ (t) represents a wind load

model under the assumption of neglecting the wind-structure interaction, if

some of its component (relatively to the structural nodes where the wind load

can be concentrated) can be described by the following relation:

f̂j(t) = ηj(v̄j(t) + vj(t))
2 j = 1, 2, . . . , n, (5.6)

where v̄j(t) is the mean wind velocity at the point zj and vj(t) is the corre-

sponding fluctuating part. Furthermore, ηj is a coefficient equal to 0.5ρC̄jAj ,

being ρ the air density, C̄j an hydrodynamic coefficient determined experi-

mentally and Aj the impact area of the jth node in the direction of the mean

wind.

With the aim to describe the fluctuating part in such a way that the ob-

tained forcing function will be a periodic one, let consider a one-dimensional,

multivariate stochastic vector process v(t), which has n components v1(t),

v2(t), . . ., vn(t) with mean equal to zero. The cross-spectral density matrix

is given by

S(ω) =




S11(ω) S12(ω) · · · S1n(ω)

S21(ω) S22(ω) · · · S2n(ω)
...

...
. . .

...

Sn1(ω) Sn2(ω) · · · Snn(ω)


 , (5.7)

that usually is a complex matrix.

According to Deodatis [34], the typical component of vector process v(t),
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that will be stationary and ergotic, can be simulated by the following series:

vj(t) = 2
n∑

m=1

N∑

l=1

|Hjm(ωml)|
√

∆ω cos [ωml(t)− θjm(ωml) + Φml] ,

j = 1, 2, ..., n,

(5.8)

as N → ∞. In equation (5.8), Hjm(ωml) is a typical element of a matrix

H(ω), which is obtained decomposing the cross spectral density matrix in the

following product

S(ω) = H(ω)HT∗(ω), (5.9)

where (in this section) the apex ()∗ means complex conjugate. This decompo-

sition can be performed using the Cholesky’s method, in which case

H(ω) =




H11(ω) 0 · · · 0

H21(ω) H22(ω) · · · 0
...

...
. . .

...

Hn1(ω) Hn2(ω) · · · Hnn(ω)


 , (5.10)

is a lower triangular matrix. Furthermore, ∆ω = ωup/N is the sample fre-

quency, with ωup cut-off frequency, ωml is a frequency interval namely:

ωml = (l − 1)∆ω +
m

n
∆ω, l = 1, 2, . . . , N, (5.11)

as stated by Shinozuka et al. [85], θjm(ω) is the complex angle given by:

θjm(ω) = tan−1 Im [Hjm(ω)]

Re [Hjm(ω)]
, (5.12)

where Im [Hjm(ω)] and Re [Hjm(ω)] are respectively the imaginary and the real

part of the complex function Hjm(ω) when it is written in polar form. Finally,

Φml, m = 1, 2, . . . , n, l = 1, 2, . . . , N , represents n sequences of independent

random phase angles distributed uniformly over the interval [0, 2π].

The period of the simulated function (5.8) is given by:

T =
2πn

∆ω
=

2πnN

ωup
, (5.13)
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5.1 A probabilistic dynamic shakedown analysis

as shown in [34]. It’s clear that the stochastic process expressed can be sim-

ulated quite well by equation (5.8) when the parameters N , ωup and ∆t are

chosen in such a way to avoid aliasing problems. Finally, this kind of simulation

can result cumbersome when it is coupled whit a Monte Carlo method. For

that reasons, many computational techniques based on Fast Fourier Transform

have been proposed in recent years (see e.g. [34, 37]).

A sample of wind load can be simulated by the equation (5.6). At this

purpose let define the quantities used in this example: ρ = 1.25 Kg/m3, C̄j =

1.3 and Aj = 24 m2 for j = 1, 2..., 5. Furthermore, the mean wind speed at

each floor has been determined with the following power law:

v̄j = v10 β
( zj

10

)α
(5.14)

where v10 = 40 m/s is the wind speed at 10 m above the ground, β = 0.65 is

the factor of the power law, zj is the height of the jth floor and α = 1/6.5 is

the exponent of the power law.

In order to simulate the fluctuating part of the wind vj , the entries of the

cross-spectral density matrix, given by equation (5.7), have to be defined. For

the power spectral density function of the longitudinal wind velocity fluctuation

at different heights Sjj(ω) = Sj(ω), j = 1, 2, . . . , 5, the model proposed by

Kaimal et al. [56] has been selected:

Sj(ω) =
1

2

200

2π
v2
∗
zj
v̄j

1
[
1 + 50

ωz

2πv̄j

]5/3
, j = 1, 2, . . . , 5 (5.15)

where, beyond the already defined quantities, v∗ is the shear velocity of the

flow, expressed by:

v∗ = v10 β
ka

log

(
10

z0

) (5.16)

in which ka = 0.4 is the Von Karman’s constant and z0 = 0.02 is the ground

roughness height.

The cross spectral density functions have been evaluated with the following

relation:

Sjk(ω) =
√
Sj(ω)Sk(ω)γjk(ω) j, k = 1, 2, . . . , 5, j 6= k (5.17)
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where γjk is the coherence function between vj(t) and vk(t). The model sug-

gested by Davenport [31] is chosen for the coherence functions between the

velocity fluctuation at two different heights z1 and z2:

γjk(∆z, ω) = exp


− ω

2π

Cz∆z
1

2
[v̄1 + v̄2]


 (5.18)

where v̄1 and v̄2 are the wind mean speed at heights z1 and z2 respectively,

∆z = |z1 − z2| and Cz is a constant that can be set equal to 10 for design

purpose [86].

For each generated sample the shakedown safety factor can be evaluated

with the following linear programming problem:

ξ∗ = max
ξ, ρ

ξ (5.19a)

subjected to:

ϕ = NT (P0 + ρ) + ξP̌ −R ≤ 0, (5.19b)

ATρ = 0, (5.19c)

where:

P̌ = max
0≤t≤T

NT P̂ (t) (5.20)

is the elastic envelope stress vector which select for each yielding mode the

maximum of the plastic demand in time [26, 27, 64].

Assuming that X ⊂ Rn is the failure region specified as the exceedance of

an uncertain load multiplier ξ over its shakedown value ξ∗ and that θ ∈ Rn is

a vector containing all the uncertain parameters regarding both the structural

behavior and the load conditions, the failure probability can be calculated in

a generic form as

P (X) =

∫
IX(θ) q(θ) dθ (5.21)

where IX : Rn 7→ {0, 1} is an indicator function that is IX(θ) = 1 when θ ∈ F
and IX(θ) = 0 otherwise, and q : Rn 7→ [0,∞) be a prescribed probability
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density function (PDF) representing the values that the set of uncertain pa-

rameters θ = [θ1, θ2, · · · , θn] can assume. At least in principle, the probability

of failure P (X) can be reached trying to integrate directly the integral above

exposed. Indeed, due to the large number of uncertainties involved, the prob-

ability of failure P (X) can be calculated trough the Monte Carlo simulation

method that has been widely used in the past for its robustness and for its

ability to solve problems with complex failure regions such as that shown in

the present section.

However, this method is lack to find the small probability of failure because

the number of samples that must be generated to achieve a predetermined accu-

racy, and therefore also the number of analyses to be performed, is proportional

to the ratio 1/P (X). In the present example, this problem is enhanced by the

fact that, in order to evaluate the shakedown multiplier, each sample requires

not only a time history analysis but also a problem of linear programming.

In this context, the use of the method proposed by Au and Beck [4], called

Subset Simulation, is to be considered more appropriate. This method is based

on the idea that a small probability of failure can be expressed as a product

of large values of conditional failure by introducing appropriate intermediate

failure events.

Given the failure domain X, let X1 ⊃ X2 ⊃ · · · ⊃ Xm = X be a decreasing

nested sequence of failure regions so that Xk = ∩ki=1Xi, k = 1, 2, . . . ,m. The

probability of failure P (X) can be represented as the probability of falling in

the final subset Xm. From the definition of conditional probability, let write:

P (X) = P (Xm) = P (∩m−1
i=1 Xi) = P (Xm | ∩m−1

i=1 Xi)Xi)P (∩m−1
i=1 Xi) =

= P (Xm | Xm−1)P (∩m−1
i=1 Xi) = · · · = P (X1)

m−1∏

i=1

P (Xi+1 | Xi).
(5.22)

Equation (5.22) shows that, instead of directly calculating the probabil-

ity of failure, this one can be calculated as the product of many conditional

probabilities.

Since the failure region has been defined as X = {θ : ξ(θ) > ξ∗(θ)}, then

intermediate failure region can be defined as Xi = {θ : ξ(θ) > ξ∗i (θ)}. In this
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Figure 5.4: Probability of failure in shakedown conditions

way, the probability of failure can be rewritten as:

P (X) = P (ξ > ξ∗) = P (ξ > ξ∗1)
m−1∏

i=1

P (ξ > ξ∗i+1 | ξ > ξ∗i ) (5.23)

where 0 < ξ∗1 < ξ∗2 · · · < ξ∗m = ξ∗ is a decreasing sequence of threshold levels.

These levels are generated adaptively using information from simulated samples

so that the conditional probabilities are approximately equal to a common

specified value p0 (experience shows that p0 = 0.1 is a prudent choice [5, 67]).

To calculate the probability of failure expressed by equation (5.23), one

needs to calculate P (ξ > ξ∗1) and P (ξ > ξ∗i+1 | ξ > ξ∗i ). The first one is an

unconditional probability that can be estimated by well-known Monte Carlo

simulation. The second represent conditional probabilities that can be simu-

lated through a class of powerful algorithms called Markov Chain Monte Carlo

based on Metropolis-Hastings algorithm [3, 4].

Afterwords, the procedure used by the Subset Simulation can be summa-

rized as follows:

1. generation of N sample vectors by direct Monte Carlo simulation for

the unconditional case such that they are independent and identically
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distributed from the proposal PDF q and evaluation of the structural

response for each of them;

2. choice of the value ξ∗1 such that [(1 − p0)N ] responses lie outside the

subset X1 and p0N conditional samples belong to X1 = (ξ > ξ∗1);

3. starting from each of the sample at “conditional level 1”, generation by

the Metropolis-Hastings algorithms of (1 − p0)N additional conditional

samples so that the level 1 is repopulated and has again N conditional

samples.

4. repetition of the operations shown in steps 2 and 3 for higher conditional

levels until the samples at conditional level m have been generated.

So, Subset Simulation provides a useful tool for wind performance assess-

ment through efficient estimation of failure probabilities grounding on dynamic

shakedown analysis.

The result in terms of probability of failure P (X) for the above exposed

uncertain steel frame subjected to the shown stochastic wind load model are

obtained for N = 1000 samples generated and for a threshold level p0 = 0.1.

In particular, they are reported in terms of probability of failure in dynamic

shakedown condition in Figure 5.4.

5.2 Case studies of frames under quasi-static cyclic

loads

The optimal designs of steel frames have been obtained referring to the formu-

lations proposed in section (3.1).

First example

At first, the minimum volume design problem (3.23) has been solved, utilizing

the iterative technique based on an appropriate linearization of the relevant op-

timization problem (as explained in Chapter 4), for the six floor frame plotted

in Figure 5.5. The frame is constituted by square box cross section elements

(Figure 5.6a) with edge length ` = 250 mm. The constant thickness t of each

97



5 Case studies

Figure 5.5: Six floor steel frame: geometry and load conditions.
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(a) (b)

Figure 5.6: Six floor standard design: (a) Typical square box cross section; (b) Rigid

plastic domain of the typical plastic hinge.

cross section element has been assumed as a continuous design variable. Fur-

thermore, the frame is constituted by two spans of length L1 = 7 m, L1 = 4 m,

and the inter-story height is H = 4 m. The material is steel S235H so that

the Young modulus E = 250 GPa and yield stress σy = 235 MPa have been

assumed.

Two rigid perfectly plastic hinges are located at the extremes of all ele-

ments, considered to be purely elastic. Moreover, an additional plastic hinge is

located in the middle point of the longer beams because they are loaded by a

uniform dead load. The interaction between the bending moment M and the

axial force N has been taken into account. In Figure 5.6b, the dimensionless

rigid plastic domain of the typical plastic hinge is plotted in the plane (N/Ny,

M/My), being Ny and My the yield generalized stress corresponding to N and

M , respectively. It is worth noticing that the relevant domain is a very com-

mon satisfactory simplified model deduced from some standards [40, 80] and

suggested for practical applications (see, e.g. [66, 84]); the related limit behav-

ior is here utilized for pillar’s cross sections as well as for beam’s cross sections.

Furthermore, in the present context, within the aims of the proposed study,

the influence of the shear forces on the safety conditions will not be taken into

account.

Finally, in order to ensure that the cross sections of the elements be able

to fully exhibit the relevant plastic deformations (plastic hinge behavior) pre-

venting dangerous phenomena of local instability, the cross section element

thicknesses will be constrained within the range 8 mm ≤ t ≤ 40 mm, as sug-
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gested in the referenced standards.

As stated in section (3.1.2), the structure is subjected to three loads com-

bination of fixed and seismic loads. In particular, the structure is subjected

to a fixed uniformly distributed vertical load on the beams q0 = 40 kN/m and

to seismic actions defined trough two different response spectra as defined by

the Italian code [80]. The selected response spectra for serviceability conditions

(up-crossing probability in the lifetime of 81%) and instantaneous collapse (up-

crossing probability in the lifetime of 5%) are those corresponding to Palermo,

with a soil type B, life time 100 years and class IV (Figure 5.7). Seismic masses

are assumed to be equal at each floor m = q0 (L1 + L2) /g = 44.85 kN · sec2/m

(with g acceleration of gravity), and located in the intermediate node at each

floor (Figures 5.5). Furthermore, the fixed loads present in the second and in

the third combination are reduced setting ξs0 = ξl0 = 0.8.

Figure 5.7: Selected response spectra for serviceability conditions (up-crossing prob-

ability in the lifetime 5% ) and instantaneous collapse (up-crossing prob-

ability in the lifetime 81%).

As suggested by the cited code, a forth load combination is considered in

this example in order to take into account the wind effect upon the structure.

In particular the optimal structure must prevent the instantaneous collapse

when subjected to a combination of fixed load Fw0 = 0.8Fw0 and to perfect

cyclic wind action Fw = 1.25F̄w that are concentrated horizontal loads applied
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Volume: 1.360

El. 1 2 3 4 5 6 7 8 9 10

t 8.00 8.00 8.00 8.00 9.62 8.00 9.61 12.76 9.61 17.00

El. 11 12 13 14 15 16 17 18 19 20

t 9.61 21.31 8.00 8.00 8.00 8.00 8.00 8.17 8.00 8.96

El. 21 22 23 24 25 26 27 28 29 30

t 11.66 14.77 18.11 20.85 8.00 8.00 8.00 8.03 9.14 14.59

Table 5.1: Optimal volume (m3) and thicknesses (mm) of the six floor frame standard

design.

on all the nodes and described by the following vector:

F̄w = |24.0 27.4 30.6 32.6 36.2|T (5.24)

where the typical component F̄wj is the resultant force at the jth floor. Vector

F̄w is computed referring to the Italian code for a building in Palermo, assuming

a class type B, a category type III and an impact surface for the typical floor

equal to 20 m2. It is worth noticing that the typical load Fj , (1, 2, . . . , 6)

represented in Figure 5.5 is deduced as Fj = F̄wj/3.

In this way, the following constraints has been appended to the problem

(3.23):

ϕwi = NT
[
Pw0 + (−1)iPw + ρwi

]
−R ≤ 0 (i = 1, 2), (5.25)

ATρwi = 0 (i = 1, 2). (5.26)

where Pw0 is the elastic stress response to Fw0, Pw is the elastic stress response

to the wind load Fw, and ρwi, (i = 1, 2), are two independent self-stress vectors.

The results in terms of optimal volume and optimal thicknesses are reported

in Table 5.1. The obtained design features have been investigated through the

determination of the relevant Bree diagrams related to the combinations of

suitably reduced fixed loads and seismic actions, as well as of amplified fixed

loads and wind actions.

In Figure 5.8a and 5.8b, the cited diagrams are plotted so that ξ0 represents

the fixed load multiplier and ξc the cyclic load one. It is easy to observe that,
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(a) (b)

Figure 5.8: Six floor standard design: (a) Bree diagram related to the combination

of reduced fixed loads and seismic actions (N serviceability condition,

• instantaneous collapse condition); (b) Bree diagram related to the

combination of amplified fixed loads and wind actions (• instantaneous

collapse condition).

as expected, all the imposed behavioral constraints are satisfied. In particu-

lar, the structure shows to especially suffer the load combination involving the

seismic loads: actually, it exhibits a purely elastic behavior in serviceability

seismic conditions, it guarantees a certain safety margin with respect to the

instantaneous collapse for fixed and wind actions, and it finds itself in a con-

dition of impending collapse for fixed and high seismic loads. Furthermore, it

must be noticed that:

� a dangerous condition of ratchetting is reached even for load multipliers

lower than the prescribed ones for the combination of loads involving

seismic actions;

� in any examined case the safety margin related to fixed loads, considered

as acting alone, does not appear sufficiently consistent.

Actually, for the obtained design the elastic limit fixed load multiplier is

equal to 1.00 and the instantaneous collapse one is equal just to 1.35. Such

undesirable behavior can be avoided by introducing in the elastic constraint

(3.23e) a load multiplier so that it is rewritten in the following form:

ϕe = NT 1.25P0 −R ≤ 0. (5.27)
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5.2 Case studies of frames under quasi-static cyclic loads

(a) (b)

Figure 5.9: Six floor improved design: (a) Bree diagram related to the combination

of reduced fixed loads and seismic actions (N serviceability condition,

• instantaneous collapse condition); (b) Bree diagram related to the

combination of amplified fixed loads and wind actions (• instantaneous

collapse condition).

The Bree diagrams related to the new design obtained for are plotted in

Figure 5.9a and 5.9b. The improvement of the behavior is related with a very

moderate volume increment (∆V% = 1.85%). It is also worth noticing that in

this case the safety features of the optimal structure with regard to the limit

condition related to wind action definitely improve; actually, the optimal frame

eventually shakes down preventing a dangerous incremental collapse behavior.

Furthermore, in order to analyze the structural response investigating on

its safety behavior features with regard to the element slenderness, the last

obtained structure has been studied performing an elastic plastic analysis un-

der a suitably selected load history taking into account the P-∆ effects. It has

been verified that the structure shows incremental collapse for load multipli-

ers lower and lower; in particular it reaches a condition of impending collapse

for the combination of fixed and high seismic load when ξ0 = 0.8 and ξc = 0.82.

These results justify the considerations that led to improve the optimal

design formulation in order to take into account for element slenderness as

shown in section (3.1.3). Furthermore, it is necessary to compare in the next

example the different results obtainable if continuous or discrete variables are
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Figure 5.10: Four floors steel frame: geometry and load conditions.

considered.

Second example

Let consider a new plane steel frame (Figure 5.10) in which the wind loads

are neglected. At first, the optimal design problem (3.23) has been solved

searching for the standard minimum volume.

The frame is constituted by rectangular box cross section elements (Figure

5.11) with b = 200mm, h = 300mm, and constant thickness t variable between

tmin
c = 4 mm and tmax

c = 24 mm. The imposed bounds for the thickness

have been deduced by the more common standard elements on sale. The

cross section of all the elements is disposed so that the axis related to the

greater moment of inertia is orthogonal to the plane of the relevant frame.
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5.2 Case studies of frames under quasi-static cyclic loads

Figure 5.11: Typical rectangular box cross section.

Furthermore, L1 = 600 cm, L2 = 400 cm, H = 500 cm, Young modulus E =

250 GPa and yield stress σy = 235 MPa have been assumed.

As in the previous example, two rigid perfectly plastic hinges are located

at the extremes of all the elements, considered to be elastic, and an additional

hinge is located in the middle point of the longer beams and the interaction

between bending moment M and axial force N has been taken into account

trough the typical rigid plastic domain for square and/or rectangular box cross

section.

As stated in section (3.1), the structure is subjected to three loads com-

bination of fixed and seismic loads. In particular, the structure is subjected

to a fixed uniformly distributed vertical load on the beams q0 = 40 kN/m and

to seismic actions defined trough two different response spectra as defined by

the Italian code [80]. The selected response spectra for serviceability conditions

(up-crossing probability in the lifetime of 81%) and instantaneous collapse (up-

crossing probability in the lifetime of 5%) are those corresponding to Palermo,

with a soil type B, life time 100 years and class IV.

Let assume that the seismic masses are lumped in the relevant structure

nodes and that they are equal for each floor, m1 = 9.79 kN · sec2/m, m2 =

16.31 kN · sec2/m, m3 = 6.52 kN · sec2/m (Figure 5.10). The value assumed

for the seismic masses depends on the remark that during the earthquake not

all the gravitational loads are considered as acting on the structure, so that

mi = (0.8 q0`i)/g, where g is the acceleration of gravity, and `i, i = 1, 2, 3 is

the relevant influence beam length. Furthermore, the fixed loads present in the

second and in the third combination are reduced, setting ξs0 = ξl0 = 0.8.

Being the problem a strongly nonlinear one, in order to reach the numerical

solution an appropriate computational technique has been utilized (see e.g.
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Volume: 0.573

El. 1 2 3 4 5 6 7 8 9 10

t 5.2 11.1 8.7 4.0 10.3 4.0 4.0 5.3 4.0 4.0

El. 11 12 13 14 15 16 17 18 19 20

t 4.0 4.0 6.1 12.1 6.2 7.5 5.2 4.0 5.2 4.0

Table 5.2: Continuous variable standard design volume (m3) and thicknesses (mm).

Chapter 4). The obtained results are reported in Table 5.2 in terms of optimal

volume and optimal thicknesses.

Let now study the same steel frame, always searching for the standard de-

sign, but assuming the design variables as appertaining at the discrete sets

Td ≡ {4, 6, 8, . . . , 24 mm}, d = 1, 2, . . . , 20. For the numerical computation, the

Harmony Search Algorithm (HS) shown in section (4.2) has been used. This

special approach consist in the using of appropriate random search processes

instead of gradient search one, so that derivative information are unneces-

sary. The HS Algorithm is substantially based on the analogy between the

performance process of natural music and the searching for the solution to op-

timization problems. The obtained results for the discrete variable standard

design are reported in Table 5.3 always in terms of optimal volume and optimal

thicknesses.

As it is possible to observe the structural volume related to the discrete

variable design is quite greater than the continuous variable design (∆V% =

14.14%). Furthermore, a very large amount of elapsed real time (4889 s) is

related to the obtaining of the discrete variable design, while the elapsed real

time related to the continuous variable design is just 1873 s. As a consequence,

a suitable sub-optimal distribution of discrete thicknesses has been considered

starting from the continuous variable optimal design solution and increasing

the thickness of each element till the one directly above in the discrete range,

as reported in Table 5.4.

As it is possible to observe, the volume related to the sub-optimal discrete

variable standard design is substantially coincident with the volume obtained

for the discrete variable standard design (∆V% = 2.67%) and, yet, the latter

is slightly greater than the former. This last result is negligible from an engi-

106



5.2 Case studies of frames under quasi-static cyclic loads

Volume: 0.654

El. 1 2 3 4 5 6 7 8 9 10

t 12.0 8.0 10.0 4.0 12.0 4.0 6.0 4.0 4.0 4.0

El. 11 12 13 14 15 16 17 18 19 20

t 4.0 4.0 8.0 12.0 8.0 10.0 6.0 4.0 6.0 6.0

Table 5.3: Discrete variable standard design volume (m3) and thicknesses (mm).

Volume: 0.637

El. 1 2 3 4 5 6 7 8 9 10

t 6.0 12.0 10.0 4.0 12.0 4.0 4.0 6.0 4.0 4.0

El. 11 12 13 14 15 16 17 18 19 20

t 4.0 4.0 8.0 14.0 8.0 8.0 6.0 4.0 6.0 4.0

Table 5.4: Sub-optimal discrete variable standard design volume (m3) and thick-

nesses (mm).

neering point of view and it depends on the different numerical tools utilized.

Anyway, in the present case, it can be stated that the sub-optimal discrete vari-

able standard design is certainly acceptable representing a very good approxi-

mation of the real optimal one with computational cost absolutely reduced. In

order to compare and better interpret the features of the obtained designs the

relevant Bree diagrams have been determined and plotted in the plane ξ0, ξc
(Figure 5.13, 5.14, 5.15), where ξ0 and ξc are the multipliers of the fixed and

cyclic load, respectively.

An examination of these graphs allows us to observe that: all the obtained

designs fulfill the prescribed constraints; just the continuous variable design

finds itself in a condition of impending instantaneous collapse for the load

combination related to high intensity seismic actions; both the discrete variable

(optimal and sub-optimal) standard designs show the same safety factors with

respect the assigned limit state, even if they are characterized by different

thickness distributions.

As already stated, for the chosen plane frame it is necessary to suitably

take into account the element slenderness. Therefore, the same frame plotted
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Figure 5.12: Rigid plastic domain of the plastic hinge related to the pillars account-

ing for buckling. A = −Pcr/ηNy and B = −0.15Pcr/ηNy

Volume: 0.694

El. 1 2 3 4 5 6 7 8 9 10

t 10.1 22.6 10.4 7.2 15.5 7.0 4.6 9.6 4.0 4.0

El. 11 12 13 14 15 16 17 18 19 20

t 4.6 4.0 6.1 4.0 6.1 4.0 6.0 4.0 5.3 4.0

Table 5.5: Safe buckling continuous variable design volume (m3) and thicknesses

(mm).

in Figure 5.10 has been designed by solving problem (3.31) and considering

alternatively element buckling (with η = 1.5), P-∆ effects and both.

In particular in order to take into account for the pillar slenderness the

rigid plastic domain represented in Figure 5.12 is utilized.

The results obtained assuming a continuous domain for the design variables

are reported in Tables 5.5, 5.6 and 5.7, while the analogous results obtained

assuming the discrete sets Td ≡ {4, 6, 8, . . . , 24 mm}, d = 1, 2, . . . , 20 for the

design variables and utilizing the referred harmony search (HS) are reported

in Tables 5.8, 5.9 and 5.10.

In Figures 5.16, 5.17, and 5.18 the Bree diagrams related to all the obtained

optimal structures are represented. Finally, in Figure 5.19, 5.20, and 5.21, the

Bree diagrams related to the sub-optimal discrete variable standard design are

plotted taking alternatively into account the buckling effects, the P-∆ effects

and both. These last diagrams clearly show the effectiveness of the introduced

relevant constraints.
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5.2 Case studies of frames under quasi-static cyclic loads

Volume: 0.591

El. 1 2 3 4 5 6 7 8 9 10

t 5.0 11.2 9.3 4.0 10.6 4.1 4.0 5.3 4.0 4.0

El. 11 12 13 14 15 16 17 18 19 20

t 4.0 4.0 6.1 13.5 6.6 8.5 5.5 4.0 5.4 4.0

Table 5.6: Safe P-∆ continuous variable design volume (m3) and thicknesses (mm).

Volume: 0.716

El. 1 2 3 4 5 6 7 8 9 10

t 10.1 22.7 11.7 7.2 15.5 7.3 4.6 9.6 4.1 4.0

El. 11 12 13 14 15 16 17 18 19 20

t 4.6 4.0 6.1 7.4 6.1 4.0 6.1 4.0 5.3 4.0

Table 5.7: Safe buckling/P-∆ continuous variable design volume (m3) and thick-

nesses (mm).

Volume: 0.825

El. 1 2 3 4 5 6 7 8 9 10

t 16.0 24.0 14.0 10.0 16.0 8.0 10.0 12.0 4.0 6.0

El. 11 12 13 14 15 16 17 18 19 20

t 6.0 4.0 6.0 4.0 6.0 6.0 6.0 6.0 6.0 4.0

Table 5.8: Safe buckling discrete variable design volume (m3) and thicknesses (mm).

Volume: 0.647

El. 1 2 3 4 5 6 7 8 9 10

t 12.0 8.0 8.0 4.0 10.0 8.0 4.0 6.0 4.0 4.0

El. 11 12 13 14 15 16 17 18 19 20

t 4.0 4.0 12.0 6.0 8.0 10.0 6.0 4.0 6.0 4.0

Table 5.9: Safe P-∆ discrete variable design volume (m3) and thicknesses (mm).
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Volume: 0.816

El. 1 2 3 4 5 6 7 8 9 10

t 12.0 24.0 16.0 8.0 16.0 8.0 6.0 12.0 6.0 4.0

El. 11 12 13 14 15 16 17 18 19 20

t 8.0 4.0 8.0 4.0 6.0 4.0 6.0 4.0 6.0 8.0

Table 5.10: Safe buckling/P-∆ discrete variable design volume (m3) and thicknesses

(mm).

Figure 5.13: Four floors continuous variable standard design: Bree diagram (N ser-

viceability condition, • instantaneous collapse condition).

Figure 5.14: Four floors discrete variable standard design: Bree diagram (N service-

ability condition, • instantaneous collapse condition).
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5.2 Case studies of frames under quasi-static cyclic loads

Figure 5.15: Four floors sub-optimal discrete variable standard design: Bree diagram

(N serviceability condition, • instantaneous collapse condition).

Figure 5.16: Four floor safe buckling continuous variable design: Bree diagram (N
serviceability condition, • instantaneous collapse condition).

Figure 5.17: Four floor safe buckling discrete variable design: Bree diagram (N ser-

viceability condition, • instantaneous collapse condition).
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Figure 5.18: Four floor safe P-∆ continuous variable design: Bree diagram (N ser-

viceability condition, • instantaneous collapse condition).

Figure 5.19: Four floor safe P-∆ discrete variable design: Bree diagram (N service-

ability condition, • instantaneous collapse condition).

Figure 5.20: Four floor safe buckling/P-∆ continuous variable design: Bree diagram

(N serviceability condition, • instantaneous collapse condition).
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5.2 Case studies of frames under quasi-static cyclic loads

Figure 5.21: Four floor safe buckling/P-∆ discrete variable design: Bree diagram (N
serviceability condition, • instantaneous collapse condition).

Third example

Different optimal designs of the plane steel frame plotted in Figure 5.22 have

been obtained referring to the formulation (3.41) previously proposed. At first,

the optimal design problem (3.41) has been solved searching for the unlimited

ductility minimum volume structure, i.e. eliminating the terms related to the

perturbation, and assuming continuous design variables.

The studied frame is constituted by three floors and all the elements have

square box cross section with edge length ` = 200 mm and constant thickness

t variable between tmin
c = 4 mm and tmax

c = 24 mm (Figure 5.23). The imposed

design variable bounds for the thicknesses have been deduced by referring to

the more common standard elements on sale. Furthermore, L1 = 600 cm,

L2 = 400 cm, H = 450 cm, Young modulus E = 250 GPa and yield stress

σy = 235 MPa have been assumed.

As in the previous examples, two rigid perfectly plastic hinges are located

at the extremes of all the elements, considered to be elastic, and an addi-

tional hinge is located in the middle point of the longer beams. Moreover,

the interaction between bending moment M and axial force N has been taken

into account in the rigid plastic domain of the plastic hinges. The structure

beams are all subjected to the same fixed uniformly distributed vertical load

q0 = 30 kN/m. Referring to the dynamic loads, let assume that the seismic

masses are located at all the structure nodes; due to the described gravitational

load q0 they are equal at each floor and it results: m1 = 7.34 kN · sec2/m,

m2 = 12.23 kN · sec2/m, m3 = 4.90 kN · sec2/m (Figure 5.22). The values
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Figure 5.22: Three floor steel frame: geometry and load condition.

Figure 5.23: Typical square box cross section.

assigned to the seismic masses, as usual, are computed considering that during

the earthquake the gravitational loads does not act all simultaneously on the

structure, so that it is possible to evaluate mi = (0.8 q0`i)/g, where g is the

acceleration of gravity, and `i, i = 1, 2, 3 relevant influence beam length.

Also in this example, the structure is subjected to three loads combination

of fixed (q0) and seismic loads. The selected response spectra, as defined by

the Italian code [80], for serviceability conditions (up-crossing probability in

the lifetime of 63%) and instantaneous collapse (up-crossing probability in the

lifetime of 10%) are those corresponding to Palermo, with a soil type B, life

time 100 years and class IV. The fixed loads present in the second and in

the third combination are reduced, setting ξs0 = ξl0 = 0.8. Furthermore, a

technological constraint is imposed so that the pillars of the same floor have
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Volume: 0.486

El. 1 2 3 4 5

t 17.6 17.6 17.6 8.0 8.0

El. 6 7 8 9 10

t 8.0 6.6 6.6 6.6 8.3

El. 11 12 13 14 15

t 4.0 8.3 4.0 8.8 6.3

Table 5.11: Continuous variable unlimited ductility optimal design: volume (m3)

and thicknesses (mm).

Volume: 0.542

ω : 71.6

El. 1 2 3 4 5

t 17.2 17.2 17.2 9.2 9.2

El. 6 7 8 9 10

t 9.2 9.2 9.2 9.2 8.3

El. 11 12 13 14 15

t 5.4 8.3 6.2 9.2 8.9

Table 5.12: Continuous variable limited ductility optimal design: volume (m3) and

thicknesses (mm).

the same thickness and the element slenderness is taken into account as in

previous example.

As previously stated, the search problem is a strongly nonlinear one. As

a consequence, the numerical solution can be reached by making recourse to

the appropriate computational techniques shown in Chapter 4. The obtained

results are reported in Table 5.11 in terms of optimal volume and optimal

thicknesses.

Afterwards, the optimal design problem (3.41) has been solved for the same

structure, imposing a bound on its structure ductility. To reach a numerical

solution, the parametric approach described in Chapter 4 has been utilized

and problems (4.6) and (4.7) has been solved. In particular, the residual dis-
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Figure 5.24: Continuous variable unlimited ductility optimal design: Bree diagram

(N serviceability condition, • instantaneous collapse condition).

placements related to the top floor has been bounded to be not greater than

12 cm.

The obtained results are reported in Table 5.12 in terms of optimal vol-

ume and optimal thicknesses. In the same table, the obtained value of the

perturbation multiplier related to the minimum volume is reported.

As expected the limited ductility design is heavier than the former one. The

safety characteristics of the two obtained optimal designs can be interpreted

by means of the related Bree diagrams plotted in Figures 5.24, 5.25, where ξ0

and ξc are the multipliers of the fixed and cyclic (seismic) load, respectively. It

is worth noticing that the constraint imposed on the chosen displacement im-

proves the resistance capacity of the optimal structure. Actually, the obtained

strength and stiffness increment for the pillars guarantees a related increment

of the global safety factor for the optimal structure.

Following the same approach as before, the plane frame in Figure 5.22

has been studied always searching for the unlimited ductility optimal design,

but assuming all the design variables as appertaining at the same discrete set

Td ≡ {4, 6, 8, . . . , 24 mm}, d = 1, 2, . . . , 15. For the numerical computation the

above discrete variable optimization problem has been solved by utilizing the

appropriate Harmony Search (HS) exposed in Chapter 4.

The obtained results are reported in Table 5.13 in terms of optimal volume

and optimal thicknesses.
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5.2 Case studies of frames under quasi-static cyclic loads

Figure 5.25: Continuous variable limited ductility optimal design: Bree diagram (N
serviceability condition, • instantaneous collapse condition).

Volume: 0.505

El. 1 2 3 4 5

t 18.0 18.0 18.0 10.0 10.0

El. 6 7 8 9 10

t 10.0 6.0 6.0 6.0 10.0

El. 11 12 13 14 15

t 4.0 8.0 4.0 8.0 6.0

Table 5.13: Discrete variable unlimited ductility optimal design: volume (m3) and

thicknesses (mm).

Volume: 0.552

ω : 70.8

El. 1 2 3 4 5

t 18.0 18.0 18.0 10.0 10.0

El. 6 7 8 9 10

t 10.0 8.0 8.0 8.0 10.0

El. 11 12 13 14 15

t 4.0 8.0 8.0 10.0 8.0

Table 5.14: Discrete variable limited ductility optimal design: volume (m3) and

thicknesses (mm).
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Figure 5.26: Discrete variable unlimited ductility optimal design: Bree diagram (N
serviceability condition, • instantaneous collapse condition).

Figure 5.27: Discrete variable limited ductility optimal design: Bree diagram (N
serviceability condition, • instantaneous collapse condition).

Finally, the limited ductility optimal design has been determined for the

same discrete variable structure, yet imposing a bound (12 cm) on the residual

displacement of the top floor. The obtained results are reported in Table 5.14

in terms of optimal volume and optimal thicknesses. Furthermore, in the same

table the founded value of the perturbation multiplier is reported.

Even in this case, the limited ductility design is heavier than the former one

but, as it is possible to verify by analyzing the related Bree diagrams plotted

in Figure 5.26, 5.27, the modest volume increment is related to a very useful

increment of the global safety factor for the optimal structure.
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5.3 Case studies of frames under dynamic loads

Figure 5.28: Three floor steel frame: geometry and load condition.

5.3 Case studies of frames under dynamic loads

With reference to the formulations proposed in section (3.2), three different

applications have been addressed. At first the minimum volume design problem

(3.74) has been solved for the frame plotted in Figure 5.28 constituted by

rectangular box cross section elements (Figuere 5.29) with b = 200 mm, h =

300 mm, and constant thickness t variable in the continuous range between

tmin
c = 4 mm and tmax

c = 40 mm. The following technological constraint on

the pillars has been introduced: the thickness of the typical pillar must be not

greater than the thickness of the pillar below. The cross sections of all the

elements are disposed so that the axis related to the greater moment of inertia

is orthogonal to the plane of the relevant frame. Furthermore, L1 = 600 cm,

L2 = 400 cm, H1 = 500 cm, H2 = H3 = 500 cm, Young modulus E = 250 GPa

and yield stress σy = 235 MPa have been assumed.

The frame is modeled as an elastic perfectly plastic discrete structure; actu-

ally, it is constituted by perfectly elastic beam elements delimited by two rigid

perfectly plastic hinges located at their extremes. Furthermore, an additional

rigid perfectly plastic hinge is located in the middle point of the longer beams.

The plastic admissibility of the structure is evaluated in correspondence of each
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Figure 5.29: Typical rectangular box cross section.

hinge making reference to the domain already described in in section 5.2.

The structure is subjected to a fixed uniformly distributed vertical load

q0 = 40 kN/m, and to seismic actions modeled as in section (3.2.2). As usual,

the value assumed for the seismic masses depends on the remark that during

the earthquake not all the gravitational loads are considered as acting on the

structure, so mi = (0.8 q0`i)/g, where g is the acceleration of gravity, i =

1, 2, . . . , 9 is the number of masses and `i is the influence length of the ith mass.

Furthermore, according with the previously described load combinations, ξs0 =

ξl0 = 0.8 has been utilized.

With the aim of defining the seismic input the parameters of the Kanai-

Tajimi [87] filter have been selected, as usual for stiff soil characteristics,

as ωg = 5π rad sec−1 and ζg = 0.6, whereas the white noise intensity has

been assumed as Ss0 = 0.0028 m2 sec−3 for serviceability conditions and Sl0 =

0.0064 m2 sec−3 for instantaneous collapse ones. It is worth noticing that the

same seismic ground motion will be used for all the effected applications.

Being the problem a strongly nonlinear one, in order to reach the numerical

solution an appropriate Harmony Search (see e.g. section 4.2) has been utilized.

As known, the Harmony Search is a solution strategy suitable for large opti-

mization problem involving continuous and/or discrete design variables and,

furthermore, it does not require the use of derivatives. The obtained results

are reported in Table 5.15 in terms of optimal volume and optimal thicknesses.

The safety characteristics of the obtained optimal designs can be interpreted

by means of the related Bree diagram plotted in Figure 5.30 where ξ0 and ξc are

the multipliers of the fixed and seismic load, respectively. It is wort noting that

the limit curve of the Bree diagram is obtained referring to an approximate

limit analysis for the reasons exposed in section (3.2).
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5.3 Case studies of frames under dynamic loads

Volume: 0.864

El. 1 2 3 4 5

t 13.4 25.6 21.2 6.4 23.9

El. 6 7 8 9 10

t 14.6 4.2 7.8 10.3 9.9

El. 11 12 13 14 15

t 27.9 11.9 13.7 6.0 5.6

Table 5.15: Optimal volume (m3) and thicknesses (mm) of the frame plotted in Fig-

ure 5.28.

Figure 5.30: Bree diagram related to the combination of fixed loads and seismic

actions (N serviceability condition, • instantaneous collapse condition).

As previous referred, the second application regards the solution to prob-

lem (3.83) which searches for the optimal mechanical characteristics of a base

isolation system supporting a given known structure. At this purpose, let us

make reference to the frame plotted in Figure 5.31.

The overhanging structure is assumed to be equal to that used in the pre-

vious case for both geometry and mechanical characteristics; it differs only by

the addition of two beams at the soil level and for a different thickness distri-

bution, as reported in Table 5.16. The thicknesses of the beam elements have

been chosen as the ones which ensures an elastic response to the fixed loads,

adopting a safety factor with value not lower than 1.4. The relevant volume

results 0.349 m3. The minimum value for the stiffness of the base isolation sys-

tem has been assigned kmin
b = 0.05kN/mm and a fixed damping ratios (10%)
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Figure 5.31: Base isolated steel frame: geometry and load condition.

for the base isolation system has been imposed.

As imposed with the constraints of problem (3.83) the optimal solution is

related with a base isolated structure which must exhibit an elastic behavior for

fixed loads and an elastic shakedown behavior for the combination of reduced

fixed loads and high seismic actions. The numerical solution has been reached

by a suitable parametric procedure coded in MatLab which explores for a

discrete interval of base isolation stiffness values the response in terms of base

isolation displacement and shakedown load amplifier.

As it is possible to observe from Figure 5.32 the problem provides a solu-

tion respecting the relevant constraints for values of stiffness of the isolation

system less than kb = 0.255kN/mm (shakedown multiplier with value equal to

1). Furthermore, for that limit value of stiffness the minimum base isolation

displacement ub = 51.5mm has been found (Figure 5.33). In order to show

the optimal design structural sensitivity the Bree diagram has been plotted in

Figure 5.34.

It is easy to remark that the utilization of the base isolation system allows to
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5.3 Case studies of frames under dynamic loads

Volume: 0.349

El. 1 2 3 4 5 6

t 4.1 4.2 4.1 4.1 4.1 4.1

El. 7 8 9 10 11 12

t 4.1 4.0 4.1 5.4 4.2 5.5

El. 13 14 15 16 17 -

t 4.1 5.3 4.2 5.6 4.1 -

Table 5.16: Volume (m3) and thicknesses (mm) assumed for the base-isolated frame

plotted in Figure 5.30.

Figure 5.32: Base isolation stiffness VS Base isolation displacement diagram: • op-

timal value.

Figure 5.33: Base isolation stiffness VS Shakedown multiplier diagram: • service-

ability condition.
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5 Case studies

Figure 5.34: Bree diagram related to the combination of fixed loads and seismic

actions ( • limit condition).

obtain an optimal structure with a volume definitely lower than the previously

computed one (volume reduction of about 60%) but which guarantees a full

usability of the structure during its lifetime preventing any collapse mode even

under high level seismic loads. Such a good feature it is not invalidate by the

cost of the base isolation system which normally it is not greater than 15÷20%

of the structure cost.

The last exposed example describes a design approach which can be cer-

tainly applied to the design of new structures but it possesses its fundamental

interest in existing structures to be improved against seismic actions.

Actually, the complete general approach in order to compute the optimal

design of a new structure provided with a base isolation system is described

by problem (3.84) in which geometrical structure features and mechanical base

isolation system ones are considered as variables of the relevant optimization

problem.

As a consequence, a third application has been effected related to the search

for the minimum volume design of the same frame structure provided with

a base isolation system with damped and stiffness features variable within

assigned ranges (mixed formulation).

The data of the problem are the same as the ones assumed for the first

application, and more: kmin
b = 0.05kN/mm, kmax

b = 0.5kN/mm, ζmin
b = 0.10,

ζmax
b = 0.15.

The numerical procedure utilized to reach the solution to problem (3.84)

is the already described harmony search, here adapted with further design
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5.3 Case studies of frames under dynamic loads

Volume: 0.317

El. 1 2 3 4 5 6

t 4.1 4.0 4.0 4.1 4.0 4.0

El. 7 8 9 10 11 12

t 4.1 4.0 4.0 4.1 4.1 4.2

El. 13 14 15 16 17 -

t 4.1 4.3 4.1 4.0 4.1 -

Table 5.17: Optimal volume (m3) and thicknesses (mm) of the base-isolated frame

plotted in Figure 5.30.

Figure 5.35: Bree diagram related to the combination of fixed loads and seismic

actions (• limit condition).

variables and constraints.

The results are obtained in terms of stiffness kb = 0.184kN/mm and damp-

ing ratio ζb = 0.143 of the base isolation system, and in terms of optimal

thicknesses and volume as reported in Table 5.17. The maximum base isola-

tion system displacement ub = 54.1mm has been found. The Bree diagram of

the obtained design is plotted in Figure 5.35.

As it is possible to observe this last improved design exhibits a very sure

shakedown behavior, it suffers a base isolation system displacement definitely

acceptable from a technological point of view and guarantees a further cost

saving of about 10%.
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Chapter 6

Conclusions

In the present thesis the analysis and design problem of elastic perfectly plastic

structures subjected to dynamic loads has been studied.

Starting from the vast scientific literature on this topic and with the aim

to refer to cases of great practical interest, e.g. civil and industrial buildings

affected by catastrophic events such as earthquakes and strong wind loads,

new optimal design problem formulations together with suitable solution pro-

cedures have been provided. Further, a particular dynamic shakedown analysis

for uncertain elastic plastic structures subjected to stochastic loads has been

proposed.

In general, the response of an elastic plastic structure subject to quasi-

static or dynamic load histories, can be analyzed through incremental analysis

procedures. Actually, the loads acting upon the structures are random by

nature, and from a deterministic point of view, it is impossible to control the

structural response for each of the infinite possible load histories. So, it is usual

to describe the loads through a suitable domain representing the maximum and

minimum expected values.

An elastic-plastic structure subject to such load model can exhibit different

structural behaviors depending on the load intensity, such for example it could

respond in a purely elastic manner, it could suffer plastic deformations or it

could collapse immediately to the loads application.

When the structure suffers plastic deformations in a first and than it re-

sponds in an elastic manner, it is said that the structure shakes down to an

elastic state. As known, the elastic shakedown is a safe criterion to treat

elastic-plastic structure because it allows the developing of some plastic strain
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6 Conclusions

avoiding dangerous phenomena as low cycle fatigue, ratcheting and instanta-

neous collapse.

When the structure is subjected to a domain of perfectly cyclic loads vary-

ing in time in a quasi-static manner, one can refer to the well-known classical

shakedown analysis. When the loads to consider are variable in time so rapidly

that inertia and damping forces cannot be neglected, one has to refer to the

dynamic shakedown analysis in which a suitable domain of excitations can be

considered.

Whenever one wants to consider the conditions under which an elastic plas-

tic structure shakes down under a stochastic dynamic load, the use of an exci-

tation domain is improper. In fact, ensure that the structure shakes down for

any excitation belonging to the given domain means ensuring the shakedown

for an event with probability one and so the stochasticity of the problem disap-

pears. In the present thesis, starting from the concept of arbitrary excitation

history namely a load history made by finite excitations paused by intervals

of no-motion of arbitrary length, a probabilistic assessment of dynamic shake-

down analysis has been given. In particular, by matching every excitation with

the stationary segment of a scalar normal stochastic process it was possible to

define a probabilistic shakedown safety factor. This load model seems to be ad-

equate to represent wind load upon the structure and a numerical application

related to plane steel frames has been effected in order to show the effective-

ness of the proposed method. This analysis can lead to the formulation of a

reliability-based optimization problem. The research in this topic are still in

progress and they will constitute the subject of future developments.

It is easy to understand that the above mentioned analyses can be effected

for structures whose geometry, load conditions and mechanical characteristics

are completely known. If the geometry of the structure or other parameters

are treated as free variables, one has to solve an optimization problem.

Solving a structural design problem means the reaching, among all the fea-

sible designs, of the one which minimizes or maximizes a chosen quantity. In

the present thesis reference has been made to the so-called “sizing optimiza-

tion problems with stress constraints” in which the minim volume of a frame

structure has been searched treating as variables the thicknesses of the cross

sections of all the beam elements. The structure has been considered subjected

to multiple load combinations and thus different stress constrains have been
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imposed to the optimal design.

In particular, a first group of formulations have been proposed idealizing the

seismic loads on the structure as a perfect cyclic quasi-static load and taking

into account inertia and damping effects in an approximate way trough the

use of the response spectrum method. Three different load combinations have

been considered in correspondence of which three different structural behaviors

have been imposed so that the structure must behave in a purely elastic manner

when subjected to fixed (dead) loads, it must respond eventually in an elastic

manner when subjected to a combination of fixed and low intensity seismic

loads (i.e. it must shakes down) and finally, it must prevent the instantaneous

collapse when subjected to fixed and high intensity seismic loads.

This formulation, being based on first order theories such as shakedown and

limit analysis, has been improved in order to take into account dangerous effects

as buckling and P-∆ effects. Furthermore, due to the special loading model

assumed, the exact amount of plastic strains accumulated in the transient phase

is not known. So, making reference to the so-called “bounding techniques” a

special formulation has been proposed for structures with limited ductility.

A second group of optimal design problem formulations has been presented

making reference to the so-called “repeated seismic excitation model” in which

seismic waves are represented trough a spectral decomposition as a convex do-

main of excitations. With this special load model it is possible to formulate

an optimization problem in which the seismic actions are treated in all their

dynamic nature. As usual three different load combinations have been con-

sidered in correspondence of which three different structural behaviors have

been imposed. In particular, the structure must exhibit a purely elastic be-

havior when subjected to fixed loads, it must eventually dynamically shakes

down when subjected to fixed loads and repeated seismic loads of low intensity

and, it must prevent the instantaneous collapse when subjected to fixed loads

and repeated seismic loads of high intensity. It is worth noting that the last

condition has been imposed in an approximate way because the exact one is un-

feasible from a practical point of view. Furthermore, some special formulations

for base-isolated structure have been exposed.

As known, to solve an optimization problem spacial computational proce-

dures must be adopted. When the problem is formulated with variable varying

in a continuous range many iterative procedures consisting in the linearization

129



6 Conclusions

of the original functions by using their derivatives with respect to the design

variables are available. In the present thesis, due to the high non linearity of

the relevant search problems, a suitable iterative technique based on the main

assumption that all the quantities depending on the design variables can be

expressed as a linear functions of these variables, i.e. as the sum of their values

at the previous step plus the product of their partial derivatives with respect

to the design variables times the increments of the design variables, has been

utilized. It is worth noting that the design reached by means of this iterative

technique coincides with the design obtainable by solving the original problem

because the design and behavioral variable values obtained by means of the

proposed technique fulfill all the Kuhn-Tucker equations related to the original

design problem.

When the design variables belong to discrete sets, in order to solve the

problem, combinatorial optimization method are more appropriate. In the

last decades, many algorithms relying analogies to natural processes have been

presented. Among them, the so-called “harmony search method” has been

here specialized to solve discrete variable design problems with shakedown and

limit constraints.

In the framework of numerical applications, special reference is made to

frame structures. For each optimal design the related Bree diagrams are plotted

and the different features of the special behavior of the obtained structures are

discussed. The results allow to confirm the theoretical expectations in terms

of behavioral features of the obtained optimal designs and, furthermore, they

provide useful information on many case of technical interest.
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