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SUMMARY 

Cerebral Palsy (CP) is a lesion of the central nervous system that 

determines a more or less extended loss of brain tissue. As a result, motor 

functions can be altered. The incidence of infantile cerebral palsy is of 2-

3 cases per 1,000 births. CP is not a homogeneous disorder. Actually, the 

disease can have different degrees of severity and may occur in many 

different forms. In medical literature, on the basis of the topographic 

localization of the disturbances, different definitions and classifications 

of cerebral palsy are proposed. In particular, the term diplegia is used to 

identify the effects of the lesion on the lower limbs.  

This research work is based on the classification of diplegia into four 

forms proposed and validated by Ferrari A. e al. (University of Modena-

Reggio Emilia)[3][4][5].  Such a classification can be considered as an 

effective support for the therapy. Actually, since each form is 

characterized by a different degree of severity, a correct identification 

would allow medical staff to activate appropriate therapeutic protocols. 

However, up to date, due to the unreliability or absence of objective data 

and methodologies, the identification of the diplegia forms has been 

completely entrusted to the professional skills of the specialists. To 

overcome the inevitable subjectivity of the medical evaluation, gait 

analysis allows the measurement and the quantitative evaluation of the 

kinematics and dynamics of the motion. Therefore, in LAMBDA 

laboratory (laboratory for the analysis of the movement of the disabled 

child, Santa Maria Nuova Hospital, Reggio Emilia), kinematic motion 

data have been acquired on three gait cycles for 91 diplegic patients 

belonging to the four identified groups. The laboratory is equipped with 

an optoelectronic system with eight cameras (Vicon, UK) by means of 

which motion capture tests can be carried out. Motion capture makes 

possible the recording of the movement of one or multiple subjects 
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through a series of infrared cameras, and then its reproduction in a digital 

environment. Through this acquisitions, according to the Protocol 

Total3Dgait, it is possible to rebuild the trajectories of the markers 

applied to identified anatomical landmarks of the different patients, as 

well as the angles of rotation of the main joints of the lower limbs. Data 

used in this research work are just the angles of rotation of the main 

joints of the lower limbs collected during three gait cycles for all the 91 

subjects and referred to three anatomical planes: sagittal, frontal, 

transverse. 

The main objective of this research is the identification of indicators to 

be employed for the discrimination of the four groups. To this purpose, 

two methods are proposed. The first one is essentially based on the 

extraction of static indicators from the available functional variables.  

In particular, taking into account both the clinical suggestions and the 

main results available in the literature, three indicators have been 

extracted from the functional data: Range Of Motion (ROM), Root 

Mean-Square (RMS) and Crest Factor (CF). The first provides 

information on the maximum angular excursion occurring in a gait cycle, 

the second on the variation of the time dependent waveform with respect 

to a constant value and the third on any impulsive phenomena 

characterizing the pendular movement typical of almost all forms of 

diplegia. A great number (72) of potential predictors have been employed 

for the construction of a linear discriminant model with stepwise 

procedure. Since all data have been used both for the construction of the 

model and its validation, in order to contain an over estimation of the hit 

ratio (HR), the  leave-one-out cross-validation method has been used. 

Wilks' lambda criterion has been used to select significant predictors and 

then to measure the goodness-of fit of the model.  
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Although the use of static indicators is attractive for its simplicity, the 

selection of such a standard indicators from data is  always and inevitably 

affected by the limits of the subjective evaluations. In contrast, 

multivariate statistical analysis has proved to be a powerful tool to 

eliminate collinearity and to facilitate the analysis, considering 

exclusively the essential structure hidden in the data. Principal 

Component Analysis (PCA) has showed to be extremely effective in the 

study of the human motion. This thesis proposes the use of functional 

PCA (FPCA) for the available data in the attempt of identifying a limited 

number of components that can explain most of the data variability and 

features to be used for discriminating purposes. Actually, differences 

among the PC scores (PCs) related to the subjects belonging to the four 

different groups have been tested and some of 48 available variables have 

been selected as predictors in a discriminant linear model. Correct 

classification rates between the two proposed methods are compared. For 

the selected indicators the clinical evaluation is supplied. The clinical 

interpretation of the statistical results is intended to make intelligible 

information for specialists. 

The thesis is organized as follows. Chapter 1 introduces the term diplegia 

and its clinical classifications. Gait Analysis  and gait cycle are presented 

in Chapter 2. Chapter 3 deals with data collection and the employed 

statistical methods. In Chapter 4  data analyses and results are presented. 

Chapter 5 presents the clinical feedback for the results discussed in 

Chapter 4 and some ideas for future developments. Finally, in the 

Conclusions, the main results are  synthesized. 
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Chapter 1 

Diplegia and clinical classifications 

1.1 Introduction 

Cerebral palsy (CP) is the most frequent cause of chronic disability in children. The 

estimated incidence varies between 2 and 3 cases per 1000 children (Stanley) [1]. 

According to one of the latest definitions, CP describes a heterogeneous group of 

permanent disorders of movement and posture, causing limitations to activities, 

attributable to non-progressive disorders that occur in fetal or child development of 

the brain. (Bax)[2]. CP is often accompanied by sensory, perceptual disorders or by 

cognitive, communicational difficulties and sometimes by secondary musculoskeletal 

problems.  

Depending on the etiology or on some functional features or on the topographic 

distribution of the paralysis, medical literature is full of different definitions and 

classifications. However, it is very important to have a system of classification of the 

different forms of cerebral palsy, repeatable and usable by all. This would facilitate 

the prognosis and the rehabilitative intervention and would allow the definition of 

general criteria to be used in order to judge the effectiveness of the different adopted 

rehabilitative intervention protocols.  

The working group of professor Ferrari (University of Modena-Reggio Emilia) has 

developed and validated [3][4][5] a method of classification of such paralysis based 

on the observational analysis of kinematics and kinesiology of the movement.  

Despite the great number of CP definitions, the SCPE (Surveillance Cerebral Palsy 

Europe) suggests a classification system that minimizes the clinical categories, taking 

into account exclusively a distinction between bilateral and unilateral forms [6]. 

There are different opinions on the topic. Morris et al. [7] argue that the term should 

be completely abandoned as well as  Colver AF et Al. [8] propose to completely 

eliminate the distinction between different classes of CP and suggest to keep only the 
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generic term of "cerebral palsy" and to differentiate patients exclusively from a 

functional point of view. 

The Ferrari group believes that the latter approach mix patients with very different 

degrees of CP severity, from children unable to perform any activity autonomously 

to others who exhibit only minor difficulties in motor skills. This complicates both 

the prognostic evaluation and the measurement of the effectiveness of the therapeutic 

solutions that can be eventually applied. In the light of these considerations, the 

Ferrari group supports the need of keeping the original definitions of diplegia, 

hemiplegia, tetraplegia. In order to delimit the diplegia, differential criteria should 

be adopted. In the next paragraph both the clinical signs used to make such a 

classification and the proposed differentiation into four groups are presented. 

 

1.2 Proposed classifications 

Among the clinical signs which may be useful for classification purposes, the 

following are taken into account. 

Firstly, once the motor sequence has been activated, it is very difficult for a diplegic 

patient to stop and to decompose it in order to reverse the direction.  

Speed reduction is another visible difficulty for a diplegic subject. Actually, patients 

encounter fewer difficulties to walk faster rather than slowly and to maintain the state 

of motion rather than standing still in place. 

Coordination of the four limbs is also crucial. For diplegic subjects it is very difficult 

to coordinate, while riding, the upper limb movements with those of the lower limbs.  

Stability and fixation: for diplegic patients maintaining a proper alignment of the 

body in space and preserving the overall balance is very difficult. Other clinical signs 

can be referred to the sensory functions, to the cortical functions and to the handling 

function. Although sensory functions are not generally affected, orientation in space 

as well as maintaining trajectories can become a problem. Almost all children 

affected by diplegia reach a quantitatively acceptable language, even if sometimes 

they can produce semantic errors. 
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Generally a fair expertise in handling is reached, but sometimes the difficulty of 

controlling the pulse can introduce uncertainty in more complex activities such as the 

use of utensils or writing and drawing. 

 

The proposed classification is mainly based on the classic analysis of the 

topographic distribution of the injury (tetraplegia involving the four limbs, diplegia  

the lower ones, hemiplegia only one side) but takes into account specific functions as 

features to be used in order to classify the patients. In particular, tetraplegia is 

classified with relation to the so called antigravity function, diplegia with relation to 

the function "walk" and finally, hemiplegia with relation to the function 

"manipulation". Since the motor skills and the posture of a CP subject represent the 

best achievable result by a diseased central nervous system, it seems logical to use 

the movement (kinematics) to classify the degree of severity of the disease. Diplegia, 

as underlined before, is classified with relation to the function walk. Therefore, in the 

following paragraph the proposed classification for diplegia will be shown. 

 

1.2.1 Four forms of diplegia 

To distinguish the clinical forms of diplegia, the following elements involved in the 

motor function are considered [9]: 1) the use of the upper limbs and of aids for the 

walk, 2) the pendular movements of the trunk in the sagittal and in the frontal planes, 

3) the movements of the pelvis (horizontal movement and antero-posterior tilt), 4) 

the progression mechanisms, 5) the movements of the foot, 6) the choice of the 

fulcrum during the walk. 

According to these elements, four main forms of diplegia have been distinguished: 

• Form I (forward leaning propulsion) including subjects that use aids for the 

upper limbs (“quadripodi” for defence) and subjects that do not use any 

device for the upper limbs. 
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• Form II (tight skirt) including subjects that use aids for the upper limbs 

(“quadripodi” for direction) and subjects that do not use any device for the 

upper limbs. 

• Form III (tight rope walkers) including subjects that use aids for the upper 

limbs (“quadripodi” as barbell) and subjects that do not use any device for 

the upper limbs. 

• Form IV (dare devils) including the generalized form, the distal form and the 

asymmetric form (double emiplegia). 

 
The four forms are in a decreasing degree of severity. Patients belonging to the first 

group present severe pathological deficiency, while those of the fourth group are less 

compromised. Other pathological aspects common to all the identified forms, and not 

exclusively related to the motor function, are referred to the involvement of the upper 

and lower limbs with the lower ones more compromised, to the presence of possible 

perceptual and visuals disorders, especially for the I and III forms, to possible 

phenomena of epilepsy and mental retardation (infrequent) and to functional 

handling problems.  

Perceptual problems may represent a significant component in the I and III form, 

while the II and the IV ones are mainly characterized by motor type problems.  

The kinematic-based classification proposed by the Ferrari group can provide useful 

indications for the purposes of re-educational treatments. Actually, it does not aim at 

achieving a hypothetical normality, but aims at reaching the best adaptive functions 

for the patient. In addition, it is consistent with the generally accepted definition of 

CP as disorders of movement and posture. For more details about the clinical 

walking patterns employed by the medical staff to classify the four diplegia forms, 

see [3]. 
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                              Chapter 2 

Gait Analysis 

2.1 Gait Analysis  

The analysis of movement is a scientific discipline that deals with the evaluation of 

the human movement including the acquisition of experimental data, their processing 

and interpretation [10]. In the years '70 and '80, the first experimental procedures 

have been defined for the determination and analysis of the movement, through the 

use of computerized techniques. The collection of these techniques and of the used 

protocols[11] gave rise to the Gait Analysis (GA) [12][13]. By studying the 

kinematics, the dynamics and the patterns of the muscular activation, the clinicians 

can describe some features of the movement and the mechanisms of the motor 

disabilities with a reasonable accuracy. Then, they can identify the most appropriate 

therapeutic protocols and evaluate their effectiveness. 

The tools used by Gait Analysis techniques allow a quantitative description with 

graphical representations in a virtual environment of the state of health of the 

musculoskeletal system, including the active function carried out by the muscles and 

the passive action suffered by the soft and the hard tissues. GA in the clinic is used to 

identify and evaluate accurately the severity of diseases disabling the 

musculoskeletal apparatus. The technique allows to quantify the motor skills of the 

patients when performing everyday movements, such as walking or climbing stairs, 

assessing the adequacy of the generated motor performance, called "motor pattern".  

The usefulness of its clinical use as a tool to gain an in-depth knowledge of the joints 

function, in normal and/or pathological situations, has been amply demonstrated in 

the medical literature [14-23]. 
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2.2 Gait Cycle  

Gait cycle is defined as the functional unit in the analysis of movement. It is the time 

between the initial contact of one foot (stride) and its subsequent contact. Gait cycle 

represents the temporal unit reference that describes all the biomechanical events and 

the muscular activity. 

It is divided into two distinct phases, the first one known as the stance phase, from 

0% to 60% of the cycle (during this phase the reference limb is on the ground) and 

the swing phase, from 60% to 100% of the cycle (during this phase the reference 

limb makes his swing until its subsequent contact with the ground). 

In turn, these two stages are divided into further stages as shown in Figure 1 : 

1) IC (Initial Contact), representing the contact of the foot with the ground;  

2) LR (Loading Response), representing the phase in which the limb that started the 

contact with the ground begins gradually to receive the load from the other limb 

(which simultaneously is preparing to break away from the ground);  

3) MS (Mid Stance), is the phase in which there is the advancement of the limb in 

contact with the ground; 

4) TS (Terminal Stance): this stage includes the boost of the limb in contact with the 

ground, while the other side is concluding the oscillation phase and is preparing the 

subsequent contact with the ground; 

5) PSW (Pre Swing), at this stage there is the gradual transition of the load on the 

other limb; 

6) IS (Initial Swing), first oscillation phase;  

7) MS (Mid Swing), intermediate oscillation phase;  

8) TS (Terminal Swing), final oscillation phase, the oscillation limb prepares for the 

next contact with the ground.  

In healthy subjects the described phases as well as the biological phenomena related 

to the motion are extremely precise and similar (within the limits of the individual 
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variability) among different subjects[24][25]. This rhythm is often lost in a 

pathological state, in particular when dealing with diseases of neurological nature. 

 

 

Figure 1: description of a gait cycle 
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Chapter 3 

Data description and statistical methods 

3.1 Subjects 

The sample used for this research work is constituted of 91 subjects belonging to the 

four groups introduced in Chapter 1. Sample is not numerically balanced. Actually, 8 

subjects belong to the first group, 28 to the second group, 16 to the third one and, 

finally, 39 to the fourth group.  

The great numerical difference between, for example, the first and the fourth group 

occurs because the diffusion of CP is not homogeneous. Actually, the fourth form is 

less severe and more spread than the first one. Another practical reason is because 

patients belonging to the first group cannot face easily a long series of trials in the 

laboratory and then they may be sometimes stopped and not included in the sample. 

3.2 Laboratory LAMBDA, instruments, tests 

LAMBDA laboratory (i.e. Laboratory for the Analysis of the Movement of the 

Disabled Child) is located in the Spallanzani Hospital and belongs to the ASL 

Arcispedale of Santa Maria Nuova in Reggio Emilia. It is one of the largest research 

centres in Italy in the field of the cerebral palsy. The main elements constituting the 

equipment are described below. 

3.2.1 Main instruments and  Protocol T3Dg 

LAMBDA laboratory is equipped with an optoelectronic system consisting of 

cameras with a CCD sensor sensitive to infrared light radiation. A LEDs strobe light, 

synchronized with the speed of image detection, allows a "freezing" effect of frames. 

Markers, placed on the subjects, are covered with an aluminum powder reflective 

material. The reflected image, properly processed, provides the three-dimensional 

coordinates for each point. By combining such information with the spatial position 

of the cameras, the three-dimensional position of markers can be obtained through a 
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markers, applied according to the T3Dg Protocol, are detected by the optoelectronic 

system, Vicon MX + System, (Vicon Motion System), consisting of 8 infrared light 

emission cameras with high resolution (100 Hz). 

Single joint movements can then be analyzed separately on the three planes (frontal, 

sagittal, transverse) leading to the generation of kinematic graphs representing joints 

angular movements (expressed in degrees) referred (after normalization and 

sampling, as it will be detailed in Chapter 4) to the gait cycle percentages.  

3.3 Available data structure 

The choice of the variables to be monitored is mainly based on some clinical 

considerations. Actually, according to Ferrari classification, the standardized 

distinctive characteristics of the four diplegia forms (used at an observational level 

by specialists to produce such a classification) are referred to the joints rotation. For 

this reason, articulations of trunk, knees, ankles and hips have been taken into 

account. 

In particular, trunk rotation in the sagittal plane may inform about the antepulsion 

that is typical of the patients belonging to the first group. Actually, they tend to face 

the entire walk bent forward, with constant support on four point canes which are 

placed in front and laterally to the trunk. Trunk rotation also indicates the presence of 

a sagittal pendulum, typical of the patients of the fourth group whose walk is quick 

and clocked. However, frontal pendulum highlights the lateral oscillations of the 

trunk used by patients of the third group to balance their weight. 

The measurement of the angular knee extension on the sagittal plane should make 

possible the distinction of the first diplegia form from the second one. In fact, the 

first one is characterized by a joint block, basically due to musculoskeletal problems, 

the latter one by a knee flexion during the gait midstance phase. 

Hip rotation in the transverse plane allows the identification of possible intra-

rotations when the foot is in contact with the ground. This variable is also important 
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for patients belonging to the first and the fourth group. Actually, for them the 

position of the lower limbs plays an adaptive equilibrium function. Finally, ankle 

joint rotations in the sagittal plane may indicate a possible block of the foot in 

flexion-extension, called club-foot. This factor is indicative for patients of the first 

form. In fact, they tend to balance their entire walk on tiptoe. 

Then, functional variables, representative of the angular rotations of the previously 

described articulations in the three anatomical planes and recorded over three gait 

cycles, are coded with the following names: 

• for the knees: RKANGLE_S, RKANGLE_F, RKANGLE_T 

  LKANGLE_S, LKANGLE_F, LKANGLE_T 

• for the trunk: RTRKANGLE_S, RTRKANGLE_F, RTRKANGLE_T 

                        LTRKANGLE_S, LTRKANGLE_F, LTRKANGLE_T 

• for the hip: RHANGLE_S, RHANGLE_F, RHANGLE_T  

         LHANGLE_S, LHANGLE_F, LHANGLE_T 

• for the ankles: RAANGLE_S, RAANGLE_F, RAANGLE_T 

                         LAANGLE_S, LAANGLE_F, LAANGLE_T 

where L and R means respectively left and right. 

3.4 Methods   

This research work aims at identifying suitable indicators to employ for the 

discrimination of four groups. Medical literature is full of examples of discrimination 

problems between two groups, healthy and pathological ones. Here the 

discrimination problem is extended to four groups. This complicates the 

identification  of suitable indicators to employ as predictors. As it will be detailed in 

Chapter 4, two methods are proposed to achieve this purpose. They differ both for 

the theoretical approach and for the use of statistical methodologies. In particular, the 

first proposed method tries to identify suitable static indicators from the available 

functional data, while the second one preserves the functional nature of the data by 
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investigating their hidden variability. However, despite the use of different 

predictors, both the methodologies propose a Linear Discriminant Analysis in order 

to identify a discriminant function. In the following paragraphs the most relevant 

theoretical aspects of the Linear Discriminant Analysis (LDA) and some theoretical 

considerations relating to the Principal Components Analysis for Functional data 

(FPCA), used in the second proposed approach, will be presented. For further 

theoretical deepening on FPCA, refer to [30][35][37]. 

3.4.1 Generalities on Linear Discriminant Analysis (LDA) 

A discriminant model [26][27] among groups aims at predicting which group a new 

case belongs to. In most common applications of discriminant function analysis, 

many variables or predictors are considered in order to determine the ones with a 

high  discrimination power. The linear discriminant function can be expressed by the 

following equation: 

 

ܼ ൌ ܽ ൅ ଵܹ ଵܺ ൅ ଶܹܺଶ ൅ ڮ ൅ ௞ܹܺ௞                     (3.1) 

 

where Z, the discriminant score, is used to predict group membership, a is the 

discriminant constant and ܺ௞ are the explicative variables or predictors. In 

discriminant analysis the Total Sum of Squares (TSS) is partitioned into the Between 

Group SS (BSS) and the Within Group SS (WSS):  

 

ࡿࡿ࡮ ൌ ሺࢆഥ૙ െ ഥሻ૛ࢆ ൅ ሺࢆഥ૚ െ ഥሻ૛ࢆ ൌ ∑ሺࢆഥ࢏ െ  ഥሻ૛           (3.2)ࢆ

ࡿࡿࢃ ൌ ሺ࢏ࢆ૙ െ ഥ૙ሻ૛ࢆ ൅ ሺ࢏ࢆ૚ െ ഥ૚ሻ૛ࢆ ൌ ∑൫࢐࢏ࢆ െ ഥ࢐൯૛ࢆ
   (3.3) 

 

where i represents an individual case, j the group, ܼ௜ an individual discriminant 

score, ҧܼ௝ the mean discriminant score for group j (called centroids) and ҧܼ   the grand 

mean of the discriminant scores. Discriminant analysis uses OLS to estimate the 

values of the parameters a and Wk that minimize the Within Group SS, WSS. 
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In this study, a stepwise discriminant function analysis is applied. Then, the 

discrimination model is built step-by-step. At each step all variables are reviewed 

and evaluated to determine which one will contribute most to the discrimination 

among groups. That variable will then be included in the model, and the process 

starts again. Wilks' lambda criterion is used to select significant predictors. The latter 

indicates whether or not there is a significant relationship between the predictors and 

the dependent variable. 

To measure the goodness-of-fit, Wilk’s lambda operates as follows. In case of two 

groups, the discriminant function can be extracted from data and the associated 

eigenvalue is: 

ߣ          ൌ ஻ௌௌ
ௐௌௌ

                                             (3.4) 

     

It turns out that if  λ = 0 (BSS = 0),  the model has no discriminatory power. The 

larger the value of λ, the greater the discriminatory power of the model. The Wilks' 

Λ for the discriminatory model is  

                                       Λ ൌ ଵ
ଵାఒ

ൌ ௐௌௌ
்ௌௌ

                            (3.5) 

Λ is chi-square distributed with df = (k - 1), where k  is equal to the number of 

estimated parameters. Therefore, in terms of Λ, the more the parameter is close to 1 

the less the discriminant power of the model is. For this reason Wilks' Λ is such an 

inverse quality criterion. 

The stepwise introduction of predictors terminates when all the significant variables 

are considered and, of course, the discriminant power of the model is satisfying. 

Then an estimation of the hit ratio (HR) is needed. The latter gives the correctly 

classified observation units divided by the total number of observation units. If, for 

example, a classification matrix is considered for a two groups discriminant model, 
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TRUE CLASS MEMBERSHIP PREDICTED CLASS MEMBERSHIP 

GROUP I GROUP II 

GROUP I C11 C12 

GROUP   II C21 C22 
 

Table 1: determination of class membership 

the following relation holds:  

ܴܪ                                          ൌ ௖ଵଵା௖ଶଶ
௖ଵଵା௖ଵଶା௖ଶଵା௖ଶଶ

      (3.6) 

When the same data set is used both for estimating the DA model and the 

classification, an over estimation of the HR is expected. To avoid this, the leave-one-

out cross-validation method can be employed. This technique works by omitting 

each observation one at a time, recalculating the classification function using the 

remaining data, and then classifying the omitted observation.  

The computation time is obviously longer, but an optimistic error rate is 

compensated. Assumptions for DA model are the same of those for the multivariate 

analysis of variance (MANOVA): a) data (for the variables/predictors) represent a 

sample from a multivariate normal (or quite) distribution inside each group; b) the 

variance/covariance matrices of variables are homogeneous across groups. Minor 

deviations are not so important; c) groups defined by dependent variables exist a 

priori; d) variables used to discriminate between groups need to be not completely 

redundant. If any one of the variables is completely redundant with the other 

variables used, then the matrix is said to be ill-conditioned, and it cannot be inverted. 

Therefore, it is necessary to evaluate if such assumptions hold for the chosen 

variables. 

For multivariate analysis, data need to follow a multivariate normal distribution or, if 

not exactly, at least approximately. To assess multivariate normality, several visual 
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procedures have been suggested in the literature. Here, it is proposed the Chi-square 

plot of squared Mahalanobis distance[28]. A plot of the ordered squared distances ݀௜
ଶ 

and 100 ቀ௜ି଴.ହ
௡

ቁ quantiles of the Chi-squared distribution with p degrees of  freedom 

is called a Chi-square plot. 

Distance ݀௜
ଶ is ݀௜

ଶ ൌ ሺݔ௜ െ ௜ݔҧሻᇱΣିଵሺݔ െ  ҧሻ with i=1, 2,….n and X1, X2,….Xn  sampleݔ

observations each measured on the p variables. 

Before performing such an analysis, it is reasonable evaluating the univariate 

normality of the predictors. Actually, if predictors have a normal distribution, it does 

not imply the multivariate one but, if univariate predictors are not normal, it is sure 

that a multivariate distribution is far from normality. The assumptions of univariate 

normality are simply investigated with a Normal Probability Plot (NPP). 

 

3.4.2 Principal Component Analysis (PCA) 

So far, Ramsay and Dalzell (1991)[29] outlined the advantages of applying 

functional data analysis in practice. In particular, they highlighted the advantages 

provided by smoothing and interpolation procedures that can yield a functional 

representation of a finite set of observations. However, modeling problems are more 

natural to be considered functionally because functional pre-processing (i.e. 

derivatives) can provide insights into functional data display and functional linear 

regression models. Ramsay and Silvermann (2005)[30] proposed functional data 

analysis as an effective methodology to represent data in ways that aid further 

analyses and especially to study important sources of pattern and variation. Due to 

these practical advantages, in the last 10 years, functional data analysis has received 

a great attention in different scientific fields, from the analysis of handwritten in 

Chinese (Ramsay 2000)[31] to the analysis of price dynamics in online auctions 

(Wang, Jank, Shmueli &Smith2008)[32], to climatology (Meiring 2007)[33], to 

medical research (Erbas et al.2007)[34], and many other more. In the book Applied 

Functional Data Analysis,  Ramsay & Silverman (2002)[35] gave a number of very 
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interesting applications with continuous functional variables. Even additional non-

parametric features have been incorporated into functional data analysis by Ferraty, 

F. & Vieu, P. (2006)[36]. Generally, the continuous functional variable is time, even 

though functional data may be observed over age, space, wavelength, molecular 

weight and so on.  

As it will be shown in the next Chapter, the second proposed approach is based on 

the Principal Component Analysis applied to functional data. Therefore, in this 

section some useful details are provided with a continuous attention to the 

description of peculiarities that will be adopted (see Chapter 4) to analyze the data.  

PCA finds the most informative or explanatory features hidden in the data, without 

needing an a priori-knowledge or hypotheses on their structure. It accomplishes this 

by computing a new smaller set of uncorrelated variables, (PCs) that represent the 

original data set. Each new variable is a linear combination of the original ones. In 

particular, the first principal component (PC1) is the linear combination of the 

original variables which accounts for the maximum amount of variance in a single 

direction. It is the line of best fit through the data, therefore its residual variance is a 

minimum for the complete data set. The second principal component (PC2 ) is 

orthogonal to the first one and accounts for the maximum amount of the remaining 

variance in the data. All the principal components are orthogonal to each other. Then 

there is no redundant information. Therefore, the first two components represent the 

plane of best fit through the data. All the remaining principal components can be 

defined in the same way, so that the lowest order components normally account for 

very little variance and can usually be ignored with respect to some components 

criteria selection[35]. It is very interesting to interpret PCA from a geometrical point 

of view. Actually, it can be considered as a rotation of the axes of the original 

variable coordinate system to new orthogonal axes, called principal axes. These new 

axes coincide with the directions of maximum variation of the original data.  
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From a mathematical point of view, PCA performs an orthogonal transformation that 

converts p variables, X1, X2,…., Xp, into p new uncorrelated principal components, Z1, 

Z2, …., Zp. The PC model is then Z=UTX where the columns of U (U1, U2,…, Up) are 

called principal component loading vectors and are the eigenvectors of the 

covariance matrix of X.   

In a functional context, each principal component is specified by a principal 

component weight function defined over the same range of time as the original 

functional data. Then the individual principal component scores zi are given by a 

combination of the weight function and the original data. In real situations, when the 

plotted function representing the raw data collected over time is not smooth, a 

preliminary data treatment needs to be performed in order to smooth the curve. This 

can be accomplished with different approaches [35][37]. For the case under study, 

since data are collected at a frequency of 100Hz over an time interval (gait cycle time 

interval) that in the best situation (subjects belonging to the fourth group) lasts in 

mean for about 1.05 sec, the plotted function is reasonably smooth. Therefore, no 

previous treatment is necessary. 
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Chapter 4 

Analyses, Results and Discussion 

4.1 Introduction 

In this chapter results of the analyses and a critical discussion about them are 

reported. As underlined in the previous chapter, in order to discriminate the four 

groups, two methodologies have been proposed and compared. The first method 

proposes some “static” indicators, derived from functional data, as predictors for the 

discriminant model, while the second one uses directly functional data reduced by 

PCA and proposes the individual PC scores as discriminating predictors. 

4.2 The “static” indicators method 

This first method is based on the extrapolation of synthetic indicators from the 

original functional variables to be employed for the identification of the proposed 

diplegia forms. This is particularly useful for the implementation of automatic 

classification systems as neural networks or Bayesian networks [38-42] that are 

easier to implement with discrete input variables. Commonly, extracted indicators 

include peak values or magnitudes of signals at specific gait cycle events. The choice 

of such indicators is subjective and strictly linked to the specific application context. 

Obviously no choice is the best choice, but only one possible among many others. 

However, if the choice is not accurate, it is possible that the considered indicators are 

highly correlated or not so representative of the curves. Therefore, in order to reduce 

possible sources of errors, the choice has been based on some clinical suggestions. 

Actually, since dependently from its degree of severity diplegia affects in a different 

way the angles representative of the articulations motion, the following indicators are 

considered and extracted from the gait cycle curves: 

• the Range of Motion (ROM), i.e. the maximum variation of the rotation angle 

of the considered articulation. It is defined as the difference between the 

maximum and the minimum angles measured during a gait cycle, i.e. 
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ܯܱܴ ൌ maxሺݔሻ െ min ሺݔሻ, where x represents the vector of measured angle 

values in a cycle; 

• the Root Mean Square (RMS), to be interpreted as an indicator of variation 

with respect to a constant value of a time dependent signal, i.e. ܴܵܯ ൌ

ට∑ ሺ௫೔ሻమ೙
೔సభ

௡
 , where xi represent the measured angle values in a gait cycle; 

• the Crest Factor (CF), defined as the ratio between the absolute value of the 

maximum in a set of data and the RMS, i.e. ܨܥ ൌ ୫ୟ୶ ሺ௫ሻ
ோெௌሺ௫ሻ

, where x represents 

the vector of measured angle values in a gait cycle. It is representative of 

some impulsive phenomena characterizing the pendular movements that are 

typical in almost all the diplegia forms. 

Considered the number of available functional variables and the three different 

detection planes, the following considerations hold. The 8 functional variables have 

been presented in the previous Chapter. Each of them is measured in three different 

planes: sagittal, frontal and transverse. Therefore, there are 24 available functional 

variables. Since from each variable 3 discrete indicators are extracted (ROM, RMS, 

CF), there 72 potential predictors to be used for the discrimination analysis. For each 

subjects three gait cycles are available. Then ROM, RMS, CF used in the 

discriminant analysis are the mean values related to the three gait cycles.  

In order to assess the differences for these indicators among the four independent 

groups, the non-parametric Kruskal Wallis (KW) test has been chosen. This test 

offers a non-parametric alternative to the one-way analysis of variance when 

variables are non-normally distributed. When significant, KW test has been followed 

by the Mann Whitney (MW) post-hoc test. Since the level of significance of the test 

is chosen to be α=0.05 and 6 comparisons for four groups have been performed, 

Bonferroni correction has been considered. Actually, by choosing α = 0.00833 (i.e. 

0.05/6), the probability to have at least one significant result is 
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Pሺat least one significantሻ ൌ 1 െ Pሺno significant resultsሻ ൌ 1 െ ሺ0.00833ሻ଺ ൎ

0.04895, very closed to 0.05. 

4.3 Results of the KW and the MW test  

In the following Table 2, the corresponding p-values related to some of these tests 

with the corresponding variables are reported. 

Kruskal Wallis test 
PREDICTORS p-value 
ROM_LAANGLE_S 0,0000

ROM_RAANGLE_S 0,0000

ROM_LHANGLE_S 0,0000

CF_LAANGLE_S 0,0030

CF_LKANGLE_S 0,0000

RMS_RTRKANGLE_S 0,0000

ROM_RHANGLE_S 0,0000

ROM_RKANGLE_S 0,0000

CF_RKANGLE_S 0,0000

ROM_RTRKANGLE_F 0,0000

RMS_RAANGLE_F 0,0000

ROM_LAANGLE_F 0,0015

RMS_LAANGLE_F 0,0000

CF_LAANGLE_T 0,0000
 

Table2: KW test for some variables 

To know which differences are significant, post-hoc Mann Whitney test has been 

performed. Results of such tests are reported below for some variables related to the 

sagittal and the frontal planes. Figures 5, 6 and 7 show the boxplots of 

RMS_RAANGLE_S, CF_RAANLE_S and ROM_RAANGLE_S 
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Figure 5: boxplot of RMS_RAANGLE_S 
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Figure 6: boxplot of CF_RAANGLE_S 
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Figure 7: boxplot of ROM_RAANGLE_S 
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p-values for the variables indicated above are synthesized in the following Tables 3, 

4 and 5. 

p-value of Mann-Whitney test (Alpha 
Bonferroni=0,00833) 

RMS 
RAAngle_S Diplegia 1 Diplegia 2 Diplegia 3 Diplegia 4 
Diplegia 1         
Diplegia 2 0,057       
Diplegia 3 0,393 0,375     
Diplegia 4 0,031 0,456 0,091   

 

 Table3: MW results for RMS_RAANGLE_S  

p-value of Mann-Whitney test (Alpha 
Bonferroni=0,00833) 

CF 
RAAngle_S Diplegia 1 Diplegia 2 Diplegia 3 Diplegia 4 
Diplegia 1         
Diplegia 2 0,1108       
Diplegia 3 0,3484 0,0072     
Diplegia 4 0,0072 0,0000 0,1922   

 

Table4: MW results for CF_RAANGLE_S 

 

p-value of Mann-Whitney test (Alpha 
Bonferroni=0,00833) 

ROM 
RAAngle_S Diplegia 1 Diplegia 2 Diplegia 3 Diplegia 4 
Diplegia 1         
Diplegia 2 0,0003       
Diplegia 3 0,0000 0,0000     
Diplegia 4 0,0000 0,0000 0,7077   

 

Table5: MW results for ROM_RAANGLE_S 

Values of RMS_RAANGLE_S are not significantly different for the four groups. On 

the contrary, for CF_RAANGLE_S differences between I/IV (diplegia forms), II/III 

and II/IV are significant. For ROM_RAANGLE_S, all the tests are significant, 

except that related to III and IV.  
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In the following Table 6 are reported the results of the MW tests for some of the 

previous significant variables with the correspondent p-values. Since most of them 

are significant, they will be considered for the discriminant analysis.  

Mann-Whitney test (Alpha Bonferroni=0,00833) 
PREDICTORS DIPLEGIA FORM p-value 
ROM_LAANGLE_S II/IV 0,0022 

ROM_LAANGLE_S I/IV 0,0012 

ROM_RAANGLE_S I/IV 0,0018 

ROM_RKANGLE_S _MID I/IV 0,0020 

ROM_RKANGLE_S _MID II/IV 0,0001 

ROM_LKANGLE_S _MID II/IV 0,0070 

ROM_LHANGLE_S II/IV 0,0000 

ROM_LHANGLE_S III/IV 0,0009 

CF_LAANGLE_S I/IV 0,0036 

CF_LKANGLE_S II/IV 0,0001 

RMS_LKANGLE_S II/IV 0,0012 

RMS_RTRKANGLE_S I/III 0,0014 

RMS_RTRKANGLE_S I/IV 0,0001 

RMS_RTRKANGLE_S II/IV 0,0004 

ROM_RHANGLE_S II/IV 0,0012 

ROM_RTRKANGLE_F I/IV 0,0047 

RMS_RAANGLE_F II/IV 0,0017 

ROM_LAANGLE_F I/II 0,0018 

ROM_LAANGLE_F I/III 0,0074 

ROM_LAANGLE_F I/IV 0,0067 

RMS_LAANGLE_F III/IV 0,0075 

CF_LAANGLE_T I/IV 0,0056 

ROM_RKANGLE_S II/IV 0,0000 

CF_RKANGLE_S II/IV 0,0000 
 

Table 6: MW post-hoc test for some variables 

4.4 The gait cycle meantime (gcm) variable  

As underlined in Chapter 3, variables employed in this study are functional variables 

representative of the angular rotations related to some joints during a gait cycle. For 

each subject, three independent gait cycles have been detected. Gait cycle can be 
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defined as a repetitive pattern involving steps and strides[10]. A step is one single 

step and a stride is a whole gait cycle. Step time is defined as the time from one foot 

hitting the floor to the other foot hitting the floor. Gait speed determines the 

contribution of each body segment. Normal walking speed primarily involves the 

lower extremities. Actually, arms and trunk provide stability and balance. The faster 

the speed, the more the body depends on the upper extremities and trunk for 

propulsion as well as for balance and stability [12]. In subjects affected by CP, 

balance and stability are generally compromised. This has an evident impact on the 

speed and, as a consequence, on the duration of the gait cycle. In order to understand 

if differences in cycle duration hold, the following considerations have been made. 

The three gait cycles available for each subject can be considered as replicates. In 

Figure 8 the three gait cycles related to subject 18 are reported (variable 

RKANGLE_S). 

 

 
 

Figure 8: the three gait cycles for RKANGLE_S subject 18 

The first cycle is constituted of 263 angular values, the second one of 226 and the 

third one of 303 values. Since the system frequency is 100Hz, it is possible to 

determine the duration of the three gait cycles and, for each subject, to consider the 

mean cycle duration. For this case, first cycle lasts for 2.63 sec, second for 2.26 sec 
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and the third for 3.03 sec. Therefore, subject 18 needs in mean 2.64 sec. to complete 

a gait cycle. Performing the same considerations for all the 91 subjects involved in 

the study, the following mean cycle durations per group result: I group 3.04 sec, II 

group 1.48 sec, III group 1.14 sec. and IV group 1.05 sec. In order to test if such 

differences are significant, Kruskal Wallis test has been performed. Since it was 

significant (p-value=0.0000), MW post-hoc test has been used to detect which groups 

are significantly different in terms of the gcm variable. In the following Table 7 

results are reported. 

p-value Mann-Whitney test (Alpha Bonferroni=0,00833) 
   DIPLEGIA 1  DIPLEGIA 2  DIPLEGIA 3  DIPLEGIA 4 
DIPLEGIA 1             
DIPLEGIA 2  0,0004         
DIPLEGIA 3  0,0003 0,0063      
DIPLEGIA 4  0,0000 0,0012 0,2209   

 

Table 7: MW test for gcm variable 

Differences are significant for all the groups except for groups III and IV. This result 

is coherent with some clinical considerations. Actually, the four groups are in a 

decreasing order of degree of severity. The first group is the most compromised, then 

the difficulty in maintaining stability and balance during the walk has an evident 

impact on the duration of the gait cycle. Therefore, in consideration of the proved 

discrimination feature of the mean gait cycle duration, variable gcm will be 

considered for the further discriminant analysis. 

4.5 Univariate normality tests. 

Multivariate normality within each group is required for the variables involved in the 

discriminant analysis. Therefore, in order to understand if univariate distributions of 

each considered variable are normal, normal probability plots (NPP) have been 

previously built. This condition is not sufficient to assess multivariate normality, but 

for sure, if univariate distributions are far from normality, the multivariate one won’t 

be normal. Variables whose univariate distribution was found far from normality, 



38 
 

have been transformed by Box-Cox transformations. For instance, in the following 

Figure 9, 11 the NPPs for variables CF_RKANGLE_S, RMS_RKANGLE_S, 

ROM_RKANGLE_S are reported, while in Figure 10, 12 their related NPPs after 

log-transformation are shown.  
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Figure 9: NPP for three variables in the sagittal plane 
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Figure 10: NPP three variables after log-transformation in the sagittal plane 
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Figure 11: NPP of four variables in the sagittal plane  
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Figure 12: NPP of four variables in the sagittal plane after log-transformation 
 

It can be observed from Figure 12 that CF_RHANGLE_S is not completely 

normalized after log-transformation. 

 

4.6 The midstance segments of the waveforms 

In Chapter 2 gait cycle has been described in detail. As underlined, it involves two 

main phases, the stance phase and the swing phase. The stance phase occupies the 

60% of the whole cycle. In particular, the midstance phase (from 10% to 30% of the 

stance phase) is characterized by the settlement of the foot at the lateral border. 

Midstance segments have been focused and analyzed because of some clinical 

considerations. Actually, the peculiarity of subjects belonging to the II group is just 

the knee flexion during midstance. Considering that gait cycles have a different 

duration, in order to detect the midstance phase, the original functional variables 

involving knee joints have been normalized and sampled at each 1% from 1% to 

100%. Therefore, after normalization, segments related to the percentage of gait 

cycle going from 10% to 30% have been extracted and ROM, CF and RMS 
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computed. Figures 13 and 14 represent respectively the normalized gait cycles of the 

variable RKANGLE_S referred to two subjects belonging to the II group and the 

extracted midstance segments. 
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      Figure 13: normalized RKANGLE_S variables for two subjects belonging to the II group 
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Figure 14: midstance segments for the normalized RKANGLE_S variables 

 

Variables involved in this analysis are RKANGLE and LKANGLE related to the 

three detection planes. The correspondent midstance variables have been renamed as 

RKANGLE_MID and LKANGLE_MID. ROM, CF and RMS indicators extracted 
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from these waveforms have proved to discriminate better among groups than those 

related to the whole cycle. Therefore, they have been considered as possible 

predictors for the discriminant model. 

 

4.7 Discriminant model 

As described in Chapter 3, a stepwise discriminant procedure has been used to 

determine the discriminant model. Considering that three discrete indicators have 

been extracted from the 24 functional variables, the potential predictors for the 

discriminant analysis are 72. In particular, 24 referred to the sagittal plane, 24 to the 

frontal plane and 24 to the transverse one. The discriminant procedure, performed as 

described in Chapter 3, indicates that only 11 of the 72 available variables are 

significant as predictors for the discrimination of the four forms of diplegia. 

The selected predictors are reported in the following Table 8. 

 

SELECTED PREDICTORES 
CODED 
NAMES 

CF_LKANGLE_S  E 
RMS_LKANGLE_S  F 
ROM _RTRKANGLE_S  G 
ROM_LAANGLE_S  P 
ROM_LHANGLE_S  X 
MEANTIME  A2 
ROM_LAANGLE_F  A20 
RMS_LAANGLE_F  A22 
CF_LAANGLE_T  A28 
CF_RKANGLE_T  A40 
ROM_RKANGLE_S _MID  RM 

 
Table 8: selected predictors 

 

A great number of the original variables have been found to be highly correlated and 

then they have been discarded at the beginning. Results of the discrimination analysis 

with the 11 predictors show that the proportion of correctly classified observations 
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intra groups is 77.3%. In particular, the proportion of correctly classified for the first 

group is 100%, for the second group is 66.7%, for the third group 73.3% and, finally, 

for the fourth is 81.6%. However, since all the available data have been used both for 

the model and the validation, the accuracy of the discriminant model has been 

assessed by cross-validation technique. The proportion of correctly classified among 

groups after cross-validation is 70.5%, while that one related to the individual groups 

are: 87.5% (I group), 59.3% (II group), 60% (III group), 78.9% (IV group). Changes 

are particularly evident for groups II and III. The misclassification rate is very high 

and, as a consequence, the global result is not very satisfying. As previously 

underlined, Wilks’ criterion was used to assess the goodness-of-fit for the model. 

Wilks’Λ is found to be 0.20836. 

The number of misclassified observations is high. In particular, observations 5, 17, 

22, 42, 44, 69 are misclassified after cross-validation (see Table 9), while those 

reported in Table 10 are  not predicted in the correct group. 

 

Misclassified observations 

OBSERVATION
TRUE 
GROUP 

PREDICTED 
GROUP 

CROSS 
VALIDATION 

5 1 1 2 
17 2 2 1 
22 2 2 3 
42 3 3 2 
44 3 3 4 
69 4 4 3 

 

Table 9: misclassified observations after cross-validation 

Misclassified observations 

OBSERVATION
TRUE 
GROUP 

PREDICTED 
GROUP 

CROSS 
VALIDATION 

9 2 4 4 
11 2 4 4 
12 2 3 3 
13 2 1 1 
14 2 1 1 
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17 2 2 1 
28 2 3 3 
31 2 4 4 
34 2 3 3 
35 2 3 3 
43 3 4 4 
45 3 4 4 
47 3 2 2 
50 3 2 2 
52 4 3 3 
60 4 3 3 
68 4 1 1 
71 4 2 2 
74 4 3 3 
76 4 3 3 
87 4 2 2 

 

Table 10: misclassified observations  

To identify a new observation, the linear discriminant functions (see Table 11) 

associated with the four groups have been computed. The new observation belongs to 

the group whose discriminant function value is higher. 

LINEAR DISCRIMINANT FUNCTIONS FOR 
GROUPS 

  

  
II. 
GROUP 

III 
GROUP 

IV 
GROUP 

 I 
GROUP 

Constant -267,88 -270,311 -262,127 -278,281 

E 56,232 63,699 57,685 63,853 

F 72,579 73,508 65,483 70,062 

G 11,061 11,333 11,907 11,597 

P -18,332 -16,976 -15,761 -14,609 

X 72,181 65,114 65,385 67,56 

A2 17,664 29,541 36,566 34,657 

A20 -3,238 0,834 1,727 -0,366 

A22 3,991 4,331 6,924 4,106 

A28 7,103 4,968 6,844 5,084 

A40 2,639 2,148 2,22 2,579 
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RM -2,907 -2,072 -1,743 -1,215 
 

Table 11 : linear discriminant functions for groups  

 

In Table 12, distances among the four groups for the validated model are shown. 

 

  
SQUARED DISTANCE AMONG 

GROUPS 
  1 2 3 4

1 0       
2 8,7794 0     
3 18,8569 4,2835 0   
4 16,7252 4,0714 3,5215 0

 

Table 12 : squared distances among groups  

Variables selected for the discriminant model and shown in Table 8 exhibit a normal 

univariate distribution. In the following Figures 15 and 16, NPP are shown for some 

of them. 
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Figure 15: probability plots for variables E, F, G 
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Figure 16: probability plots for variables P, X, A20, RM 

 

In order to assess if data follow a multivariate normal distribution inside each group, 

a graphical procedure has been applied [28]. Even if this procedure is more rigorous 

when both the number n (sample observations each measured on the p variables) and 

p are greater than 30, results can suggest if data are very far from multivariate 

normality. This empirical rule holds because, only when n and p are great, squared 

distances behave like chi-square random variables. The following Figures 17 and 18 

represent the Chi-square plots for group II and IV. Plots follow almost a linear 

pattern. No systematic curved pattern is visible, the assumption of multivariate 

normality can be excepted.  
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Figure 17: Mahalanobis distance vs Chi-quantiles II group 
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Figure 18: Mahalanobis distance vs Chi-quantiles IV group 
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4.8 Considerations on the “static” indicators model 

Model classification rate is low. Only 70.5% of observations are correctly classified 

after cross-validation. Of the original potential 72 variables, only 11 have been 

selected and used for discrimination purposes. This because of the high collinearity 

and the lower discriminant power of a great number of involved variables. In order to 

improve the quality of the classification and then to reduce the error rate, principal 

component analysis has been applied to the functional data. As previously 

underlined, such a methodology has been generally used for medical purposes in 

order to compare two groups (healthy and pathological ones), while here the 

discrimination problem is extended to four groups. This increases the difficulty. 

Actually, if it is easy to distinguish a I-form diplegia (the most severe) from the other 

ones, features of the third and fourth forms are more closed. Then differences are 

more difficult to capture. PCA can better capture data variability[43-44] because the 

entire waveform associated to each gait cycle is taken into account. However, PCA 

provides few components that can explain the great part of data variance. In the next 

paragraph this analysis is detailed. 

 

4.9 Preliminary considerations on the FPCA 
 

As highlighted in Chapter 3, Principal Component Analysis is a standard approach 

for the exploration of variability in multivariate data. PCA uses an eigenvalue 

decomposition of the variance matrix of the data to find directions along which data 

have the highest variability.  

Therefore, as a first exploratory step in the analysis of the available data, PCA is 

used for reduction purposes and for exploring their variability structure. 

Actually, the data set is constituted of 24 functional variables, 8 for each detection 

plane (sagittal, frontal, transverse): RKANGLE, LKANGLE, RTRKANGLE, 

LTRKANGLE, RAANGLE, LAANGLE, RHANGLE, LHANGLE (for details about 

each variable, see Chapter 2). 
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For each variable, three complete gait cycles are available. For instance, considering 

RKANGLE_S (i.e. RKANGLE in the sagittal plane), Figures 19-22 represent the 

waveforms related to 4 different subjects belonging to the four groups (angles 

amplitude vs sample number). Each gait cycle has a different length. Actually, 459 

detected angle values are represented in Figure 19 for subject 1 belonging to the first 

group, 225 for subject 8 belonging to group II, 114 for subject 43 belonging to group 

III and, finally, 111 for subject 91 belonging to group IV. Since the sampling 

frequency is 100Hz, the duration in the time domain is different for the four subjects.  

 
Figure 19:  RKANGLE_S in a gait cycle for subject 1(I group)        
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Figure 20:  RKANGLE_S in a gait cycle for subject 12 (II group) 

 
Figure 21:  RKANGLE_S in a gait cycle for subject 43 (III group) 

 

0 50 100  150 200 250 300 350 400 450 500 
15

20

25

30

35

40

45

50

55

60

65

RKANGLE S GROUP 3 SUBJECT 43

0 50 100  150 200 250 300 350 400 450 500
25

30

35

40

45

50

55

60

65

70

75
RKANGLE   II GROUP SUBJECT 12

SAMPLES



51 
 

 
Figure 22:  RKANGLE_S in a gait cycle for subject 91 (IV group) 

 
In order to apply PCA to the functional variables introduced above,  some 

preliminary precautions need to be taken. 

Firstly, in a functional PCA, variables Xi are referred to the individual samples of the 

waveform (in this context, time samples). Considering that waveform data have a 

different length, it is necessary to normalize them and to perform a sampling at each 

1% from 1% to 100%. This would correspond to the generation of an n x 100 data 

matrix for each variable where n represents the number of subjects. When data are 

not smooth, it is previously necessary to interpolate them. This can be accomplished, 

for example, by using cubic splines and then sampling the resulting waveform. 

However, in the case under study, considering that the electronic acquisition system 

works at the frequency of 100Hz, data are quite smooth and the spline has been 

considered as unnecessary. 

Secondly, the way of variation of each single curve needs to be considered. 

Generally, curves vary in two ways, vertically and horizontally. Vertical variations 

give information about the amplitude of the curve, while the horizontal ones 

represent the phase. In order to compare single gait cycles among different subjects, 
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curves have to be in phase. For the employed registration system in LAMBDA 

Laboratory, curves related to different gait cycles are supplied in phase and then, no 

additional analysis is needed. In other circumstances, it would have been necessary 

to rescale each curve to a common standard interval by, for example, the 

employment of a time warping function [35]. The previous waveforms represented in 

Figures 19-22, are reported in Figures 23-26 after normalization. 

 
Figure 23:  RKANGLE_S in a gait cycle for subject 1 after normalization (I group) 
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    Figure 24:  RKANGLE_S in a gait cycle for subject 12 after normalization (II group) 

        
Figure 25:  RKANGLE_S in a gait cycle for subject 43 after normalization (III group) 
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Figure 26:  RKANGLE_S in a gait cycle for subject 91 after normalization (IV group) 

 
4.10 Functional Principal Component Analysis  

Now, for each of the 24 functional variables, 91x100 data matrices are considered to 

perform the FPCA. In the PC model Z=UTX, elements of matrix U, i.e. the principal 

component loading vectors, represent the orthogonal basis set for the waveform data 

while, the principal component score vectors (PCscores, PCs) in Z are composed of 

the coefficients that measure the contribution of the principal component to each 

individual waveform. The original waveform data for each subject are then 

transformed into a set of PC scores that measure the degree to which the shape of 

their waveform corresponds to each feature. Since PC scores represent in synthesis 

the gait waveform data for each subject, it seems particularly attractive to employ 

them as discrimination features of the four different groups [45-50]. Actually, 

differently from the global predictors (ROM, RMS, CF) approach discussed in the 

previous sections, PC scores are more realistically representative of the waveform 

data. 
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4.10.1 Selection of the number of principal components and analysis of group 

differences in the PC scores 

PCA is particularly attractive because it is able in capturing the greater part of data 

variation by few principal components. Different criteria can be used in order to 

select the number of components to be considered [43]. To analyze data involved in 

this study, only the first two principal components have been considered because 

they can generally capture more than the 90% of data variation. Other principal 

components could have been considered, but the smaller variance they could explain 

was hard to interpret. Therefore, they have been discarded.  

 

4.10.2 Results 

Can a combination of the first two principal component scores related to the 24 

functional variables discriminate the four groups? To give an answer to this question, 

it is preliminary necessary to understand if the generated scores are statistically 

different for the four groups and then to build a discriminant model where they can 

be used as predictors. Therefore, in the next paragraphs the following results are 

presented: a) the normal univariate tests on the potential PC scores predictors, b) the 

group differences tests with respect to the generated PCs, c) the discriminant model. 

 

4.10.2.1 Univariate normality tests 

Before verifying if inside each group data are multivariate normal distributed, normal 

probability plots (NPP) are built for all the 48 possible predictors. In the next 

Figures, NPPs are reported for some of those variables that will be selected (see next 

paragraph) for the discriminant model. Variables are coded as follows (Table 13): 

 

 

SELECTED 
PREDICTORS 

CODED 
NAMES

RKANGLE_S_PC1  A 
RKANGLE_S_PC2 AA 
RTRKANGLE_S_PC1 B 
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RTRKANGLE_S_PC2 BB 
RHANGLE_S_PC1 D 

RHANGLE_S_PC2 DD 

LHANGLE_S_PC1 E 
LHANGLE_S_PC2 EE 
LKANGLE_S_PC1 H 
LKANGLE_S_PC2 HH 
RKANGLE_F_PC1 I 
LKANGLE_F_PC1 J 
RTRKANGLE_F_PC1 K 
LAANGLE_F_PC1 N 
RAANGLE_F_PC2 O 
RHANGLE_T_PC1 MM 

 

Table 13: coded names for some variables 
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Figure 27: NPP for variables A,B,D,E,H related to group I 
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Figure 28: NPP for variables AA, BB, DD, EE, HH related to group I 
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Figure 29: NPP for variables AA, BB, DD, EE, HH related to group II 
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Figure 30: NPP for variables I, J K, N,MM related to group III 

 

4.10.2.2 Group differences for the PC scores 

Group differences with respect to the generated PC scores have been tested through 

the Kruskal Wallis test. Significant differences emerged. For instance, a p-value 

equal to 0.000 has been found for the variables 

RKANGLE_S_PC1,RKANGLE_S_PC2,RTRKANGLE_S_PC1,RTRKANGLE_S_

PC2,RHANGLE_S_PC1,RHANGLE_S_PC2,LHANGLE_S_PC1,LHANGLE_S_P

C2,LKANGLE_S_PC1, LKANGLE_S_PC2, LAANGLE_F_PC1 (p-value = 0.036). 

Then, the post-hoc Mann Whitney test with Bonferroni correction has been 

performed in order to understand which group differences have been found 

significant.  In the following Table 14, p-values for some tests are reported. They are 

related to some of the 24 variables selected for the model during the stepwise 

discriminant procedure. Variables are reported in the first column, while the second 

one shows which groups are significantly different with respect to the PC scores.  

Mann-Whitney test (Alpha Bonferroni=0,00833) 

PREDICTORS 
DIPLEGIA 
FORM p-value

RKANGLE_S_PC1 I/IV 0,0031 
RKANGLE_S_PC1 II/III 0,0001 
RKANGLE_S_PC1 II/IV 0,0001 
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RKANGLE_S_PC2 I/III 0,0004 
RKANGLE_S_PC2 I/IV 0,0000 
RKANGLE_S_PC2 II/III 0,0000 
RKANGLE_S_PC2 II/IV 0,0000 
RTRKANGLE_S_PC1 I/III 0,0011 
RTRKANGLE_S_PC1 I/IV 0,0000 
RTRKANGLE_S_PC1 II/IV 0,0002 
LAANGLE_F_PC1 III/IV 0,0037 

 

Table 14 : MW post-hoc test for some variables 

4.10.2.3 Results of the stepwise discriminant analysis 

Considering that 8x3 functional variables were available and that only the first two 

principal components have been retained after performing PCA, 48 possible 

predictors have been included at the beginning in the discriminant model.  

The stepwise discrimination procedure indicates that only 16 of the 48 available 

variables are significant for the discrimination of the four groups. Variables reported 

below have shown a significant discriminant power: 

 

1. RKANGLE_S_PC1,  
2. RKANGLE_S_PC2,  
3. RTRKANGLE_S_PC1,  
4. RTRKANGLE_S_PC2,  
5. RHANGLE_S_PC1,   
6. RHANGLE_S_PC2, 
7. LHANGLE_S_PC1,  
8. LHANGLE_S_PC2,  
9. LKANGLE_S_PC1,  
10. LKANGLE_S_PC2,  
11. RKANGLE_F_PC1,  
12. LKANGLE_F_PC1,  
13. RTRKANGLE_F_PC1,  
14. LAANGLE_F_PC1,  
15. RAANGLE_F_PC2,  
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16. RHANGLE_T_PC1 
 

Actually, employing the previous variables, the proportion of correctly classified 

observations into groups is 0.955. In particular, the proportion of correctly classified 

for group I is 100%, for group II is 96.3%, for group III is 80% and for group IV is 

100%. However, since all the available data have been used both for the model and 

the validation, the accuracy of the discriminant model has been assessed by cross-

validation technique. This has modified the results. For instance, after cross-

validation the proportion of correctly classified observations into groups becomes 

93.3%, while the proportion of correctly classified ones for each group is: 100% (I 

group), 92.6% (II group), 80% (III group), 97.4% (IV group). Cross-validation 

changes the proportions of correctly classified for the II and the IV group, while the 

III group is always 80%. The misclassification rate is 6.7% and represents a very 

satisfying result. The stepwise procedure gives the possibility to understand that PCs 

that can explain a large amount of variability are not necessarily important for group 

discrimination. For instance, RAANGLE_S _PC1 explains 80% of data variation, but 

is not relevant from a discrimination point of view. Then, it is not included in the 

model. In order to assess the goodness-of-fit of the model, Wilks’Λ criterion has been 

used. Wilks’Λ is here 0.01074. This result is very good and indicates that the final 

model represents a satisfying compromise between a good proportion of correctly 

classified observations  (low error rate) and a Wilks’Λ as near as possible close to 

zero. Therefore, although the great number of detected variables to represent the gait 

cycle, the dimension of the gait is found much smaller and the discriminant power of 

the selected  predictors very satisfying. Actually, with FPCA data reduction is based 

on features that are extracted from the entire gait waveform and not a-priori fixed by 

subjective considerations of the experts. This objectivity leads to more robust results.  

 

In Table 15 the misclassified observations are shown. Two observations (17 and 54) 

are misclassified after cross-validation. 
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Misclassified observations 

OBSERVATION
TRUE 
GROUP

PREDICTED 
GROUP 

CROSS 
VALIDATION 

15 2 1 1 
17 2 2 3 
37 3 4 4 
42 3 4 4 
50 3 4 4 
54 4 4 3 

   
Table 15 : misclassified observations after cross-validation 

To identify a new observation, the linear discriminant functions (see Table 16) 

associated with the four groups have been computed. The new observation belongs to 

the group whose discriminant function value is higher.  

 

LINEAR DISCRIMINANT FUNCTIONS FOR 
GROUPS 

  
 
   I GROUP II GROUP III GROUP IV GROUP 

Constant -21,3085 -15,2901 -30,7734 -19,3344 
A -0,0213 -0,0187 0,0077 -0,0043 
AA -0,0329 0,0034 -0,0781 -0,0693 
B -0,0693 -0,0276 -0,0494 -0,0455 
BB 0,0636 -0,0182 0,0359 0,0099 
D -0,0065 -0,0021 -0,0241 0,0009 
DD 0,0372 -0,0144 0,0312 0,0248 
E 0,0085 -0,0111 0,0399 0,0118 
EE -0,0183 0,0183 -0,0706 -0,0574 
H 0,0078 -0,0138 -0,0148 0,0115 
HH 0,0501 -0,0038 0,0388 0,012 
I 0,028 0,0093 0,0241 0,0204 
J -0,0042 0,002 -0,0006 -0,001 
K -0,0176 0,0005 -0,0376 -0,0147 
N -0,0404 -0,0199 -0,0565 -0,0358 
O -0,0029 0,0001 -0,0113 -0,0078 
MM 0,0276 -0,0071 -0,001 0,0531 

 

Table 16 : linear discriminant functions for groups  
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For each group the location of the points that represent the means for all the variables 

in the multivariate space is found. These points are called group centroids. Squared 

distance among groups are so determined as distances among centroids. In Table 17, 

distances among the four groups for the validated model are shown. 

 
 

  
SQUARED DISTANCE AMONG 

GROUPS 
   1 2 3 4

1 0,0000       
2 23,0249 0,0000     
3 45,5789 61,8867 0,0000   
4 45,9587 54,5877 15,7916 0,0000

 

Table 17: squared distance among groups  

As underlined in the previous paragraphs, in order to assess if data follow a 

multivariate normal distribution inside each group, the same graphical procedure, 

used for the static indicators approach, has been applied. The following  Figures 31 

and 32 represent the Chi-square plots for group II and IV. Plots follow almost a 

linear pattern. Since no systematic curved pattern is visible, the assumption of 

multivariate normality can be accepted.  
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  Figure 31: MD vs Chi-Quantiles group II 
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Figure 32: MD vs Chi-Quantiles group IV 
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Chapter 5 

Clinical feedback and future developments 

 

5.1 Clinical interpretation of the discriminant model 

In the previous Chapter 4 two methodologies have been presented for the 

discrimination of four groups. Static indicators approach has proved to be less 

effective than PCA approach for functional data. Actually, the proportion of 

correctly classified observations, after cross-validation for both the methodologies,  

passes from 70.5% to 93.3%. With relation to the latter approach, it is particularly 

interesting to understand which is the clinical interpretation and significance of the 

variables selected as predictors for the linear discrimination model. These predictors 

are represented by the PC scores of the first two principal components of the 

functional variables measured in the LAMBDA laboratory. For example, the 

RKANGLE_S variable has been introduced into the model through the individual 

scores of its first two principal components (RKANGLE_S_PC1, 

RKANGLE_S_PC2). Without deepening the potential statistical significance of the 

coefficients of the first two principal components, which will be opportunely 

considered for future analysis, the variables used in the model have been examined 

by medical experts.  

They were asked to give a score from 1 to 5 (Min = 1, Max = 5) to the selected 

variables in order to “weight” their clinical interest. These predictors have been 

found to match with the observed variables that the experts take into account to 

classify the diplegia form. Table 18 lists the variables and the relative scores 

attributed. 
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Model  Variables Score 
RKANGLE_S 4 
RTRKANGLE_S 5 
RHANGLE_S 4 
LHANGLE_S 4 
LKANGLE_S 4 
RKANGLE_F 3 
LKANGLE_F 3 
RTRKANGLE_F 5 
LAANGLE_F 4 
RAANGLE_F 4 
RHANGLE_T 4 

 

Table 18: score attributed to the selected variables by experts 

It seems extremely relevant (score 5) from a clinical point of view the presence of 

RTRKANGLE_S and RTRKANGLE_F, both representing the pendulum of the 

trunk on the sagittal and the frontal planes during a gait cycle. In particular, the trunk 

pendulum on the sagittal plane is typical of subjects belonging to the first and the 

fourth groups, while the rotation (oscillation) on the frontal plane is the main 

characteristic of those subjects belonging to the third group. Score 4 is attributed to 

the remaining variables with the exception of two variables measuring the angular 

excursion of the right and left knees on the frontal plane, i.e. RKANGLE_F and 

LKANGLE_F (score 3). In particular, these two variables are representative of the 

main characteristic of subjects belonging to the second group, called “tight skirt” 

patients. Actually, during the gait cycle, they exhibit knees with a valgus deformity 

in the frontal plane. 

A variable representative of the angular rotation of a monitored joint may be 

significant both for the left and right side. This happens for RKANGLE_F and 

LKANGLE_F or for RHANGLE_S and LHANGLE_S and is clinically relevant. In 

fact, the movement of patients is strongly asymmetrical. Therefore, the information 
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content of the two variables is different and both can be significant for the 

discriminant model. 

The three detection planes are not homogenous. Actually, variables related to the 

transverse plane do not exhibit a great interest for discriminating purposes. Only 

RHANGLE_T has been found to be significant for the classification of groups. This 

result is coherent with clinical considerations. Actually, the sagittal plane is the one 

in which most of the joint rotations occur. If joints are considered as hinges, the 

range of rotations between the segments foot-leg or leg-thigh or thigh-pelvis is 

maximum in this plane. 

The presence of the variables RAANGLE_F and LAANGLE_F in the model can be 

partially explained because of an intra-rotation of the lower limbs typical of subjects 

belonging to the third and fourth groups. 

Two other general questions have been proposed to the clinical experts. The first 

concerns the introduction of the gait cycle meantime (gcm) variable in the model 

related to the static indicators approach. Patients belonging to the first group are 

significantly slower than those belonging to the fourth one. This result is coherent 

with their clinical profile. Actually, each form of diplegia express not only a different 

organization of the motion, to be correlated to the different degrees of severity of the 

disease, but also to the different efficiency of the movements that result slower and 

more difficult for patients of the first group and faster and more similar to the motion 

of asymptomatic children for patients belonging to the fourth one. 

The second general question is related to the correct classification rate for subjects 

belonging to the third group. With the FPCA approach this rate is 80% before and 

after cross-validation. On the contrary, the fourth group classification rate after 

cross- validation is 97.4%. Experts generally agree with the difficulty to discriminate 

subjects of the third group from those of the fourth one. From a statistical point of 

view, this might be of great interest for future developments. Some general 

considerations on these future analyses are presented in the next paragraph. 
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5.2 Future developments  

Although the classification rate of the third group reaches the 80%, it seems 

appropriate to understand why it is far from the classification rate of the other 

groups, more closed to 100%. To distinguish a first or a second diplegia form from 

the fourth one is simpler than to distinguish the third from the fourth. The increased 

severity of the first form makes less difficult the identification of the first group by 

the experienced medical staff.  

The identified model is able to give a greater objectivity to the classification. 

Actually, the selected predictors are related to the measurements of the angles of 

some joint rotations performed in the LAMBDA laboratory and processed by Nexus 

software. The classification rate of 93.3% is a good confirmation of the work done in 

the clinics by the medical staff on an observational basis. However, what would 

change if subjects of the third group, classified with the highest error rate, were 

included in the second or in the fouth group? 

By following the FPCA approach, the following preliminary results have been 

obtained. Including  subjects of the third group into the fourth one, the proportion of 

correctly classified observations after cross-validation becomes 98.9% with a Wilks’ 

lambda equal to 0,03704. In particular, the classification rate for the first group is 

100%, for the second one 96.3% and for the new third group, now constituted by 54 

subjects, is 100% . Selected predictors are A, AA, B, BB, D, DD, E, EE, H, HH, J 

according to the coded names of Table 4.2 (see Chapter 4). 

Even if such a result offers a lower error rate, it could be not meaningful from a 

medical point of view. Actually, the separation of the third group from the fourth one 

could be clinically necessary and the consequent adoption of different therapeutic 

protocols could be more effective from a therapeutic point of view. Nevertheless, 

considering the available data employed for this research work, the performance of a 

three group model is found better. Such a situation deserves to be adequately 

deepened and correctly interpreted. 
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Finally, the FPCA approach has taken into account the first two principal 

components of the available functional variables because they could explain more 

than 90% of the data variability. Since the coefficients of these principal components 

are available, it could be interesting to understand if they can be clinically  

interpreted 
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CONCLUSIONS 

Cerebral Palsy (CP) is a lesion of the central nervous system that alters 

the motion functions. The main objective of this study was the 

identification of some indicators derived from functional data (obtained 

by 3D Gait Analysis) to be employed for the discrimination of four forms 

of diplegia according to the classification proposed by Ferrari et al. Two 

different approaches have been proposed.  

In a first moment, “static” indicators have been extracted from the 

waveforms representing the angles of rotation of the main joints of the 

lower limbs, collected for 91 subjects during three gait cycles. Data are 

referred to three anatomical planes: sagittal, frontal, transverse. Range of 

motion (ROM), root mean square (RMS) and crest factor (CF) have been 

considered for their immediate clinical interpretability. Actually, ROM 

reflects the different maximum angular excursion of the main joints of 

the lower limbs depending on the degree of severity of diplegia as well as 

RMS the variation of the waveform with respect to a constant value and 

CF any impulsive phenomena characterizing the pendular movement 

typical of almost all the four forms of diplegia. The discrimination 

procedure indicates that only 11 of the 72 available variables can be 

effectively used for the discrimination purposes. Actually, most of the 

variables have been discarded because of their high correlation or 

because of their lower discriminant power. The classification rate of this 

model is not very satisfying. Actually, after cross-correlation, it is 70.5 

%. The limit of this approach is probably due to the high subjectivity in 

the selection of the potential predictors that reflect more the clinical 

specialists’ points of view than the intrinsic structure of the data.  

In order to overcome these limits and to improve the classification rate, a 

functional approach has been proposed. Multivariate statistical analysis 

has proved to be a powerful tool to eliminate collinearity and to facilitate 
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the analysis of data. In particular, Functional Principal Component 

Analysis (FPCA) has been proposed for the analysis of the available data 

in the attempt of identifying a limited number of components that can 

explain most of data variability and the indicators to be used for 

discrimination purposes.  

PC scores related to the first two principal components (that can capture 

more than 90% of data variability) have been tested for differences 

among the four groups and employed as predictors in the discrimination 

model. The stepwise discrimination procedure indicates that only 16 of 

the 48 have a significant discrimination power. Actually, after cross-

validation, the classification rate of the model is 93.3% . Wilks’ criterion 

was used to assess the goodness-of-fit for the model. Wilks’Λ was 

0.01074.  

Although the great number of detected variables to represent the dynamic 

of gait cycle, the dimension of the gait is found to be much smaller and 

the selected variables are clinically meaningful. Then, principal 

component modeling of the gait waveforms is found to be a more 

effective technique with respect to the first proposed approach. PCA 

method is more objective and robust than the previous approach, because 

data reduction is based on features that are extracted from the entire gait 

cycle waveform. The subjective choice of indicators is simple but not 

necessarily able in reflecting adequately the variability of the curves. The 

proposed FPCA methodology could be used as a tool to help specialists 

in classifying the diplegia forms, especially when different opinions 

occur. 
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