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Abstract 

The interpretation of volcanic gas datasets offers key information to build/validate 

geological models relevant to a variety of volcanic processes and behaviours, including 

eruptions. Major efforts have therefore been spent in recent years to improve our ability to 

measure volcanic gas compositions and fluxes. 

 In the last decades, near-infrared room-temperature diode lasers, though in an 

experimental phase, are finding applications in volcanic gas studies. In this PhD 

dissertation, I use the GasFinder 2.0, a commercial tunable diode infrared laser transmitter-

receiver unit, operating in the 1.3-1.7 m wavelength range, in the attempt to measure CO2 

mixing ratios and fluxes in volcanic gas emissions. 

I initially report on the first field tests  conducted at Campi Flegrei volcano (near Pozzuoli, 

Southern Italy). In later sections, I then focus on observations performed at other degassing 

systems (Nea Kameni volcano, Greece; Hekla Volcano and Krýsuvík hydrothermal area, 

Iceland; Furnas volcano, Azores; Vulcano summit crater and Paternò area, Italy). In all 

such systems, the GasFinder was used to repeatedly measure the path-integrated mixing 

ratios of CO2 along cross-sections of the atmospheric plumes of the main fumarolic fields. 

At each site, an ad-hoc designed measurement geometry was used, using the GasFinder 

unit and several retro-reflector mirrors, to scan the plumes from different angles and 

distances. From post-processing of the data using a tomographic Matlab routine, the 

contour maps of CO2 mixing ratios in the fumaroles' atmospheric plumes were resolved for 

each of the manifestations. From their integration (and after multiplication by the plumes’ 

transport speeds), the CO2 fluxes were evaluated. The so-calculated fluxes range from 5.7 

± 0.9 (Krýsuvík) to 524 ± 108 (Vulcano) tons/day, supporting a significant contribution of 

fumaroles to the global CO2 budget. Overall, the results presented in this study contribute 

to improve understanding of the rates of CO2 release from sub-aerial volcanism.  Our 

observations suggest, in particular, that the cumulative CO2 contribution  from weakly 

degassing volcanoes in hydrothermal stage may more significant at global scale. Than 

previously thought. 
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Chapter 1 

 

1. Introduction 

In the last decades, near-infrared room-temperature diode lasers have increasingly been 

used in atmospheric research (Werle 1998) and, though in an experimental phase, are now 

finding applications in volcanic gas research (Gianfrani et al. 1997a; 1997b; 2000; De 

Natale et al. 1998; 2001; Richter et al. 2002; Belotti et al. 2003; De Rosa et al. 2007). 

Prototypes for simultaneous detection of CO2 and H2O mixing ratios in volcanic gas 

mixtures are under testing (Gagliardi et al. 2001), and the possibility to measure the isotope 

(
13

C/
12

C) composition of volcanic carbon (Gagliardi et al. 2002; 2003; Weidmann et al. 

2005) has also been recently explored. Yet, the application of lasers to volcanic gas studies 

is still an emerging research field, and requires more testing and validation experiments. 

In this thesis, the use of Tunable Diode Laser Spectrometers (TDLS) for estimating 

volcanic/hydrothermal CO2 fluxes from dormant volcanoes is explored. I report on the 

results of TDL observations I conducted in a selected number of volcanic/hydrothermal 

areas: Campi Flegrei, Vulcano Island, and Paternò mud volcano (all in Italy); Nea Kameni 

(Santorini, Greece), Hekla and Krýsuvík (Iceland) and Furnas (Azores). These volcanoes 

were selected because they display a range of fumarolic activity, from weak (Hekla) to 

moderate (Vulcano Island). While there are strong arguments for that the global volcanic 

CO2 budget is dominated by a relatively small number of strong emitters (Shinohara 2013), 

it remains that are weakly degassing volcanoes that dominate - at least in number - the 

population of historically active volcanoes on Earth. The CO2 output from these passive, 

sluggish emissions needs to be better explored and quantified. 

The purposes of the PhD thesis are: (1) to present an experimental set-up for measuring 

volcanic gas manifestations via a Tunable IR Laser; (2) to test the performance of a 

tomographic technique to contouring CO2 mixing ratios in volcanic plumes, (3) to use the 

tomographic reconstruction to estimate CO2 fluxes and (4) to characterise the typical levels 

of CO2 emission from feeble volcanic point sources in solfatara stage of activity. 

 

 



 

3 
 

1.1 Motivation 

The chemical composition of volcanic gas emissions can provide hints onto the 

mechanisms of magma ascent, degassing and eruption (Allard et al. 2005; Burton et al. 

2007; Oppenheimer et al. 2009; 2011), and can add useful information for interpreting the 

dynamics of fluid circulation at dormant volcanoes (Giggenbach 1996; Chiodini et al. 

2003; 2012). 

Carbon dioxide (CO2) is, after water vapour, the main constituent of volcanic (Giggenbach 

1996) and hydrothermal (Chiodini et al. 2005) gases, and has attracted the attention of 

volcanologist because it can effectively contribute to track magma ascent prior to eruption 

(Aiuppa et al. 2007; 2010). Volcanic gases have traditionally been monitored by means of 

direct in-situ sampling of fumaroles (Fischer 2008), followed by laboratory analysis 

(Symonds et al. 1994). 

Giggenbach’s (1975) soda flasks allow several species to be measured simultaneously, but 

requires post-collection chemical determinations in a laboratory, that preclude any real-

time continuous monitoring of volcanic activity.  

In addition, direct sampling is often impractical and hazardous, particularly during 

eruptions, or of too low temporal resolution. Efforts have therefore been made (since the 

1970s) to improve volcanological applications of optical remote-sensing techniques, 

including the Correlation Spectrometer (COSPEC; Millan et al. 1985), Differential Optical 

Absorption Spectroscopy (DOAS; Galle et al. 2003), Light Detection and Ranging 

(LIDAR; Svanberg 2002) or open-path Fourier Transform Infrared spectroscopy (FTIR; 

Francis et al. 1998). These optical techniques rely on resolving the wavelength-dependent 

“fingerprints” of target molecules. They have proved particularly successful in the UV 

region of the electromagnetic spectrum, where volcanic SO2 can strongly absorb radiation 

(typically scattered sunlight), enabling estimation of SO2 fluxes (Oppenheimer 2010). 

The SO2 flux has been widely measured for volcano monitoring purposes, demonstrating 

its utility as a tracer of magmatic processes (Edmonds et al. 2003; Caltabiano et al. 2004), 

and as a precursor to eruptive activity (Daag et al. 1996). 

In contrast, measurement of H2O and CO2 fluxes, the two major volcanic gas components, 

has long been a goal of volcanology, yet one frustrated by the dwarfing of the 

volcanogenic signals by these species’ high atmospheric background levels (Aiuppa et al. 

2008). 
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Fourier transform Infra Red (FTIR) spectrometers have valuably been used for both active 

(e.g., using an artificial IR lamp; Burton et al. 2000) and passive (using the magma or hot 

rocks as source; Allard et al. 2005; Burton et al. 2007; Sawyer et al. 2008; Oppenheimer et 

al. 2009) observations of volcanic CO2 mixing ratios in plumes. 

Fourier Transform Infra Red (FTIR) spectroscopy has been used to record the total gas 

composition from some volcanoes, e.g., Stromboli (Burton et al. 2007), Yasur 

(Oppenheimer et al. 2006), Masaya (Burton et al. 2000) and Nyiragongo (Sawyer et al. 

2008). H2O and CO2 FTIR measurements have been carried out in attempt to estimate the 

fluxes of these species e.g., at Etna volcano (Allard 2005). 

Aiuppa et al. (2007; 2008) and Shinohara et al. (2008) reported H2O, CO2 and SO2 

concentration time series detected in the plumes (from Etna’s summit vents), using the 

MultiGAS technique. Combining MultiGAS measurements and remotely sensed SO2 

fluxes they made the first assessment of Etna’s H2O flux, and extended further the limited 

CO2 emission database (Allard et al. 1991; Aiuppa et al. 2006). 

Attempts to estimate the CO2 flux were carried out by Yoshimura et al. (2013) analysing 

melt inclusion (MI) in Etna’s samples characterized by high CO2/H2O. Starting from MI 

data and the detailed eruption history (duration of CO2 fluxing), they estimated a CO2 flux 

of 2.4–6.0 kt/day, consistent with the observed CO2 emission  rate of 1–10 kt/day (Aiuppa 

et al. 2008) for the same period (Fig. 1.1). 

 

Fig. 1.1 Plots taken from Aiuppa et al. 2008. Top: SO2 (red, right scale) and CO2 (blue, left scale) fluxes (all 

fluxes in tons/day); the former obtained from car traverses, and the latter by multiplying these SO2 emission 

rates by the Voragine crater CO2/SO2 ratios. Bottom: CO2 fluxes obtained by multiplying data from the 

permanently installed Multi-GAS at Voragine crater and the network of UV scanning spectrometers. The 

unshaded areas represent periods of passive degassing from the central craters; whilst the grey areas mark 

periods of semi-continuing effusive and mild-explosive eruptive activity at the South–East Crater. 
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CO2 emissions from fumarolic fields can be determined through the introduction of a 

known flux of a tracer gas (e.g. SF6). Measuring the volcanic CO2/SF6 ratio in emissions 

placed downwind, Mori et al. (2001) calculated the CO2 flux at fumarolic vents at Izu-

Oshima and Kirishima (Japan) and Teide (Canary Islands, Spain). Most previous 

assessment of the CO2 flux have been obtained indirectly from co-acquired SO2 fluxes and 

volcanic gas CO2/SO2 ratios (Aiuppa et al. 2006; 2010; McGonigle et al. 2008; Burton et 

al. 2009). The available dataset of volcanic CO2 fluxes is however still fragmentary, and 

estimates of the global volcanic CO2 flux are poorly accurate (Burton et al. 2013). 

The measurement of the soil CO2 flux, received more attention for both geothermal 

prospection and volcanic surveillance. The soil CO2 flux, is a permeability-indicator and 

can be used as a prospecting tool to locate geothermal reservoirs of different temperature 

(Chiodini et al. 1998). To determinate the soil CO2 flux, both indirect and direct methods 

are known. 

The direct methods for the determination of soil CO2 flux  require dynamic or static 

procedures. The dynamic procedures consist in the measurement of CO2 concentration in a 

known air soil flux, through an inverted chamber and across a known surface of the soil 

(e.g. Reiners 1968; Kucera and Kirkham 1971). Gurrieri and Valenza (1988) inserted in the 

soil a pipe opened at the base (1.3 cm in diameter and 50 cm long). A known flux of gas is 

pumped out from the base of the pipe and the CO2 concentration of this gas is continuously 

measured. The sucked gas is replaced by atmospheric air entering the top of the pipe. After 

a given time, the CO2 concentration reaches a constant value termed “dynamic 

concentration (Cd)” which is proportional to the soil CO2 flux (Diliberto et al. 2002). 

However, in order to calculate soil CO2 flux, the “Cd” value must be multiplied by a factor 

which depends on the experimental device, working conditions as well as physical 

characteristics of the soil in each measurement point.  

Many researchers have performed soil CO2 flux measurements by using static techniques 

which utilize an alkaline solution (e.g. Lieth and Ouelletle 1962; Cerling et al. 1991), or 

solid soda lime (Edwards 1982; Cropper et al. 1985) to absorb CO2 that is released from 

the soil into an inverted and closed container.  Another static technique for measuring the 

soil CO2 flux consists of the determination of the rate of increase in the CO2 concentration 

within an inverted chamber placed on the soil surface. This technique, known as the 

accumulation chamber method or closed-chamber method, has been successfully used, at 

the beginning, in agricultural sciences to determine soil respiration (Parkinson, 1981) and 
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to measure the flux from the soil of other gaseous species, e.g., N2O (Kinzig and Socolow, 

1994), and CO2 (Chiodini 1998; Viveiros 2010).  

 

The volcanic/hydrothermal CO2 flux sustained by diffuse soil degassing can relatively 

easily be measured both in surveys (Reiners 1968; Kucera and Kirkham 1971; Kanemasu 

et al. 1974; Parkinson 1981; Chiodini et al. 1996a; Favara at al 2001; Hernandez 2001; 

Rogie 2001; Cardellini et al. 2003; Chiodini et al. 2005; Inguaggiato et al. 2005; Pecoraino 

et al. 2005; Mazot et al. 2011; Inguaggiato et al 2012; Burton et al. 2013) and with 

permanent installations (Brusca et al. 2004; Carapezza et al. 2004; Werner and Cardellini 

2006; Inguaggiato et al. 2011).  

 

1.2 Thesis objectives 

This study reports on the results of measurement field surveys conducted with a 

commercial IR Diode Laser system (GasFinder 2.0) at several volcano targets. A new post-

processing routine is also presented, which allows for the volcanic CO2 output to be 

quantified for each of the investigated areas. As such, the presented results add novel 

information on the CO2 degassing regime of quiescent volcanoes in solfatara stage of 

activity, and on their potential contribution to the global volcanic CO2 budget.   

 

1.3 Content summary 

This thesis is divided into four main sections: 

Section 1: Introduction (Chapter 1) 

Section 2: Theory and Methodologies (Chapters 2-3-4) 

Section 3: Results and discussions (Chapters 5-6) 

Section 4: Conclusions (Chapter 7) 
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Chapter 2 

Near-infrared Spectroscopy 

2.1 Infrared Spectroscopy: an introduction 

Spectroscopy is the study of the absorption and emission of light and other radiations by 

matter, and of the dependence of these processes on the wavelength of the radiation. More 

recently, the definition has been expanded to include the study of the interactions between 

particles such as electrons, protons, and ions, as well as their interactions with other 

particles as a function of their collision energy. 

Spectroscopic techniques, applied in virtually all technical fields of science and 

technology, are extremely sensitive. Single atoms and even different isotopes of the same 

atom can be resolved among 10
20

 or more atoms of a different species. Trace amounts of 

pollutants or contaminants are often detected most effectively by spectroscopic techniques. 

Spectroscopy is actually a measure of the interaction of photons with matter as a function 

of the photon energy. The energy E of a photon (a quantum of light) is related to its 

frequency ν by the relation E = hν, where h is Planck’s constant. 

 

2.2 General principles 

Electromagnetic radiation is composed of oscillating electric and magnetic fields that have 

the ability to transfer energy through space. The energy propagates as a wave, such that the 

crests and troughs of the wave move in vacuum at the speed of 299,792,458 metres per 

second. The distance between successive crests in a wave is called wavelength. The 

various forms of electromagnetic radiation differ in wavelength. For example, the visible 

portion of the electromagnetic spectrum has wavelengths ranging between 4 × 10
−7

 and 8 × 

10
−7

 metre. The decomposition of electromagnetic radiation into its component 

wavelengths is fundamental to spectroscopy. 

The frequency with which the electromagnetic wave oscillates is also used to characterize 

the radiation. The product of the frequency (ν) and the wavelength (λ) is equal to the speed 

of light (c); i.e., νλ = c. The frequency is often expressed as the number of oscillations per 

second, and the unit of frequency is hertz (Hz), where one hertz is one cycle per second. 

http://www.britannica.com/EBchecked/topic/488507/radiation
http://www.britannica.com/EBchecked/topic/528756/science
http://www.britannica.com/EBchecked/topic/585418/technology
http://www.britannica.com/EBchecked/topic/458038/photon
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Vibrational Spectroscopy is used as a tool for studying the structures of atoms and 

molecules. The large number of wavelengths emitted by these systems makes it possible to 

investigate their structures in detail, including the electron configurations of ground and 

various excited states. 

It also provides a precise analytical method for finding the constituents in material having 

unknown chemical composition. In a typical spectroscopic analysis, a concentration of a 

few parts per million of a trace element in a material can be detected through its emission 

spectrum. 

The model for the vibrational motion of a diatomic molecule is the one-dimensional 

harmonic oscillator. An oscillator is a system capable of converting periodicity with the 

potential energy into kinetic energy and vice versa; the oscillator is harmonic if the 

dynamics are described by the relation: f =  k x, which indicates that the returning force (f) 

is proportional to the contrary of the shift (x) from the equilibrium position through the 

constant k. In other words, vibrational spectroscopy can be thought of by starting with a 

simple harmonic oscillator model. In this model, two atoms are joined by a bond to be 

equivalent to two masses joined by a spring. The spring can be compressed, forcing the 

spheres close to each other - stretched, moving them apart - or allowed to freely come to 

rest in the spheres' equilibrium positions. This can be shown in a potential energy curve 

(Fig. 2.1). 

 

Fig. 2.1 Simple harmonic oscillator model. Two atoms are joined by a bond to be equivalent to two masses 

joined by a spring. The spring can be compressed, forcing the spheres close to each other - stretched, moving 

them apart - or allowed to freely come to rest in the spheres' equilibrium positions. See text. 

 

The potential energy function is given by the expression (2.1): 

                                              
V fdx kx  

1

2

2

                                             (2.1) 
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that is a harmonic oscillator is characterized by a potential energy of parabolic type (Fig. 

2.1). 

The possible vibrational states are given by the vibration quantum number, v, and 

vibrational selection rule Δv = ±1 where the positive sign corresponds to the absorption 

and the negative to the emission. 

The energy of each level, Ev, is given by: 

                                                   Ev = (v + ½)hυ                                                             (2.2) 

where υ is the fundamental frequency. 

The fundamental frequency is given by the equation: 

                                                      υ = (1/2π) × (k/μ)1/2                                                  (2.3) 

where μ is the reduced mass of the molecule, and k is the bond force constant. Note that 

this k is similar to the spring force constant from Hooke's Law. This leads to a potential 

energy surface as that shown in figure 2.2. 

 

 

Fig. 2.2 Simple Harmonic Oscillator model in which the possible vibrational states are given. The energy 

levels are equally spaced, and the equilibrium bond length is constant for all energy levels. 

 

The energy levels are equally spaced, and the equilibrium bond length is constant for all 

energy levels. However, this model is imperfect - it does not account for the possibility of 

bond dissociation (under this model, the bond would never break, no matter the magnitude 

of the vibrational energy). It also does not account for extra repulsive effects at very small 

bond lengths caused by the electroweak force. This is the force which prevents atoms for 

being forced together as the distance between them gets very small (the reason nuclear 

fusion only occurs at very high temperatures, for example). A model which takes into 
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account these factors, and which more accurately models a vibration diatomic molecule, is 

the Anharmonic Oscillator, and the corresponding potential energy surface called the 

Morse potential. The corresponding potential energy curve is shown in figure 2.3. 

 

 

Fig. 2.3 Anharmonic Oscillator model of the diatomic molecule vibration, which includes the possible bond 

dissociation. Bond length is not the same for all energy levels. 

 

In this model, the bond length is not the same for all energy levels. One effect of the 

anharmonicity is this deformation as the energy of the vibrations increases. Another is that 

now, the vibrational energy levels are no longer equally spaced, but instead get closer 

together as the vibrational quantum number increases. This model also illustrates that the 

number of vibrational energy levels is not infinite - above some energy, the bond breaks 

and the molecule dissociates. 

In the infra-red (IR) region of the electromagnetic spectrum, vibrational energies occur 

roughly in the 100 - 4000 cm
-1

 (about 1 - 50 kJ mol
-1

). The fundamental principle for 

obtaining a vibrational spectra is that the electric dipole moment of the molecule must 

change during the vibration.  If there is no change in dipole moment, then this particular 

vibration will not give rise to any absorption in the IR region. An example of this can be 

seen below for the symmetric stretch mode of carbon dioxide.  Because both C=O bond 

lengths change exactly in phase, there is never a net dipole moment on the molecule. A 

homonuclear diatomic molecule such as dioxygen (O2) has zero dipole moment, so it has 

no IR spectrum. 

The number of modes (types) of vibration can be predicted for a molecule, containing N 

atoms, using the following general expressions (Table 2.1). For linear molecule (such as 

CO2), the possible “normal vibration modes” rise to 3N-5; where N is the atoms number. 
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Table 2.1 The number of modes (types) of vibration. 

Linear molecules Non-linear molecules 

3N - 5 3N - 6 

 

2.3 CO2 Structure 

Linear molecules such as CO2 can generally be treated as diatomics with regard to their 

moments of inertia. The moment of inertia on the A-axis (IA), along the molecule (figure 

2.4), is approximately zero:  and the other two moments (IB and IC) are equal (IB = IC). 

Figure 2.4 shows two axes of symmetry of CO2, including an infinite number of C2 axes 

that align through the C atom and perpendicular to the bonds. These axes are two-fold 

symmetric, thus a rotation of 180° produces an indistinguishable change. In addition, CO2 

has the C∞ axis  along the molecule, along which an infinite number of rotations produces 

no distinguishable change in orientation. Because CO2 has an ∞-fold axis C∞ that is 

perpendicular to an infinite number of planes of symmetry, it belongs to the point group 

D∞h and has a symmetry number σ=2 (Herzberg 1991). 

 

 

Fig 2. 4 CO2  axes of symmetry. 
 

 

Table 2.2 shows the main properties of CO2 molecule (Khristenko 1998). Since CO2 is 

linear and symmetric, it does not have a permanent dipole moment. Thus, CO2 is only 

spectroscopically active in the IR when a dipole is induced due to bending or asymmetric 

stretching (as explained above; see also Figure 2.5). 

 

Table 2.2 CO2 property (by Khristenko 1998). 

Property Value 

Mass 44 [uma] 

Bond length r0 (CO) = 1.162 [ Å ] 
Rotational constant B0 = 0.390 [cm

-1
] 

Symmetry number σ = 2 
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Carbon dioxide has four classically-described vibrational modes, of which two bending 

modes are degenerate, as shown in Figure 2.5. 

The two stretching modes, asymmetric and antisymmetric, are parallel vibrations (simbol 

||), since the vibrations occur parallel to the main symmetry axis and the bending modes are 

perpendicular, since they induce changes in the molecule that are perpendicular to the main 

symmetry axis (Fig. 2.5). Only the vibrations that induce a dipole moment are 

spectroscopically active in the Infra-Red. 

 

 

Fig 2.5 CO2’s vibrational modes. See text. 

 

In detail, the symmetric stretch of CO2 does not modify the dipole moment which remains 

zero before and after the oscillation: this is IR inactive. Instead, modes of asymmetric 

stretching and bending are associated with changes of the dipole moment and therefore are 

IR active. In the asymmetric stretching, the dipole moment varies along the direction 

parallel to the molecular axis and the spectral transition band is called therefore parallel. 

Instead, in bending, the dipole moment is perpendicular to the axis and the transition band 

is called perpendicular. These features are shown in Table 2.3 (Khristenko 1998). 

 

Table 2.3 Fondumental vibrations, frequencies, types and descriptions for CO2 (by Khristenko 1998). 

Vibration Frequency [cm
-1

] Type Description IR-active? 

υ1 1333 || Symmetric stretch No 

υ2 667 ┴ Bending (Degenerate) Yes 

υ3 2349 || Asymmetric stretch Yes 
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2.4 Absorption Spectroscopy: Beer-Lambert Law 

The energy of infrared radiation produces a change in a molecule’s or a polyatomic ion’s 

vibrational energy, but is not sufficient to effect a change in its electronic energy. As shown 

in figure 2.6, vibrational energy levels are quantized; that is, a molecule may have only 

certain, discrete vibrational energies. The energy for an allowed vibrational mode, Eν, is: 

Eν = v + (1/2)hν0, where ν is the vibrational quantum number, which has values of 0, 1, 2, 

…, and ν0 is the bond’s fundamental vibrational frequency. The ν0 value, which is 

determined by the bond’s strength and by the mass at each end of the bond, is a 

characteristic property of a bond. 

 

 

Fig. 2.6 Diagram showing two electronic energy levels (E0 and E1), each with five vibrational energy levels 

(ν0–ν4). Absorption of ultraviolet and visible radiation leads to a change in the analyte’s electronic energy 

levels and, possibly, a change in vibrational energy as well. A change in vibrational energy without a change 

in electronic energy levels occurs with the absorption of infrared radiation. 
 

 

The fundamental theory governing absorption spectroscopy is embodied in the Beer-

Lambert law (Eq. 2.4). The ratio of the transmitted intensity (It) and initial (reference) 

intensity (I0) of monochromatic laser radiation at a particular frequency is exponentially 

related to the absorption transition’s linestrength Si [cm
-2

atm
-1

], lineshape function φ [cm], 

total pressure P [atm], mole fraction of the absorbing species xj, and the pathlength L [cm] 

through which the radiation passes: 

 

   

  
                                                                              (2.4) 
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The Beer’s law suggests a linear dependence between the species absorbance and its 

concentration. In many cases a calibration curve deviates from this ideal behaviour (Fig. 

2.7). Deviations from linearity are divided into three categories: 

 Fundamental 

 Chemical 

 Instrumental. 

 

 

Figure 2.7 Calibration curves showing positive and negative deviations from the ideal Beer’s law calibration 

curve, which is a straight line. 

 

The fundamental deviation arises from the fact that, at higher concentrations, the individual 

particles of a given analyte no longer behave independently of each other. The resulting 

interactions between particles may change the analyte’s absorptivity. An additional aspect 

is that the analyte’s absorptivity depends on the sample’s refractive index (a function of the 

analyte’s concentration itself). It is only at low concentrations of analyte that the refractive 

index is essentially constant, and the calibration curve  linear. A chemical deviation from 

Beer’s law may occur if the analyte is involved in an equilibrium reaction. Finally, a 

principal instrumental limitations affect Beer’s law linearity. The limitation is that Beer’s 

law assumes that the radiation reaching the sample is of a single wavelength - that is, that 

the radiation is purely monochromatic. As shown in Figure 2.8, however, even the best 

wavelength selector passes radiation with a small, but finite effective bandwidth. 

Polychromatic radiation always gives a negative deviation from Beer’s law. For this 

reason, as shown in Figure 2.8, absorbance measurements are recommended at the top of a 

broad absorption peak. 
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Figure 2.8 Example of the effect of the wavelength choice on the linearity of a Beer’s law calibration curve. 

The green calibration curve has an higher slope - a greater sensitivity - than the red calibration curve. 

 

2.5  Laser Spectroscopy 

Lasers are line sources that emit high-intensity radiation over a very narrow frequency 

range. The invention of the laser by the american physicists Arthur Schawlow and Charles 

Townes in 1958, the demonstration of the first practical laser by the american physicist 

Theodore Maiman in 1960, and the subsequent development of laser spectroscopy 

techniques, revolutionized a field that had previously seen most of its conceptual 

developments before the 20
th

 century (Enciclopaedia Britannica 

http://www.britannica.com/EBchecked/topic/558901/spectroscopy). 

Intense, tunable (adjustable-wavelength) light sources now span most of the visible, near-

infrared, and near-ultraviolet portions of the spectrum. 

As it will explain in the next chapter, there are several advantages to using a laser light 

source: (1) the light from lasers can be made highly monochromatic (light of essentially 

one “colour” - i.e., composed of a very narrow range of frequencies). As the light is tuned 

across the frequency range of interest, extremely narrow spectral features can be measured; 

(2) laser light in a given narrow frequency band is much more intense than virtually all 

broadband sources of light used in spectroscopy. A potential limitation to spectroscopic 

sensing of gases is due to the motion of the atoms or molecules relative to the observer. 

The Doppler shifts that result from the motion of the atoms will broaden any sharp spectral 

features. A gas cell will have atoms moving both toward and away from the light source, so 

that the absorbing frequencies of some of the atoms will be shifted up while others will be 

shifted down. 
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2.6 Spectral Lineshapes 

The lineshape function ϕ reflects the relative variation in the spectral absorption coefficient 

with frequency. Since it is normalized, the lineshape integrated value over frequency is 

equal to unity (Eq. 2.5) 

                                                                   
  

  
                                                     (2.5) 

Figure 2.9 shows a typical lineshape of an isolated absorption line centered at  as a 

function of frequency. The lineshape has a maximum value  at a frequency. The width of 

the feature,  (Fig. 2.9), is defined by the width at half the maximum value (the full width at 

half maximum, or, FWHM). Since the units of    are tipically either cm
-1

 or s
-1

,      will 

have units of centimeters or seconds respectively. 

 

 

Fig. 2.9 Example of lineshape as a function of frequency. 

 

Ideal lineshapes include Gaussian, Lorentzian, and Voigt functions, whose parameters are 

the line position, maximum height and half-width. 

 

 

 

 

http://en.wikipedia.org/wiki/Cauchy_distribution
http://en.wikipedia.org/wiki/Voigt_function
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Chapter 3 

Methods and Techniques 

 

3.1 Tunable Diode Laser absorption Spectroscopy (TDLS) 

The Tunable Diode Laser Spectroscopy technique (TDLS) relies on measuring the 

absorbance due to the absorption of IR radiation (at specific wavelengths) by a target gas. 

Rather than using a continuous-wavelength light source and sensing across a wide band of 

the infrared spectrum (as FTIR), TDLS employs a light source of very narrow line-width 

that is tunable over a narrow wavelength range. In other words, TDL steams on absorption 

spectroscopy using a single isolated absorption line of the target species. TDLS typically 

has spectral resolution narrower than Doppler line widths, which permits positive 

identification and unambiguous measurement of complex gas mixtures. An additional 

advantage of TDLS is increased sensitivity, since the narrow laser line-width allows one to 

measure accurately small absorbances due to specific rotational lines in a vibration-rotation 

spectrum with high selectivity. Additional characteristics of TDLS include: 

 temporal resolution of ~ 1 Hz; 

 intense laser light concentrated at the absorption wavelength, enabling path-lengths 

of up to 1 km to be measured; 

 wide measurement range; 

 self-calibration, through an internal reference cell; 

 no “poisoning” or degradation of the instrument with long-term exposure to a gas. 

A major disadvantage is that TDLS applications are better suited to accurate measurement 

of a specific target gas (known to be present in the atmosphere) than for identification of 

previously unidentified species. 

 

3.2 Diode Lasers 

Lead-salt tunable diode lasers were first developed in the mid 1960s. Diode lasers made 

from Group III (Ga, Al and In) and Group V (P, As and Sb) elements, that emit at 
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wavelengths under 2 µm (5000 cm
-1

) (Schiff et al. 1994a; Schiff et al. 1994b; Werle et al. 

2002), can be used for carbon dioxide measurement. 

A diode is typically mounted onto a support such as copper, that serves as a temperature 

controller during operation. When an electrical current is applied, the diode emits light 

spontaneously at a wavelength corresponding to the energy band gap in the semiconductor. 

Laser action results from reflections from the end-faces of the crystal. This gap depends on 

the chemical composition of the laser and hence different wavelengths can be produced by 

altering the diode composition. Tuning of the emitted wavelengths can be accomplished, in 

principle, through variation of one of three possible parameters: applied magnetic field 

strength, diode temperature, and hydrostatic pressure. In practice, a change in temperature, 

which can be obtained by changing the current through the diode, is generally used. 

 

3.3 Modulation spectroscopy 

The output at a given current is a series of longitudinal modes whose separation is 

determined by (2ηL)
-1

, where η is the index of refraction of the salt (usually 4.5-7) and L is 

the length of the laser cavity, i.e., separation of the end-faces of the crystal (typically 300-

400 µm). A number of different modulation techniques can be used to increase the signal-

to-noise ratio (Schiff et al. 1994a; Schiff et al. 1994b). The most commonly used method 

for accurately measuring small gas amounts, and to discriminate against background 

signals, is to modulate the frequency output of the laser (Reid at al. 1978; Schiff et al. 

1994a). The instantaneous laser frequency is: 

                                                                                                             (3.1) 

Where     is the laser centre frequency, m is the frequency modulation index,   is the half 

width at half maximum of the absorption line, and    is the modulation frequency. If    << 

   this is referred to as wavelength modulation spectroscopy (WMS), otherwise it is called 

frequency modulation spectroscopy (FMS) (Linnerud et al. 1998). In conventionally 

labelled 2f detection (Linnerud et al. 1998), as in the case of the GasFinder, a sinusoidal 

frequency modulation is applied to a probe laser, which is then scanned across a sharp 

absorption peak (Weida 2007). Figure 3.1 is an example which shows that the absorption 

peak works as a transducer to convert the frequency modulation into a sinusoidal 

amplitude modulation. In detail, if the laser is modulated over the central absorption peak 

(“A” in Fig. 3.1), the resulting amplitude modulation is two times the frequency 
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modulation. If the laser is centered on the side of the peak (“B” in Fig. 3.1), the sinusoidal 

amplitude modulation is at the same frequency. Instead, modulating the frequency at the 

flat absorption baseline, no amplitude modulation is observed (Weida 2007). 

The benefits of modulation spectroscopy in TDL are twofolds. Firstly, it produces a signal  

directly proportional to the species concentration; secondly, it allows the signal to be 

detected at a frequency at which the laser noise (one of the two main factors limiting 

sensitivity) is much reduced. 

After signal modulation, the emitted beam propagates through the atmosphere to reach a 

retroreflector, which reflects it back to the detector inside the receiver/laser unit. To 

discriminate against net offsets, broad absorption features and interfering signals in the 

background, the returning radiation is demodulated. If the resulting amplitude-modulated 

signal is demodulated at twice the laser frequency modulation, the second derivative of the 

absorption peak is obtained. This, known as the “2f signal” (red curve in Fig. 3.2), is the 

case of the technique used here. As shown in figure 3.2, the demodulated signals are 

sensitive to the overall absorption (see the slope or the curvature of the absorption feature 

for the “1f” and “2f” signals, respectively). In this case, in 2f-detection, this produces a 

negative-going signal that is proportional to the absorption of the radiation by the 

investigated specie. 

Atmospheric carbon dioxide measurements using a tunable diode laser based system have 

recently described by Humphries et al. (2008). 

 

 

Fig. 3.1 Example of broadened transition acting as a transducer for a sinusoidal frequency modulation (from 

Weida 2007). 
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Fig. 3.2 Lorentzian absorption peak and corresponding 1f and 2f demodulated signals obtained from scanning 

frequency modulated laser over peak. The signals (1f and 2f) yield the first and second derivatives of the 

peak, respectively. 

 

3.4 GasFinder 2.0 Tunable Diode Laser 

The instrument used in this study is a GasFinder 2.0 Tunable Diode Laser (produced by 

Boreal Laser Inc.), a transmitter/receiver unit that can measure CO2 mixing ratios over 

linear open-paths of up to 1 km distance. The laser source consists of a near-infrared room 

temperature tunable diode laser operating in the 1.3-1.7 m wavelength range, where CO2 

has a single absorption line. Radiation emitted by the IR laser transmitter propagates to a 

retro-reflector mirror (single or triple corner cube, gold plated, figure 3.3), where the beam 

is reflected back to the receiver and focused onto a photodiode detector. 

 

 

Fig. 3.3 A retroreflector is different from a flat mirror (top panel) in that the reflected light returns in the same 

direction as the incident light. A retroreflector is like a section through a corner and has three faces that form 

the inside corner of a cube. In the down panel a scheme of radiation beam path from the GasFinder 2.0 and a 

retroreflectors array (21 retro elements) and vice versa. 
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The laser beam, when emitted from the GasFinder 2.0, is about 1mm in diameter (Boreal 

Laser Inc. 2007). It diverges at about 1.5 milli-radians, so at 100 m the diameter of the 

beam is 150 mm and at 600 m the diameter is about 1 m. This divergence allows for a 

small movement of the GasFinder without becoming non-aligned. However there is a 

“sweet spot” (Fig. 3.4) in the centre of the beam which is used when making the initial 

alignment (before each acquisition). This is where the returning light value (see below) and 

the signal strength are at maximum. 

 

 

Fig. 3.4 Divergence of the laser beam emitted from the GasFinder 2.0. See text. 

 

A portion of the emitted beam passes through a reference cell (with known and stable CO2 

reference mixing ratio), inside the GasFinder unit, which allows for continuous calibration. 

The signals received from the retro-reflector mirror and from the reference cell are 

converted into electrical waveforms, and processed to determine in real-time CO2 column 

amounts (in ppm∙m) along the optical path, using the procedure described in Tulip (1997). 

The computed gas mixing ratio is then displayed on the back-panel of the instrument, and 

can be transmitted to a computer and collected. Figure 3.5 is a schematic representation of 

GasFinder 2.0. 
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Fig. 3.5 Schematic representation of GasFinder 2.0. See text. 

 

3.4.1 Role of the reference cell to determinate the CO2 mixing ratio 

Estimating the density of the detected gas is achieved by passing the laser light through a 

reference cell-gas and comparing the detected signal from the target zone with the detected 

signal from the reference cell-gas. The receiver unit includes: a photo detector for 

producing a detected signal as output from the laser that has passed through the target 

zone; a reference signal generator to create a reference signal by detection of light that has 

passed through the target zone; the reference signal having a frequency corresponding to a 

modulation frequency of the light output from the laser; and a mixer for mixing the 

detected sample signal and the reference signal to produce mixer output. The presence of 

the target gas is determined by a signal analyzer connected to the mixer. 

Moreover, measuring the density of the target gas density is possible by comparing the 

intensity of detected signal (that passed through the target-sample zone) and the intensity 

of reference signal (that passed through the reference cell containing a sample of the target 

gas). 



 

23 
 

Noise reduction can be achieved by adjusting the phase difference between the reference 

and detected signals and tuning the laser to transmit radiation at a frequency that is 

absorbed by the target gas (Tulip 1997). 

Figure 3.6 is an example of reference cell providing calibration from GasView2 software. 

Red and blue curves are sample and reference signals, respectively. During acquisition, for 

comparison of the arrays (see after), the concentration target-gas value is given. 

 

Fig. 3.6 View from GasView2 software (given by Boreal Laser inc.) during calibration provided from internal 

reference cell. Red and blue curves are sample and reference signals, respectively. 

 

3.5 Field operations 

The comparison between the target and the reference signals yields CO2 column amounts 

(ppm·m) in the volcanic atmosphere. Column amounts are converted into average CO2 

mixing ratios (in ppmv) along the path using path lengths (see below). The accuracy of the 

measurement is evaluated by a correlation coefficient (R
2
), which is a measure of the 

similarity between the waveform of the signal passing through the reference and the 

measured sample. In fact, an accepted mathematical procedure to compare curves or 

numerical arrays is the Linear Least Squares Regression analysis. This analysis results in a 

measure of the similarity (R
2
), between the two signals (target and reference). A perfect 

similarity would give a value for R
2
 = 1.0, and a total mismatch would give R

2
 = 0.0. 

According to the manufacturer’s datasheets, an accuracy of ± 2% is achieved for R
2
 > 0.95 

(Trottier et al. 2009). 

In the field, the GasFinder was set as to measure CO2 mixing ratios (ppmv) at 1 Hz rate. 

Alignment between the laser unit and the retro-reflector mirror was optimised using a red 

visible aiming laser and a sighting scope. 
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The size of the retro-reflectors mirror was chosen as to adjust the returning light level to a 

desired value, depending on the path-length and the expected absorption of IR radiation. 

The light level is the amount of energy returned by the retro-reflector and captured by the 

optics inside the GasFinder. This parameter is non-dimensional and can range between 500 

and 16,368. During field operations, the desired working range (where the GasFinder 

behaves linearly) is between 2000 and 12,000: at lower light levels (<2000) there is not 

sufficient radiation captured by the optics, while non-linear behaviour and/or signal 

"deformation" due to saturation can be attained for values >12,000. The 2000-12,000 range 

is also necessary to obtains adequate signal strength for optimal digitization. 

Moreover, GasFinder uses the average ambient temperature and pressure readings obtained 

during each measurement cycle to automatically compensate for T- P-dependence of the 

laser-receiver unit response (using response functions calibrated in laboratory by Boreal 

Laser Inc., Fig. 3.7). 

 

Fig. 3.7 Response functions calibrated in laboratory by Boreal Laser Inc. for pressure-compensation in the 

mixing ratios calculations. 

 

Standard ambient pressure at sea level is 101.35 kPa thus the graph (Fig. 3.7) shows 1.0. 

Instead, at 40kPa, the graphs (Fig. 3.7) gives 0.5. Thus the instrument reads 1/0.5=2 times 

as much as there really is at 40kPa. Pressure-compensated reading can be manually 

operated (from the relation in figure 3.7), or can be automatically operated via the 
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GasFinder acquisition software (setting the temperature and ambient pressure in the 

instrument menu and having direct correction). The temperature effect is much smaller and 

trivial between 0° C and 35° C. 

 

3.5.1 Geometry of field experimental set-up 

For each campaign, carried out using GasFinder 2.0, an ad-hoc measurement geometry was 

used. At each site, the positions of retro-reflectors and the laser unit were expressed by 

numbers and letters, respectively. 

These positions were geo-referenced with a portable GPS, and were chosen so to have the 

target fumaroles’ plumes in between retro-reflectors and the GasFinder, allowing for 

complete coverage of each degassing area. During the field operations, the portable laser 

unit was moved along the designed positions, so to scan the fumaroles’ plume from 

different angles and distances (aiming toward several differently positioned retro-

reflectors). 

Path lengths (the distance between the laser unit and each retro-reflector) were measured 

with an IR range finder (to approximately ±1 m a). For short distances, a measuring tape 

was also used for more accurate measurements. A portable meteorological station was 

continuously recording (at 1 Hz) during the measurements to restrict post-processing to 

sampling intervals characterized by similar meteorological conditions of stable wind speed 

and direction. 
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Chapter 4 

GasFinder-dataset processing 

 

4.1 Dataset download from GasFinder 

The field-acquired datasets were downloaded from the GasFinder internal memory card via 

a serial cable at 9600 baud rate (bits per second) and transmitted as ASCII string as shown 

in figure 4.1 (an example taken from the Operation Manual written by Boreal Laser Inc.). 

The data strings are comma-delimited (,) and an asterisk (*) signifies the string end. 

 

 

Fig. 4.1 Example of an ASCII string, comma-delimited (,) and ending with an asterisk (*). 

 

Figure 4.2 explains the status codes of the string. The above sample status code of “2800” 

corresponds to “0010_1000_0000_0000”. This indicates an instrument status of n13 – 

NOT_CALIB, n11 – MENU_MODE. 

Under normal operating conditions, the most common status code is “1”. This is actually 

0001, but the software ignores the leading zeros and indicates a status code of “1”. This 

corresponds to “0000_0000_0000_0001” and indicates an instrument status of: n0 – 

NO_ERROR. 
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Fig. 4.2 Example of status code. 

 

4.2 Post-processing 

CO2 mixing ratios, acquired during operation fields, were filtered to confine analysis to a 

sub-set of data with R
2
 (>0.95) and light values of 4000-8000. Moreover, a portable 

meteorological station was continuously recording (at 1 Hz) to restrict post-processing to 

sampling intervals characterized by similar meteorological conditions of stable wind speed 

and direction. 

 

4.3 Tomographic maps 

After operation field, the initial step was to use a Matlab script, to: 

 create a matrix containing information on the geometry of the experimental 

setup; 

 obtain a 2D reconstruction of CO2 mixing ratios in a cross-section of the 

atmospheric plumes, starting from the raw GasFinder dataset. 
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In order to start the calculations, the Matlab script was initialized with the coordinates 

of laser and retro-reflector positions. The additional input data was a column vector 

containing the mean CO2 column amounts (in ppm∙m) obtained for each GasFinder-

retro-reflector path. 

 

Fig. 4.3 Output of data processing routine, applied to the dataset collected at Pisciarelli site on 8
th

 May 2013; 

a geometric matrix; b and c maps of CO2 mixing ratios, resulting from the Matlab algorithm; d Matlab 

contour map extrapolated and displayed on Surfer software; e contour map of CO2 mixing ratios, resulting 

from Surfer software; X-Y axes in the contour plots are distances (in metres) for the Matlab plots (c and d) 

and UTM positions for the Surfer contour map (e). On the top: a schematic representation of the experimental 

set-up geometry in the field. Positions of the laser unit and retroreflectors are given. 

 



 

29 
 

Figure 4.3 exemplifies the steps taken by the Matlab algorithm to image CO2 mixing ratios 

in the plume in a 2D contour map (the example refers to the May 2013 campaign at 

Pisciarelli site, from Pedone et al. 2014a). In detail, Figure 4.3a is an example of a 

geometric matrix generated by the Matlab algorithm: this is a geometric reconstruction of 

the experimental set-up (GasFinder positions are indicated with letters and retro-reflectors 

positions are indicated with numbers). The geometric matrix also contains coordinates for 

all the possible (GasFinder-retro-reflector) paths in a 4×4 matrix (e.g., the explored space 

was divided into 16 equally sized cells; the red cells in Fig. 4.3a). In step b (Figure 4.3b), 

the scripts uses the data inversion procedure (see below) to assign an averaged CO2 mixing 

ratio (in ppmv) to each cell of the 4×4 matrix (the same 16 cells of Fig 4.3a) (see colour 

scale for mixing ratio range): this is the so-called tomographic matrix (Fig. 4.3b). In step c, 

the tomographic matrix (Fig. 4.3b) is presented in visual form as the CO2 tomographic 

contour maps of Figure 4.3c and 4.3d, which were generated by the Matlab script (which 

used the least squares regression technique to interpolate the mixing ratio data for each 

cell; note that the mixing ratio value for each cell was assigned to the cell centre during 

interpolation) and Surfer software (which used the Point Kriging geo-statistical method to 

interpolate the available data and produce an interpolated grid; Isaaks and Srivastava 

1989), respectively. For comparison, an independent contour map of CO2 mixing ratios was 

also realized directly with the Surfer imaging software (Fig. 4.3e). This was obtained by 

arbitrarily taking a number of four equally spaced points over each GasFinder retro-

reflector path, and assigning the average CO2 mixing ratio (in ppmv) for that path to each 

of these points (Point Kriging was again used for interpolation). The output of the Matlab 

(Fig. 4.3d) and Surfer (Fig. 4.3e) contouring routines yield similar results. 

 

4.3.1 Description of the Matlab Tomographic Algorithm 

The Matlab script (author, Gaetano Giudice, INGV Palermo; modified by Gaetano Giudice 

and Maria Pedone, DiSTeM, University of Palermo) was used to create a matrix containing  

the geometry of the experimental setup (geometric matrix, M) and obtain bi-dimensional 

CO2 mixing ratio maps from path-integrated CO2 column amounts (ppm∙m). 

The input of the Matlab script was a matrix of coordinates, e.g., the positions of the laser 

unit (Tx in the following) and of the retro-reflectors (Rx in the following), shown as letters 

and numbers. The additional input data was a column vector, containing the CO2 column 

amounts obtained for each Tx-Rx path (vector a). The background CO2 column amount 
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was assigned to the Tx-Tx and Rx-Rx paths (which were out of the plume). For each single 

laser beam path, the following equation holds: 

                                                        (4.1) 

Where  is the path length in metres,  is the mean CO2 mixing ratio in ppmv and is the path-

integrated CO2 column amount, in ppm∙m. 

From this, the script calculates the CO2 mixing ratios (ppmv) at the nodes of a regular kxj 

grid (covering the plan view of the measuring site), solving the matrix equation 

               

                           (4.2) 

 where:  

  

          
          
    
          

 ;    

  
   
  

;    

  

   
  

    

           (4.3)  

is the matrix of the lengths, of size m∙n, where m is the number of paths and n is the 

number of cells in which the space domain is divided: 

                

    
    
       
        

      

                             (4.4) 

In both cases n = 16 (red cells in Fig. 4.3a). In the geometric matrix M, each element 

M(i∙j,k) is the portion (in metres) of the path from the i-th Tx to the j-th Rx, falling inside 

the k-th cell of the grid. 

 

Fig. 4.4 an example of a k-th cell crossed by the Txi-Rxj path; QR is the length of the path segment inside the 

cell. 
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For example, Mp4 should be the length of the segment of the p-th ray in the path vector, i.e. 

from Txi to Rxj inside the cell number 4 (segment  in Fig. 4.4). 

An example of the geometric matrix generated by the Matlab algorithm is given in figure 

4.3a, referring to the second campaign at Pisciarelli site. Figure 4.3a is the reconstruction 

of the experimental geometric set-up. Tx are indicated with letters and Rx are indicated 

with numbers. 

The tomographic problem is complex from mathematical point of view, as in the algebraic 

system (m∙n), m >> n. In the condition where cells are traversed by more than one path, 

this creates an over-determined problem, that has no unique solution. In addition, M is a 

“sparse” matrix, e.g. a matrix populated primarily with zeros (Stoer and Bulirsch 2002) as 

elements of the table. For the resolution of these problems, iterative algorithms to solve 

linear systems are typically used. In this work, the LSQR method was used, which is a 

method for the resolution of the least squares linear problems containing sparse matrices. 

The result of Least squares method is a bi-dimensional planar section of CO2 mixing ratios 

(here referred as tomographic matrix), in which the color scales mark a different gas 

distribution in the investigated area (Fig 4.3). 

 

4.3.2 Results on synthetic data 

Sets of synthetic data were used to test the algorithm. These synthetic arrays of 

concentration data, an example of which is shown in Figure 4.5a, were created to resemble 

as much as possibly those found in our real application. Since M (the matrix of the lengths) 

and mixing ratios are both known in the synthetic samples, they can be combined to 

calculate the vector a (column amounts, in ppm·m). From this, the Matlab algorithm (see 

above) was used to convert again into model-derived mixing ratios (Fig. 4.5b). Figure 4.5c 

shows the resultant errors (in %), highlighting small discrepancies between synthetic 

reference values and mixing ratios predicted by the tomographic algorithm (Fig. 4.5a and 

b). Furthermore, in the construction of the vector a, a random error of about 1% of 

measurement was deliberately added. Thus, the maximum error inducted by the algorithm 

is 3% . 
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4.3.3 Iterative algorithm to create a tomographic matrix for Surfer software 

In figure 4.3a, Tx and Rx positions are known, allowing for straightforward calculation of 

the spatial coordinates of the midpoint of each cell of the grid. The tomographic matrix 

shown in Figure 4.3b is a referenced map of X, Y, C coordinates, in which C is the CO2 

mixing ratio in each cell, and X and Y are the spatial coordinates of the cell itself. This 

matrix was then interpolated and displayed with the Surfer software (Figure 4.3d). 

 

 

Fig. 4.5 Test of Least-squares method using synthetic data; a synthetic reference mixing ratio values 

(expressed in ppmv); b mixing ratiovalues (in ppmv) predicted by the tomographic algorithm; c error 

distribution (difference between a and b) expressed in %. 
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4.4 Flux estimates 

In order to calculate, for each survey, the total CO2 output from each degassing area, we 

integrated each set of simulated CO2 mixing ratios (e.g., Figs 4.3 d and e) over the entire 

grid area, to obtain the CO2 Integrated Column Amount (ICA) over a cross-section of the 

plume. This ICA, expressed in ppm·m
2
, was first converted into mass units (kg/m), and 

then multiplied by the vertical plume transport speed (in m/s) to obtain the CO2 mass flux. 
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Chapter 5 

Study areas: descriptions, results and   

discussions 

5.1 Campi Flegrei 

Campi Flegrei (Fig. 5.1) is an active caldera located in Campania (Southern Italy; Fig. 5.1), 

whose complex volcanic history has involved phases of quiescence interrupted by at least 

two large caldera-forming eruptions (the Campanian Ignimbrite, 200 km
3 

of erupted rocks, 

39 ka BP; and the Neapolitan Yellow Tuff, 40 km
3 

of erupted rocks 14.9 ka BP; Rosi et al. 

1983; Orsi et al. 1996). 

 

 

Fig 5.1 The study area: the two analysed fumarolic sites, Solfatara and Pisciarelli, are indicated as “A” and 

“B”, respectively. 

 

Less voluminous explosive eruptions have occurred in the last 15 ka, concentrated into 

three main epochs of activity (Orsi et al. 2004; 2009) plus an isolated eruption in 1538 (the 

Monte Nuovo eruption). The caldera has undergone recurrent periods of unrest (Chiodini 

et al. 2012), including at least three seismic and ground deformation episodes (referred as 
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“bradyseismic crises”) in the last 30 years (Del Gaudio et al. 2010). While a magma ascent 

trigger for such crises has been invoked by several authors (e.g., Trasatti et al. 2011 and 

references cited), recent work (e.g., Bonafede and Mazzanti 1998; Chiodini et al. 2003) has 

also emphasised the role of fluid pressure increase due to injection of magmatic fluids into 

the hydrothermal system. 

 

Fig. 5.2 A detail of positions of the main fumarolic vents at Solfatara crater and Pisciarelli fault. BN: Bocca 

Nuova; BG: Bocca Grande; BC: a vent opened in 2008; PiL: mud pool with bubbling gas; PiS: jet-like main 

degassing vent; PiF: smaller fumarolic fields. 

 

The most evident surface hydrothermal manifestation on Campi Flegrei is the fumarolic 

field of Solfatara, a tuff-cone located near Pozzuoli and formed between 3.8 and 4.1 ka (Di 

Vito et al. 1999). The Solfatara crater (“A” in Fig. 5.1) hosts a large diffuse degassing 

structure (DDS) (Chiodini et al. 2001; 2010), sustaining a total CO2 output of 1100120 

Mg/day (Chiodini et al. 2010). Bocca Grande (BG) and Bocca Nuova (BN) fumaroles are 

the two most persistent higher-temperature (T ~ 160°C) degassing vents in the area 

(Chiodini et al. 2012) (Fig. 5.2). Extensive degassing also occurs in the nearby area of 

Pisciarelli, a fault-related fumarolic field located a few hundred metres east of Solfatara 

(Chiodini et al. 2010). During our study, degassing at Pisciarelli was mainly sustained by: 

a vigorous jet-like degassing vent (T ~ 105°C), currently the main active gas source at this 

site (PiS in Fig. 5.2); a mud pool with vigorous gas bubbling (PiL in Fig. 5.2); and a small 

active fumarolic field in the southern part of the area (PiF in Fig. 5.2).  

The CO2 output sustained by the fumarolic fields of Solfatara and Pisciarelli has long 

remained undetermined: since SO2 is typically absent in the fumaroles, standard ultraviolet 

sensing techniques (e.g., Oppenheimer 2010) cannot be applied to derive the gas output. 
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Very recently, Aiuppa et al. (2013) reported on the first Multi-GAS-based estimate of the 

CO2 output, which was evaluated at 460160 Mg/day.  

 

Fig. 5.3 a-b Position of retro-reflector units (numbers) and of the GasFinder unit (letters) at Pisciarelli site 

and Solfatara crater; White colour: October campaign; Red: January and May campaigns; c Example of 

acquisition over open-path laser (B position) and retro-reflectors (1-3-6); PiL: mud pool with bubbling gas; 

PiS: jet-like main degassing vent; PiF: smaller fumarolic fields; d Example of acquisition over open-path 

laser (D position) and retro-reflectors (4-5-6); BG: Bocca Grande; BN: Bocca Nuova; BC: new degassing 

vent (opened in 2008). 

 

Figure 5.3 (a and b) shows the positions of retro-reflectors (numbers) and of the GasFinder 

unit (letters) during the three field campaigns at, respectively, Pisciarelli (B in Fig. 5.1) and 

Solfatara (A in Fig. 5.1) in October 2012, January 2013 and May 2013. These positions 

were geo-referenced with a portable GPS, and were chosen so to have the target fumaroles’ 

plumes in between retro-reflectors and the GasFinder, and to allow for complete coverage 

of the degassing area. The degassing vents at Pisciarelli site (shown in Fig. 5.2) are found 

at the bottom of a narrow valley, at the outer rims of which the retro-reflectors and 

GasFinder were positioned. In such conditions, the laser-paths (from the GasFinder unit to 

each retro-reflector) intercepted the fumaroles’ atmospheric plumes at 20 m height, as 

shown in Fig. 5.3c. At Solfatara, observations were focused on a 8100 m
2
 area, 

intercepting the atmospheric plumes of Bocca Grande (BG) and Bocca Nuova (BN) 

fumaroles (Fig. 5.3b). The BC degassing vent of Aiuppa et al. (2013) was also covered by 

our measurements (Fig. 5.3b). Path lengths were measured with an IR range finder (to 
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approximately ±1 m a), and ranged 32-81 m at Pisciarelli and 49-136 m at Solfatara. For 

short distances, a measuring tape was also used for more accurate measurements. A 

portable meteorological station was continuously recording (at 1 Hz) during the 

measurements to restrict post-processing to sampling intervals characterized by similar 

meteorological conditions of stable wind speed and direction. We additionally measured 

ambient pressure and temperature by using a co-exposed Multi-GAS (Aiuppa et al. 2013); 

the GasFinder uses the average readings obtained during each measurement cycle to 

automatically compensate for T- P-dependence of the laser-receiver unit response (using 

response functions calibrated in laboratory by Boreal laser). 

 

5.1.1 Results and Discussion 

The GasFinder operated for more than 17 hours during the three field campaigns (five in 

October 2012, six in January and six in May 2013). Measuring at 1 Hz, the GasFinder 

therefore provided more than 20,000 readings of path-integrated CO2 abundances. 

However we focus here onto a subset of data (9127 readings), extracted from the original 

dataset based on data quality criteria (readings characterized by R
2
 value >0.96 and optimal 

light values – between 4000 and 8000 – were selected) and meteorological conditions, and 

during which the plume was not condensing. In particular, we extracted only those 

GasFinder readings obtained during phases of stable wind direction and speed. West-

southwest trending winds prevailed during the three campaigns at Pisciarelli, while east-

northeast wind direction was most common at Solfatara. 

During operations, the GasFinder was left to acquire along each single GasFinder – retro-

reflector path (e.g., B-1 in Fig. 5.3) for 5 min, before being rotated to measure along the 

successive path (e.g., B-2). With this set-up, the whole measurement grid (e.g., the total 

number of possible Gas-Finder – retro-reflector paths) was covered in approximately 3 

hours.  

Detailed datasets and mixing ratios presentation are available in (Pedone et al. 2014) and in 

the Supplementary Materials. 

Examples of GasFinder-derived CO2 time-series are shown in figures 5.4 and 5.5 In each 

plot, each curve represents a 1 min record of CO2 mixing ratios taken along a specific 

GasFinder-retro-reflector path. As expected, the highest CO2 mixing ratios (>1000 ppmv) 



 

38 
 

were observed in GasFinder-retro-reflector paths crossing the near-vent fumarolic plumes 

(e.g., B-6 and D-4 in Figs 5.3a and 5.3b, respectively). 

 

 

Fig. 5.4 Example of time-series of CO2 mixing ratios (one minute data acquisition) at Pisciarelli obtained 

over three different categories of open paths: (i) near-vent plumes (B6); distal (aged) plumes (B3); plume 

margins (B1). 

 

The peak mixing ratio of 1444 ppmv was obtained in path B-6 (see Fig 5.4). In all these 

near-vent path time-series, significant fluctuations of CO2 mixing ratios were observed, 

with cycles of CO2 increase-decrease typically lasting tens of seconds, and reflecting 

changes in plume density (because of fluctuations in gas emission rate at the fumaroles, or, 

more likely, due to changes in plume transport speed/direction). Lower (e.g., 600-700 

ppmv), more stable, CO2 mixing ratios were typically observed farther from the degassing 

vents, where more aged (diluted) plumes were intercepted by the GasFinder-retro-reflector 

paths (e.g., B-3 and D-5 in Figs. 5.4 and 5.5, respectively); while near-to background CO2 

mixing ratios (400 ppmv) were typically detected at the plume’ margins (e.g., B1 and 

D6). Background readings, respectively of 380-390 ppmv at Pisciarelli and >400 ppmv at 

Solfatara (see Figs. 5.4 and 5.5), were obtained in each of the measurement day/site by 

pointing the laser beam toward a mirror, positioned upwind of the fumarolic area.  
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Fig. 5.5 Example of time-series of CO2 mixing ratios (one minute data acquisition) at Solfatara obtained over 

three different categories of open paths: (i) near-vent plumes (D4); distal (aged) plumes (D5); plume margins 

(D6). 

 

Figures 5.6 and 5.7 compare the CO2 contour maps obtained for the three different 

campaigns at the Pisciarelli site (25
th

 October 2012, 29
th

 January 2013, and 8
th

 May 2013) 

and Solfatara crater (26
th

 October 2012, 30
th

 January 2013, and 9
th

 May 2013). As shown 

in figure 5.6, there are some remarkably similar features in the three maps, including (i) 

low CO2 mixing ratio ( ≤390 ppmv) at the margins of the fumarolic area; (ii) higher CO2 

mixing ratios (from 700 to 950 ppmv) in the central portion of the gas emission zone; (iii) 

peak CO2 mixing ratios south-west the principal gas vent (marked as “PiS”), reflecting the 

principal direction of plume dispersal (red arrows in Fig. 5.6). Similar results have also 

been obtained at Solfatara (Fig. 5.7). In this area, the background CO2 mixing ratio  is 

higher (>400 ppmv) than at Pisciarelli, likely reflecting diffuse CO2 outgassing from the 

soils (Chiodini et al. 2001; 2010). The highest CO2 mixing ratios (up to 950 ppmv) are 

consistently detected in the central part of the three maps, downwind from the BN, BG and 

BC fumarolic vents (the principal direction of plume dispersal is indicated by red arrows in 

Fig. 5.7).  
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Fig. 5.6 Matlab-derived geometry and Surfer-derived CO2 contour maps obtained for the three different 

campaigns at Pisciarelli site; a 25
th

 October 2012; b 29
th

 January 2013; c 8
th

 May 2013; PiL, PiS and PiF: 

main degassing vents positions; red arrows: principal directions of plume dispersal. 
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Fig. 5.7 Matlab-derived geometry and Surfer-derived CO2 contour maps obtained for the three different 

campaigns at Solfatara site; a 26
th

 October 2012; b 30
th

 January 2013; c 9
th

 May 2013; BG, BN and BC: main 

fumarolic vents positions; red arrows: principal directions of plume dispersal. 
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Occasionally (e.g., on 31
st
 January 2013), some more detailed mapping was carried out by 

using a dense network of retro-reflectors in the vicinity of fumaroles BN, BG and BC. 

These identified the three main degassing areas with higher precision and spatial resolution 

(see the peak CO2 mixing ratios of up to 950 ppmv in Figure 5.8, all located in 

correspondence to the principal fumarolic vents). 

 

Fig. 5.8 Solfatara, 31
st
 January 2013. Detail of three major fumarolic emissions: Bocca Grande (BG), Bocca 

Nuova (BN) and BC site; red arrow: principal direction of plume dispersal. 

 

The calculated CO2 fluxes are listed, for each site and campaign, in Table 5.1. For each 

campaign, there is close agreement ( 5% difference) between CO2 fluxes calculated from 

integration of either Matlab or Surfer contour maps (Tab. 1). For example, in October 2012 

we estimated the CO2 flux from Pisciarelli between 171 Mg/d (Surfer) and 182 Mg/d 

(Matlab). These results match closely the CO2 output independently evaluated (by using 

the MultiGAS) by Aiuppa et al. (2013) for Pisciarelli in October 2012 (177 Mg/d). The 

increase in CO2 output reported by Aiuppa et al. (2013) in January 2013 (up to 307 Mg/d) 

is not matched by a comparable increase in the GasFinder dataset (the CO2 output – 181-

195 Mg/d, Table 5.1 – is only <10% higher in January compared with other campaigns). 

The presence of a strong (several metres high) liquid water jet at PiS in January and May 

2013 might have hampered laser observations in the core of the plume (where strong signal 

attenuation was observed).  
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The total CO2 output from Solfatara is evaluated at 300 Mg/day in the three campaigns 

(Tab. 1). This is somewhat higher than the CO2 output reported by Aiuppa et al. (2013) 

(176-251 Mg/d), who however investigated a more restricted area (251 m
2
 compared with 

8100 m
2 

here). When (on 31
st
 January 2013) the GasFinder measurements were confined in 

the same restricted area (BN, BG and BC) studied by Aiuppa et al. (2013) (Fig. 5.6), a 

much lower CO2 flux (120 Mg/d) was consistently obtained.  

Finally, combining Pisciarelli + Solfatara datasets, a total CO2 output of 500 Mg/d (range, 

461-507 Mg/d) were estimated for Campi Flegrei area, which agrees well with an 

independent evaluation of about 460 Mg/d recently made by Aiuppa et al. (2013).  

The fumarolic CO2 output, estimated here and in Aiuppa et al. (2013), is an additional 

contribution to the soil CO2 output from Campi Flegrei. This latter has repeatedly been 

evaluated by soil surveys with the accumulation chamber method, which typically covered 

a large degassing structure around the fumarolised areas, but not the fumaroles themselves 

(Chiodini et al. 2010). For comparison, such diffuse soil CO2 emissions ranged from 1400 

(May 2013) to 1520 (October 2012 and January 2013) Mg/day (Cardellini C. pers. comm.) 

during our study period, somewhat above the time-average of 1100120 Mg/day 

(Chiodini et al. 2010).  

Moreover, this flux value confirmed a significant contribution of fumaroles to the total 

CO2 budget of the area. The fumarolic CO2 flux from Campi Flegrei (500 Mg/day) is 

substantial, and comparable to the total CO2 flux (453 Mg/day) over the summit area of 

La Fossa cone (Vulcano island) (Inguaggiato et al. 2012). It also represents an additional 

30-35% to the Campi Flegrei total soil CO2 output of 148070 Mg/day (October 2012-

May 2013), leading to a combined (soil+fumarole) CO2 output of 2000 Mg/day. 
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Table 5.1 CO2 flux estimates at the study area in October 2012, January and May 2013 using two different 

methods: Surfer software and Matlab algorithm. The CO2 flux values are expressed in Mg/d. The wind speed 

(in m/s) at each site is given. 

 

Period wind speed
a 

 
(m/s)

 

wind speed
b 

 (m/s) 

CO2 Flux 

Pisciarelli 

CO2 Flux 

Solfatara 

Total CO2 Flux 

(Mg/d) 

October 1.4 1.0 171
c
 (182

d
) 306

c
 (325

d
) 477

c
 (507

d
) 

January 1.5 1.3 181
c
 (192

d
) 316

c
 (301

d
) 497

c
 (493

d
) 

May 1.4 1.4 175
c
 (173

d
) 314

c
 (288

d
) 489

c
 (461

d
) 

a
 Measured at Pisciarelli site 

b
 Measured at Solfatara site 

c
 Calculated flux values using Surfer software 

d
 Calculated flux values using Matlab algorithm 

 

 

5.1.2 Results from 2014 campaigns 

Figure 5.9a compares the CO2 emissions at Pisciarelli and Solfatara measured during the 

2012-13 campaigns with more recent results obtained on 10-11 February and 23-24 

October 2014. In detail, the CO2 flux values decreased at both sites in February 2014, 

followed by a sharp increase in October (particularly evident at Pisciarelli, where the CO2 

fluxes peaked at ~560 t/d). It is worth noting that this increase in degassing has occurred in 

concomitance with a phase of resumed ground uplift and (weak) seismicity at Campi 

Flegrei. Actually, a few low magnitude earthquakes have recently been recorded at Campi 

Flegrei (the maximum magnitude = 0.5, on 25 October at 19:29:29).  Most of these events 

concentrated in a small earthquake swarm occurred on 25 October, between 19:27 and 

19:32 UT (data from “Bollettino di sorveglianza settimanale” of 28-10-2014, by INGV-

OV, “Osservatorio Vesuviano – sezione di Napoli”); five of these shallow seismic events, 

located by INGV-OV, were characterised by hypocenters depths <2 km (red dots in Fig. 

5.9b). Moreover, ground uplift also intensified in the same period, as shown in the time-

series of ground level variations recorded by the GPS “Rite” Station in Pozzuoli (Fig. 

5.9c). 

Finally, combining Pisciarelli + Solfatara datasets, a total CO2 output of 1000 t/d (twice 

as much as measured in October 2012 to May 2013) was estimated for Campi Flegrei in 

October 2014 (Fig. 5.9a). This result agrees well with an independent CO2 flux value of 
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1200 t/d evaluated by using the MultiGAS technique during the same campaigns 

(unpublished data). 

 

 

Fig 5.9 Recent measurements and results. a Variation of CO2 emissions at Pisciarelli and Solfatara t (by 

using the TDLS), including the recent measurements of 10-11 February and 23-24 October 2014. b 

Hypocenters of earthquakes located at Campi Flegrei in the last 12 months (in total 77). In red: events 

occurred in the week before 25 October 2014 (in total 5). c Time series of soil level variations recorded by 

the RITE station (in Pozzuoli) from 1 January to 27 October 2014. a and b taken by “Bollettino settimanale” 

of 28 October 2014 (available on-line) edited by INGV-OV, Naples. 
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5.2 Nea Kameni volcano (Santorini) 

Santorini is located in the Aegean Sea, and is part of the Ciclades archipelago. Santorini is 

75.8 km
2 

and it is a complex of five islands known as Thera, Therasia, Aspronisi, Palea 

Kameni and Nea Kameni, from the active intra-caldera volcanic field (Dominey-Howes et 

al. 2004). Volcanic activity began approximately 3-4 million years ago and the caldera is a 

composite structure resulting from several collapses (Druitt et al. 1999). Santorini has been 

the focus of significant volcanological research because  its 3500 BP paroxysmal explosive 

eruption that buried the ancient town of Akrotiri (Bond and Sparks 1976) and possibly 

impacted the Minoan civilization (Marinatos 1939; McCoy and Heiken 2000). The outer 

islands of Thera, Therasia and Aspronisi are composed of rocks that predate the Late 

Bronze Age (LBA) or Late Minoan (LM) eruption of 3500 BP. Palea and Nea Kameni are 

composed of dacitic lavas that post-date the LBA eruption and outcrop at the centre of the 

caldera (which bottom reaches the depth of 390 m below sea level). After the Minoan 

eruption, volcanic activity was to a major degree concentrated in the central part of the 

caldera complex (Fyticas et al. 1990). This activity produced lava domes, flows and 

pyroclasts that built up Palea and Nea Kameni islet between 197 BC and 1950 AD (Stiros 

et al. 2010). In the 20
th

 century, four periods of unrest led to small-scale eruptions in 1925-

1926, 1928, 1939-1941 and in 1950 (Fyticas et al. 1990; ISMOSAV, 2009). Ouside the 

caldera, volcanic activity was recordered only once, in 1649-1650 AD, in the Columbo 

submarine volcano, characterized by an up to 4 km long underwater caldera, 18-512 m 

below sea level (Vougioukalakis et al. 1994). Since the last eruption in 1950, Santorini 

volcano has been relatively quiescent (Tsapanos et al. 1994; Papazakos et al. 2005; 

ISMOSAV, 2009). The most important evidence of the presence of magma at depth are 

gases (fumaroles, mostly CO2, vapour and air, 93-97 °C) in Nea Kameni and also small 

magnitude earthquakes especially at the Columbo volcanic centre offshore (Dimitriadis et 

al. 2009). Recent seismotectonic and tectonovolcanic activities in the Santorini area seems 

to be related with the Columbo line i.e. a lineament or zone containing the Columbo 

volcano, a morphological/structural discontinuity in Thera and the majority of hot springs 

identified in the caldera (Pavlides and Valkaniotis 2003; Sigurdsson et al. 2006). 

In early 2011, geodetic monitoring revealed new stage of caldera-wide uplift (Newman et 

al. 2012; Parks et al. 2012), accompanied by swarms of shallow earthquakes. This unrest 

lasted from January 2011 to April 2012 (Parks et al. 2013). Degassing activity at Santorini 

is currently concentrated in a small, hydrothermally altered area on top of Nea Kameni 

islet (Parks et al. 2013), where a number of weakly fuming fumaroles (mostly CO2, water 
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vapour and air-derived gases; temperatures of 93–97° C) are concentrated (Tassi et al. 

2013). A recent survey carried by Parks et al. (2013) indicated increased diffuse CO2 

emissions between September 2010 and January 2012; this period was characterized by a 

change in the degassing pattern, with an increase in soil CO2 emissions peaking at 38 ± 6 

t/d in January 2012 (Parks et al. 2013). Tassi et al. (2013) examined the response of 

fumarole composition to the 2011–2012 unrest, and reported increasing CO2 

concentrations (and decreasing δ
13

C-CO2) from May 2011 to February 2012, suggesting 

mantle CO2 contribution. The summit fumarolic field was the site of our 9 April 2013 

survey (Fig. 5.10). 

 

5.2.1 Results and Discussions 

The GasFinder 2.0 operated for more than 4 hours at the top of Nea Kameni volcano (Fig. 

5.10) on 9
th

 April 2013. We concentrate here onto a subset of data (1,070 readings) 

extracted from the original dataset based on data quality criteria (R
2
 value >0.95 and 

optimal light values were selected) and meteorological conditions (northern trending wind  

prevailed during the field campaign). 

 

 

Fig. 5.10  Nea Kameni summit crater (Santorini island, Greece). The positions of GasFinder and retro-

reflectors are shown with letters and numbers, respectively. The positions of MultiGAS stations (blue 

triangles) are also given. 
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Fig. 5.11 Example of time-series of CO2 mixing ratios (one minute data acquisition) at Nea Kameni summit 

crater obtained over three different categories of open paths: (i) near-vent plumes (F6); distal (aged) plumes 

(F4); plume margins (B6). Background values are also given. 

 

Fig. 5.11 is an example of time-series of CO2 mixing ratios (one minute data acquisition) at 

Nea Kameni summit crater obtained over three different categories of open paths: (i) near-

vent plumes (F6); distal (aged) plumes (F4); and plume margins (B6). 

Fig. 5.12 shows the Matlab-derived contour map of CO2 concentration obtained for the 

campaign at Nea Kameni fumarolic field. 

This map shows the distribution of CO2 concentrations in a roughly horizontal cross-

section of the plume located near eastern internal rim of summit crater (1 m under INGV-

Palermo plume station). Low CO2 concentration (between 340 and 390 ppm) are observed 

at the margins of the fumarolic area; while higher CO2 concentrations (range, from 540 to 

590 ppm) are seen in the gas emission zone; a peak CO2 concentration is located in 

corrispondence of one principal gas vent (marked as “Fum6” in Fig. 5.12). From 

integration of data in the contour map of Figure 5.12, a CO2 output from Nea Kameni 

fumaroles of 63 ± 22 tons/day was estimated. This fumarolic output is 4 times higher than 

the total diffuse discharge from the soils of 15.4 tons/day reported by Chiodini et al. 

(1998), and 1.5 times higher than the soil CO2 output of 38 ±6 tons/day estimated (in 

January 2012) by Parks et al. (2013). The weak but persistent fumarolic activity on-top of 

Nea Kameni is the major emission source of CO2 at this volcano.  
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Fig. 5.12 CO2 mixing ratios (ppm) contour map. GasFinder and retro-reflectors positions are shown with 

letters and numbers respectively. “Fum4”, “Fum5” and “Fum6”: positions of main degassing vents; blue 

triangles: permanent INGV-PA stations; red arrow: principal direction of plume dispersal. See text. 
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5.3 Hekla summit crater (Iceland) 

Hekla is one of the most active volcanoes in Europe  and its historical volcanic activity, 

petrology, and geochemistry have been the subject of several studies (e.g. Thorarinsson 

1967; Sigmarsson 1992). Hekla volcano (63.98°N, 19.70°W; 1490 m a.s.l) is located in the 

southern part of Iceland at the intersection of the South Iceland Fracture Zone and the 

Eastern Volcanic Zone (Moune at al. 2007). In its volcanic history, Hekla system has 

produced a suite of basalt, basaltic andesite, andesite, dacite and rhyolite magmas that 

belong to the transitional alkalic series (Jakobsson 1979). All historical eruptions of Hekla 

have started with an higly explosive sub-Plinian to Plinian phase that normally is followed 

by a longer-lasting phase of effusive activity (Thorarinsson 1967).  

 

 

Fig. 5.13 Hekla summit (Iceland). The positions of GasFinder and retro-reflectors are shown with letters and 

numbers, respectively. 

 

In recent decades, Hekla has erupted frequently, at an average rate of one eruption per 

decade, and most recently in 2000 (from 26 February to 8 March) (Höskuldsson et al. 

2007). Gas information has long remained missing, because Hekla appears to be only 

degassing during eruptions. Very recently, Ilyinskaya et al. (2014) identified a weakly 

degassing, warm ground on the summit of the Hekla 1980-81 crater (Fig. 5.13), and 

studied the composition of this gas using data from a permanent Multi-GAS instrument, 

installed by INGV-PA (Istituto Nazionale di Geofisica e Vulcanologia, Sezione di 

Palermo) and IMO (Icelandic Meteorological Office) in 2012, and field campaigns using 

an accumulation chamber. These authors provided evidences for this gas spot being the 
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only current surface manifestation at Hekla. This degassing field was therefore the site of 

our measurement survey with the TDL on 2
nd

 July 2013 (Fig. 5.13). 

 

5.3.1Results and Discussions 

The GasFinder 2.0 operated for more than 4 1 hour for Hekla on 2
nd

 July 2013 (Fig. 5.13); 

concentrating here onto a subset of data (985 readings) extracted from the original dataset 

based on data quality criteria and meteorological conditions (southern trending wind). 

An example of acquisition in three different paths are given in figure 5.14. 

 

Fig. 5.14 Example of time-series of CO2 mixing ratios (one minute data acquisition) at Hekla crater obtained 

over three different categories of open paths: (i) near-vent plumes (A1); distal (aged) plumes (B2); plume 

margins (C1). Background values are also given. 

 

Figure 5.15 is a map of CO2 concentations measured in air 1 m above the degassing 

ground of Hekla. In this area, the background concentration of CO2 are 400 ppm; while 

the highest CO2 concentration values (up to 1000 ppm) are consistently  detected in the 

central part of the map, near the INGV-IMO plume station, where outgassing from the soil 

is most marked. 

Given the positioning of Gas Finder and retro-reflectors, the Matlab-derived contour map 

is here relative to an hypothetical horizontal cross-section, taken at about 1m height above 

the warm degassing ground identified by Ilyinskaya et al. (2014) on the rim of the 1980-

1981 summit crater of Hekla. From this map, we estimate a CO2 flux of about 15 ± 7 
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tons/day. The large error in our flux estimate (±46%) is here reflecting the poor quality of 

our plume transport speed measurement, which determination was complicated by the 

strong winds blowing on top of Hekla by the time of our measurements. The flux value 

estimated matches closely the recently reported CO2 flux for Hekla summit (13.7 ± 3.7 

tons/day), obtained using conventional (accumulation chamber) soil survey techniques 

(Ilyinskaya et al. 2014). 

 

 

Fig. 5.15 Contour map of CO2 mixing ratios (ppm), Hekla campaign of 2
th

 July 2013. GasFinder and retro-

reflectors positions are shown with letters and numbers respectively. Blue triangle: INGV-PA/IMO station; 

red arrow: principal direction of plume dispersal. 
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5.4 Krýsuvík (Iceland) 

The Krýsuvík geothermal area is located on the Reykjanes Peninsula, in south-west 

Iceland. The peninsula is an oblique on-shore segment of the Mid-Atlantic ridge which 

formed since around 6-7 million years ago (Saemundsson 1979; Clifton and Schlische 

2003). It is caracterized by basaltic lavas ranging from picrite to tholeiite composition and 

hyaloclastite ridges formed in subglacial eruptions (Jónsson 1978). The Krýsuvík field is 

one of five presently active geothermal areas on the Reykjanes Peninsula (Markússon et al. 

2011). Geothermal activity consists mainly of acid surface alteration and hot ground, steam 

vents and steam-heated hot springs and mud pots. Surface activity is concentrated in the 

Sveifluháls area, including Austurengjahver, and mostly within the small area of Seltún 

and Hveradalur (Markússon et al. 2011). 

On 5
th

 July 2013, we performed TDL observations in Hveradalur (63° 53,449'N, 22° 

4,190'W; Fig. 5.16). This area included two major fumarolic manifestations (indicated as 

“FumA” and “FumB” in Fig. 5.16). The fumarolic vent “FumA” is monitored by a 

permanent Multi-GAS instrument (shown as a triangle in Fig. 5.16 and 5.18) deployed in a 

joint monitoring program led by BGS (British Geological Survey), INGV and IMO.  

 

Fig. 5.16 Analysed area at Krýsuvík. “FumA” and “FumB” are the main degassing vents. A detail of “FumB” 

vent is given at the top of the picture. Blue triangle: IMO-INGV station. Black arrow: nord direction. 
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5.4.1 Results and Discussions  

Acquiring for 1.5 hour on 5
th

 July 2013, the GasFinder provided 1,150 readings (selected 

for nord-western trending wind).  

 

Fig. 5.17 Example of time-series of CO2 mixing ratios (one minute data acquisition) at Krýsuvík obtained 

over three different categories of open paths: (i) near-vent plumes (C5); distal (aged) plumes (C3); plume 

margins (C4). Background values are also given. 

 

The CO2 contour map obtained at Krýsuvík is shown in figure 5.18. In this area, CO2 

mixing ratios ranged from 350-380 ppm at the periphery of the exhaling area, and up to 

500 ppm near the two main fumarolic vents (“FumA” and “FumB” in Fig. 5.16 and 5.18). 

For the Hveradalur fumarolic field of Krýsuvík, we estimate a CO2 flux of 5.7 ± 0.9 

tons/day. This is the first CO2 output estimate for this area, at least to our knowledge. 
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Fig. 5.18 Contour map of CO2 mixing ratios (ppm), Krýsuvík (Hveradalur) campaign of 5
th

 July 2013. 

GasFinder and retro-reflectors positions are shown with letters and numbers respectively. “FumA” and 

“FumB”: positions of main degassing vents; blue triangle: INGV-PA/IMO station; red arrow: principal 

direction of plume dispersal. 
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5.5 Vulcano island 

Vulcano is a volcanic island belonging to the Aeolian Islands in the southern Tyrrenian Sea 

in Italy. Since the last eruption in 1888-90, this closed-conduit volcanic system has been 

characterized by solfataric activity, located mainly in the summit area inside La Fossa 

crater. La Fossa cone (391 m a.s.l.) is a small, about 2-km diameter, strato-vulcano. All the 

exsplosive and effusive products of this cone have exihibited high potassium contents and 

chemical compositions ranging from trachytic to rhyolitic (Keller 1980). In the last 

decades, increasing degassing activity of vulcano Island indicated renewed activity, 

including large increase in fumarole temperature (Badalamenti et al. 1991; Chiodini et al. 

1995; Capasso et al. 1997). Many episodes of fumarole gas/steam ratio change 

concentration were recorded in 1988-91, 1996, 1998, 2001,  etc. (Paonita et al. 2002; 

Chiodini et al. 1996a; Capasso et al. 1999). Carbon dioxide represents the main constituent 

of anhydrous gases discharged in the summit areas of the volcano through the plume or 

from crater fumaroles (Chiodini et al. 2005; Inguaggiato et al. 2012). Attempts to measure 

the CO2 output were considered in all geochemical monitoring programs (Brusca et al. 

2004; Carapezza et al. 2004; Werner and Cardellini, 2006). Vulcano island fumaroles have 

been used as a natural laboratory to test new remote sensing techniques and different 

prototypes (Inguaggiato et al. 2012). In particular, Mori et al. (1995) used a FTIR Spectral 

Radiometer for remote measurements; Aiuppa et al. (2004) carried out an inter-comparison 

of different methodologies (FTIR, Filter-packs, direct sampling) on the plume; Tamburello 

et al. (2011) used UV camera measurements of fumarolic SO2 degassing. Finally, Aiuppa 

et al (2004, 2005, 2006) and McGonigle et al. (2008) carried out measurements to 

determine H2S/SO2 and CO2/SO2 ratios and SO2 fluxes with DOAS, Infra-Red and 

electrochemical sensors. 

 

5.5.1 Results and Discussions 

On 11
th

 March 2014, the CO2 emissions from La Fossa were investigated using the 

measurement configuration of figure 5.19.  
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Fig. 5.19 Experimental set-up at La Fossa of Vulcano. The laser (letters) and retro-reflectors (numbers) 

positions are given. FA, F0, F5, and F11: the main degassing vents. Black arrow: nord direction. 

 

During the campaign the laser operated for 2 hours (1,757 readings were selected). An 

example of time-series of mixing ratios is shown in figure 5.20. 

 

 

Fig. 5.20 Example of time-series of CO2 mixing ratios (one minute data acquisition) at La Fossa of Vulcano 

obtained over three different categories of open paths: (i) near-vent plumes (E4); distal (aged) plumes (E3); 

plume margins (E2). Background values are also given. 
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The CO2 distribution map of “La Fossa” crater at Vulcano Island is shown in figure 5.21. 

The highest CO2 mixing ratios (up to 880 ppm; Fig. 5.21) were detected in correspondence 

of the principal fumaroles (“F0”, “F5” and “F11”) of the crater rim and the “FA” fumarolic 

field in the inner wall of the crater.  

 

 

Fig. 5.21 Contour map of CO2 mixing ratios (ppm), “La Fossa” campaign, Vulcano Island, 11
th

 March 2014. 

GasFinder and retro-reflectors positions are shown with letters and numbers respectively. Red arrow: 

principal direction of plume dispersal. 

 

The CO2 flux at La Fossa crater was evaluated as 524 ± 108 tons/day. This is in the same 

range of CO2 emissions obtained in previous studies by Aiuppa et al. (2005) (420 ± 250 

t/d), Tamburello et al. (2011) (488 t/d, average of two campaigns in 2009) and Inguaggiato 

et al. (2012) (453 t/d) (see Fig. 5.22) using different techniques. 
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Fig. 5.22 Time-series of CO2 flux values (tons/day) for “La Fossa crater” (Vulcano Island). Previous works: 

Aiuppa et al. (2005; 2006), Tamburello et al. (2011) and Inguaggiato et al. (2012). The flux value of 524 ± 

108 t/d, obtained in this study, is also shown. 
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5.6 Paternò 

Paternò (Lon 14.89°; Lat 37.57°) in the southern flank of Etna volcano (Fig. 5.23), is 

famous for the mud spots, volcano-sedimentary manifestations  that drain gases and hot 

saline waters from underlying hydrothermal system (from which the name “Salinelle”) 

(D’Alessandro et al. 1997).  

 

Fig. 5.23 Location of the study area of Paternò, in southern flank of Mt. Etna (Italy). 

 

The gas emitted consists mainly of CO2, with CH4, N2 and He as minor species. CO2 and 

He stable isotopes indicate a clear magmatic origin for these gases, and their compositional 

changes during either eruptive or rest periods closely parallel that of crater fumaroles 

(Paonita et al. 2012). Altough these manifestations are the most significant CO2 emitters 

outside the crater area, their mass output has never been measured.  

Gas bubbling (Fig. 5.24) within the mud pools is vigorous. Occasionally, paroxysmal 

emissions of hot water (40-50°C) and mud have been observed in the past (Silvestri 1879; 

Cumin 1954). These events have been correlated to coeval earthquakes. Indeed, the 

shaking produced by the earthquake can trigger explosive release of gas trapped within 

clayey sediments, carrying mud and salt water. The monitoring of mud volcanoes in the 

Southern flank of Mt. Etna is particularly appealing because the geological setting allows 

gas pressurization in this area, as an effect of variations of either the stress field or the 

volcanic activity. The periodic monitoring of gas flow rate in the mud volcano would 

provide direct information about the eventual pressurization of the local hydrothermal 

system (Chiodini 1996b). 
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Fig. 5.24 View of analyzed area at Paternò. Gas bubbling in the mud-spoots is noticeable. 

 

5.6.1 Results and discussions 

Acquiring for ~ 4 hours on 4
th

 April 2014, the GasFinder provided ~ 6000 readings (the 

dataset was filtered for wind speed ranged from 6 to 8 m/s and sud-east oriented dispersal). 

An example of one minute acquisition in three different paths is given in figure 5.25. 

 

Fig. 5.25 Example of time-series of CO2 mixing ratios (one minute data acquisition) at Paternò obtained over 

three different categories of open paths: (i) near-vent plumes (C2); distal (aged) plumes (C4); plume margins 

(C5). Background values are also given. 
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During the campaign a home-made apparatus (Fig. 5.26), able to capture the bubbles over 

an area of 0.64 m
2
, and a Multi-GAS (Fig. 5.27) were also used. 

 

 

Fig. 5.26 Scheme of the home-made apparatus used to measure the flow rate value at each bubbling mud pool 

during the campaign on 4
th

 April 2014. 

  

As shown in figure 5.26, the apparatus is made of a stainless-steel funnel (dimension 0.8 x 

0.8 m) connected through a tap to a plastic bag. The plastic bag, pre-evacuated by mean of 

a pump at constant flow rate, is let to inflate with the bubbling gas by opening the tap. 

From the time of inflation and the volume of the bag (by means of the pump at constant 

flow rate), the flow rate is easily calculated. Over an area of about 6000 m
2
, the flow rate 

of every single bubbling pool, was measured, providing that the minimum flux rate was 0.5 

l/min (Federico et al. 2014). 

Direct measurements of gas flow rate have been compared with in-plume CO2 

measurements from a single mud pool.  The method consists in detecting CO2 mixing 

ratios by means of an IR spectrometer (inside Multi-GAS system, Fig. 5.27) over a cross 

section of the gas plume released by the bubbling pool (Fig. 5.27a), to obtain the Integrated 

Column Amount value. 
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Fig. 5.27 a-b Scheme of the cross section of the gas plume released by the bubbling pool performed by using 

the MultiGAS at three different heights (under 1.5 m); c scheme of a MultiGAS portable system. The main 

components are indicated. A IR spectrometer Gascard for CO2 measurements was used. 

 

The results of the field campaign carried out via GasFinder and the home-made apparatus 

on 4
th

 April 2014, are shown in a classed image map (Fig. 5.28). The most vigorous 

emissions are all concentrated in a 100 m
2
 wide area. During the campaign, the maximum 

flow rate from a single bubbling pool was 115 l/m. The overall gas flow rate was 390 l/m. 

Considering an average CO2 content of 95% in the bubbling pools, the total CO2 output 

was 1.1 t/d (Federico et al. 2014). As regards the CO2 distribution obtained from 

GasFinder dataset (plotted in the same figure), the background values were detected 

outside and up-wind of the main degassing area; instead, the highest mixing ratio values 

(from >500 to 690 ppmv) were detected down-wind respect to the bubbling vents. Once 

obtained the CO2 distribution map, it would be possible to compute the overall CO2 flux 

rate of the total investigated area by multiplying the Integrated Column Amount by the 

vertical transport speed.  

Accurate measurements of the vertical upward air convections, weren’t realized for 

Paternò area of “Salinelle”. Considering a vertical gas speed estimation of about 0.03 m/s, 

the CO2 flux could be 1.5 t/d. 
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Fig. 5.28 Classed image map obtained by using the both home-made apparatus and GasFinder on 4
th

 April 

2014 campaign. The most vigorous emissions are all concentrated in a 100 m
2
 wide area. During the 

campaign, the maximum flow rate from a single bubbling pool was 115 l/m (red circles). The overall gas 

flow rate was 390 l/m. CO2 distribution, obtained from GasFinder dataset, is plotted. As expected, the 

background values were detected outside and up-wind of the main degassing area; instead, the higest mixing 

ratio values (from >500 to 690 ppmv) were closely down-wind with respect to the bubbling vents. 

 

During the campaign, the MultiGAS cross sections (at three different heights from soil-

level) were performed to extrapolate a flux rate value to compare with the results from the 

home-made apparatus. The results of CO2 concentration measurements (ranged from 400 

to 1000 ppmv) are shown in figure 5.29. The difference between the direct flux 

measurements (by home-made apparatus) and the CO2 flux estimate by MultiGAS-results 

is about 12%. Flux estimate based on CO2 MultiGAS measurements is lower due to the 

defective detection of the CO2 anomalies near the ground (Fig. 5.29). 
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Fig. 5.29 Results of MultiGAS cross sections (at three heights under 1.5 m). The CO2 concentrations are 

given (ranged from 400 to 1000 ppmv). The flux estimate is lower (~12%) due to the defective detection of 

the CO2 anomalies near the ground. 

 

The computed value of CO2 emitted from the mud volcano (1.1 t/d) is about one order of 

magnitude lower than the CO2 mass rate transported by the local shallow aquifer (Fig. 

5.30): in an area of about 46 km
2
, the mass rate of CO2 transported by water is 16 t/d 

(Federico et al. 2014). 

 

Fig. 5.30 Location of shallow aquifer close to Paternò area. 
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5.7 Furnas volcano (Azores) 

 

The Azores archipelago is composed of nine volcanic islands located in the North Atlantic 

Ocean in the triple junction domain of American, Eurasian and Nubian plates (Searle 1980; 

Viveiros et al. 2012) (Fig. 5.31a). Due to the interaction between the complex tectonic 

setting and the presence of a mantle melting anomaly (Beier et al. 2010), seismicity and 

volcanism are frequent in the archipelago. 

At present, volcanic activity in the Azores archipelago is characterised by seismic activity 

and secondary manifestations of volcanism such as low temperature fumaroles (95–100ºC), 

steaming ground, thermal springs, cold CO2–rich springs and soil diffuse degassing areas. 

Special attention has been given to CO2 diffuse emissions (Ferreira 2005). 

The most important degassing zones are located in São Miguel, Terceira and Graciosa 

islands and at some submarine volcano-tectonic structures along the Terceira Rift. 

São Miguel Island, the biggest island of the archipelago, is characterized by three main 

active polygenetic volcanoes (Sete Cidades, Fogo and Furnas) with fissural volcanic zones 

in between (Fig. 5.31b). 

Furnas Volcano is located in the eastern part of the island and its oldest volcanic products 

are dated to 100,000 years BP (Moore 1990). 

After the last eruption, occurred in 1630 (Cole et al. 1995), hydrothermal explosions were 

reported in 1840–41, 1944 and 1990 from a fumarole belonging to the Furnas Village 

fumarolic field (Ferreira 1994). Present-day volcanic activity is characterised by 

widespread hydrothermalism. Most of the manifestations are located inside the caldera 

(Fig. 5.32), where three main fumarolic fields were observed (Viveiros et al. 2012): 

1 Furnas Lake 

2 Furnas Village 

3 Ribeira dos Tambores. 
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Figure 5.31 (a) Location map of the Azores archipelago with the main tectonic structures. Legend: 

MAR - Mid-Atlantic Ridge; EAFZ - East Azores Fracture Zone; GF - Gloria Fault; TR (s.l.) - Terceira Rift; 

C - Corvo; Fl - Flores; F - Faial; P - Pico; SJ - São Jorge; G - Graciosa; T - Terceira; SM - São Miguel; ST -

Santa Maria; Fo - Formigas Islet. White line represents bathymetry of -2000 m. (b) São Miguel Island digital 

elevation model (DEM) with location of the main active volcanic systems: (1) Sete Cidades, (2) Fogo (or 

Água de Pau) and (3) Furnas volcanoes (taken from Viveiros et al. 2012). 
 
 
 
 

The fumarolic fields Furnas Lake and Furnas Village  (“A” and “B” in figure 5.32) are 

located inside the Furnas caldera, defining a WNW-ESE cluster compatible with a major 

regional tectonic trend that cross the island (Gaspar et al. 1995).  

 

 
 

Fig. 5.32 Hydrothermal manifestations at Furnas Volcano. Cold CO2-rich springs and thermal springs are 

identified by Costa (2006). Steam vents were mapped by Viveiros et al. (2010). Red squares ‘A’ and ‘B’ 

indicate the main fumarolic fields, Furnas Lake and Furnas Village, respectively.  
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The main components of the fumarolic discharges are water vapour followed by carbon 

dioxide, hydrogen sulphide, nitrogen, hydrogen, oxygen, methane and argon (Ferreira 

1994; Ferreira and Oskarsson 1999; Ferreira et al. 2005). 

The first soil diffuse degassing studies carried out in the archipelago (Baubron et al. 1994; 

Baxter et al. 1999; Oskarsson et al. 1999) were performed in Furnas caldera in the early 

nineties, showing that Furnas village is sited over an important CO2 degassing area. 

 

5.7.1 Results and discussions 

In August 2014, two field-campaigns were carried out in the two main fumarolic fields: 

“Furnas Lake” (“A” in figure 5.32), on the north coast of “Lagoa das Furnas”, and “Furnas 

Village” (Caldeiras), in the eastern side of the caldera (“B” in figure 5.32). 

The former is characterized by surface alteration of kaolinite, which indicates acid leaching 

of the surface layer (Ferreira and Oskarsson 1999). Here, tree main degassing vents were 

investigated (Fig. 5.33): a vigorous degassing vent with boiling water jet (close to mirror 3-

position in figure 5.33); two smaller fumaroles located in north-western part of the site 

(close to mirror 2-position in figure 5.33); and a mud pool degassing vent (close to mirror 

5-position in figure 5.33). 

 

 

Fig. 5.33 Furnas Lake fumarolic site saw from the top of northen part of the volcano caldera.The positions of 

GasFinder and retro-reflectors are shown with letters and numbers, respectively. The positions of MultiGAS 

measurement-point (blue triangle) and the degassing vents (red crossed-circles) are also given. 
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On 19
th

 August 2014, acquiring for ~ 6 hours, the GasFinder provided ~ 3600 readings (the 

dataset was filtered for wind nord-west oriented dispersal). An example of one-minute 

acquisition in three different paths is given in figure 5.34. 

 

 

Fig. 5.34 Example of time-series of CO2 mixing ratios (one minute data acquisition) at Furnas Lake obtained 

over three different categories of open paths: (i) near-vent plumes (C4); distal (aged) plumes (C2); plume 

margins (C1). Background values are also given. 

 

Figure 5.35 is a CO2 contour map derived from GasFinder dataset. CO2 mixing ratio values 

range from 380 to ~ 900 ppm. In detail, the lower CO2 mixing ratios were detected outside 

the fumarolic field; instead the higher mixing ratios (580-780 ppm) were found in down-

wind direction and close to main degassing vents. A peak of CO2 mixing ratio (~ 900 ppm) 

was detected close to the jet-water degassing vent (mirror 3-position) and a little water-

pool (close to mirror 4-position; Figs. 5.33 and 5.35). 
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Fig. 5.35 Contour map of CO2 mixing ratios (ppm) at “Furnas Lake” survey on 19
th

 August 2014. GasFinder 

and retro-reflectors positions are shown with letters and numbers respectively. Investigated fumaroles (red 

crossed-circles) and MultiGAS measurement-point (blue triangle) positions are given. Red arrow: principal 

direction of plume dispersal. 

 

Integrating the CO2 contour map (Fig. 5.35), and multiplying this for the vertical gas 

tansport speed (1.1 m/s), a CO2 emission of 35 ± 3.1 t/d was estimated for an area of 4332 

m
2
. 

During the same campaign, soil CO2 effluxes were measured using an accumulation 

chamber method by Fàtima Viveiros (from university of Azores in Ponta Delgada city). A 

total of 124 measurements were carried out in an area of approximately 3666 m
2
. The CO2 

emitted in that area was 5.45 t/d, which was based on IDW deterministic interpolation 

method for a preliminary analysis (Fàtima Viveiros pers. comm.). 

Finally, the MultiGAS results obtained for the plume of the main jet-water degassing vent 

(close to mirror 3-position; fig. 5.33) are consistent with literature data. In detail, a mean 

CO2/H2S ratio of 353 (Fig. 5.36) was obtained, which fits well with a mean ratio of 348 

found in a chemical survey in fumarolic samples (Ferreira and Oskarsson 1999). Using the 

CO2/H2S ratio measured from MultiGAS datasets, a H2S flux of 0.099 t/d was estimated. 
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Fig. 5.36 Top: CO2 and H2S signals detected in 220 measurements close to the main degassing vent located 

in Furnas Lake site. Bottom: Correlation between two signals. The plots are exportated by “RatioCalc” (a 

program of Giancarlo Tamburello - University of Palermo). In this example, the CO2/H2S is 352 (close to the 

mean ratio value found in the entire acquired measurements) and the R
2
 regression line is 0.62. 

 

“Furnas Village”, is the largest fumarole of the Furnas caldera, where several other 

moderately large fumaroles are active within an area of several hundred square metres. 

Of special importance is the “Caldeira Grande” vent, where hydrothermal fluid is 

discharged. “Caldeira do Asmodeu” is a vigorously boiling fumarole where steam 

explosions have occasionally occurred. “Caldeira Grande” and “Caldeira do Asmodeu” 

were previously studied by Cruz et al. (1999) and Ferreira and Oskarsson (1999). They are 

referred as “CG” and “CdA” in the subsequent text and figures (Fig 5.37). 

On 22
nd

 August 2014, acquiring for ~ 4 hours, the GasFinder provided ~ 3200 readings 

(the dataset was filtered for wind nord/nord-west oriented dispersal; Fig. 5.37). 

Figure 5.38 is an example of time-series of CO2 mixing ratios (one minute data 

acquisition) at Furnas Village obtained over three different categories of open paths: (i) 

near-vent plumes (E1); distal (aged) plumes (E2); plume margins (E3).  
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Fig. 5.37 Furnas Village fumarolic site.The positions of GasFinder and retro-reflectors are shown with letters 

and numbers, respectively. The positions of MultiGAS measurement-point (blue triangle) and two main 

degassing vents (“CG” and “CdA”, red crossed-circles) are also given. 

 

 

Fig. 5.38 Example of time-series of CO2 mixing ratios (one minute data acquisition) at Furnas Village 

obtained over three different categories of open paths: (i) near-vent plumes (E1); distal (aged) plumes (E2); 

plume margins (E3). Background values are also given. 

 

Figure 5.39 is a CO2 contour map derived from GasFinder dataset. CO2 mixing ratio 

detections (ranged from 360 to ~ 800 ppm) are lower than for “Furnas Lake” site. Here, is 

possible to notice a diffuse degassing area with moderately-high-values (500-660 ppm) for 

the presence of others smaller degassing vents placed between CG and CdA. Peaks of CO2 
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mixing ratio (~ 700-800 ppm) are consisting with the plume/wind dispersal. The lower 

CO2 mixing ratios were detected up-wind outside fumaroles positions (Fig. 5.39). 

 

Fig. 5.39 Contour map of CO2 mixing ratios (ppm) at “Furnas Village” survey on 22
nd

 August 2014. 

GasFinder and retro-reflectors positions are shown with letters and numbers respectively. Investigated 

fumaroles (red crossed-circles) and MultiGAS measurement-point (blue triangle) positions are given. Red 

arrow: principal direction of plume dispersal. CG: Caldeira Grande; CdA: Caldeira do Asmodeu. 

 

The estimated CO2 emission for this survey is 25.5 ± 10 t/d in an area of 2440 m
2
. 

Simultaneous accumulation chamber survey (95 soil CO2 flux measurements) was carried 

out in an area of about 2300 m
2
. The CO2 emitted in that area was 2.5 t/d, which was based 

on IDW deterministic interpolation method for a preliminary analysis (Fàtima Viveiros 

pers. comm.). 

At Furnas village, the CO2/H2S mean ratio of 150 measured by using MultiGAS portable 

system (close to “Caldeira Grande”; Fig. 5.37 and 5.39) are consistent with  the mean ratio 

(120) found by Ferreira and Oskarsson (1999). Using the CO2/H2S ratio measured from 

MultiGAS datasets, a H2S flux of 0.17 t/d was estimated. Here, a H2O/CO2 ratio, ranged 

12-15, was also measured. 

Finally, combining the fumaroles CO2 flux (~ 60.5 t/d), with the total soil CO2 emission (~ 

8 t/d), the total cumulative CO2 output at Furnas volcano was estimated of ~ 68.5 t/d. 
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Chapter 6 

CO2 emissions from the analyzed areas: 

implications  

 

6.1  CO2 emissions from the investigated areas 

The ability of the TDL to contour CO2 mixing ratios (Figs. 5.6 - 5.7 - 5.8 - 5.12 - 5.15 - 

5.18 - 5.21 - 5.28 - 5.35 and 5.39) in a volcanic gas plume cross section opens the way to 

quantification of the fumarolic CO2 output from each of the studied areas.   

The calculated CO2 fluxes are listed, for each site and each campaign, in Table 6.1. The 

accuracy (1 ) of the mean flux estimates are calculated from error propagation theory 

applied to both ICA and plume transport vertical speed. 

Table 6.1. CO2 fluxes (in tons/day) and standard deviation (1 ) calculated in the investigated areas of 

Campi Flegrei, Nea Kameni, Hekla, Krýsuvík, Vulcano and Furnas by GasFinder datasets. The plume 

transport vertical speed (in m/s) is also given for each site. 

Site Date
 

Gas speed
 
(m/s) 

(± 1 )
 

CO2 Flux (t/d) 

(± 1 ) 

Campi Flegrei
a
 2012-2013

b
 1.40 ± 0.60 487 ± 97.9 

Nea Kameni 9
th

 April 2013 1.20 ± 0.40 63 ± 22 

Hekla 2
nd

 July 2013 1.00 ± 0.50 15 ± 7 

Krýsuvík 5
th

 July 2013 1.17 ± 0.18 5.7 ± 0.9 

Vulcano 11
th

 March 2014 1.00 ± 0.20 524 ± 108 

Furnas Lake 19
th

 August 2014 1.10 ± 0.09 35 ± 3.1 

Furnas Village 22
nd

 August 2014 1.04 ± 0.40 25.5 ± 10 

a
Total CO2 fumarolic budget is considered: Pisciarelli and Solfatara sites 

b
Pisciarelli campaigns: 25

th
 October 2012; 29

th
 January and 8

th
 May 2013. Solfatara campaigns: 26

th
 October 

2012; 30
th

 January and 9
th

 May 2013 
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As regards the survey at Furnas caldera, a total CO2 budget of ~60 t/d was estimated, 

which is ~2 times higher than the total flux estimated in the both sites (14 t/d at Furnas 

Lake and 13-15 t/d at Furnas Village) by Viveiros et al. (2010; 2012). The accumulation 

chamber results for the campaign carried out in August are not known with certainty. 

 

6.2 Implications to global scale 

The volcanoes in the present work display a range of fumarolic activity, from weak 

(Hekla) to moderately strong (“La Fossa” of Vulcano and Campi Flegrei). As such, our 

results add novel information on the CO2 degassing regime of quiescent volcanoes in 

Solfatara stage of activity, and on their potential contribution to the global volcanic CO2 

budget.   

The current state-of-the-art of volcanic CO2 flux research has recently been summarised in 

Burton et al. (2013). The authors presented a compilation of 33 subaerial volcanoes for 

which CO2 flux observations were available at that time. These "measured" emissions 

totalled a cumulative CO2 output of 59.7 Mt/yr. The same authors used linear 

extrapolation, from the measured 33 to the 150 plume-creating, passively degassing 

volcanoes on the GVP catalogue (Siebert and Simkin 2002), to obtain an extrapolated 

global volcanic CO2 flux of ~271 Mt/yr.  

The linear extrapolation approach of Burton et al. (2013) is based on the implicit 

assumption that the measured 33 volcanoes represent a statistically significant sub-set of 

the volcanic CO2 flux population. However, I argue that past volcanic CO2 observations 

have been prioritized at strongly degassing volcanoes under unrests; therefore, the 33 

volcanoes population may be biased towards the category of top gas emitter, implying the 

linear extrapolation technique may be incorrect. The low CO2 output associated to “quiet” 

volcanoes, as reported in the present work, corroborates this conclusion.  

The alternative extrapolation approach used to quantify CO2 emissions from “unmeasured” 

volcanoes is to assume that the distribution of volcanic CO2 fluxes obeys a power law 

(Brantley and Koepenick 1995), as other geophysical parameters do (Marret and 

Allmendinger 1991; Turcotte 1992). If volcanic emissions follow a power-law distribution, 

then the number of volcanoes (N) with an emission rate ≥ f  are given by: 

                                                           N = af 
- c 

                                                                (6.1) 
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where a and c are constants that can be derived from linear regression on measured CO2 

emission datasets. In the power-law assumption, the global volcanic CO2 flux (ftot) was 

extrapolated to 88-132 Mt/yr (Brantley and Koepenick 1995) using the relation: 
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where fN refers to the Nth-largest measured flux. This 88-132 Mt/yr estimate is a factor 2-3 

lower than obtained with the linear extrapolation technique (Burton et al. 2013). On the 

same basis, the volcanic+metamorphic CO2 flux was evaluated at ~264 Mt/yr (Brantley 

and Koepenick 1995).  

The power-law distribution assumption has extensively been used to extrapolate volcanic 

gas fluxes at both global and individual-arc scale (Hilton et al. 2002). However, concerns 

have recently been raised on its validity. For example, Mori et al. (2013) demonstrated that 

the SO2 flux distribution of Japanese volcanoes noticeably diverges from a simple power 

law distribution. The case of the global volcanic CO2 flux population is illustrated in 

Figure 6.1. The figure is a log-log plot of the cumulative number of volcanoes (N) having 

measured CO2 flux of  ≥ f . The diagram is based upon the dataset of Burton et al. (2013), 

implemented with the results from this study (Table 6.1) and additional data for Turrialba 

(1140 tons/day; Conde et al. 2014) and Poas (24.7 tons/day; Aiuppa et al. 2014) in Costa 

Rica, Telica (132 tons/day; Conde et al. 2014) and San Cristobal (523 tons/day; Aiuppa et 

al. 2014) in Nicaragua, Lastarria (973 tons/day) and Láscar (534 tons/day) in Chile 

(Tamburello et al. 2013; 2014), and Soufriere in Guadeloupe (14.9 tons/day; Allard et al. 

2014). This implemented CO2 flux population (47 volcanoes in total) clearly departs from 

a linear trend, as would be expected for a power-law distribution (Eq. 6.1). The observed 

distribution shows, instead, a clear inflection point at log f ~ 2.5-2.8 (e.g., CO2 flux of ~ 

300-600 tons/day), which appears to divide high (>600 tons/day) from low (<300 tons/day) 

CO2 flux volcanoes (L and H regression lines in Fig. 6.1). 

In view of these novel results (listed in table 6.1), I proposed that the non-linear behavior 

of the volcanic CO2 flux population may (at least in part) reflect the scarcity of CO2 flux 

information on weakly fuming, quiescent volcanoes (Pedone et al. 2014b). The case Hekla 

is emblematic in this context: the volcano has remained in a very active state in the last 

century (it violently erupted only fourteen years ago; Höskuldsson et al. 2007), but shows 

today no visible plume or gas emission. Yet however, our data suggest the volcano may 
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contribute daily ~ 15 tons of CO2 to the atmosphere in invisible, but probably persistent 

form. Similarly, no plume is seen on top of Nea Kameni in Santorini, which weak 

fumaroles yet release 63 ± 22 tons of CO2 every day (in addition to a sizeable diffuse 

contribution from the soil), and 5.7 ± 0.9 tons of CO2 are released daily by quiet 

hydrothermal activity at Krýsuvík (which most recent activity probably dates back the 14
th

 

century; Smithsonian Institute 2013). While the individual contribution of each of the 

above volcanoes is negligible globally, the cumulative contribution of all feebly degassing 

volcanoes on Earth may not, and may impact the global CO2 flux distribution of Figure 

6.1. 

 

Fig. 6.1 Cumulative frequency of the number of volcanoes (N) emitting CO2 flux ≥ f (in logarithmic scale). 

The diagram is based upon the dataset of Burton et al. (2013), implemented with new results from this study 

and additional data (see text). Red point, with coordinates log f = 1 (CO2 flux = 10 tons/day) and log N=2.69 

(500 volcanoes), lies right above the linear regression line of the high CO2 flux (log f > 2.5) population 

(dashed line H). The regression line (line H1; R
2
 = 0.98) is obtained considering the high CO2 flux volcanoes 

(log f  ≥ 2.5) plus this new log f = 1 point. 

 

To explore the latter argument further, I consider that, of the 1549 volcanic structures listed 

in the GVP catalogue, around 500 are considered to have been active in the Holocene 

(Smithsonian Institution 2013), and thus still potentially degassing. For the sake of 

illustration, I assume that all such 500 volcanoes have a CO2 flux equal to or higher than 

10 tons/day (a flux value close to the weakly degassing investigated systems). This yields 

to a new point in Figure 6.1, with coordinates log f = 1 (CO2 flux = 10 tons/day) and log 

N=2.69 (500 volcanoes), which lies right above the linear regression line of the high CO2 
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flux (log f > 2.5) population (see dashed line H in Figure 6.1). The regression line (line H1; 

R
2
 = 0.98) obtained considering the high CO2 flux volcanoes (log f  ≥ 2.5) plus this new 

log f = 1 point has slope c = -0.72. Using this value in relation (6.2), and with N = 500, we 

calculated an extrapolated CO2 flux of 65.5 Mt/yr. 

From these preliminary calculations, it possible to conclude that (i) the power-law 

distribution may be an appropriate representation of the population of CO2 flux data, 

provided the output of the several hundreds of weakly degassing, 

quiescent/hydrothermal/dormant volcanoes is considered; (ii) a large number of volcanoes 

remain to be measured, possibly being characterized by intermediate CO2 output (log f 

between 1 and 2.5 in Fig. 6.1) (Pedone et al. 2014b).  
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Chapter 7 

Conclusions 

In this thesis, the fumarolic CO2 output from quiescent volcanoes in hydrothermal state of 

activity, were investigated using an Infra Red TDL. At each of the studied volcanoes, the 

acquired TDL results have been used to contour CO2 mixing ratios in the plumes' cross-

sections, and from this to quantifying the fumarolic CO2 output. All these results show 

promise for the application of TDLS to volcanic gas research. Based on experiments, It can 

be concluded that commercially available IR laser systems can easily resolve volcanic CO2 

over the atmospheric background, at least for measurement distances of <350 m. 

The TDL measurements reported here contribute new information on Campi Flegrei, 

Hekla, Krýsuvík, Nea Kameni, La Fossa of Vulcano, and Furnas. The estimated fluxes 

(Table 6.1) confirm a significant contribution of fumaroles to the total CO2 budget of such 

areas. 

The highest outputs (524 ± 108 tons/day) are obtained at La Fossa of Vulcano Island, and 

Campi Flegrei (with an average total CO2 emission of 487 tons/day from the both 

investigated fumarolic fields). The lowest CO2 output (5.7 ± 0.9 tons/day) is associated 

with hydrothermal activity at Krýsuvík, with intermediate emissions at Hekla (15 ± 7 

tons/day), Furnas Village (25.5 ± 10 tons/day), Furnas Lake (35 ± 3.1 tons/day) and Nea 

Kameni (63 ± 22 tons/day). 

Krýsuvík, Hekla and Nea Kameni volcanoes currently display weak exhalative activity and 

no visible plume emission. We therefore suggest that a 5.7-63 tons/day CO2 output range 

may be characteristic of many of the ~ 500 volcanoes active in the Holocene, this in spite 

the majority lack obvious surface manifestations of degassing. Assuming a representative 

CO2 output of 10 tons/day for such 500 Holocene volcanoes, I argue that the global 

population of CO2 emissions may approach a simple power-law distribution. 
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Supplementary Materials 

 

Dataset 

The dataset acquired at the different investigated area  during the field campaigns (from 

October 2012 to August 2014) is reported in the next tables (Tabs. from A1 to A13). In the 

tables, each row refers to a specific laser-mirror open-path configuration. The following 

parameters are reported in each table: 

N: progressive number of the path; 

Link L-M: code identifying each GasFinder-retro-reflector path. Letters indicate position 

of the laser unit and numbers refer to position of the mirrors (e.g.: link “A1” is the open 

path linking the “A” position of Laser and the “1” position of retro-reflector). 

Dist: the optical path length (the distance between the GasFinder unit and the retro-

reflector), in metres. 

Start time: star-time of data acquisition. 

End time: end of data acquisition. 

Duration: difference between end and start time. 

M: average CO2 mixing ratio (ppmv). 

Dev.Std: standard deviation of CO2 mixing ratios 

 

Tab. A1: Pisciarelli, 25
th

 October 2012 

N Link 

L-M 

DIST START 

TIME 

END 

TIME 

DURATION M DEV.STD 

1 B2 57 10:53:00 10:58:00 00:05:00 879 137.82 

2 B1 61 11:03:00 11:10:00 00:07:00 390 85.24 

3 B4 55 11:11:00 11:19:00 00:08:00 937 175.09 

4 B3 60 11:20:00 11:25:00 00:05:00 708 84.44 

5 B5 51.7 11:29:00 11:35:00 00:06:00 829 267.14 

6 B6 52 11:41:00 11:47:00 00:06:00 1076 200.43 

7 B7 54 11:53:00 11:55:00 00:02:00 579 33.05 

8 B8 60 12:02:00 12:06:00 00:04:00 600 255.87 

9 A8 69 12:15:00 12:20:00 00:05:00 672 229.74 

10 A7 67 12:21:00 12:25:00 00:04:00 601 76.77 

11 A6 58 12:28:00 12:33:00 00:05:00 1262 252.02 

12 A5 55 12:40:00 13:09:00 00:29:00 776 147.37 

13 A4 58 13:13:00 13:17:00 00:04:00 987 300.02 

14 A3 62 13:21:00 13:25:00 00:04:00 513 95.12 

15 A2 56 13:28:00 13:32:00 00:04:00 569 49.39 

16 A1 58 13:34:00 13:37:00 00:03:00 515 23.34 

18 C2 62 13:53:00 14:09:00 00:16:00 533 121.03 

19 C1 66 14:13:00 14:19:00 00:06:00 480 57.34 
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20 C3 62 14:23:00 14:28:00 00:05:00 809 189.56 

21 C4 56 14:36:00 14:42:00 00:06:00 752 212.50 

22 C5 50 14:43:00 14:48:00 00:05:00 780 165.77 

23 C6 49 14:50:00 15:00:00 00:10:00 909 129.15 

24 C7 51 15:03:00 15:08:00 00:05:00 799 230.46 

25 C8 55 15:11:00 15:19:00 00:08:00 1019 178.87 

26 D8 48 15:34:00 15:41:00 00:07:00 636 59.46 

27 D7 44 15:44:00 15:50:00 00:06:00 1071 100.70 

28 D6 44.1 15:53:00 15:58:00 00:05:00 1190 187.28 

29 D4 53 16:00:00 16:10:00 00:10:00 1161 216.03 

31 D3 61 16:24:00 16:29:00 00:05:00 924 173.98 

32 D2 62.5 16:36:00 16:40:00 00:04:00 731 100.89 

33 D1 68 16:43:00 16:46:00 00:03:00 561 78.94 

34 D5 45 16:47:00 16:50:00 00:03:00 843 260.84 

35 E5 41 16:59:00 17:00:00 00:01:00 830 67.65 

36 E6 38 17:03:00 17:05:00 00:02:00 558 12.20 

37 E7 37 17:07:00 17:15:00 00:08:00 526 44.71 

38 E8 41 17:16:00 17:18:00 00:02:00 504 19.64 

39 E4 49 17:21:00 17:23:00 00:02:00 641 8.79 

40 E3 58 17:25:00 17:26:00 00:01:00 634 25.36 

41 E2 62.5 17:29:00 17:30:00 00:01:00 916 72.43 

42 E1 67 17:32:00 17:35:00 00:03:00 571 60.83 

 

Tab. A2: Solfatara, 26
th

 October 2012 

N LINK 

L-M 

DIST START 

TIME 

END 

TIME 

DURATION M DEV.STD 

1 A1 122 10:17:07 10:22:33 00:05:26 891 136.39 

2 A2 124 10:32:39 10:38:04 00:05:25 827 144.28 

3 A3 125 10:38:37 10:41:36 00:02:59 731 118.45 

4 A4 129 10:45:55 10:48:09 00:02:14 683 87.42 

5 A5 136 10:50:23 10:53:21 00:02:58 613 52.29 

6 A6 128 10:54:49 10:59:24 00:04:35 630 120.22 

7 B1 116 11:13:07 11:18:15 00:05:08 985 93.33 

8 B2 116.5 11:20:04 11:24:42 00:04:38 1166 210.29 

9 B3 114 11:25:51 11:31:06 00:05:15 1068 166.89 

10 B4 117 11:37:30 11:40:23 00:02:53 692 142.69 

11 B5 123 11:42:26 11:45:46 00:03:20 578 70.27 

12 B6 114 11:47:37 11:51:25 00:03:48 621 52.76 

13 C1 119 12:22:01 12:27:09 00:05:08 768 81.80 

14 C2 116 12:27:47 12:31:13 00:03:26 929 167.45 

15 C3 112 12:33:12 12:38:24 00:05:12 814 213.20 

16 C4 113 12:39:45 12:44:45 00:05:00 690 105.62 

17 C5 117 13:52:23 13:57:51 00:05:28 640 52.44 

18 C6 105 14:09:51 14:18:57 00:09:06 639 41.57 

20 D1 123 14:36:29 14:46:10 00:09:41 452 111.56 

21 D2 117 14:47:31 14:51:40 00:04:09 781 142.72 

22 D3 112 14:53:13 14:55:55 00:02:42 617 42.52 

23 D4 111 14:56:57 15:00:00 00:03:03 566 45.10 

24 D5 112 15:01:08 15:05:18 00:04:10 571 49.00 

25 D6 98 15:07:44 15:11:17 00:03:33 518 9.90 
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Tab. A3: Pisciarelli, 29
th

 January 2013 

N LINK 

L-M 

DIST START 

TIME 

END 

TIME 

DURATION M DEV.STD 

1 A2 57 09:33:06 09:36:04 00:02:58 511 43.48 

2 A3 58 09:40:51 09:46:14 00:05:23 849 148.59 

3 A4 55 09:50:26 09:55:36 00:05:10 715 113.03 

4 A1  53 10:11:26 10:17:32 00:06:06 461 17.71 

5 A5 57 10:19:06 10:26:37 00:07:31 702 98.25 

6 A6 53 10:34:34 10:37:27 00:02:53 627 108.56 

7 A8 66 10:42:15 10:49:17 00:07:02 572 66.01 

8 A7 58 10:53:57 10:57:21 00:03:24 795 65.68 

9 B8 57 11:05:26 11:07:31 00:02:05 794 101.37 

10 B7 52 11:13:06 11:16:48 00:03:42 590 54.53 

11 B5 54 11:24:34 11:33:24 00:08:50 752 91.12 

12 B6 49 12:00:43 12:04:12 00:03:29 780 98.99 

13 B4  53 12:05:10 12:09:49 00:04:39 683 100.73 

14 B3 58 12:11:04 12:13:39 00:02:35 497 29.25 

15 B2 60 12:14:23 12:17:04 00:02:41 462 49.64 

16 B1 58 12:20:49 12:22:02 00:01:13 479 42.99 

17 C1 66 12:32:26 12:37:19 00:04:53 555 53.98 

18 C2 67 12:39:56 12:45:02 00:05:06 498 35.64 

19 C3 63 12:46:30 12:53:53 00:07:23 420 50.02 

20 C4 57 12:55:44 13:01:57 00:06:13 595 118.27 

21 C7 47 13:04:13 13:12:33 00:08:20 472 88.62 

22 C5 55 13:17:41 13:21:59 00:04:18 964 130.77 

23 C6 48 13:25:42 13:29:36 00:03:54 652 199.46 

24 C8 51 14:39:52 14:45:35 00:05:43 493 29.75 

25 D8 44 14:58:15 15:01:14 00:02:59 456 13.39 

26 D7 43 15:02:49 15:04:53 00:02:04 1266 176.79 

27 D6 44 15:06:19 15:09:47 00:03:28 747 133.62 

28 D4 56 15:12:00 15:16:32 00:04:32 624 78.28 

29 D2 69 15:19:32 15:22:23 00:02:51 571 68.64 

30 D1 70 15:24:19 15:27:30 00:03:11 558 47.30 

31 D3 64 15:35:10 15:39:24 00:04:14 594 89.15 

32 D5 53 15:45:02 15:54:29 00:09:27 833 203.67 

33 E6 44 16:04:59 16:07:55 00:02:56 572 112.50 

34 E5 54 16:09:49 16:13:26 00:03:37 707 126.72 

35 E4 57 16:16:15 16:20:35 00:04:20 802 147.32 

36 E2 74 16:22:40 16:25:27 00:02:47 646 90.42 

37 E3 67 16:28:23 16:31:00 00:02:37 696 80.96 

38 E1 77 16:34:24 16:36:30 00:02:06 649 71.57 

39 E7 38 16:41:29 16:45:25 00:03:56 930 214.87 

40 E8  38 16:51:00 16:56:29 00:05:29 453 61.63 

41 F8 32 17:01:24 17:02:34 00:01:10 448 33.51 

42 F7 37 17:05:49 17:07:26 00:01:37 567 53.18 

43 F2 78 17:35:45 17:37:49 00:02:04 699 22.06 

44 F1 81 17:38:27 17:39:48 00:01:21 570 46.99 

45 F4 60 17:45:00 17:46:42 00:01:42 434 61.39 

46 F3 70 17:49:30 17:51:08 00:01:38 745 55.04 

47 F5 55 17:54:07 17:55:40 00:01:33 764 21.47 

48 F6 43 17:57:01 17:58:54 00:01:53 484 6.74 
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Tab. A4: Solfatara, 30
th

 January 2013 

N LINK 

L-M 

DIST START 

TIME 

END 

TIME 

DURATION M DEV.STD 

1 A1 52 10:15:51 10:19:46 00:03:55 615 46.53 

2 A2 62 10:23:32 10:26:16 00:02:44 603 58.29 

3 A3 74 10:28:08 10:31:28 00:03:20 969 72.17 

4 A4 79 10:35:39 10:41:33 00:05:54 560 45.47 

5 A5 96 10:44:33 10:48:25 00:03:52 828 43.08 

6 A6 87 10:50:48 10:52:23 00:01:35 804 82.69 

7 B6 81 11:05:31 11:13:44 00:08:13 689 80.86 

8 B5 93 11:15:32 11:19:04 00:03:32 758 87.54 

9 B4 80 11:21:48 11:23:47 00:01:59 821 209.63 

10 B3 77 11:26:00 11:28:47 00:02:47 507 57.55 

11 B2 66 11:31:08 11:33:27 00:02:19 657 95.92 

12 B1 58 11:34:36 11:36:54 00:02:18 566 41.50 

13 C1 66 11:41:10 11:46:17 00:05:07 551 42.78 

14 C2 72 11:49:05 11:52:47 00:03:42 1282 174.72 

15 C3 80 11:54:39 11:55:06 00:00:27 943 110.61 

16 C4 81 11:59:09 12:03:58 00:04:49 692 58.16 

17 C6 76 12:09:52 12:12:11 00:02:19 606 132.19 

18 C5 89 12:14:15 12:15:44 00:01:29 683 21.28 

19 D6 72 12:19:05 12:23:51 00:04:46 665 93.52 

20 D5 87 12:25:20 12:29:05 00:03:45 699 129.08 

21 D4 84 12:32:15 12:35:33 00:03:18 953 195.17 

22 D3 86 12:37:32 12:41:12 00:03:40 772 182.92 

23 D2 79 12:42:33 12:46:55 00:04:22 772 120.11 

24 D1 75 12:49:09 12:53:16 00:04:07 668 95.10 

25 E1 84 12:57:58 13:00:18 00:02:20 811 53.67 

26 E2 85 13:01:11 13:03:50 00:02:39 748 121.69 

27 E3 92 13:05:06 13:06:22 00:01:16 517 48.75 

28 E4 87 13:09:25 13:15:55 00:06:30 695 59.87 

29 E5 86 13:18:11 13:23:24 00:05:13 758 67.80 

30 E6 70 13:26:16 13:30:42 00:04:26 790 58.02 

31 F6 69 13:35:59 13:39:38 00:03:39 610 54.27 

32 F5 86 13:41:49 13:43:56 00:02:07 677 51.48 

33 F4 92 13:49:16 13:50:37 00:01:21 557 54.69 

34 F3 98 13:53:39 13:55:53 00:02:14 1017 156.35 

35 F2 93 13:58:19 14:01:36 00:03:17 524 71.91 

36 F1 92.5 14:04:23 14:16:25 00:12:02 611 88.83 
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Tab. A5: Pisciarelli, 8
th

 May 2013 

N  LINK 

L-M 

DIST START 

TIME 

END 

TIME 

DURATION M DEV.STD 

1 A1 53 08:26:20 08:31:41 0:05:21  646 128.02 

2 A2 57 08:32:46 08:36:52 0:04:06  698 173.32 

3 A4 53 08:42:03 08:47:22 0:05:19  721 208.76 

4 A3 57 08:49:15 08:53:44 0:04:29  805 188.77 

5 A6 53 08:58:33 09:03:10 0:04:37  561 86.38 

6 A5 57 09:09:26 09:15:46 0:06:20  530 76.07 

7 A7 61 09:17:00 09:22:17 0:05:17  479 122.89 

8 A8 65 09:26:35 09:30:56 0:04:21  526 129.76 

9 B8 58 09:38:01 09:42:01 0:04:00  608 118.47 

10 B7 55 09:43:26 09:47:47 0:04:21  616 117.79 

11 B6 50 09:48:11 09:52:14 0:04:03  582 142.02 

12 B5 55 09:53:00 09:57:00 0:04:00  610 204.23 

13 B4 53 09:59:41 10:05:57 0:06:16  650 186.41 

14 B3 59 10:14:15 10:19:45 0:05:30  522 93.39 

15 B1 58.5 10:21:35 10:26:05 0:04:30  428 112.65 

16 B2 61 10:26:47 10:30:57 0:04:10  499 93.92 

17 C2 67 10:37:05 10:42:59 0:05:54  638 170.12 

18 C8 51 11:23:44 11:28:30 0:04:46  478 73.95 

19 C6  49 11:31:50 11:35:50 0:04:00  520 112.01 

20 C3 64 11:38:29 11:43:22 0:04:53  485 38.79 

21 C4 56 11:46:59 11:52:30 0:05:31  680 124.21 

22 C5 56.3 11:54:01 11:57:13 0:03:12  845 144.04 

23 C7 50 11:58:36 12:03:31 0:04:55  543 117.79 

24 C1  66.8 12:05:08 12:08:58 0:03:50  577 81.22 

25 D5 52 12:19:00 12:23:00 0:04:00  573 131.07 

26 D4 54 12:24:22 12:28:02 0:03:40  517 96.99 

27 D3 63 12:29:35 12:33:05 0:03:30  414 30.54 

28 D2 70 12:34:47 12:39:01 0:04:14  568 124.69 

29 D1 71 12:40:57 12:45:46 0:04:49  561 144.32 

30 D6 43 12:46:08 12:51:25 0:05:17  518 102.00 

31 D7 42 12:52:52 12:59:16 0:06:24  667 160.83 

32 D8 41 13:10:32 13:16:00 0:05:28  594 144.04 

33 E8 37 15:10:09 15:14:59 0:04:50  567 96.12 

34 E7 39 15:16:33 15:21:49 0:05:16  770 121.04 

35 E6 43 15:23:58 15:28:27 0:04:29  613 82.38 

36 E3 66 15:30:43 15:36:16 0:05:33  574 101.17 

37 E2 74 15:37:31 15:43:18 0:05:47  457 58.65 

38 E1 76 15:45:10 15:49:08 0:03:58  506 74.02 

39 E4 56 15:51:12 15:55:00 0:03:48  585 96.78 

40 E5 53 15:55:54 15:59:38 0:03:44  729 146.84 

41 F8 32 16:04:27 16:11:14 0:06:47  596 132.84 

42 F7 34 16:23:54 16:30:06 0:06:12  988 219.26 

43 F5 53 16:30:30 16:34:00 0:03:30  765 50.00 

44 F4 57.2 16:34:11 16:38:40 0:04:29  647 110.11 

45 F2 76.4 16:41:44 16:45:19 0:03:35  647 158.54 

46 F1 80 16:47:06 16:52:53 0:05:47  503 86.47 

47 F3 70 17:01:27 17:05:44 0:04:17  656 91.52 

48 F6 43 17:06:54 17:12:53 0:05:59  772 163.09 
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Tab. A6: Solfatara, 9
th

 May 2013 

N LINK 

L-M 

DIST START 

TIME 

END 

TIME 

DURATION M DEV.STD 

1 A1 49 09:16:25 09:21:07 0:04:42  627 93.49 

2 A2 57.6 09:22:19 09:25:51 0:03:32  564 59.45 

3 A3 74 09:27:37 09:32:02 0:04:25  676 104.71 

4 A4 83 09:33:31 09:37:03 0:03:32  677 84.26 

5 A5 96 09:40:30 09:45:59 0:05:29  589 139.97 

6 A6 86 09:47:00 09:50:59 0:03:59  501 58.90 

7 B6 84 09:51:03 09:54:55 0:03:52  533 56.62 

8 B5 98 09:56:15 09:59:15 0:03:00  528 63.82 

9 B4 86 09:59:58 10:03:00 0:03:02  803 122.39 

10 B3 80 10:04:37 10:08:45 0:04:08  575 108.18 

11 B2 65 10:09:43 10:13:31 0:03:48  522 80.71 

12 B1 58 10:14:16 10:20:27 0:06:11  489 73.11 

13 C6 80 10:23:01 10:28:35 0:05:34  502 74.30 

14 C5 98 10:29:48 10:33:28 0:03:40  836 95.98 

15 C4 91 10:33:52 10:38:34 0:04:42  667 92.64 

16 C3 86 10:39:06 10:43:55 0:04:49  758 157.27 

17 C2 73 10:44:12 10:47:57 0:03:45  503 41.96 

18 C1 69 10:48:36 10:52:16 0:03:40  482 36.45 

19 D6 80 10:53:44 10:57:32 0:03:48  455 63.90 

20 D5 100 10:58:26 11:01:59 0:03:33  590 58.15 

21 D4 97 11:02:34 11:05:34 0:03:00  959 115.76 

22 D3 93 11:05:54 11:09:21 0:03:27  657 123.16 

23 D2 81 11:09:54 11:13:21 0:03:27  478 60.64 

24 D1 78 11:13:58 11:19:00 0:05:02  426 36.52 

25 F6 80 11:19:59 11:22:57 0:02:58  519 45.06 

26 F5 106 11:23:35 11:26:07 0:02:32  481 52.75 

27 F4 110 11:26:52 11:29:47 0:02:55  919 112.02 

28 F3 109.5 11:31:56 11:35:40 0:03:44  538 68.84 

29 F2 98 11:36:54 11:39:10 0:02:16  522 36.31 

30 F1 97 11:39:31 11:43:31 0:04:00  581 61.06 

31 E6 78.3 11:46:29 11:49:51 0:03:22  557 64.40 

32 E5 101.6 11:51:39 11:54:59 0:03:20  516 43.95 

33 E4 102.6 11:55:03 11:58:29 0:03:26  701 63.68 

34 E3 101.1 11:59:06 12:01:11 0:02:05  766 111.21 

35 E2 89.5 12:01:34 12:04:49 0:03:15  730 135.94 

36 E1 87.1 12:05:28 12:08:50 0:03:22  545 66.30 
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Tab. A7: Nea Kameni, 9
th

 April 2013 

N LINK 

L-M 

DIST START 

TIME 

END 

TIME 

DURATION M DEV.STD 

1 A1 71 09:24:28 09:28:01 03:33 515 25.32 

2 A2 65 09:30:19 09:33:16 02:57 386 13.93 

3 A3 65.5 09:34:50 09:37:28 02:38 400 23.27 

4 A4 67 09:41:28 09:47:25 05:57 432 29.06 

5 A5 70 09:51:29 09:54:08 02:39 506 19.59 

6 A6 70.5 09:59:54 10:04:42 04:48 462 14.94 

7 B6 59 10:10:59 10:13:39 02:40 392 18.93 

8 B5 61 10:16:52 10:19:20 02:28 371 7.64 

9 B2 65 10:20:52 10:26:01 05:09 406 18.77 

10 B1 75 10:28:07 10:30:28 02:21 379 17.50 

11 B4 61 10:37:48 10:40:21 02:33 410 23.01 

12 B3 62 10:45:41 10:47:59 02:18 384 17.87 

13 C6 48 10:56:14 10:59:04 02:50 379 12.32 

14 C5 51 10:59:53 11:02:05 02:12 367 14.08 

15 C4 53 11:03:48 11:05:54 02:06 559 36.15 

16 C3 57 11:10:00 11:13:00 03:00 450 10.00 

17 C2 61 11:18:11 11:21:00 02:49 371 8.44 

18 C1 73 11:21:45 11:23:56 02:11 421 28.72 

19 D1 70 11:28:22 11:31:00 02:38 474 22.75 

20 D2 57 11:32:16 11:33:52 01:36 474 16.16 

21 D3 52 11:34:33 11:36:36 02:03 472 26.33 

22 D5  42 11:50:30 11:53:13 02:43 434 17.28 

23 D6 37 11:53:58 11:57:04 03:06 377 1.15 

24 D4  46 12:00:47 12:03:14 02:27 374 12.90 

25 E1 70 12:07:12 12:09:38 02:26 416 18.82 

26 E2 56 12:10:00 12:12:38 02:38 435 7.06 

27 E4 41 12:13:42 12:16:48 03:06 500 49.64 

28 E5 34 12:18:29 12:20:34 02:05 394 31.39 

29 E6 28 12:28:37 12:31:40 03:03 425 12.18 

30 E3 49 12:33:28 12:35:32 02:04 445 26.66 

31 F1 65 12:58:24 13:00:26 02:02 402 10.30 

32 F2 51 13:01:59 13:04:02 02:03 404 6.72 

33 F3 43 13:06:32 13:10:24 03:52 407 23.14 

34 F4 32 13:24:19 13:27:13 02:54 452 24.31 

35 F6 15 13:28:58 13:34:45 05:47 604 43.37 

36 F5 23 13:36:40 13:39:28 02:48 508 26.14 
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Tab. A8: Hekla, 2
nd

 July 2013 

N LINK 

L-M 

DIST START 

TIME 

END 

TIME 

DURATION M DEV.STD 

1 A1 12 16:49:44 16:53:13 03:29 1337 146.92 

2 A2 18 16:59:54 17:02:30 02:36 965 39.56 

3 A3 28 17:05:18 17:11:27 06:09 635 26.66 

4 B3 33 17:17:10 17:22:55 05:45 1119 40.82 

5 B2 21 17:26:09 17:30:39 04:30 881 34.41 

6 B1 19 17:34:04 17:37:18 03:14 925 52.42 

7 C1 17 17:39:19 17:42:17 02:58 617 102.21 

8 C2 20 17:44:23 17:46:49 02:26 820 31.28 

9 C3 35 17:48:13 17:52:52 04:39 842 25.88 

 

 

 

 

Tab. A9: Krýsuvík, 5
th

 July 2013 

N LINK 

L-M 

DIST START 

TIME 

END 

TIME 

DURATION M DEV.STD 

1 B4 36.8 12:01:53 12:07:18 05:25 400 4.22 

2 B1 33 12:08:39 12:14:02 05:23 385 22.50 

3 B2 55 12:16:02 12:18:35 02:33 439 18.69 

4 B3 53 12:19:19 12:23:17 03:58 373 5.33 

5 A1 30 12:27:28 12:30:10 02:42 408 7.70 

6 A2 55 12:31:21 12:33:15 01:54 432 15.02 

7 A3 58 12:34:05 12:36:47 02:42 408 4.20 

8 A4 46 12:37:28 12:40:12 02:44 398 2.34 

9 C4 27 12:43:45 12:46:05 02:20 393 5.96 

10 C3 48.5 12:47:34 12:49:59 02:25 467 17.91 

11 C2 55 12:50:50 12:54:36 03:46 381 3.17 

12 C1 38 12:55:35 12:58:13 02:38 390 3.12 

13 D3 51 13:05:11 13:07:57 02:46 403 8.60 

14 D2 60 13:08:52 13:12:30 03:38 405 4.97 

15 D1 47 13:13:19 13:16:41 03:22 371 7.90 

16 D4 22.5 13:18:25 13:21:09 02:44 388 7.30 

17 D5 60 13:22:41 13:24:13 01:32 374 3.30 

18 C5 56.5 13:26:15 13:27:52 01:37 514 37.46 

19 B5 58 13:30:11 13:32:24 02:13 415 25.27 

20 A5 61 13:33:32 13:34:52 01:20 420 5.82 
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Tab. A10: Vulcano, 11
th

 March 2014 

N LINK 

L-M 

DIST START 

TIME 

END 

TIME 

DURATION M DEV.STD 

1 A1 204 13:19:03 13:23:27 04:24 649 15.53 

2 A4 234 13:34:11 13:40:35 06:24 637 26.45 

3 A5 244 13:42:36 13:49:09 06:33 653 24.97 

4 A2 217 13:50:04 13:52:32 02:28 614 8.69 

5 A3 226 13:56:28 13:59:19 02:51 576 70.96 

6 B1 225 14:03:53 14:05:41 01:48 623 25.63 

7 B4 253 14:06:16 14:13:59 07:43 616 23.86 

8 B2 239 14:17:31 14:20:37 03:06 610 27.59 

9 B5 261 14:22:39 14:27:18 04:39 583 39.85 

10 C1 253 14:35:42 14:37:44 02:02 621 8.01 

11 C2 262 14:39:12 14:44:07 04:55 641 38.76 

12 C4 270 14:44:56 14:46:39 01:43 636 20.05 

13 C5 275 14:47:04 14:52:22 05:18 613 32.78 

14 D1 276 15:03:31 15:05:13 01:42 609 10.24 

15 D2 282 15:06:06 15:07:20 01:14 609 27.27 

16 D3 283 15:08:28 15:09:41 01:13 632 19.83 

17 D4 284 15:10:02 15:12:31 02:29 629 22.88 

18 D5 285 15:13:07 15:21:07 08:00 665 23.68 

19 E1 296 15:21:43 15:23:17 01:34 624 22.66 

20 E4 294 15:23:35 15:25:07 01:32 620 9.93 

21 E5 292 15:25:35 15:28:04 02:29 637 28.65 

22 E2 300 15:28:38 15:33:54 05:16 567 94.41 

23 E3 297 15:36:51 15:40:05 03:14 610 40.71 

24 F1 316 15:46:05 15:48:23 02:18 619 22.30 

25 F4 303 15:49:00 15:50:23 01:23 687 37.25 

26 F5 296 15:51:13 15:52:56 01:43 660 66.33 

27 F2 315 15:53:37 15:56:24 02:47 639 59.44 

28 A6 283 15:57:00 15:59:02 02:02 580 70.20 

29 B6 283 16:00:01 16:02:00 01:59 570 65.00 

30 C6 282 16:02:38 16:04:00 01:22 570 41.70 

31 D6 287 16:05:00 16:07:00 02:00 600 21.00 

32 E6 286 16:09:00 16:11:28 02:28 600 9.05 

33 F6 288 16:14:18 16:17:00 02:42 580 8.01 

34 B3 237 16:18:45 16:21:00 02:15 620 24.00 

35 C3 262 16:22:34 16:25:00 02:26 655 18.03 

36 F3 311 16:26:35 16:29:00 02:25 690 17.69 
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Tab. A11: Paternò, 4
th

 April 2014 

N LINK 

L-M 

DIST START 

TIME 

END 

TIME 

DURATION M DEV.STD 

*1 A1 38 10:35:30 10:40:27 04:57 750 47.41 

2 A3 75 10:42:00 11:08:43 26:43 562 5.68 

3 A2 57 11:11:37 11:14:57 03:20 587 44.89 

4 A4 90 11:16:06 11:18:21 02:15 600 13.45 

5 A5 106 11:19:29 11:21:54 02:25 570 13.25 

6 A6 116 11:23:02 11:25:45 02:43 485 6.57 

7 B1 57 11:30:33 11:35:05 04:32 519 66.40 

8 B2 58 12:42:23 12:56:57 14:34 555 43.54 

9 B3 65 12:57:55 13:01:57 04:02 430 71.81 

10 B4 71 13:04:02 13:07:23 03:21 496 50.39 

11 B5 83 13:08:23 13:13:47 05:24 509 56.60 

12 B6 89 13:15:10 13:22:56 07:46 539 8.60 

13 C1 83 13:24:05 13:30:17 06:12 569 46.76 

14 C2 70 13:33:07 13:37:07 04:00 675 27.10 

15 C3 65 13:38:39 13:49:52 11:13 444 40.73 

16 C4 57 13:51:25 13:55:01 03:36 503 66.31 

17 C5 58 13:55:30 14:00:59 05:29 473 27.97 

18 C6 60 14:01:11 14:13:11 12:00 452 43.21 

19 D6 52 14:18:55 14:28:55 10:00 476 7.60 

20 D5 58 14:33:43 14:38:08 04:25 483 64.07 

21 D4 66 14:39:05 14:40:30 01:25 508 56.17 

22 D3 80 14:43:54 14:47:41 03:47 495 45.85 

23 D2 91 14:49:24 14:52:45 03:21 447 65.59 

24 D1 107 14:55:21 14:58:23 03:02 472 51.34 

*eliminated path for the contour map reconstruction 
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Tab. A12: Furnas Lake, 19
th

 August 2014 

N LINK 

L-M 

DIST START 

TIME 

END 

TIME 

DURATION M DEV.STD 

1 A1 39 10:59:52 11:07:12 07:20 594 84.65 

2 A2 56 11:08:17 11:14:57 06:40 692 103.99 

3 A3 62 11:15:40 11:22:12 06:32 534 51.88 

4 B1 44 11:25:57 11:28:40 02:43 595 44.20 

5 B2 61 11:29:52 11:35:21 05:29 615 99.98 

6 B3 60.5 11:36:10 11:39:43 03:33 574 90.23 

7 C3 62 11:43:26 11:46:22 02:56 662 36.61 

8 C2 66 11:47:08 11:52:39 05:31 605 81.50 

9 C1 51 11:55:18 12:03:47 08:29 532 61.06 

10 D1 60 12:33:05 12:45:00 11:55 463 56.56 

11 D2 71 12:56:12 13:07:34 11:22 499 91.91 

12 D3 65 13:09:13 13:28:42 19:29 493 76.88 

13 E3 68 13:33:20 13:40:45 07:25 896 123.78 

14 E2 78 13:41:42 13:49:23 07:41 400 36.92 

15 E1 68 13:51:31 13:54:16 02:45 635 95.76 

16 A6 43 15:17:23 15:25:53 08:30 579 63.08 

17 A5 48 15:26:33 15:28:47 02:14 508 28.31 

18 A4 56 15:29:54 15:32:28 02:34 615 35.13 

19 B4 53 15:36:46 15:45:14 08:28 548 78.68 

20 B5 41 15:46:03 15:48:42 02:39 585 45.22 

21 B6 34 15:50:03 15:52:59 02:56 485 37.61 

22 C6 29 15:56:33 15:58:29 01:56 415 20.20 

23 C5 37 15:59:46 16:02:03 02:17 522 24.48 

24 C4 53 16:03:05 16:07:04 03:59 790 132.00 

25 D4 55 16:54:40 16:58:27 03:47 601 101.13 

26 D5 33 16:59:18 17:01:31 02:13 422 40.23 

27 D6 27 17:02:57 17:10:45 07:48 455 4.37 

28 E4 57 17:13:47 17:18:55 05:08 545 72.90 

29 E5 31 17:20:29 17:22:55 02:26 504 72.21 

30 E6 23 17:24:20 17:30:14 05:54 500 10.46 
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Tab. A13: Furnas Village, 22
nd

 August 2014 

N LINK 

L-M 

DIST START 

TIME 

END 

TIME 

DURATION M DEV.STD 

1 A1 51 13:17:12 13:20:52 03:40 564 46.50 

2 A2 61 13:21:33 13:26:54 05:21 596 21.96 

3 A3 59 13:28:39 13:33:24 04:45 599 63.70 

4 B1 51 13:38:39 13:42:35 03:56 592 50.34 

5 B2 59 13:43:46 13:47:06 03:20 662 79.84 

6 B3 57 13:47:57 13:52:30 04:33 594 39.79 

7 C1 46 13:57:24 13:59:31 02:07 679 56.76 

8 C2 54 14:00:08 14:07:00 06:52 617 40.02 

9 C3 51 14:07:53 14:14:22 06:29 573 72.96 

10 D1 37 14:26:31 14:29:00 02:29 533 57.82 

11 D2 43 14:31:37 14:36:02 04:25 601 58.55 

12 D3 38 14:37:01 14:41:24 04:23 622 79.27 

13 E1 36 14:51:15 15:00:46 09:31 654 75.74 

14 E2 37 15:01:41 15:05:08 03:27 589 31.86 

15 E3 29 15:06:19 15:10:14 03:55 549 60.11 

16 A4 34 16:18:08 16:29:41 11:33 498 77.58 

17 A5 43 16:31:26 16:34:21 02:55 527 35.34 

18 A6 59 16:35:30 16:39:59 04:29 612 45.97 

19 B4 34 16:56:29 16:59:47 03:18 600 58.41 

20 B5 44 17:00:34 17:05:08 04:34 653 129.21 

21 B6 56 17:06:27 17:10:50 04:23 682 39.17 

22 C4 31 17:15:11 17:19:09 03:58 683 68.49 

23 C5 40 17:20:08 17:21:55 01:47 702 78.78 

24 C6 51 17:22:51 17:25:13 02:22 636 62.84 

25 D4 27 17:35:18 17:38:47 03:29 851 35.45 

26 D5 32 17:39:56 17:41:31 01:35 708 77.39 

27 D6 34 17:42:36 17:44:11 01:35 622 28.78 

28 E4 36 17:53:02 17:55:41 02:39 539 46.81 

29 E5 35 17:56:26 17:58:23 01:57 538 36.72 

30 E6 27 17:59:01 18:03:01 04:00 434 26.92 

 


