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CHAOS (A. Trobia)

The term chaos refers to a particular type of behaviour that characterizes nonline-
ar dynamic systems with specific features. «In its essence, chaos is an irregular
oscillatory process» (Brown, 1995, 8). 

A system is said nonlinear when its outputs are not proportional to its inputs; in
mathematical terms, when the equations that describe the system have at least one
term raised to the second power. Nonlinearity, however, does not guarantee alone
a chaotic behaviour. Other conditions must hold. We should distinguish, in this
case, between continuous and discrete models, the former kind of models, that
employ differential equations to describe the system, must have at least three in-
dependent variables in order to display a chaotic behaviour (Baker and Gollub, 
1996; 2); while the latter, that employ difference equations, must contain at least
an iterative term (that is, the dependent variable at time t+1 must be a function of
the dependent variable at time t, then mimicking a feedback loop). 

Dynamic systems, on the other hand, are systems whose states change over time, 
evolving and adapting to the environment. They are studied by System Dynamics:
«a target system, with its properties and dynamics, is described using a system of
equations which derive the future state of the target system from its actual state»
(Gilbert e Troitzsch, 2005; 28). Dynamism strongly characterizes living systems
and society, and it often takes the form of a periodic (i.e. oscillatory) behaviour. 
Many behaviours that are repeated over time, such as going to work, eating, buy-
ing the newspaper, or going on holiday, can be interpreted as a form of oscillatory
behaviour. This latter is one of the factors that may favour chaos; in particular, 
irregular oscillatory behaviour. 

Chaos has three fundamental characteristics, (1) sensitivity to initial conditions;
(2) irregular periodicity; (3) lack of predictability. 

Sensitivity to initial conditions means that even very small differences in the ini-
tial condition of a system may produce large variations in its long term behaviour. 
Sensitivity to initial conditions, then, makes the system dissipative; that is, irre-
versible. Once the system has begun to follow a certain trajectory, it is almost
impossible to return back, because its initial conditions are likely to be changed. 
«This point has obvious implications for social scientists as we explore how vir-
tually identical systems generate unique histories» (Kiel and Elliott, 1996; 25). 
Sensitivity to initial conditions is also known as the butterfly effect. A butterfly
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flapping its wings in Rio, as they say, can cause a typhoon in Texas. If this is
true, even smallest noises must be taken into account when modelling the system. 
Measurement errors or noise, besides, can -and does- sometimes lead to the erro-
neous conclusion that a dynamic system is exhibiting chaos (Sugihara and May, 
1990). Since noise is omnipresent, discovering real chaotic behaviours in physi-
cal and social systems is often quite difficult. 

In spite of what appears, chaos is not randomness. The term deterministic chaos
explains this concept. Chaos is, in fact, a particular type of irregular periodicity;
the sum of several frequencies (harmonics) that yield an apparently irregular be-
haviour. This can be formalized in the following formula (see Brown, 1995, 28), 

¦
∞

=
++=
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0 )]sin()cos([)(
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nn ntbntaatf ωω

Fourier (or spectral) analysis is used to detect the different frequencies that
summed together may yield a particular irregular periodicity. An irregular time
series, in fact, can simply be the outcome of a very small set of harmonics. All of
these frequencies can be plotted in a periodogram, showing the amplitude and the
values of the frequencies that fit a given time series, the so-called spectrum (see
also McBurnett, 1996a). 

Thirdly, as said, chaos means lack of predictability. Actually, chaos exhibits
abounded unpredictability, which is proved by the presence of attractors in the
system. 

In order to detect an attractor, a phase space portrait of the system should be con-
structed (see Fig. 1). This is an essential tool for the so-called qualitative analysis
of a dynamic system. The phase space portrait is a «mathematical space with or-
thogonal coordinate directions representing each of the variables needed to speci-
fy the instantaneous state of the system» (Baker e Gollub, 1996; 7). It shows the
behaviour of the system when time tends to infinity. The analysis of the phase
space portrait makes it possible to reveal hidden periodicities or patterns, in the
form of attractors, within a behaviour that appears unpredictable. 
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Figure 1 – A phase state portrait with many attractors

An attractor is a particular concentration of points in a phase state portrait. This
concentration of points represents a provisional area of stability in the motion of
the system. Attractors may show various shapes: points, circles, bows, fractals, 
etc. Some of them are called strange attractors, because of their shape. Moreo-
ver, certain systems may reveal multiple strange attractors (see Fig. 1). 

Collecting and describing the attractors of different dynamical systems is one of
the main goals of chaos theory. A goal that recalls the Simmelian idea of a formal
sociology (Trobia, 2001). Harvey and Reed (1996; 309) have used the expression
“pictorial method” to describe this perspective; a method based on visual corre-
spondences rather than deductive reasoning. «While predictive and statistical
models are well established in the social sciences, a third modelling strategy, 
iconological modelling, is only now coming into its own. It represents a radical
epistemological break in the type of knowledge it provides to researchers (...)
originating in the iterative mapping of complex systems equations - such as the
nonlinear differential equations that generate the quadratic iterator, or the so-
called strange attractors» (ibid., 309-310). 

The discovery of chaos was made possible only by the advent of computer, in the
mid-1970s. Most equations (or systems of equations) that describe chaotic sys-
tems, in fact, have no analytical solutions. The only way to study such equations
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is to input the parameters values and calculate step-by-step the subsequent values
of the dependent variables, in an iterative process, displaying system changes
graphically (some scholars use, in this case, the expression “geometry of behav-
iour”). Thanks to the huge power of modern computers, then, it became possible
to draw and study the trajectories of chaos, along millions of iterations. 

The presence of chaos in a system is determined by various factors; positive feed-
backs are, however, the main responsible for chaos, as in the logistic map (the
term map, instead of function, is used in discrete models). One of the most well-
studied models of chaos is a general form of logistic map, whose chaotic proper-
ties were first investigated by May (1976). Logistic maps are particularly interest-
ing, because they allow to model inversely interactive systems such as predator
vs. prey, birth vs. death, or message vs. noise. The general form of the logistic
map formalizes a simple feedback process, 

)1(1 ttt YaYY −=+

where a is a constant multiplier, the rate of growth of a resource in a system (e.g. 
food, space, information, people, etc.) or, more generally, the influence of the en-
vironment upon it; Yt is the state of the system at time t, ranging from 0 to 1 (e.g. 
the carrying capacity of the system); Yt-1 is the state of the system at time t+1;
and (1 – Yt) is a simple, limiting, homeostatic factor. May discovered that, when
the value of a is more than 3.57, the resulting behaviour is chaotic. A chaotic, un-
predictable behaviour, then, may be yielded by a simple deterministic process. 

The study of chaos can be carried out following two basic perspectives (Brown, 
1995; 22): (1) analyzing actual time series, within which one suspects a chaotic
deterministic process may exist; or (2) specifying a set of equations that describe
the behaviour of a particular system. The first approach is mainly used in the so-
cial sciences. Phase-state portraits, Spectral analysis, Lyapunov exponents, near-
est neighbour techniques, and correlation dimension are commonly used, in order
to identify chaotic processes within actual time series. 

As we have seen, the phase state portrait is the first, simple tool used in order to
detect chaos. Spectral analysis, on the other hand, can be useful if we suspect that
a certain behaviour is determined by a particular sum of periodic trends (frequen-
cies).  

Lyapunov exponents, instead, are used to measure the extent to which small
changes in the initial conditions of the system generate large scale divergence
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over time. They are interpreted as a loss in predictive power, measured in bits per
iteration. For example, a Lyapunov exponent equal to 0.2, measured on a monthly
time series, indicates a loss in predictive power of 0.2 bits each month. All the
information is lost in 1/0.2 = 5 months. There are as many Lyapunov exponents
as there are dimensions, which correspond to the number of equations, in the
model of the system (Brown, 1995; 22). They can be positive, negative, or zero. 
«Positive Lyapunov exponents indicate divergence from initial conditions (the
chaotic requirement). Negative values for the exponents indicate convergence, 
and zero indicates neither divergence or convergence, that is, constancy» (ibid., 
22). Chaos requires at least one positive Lyapunov exponent. The largest one de-
termines the severity of the local divergences from the attractor (ibid., 25). 

Nearest neighbour techniques use the idea of attractors. If there are chaotic attrac-
tors, the next state of a system may be predicted by examining the history of its
near neighbours, because they are all drawn towards the same attractor(s) (Jadiz, 
1996). 

Finally, the correlation dimension is an experimental measure that determines the
dimension of the attractor numerically. When the correlation dimension value is
non integer (or greater than about five (Sprott and Rowlands, 1995; 25)) the dy-
namics of the system is governed by a nonlinear process and the attractor is a
strange attractor (McBurnett, 1996; 182). Moreover, the next-largest integer value
greater than the dimension of the attractor tells us the maximum number of varia-
bles needed to model the behaviour of the system (ibid.). For example, if the cor-
relation dimension is equal to 2.37, we need three variables (and three equations)
in order to specify a model of the system. 

All of these techniques, though, require the availability of very large runs of time
specified measurements of a kind which are generally not available for social
time series (Byrne, 1997). This has strongly delayed the application of chaos the-
ory in sociology until now, though it seems the situation might soon change, 
thanks to a different attitude of social researchers towards the collection and
analysis of longitudinal and big data. 

But how frequent is chaos in society? Living systems and societies lie all in a
transition space, between chaos and predictable stability, called the edge of chaos
(i.e. complexity) (Langton, 1990). The attractor of a system provides enough sta-
bility to store information, and at the same time is a source of uncertainty. «Com-
plex systems outcomes typically cannot be predetermined, yet there is a sense of
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the predictable about them; their dynamics don’t necessarily favour efficiency;
and once a stability is established, the system tends to lock in to that steady state
and to exclude other possible steady states. The emergence of educational move-
ments, culture, organization, organizational climate, roles, and technologies can
all be described by complexity» (Marion, 1999; 27). 

Chaos and complexity has been popularized by a number of books, articles and
even movies (e.g. Gleick, 1987; Waldrop, 1992). Methodologies and research in
the field of deterministic chaos, however, is still under scrutiny, though some ap-
plications of chaos theory in the social sciences are quite promising (see Brown, 
1995; Kiel and Elliott, 1996; Eve, Horsfall and Lee, 1997; Marion, 1999; Trobia, 
2001). McBurnett (1996b), for instance, has used Lyapunov exponents in order to
estimate the American public opinion volatility during the 1984 presidential pri-
mary season, criticizing electoral poll reliability, whose results may show even
radical opinion shifts in a very short distance of time from each poll. Trobia
(2001) used chaos theory in order to analyse the production of laws regarding cul-
ture in Sicily, discovering a hidden attractor. Other authors tried to find analogies
between chaos theory and classical sociological thought (see, for instance, 
Staubmann, 1997, in the case of Simmel’s “Philosophy of Money”, and Bain-
bridge, 1997, for Homansian sociology). Other applications concern public poli-
cies, war, children’s friendships, domestic division of labour, the biological foun-
dation of social interaction, collective behaviour following disasters (for all these
applications, see the volume edited by Eve, Horsfall and Lee, 1997), organiza-
tions (e.g. Marion, 1999), cooperation, competition and evolution (e.g. Beltrami, 
1987; Dendrinos, 1992), and many other domains. 
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