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Chapter 1

Introduction

1.1 Background

The problem of change-point detection appears to have been introduced

in the quality control context (Shewhart, 1925), where it was concerned

with the monitoring of the characteristics of products to detect possible

significant departures from a specified target level. In such context, data

collection and analysis go on until a change is detected, with the main goal

of restoring the initial state after the change occurrence. Since the analyst

searches for a change at a time, this statistical approach is referred to as

sequential change-point analysis (Box et al., 2011; Lai and Xing, 2010).

In recent years, due to the widespread occurrence of change-point problems

in different areas, such as econometrics (Bai and Perron, 1998), engineer-

ing (Blythe et al., 2012) and biology (Siegmund, 2013), research about the

topic has developed in the more general context of regression analysis; see

Khodadadi and Asgharian (2008) for an extensive survey.
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A general problem of change-point regression for the response variable Y

can be stated as follows:

E[Yi] =



f (zi,β1) + ηi xi ≤ ψ1

f (zi,β2) + ηi xi ∈ (ψ1, ψ2]
...

...

f (zi,βK+1) + ηi xi > ψK

, (1.1)

i = 1, 2, . . . , n. zi is a vector of covariates which affects the response via

the regression coefficients βk, k = 1, 2, . . . ,K + 1, depending on the value

of the continuous covariate x.

The shape of the function f (·) changes any time xi overcomes a change-

point ψk, k = 1, 2, . . . ,K (we use the convention ψ0 = x(1) and ψK+1 = x(n)),

while the function ηi does not depend on x. The purpose is estimating both

the K points at which changes occur and the vectors of (varying) parame-

ters βk. Since the K change-points are estimated at the same time, these

procedures are referred to as non-sequential change-point analyses (Frick

et al., 2014), and represent a very popular research topic in computational

mathematics. Here we provide a quite schematic literature review, without

the presumption of being exhaustive.

1.2 Linear change-point regression

In the simplest scenario the function f (·) in (1.1) is linear in βk, namely

f (zi,βk) = zT
i βk + ηi xi ∈ (ψk−1, ψk], (1.2)

i = 1, 2, . . . , n, k = 1, 2, . . . ,K + 1, where ηi is linear as well.
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A considerable amount of research about linear change-point regression is

concerned with models in which xi is simply a discrete indicator, generally

xi = i, which does not belong to zT
i , that is

E[Yi] = zT
i βk + ηi xi ∈ (ψk−1, ψk], (1.3)

i = 1, 2, . . . , n, k = 1, 2, . . . ,K +1. Since xi does not enter the model matrix,

but only affects the coefficients βk, we refer to these models as varying co-

efficient models. For example, in structural change models (Perron, 2006)

interest lies in detecting single (Bai, 1997a) or multiple (Bai, 1997b) time

points at which one or more covariate effects change abruptly. If all the

parameters are subject to shift (ηi = 0) we deal with pure structural change

models, otherwise we deal with partial structural change models (Bai and

Perron, 2003).

Another common situation considers zT
i = (1, xi), that is

E[Yi] = β0k + β1kxi + ηi xi ∈ (ψk−1, ψk], (1.4)

i = 1, 2, . . . , n, k = 1, 2, . . . ,K + 1. Now xi enters the model matrix and

the resulting regression function is piecewise linear. Models allowing dis-

continuities in the linear function are referred to as abruptly changing mod-

els (Basseville and Nikiforov, 1993), while when the linear function is as-

sumed to be continuous at the points of change, the model is referred to as

segmented regression model (Küchenhoff, 1997; Muggeo, 2003).

1.3 Piecewise constant models

In this thesis we focus on a further simplification of model (1.4) assuming
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E[Yi] = β0k + ηi xi ∈ (ψk−1, ψk], (1.5)

i = 1, 2, . . . , n, k = 1, 2, . . . ,K + 1. If ηi = 0, model (1.5) leads to a

step function, and is referred to as piecewise constant regression model, or

mean shift model. A recent and important application in the biological area

is concerned with array-based comparative genomic hybridization (aCGH,

Pinkel et al., 1998). The goal of such analyses is to identify location of

possible damaged genes along a chromosome, involved in cancer or other

diseases. In such applications the coefficient β0k represents the expected

value of the biological marker in the k-th segment of the chromosome and,

usually, no additional linear terms are included in the model.

Several approaches have been implemented for examining the problem of

change-point detection in piecewise constant regression models.

Most of the existing techniques to estimate model (1.5) make use of an op-

timization criterion, such as likelihood (Horváth, 1993), quasi-likelihood

(Braun et al., 2000) or least squares (Yao and Au, 1989). However, the main

problem arising with such approaches is the non-smoothness of the objec-

tive function when the change-point vector is considered as unknown pa-

rameter. In fact, due to the non-differentiability with respect to the change

point parameters, Newton-Raphson type algorithms result not to be viable.

Some authors have tried to circumvent this problem by using smooth tran-

sitions between the different regimes (Zhou et al., 2008; Pastor-Barriuso

et al., 2003; Tishler and Zang, 1981).

The most common approach for point estimation in change-point regression

is grid search (Bai and Perron, 2003; Hawkins, 2001), namely the final

estimate is selected among a grid of candidate values on a given interval.
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Computationally efficient grid search approaches have been proposed both

for the maximum likelihood (Friedrich et al., 2008) and least squares so-

lutions (Boysen et al., 2009). Such approaches rely on the use of dynamic

programming algorithms (Jackson et al., 2005), and yield the exact solution

reducing the computational cost from O(nK) to O(n2) for any K.

More recently, multiscale penalization methods have been used for infer-

ence about change-points (Frick et al., 2014). In this works, the particu-

lar structure of the constraints allows the inclusion of pruning steps in the

grid-search algorithm, that, under certain conditions, can reduce the com-

putational complexity to O(n) without much affecting the exactness of the

resulting segmentation (Killick et al., 2012).

Other optimization approaches aim at giving approximate solutions in a

lower computational time. The most widely used alternative search method

is binary segmentation proposed by Scott and Knott (1974); among other

recent techniques we mention the genetic algorithm proposed by Jong et al.

(2003) and the Smith-Waterman algorithm adapted by Price et al. (2005) to

the problem of change-points.

For more general situations, nonparametric methods offer various ways to

identify abrupt changes in the regression function, essentially based on the

study of first derivatives (Loader et al., 1996). Among recent examples of

application of such data denoising techniques, we mention the work of Hsu

et al. (2005), based on the use of wavelets (Donoho and Johnstone, 1995).

Yet other approaches rely on penalized least squares regression, which

makes use of L1 (Eilers and De Menezes, 2005; Huang et al., 2005) and

L0 (Rippe et al., 2012) penalties, or combined penalties as in the fused

lasso approach (Tibshirani and Wang, 2008). Note that point estimates for

the parameters in model (1.5) are not provided by these methods.
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Another important group of methods developed to detect change-points

without parametric assumptions concerns segmentation techniques, essen-

tially aiming at partitioning observations into contiguous regions of the

variable x. Some examples include circulary binary segmentation (Venka-

traman and Olshen, 2007; Olshen et al., 2004), hidden Markov models

(Fridlyand et al., 2004; Guha et al., 2008), resampling techniques (Lai and

Zhao, 2005) and clustering algorithms (Wang et al., 2005).

Among other approaches we mention a recent technique based on data

transformation and segmented regression (Muggeo and Adelfio, 2011), and

the area of Bayesian approaches (Rigaill et al., 2012; Fearnhead, 2006).

Most of the cited literature is also concerned with the estimation of the opti-

mal number K of change-points. In this case, an additional term penalizing

for the model complexity is usually added to the objective function. Be-

cause of the likelihood irregularities, the standard Bayes Information Crite-

rion (BIC) does not work well in this framework; in fact, typically it leads

to an overestimation of the number of segments (Picard et al., 2005). For

this reason, some alternatives have been proposed, such as the modified

BIC (Zhang and Siegmund, 2007) or adaptive criteria (Lavielle, 2005).

1.4 Hypothesis testing and interval estimation

Hypothesis testing and interval estimation represents quite a difficult task

in change-point models. In fact, most of the usual regularity conditions do

not hold in such contexts. As pointed out in Hawkins (1980), the inferential

theory depends strongly on whether or not continuity at the change-point

is assumed. In particular, the piecewise linear model presents the greatest

difficulties; in fact, the maximum likelihood estimate is given by an interval,
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so that the statistical model is not fully identifiable; besides, the likelihood

function is not even once differentiable with respect to the change-points.

This creates difficulties with the use of the ‘usual’ asymptotic chi-squared

theory for the test statistics.

Several authors have proposed methods to extend the standard theory to

models with change-points, mainly focusing on three different aspects: the

development of a statistical test for evaluating the non-existence of change-

points, the construction of a confidence interval for the change-point and

the construction of a confidence interval for the expected values µi.

In the hypothesis testing context, some tests are designed for a specific

alternative, usually the existence of a single shift (Worsley, 1983) or multi-

ple shifts (Bai and Perron, 2003), while generalized fluctuation tests (Kuan

and Hornik, 1995) do not assume a particular pattern of deviation from

the null hypothesis. Zeileis (2005) discusses a unified approach for testing

parameter instability. The basic problem with this approaches is that the

asymptotic distributions of the usual test statistics are non-standard (Davies,

1987). However, under appropriate conditions, inference can be based on

the stochastic process theory (Andrews, 1993).

Different methods have been proposed to derive confidence intervals for

a change-point. Several authors have studied the asymptotic behaviour of

change-point estimators (Hinkley, 1970; Bai and Perron, 2003) to derive

Wald-type confidence sets, also using bootstrapping methods (Hušková and

Kirch, 2008). Other approaches use the Likelihood Ratio test evaluated on

a grid of candidate values for the change-point, and derive the confidence

interval as the set of values that cannot be rejected as the true change-point

(Worsley, 1986). The confidence set may well include disconnected re-

gions, and this may indicate the presence of more than one change-point.
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A more general problem concerns the construction of confidence intervals

for the expected values µi. Frick et al. (2014) provide quite a detailed dis-

cussion about the topic, and derive asymptotic results to determine ‘honest’

confidence intervals for an unknown step function in exponential family

regression.

1.5 Aim and contribution of the thesis

The aim of the thesis is to set up a novel, simple and flexible iterative algo-

rithm for maximum likelihood estimation in change-point models. For sake

of simplicity we focus on the piecewise constant model (1.5) with a single

change-point (K = 1), and ignore possible fixed terms, namely ηi = 0. We

therefore rewrite the model using a single regression equation,

E[Yi|xi] = β0 + β1I(xi > ψ),

where I(·) is the indicator function, and use an iterative algorithm to esti-

mate the model.

As discussed in Lavielle (1999), when the number K of change-points is

known, the best partition is given by the global optimization of the objective

function; in fact, such approach ensures convergence of the change-point

estimator to the true change-points. Besides, as pointed out in Picard et al.

(2005), the global optimum can only be provided by some exact grid search

algorithm, and not by other algorithms.

Grid search approaches based on dynamic programming represent, nowa-

days, the most powerful and widespread tool for change-point detection;

however, there are frameworks in which grid search appears to be unfeasi-

ble or difficult to apply.
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For example, grid search turns out to be unfeasible in models with subject

specific change-points modelled by random effects:

E(Yi j|xi j, b0i, b1i, pi) = (β0 + b0i) + (β1 + b1i)I(xi j > {ψ + pi}),

where b0i, b1i and pi are zero-mean random effects.

Grid search is also difficult to apply when the change-point is a function of

parameters on unbounded supports:

E(Yi|xi, vi) = β0 + β1I(xi > θ0 + θ1vi);

ψi = θ0 + θ1vi is a linear change-point, vi is an additional covariate.

Sometimes, grid search is virtually feasible, but dynamic programming can

not help to reduce the computational cost; it is the case of models with

change-points in several covariates:

E(Yi|x1i, x2i) = β0 + β1I(x1i > ψ1) + β2I(x2i > ψ2).

Note that, even for the multiple change-point model (1.5) with a single

covariate, dynamic grid search has a O(n2) computational cost, and a very

large sample size remains a concern.

The idea we develop represents an attempt to handle the change-points like

typical parameters in regression models, in order to make estimation feasi-

ble in quite general frameworks.

The rest of this thesis is organized as follows. In Chapter 2 we focus on

the simple model with a single change-point and illustrate the proposed

iterative algorithm. In Chapter 3 the algorithm is extended to estimate ran-

dom effect models, while in Chapter 4 it is extended to estimate models
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with change-point modelled by a linear function. Chapter 5 is devoted to

some simulation studies evaluating the properties of the proposed estima-

tors. Extension to multiple change-point models is discussed in Chapter 6,

while Chapter 7 is devoted to discussion and future work. The proposed

algorithms have been implemented in the R environment, and a brief de-

scription of function usage is given in the Appendix.



Chapter 2

Single change-point models

In this chapter we focus on the simplest model with a single shift and rel-

evant change-point in the mean level, and illustrate the proposed iterative

algorithm to estimate the change-point without grid searching. Page (1955)

was among the first authors dealing with the detection of a unique change-

point, based on the analysis of sequences of test statistics (Kim and Sieg-

mund, 1989). Most of the literature has then developed for the multiple

change-point framework, of which the single change-point scenario repre-

sents a special case.

2.1 Model definition

When a unique change-point occurs (K = 1) the piecewise constant regres-

sion model (1.5) takes the form

E[Yi] = β0k xi ∈ (ψk−1, ψk], k = 1, 2. (2.1)
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There is only one point ψ1 at which the mean level of Y shifts instanta-

neously from β01 to β02, while ψ0 = x(1) and ψ2 = x(n); for sake of simplic-

ity we ignore possible fixed terms, namely ηi = 0.

The main idea developed in this thesis is built from the expedient of rewrit-

ing model (1.5) (and its generalizations) using a single regression equation,

relying on the use of indicator functions. For example, model (2.1) simply

becomes

µi = β0 + β1I(xi > ψ), (2.2)

where µi = E[Yi|xi], β0 = β01, β0 + β1 = β02, and ψ = ψ1. All the model

parameters, including the change-point, are unknown and have to be esti-

mated.

The main problem is that model (2.2) is clearly non-linear, and the rele-

vant likelihood is non-differentiable. For this reason, maximum likelihood

estimation cannot be performed through standard methods such as Newton-

Raphson. Figure 2.1 shows a simulated dataset with n = 100, xi = i, β0 = 2,

β1 = 1.5, ψ = 30 and Yi ∼ N(µi, 1.52); Figure 2.2 displays the profile log-

likelihood with respect to ψ. Note how profiling the log-likelihood yields

a highly wiggly step function: if xi , xi+1, all the values of ψ between xi

and xi+1 (excluded), lead to the same log-likelihood. Therefore, the only

feasible approach to find the maximum likelihood solution appears to be

grid searching among the values of the explanatory variable; actually, the

search task can be reduced to the observed distinct values of x, at which

the log-likelihood exhibits a jump. We use notation x j, j = 1, 2, . . . , nd,

to indicate the nd distinct observations of x, [x ĵ, x ĵ+1) to indicate the ‘op-

timum interval’ associated with the maximum likelihood estimate and, by

convention, ψ̂ = x ĵ. For example, estimating model (2.2) via grid search in

the simulated dataset yields β̂0 = 1.54, β̂1 = 2.16 and ψ̂ = 30 (Figure 2.1).
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In many applications, x simply represents an index variable i = 1, 2, . . . , n,

and therefore xi = i and nd = n; in our framework this restriction is not

necessary, and any continuous variable may be employed. In fact, the algo-

rithm we propose yields a point estimate for the change-point, which is not

necessarily equal to some observed x j.
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Figure 2.1: Simulated dataset illustrating model (2.2). β̂0 = 1.54 (left seg-
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2.2 Methods

In order to estimate all the model parameters (β0, β1, ψ) of model (2.2) we

write the indicator function I(xi > ψ) via

I(xi > ψ) =
1
2

xi − ψ

|xi − ψ|
+

1
2
, (2.3)

for xi , ψ. This identity, when placed in (2.2) gives

µi = β0 + β1

(
1
2

xi − ψ

|xi − ψ|
+

1
2

)

= β0 + β1

(
1
2

xi

|xi − ψ|
+

1
2

)
+ (−β1ψ)

(
1
2

1
|xi − ψ|

)
= β0 + β1zi(ψ̃) + γwi(ψ̃), (2.4)

where

γ = −β1ψ, (2.5)

and the auxiliary or ‘working’ covariates are

zi(ψ̃) =

(
1
2

+
1
2

xi

|xi − ψ̃|

)
and wi(ψ̃) =

(
1
2

1
|xi − ψ̃|

)
, (2.6)

with ψ̃ meaning an approximate value. Notice model (2.2) has been con-

verted in the simpler linear form (2.4).

For reasons to be clarified later (see Chapter 3), it could be more conve-

nient to express the change-point as a ‘usual’ linear parameter, by slightly

modifying the working covariate w:
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µi = β0 + β1zi(ψ̃) + ψw′i(β̃1, ψ̃), (2.7)

where w′i(β̃1, ψ̃) = −β̃1wi(ψ̃) and, as before, β̃1 is an approximate value.

Formulas above suggest the following simple iterative algorithm:

1. choose a starting value ψ̃;

2. compute the working covariates (2.6);

3. estimate the working linear model (2.4) and extract β̂1 and γ̂;

4. update the change-point value via

ψ̂ = −
γ̂

β̂1
; (2.8)

5. set ψ̃ = ψ̂ and iterate 2 to 4 until convergence.

The algorithm outlined above looks quite simple, but unfortunately its plain

implementation does not always work in practice. In fact, there are two

main pitfalls that should be warned. First, the log-likelihood has typically

many local optima, and second, xi values close to ψ̃ may cause computa-

tional troubles, since denominators |xi − ψ̃| in (2.6) go to zero.

The next section illustrates how to circumvent both problems by moving

the xis away from the approximate ψ̃.

2.2.1 Rescaling x values

To avoid |xi − ψ̃| → 0 in (2.6), the idea is moving the xis away from the

approximate value ψ̃. Consider a standard linear transformation to scale a

vector x assuming values on a given interval [a, b] to obtain a new vector
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x′ into a given interval [a′, b′]. Clearly, such transformation must satisfy

xi − a
b − a

=
x′i − a′

b′ − a′
,

so that

x′i = a′ + (xi − a)
b′ − a′

b − a
. (2.9)

The proposal consists into rescaling the covariate values of the two inter-

vals [x(1), ψ̃] and (ψ̃, x(n)] into new intervals [x(1), ψ̃
−] and (ψ̃+, x(n)] having

extremes moved away from ψ̃. To compute the left (ψ̃−) and right (ψ̃+)

‘threshold’ values, we use a rescaling factor c ∈ (0, 1) such that

ψ̃− = ψ̃ − c(ψ̃ − x(1)), ψ̃+ = ψ̃ + c(x(n) − ψ̃).

By noting that

1 − c =
ψ̃− − x(1)

ψ̃ − x(1)
=

x(n) − ψ̃
+

x(n) − ψ̃
,

we use (2.9) to obtain a rescaled variable x′:

x′i = x(1) + (xi − x(1))(1 − c) (2.10)

for xi ∈ [x(1), ψ̃], and

x′i = ψ̃+ + (xi − ψ̃)(1 − c) (2.11)

for xi ∈ (ψ̃, x(n)]. Figure 2.3 illustrates the rescaling for the simulated data

in Figure 2.1. In the left panel the covariate is not rescaled, i.e c = 0, while

the right panel shows the effect of a rescaling factor c = 0.1 when ψ̃ = 50.5

(the median of x) is chosen as approximate value.
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Figure 2.3: Illustrating the rescaling. Left panel: originary covariate (c =

0). Right panel: rescaled covariate (c = 0.1). The rescaling induces a
point-free interval (dashed lines) in the neighbourhood of ψ̃ (solid line).
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Figure 2.4: Fitted working regression functions. The rescaling factor is
c = 0.01. The approximate values ψ̃ are 50.5 (left panel) and 30.5 (right
panel). The working model approximates a step function, with a jump in the
neighbourhood of the approximate value ψ̃ (vertical lines). When ψ̃ is close
to ψ̂ = 30, the working model approximates the solution (dashed line).
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Note that, in Figure 2.3, the neighbourhood of ψ̃ does not include any

rescaled observation x′i . The rescaled covariate is used to compute the

working covariates (2.6), and this avoids computational troubles.

Figure 2.4 shows the fitted working regression function for the simulated

data in Figure 2.3; we use c = 0.01 and two different starting values ψ̃ (ver-

tical lines). Note that the working model approximates a step function with

a jump in the neighbourhood of the approximate value ψ̃. At convergence,

when ψ̃ is close to ψ̂ = 30 (right panel), the working model closely approx-

imates the grid search solution (dashed line). It is also worth noting that the

updated estimate ψ̂ does not have a graphical feedback, and therefore it is

not visualized in Figure 2.4.

2.3 The iterative algorithm in detail

To illustrate how the algorithm works, Figure 2.5 refers to the same dataset

illustrated in Figure 2.1. Left panels show the ‘true’ profile log-likelihood

for ψ in model (2.2) and, superimposed, the relevant ‘working’ profile log-

likelihoods in model (2.4) for two different values of c and ψ̃ = 50. The

black points on the ψ axis indicate the global ‘exact’ solution obtained by

grid search (30), while the grey points indicate the integer part of the up-

dated solutions ψ̂ at the iteration.

Given the approximate value ψ̃, the working linear model (2.4) leads to a

smooth log-likelihood, with a unique solution ψ̂ to be used as starting value

in the next iteration.

As pointed out, the scale change from x to x′ moves observations away from

the updated estimate ψ̃, and prevents computational troubles. Besides, the

magnitude of the rescaling affects the variations |ψ̂ − ψ̃| at the iteration,
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Figure 2.5: Example of two algorithm iterations. Left panels: true (black
lines) and working (grey lines) profile log-likelihoods based on the same
approximate ψ̃ = 50 but different values of c. The rescaling affects the
updated estimate ψ̂ (grey points at the bottom) which moves closer to the
grid search solution (black points at the bottom). Right panels: fitted values
for the working model (solid lines) and grid search solution (dashed lines).

which become larger as c increases; for the example data of Figure 2.5 it is

|49−50| = 1 without rescaling the xis (c = 0), while it is |33−50| = 17, much

larger, when c = 0.1. This helps the algorithm to skip most of the spurious

optima and to go towards the global solution. More detailed explanation of

the role of c in the estimation procedure and some hints for a proper choice

are provided in Chapter 5.

Figures 2.6 and 2.7 illustrate in detail all the iterations of the algorithm until

convergence, for the simulated data in Figure 2.1.
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Note that the updated estimate goes beyond the solution at iteration 5, mov-

ing back to the opposite direction at iteration 6; this suggests to reduce the

rescaling factor, for example by multiplying it by a reduction factor, say

d ∈ (0, 1). In most of the examples presented through this thesis we use

d = 0.5 in the spirit of step halving (Jennrich and Sampson, 1968). In

some cases we use d = 0.2 for a faster but somewhat unstable convergence,

or d = 0.8 for a more stable but slower algorithm. In this example, c is

decreased from 0.05 to 0.01 (d = 0.2).

To sum up, the steps of the algorithm are:

1. choose a starting value ψ̃;

2. choose a rescaling factor c;

3. rescale x using (2.10) and (2.11) to obtain x′;

4. compute the working covariates (2.6) using x′;

5. estimate the working linear model (2.4) and extract β̂1 and γ̂;

6. use (2.8) to update the change-point value;

7. decrease c using d if ψ̃ changes direction;

8. set ψ̃ = ψ̂ and iterate 3 to 7 until convergence.

2.4 Starting value

As in other non-linear models, the choice of a ‘good’ starting value repre-

sents a crucial aspect for the algorithm to be successful. Rough indications

about the change-point location may be based, for example, on graphical
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inspections or a priori knowledge. Limited experience suggests to use the

intermediate value x(1)+x(n)
2 of the range of x, or alternatively, to evaluate the

true log-likelihood on a small grid of equally spaced values along the range

of x, and choose the value which gives the best model. Ultimately, a small

sensitivity analysis can be helpful.

2.5 Convergence

While any value in [x ĵ, x ĵ+1) gives the same likelihood, the proposed al-

gorithm returns a single estimate. As usual, there are two possible criteria

to declare convergence: evaluating the magnitude of the absolute variation

of the updated estimate, namely |ψ̂ − ψ̃|, or evaluating the log-likelihood

variation |`(ψ̂) − `(ψ̃)|. Figure 2.8 shows the values of the maximized log-

likelihood for the iterative algorithm depicted in Figure 2.6: the solid line

represents the value of the true log-likelihood for the updated value ψ̂, the

dashed line represents the maximized working log-likelihood at the current

ψ̂. Figure 2.9 shows the values of the variation ψ̂ − ψ̃.

Since the model is non-linear, the likelihood does not necessarily increase

monotonically through iterations; besides, the objective function is strongly

irregular in our framework, and a large absolute variation |ψ̂ − ψ̃| may be

associated to a plateau or a decrease in the likelihood also in the very first

iterations. On the other hand, the absolute variation |ψ̂ − ψ̃| is higher at the

beginning and tends to decrease throughout iterations. Note that the sign of

the variation ψ̂ − ψ̃ changes only once ψ̂ approaches the solution, and this

warns that the rescaling factor should be reduced using d.

Repeatedly decreasing the rescaling factor c makes the absolute variation

|ψ̂ − ψ̃| decrease until convergence; for some small ∆ > 0, we therefore use
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Figure 2.8: True (solid line) and working (dashed line) maximized log-
likelihood throughout iterations. Even in the very first iterations, the like-
lihood does not increase monotonically, since the model is non-linear and
highly irregular.
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Figure 2.9: Estimate variation throughout iterations. The absolute varia-
tion tends to decrease. The sign of the variation changes at iteration 6 (the
solid line crosses the dashed line corresponding to 0) because the updated
estimate (ψ̃ = 29) approaches the solution (ψ̂ = 30); this warns to reduce
the rescaling factor, in the spirit of step halving.
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|ψ̂− ψ̃| < ∆ as a convergence rule. A rule of thumb suggests to fix ∆ at some

fraction of the smallest distance x j − x j−1, j = 2, 3, . . . , nd; if we consider

the discrete version x ĵ (the integer part of ψ̂ when xi = i) ∆ can be fixed to

0, as in the algorithm in Figure 2.6.

2.6 Remarks

We conclude the description by analyzing the convergence behaviour of

the proposed algorithm in practice. We simulate 1000 datasets assuming

xi = 1, 2, . . . , 100 and ψ = 50. We use ψ̃ = 50.5, c = 0.02, d = 0.5 and

∆ = 0.01 (1% of the distance between the xis).

Figure 2.10 represents the histogram of the estimates which fall in the in-

terval [50, 51): note that the final solution tends to approach the observed

values of the explanatory variable x, 50 or 51.

ψ̂
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50.0 50.2 50.4 50.6 50.8 51.0
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0

1.
0

2.
0

3.
0

Figure 2.10: Histogram of the estimates for 1000 simulated datasets. Since
ψ = 50, we focus on the interval [50, 51). The final solution tends to ap-
proach the observed values of the explanatory variable x, 50 or 51.
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For this reason, the distribution of the explanatory variable x may influ-

ence the performance of the estimator ψ̂, and the availability of a uniform

and quite densely distributed explanatory variable represents an important

regularity condition for accurately estimating ψ.

2.7 Examples

To illustrate the proposed algorithm in practice we apply it to two well

known datasets in the ecological and biological literature. Despite the two

datasets are very simple, the grid search algorithm results to be computa-

tionally more expensive with respect to the proposed algorithm.

2.7.1 River Nile flow data

The first example concerns the annual volume of the Nile River for the

years 1871 to 1970 taken from the work of Cobb (1978). This series was

examined by several authors, including Balke (1993) and Dumbgen (1991),

providing evidence that the Nile River volume experienced a permanent

decline in 1899, due to the construction of the first Ashwan dam.

We estimate model (2.2) where n = 100 is the length of the time series, x

is the year (1871, 1872, . . . , 1970), while Y is the volume of the Nile River

(discharge at Ashwan, 108 m3). We assume the Yis to be independent and

Gaussian. Figure 2.11 represents the data and the results yielded by the grid

search algorithm (left panel) and the relevant profile log-likelihood for the

change-point (right panel).

To estimate the model via the proposed algorithm we set ψ̃ = 1904 as the

best value among {1887, 1904, 1920, 1937, 1953}, and also c = 0.05, d =

0.2 and ∆ = 0.01. The algorithms yields β̂0 = 1097.97, β̂1 = −247.94 and
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Figure 2.11: River Nile flow data. Left panel: observed values (points),
fitted values (solid lines) and estimated change-point (dashed line) yielded
by the grid search algorithm. Right panel: profile log-likelihood.

ψ̂ = 1898.07. The grid search algorithm yields β̂0 = 1097.75, β̂1 = −247.78

and the ‘optimum’ interval [1898, 1899) for the change-point. The change-

point estimate yielded by the proposed algorithm falls in the optimum in-

terval and requires 4 iterations, while grid search requires the evaluation of

nd = 100 candidates models.

2.7.2 Fibroblast cell lines data

We consider another dataset discussed by several authors in the aCGH lit-

erature (e.g. Huang et al., 2005). The data consist of single experiments on

15 fibroblast cell lines. The response variable Y is the ‘copy number’ indi-

cator, namely the normalized average of the log base 2 test over reference

fluorescence color ratio, which is 0 in the absence of alterations. By spec-

tral karyotyping, it is known that one alteration is present in chromosomes

#9; the explanatory variable x is just a position marker of the cells, and the

aim of the analysis is to the detect the damaged genes.

Assuming the Yis to be independent and Gaussian, the grid search algorithm
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Figure 2.12: Fibroblast cell lines data. Left panel: observed values
(points), fitted values (solid lines) and estimated change-point (dashed line)
yielded by the grid search algorithm. Right panel: profile log-likelihood.

yields the result in Figure 2.12, which represents the data and the fitted

values (left panel) and the relevant profile log-likelihood for the change-

point (right panel).

As in the previous example, we set ψ̃ = 40 as the best candidate value

among {21, 40, 58, 77, 95}, and also c = 0.05, d = 0.2 and ∆ = 0.01. The

proposed algorithm yields β̂0 = −0.09, β̂1 = 0.09 and ψ̂ = 31.95. The grid

search algorithm yields β̂0 = −0.09, β̂1 = 0.09 and the optimum interval

[31, 32) for the change-point. The change-point estimate from the proposed

algorithm falls in the optimum interval and requires 9 iterations, while grid

search requires the evaluation of nd = 107 candidates models.

2.8 By product goals

The approach we propose in this thesis may result to be helpful, in some

circumstances, not only for point estimation; here we consider a simple

example concerned with interval estimation for the expected values µi.
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The simplest approach to determine a 95% confidence interval for µi in

simple linear regression models with independent and Gaussian responses

is the usual

[µ̂i − tn−p,0.975 × s.e.(µ̂i) , µ̂i + tn−p,0.975 × s.e.(µ̂i)], (2.12)

where tn−p,0.975 is the 97.5 percentile point of the Student’s t-distribution

with n − p degrees of freedom, p is the number of columns of the model

matrix and s.e.(µ̂i) is the estimated standard error of µ̂i.

The simplest approach to compute confidence intervals in model (2.2) con-

sists on determining the maximum likelihood estimate ψ̂ via grid search, fix

ψ at ψ̂ in (2.2) as if it was the true value, and use (2.12). Note that the result-

ing model matrix XGS (grid search) is n × 2, having i-th row [1, I(xi > ψ̂)].

Of course, the resulting confidence interval is not any longer exact for at

least two reasons: first, we neglect the additional variability induced by ψ̂,

second, using ψ̂ strongly affects the distribution of µ̂i. This reflects on the

actual coverage level of the confidence interval which is, in general, lower

than the nominal 0.95.

Since model (2.2) is closely approximated by the working model (2.4) eval-

uated at convergence of the proposed algorithm, the latter can also be used

to construct confidence intervals for the µis. The resulting model matrix

XPA (proposed approximation) is now n × 3, having i-th row [1, zi,wi].

Model (2.4) has one additional unknown parameter, and therefore it should

better account for the variability of model (2.2), improving the perfor-

mances of the confidence intervals.

To clarify this aspect, we perform a simple simulation study. We assume

n = 20, xi = i, β0 = 2, β1 = 0.4, ψ = 13 and Yi ∼ N(µi, 0.52), simulate

100 datasets, and compare the empirical coverage levels of confidence in-
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tervals (2.12) for the µis with respect to models associated with XGS and

XPA. Figure 2.13 displays the results.

Due to the wrong assumptions about the distribution of the fitted values

µ̂i, the empirical coverage levels result to be far from the nominal ones

(solid line), especially in the neighbourhood of the true change point ψ.

However, due to the additional parameter γ, confidence intervals based on

the proposed approximation (dashed line) perform slightly better.
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Figure 2.13: Empirical coverage levels of the 95% confidence intervals
for µi when ψ is fixed at ψ̂ (dashed line) and when using the proposed
approximation (solid line). The coverage level is closer to the nominal one
(dotted line) when using the proposed approximation.



Chapter 3

Extension 1: random effects

One of the most noteworthy advantages of the algorithm proposed in Chap-

ter 2 is that it straightforwardly extends to general change-point models.

In this chapter we focus on mixed models with random change-points, as

sketched in the introduction.

Several statistical methods for detecting subject specific change-points have

been proposed for longitudinal data, and most of them rely on the Bayesian

paradigm (see Dominicus et al., 2008; Hall et al., 2003; Kiuchi et al., 1995).

Within the likelihood framework, grid search approaches turn out to be

unfeasible, unless constancy of the change-point among subjects is as-

sumed (Hall et al., 2000). Related works are developed only for the case in

which continuity of the regression function is assumed at the change-point:

Muggeo et al. (2014) use a linear approximation of the segmented function,

while Jacqmin-Gadda et al. (2006) rely on smooth transition models.

For the discontinuous case, Jackson and Sharples (2004) use a mixture of

hierarchical longitudinal models where a Weibull prior distribution is as-

sumed for the change-points, while the issue of detecting subject specific
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change-points within the likelihood framework has not been addressed. We

discuss how generalization of the iterative algorithm introduced in Chap-

ter 2 allows inclusion of random effects, both for the regression and the

change-point parameters.

3.1 Model definition

Consider model (2.2) for a sample of i = 1, 2, . . . , n subjects, each one with

j = 1, 2, . . . , ni measurements, and assume all the parameters are given by

the sum of fixed and random effects, namely

Yi j = β0i + β1iI(xi j > ψi) + εi j

= (β0 + b0i) + (β1 + b1i)I(xi j > {ψ + pi}) + εi j. (3.1)

At ψi = ψ+ pi, the mean level of Y for subject i shifts instantaneously from

β0i to β0i + β1i.

The assumptions of normality and independence among the random ef-

fects may appear to be restrictive; for example, in the context of segmented

mixed models, Muggeo et al. (2014) consider a block diagonal covariance

matrix, while Jacqmin-Gadda et al. (2006) use the Log-normal distribution

for the random change-point. However, for simplicity we assume
b0i

b1i

pi

 ∼ N



0

0

0

 ,

σ2

0 0 0

0 σ2
1 0

0 0 σ2
ψ


 , (3.2)

and, as usual, εi j ∼ N(0, σ2
ε ) i.i.d. and independent of the random effects.
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Figure 3.1: Simulated dataset illustrating the model for n = 20 subjects
and ni = 20 repeated measurement for each subject. β0 = 2 (left segment),
β0 + β1 = 6 (right segment) and ψ = 10 (vertical line). Points at the bottom
represent the individual change-points: the variance parameter is σ2

ψ = 22.

In this thesis we consider the normality and independence assumptions as

valid, while possible generalizations are not discussed. Figure 3.1 shows a

simulated dataset with n = 20, ni = 20, xi j = j, β0 = 2, β1 = 4, ψ = 10,

σ2
0 = 0.72, σ2

1 = 0.82, σ2
ψ = 22 and σ2

ε = 0.42.

3.2 Methods

Likelihood based estimation of model (3.1) represents quite a hard task:

(3.1) is apparently non-linear and non-differentiable with respect to the ran-

dom change-point parameters, and also grid-search here becomes clearly

unfeasible. However, it is possible to extend the idea of Chapter 2, with

some modifications. In fact, using

I(xi j > ψi) =
1
2

xi j − ψi

|xi j − ψi|
+

1
2
, (3.3)
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for xi j , ψi, and substituting in (3.1) gives

Yi j = β0i + β1i

(
1
2

xi j − ψi

|xi j − ψi|
+

1
2

)
+ εi j

= β0i + β1i

(
1
2

xi j

|xi j − ψi|
+

1
2

)
+ (−β1iψi)

(
1
2

1
|xi j − ψi|

)
= β0i + β1izi j + γiwi j, (3.4)

where

γi = −β1iψi (3.5)

and the auxiliary (or ‘working’) covariates are

zi j =

(
1
2

xi j

|xi j − ψ̃i|
+

1
2

)
and wi j =

(
1
2

1
|xi j − ψ̃i|

)
, (3.6)

with ψ̃i meaning an approximate value of the change-point for subject i; the

dependence of the working covariates zi j and wi j on ψ̃i has been omitted to

simplify the notation.

To better highlight the fixed and the random part of model (3.4) we can

write

Yi = [1ni , zi,wi]


β0

β1

γ

 + [1ni , zi,wi]


b0i

b1i

gi

 + εi. (3.7)

To express the change-points directly as linear parameters we write

Yi j = β0i + β1izi j + ψiw′i j + εi j, (3.8)

where

w′i j = −β̃1iwi j (3.9)
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and β̃1i is an approximate value; (3.8) is equivalent to

Yi = [1ni , zi,w
′
i ]


β0

β1

ψ

 + [1ni , zi,w
′
i ]


b0i

b1i

pi

 + εi. (3.10)

Generalization of the idea proposed in Chapter 2 leads to the following

iterative algorithm:

1. choose a vector of (possibly equal) starting values ψ̃1, ψ̃2, . . . , ψ̃n;

2. compute the working covariates (3.6);

3. estimate LMM (3.7) and extract predictions β̂1i and γ̂i for each i;

4. update the change-point values via

ψ̂i = −
γ̂i

β̂1i
; (3.11)

5. set ψ̃i = ψ̂i and iterate 2 to 4 until convergence.

Notice model (3.1) is approximated, at each iteration, by the simpler con-

ventional linear mixed model (3.7). To estimate model (3.7) one of the

available standard methods can be used. A basic approach is based on

the maximization of the marginal likelihood (Pinheiro and Bates, 2000) in

which random effects have been integrated out:

L(β, γ,σ2;y) =

n∏
i=1

∫ ∫
f (yi | bi, gi;β, ψ) f (bi, gi;σ2)dbidgi. (3.12)

According to (3.11), random effect predictions are also needed, at each

iteration of the algorithm, to update change-point values.
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A standard approach looks at this from an empirical Bayes point of view,

by considering f (bi, gi; σ̂2) as the estimated prior density on the random

parameters. The estimated posterior density is given by

f (bi, gi | yi; σ̂2) ∝ f (yi | bi, gi; β̂, γ̂) f (bi, gi; σ̂2), (3.13)

and then we can consider posterior means to get random effect predictions.

By virtue of the assumption of independence between random effects, we

can write

β̂0i = β̂0 + b̂0i = β̂0 +

∫
b0i f (b0i; σ̂2

0)db0i,

β̂1i = β̂1 + b̂1i = β̂1 +

∫
b1i f (b1i; σ̂2

1)db1i,

γ̂i = γ̂ + ĝi = γ̂ +

∫
gi f (gi; σ̂2

γ)dgi.

(3.14)

3.2.1 Rescaling x values

As discussed in Chapter 2, the xi js have to be moved away from the change-

point values to avoid computational troubles. Extending the idea of Sec-

tion 2.2.1, we use a vector of rescaling factors c1, c2, . . . , cn, compute

ψ̃−i = ψ̃i − ci(ψ̃i − xi(1))

and

ψ̃+
i = ψ̃i + ci(xi(n) − ψ̃i),
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and for each i consider

x′i j = xi(1) + (xi j − xi(1))(1 − ci) (3.15)

for xi j ∈ [xi(1), ψ̃i], and

x′i j = ψ̃+
i + (xi j − ψ̃i)(1 − ci) (3.16)

for xi j ∈ (ψ̃i, xi(n)], and use x′ to compute auxiliary covariates (3.6) and to

fit the working linear mixed model (3.7). Once again, decreasing the cis

throughout iterations according to some reduction factor, say d ∈ (0, 1), is

helpful to avoid convergence failures.

The steps of the algorithm are summarized below:

1. choose a vector of (possibly equal) starting values ψ̃1, ψ̃2, . . . , ψ̃n;

2. choose a vector of (possibly equal) rescaling factors c1, c2, . . . , cn;

3. rescale x using (3.15) and (3.16) to obtain x′;

4. compute the working covariates (3.6) using x′;

5. estimate LMM (3.7) and extract predictions β̂1i and γ̂i for each i;

6. use (3.11) to update the change-point predictions;

7. decrease ci, i = 1, 2, . . . , n, using d if ψ̃i changes direction;

8. set ψ̃i = ψ̂i and iterate 3 to 7 until convergence.
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3.3 Starting values

To estimate model (3.1) a vector of approximate change-point values is

needed. Basing the choice on the a priori knowledge or graphical inspection

may be unfeasible in the presence of many subjects. A simple approach

can be considering the same approximate value for each subject, fixed at

some intermediate location; for example, a rough approximation can be

given by the change-point estimate in model (2.2) where the change-point

is assumed to be the same for all subjects. An alternative approach could be

selecting ψ̃i at random in the neighbourhood of such intermediate location.

Of course, a small sensitivity analysis can turn out to be helpful.

3.4 Convergence

In the same spirit of Section 2.5, the variations ψ̂i − ψ̃i are monitored

throughout iterations to assess convergence. The sign of the variation for

the i−th subject changes once ψ̂i approaches the solution, and warns that

the rescaling factor ci should be reduced. Repeatedly using d to decrease

the rescaling factors makes the absolute variations |ψ̂i − ψ̃i| to decrease;

therefore, for some small ∆ > 0, we use

maxi=1,2,...,n|ψ̂i − ψ̃i| < ∆

as a convergence rule.

3.5 Remarks

We conclude with some remarks about the presented methodologies.
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Note that, despite (3.2) define the distribution of random effects in (3.10),

this model is not suitable to use as a working model, since it would require

twice as many approximate values as model (3.7).

On the other hand, much attention must be payed in the interpretation of

the working model (3.7); in fact, assuming
b0i

b1i

gi

 ∼ N



0

0

0

 ,

σ2

0 0 0

0 σ2
1 0

0 0 σ2
γ


 , (3.17)

would be attractive but not completely correct.

Actually, γi is the product of two independent Gaussian distributions, and

therefore it is Gaussian only approximately; in addition, β1i and γi are

clearly dependent. However, γ = −β1ψ exactly, so that the assumption may

not result to be too restrictive when the goal is just to update the change-

point predictions ψ̂i.

Therefore, we propose to use working model (3.4) to update the change-

point predictions until convergence, and model (3.10) to get also the vari-

ance parameter estimates at convergence. Simulation studies carried out

in Section 5.2 show that the proposed approach works correctly in simple

scenarios.

Initializing the proposed algorithm requires a vector of approximate values

ψ̃i; therefore, we are implicitly assuming that a change-point exists for all

the subject, namely β1i , 0 ∀i. The problem of detecting and considering

possible subjects without change-point is not addressed in this thesis.

Finally, choosing a vector of rescaling factors ci may appear to be unsuit-

able; however, we have experienced that using the same value for each

subject works well in practice.
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3.6 Example

Jackson and Sharples (2004) analyzed data from 204 patients receiving lung

transplant. In the first months after the transplant the patients have an high

risk of complications, such as rejection episodes and infections, and thus

lung conditions, evaluated via the forced expiratory volume in 1 second

(FEV1), need to be monitored constantly. For each subject, different mea-

surements are available with decline patterns being smooth or changing

suddenly.

Unlike Jackson and Sharples (2004) relying on the Bayesian paradigm, we

estimate a model with random effects in both the regression and the change-

point parameters in a likelihood based framework. We focus on 12 subjects

having an apparent abrupt change in their FEV1 profiles and fit model (3.1),

where Yi j is the j-th FEV1 measurement (baseline percentage) for patient i

and xi j is the month at which the measurement is taken after the transplant.

To initialize the proposed algorithm we perform a small sensitivity anal-

ysis varying the approximate value ψ̃i (the same for all the subjects) in

{20, 30, 40}; the approximate value ψ̃i = 40 leads, at convergence, to the

model with the highest marginal likelihood (3.12); the other initialization

parameters are ci = 0.1 ∀i, d = 0.5, and ∆ = 0.1 and the algorithm con-

verges in 18 iterations.

Table 3.1 shows fixed effect and variance parameter estimates for the fit-

ted model. Fixed parameter estimates indicate that high values of FEV1

immediately after the transplant (β̂0 = 98.43) are followed by an impor-

tant drop (β̂1 = −43.14) occurring, on average, after about 40 months

(ψ̂ = 39.82). However, the variance parameters emphasize considerable

heterogeneity among subjects especially in time of occurrence of dropping

(via σ̂2
ψ = 18.65) and relevant amount of dropping (via σ̂2

1 = 16.64).
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Figure 3.2: Observed and fitted piecewise constant profiles for some pa-
tients under study. Grey lines: fixed effect estimates. Black lines: subject
specific estimates. The quite different change-point locations and the dif-
ferent mean levels reflect a considerable heterogeneity among subjects.
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Table 3.1: Lung transplant data: random effect model estimates.

Parameter Estimate

β0 98.43
β1 −43.14
ψ 39.82
σ2

0 9.22
σ2

1 16.64
σ2
ψ 18.65

Heterogeneities are well appreciated in Figure 3.2 that illustrates observed

trajectories and relevant fitted profiles for the subjects under study: the quite

different change-point locations and the different mean levels reflect the

high variance estimates reported in Table 3.1.



Chapter 4

Extension 2: parameters on
unbounded supports

In Chapter 3 we considered a situation in which heterogeneity in the change-

point among subjects is modelled through a random effect. However, het-

erogeneity in ψ could be expressed, more in general, in terms of depen-

dence on a set of additional variables, that is, the change-point could be an

unknown function of other covariates.

Parameters involved in the change-point function have not any longer a

bounded and discrete support; therefore, conventional grid search tech-

niques result to be difficult to implement for estimating such models. In

this chapter we discuss how our proposal is able to work in this framework.

4.1 Model definition

For sake of simplicity, we consider a fixed effect model where the mean

level of the response exhibits a shift at a change-point value that is a linear
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function of a single, additional covariate, namely

µi = β0 + β1I(xi > θ0 + θ1vi). (4.1)

If the point (v, x) lies below the straight line ψ = θ0 + θ1v, the mean level

of Y is β0, while it shifts instantaneously to β0 + β1 above. Figure (4.1)

shows an example on a toy dataset of n = 100 observations, assuming

v ∼ N(2, 32), x ∼ N(5, 62), β0 = −0.4, β1 = −1.2, θ0 = −0.5, θ1 = 2 and

Yi ∼ N(µi, 0.52); estimating (4.1) by searching for θ̂1 and θ̂2 on a square

uniform grid of 51× 51 values (centered at the true pair) yields θ̂0 = −0.58,

θ̂2 = 2, β̂0 = −0.44 and β̂1 = −1.11. Left panel displays the v-x scatterplot

with point size proportional to y, right panels displays the v-x-y scatterplot.

To stress the importance of correctly specifying the change-point as a linear

function of covariate v, we set the same parameters of the previous example,
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Figure 4.1: Simulated dataset illustrating model (4.1). Left panel: 2d-
scatterplot with point size proportional to y; ψ̂ = −0.58 + 2v (straight line),
β̂0 = −0.44 (below the straight line), β̂0 + β̂1 = −1.55 (above the straight
line). Right panel: 3d-scatterplot and fitted values (surfaces).
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and generate Y with a negligible standard error, say Yi ∼ N(µi, 10−6), so

that model (4.1) holds exactly. Suppose now to ignore v and observe the

resulting x-y scatterplot depicted in Figure 4.2.
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Figure 4.2: 2d scatterplot when ignoring the additional variable. Despite
the model holds exactly, the marginal graphical inspection would wrongly
exclude the presence of a change-point.
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Figure 4.3: Profile log-likelihood for θ0 and θ1 on a grid of values cen-
tered at the true pair. Light greys indicate higher values. The black point
corresponds to the maximum likelihood estimate.
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Despite the model holds exactly, the marginal graphical inspection does not

suggest the presence of a change-point, leading to wrong conclusions.

Figure 4.3 displays the joint profile log-likelihood for θ0 and θ1 for the

dataset in Figure 4.1; light greys indicate higher values. Note that, despite

the solution (black point) is unique in this case, it is difficult, in general, to

perform an accurate search on a finite grid; in fact, possibly better solutions

may not be included in the grid.

We discuss how to extend the iterative algorithm introduced in Chapter 2 to

perform estimation of model (4.1).

4.2 Methods

Extending the idea of Chapter 2, we use the following key identity

I(xi > θ0 + θ1vi) =
1
2

xi − θ0 − θ1vi

|xi − θ0 − θ1vi|
+

1
2
, (4.2)

for xi , θ0 + θ1vi, which substituted in (4.1) gives

µi = β0 + β1

(
1
2

xi − θ0 − θ1vi

|xi − θ0 − θ1vi|
+

1
2

)

= β0 + β1

(
1
2

xi

|xi − θ0 − θ1vi|
+

1
2

)
+

+ (−β1θ0)
(
1
2

1
|xi − θ0 − θ1vi|

)
+ (−β1θ1)

(
1
2

vi

|xi − θ0 − θ1vi|

)
= β0 + β1zi + γ0wi0 + γ1wi1, (4.3)

where

γ0 = −β1θ0 and γ1 = −β1θ1. (4.4)
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Note the auxiliary (or ‘working’) covariates are

zi =

(
1
2

xi

|xi − θ̃0 − θ̃1vi|
+

1
2

)
,

wi0 =

(
1
2

1
|xi − θ̃0 − θ̃1vi|

)
,

and

wi1 =

(
1
2

vi

|xi − θ̃0 − θ̃1vi|

)
, (4.5)

with θ̃0 and θ̃1 meaning approximate values. Notice model (4.1) has been

converted in the simple linear model (4.3).

Formulas above suggest the following simple iterative algorithm:

1. choose starting values θ̃0 and θ̃1;

2. compute the working covariates (4.5);

3. estimate the working linear model (4.3) and extract β̂1, γ̂0 and γ̂1;

4. update the parameter values via

θ̃0 = −
γ̃0

β̃1
and θ̃1 = −

γ̃1

β̃1
; (4.6)

5. set θ̃0 = θ̂0 and θ̃1 = θ̂1 and iterate 2 to 4 until convergence.

As in the simpler case discussed in Chapter 2, the likelihood typically ex-

hibits many local optima. Besides, denominators of the working covari-

ates (4.5) go to zero when xi ≈ θ̃0 + θ̃1vi, namely when points (vi, xi) are

close to the approximate straight line; therefore, we need some adjustment

to favour convergence of the algorithm.
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4.2.1 Rescaling v and x and values

Extending the idea of Section 2.2.1 presents an additional issue: moving

points (vi, xi) away from the straight line x = θ̃0 + θ̃1v. Unless θ̃1 = 0,

simple rescaling of x is clearly not feasible, because the change-point is not

unique. In some way, vi and xi have to be rescaled jointly away from the

approximate straight line. We illustrate our proposal with an example.

Consider the toy dataset depicted in Figure 4.1, and a starting straight line

given by xi = 8 + 2vi, as depicted in Figure 4.4.
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Figure 4.4: Example of starting straight line in a toy dataset. The starting
values for the parameters are θ̃0 = 8 and θ̃1 = 2.

The idea is to operate a convenient linear transformation on the covariates

in order to reduce to a standard situation in which θ̃1 = 0. Therefore, we

propose to rotate the points (vi, xi) according to the angle defined by the

approximate straight line, namely

ρ̃ = arctan(θ̃1). (4.7)
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To rotate each point we use the following transformation: v∗i
x∗i

 = Λ̃

 vi

xi

 , (4.8)

where Λ̃ is a standard rotation matrix (Arfken and Weber, 2011):

Λ̃ =

 λ̃11 λ̃12

λ̃21 λ̃22

 =

 cos(ρ̃) sin(ρ̃)

− sin(ρ̃) cos(ρ̃)

 . (4.9)

Of course, the approximate straight line x = θ̃0 + θ̃1v will rotate accordingly,

and we denote the rotated straight line with x∗ = θ̃∗0 (note that θ̃∗1 = 0 by

construction). Rewriting x∗ according to (4.8) gives

x∗ = θ̃∗0

λ̃21v + λ̃22x = θ̃∗0

λ̃22x = θ̃∗0 − λ̃21v

and

x =
θ̃∗0

λ̃22
−
λ̃21

λ̃22
v,

so that

θ̃0 =
θ̃∗0

λ̃22
and θ̃1 = −

λ̃21

λ̃22
, (4.10)

and, conversely,

θ̃∗0 = λ̃22θ̃0 and θ̃∗1 = 0. (4.11)

Rotated points and the relevant straight line are represented in Figure 4.5.
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Figure 4.5: Rotated points and relevant straight line. To rescale the points
away from the approximate straight line we reproduce a situation in which
the change-point is no longer a linear function of v.

Note that the slope of the rotated line θ̃∗1 is 0 by construction, and this makes

easy to operate the rescaling as in Section 2.2.1. As usual, we use a rescal-

ing factor c ∈ (0, 1) and compute a lower, θ̃∗−0 , and a upper, θ̃∗+0 , ‘threshold’

value:

θ̃∗−0 = θ̃∗0 − c(θ̃∗0 − x∗(1)), θ̃∗+0 = θ̃∗0 + c(x∗(n) − θ̃
∗
0).

We therefore consider

x′i = x∗(1) + (x∗i − x∗(1))(1 − c) (4.12)

for x∗i ∈ [x∗(1), θ̃
∗
0], and

x′i = θ̃∗+0 + (x∗i − θ̃
∗
0)(1 − c) (4.13)

for x∗i ∈ (θ̃∗0, x
∗
(n)].

The left panel in Figure 4.6 represents the rotated points without rescaling



4.3 The iterative algorithm in detail 51

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

−5 0 5 10 15

−
5

0
5

v*

x*

c = 0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

−5 0 5 10 15

−
5

0
5

v'

x'

c = 0.1

Figure 4.6: Only rotated (left panel) vs rotated and rescaled data (right
panel). The rescaling induced a point-free region in the neighbourhood of
the rotated approximate straight line.

x∗, namely when c = 0, while the right panel shows the effect of a rescaling

factor c = 0.1.

Finally, we use x′, v′ = v∗ and the rotated straight line to compute aux-

iliary covariates (4.5) and fit the working linear model (4.3). We stress

that, despite the multiple transformations induced to the covariates, esti-

mates of the mean levels β0 and β1 are substantially unaffected, while the

straight line parameter estimates, of course, are. In particular, the rotation

only induces a reparametrization according to (4.10) and (4.11), while the

rescaling should favour to skip some spurious optima. How to reduce c

throughout iterations represents an additional issue.

4.3 The iterative algorithm in detail

To illustrate the algorithm, Figure 4.7 refers to the initialization and the first

8 iterations for the dataset depicted in Figure 4.1.
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The dashed lines refer to the final solution ψ̂ = −0.58 + 2v, while the solid

lines indicate the updated solutions ψ̃ = θ̃0 + θ̃1v. Initialization parameters

are θ̃0 = 5, θ̃1 = 0 and c = 0.1. Note that the updated estimates approach

the solution already after 3 iterations and stabilize thereafter.

Unlike in the single change-point case, monitoring the sign of the variation

ψ̂ − ψ̃ is no longer viable to figure out when the algorithm approaches the

solution, and monitoring the log-likelihood appears to be the only feasi-

ble solution. The likelihood value is most fluctuating in the first iterations,

while it tends to stabilize when the algorithm approaches the solution (Fig-

ure 4.8). In the spirit of step halving (Jennrich and Sampson, 1968), we

propose to multiply c by a reduction factor, say d ∈ (0, 1), any time the

sign of the variation `(ψ̂) − `(ψ̃) changes. A rule of thumb suggests to run

some preliminary iterations, say p, before starting monitoring the likeli-

hood. Figure 4.8 shows the values of the maximized log-likelihood for the

p = 8 preliminary iterations depicted in Figure 4.7 and next iterations, us-

ing d = 0.5; we have referred to the working model to evaluate the variation

`(ψ̂) − `(ψ̃) and reduced c consequently.

iteration

lo
g−

lik
el

ih
oo

d

1 3 5 7 9 11 13 15 17 19 21

−
95

−
85

True
Working

Figure 4.8: True (solid line) and working (dashed line) log-likelihood
throughout iterations. The likelihood tends to stabilize when the algorithm
approaches the solution (iteration 3).
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To summarize, the steps of the algorithm are reported below:

1. choose starting values θ̃0 and θ̃1;

2. choose a rescaling factor c;

3. rotate points (vi, xi) according to (4.8) to obtain v∗, x∗ and θ̃∗0 (θ̃∗1 = 0);

4. rescale x∗ using (4.12) and (4.13) to obtain x′, while v′ = v∗;

5. compute the working covariates (4.5) using x′ and v′;

6. estimate the working linear model (4.3) and extract β̂∗1, γ̂∗0 and γ̂∗1;

7. use (4.6) to update θ̃∗0 and θ̃∗1 to θ̂∗0 and θ̂∗1;

8. use (4.10) to switch back to θ̂0 and θ̂1;

9. decrease c using d if the working likelihood changes direction;

10. set θ̃0 = θ̂0 and θ̃1 = θ̂1 and iterate 3 to 9 until convergence.

4.4 Starting values

Choosing the starting values by visual inspection may result more difficult

in this case. A possible strategy it to fix the starting straight line at x = x̄,

where x̄ is the sample mean of x; in Figure 4.7, we choose x = 5, the

simulated mean of x.

4.5 Convergence

Due to the strong irregularities of the true likelihood, assessing convergence

and correctly stopping the algorithm does not represent a simple task. De-

spite the working likelihood stabilizes when the algorithm approaches the
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solution, the relevant absolute variation |`(ψ̂)− `(ψ̃)| still does not represent

a reliable indication of convergence, even after having repeatedly decreased

the rescaling factor. We therefore propose to evaluate the joint variation of

θ̃0 and θ̃1. In particular, for some small ∆ > 0, we use

(θ̂0 − θ̃0)2 + (θ̂1 − θ̃1)2 < ∆

as a convergence rule. Some simulation studies carried out in Section 5.3

show that the proposed approach works correctly in simple scenarios.

4.6 Example

To illustrate the proposed algorithm we apply it to the ‘airquality’ dataset

shipped with the R environment. The dataset consists of 154 daily observa-

tions concerning some air quality values in New York from May 1, 1973 to

September 30, 1973. Tropospheric ozone is an atmospheric pollutant, and

its concentration represents a common variable of interest in environmen-

tal science. The ozone levels may depend on many factors, among which

some atmospheric agents, such as temperature and wind. Therefore, in this

simple example we analyze the relationship between ozone (Y , parts per

billion), temperature (x, degrees Fahrenheit) and wind (v, average speed in

miles per hour). Figure 4.9 displays the wind-temperature scatterplot with

point size proportional to the ozone level for the n = 116 complete records.

The concentration of the pollutant seems to increase abruptly in the top-left

region of the plot; in particular, a threshold temperature value appears to be

approximately 80 degrees. Estimating model (4.1), assuming the Yis to be

independent and Gaussian, could yield additional information.

To initialize the proposed algorithm we choose ψ̃ = 80 (θ̃1 = 0) as starting
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Figure 4.9: Airquality dataset: wind-temperature scatterplot with point size
proportional to the ozone level. Based on a visual inspection, the concen-
tration of the pollutant appears to increase abruptly at about ψ̃ = 80 de-
grees of temperature (dashed line).
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Figure 4.10: Airquality dataset: wind-temperature scatterplot with point
size proportional to the ozone level. The estimated linear change-point is
ψ̂ = 72.83 + 1.24v (dashed line). The mean ozone level appears to increase
abruptly as temperature goes beyond a critical value. As the wind speed
increases, the critical value increase as well.
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guess; other initialization parameters are c = 0.03, d = 0.5, and ∆ = 10−6.

We perform p = 10 preliminary iterations before starting evaluating the

working likelihood, and get to convergence in 28 iterations. The algorithms

yields β̂0 = 26.18, β̂1 = 57.82 and

ψ̂i = 72.83 + 1.24vi.

Figure 4.10 displays the estimated straight line on the 2d-scatterplot. The

mean ozone level appears to increase abruptly from about 26 to 84 p.p.b as

temperature goes beyond some ‘critical’ value. In the absence of wind, the

‘critical’ value is about 73 degrees. Wind seems to have a ‘positive’ effect

in limiting the ozone levels: in fact, as the wind increases, temperature has

to increase further to cause a ‘jump’ in the ozone levels. The BIC provides

evidence supporting a threshold line rather than a constant change-point:

1046.35 vs 1077.54.





Chapter 5

Simulations

In this chapter, some simulation studies are performed to assess the em-

pirical performances of the proposed procedures. Generally, finite sample

properties of a change-point estimator depend on the sample size n, the true

change-point location ψ, and the ‘signal-to-noise ratio’ β1
σε

, where σε is the

residual standard error. Additional issues are related to the starting value ψ̃

and the rescaling factor c.

5.1 Single-Shift Models

In this section we perform two small simulation studies. The first one is

aimed at assessing the general behaviour of the estimator. The second one

illustrates the effect of the starting point and the rescaling factor selection.

Note that we will evaluate the estimator performances as ‘good’ (in terms

of biasedness) when most of the estimates ψ̂ fall in the interval [x j∗ , x j∗+1)

such that

ψ ∈ [x j∗ , x j∗+1); (5.1)
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we will refer to (5.1) as the ‘true’ interval. For sake of simplicity, we sim-

ulate reasonable scenarios in which nd = n and the true value ψ is included

among observations.

5.1.1 Changing model parameters

To evaluate the finite sample properties of the proposed estimator we vary

n in {51, 201}, and, accordingly, consider explanatory variables x given

by sequences of n evenly spaced values between 0 and 100. We assume

model (2.2), where β0 = 2, β1 = 1.5, ψ ∈ {50, 74}, Yi ∼ N(µi, σ
2), and

σ ∈ {0.5, 1}. For each scenario we generate 1000 datasets and perform es-

timation via the proposed algorithm. To minimize the effect produced by

the initialization parameters, the starting value is setted at the true change-

point, and the same rescaling factor c = 0.03 (d = 0.5) is used for each

simulated dataset, while the tolerance value for the stopping criterion is

∆ = 0.01. Table 5.1 shows the empirical means and standard deviations of

the estimates.

Table 5.1: Sampling distribution of ψ̂: means and standard deviations
(in brackets) for different σ, n, and ψ. Starting value: true change-point
ψ. The estimator is unbiased, since the means fall in the middle of the true
intervals. The standard deviation decreases as n increases andσ decreases.

ψ

σ n 50 74

0.5 51 50.95 (1.23) 74.87 (1.36)
201 50.25 (0.34) 74.27 (0.36)

1 51 50.95 (3.08) 74.83 (3.42)
201 50.25 (1.12) 74.48 (1.20)



5.1 Single-Shift Models 61

The estimator appears to be unbiased, since the empirical means tend to

falls in the middle of the true intervals, especially when σ is lower: when

n = 51, the true intervals are [50, 52) and [74, 76), while when n = 201 they

are [50, 50.5) and [74, 74.5). Besides, as the sample size increases the stan-

dard deviations decrease substantially. Standard deviations also decrease as

the residual standard error decreases.

5.1.2 Changing initialization parameters

As illustrated in Figure 2.5, the perturbation induced by c on the explana-

tory variable x affects the step |ψ̂ − ψ̃|. In particular, the rescaling helps,

to some extent, to skip some spurious maxima, especially when the start-

ing value ψ̃ is far from the final solution ψ̂ . We here perform a simple

simulation study to illustrate this issue.

We vary the true change-point ψ in {30, 50, 70} and generate 1000 datasets

from model (2.2). We set n = 100, xi = i, i = 1, . . . , n, β0 = 2, β1 = 1, and

Yi ∼ N(µi, 0.42). We vary the starting point ψ̃ in {30, 50, 70}, and also eval-

uate a fourth option given by the best candidate among {17, 34, 50, 67, 83}.

We also vary the rescaling factor c in {0.03, 0.05} and use ∆ = 0.1.

Table 5.2 shows the empirical means and standard deviations of the esti-

mates. As expected, the performance is good when ψ̂ = ψ, which would

represent the ‘gold standard’ choice, while it gets worse when the starting

point is far from the true value, because the algorithm is more likely to stop

at some local solution. Figure 5.1 represents the boxplots of ψ̂when ψ̃ = 70

and ψ = 30; spurious clusters in the starting value proximity introduce a

bias and also affect the variance of the estimator.

Selecting ψ̃ in the middle of the range of x, or among a grid of some candi-

dates, gives results which are comparable with the ‘gold standard’.
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Table 5.2: Effect of the starting value ψ̃ and the rescaling factor c on the
sampling distribution of ψ̂: means and standard deviations (in brackets).
The bias and the standard deviation increase when ψ̃ is far from ψ, but
increasing the rescaling factor c improves performances.

ψ̃

ψ c 30 50 70 5 value grid

30 0.03 30.33 (0.93) 30.50 (1.31) 31.47 (5.85) 30.42 (1.22)
0.05 30.32 (1.07) 30.40 (1.28) 30.54 (2.83) 30.37 (1.21)

50 0.03 50.21 (2.00) 50.41 (0.89) 50.64 (1.32) 50.41 (0.89)
0.05 50.44 (1.10) 50.47 (0.94) 50.54 (0.99) 50.47 (0.94)

70 0.03 69.01 (7.60) 70.53 (1.37) 70.54 (0.95) 70.58 (1.00)
0.05 70.23 (4.38) 70.68 (1.09) 70.63 (1.12) 70.67 (1.10)
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Figure 5.1: Sampling distributions of ψ̂ coming from two values of c. Spu-
rious clusters in the starting value proximity (ψ̃ = 70) introduce a bias, but
they tend to disappear when c increases (boxplot at the top).
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While increasing the rescaling factor does not affect substantially the per-

formance when selecting reasonable starting values, it improves the perfor-

mance when ψ̃ is far from the solution: in fact, the empirical mean of ψ̂

stabilizes in the true interval [ψ, ψ+ 1), with a lower variance as well. Note

that, in Figure 5.1, spurious clusters tend to disappear when c = 0.05.

We stress that increasing c beyond a certain limit may make ψ̃ fall outside

the range of x at some iteration, causing an algorithm failure. In our simu-

lation study, when c = 0.05, 4 failures occurred when ψ̃ = 70 and ψ = 30,

another 3 occurred when ψ̃ = 30 and ψ = 70.

For completeness, Table 5.3 shows the empirical summary measures for the

estimators β̂0 and β̂1, for the same scenarios considered in Figure 5.1 (ψ̃ =

70, and ψ = 30). The two estimators are unbiased for both values of the

rescaling factor; besides, like for the change-point estimator, the standard

deviations decrease as the rescaling factor increases.

Table 5.3: Regression coefficients: empirical summary measures. β̂0 and
β̂1 are unbiased independently from c. As for the change-point estimator,
the standard deviations decrease as c increases.

Estimator True c Mean S.D.

β̂0 2.00 0.03 2.01 0.11
0.05 2.00 0.08

β̂1 1.00 0.03 0.99 0.12
0.05 1.00 0.09

5.2 Extension 1: random effects

The algorithm is more complex when estimating random effect models. In

fact, it performs optimization over a high number of parameters, because
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also random effect predictions are involved in computations at each step.

Besides, the final solution depends strongly on the choice of the initial-

ization parameters, including the rescaling factors. We perform a small

simulation study to assess the general behaviour of the estimator.

We set a small residual variance σ2
ε = 0.42, locate ψ in the middle of the

range of x and choose a moderate σ2
ψ, so that is difficult for the random

change-points to fall outside this range; in fact, at this stage we assume

that ψi exists for each subject. Setting a high value of β1 and a small σ2
1

guarantees not to have profiles with non-identifiable change-point; dealing

with possible subjects without change-point represents an additional issue,

which is not addressed in this thesis.

We therefore generate 1000 datasets from model (3.1), assuming n = 20,

ni = 20, xi j = 1, 2, . . . , ni, and


β0i

β1i

ψi

 ∼ N



2

4

10

 ,


0.72 0 0

0 0.82 0

0 0 22


 , (5.2)

and perform estimation via the algorithm discussed in Chapter 3.

We consider three different scenarios. In the first scenario we use, for each

simulated dataset, the true random change-point ψi as approximate values,

and a rescaling factor c = 0.03; since we expect to start in the neighbour-

hood of the solution, this choice would represent the ‘gold standard’. In

the second scenario we generate the starting values ψ̃i uniformly in the in-

terval [7, 13], located in the middle of the common ranges of x, and use a

rescaling factor c = 0.05. Finally, in the third scenario we set ψ̃i = 8 for all

the subjects, and c = 0.05. Other initialization parameters are d = 0.8 and

∆ = 0.1, for all the scenarios.
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Table 5.4: Random effect model: means and standard deviations (in brack-
ets) of the estimates. Starting values are fixed at the true occurrences ψi,
selected at random in the interval [7, 13] or fixed at 8. Estimators are sub-
stantially unbiased. ψ̂ and σ̂2

1 have the highest variances.

ψ̃i

Estimator True ψi U(7, 13) 8

β̂0 2.00 1.987 (0.156) 1.999 (0.154) 1.991 (0.158)
β̂1 4.00 4.004 (0.177) 3.990 (0.185) 3.971 (0.192)
ψ̂ 10.00 9.948 (0.465) 9.863 (0.446) 9.830 (0.565)
σ̂2

0 0.49 0.483 (0.165) 0.488 (0.164) 0.489 (0.171)
σ̂2

1 0.64 0.638 (0.223) 0.665 (0.220) 0.658 (0.245)
σ̂2
ψ 4.00 4.050 (1.374) 4.032 (1.346) 4.033 (1.503)

Table 5.4 shows the results. Estimators ψ̂ and σ̂2
1 appear to have a little

bias, especially when the starting values are selected at random or fixed at

8 for all the subjects; these two estimators also have the highest empirical

variances. Other estimators appear to be unbiased independently from the

starting value selection. The empirical standard deviations do not differ

substantially for the three scenarios, with the exception of estimators ψ̂ and

σ̂2
1 which have an higher variance when the algorithm is initializated at

ψ̃i = 8. Even if a deeper investigation would be needed, these results show

that the proposed approach works reasonably well in simple scenarios.

5.3 Extension 2: parameters on unbounded supports

Finally we perform a small simulation study to evaluate the proposed algo-

rithm when estimating the linear-change-point model (4.1).
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We set a moderate sample size n = 200 and locate the true linear change-

point in an intermediate region of the v-x space. In particular, we generate

the variables v ∼ N(22, 32) and x ∼ N(25, 62), and set ψ = 5 + v. The

true regression coefficients are β0 = −0.4 and β1 = −1.2. We therefore

generate 1000 datasets from model (4.1), where Yi ∼ N(µi, 1), and perform

estimation via the proposed algorithm.

We consider two different scenarios. In the first scenario we use the true

intercept (θ̃0 = 5) and the true slope (θ̃1 = 1) of the linear change-point

as starting values for the iterative algorithm. In the second scenario we set

the approximate straight line at the mean value of x, namely θ̃0 = 25 and

θ̃1 = 0. Other initialization parameters are c = 0.03, d = 0.5 and ∆ = 10−6,

for all the scenarios. Table 5.5 shows the results.

Table 5.5: Linear change-point model: means and standard deviations (in
brackets) of the estimates. Starting values are fixed at the true linear func-
tion and the mean value of x. For the considered scenarios, the intercept
estimator appears to be biased with the highest variance.

ψ̃

Estimator True ψ 25

β̂0 -0.400 -0.393 (0.095) -0.392 (0.095)
β̂1 -1.200 -1.221 (0.138) -1.217 (0.139)
θ̂0 5.000 5.223 (3.550) 5.679 (4.178)
θ̂1 1.000 0.988 (0.160) 0.963 (0.194)

The intercept estimator appears to be biased, with a high variance. Since

the regression coefficient estimates are unbiased, we conjecture such bias

to be related to the particular data conformation and change-point location.
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Figure 5.2 portrays 50 estimated straight lines when the algorithm starts

from the true values (left panel) and the mean value 25 (right panel). The

estimated linear functions correctly approximate the true one (black line);

note that, when using ψ̃ = 25 as approximate value (dashed line), the esti-

mated linear functions are more likely to remain close to the starting value.
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Figure 5.2: Linear change-point model: estimated straight lines (grey lines)
when starting from the true change-point (left panel) and the mean value
of x (right panel). The estimated linear functions correctly approximate
the true one (black line). When ψ̃ = 25 (dashed line), the estimated linear
functions could remain close to the starting value.





Chapter 6

Multiple change-point models

Multiple change-points my arise from two different extensions; in the most

common framework, the expected value of the response is assumed to be

expressed by a stepwise function with K shifts induced by a single co-

variate. A typical example concerns aCGH analyses (Pinkel et al., 1998),

where interest lies in detecting possible aberrations along a chromosome.

Alternatively, the change-points can be relevant to more than one covariate,

and this issue has not been well addressed in the literature.

When K change-points have to be estimated, efficient grid search algo-

rithms based on dynamic programming are available if the K change-points

are relevant to the same covariate (Bai and Perron, 2003). However, dy-

namic approaches turn out to be unfeasible when the mean shifts are in-

duced by several covariates, because the change-points have different sup-

ports. Moreover, large sample sizes still represent a concern also for dy-

namic approaches.

In this chapter we discuss the possibility to extent the proposed algorithm

for the multiple change-point case. Even if preliminary simulations have
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shown that the proposed algorithms works reasonably well in simple sce-

narios, we do not study the topic in detail.

6.1 Change-point in several covariates

The issue of estimating change-points in more than one covariate has not

been well addressed in the literature. In fact, all the techniques in Chap-

ter 1 are built for detecting one or more change-points in a single covariate.

Application of the most efficient techniques based on dynamic grid search

(Bai and Perron, 2003) cannot be applied when the change-points are de-

fined different supports, and the computational cost becomes huge as the

number of change-points increases.

In this section we propose an extension of the proposed algorithm for esti-

mating such models efficiently.

6.1.1 Model definition

Let’s consider a model with K explanatory variables xk, k = 1, 2, . . . ,K,

each one with its own change-point ψk at which the mean level of Y exhibits

a shift given by βk. The regression function can be written

µi = β0 +

K∑
k=1

βkI(xik > ψk), (6.1)

which specifies that the mean level of Y assumes constant values in a set of

multidimensional regions of the explanatory variable domain (Figure 6.1).

To simplify the notation, we assume that all the explanatory variables con-

sists of n distinct values.
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Figure 6.1: Simulated dataset illustrating the model: 2d-scatterplot with
point size proportional to y. The estimated mean level of Y change accord-
ing to the regions defined by ψ̂1 = 19.96 and ψ̂2 = 59.40 (dashed lines).
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Figure 6.2: Profile log-likelihood for ψ1 and ψ2. Lighter area indicates
higher log-likelihood. The black point corresponds to the maximum likeli-
hood estimate.
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Similarly to the case of the single change-point model discussed in Chap-

ter 2, all the values of ψk between xik and x{i+1}k, for each k, lead to the

same likelihood.

We consider an example on a toy dataset of n = 100 observations, where x1

and x2 are generated at random from a U(1, 100), and the relevant change-

points are ψ1 = 20 and ψ2 = 60. The regression coefficients are β0 = 2,

β1 = 1, and β2 = −1, while Yi ∼ N(µi, 0.32); estimating (6.1) by searching

for ψ̂1 and ψ̂2 among the n2 pairs (xi1, xi′2) yields ψ̂1 = 19.96, ψ̂2 = 59.40,

β̂0 = 1.94, β̂1 = 0.99 and β̂2 = −0.91.

Figure 6.1 displays the scatterplot of points (xi1, xi2) with point size propor-

tional to yi; in this model, the fitted values change according to the regions

defined by ψ̂1 and ψ̂2 (dashed lines). Figure 6.2 displays the joint profile

log-likelihood for ψ1 and ψ2; light greys indicate higher values.

6.1.2 Methods

To extend our iterative algorithm we use the key identity (2.3) for each

covariate. Model (6.1) becomes

µi = β0 +

K∑
k=1

βk

(
1
2

xik − ψk

|xik − ψk|
+

1
2

)

= β0 +

K∑
k=1

βk

(
1
2

xik

|xik − ψk|
+

1
2

)
+

K∑
k=1

(−βkψk)
(
1
2

1
|xik − ψk|

)

= β0 +

K∑
k=1

βkzik +

K∑
k=1

γkwik, (6.2)

where

γk = −βkψk (6.3)
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and the auxiliary (or ‘working’) covariates are

zik =

(
1
2

+
1
2

xik

|xik − ψ̃k|

)
and wik =

(
1
2

1
|xik − ψ̃k|

)
, (6.4)

with ψ̃k, k = 1, 2, . . . ,K, meaning approximate values.

Model (6.1) has been converted in the simple linear model (6.2), and for-

mulas above suggest the following simple iterative algorithm:

1. choose a vector of (possibly equal) starting values ψ̃1, ψ̃2, . . . , ψ̃K ;

2. compute the working covariates (6.4);

3. estimate the working LM (6.2) and extract β̂k and γ̂k for each k;

4. update the change-point values via

ψ̂k = −
γ̂k

β̂k
; (6.5)

5. set ψ̃k = ψ̂k and iterate 2 to 4 until convergence.

Rescaling xk values

As widely discussed in Section 2.2.1, the values of each covariate should be

moved away from the relevant approximate values ψ̃k. We therefore choose

a vector of rescaling factors c1, c2, . . . , cK and compute

ψ̃−k = ψ̃k − ck(ψ̃k − x(1)k), ψ̃+
k = ψ̃k + ck(x(n)k − ψ̃k),

to obtain the scaled values

x′ik = x(1)k + (xik − x(1)k)(1 − ck) (6.6)
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for xik ∈ [x(1)k, ψ̃k], and

x′ik = ψ̃+
k + (xik − ψ̃k)(1 − ck) (6.7)

for xik ∈ (ψ̃k, x(n)k]. The rescaled variables x′k are used to compute auxil-

iary covariates (6.4) and to fit the working linear model (6.2). As usual,

decreasing the cks according to some reduction factor, say d ∈ (0, 1), turns

out to be useful to avoid convergence failures.

In summary, these are the steps of the algorithm:

1. choose a vector of (possibly equal) starting values ψ̃1, ψ̃2, . . . , ψ̃K ;

2. choose a vector of (possibly equal) rescaling factors c1, c2, . . . , cK ;

3. rescale the xks using (6.6) and (6.7) to obtain the x′ks;

4. compute the working covariates (6.4) using the x′ks;

5. estimate the working LM (6.2) and extract β̂k and γ̂k for each k;

6. use (6.5) to update the change-point values;

7. decrease ck, k = 1, 2, . . . ,K, using d if ψ̃k changes direction;

8. set ψ̃k = ψ̂k and iterate 3 to 7 until convergence.

6.1.3 Starting values

To estimate model (6.1) a vector of approximate change-point values is

needed. In general, the same considerations made for the simple model

with a single covariate are valid, independently, for each variable xk.
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6.1.4 Convergence

In the same spirit of Section 3.4, we can monitor the maximum absolute

variations |ψ̂k − ψ̃k| throughout iterations to assess convergence.

6.2 Several change-points in a covariate

As discussed in Chapter 1, there exist several modern and efficient tech-

niques to detect multiple change-points relevant to the same covariate. In

particular, dynamic grid search algorithms are able to obtain exact solutions

with a O(n2) computational cost, for any K. However, also the dynamic ap-

proach could become computationally expensive with huge sample sizes; a

typical example concerns biological analyses involving thousands of gene

expressions. In this section we propose an extension of the proposed algo-

rithm for the multiple change-point case.

6.2.1 Model definition

Consider the more general piecewise constant regression model (1.5) with

K change-points

E[Yi] = β0k xi ∈ (ψk−1, ψk],

k = 1, 2, . . . ,K + 1. At ψk, k = 1, 2, . . . ,K, the mean level of Y shifts

instantaneously from β0k to β0{k+1}, while ψ0 = x(1) and ψK+1 = x(n); for

sake of simplicity we ignore possible invariant terms (ηi = 0).

As for the single change-point model (2.1), we reparametrize the model

using K indicator functions:

µi = β0 +

K∑
k=1

βkI(xi > ψk), (6.8)
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where
∑k−1

j=0 βk = β0k, k = 1, 2, . . . ,K + 1.

Assuming that x consists of n distinct values, any value of ψk between xi

and xi+1 lead to the same likelihood.

Figure 6.3 displays the scatterplot and fitted values for a toy dataset, in

which xi = i, i = 1, . . . , 100, β0 = 2, β1 = 1.5, β2 = 1, ψ1 = 25, ψ2 = 65 and

Yi ∼ N(µi, 1.52). Grid search provides β̂0 = 1.79, β̂1 = 1.92, β̂2 = −1.00,

ψ̂1 = 30 and ψ̂2 = 65.
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Figure 6.3: An example of multiple (K = 2) change-point model. The mean
level of Y is a step function (solid lines), with jumps in correspondence of
ψ̂1 = 30 and ψ̂2 = 65 (dashed lines).

Figure 6.4 shows the joint profile log-likelihood for ψ1 and ψ2, with lighter

areas indicating higher likelihood values. Note symmetry with respect to

the bisector of the first and third quadrant: the log-likelihood remains the

same if we exchange ψ1 and ψ2. More in general, the likelihood is invariant

to permutations of the ψk, so that it suffices to evaluate
(

n
K

)
models. The

log-likelihood is highly wiggly and point estimation through an iterative

algorithm becomes a challenging task.
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Figure 6.4: Profile log-likelihood for ψ1 and ψ2. Lighter greys indicate
higher values. The black points correspond to the maximum likelihood es-
timate. The likelihood is symmetric with respect to the bisector of the first
and third quadrant, because `(ψ1, ψ2) = `(ψ2, ψ1).

6.2.2 Methods

To extend our iterative algorithm we use the key identity (2.3) in model (6.8),

which gives

µi = β0 +

K∑
k=1

βk

(
1
2

xi − ψk

|xi − ψk|
+

1
2

)

= β0 +

K∑
k=1

βk

(
1
2

xi

|xi − ψk|
+

1
2

)
+

K∑
k=1

(−βkψk)
(
1
2

1
|xi − ψk|

)

= β0 +

K∑
k=1

βkzik +

K∑
k=1

γkwik, (6.9)
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where

γk = −βkψk (6.10)

and the auxiliary (or ‘working’) covariates are

zik =

(
1
2

+
1
2

xi

|xi − ψ̃k|

)
and wik =

(
1
2

1
|xi − ψ̃k|

)
, (6.11)

with ψ̃k, k = 1, 2, . . . ,K, meaning approximate values.

Formulas above suggest the following simple iterative algorithm:

1. choose a vector of starting values ψ̃1, ψ̃2, . . . , ψ̃K ;

2. compute the working covariates (6.11);

3. estimate the working LM (6.9) and extract β̂k and γ̂k for each k;

4. update the change-point values via

ψ̂k = −
γ̂k

β̂k
; (6.12)

5. set ψ̃k = ψ̂k and iterate 2 to 4 until convergence.

Rescaling x values

The case of multiple change-point estimation requires moving the xis away

from the boundaries of the intervals (ψ̃k−1, ψ̃k], k = 1, 2, . . . ,K + 1. Extend-

ing the idea of Section 2.2.1 we compute a left and a right ‘threshold’ for

each interval depending on a vector of rescaling factors c1, c2, . . . , cK ,

ψ̃−k = ψ̃k − ck(ψ̃k − ψ̃k−1), ψ̃+
k = ψ̃k + ck(ψ̃k+1 − ψ̃k),
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and then scale covariate values in each interval (ψ̃k−1, ψ̃k] induced by the

change-points according to

x′i = ψ̃+
k−1 + (xi − ψ̃k−1)(1 − ck−1 − ck), (6.13)

k = 1, 2, . . . ,K + 1, where

ψ̃0 = ψ̃+
0 = x(1), ψ̃K+1 = ψ̃−K+1 = x(n)

and c0 = cK+1 = 0. The rescaled variables x′ is used to compute auxiliary

covariates (6.11) and to fit the working linear model (6.9).

Left panel in Figure 6.5 represents simulated observations in Figure 6.3

without rescaling x, namely when c1 = c2 = 0. Right panel shows the effect

of two rescaling factors c1 = c2 = 0.1, when ψ̃1 = 33.5 and ψ̃2 = 66.5 are

chosen as starting values.
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Figure 6.5: Simulated data. Left panel: originary covariate (c1 = c2 = 0).
Right panel: rescaled covariate (c1 = c2 = 0.1). The rescaling induces
point-free intervals (dashed lines) in the neighbourhood of the approximate
values ψ̃1 and ψ̃2 (solid lines).
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Notice the rescaling induces point-free intervals in the neighbourhood of

the approximate values ψ̃1 and ψ̃2. As usual, decreasing the cks by some

factor d ∈ (0, 1), turns out to be helpful to avoid convergence failures.

In summary, these are the steps of the algorithm:

1. choose a vector of starting values ψ̃1, ψ̃2, . . . , ψ̃K ;

2. choose a vector of (possibly equal) rescaling factors c1, c2, . . . , cK ;

3. rescale x using (6.13) to obtain x′;

4. compute the working covariates (6.11) using x′;

5. estimate the working LM (6.9) and extract β̂k and γ̂k for each k;

6. use (6.12) to update the change-point values;

7. decrease ck, k = 1, 2, . . . ,K, using d if ψ̃k changes direction;

8. set ψ̃k = ψ̂k and iterate 3 to 7 until convergence.

6.2.3 Starting values

Good choice of the starting values represents a crucial aspect for the success

of the algorithm. Rough indications about the change-point locations may

be based on the use of non-parametric techniques, graphical inspections, or

a priori knowledge. Without a priori information, intuition suggests to use

equally spaced values ψ̃k = x(1) + k x(n)−x(1)
K+1 .

6.2.4 Convergence

The maximum absolute variations |ψ̂k − ψ̃k| can be monitored, throughout

iterations, to assess convergence.



Chapter 7

Discussion and future work

7.1 Discussion

We have introduced a novel iterative algorithm for estimation in regres-

sion models with piecewise constant relationships, where, to date, the grid

search algorithm results to be the only feasible approach.

Our proposal is quite general, and several potential extensions have been

discussed. In particular, grid search turns out to be unfeasible when the

change-points are subject specific and modelled by random effects, and

very difficult to apply when the parameter involved have unbounded sup-

ports, for example when the change-point is assumed to be a linear func-

tion of another variable. Some simulation studies on simple scenarios have

shown that the proposed algorithm works also in such situations, and some

motivating examples have been used to illustrate the proposed methodolo-

gies in practice.

For a piecewise constant regression model with K change-points, compu-

tational efficient grid search algorithms based on dynamic programming
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have been developed to reduce the computational cost from O(nK) to O(n2)

for any K (Bai and Perron, 2003). However, when the multiple shifts are

induced by several covariates the computational cost can not be reduced,

because the change-points have different supports. Moreover, even when

the shifts are induced by a single covariate, very large sample sizes still

represent a concern for dynamic approaches. We have discussed the possi-

bility to extent the proposed algorithm for the multiple change-point case,

although we have not assessed them in practice.

Estimation of a standard linear regression model at each iteration represents

the main feature of the proposed approach; in fact, whereas the stepwise

function is not differentiable at the change-points, our approximation is lin-

ear in the parameters. In particular, we rely on a suitable equivalence for

the indicator function which leads to a linear function when substituted into

the model equation. Alternative approaches discussed in the literature make

the objective function differentiable by using smooth approximations of the

indicator function, typically a cumulative distribution function (Zhou et al.,

2008); however, the resulting model is non-linear, and approximate values

both for the change-points and the regression coefficients are required for

estimation. Conversely, we only need approximate values for the change-

point parameters to initialize the proposed algorithm.

The profile likelihood with respect to the change-points is a highly wig-

gly step function, with typically many spurious maxima; for this reason,

the choice of suitable starting values represents a crucial aspect for the al-

gorithm to be successful. Rescaling the explanatory variable observations

away from the starting values has been shown to reduce the probability of

the algorithm to stop at some local solution. More in general, as shown

through simulations, the dependency of the final result on the initialization
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parameters (the approximate change-point values and the rescaling factor)

represents the main drawback of the proposed approach.

7.2 Future work

Even if the proposed algorithms appear to work reasonably well in practice,

several aspects need to be investigated in more detail.

Some simulation studies have shown the effect of the initialization parame-

ters on the estimator performances, and provided general hints for a suitable

choice; however, the possibility to define rules for an optimal choice repre-

sents an open problem.

More extensive simulation studies may be helpful to improve the algorithm

effectiveness and make it ready for applications; in particular, the algorithm

for the multiple change-point case need to be refined and properly checked.

The proposed algorithms have been implemented in the R environment,

with the aim of organizing them into a new package. A brief description of

function usage is given in the Appendix.

We have considered the response variable to be Gaussian distributed, but

extension to the exponential class appears to be straightforward, since the

proposed algorithm works on the linear predictor.

Possibility to extend the proposed algorithm when using alternative objec-

tive functions should also be evaluated: sum of squared errors, sum of ab-

solute errors (in quantile regression), partial likelihood (in Cox regression),

quasi-likelihood, penalized likelihood and others.

Finally, the linear approximation used for the step function could be ex-

ploited to evaluate the possibility of deriving standard errors for the esti-

mates, or, more in general, to perform interval estimation.





Appendix A

Implementation in R

The algorithms we have illustrated throughout this thesis have been imple-

mented in the R environment, with the aim of organizing them into a new

package. In particular, basic functions have been created to estimate:

1. models with K change-points;

2. mixed models with subject specific change-points;

3. models with a linear change-point;

4. models with K change-points in K covariates.

Such functions have been used for estimation in the examples and simula-

tion studies. Here we provide a brief description of their usage.
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A.1 Model with K change-points

Usage

PieceLin(y, x, psi, c = 0.05, d = 0.5,

maxit = 50, tol = 0.01)

Arguments

y a quantitative response variable;

x a quantitative explanatory variable;

psi a K-dimensional vector of approximate change-point values;

c a K-dimensional vector of rescaling factors ck ∈ (0, 1);
if scalar, the K factors are fixed at such constant value;

d a reduction factor d ∈ (0, 1);

maxit maximum number of iterations admitted;

tol a tolerance level ∆ > 0.

Value

An object of class ”lm” yielded by the working model at convergence.
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A.2 Mixed model with subject specific change-points

Usage

PieceLinMix(y, x, id, psi, c = 0.05, d = 0.5,

maxit = 50, tol = 0.01)

Arguments

y a quantitative response variable;

x a quantitative explanatory variable;

id a subject identifier;

psi a n-dimensional vector of approximate change-point values;
if scalar, the n values are fixed at such constant value;

c a n-dimensional vector of rescaling factors ci ∈ (0, 1);
if scalar, the n factors are fixed at such constant value;

d a reduction factor d ∈ (0, 1);

maxit maximum number of iterations admitted;

tol a tolerance level ∆ > 0.

Value

An object of class ”lme” yielded by the working model at convergence.
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A.3 Model with a linear change-point

Usage

PieceLinLin(y, x, v, psi, c = 0.05, d = 0.5,

p, maxit = 50, tol = 0.01)

Arguments

y a quantitative response variable;

x a quantitative explanatory variable;

v a quantitative additional variable;

psi approximate intercept and slope of the change-point;

c a rescaling factor c ∈ (0, 1);

d a reduction factor d ∈ (0, 1);

p preliminar iterations before evaluating the likelihood;

maxit maximum number of iterations admitted;

tol a tolerance level ∆ > 0.

Value

An object of class ”lm” yielded by the working model at convergence.
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A.4 Model with K change-points in K covariates

Usage

PieceLinMult(y, x, psi, c = 0.05, d = 0.5,

maxit = 50, tol = 0.01)

Arguments

y a quantitative response variable;

x a K-dimensional list of quantitative explanatory variables;

psi a K-dimensional list of approximate change-point values;
if scalar, the K values are fixed at such constant value;

c a K-dimensional list of rescaling factors ck ∈ (0, 1);
if scalar, the K factors are fixed at such constant value;

d a reduction factor d ∈ (0, 1);

maxit maximum number of iterations admitted;

tol a tolerance level ∆ > 0.

Value

An object of class ”lm” yielded by the working model at convergence.
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