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Abstract — In this paper a new intelligent 
adaptive control is applied to solve a problem of 
motion control of ground vehicles with two 
independent wheels actuated by a differential 
drive. The major objective of this work is to obtain 
a motion control system by using a new fuzzy 
inference mechanism where the Lyapunov’s 
stability can be assured. In particular the 
parameters of the kinematical control law are 
obtained using an intelligent Fuzzy mechanism, 
where the properties of the Fuzzy maps have been 
established to have the stability above. Due to the 
nonlinear map of the intelligent fuzzy inference 
mechanism (i.e. fuzzy rules and value of the rule), 
the parameters above are not constant, but, time 
after time, based on empirical fuzzy rules, they are 
updated in function of the values of the tracking 
errors. Since the fuzzy maps are adjusted based 
on the control performances, the parameters 
updating assures a robustness and fast 
convergence of the tracking errors. Also, since 
the vehicle dynamics and kinematics can be 
completely unknown, a dynamical and kinematical 
adaptive control is added. The proposed fuzzy 
controller has been implemented for a real 
nonholonomic electrical vehicle. Therefore system 
robustness and stability performance are verified 
through simulations and experimental studies. 

Keywords: Adaptive control, Electric wheeled 
vehicles, Fuzzy control system, Lyapunov’s 
stability, Motion Control, Nonholonomic systems 

I. INTRODUCTION  

In recent years much attention has been focused 
upon the position and orientation control of 
nonholonomic mechanical systems. Nonholonomic 
mechanics describes the motion of systems 
constrained by nonintegrable constraints, i.e. 
constraints on the system velocities that do not arise 
from constraints on the configurations alone. A mobile 
autonomous wheeled vehicle with two wheels 
actuated by a differential drive mechanism, i.e. two 
independent electric DC motors with common axis, is 
usually studied as a typical nonholonomic system. 
Kinematical nonholonomic constraints arise in 
wheeled vehicles under the no-slip constraints. Due to 
nonholonomic motion, the vehicle above is also 
underactuated [21]. In fact there are three generalized 

coordinates i.e. lateral position, longitudinal position 
and vehicle orientation to be controlled, while there 
are two control inputs only, i.e. steering and 
longitudinal inputs. Several approaches have been 
proposed for the synthesis of kinematical controllers 
for vehicles with nonholonomic constraints on the 
motion [1], [4], [6]. The kinematical controller is 
essential to guarantee the vehicle motion along the 
direction of the orientation. The main idea behind 
these algorithms is to define velocity control inputs 
which stabilize the closed loop system. However in 
many works [5], [6], [7] the parameters of the 
kinematical control laws are constant and they must 
be chosen suitably to guarantee the asymptotical 
stability of the tracking errors. About the dynamical 
control, backstepping methodologies were treated [6], 
[10], [20]. Backstepping method is very important 
since we aim to convert a speed control (high level 
control) into a torque control (low level control) for the 
wheels. The classical backstepping control for 
nonholonomic vehicles implies the knowledge of the 
kinematical and dynamical parameters. Wavelet 
Network based controller and techniques of “adaptive 
backstepping” control have been proposed to solve 
the problem of unknown parameters and/or 
unstructured unmodeled dynamics [5], [7], [20]. 
Relatively few results have been presented about the 
robustness of the motion control of nonholonomic 
vehicles [13], i.e. the problem of vehicle control where 
there are perturbations of the nonholonomic 
constraints. About the Fuzzy systems, the modern 
literature is focusing on developing a theory based on 
Lyapunov’s stability. Some researchers [3], [18] 
provide an interesting theory of stability for Fuzzy 
Mamdani control systems. About the Fuzzy control 
applied to nonholonomic vehicles, there are several 
approaches [2], [11], [12], [17]. However the 
Lyapunov’s stability is not assured. Also the works 
above are based only on the steering kinematics and 
assume that there exists perfect velocity tracking, i.e. 
the control signals affect the vehicle velocities 
instantaneously and this is not true. Some works 
developed adaptive Fuzzy controller with Lyapunov’s 
stability analysis for manipulators control [14], [15]. 
About applications to nonholonomic vehicles of Fuzzy 
control with Lyapunov’s stability, relatively few results 
have been obtained [9], [16].  

In this paper, in order to continue this research 
line, a Fuzzy controller is used to design a stable 
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adaptive kinematical and dynamical control system for 
a problem of motion control of wheeled autonomous 
nonholonomic vehicles actuated by a differential drive. 
This work is an extension of the control strategy 
proposed in [16]. 

The contributions of this work include: 

1) the use of a new Fuzzy inference mechanism to 
determine the values of the parameters of the 
kinematical control laws generating the angular 
velocities for right and left wheels. So the 
parameters above are not constant, but they 
depend on the tracking errors through an intelligent 
fuzzy system inference, i.e. a set of empirical rules 
and values of the rules. This assures a good 
robustness and very good convergence of the 
motion errors; 

2) exhibiting the formal asymptotical stability proof 
of the motion errors by employing Lyapunov’s like 
Barbalat’s theorem based on the input-output 
properties of the fuzzy inference system.  

3) taking the full nonholonomic vehicle dynamics, 
disturbance and unmodeled dynamics into 
consideration in the vehicle model and fuzzy 
control;  

4) the extension with an adaptive kinematical and 
dynamical control and asymptotical stability proof 
of the adaptive control scheme. In this way the 
kinematical and dynamical parameters of the 
vehicle model can be unknown;  

5) simulation to verify the robustness and the 
asymptotical stability of the motion errors; 

6) implementation of the controller and application 
to a real nonholonomic vehicle to verify the validity 
of the method.  

This paper is organized as it follows. Section II 
describes the kinematic and dynamic model of a 
vehicle with nonholonomic constraints. Section III.A 
presents the fundamental innovation of this paper i.e. 
the new adaptive fuzzy speed system for motion 
control of nonholonomic autonomous vehicles. The 
inputs of the fuzzy system are the tracking errors of 
the motion control system, while the crisp outputs are 
the parameters of the kinematic control law. Due to 
the road conditions and contact between the wheels 
and the ground, the impact of the vehicle with the 
environment can cause slipping of the wheels with 
consequential perturbations violating the 
nonholonomic constraints. By using our fuzzy solution, 
the constant parameters of the classical kinematic 
control law [6] are obviated. In fact, in our approach, 
the parameters above are nonlinear functions of the 
tracking errors and this assures a certain robustness 
with respect to the perturbations above and faster 
convergence than the adaptive controller shown in [7]. 
In particular, by inserting the input-output functions of 
the fuzzy map without approximation into kinematic 
control law suitably, the input-output properties of the 
fuzzy system are determined to guarantee the 

asymptotical stability of the tracking errors which has 
been proved in Section III.B. Section III.C adds an 
adaptive kinematical control with stability proof. So the 
kinematical parameters of the vehicle model may be 
unknown. In Section IV a dynamical extension and an 
adaptive control are presented with stability proof. 
Several parameters of the dynamic model (i.e. mass, 
friction, other disturbances) are unknown; therefore an 
adaptation is explained by employing the adaptive 
backstepping method suitably. In Section V some 
simulation tests in Matlab environment illustrate the 
robustness and the asymptotical stability of the 
tracking errors for the proposed fuzzy control system 
and we compare our results with the adaptive control 
without fuzzy proposed in [7]. Section VI shows 
experimental results obtained by an implementation of 
the proposed control system for a real nonholonomic 
vehicle. Section VII presents our conclusion. 

II. MATHEMATICAL MODEL OF GROUND VEHICLES 

In this section forms of the kinematic and dynamic 
model of a nonholonomic vehicle are presented to 
develop the control system of the next sections.  

Let us consider a mobile nonholonomic vehicle 
(see Fig. 1) with generalized coordinates nℜ∈q , 
subject to m constraints. The well known dynamic 
model [6] is: 

λqAτqEτqqqCqqM T )()(),()( −=++ d  (1) 

where:  
nn   )( ×ℜ∈qM  is a symmetric, positive definite 

matrix; nn   ),( ×ℜ∈qqC   is the centripetal Coriolis 
matrix;  

n
d ℜ∈τ  is a bounded unknown disturbance 

including unstructured and unmodeled dynamics;  
rℜ∈τ  is the input vector including torques 

applied to right and left wheel;  
nm   )( ×ℜ∈qA  is the matrix of nonholonomic 

constraints;  
rn   )( ×ℜ∈qE  is the input transformation matrix;  

mℜ∈λ  is the Lagrange multiplier vector of 
constraint forces.  

 
Fig. 1. Nonholonomic vehicle and coordinate 

systems 
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Supposing that the m constraints are time 
invariant, it yields: 

0qqA =)(   (2) 

Let S(q) be the Jacobian matrix with full rank 
)( mnn −×  and made up by a set of smooth and 

linearly independent vectors spanning the null space 
of )(qA  i.e.: 

0qSqA =)()(   (3) 

It is possible to find a (n-m) velocity vector v as it 
follows: 

[ ]ω  u=Tv   (4) 

where u and ω are the linear and angular body-
fixed (Xc,Yc) velocities of the nonholonomic vehicle 
(see Fig. 1). About the kinematical parameters, let r 
and b be the ray of the wheels and the distance 
between the driving wheels and the axis of symmetry. 
The 0P  coordinates, i.e. the intersection of the axis of 
symmetry with the driving wheel axis (see Fig. 1), are 
indicated by ),( 00 yx , while the vehicle orientation is 
indicated by . In this  wa y we  focus  only on thre e  

variables φ,, yx , excluding the angular velocities of 

the right wheel ( )rθ and of the left wheel ( lθ ).The 

relationship between the vector ]  [ ωu  and the vector 

]  [ lr θθ   is the following: 
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Equations (5) can be rewritten as it follows: 
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where:  

[ ]lr θθ    =Tη   (7) 

Therefore, the model of a nonholonomic vehicle 
can be described employing five generalized 
coordinates: 

[ ]lryx θθφ         00=Tθ   (8) 

In the condition of pure rolling and non-slipping, the 
vehicle can move in perpendicular direction to the 
driving wheels axis. So we have three constraint 
equations of the vehicle motion: 

l
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The constraints above can be written in pfaffian 
form (2). From equation (3), the Jacobian matrix )(qS  
is:  





−




=

10sincos
01sincos

)(
ccbcb

ccbcb
φφ
φφ

qST   (10) 

where c=r/2b.  

One of three constraints (9) is holonomic [19]. In 
fact, by comparing the second and third of equations 
(9), it follows: 

)( lrc θθφ  −=   (11) 

The constraint (11) is integrable. Therefore, by 
eliminating φ  or rθ  and lθ  in vector (8), two new 
vectors of generalized coordinates can be defined: 

[ ]lryx θθ       00=T
1θ   (12) 

or 

[ ]φ    00 yx=T
2q   (13) 

In cases (12) and (13) )(qA  matrix presents 
nonholonomic constraints only. In particular, in case 
(12), a new Jacobian matrix is obtained as it follows: 
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In this way the kinematic model is: 

ηqSq 1 )( 11 =   (15) 

In case (13) the kinematic model is: 
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From (4) and (13) and, by substituting equation (6) 
into (16), it yields:  

)v(qSq 222 =   (17) 

where:  
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10
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)( 22 φ
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About the dynamical parameters, let Pc be the 
mass center of the vehicle which is on the X-axis, let d 
be the distance from P0 to Pc (see Fig. 1). For the later 
description, mc is the mass of the vehicle without the 
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driving wheels, mw is the mass of each driving wheels, 
Ic, Iw and Im are the inertia moments of the body 
around a vertical axis through P0, of the wheel with a 
motor around the wheel axis and of the wheel with a 
motor around the wheel diameter, respectively. Now 
the dynamical model in body-fixed coordinates (Xc, 
Yc) is obtained by differentiating (15), replacing it into 
(1) and performing additional operations with S1. It 
follows:  

d1 τSτqES
ηSqqCSqMSηSqMS

TT

TT

11

111111111

)(

)),()(()(

−=

=++ 
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and m and I are the dynamical parameters as it 
follows: 

mwccwc IbmIdmImmm 22   ;2 22 +++=+=   

Also )(  )( mnmn −×−ℜ∈M  is a symmetric and definite 
positive matrix, while 1  )()( ×−ℜ∈ mnηηVm  . 

III. ADAPTIVE INTELLIGENT CONTROL OF GROUND 
VEHICLES  

In this section the fundamental innovation of this 
paper is presented, i.e. a new fuzzy adaptive motion 
control system for electric nonholonomic vehicles with 
two independent wheels. 

A. Intelligent kinematic control 

Let the references of velocities and positions for a 
nonholonomic vehicle be: 
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where ur>0 is the reference linear velocity and r is 
the reference angular velocity. The tracking errors 
between the reference position ][ rrr yx φ,,=T

rq and 
the actual position ][ φ,, yx=Tq  can be expressed in 
the vehicle local frame (Xc, Yc) as [6]: 
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where ex and ey are the lateral and longitudinal 
position errors, while e is the vehicle orientation 
error. Note that, time after time, the vector rq (t) is the 
reference motion for the vehicle, while q(t) is the real 
motion of the vehicle above. So, differentiating 
equation system (21) and applying two auxiliary 
inputs: 

Crrc ueuuu ωωφ −=+−= 21    ; cos   (22) 

where cu  and cω are the kinematic control laws in 
terms of steering and longitudinal velocities lead to: 
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 (23)  

Now a new fuzzy kinematic control law is 
proposed: 

)sin)()((

)(cos

φφ

φ

ωω etketku
etkeuu

yyrrc

xxrc

++=

+=
  (24) 

This control law depends on the error vector (21) 
and on the following parameters: 

[ ])(  )(  )( tktktk yx φ=Tk   (25) 

Parameters (25) are provided by a fuzzy controller. 
The fuzzy controller is used because, in this way, the 
parameters of the kinematic control law are not 
constant as in the controllers proposed in [6] and [7], 
but they are nonlinear functions of the tracking errors 
(21) through an intelligent fuzzy inference system, i.e. 
empirical Fuzzy rules and values of the rules. In other 
words, since the model of the nonholonomic vehicle is 
highly nonlinear, it is convenient to have nonlinear 
functions of the tracking errors in the control laws. 
Since the fuzzy maps are adjusted based on the 
control performance, the updating of the parameters 
(25) assures a good robustness and fast 
convergence. Now the Fuzzy inference system is 
described. The input and output membership 
functions are shown in Figs. 2, 3 respectively. The 
fuzzy rules are shown in Fig. 4. The input and output 
memberships are generalized bell functions and three 
linguistic labels are defined:  

S=Small; M=Medium; H=High; Opp=Opposite. 

The inputs of the fuzzification process (see Fig. 2) 
are the absolute values of the tracking errors (cf. eq. 
21), while the outputs of the input memberships are 
the degree of membership in the qualifying linguistic 
sets (always the interval between 0 and 1). The input 
set is a fuzzy singleton. The implemented methods for 
the logical ‘and’ and for the implication are the 
“minimum” and the “fuzzy minimum” respectively. The 
“fuzzy minimum” method truncates the output fuzzy 
set opportunely. Since decisions are based on testing 
of all the rules (see Fig. 4), the aggregation is 

www.jmest.org 
JMESTN42350222 175 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 
ISSN: 3159-0040 

Vol. 1 Issue 5, December - 2014 

necessary; therefore the consequents of each rule 
have been recombined using a maximum (max) 
method. The used defuzzification method is the 
“centroid”. So the outputs of the fuzzy system are 
crisp values i.e. the parameters (25) (see Fig. 3).  

 
Fig. 2. Input membership functions 

 
Fig. 3. Output membership functions 

 
Fig. 4. Table of the rules 

Remark 1. The numerical outputs of the fuzzy 
inference system depend on the tracking errors (21), 
therefore they are time varying functions (cf. eq. 25). 

Remark 2. Since the parameters (25) depend on 
the tracking errors, the control system of this paper 
can be more robust and with faster convergence than 
the conventional controllers [6], [7], where the 
parameters of the kinematic control law are constant 
numbers. 

Remark 3. About the memberships this remark is 
essential. The generalized bell functions have been 
chosen for the smoothness which assures continuous 
functions to guarantee the Lyapunov’s stability of the 
control system.  

Remark 4. The parameters kx ky and k positive 
numbers (see Fig. 3) always to assure the stability.  

Remark 5. Note that the numerical inputs of the 
fuzzy system (cfr. Fig. 2) are the absolute values of 
the tracking errors (the range of the errors is 
constituted by positive values only). In any case the 
sign (positive or negative) of the errors above is 
considered by the fuzzy control laws (24). 

Now Figs. 5 and 6 show the Fuzzy control 
surfaces. In particular the plots above show the output 

yk of the Fuzzy inference mechanism versus two of 
the inputs. In other words figs 5 and 6 show the fuzzy 
map, where the parameter yk  depends on the 
tracking errors (21) trough the Fuzzy inference system 
which has been described. So the maps of Figs 5 and 
6 depend on the fuzzy inference system, i.e. empirical 
rules and value of the rules. To assure the Lyapunov’s 
stability of the motion control system, one must 
investigate on the input-output properties of the fuzzy 
system. So, from Figs. 2, 3, 5, 6, the properties of the 
parameters (25) are the following.  

 

Fig. 5. yk versus xe  and ye  
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Fig.6. yk versus φe  and ye  

Property 1.a. The parameters of the kinematical 
control law (25) are continuous time functions; 

Property 2.a. The vector k(e(t)) (cf. eq. 25) is equal 
to zero if only if e is equal to zero i.e.:  

 [ ] 0e0ek T =⇔== )(   )(   )())(( tktktkt yx φ ;  

Property 3.a. All the outputs of the Fuzzy inference 
system are positive numbers and are bounded i.e.: 

 max)(0 xx ktk ≤≤ ; max)(0 yy ktk ≤≤  

max)(0 φφ ktk ≤≤ ; 

Property 4.a. Considering Nj∈  and M>0 and 
taking into account property 3.a lead to: 
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(23) leads to: 
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B. Lyapunov’s stability proof based on the input 
output properties of the fuzzy system 

From the Fuzzy inference system, equations and 
properties so far, it follows the first main result of this 
work.  

Theorem 1: Let the kinematical model and the 
fuzzy kinematical control laws be (17) and (24) 
respectively. Let the linear reference velocity ur be 
positive. The properties 1.a - 4.a are verified for 
hypothesis. Then the equilibrium state of the non 
autonomous closed loop system (26) is the origin of 
the state space and it is asymptotically stable. 

Proof. Since the vector )(ek  (cf. eq. 25) is equal 
to zero if only if e  is equal to zero, the equilibrium 
state of the closed loop system (26) is the origin of the 
state space. The system (26) is non autonomous. The 
following Lyapunov’s function is chosen: 
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where :  
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For hypothesis it is: 
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Therefore the Lyapunov’s function (27) is positive 
definite.  

The time derivative of (27) is:  
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where: 
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By substituting (26) into (30), it yields: 
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(32) 

Due to properties (3.a) and (4.a) of the Fuzzy map, 
the first and second terms of (32) are negative. Also it 
results: 
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  (33) 

Since the function (33) does not depend on ye  
error, it is negative semidefinite. Therefore vector (21) 
is bounded and the equilibrium state of the closed 
loop system (26) is stable. It is also possible to 
calculate the second time derivative of Lyapunov’s 
function (27). Since the second time derivative of (27) 
depends on bounded variables, it is a bounded 
function. Therefore the function (32) is uniformly 
continuous. From Barbalat’s Lemma [8], it yields: 
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 0)(lim 0 =
∞→

tV
t

   (34) 

From equations (32) and (34), xe  and φe  
converge to zero. From the second equation of (26) 
that is: 

φφφω eueetketkue rxyyrry sin)sin)()((( +++−=

 (35) 

The function ye  converges to zero. Therefore the 
steady state error along y direction is constant. 
Examining the third equation of (26) leads to: 

yyr ekue )()( ∞−=∞φ   (36) 

where ye  is the steady state value of ye . Since φe  

converges to zero, ye  converges to zero. Now yk  is 

equal to zero if ye  is equal to zero. Therefore the 
equilibrium point of the closed loop system (26) is 
asymptotically stable Q.E.D.  

Remark 6. Note that the proof of the theorem 1 
requires the system kinematical parameters of the 
vehicle be accurately known. 

C. Intelligent Adaptive Kinematic Control 

In this subsection the second main result of this 
work is explained. An adaptive controller is added to 
previous fuzzy control and the stability is proved. This 
step is necessary because the kinematical parameters 
as the ray of the wheels and particularly the distance 
between the driving wheels and the axis of symmetry 
can be difficult to be determined accurately. In fact 
without adaptive control one must measure the 
parameters above manually and this can cause a 
measurement error perturbing the performances of 
the control system. Fig. 7. shows the block diagram of 
the fuzzy adaptive control system.  

 
Fig. 7. Block diagram of the fuzzy adaptive 

kinematic control system 

Preliminarily, from (6), (16), (23) and after simple 
calculations, the closed loop kinematical control 
system can be written in the following way: 
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 (37) 

We set: 

rbr /  ;/1 == bα   (38) 

Differential equations (37) can be exploited by 
considering the estimation errors of the kinematical 
parameters (38): 

βββααα -ˆ  ;ˆ =-=   (39) 

where α  and β  are the estimated values. It 
results: 
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 (40) 

Now it is possible to formulate the following 
theorem. 

Theorem 2: Let the kinematical model and the 
fuzzy control law be (17) and (24) respectively. If the 
reference linear and angular velocities are bounded 
functions and the reference angular velocity 
converges to zero, by choosing of the following 
adaptive kinematic control law: 

 0,        
)(

)sin(
   >== δγ

ω
δβγα φ

tk
e

ue
y

c
cx

  (41) 

the components of the vector [ ]Tyx eee φ,, of the 
closed loop system (40) converge to zero. 

Proof. An extended state vector can be defined:  

 [ ]βαφ
ˆ  ˆ      eee yx=Te  (42) 

The Lyapunov’s function can be chosen as it 
follows: 

 

0,

ˆ
2

1ˆ
2

1 22
01

>

++=

δγ

β
δβ

α
γα

VV
 (43) 

where 0V  is given by (27). Since 0V  is positive 

definite, it is obvious that 1V  is positive definite. 
Substituting the fuzzy control law (24) into (41) and 
differentiating (43) lead to: 
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 (44) 

where cu  and cω are given by (24) and 0V  is 
given by (32). Function (44) is negative semidefinite if 
and only if equations (41) are verified. In this case it 
results: 

 01 VV  =  (45) 

Since the function (45) does not depend on ye  
component (cf. eq. 32), it is negative semidefinite. 
Therefore the closed loop system (40) is stable and 
the components of the state vector (42) are bounded. 
It is also possible to calculate the second time 
derivative of Lyapunov’s function (43). Since it 
depends on bounded variables, from Barbalat’s 
Lemma it results: 

 0)(lim 1 =
∞→

tV
t

  (46) 

Therefore xe  and φe  converge to zero. Now, by 
substituting (24) into (40), it results: 

 
ryyrr etketkue ωω
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
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


+−= ))sin()()((

ˆ
1  (47)  

Since the reference linear velocity ru , the 

reference angular velocity rω and the components of 

state vector (42) are bounded, φe  is bounded. 

Therefore φe  is uniformly continuous. Since φe  

converges to zero, from Barbalat’s Lemma, φe  

converges to zero; therefore from (47) ye  converges 

to zero only if rω  converges to zero Q.E.D.  

Remark 7. From the previous results, the adaptive 
fuzzy kinematic control law can be written in terms of 
angular velocities of left ( lcθ ) and right ( rcθ ) wheels 
as it follows: 
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where α  and β  are the solutions of the 

differential equations (41), while cu  and cω  are the 
fuzzy control laws given by (24). For theorems 1 and 
2, by employing the adaptive fuzzy kinematic control 
law (48), the closed loop motion control system of the 
nonholonomic vehicle is asymptotically stable. 

Remark 8. Note that, if the kinematical adaptive 
control law (48) is applied to vehicle directly, then the 

perfect velocity tracking is assumed and it is not true 
practically.  

Remark 9. About tuning of the fuzzy memberships 
(cfr. Fig. 2), one considers the initial conditions of the 
reference and of the actual positions and orientations. 
So we have initial values of the motion errors (21). 
Due to the asymptotical stability and boundedness of 
the errors above (cfr. theorems 1 and 2), one choices 
a range of the inputs between zero and the initial 
values above. In this sense the fuzzy memberships 
are tuned manually.  

IV. ADAPTIVE DYNAMIC MOTION CONTROL EXTENSION 

In this section a low level adaptive controller based 
on backstepping method [6], [7] is added to previous 
fuzzy adaptive high level control for nonholonomic 
autonomous vehicles. The computed torque controller 
proposed in [6] requires exact knowledge of the 
dynamics of the vehicle in order to work properly. 
Since the dynamical parameters of the model (18) 
cannot be accurately known, an adaptive mechanism 
is inserted.  

Preliminarily important properties of the dynamical 
model (18) and kinematical model (16) must be 
presented. 

Property 1.b. The linearity in the parameters p of 
the dynamical model (18) is shown: 

 pηη,YηηmVηM )()(  =+   (49) 

where the vector lℜ∈p  and lmn   )(),( ×−ℜ∈ηηY   
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The elements of the vector p consist of unknown 
dynamical parameters.  

Property 2.b. The kinematical model (16) appears 
as it follows: 
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where 1θ  and 2θ are parametric vectors while 1Σ  

and 2Σ are vectors whose elements consist of known 
functions.  

Now, by inserting the new fuzzy inference system 
of the previous sections, the adaptive backstepping 
technique [7] is reformulated. 

From (41) and (48) the fuzzy kinematical adaptive 
tracking controller model can be written as it follows: 

),,(),(
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   (53) 

Also the Lyapunov’s function (43) appears as it 
follows: 

),,,(),,( 111 βαβα rqqe VVV ==   (54) 

Assumption 1. The adaptive tracking controller (53) 
exists for the kinematical model (16). Also there is a 
positive-definite and radially unbounded function 1V  
such that: 
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where all the signals are bounded. 

The following theorem can be formulated. 

Theorem 3: Let (16) and (18) be the kinematical 
and dynamical model respectively. There is the fuzzy 
kinematical adaptive control (53). The properties 1.b 
and 2.b are verified and the assumption 1 is satisfied. 
The reference linear and angular velocities are 
bounded functions and the reference angular velocity 
converges to zero. The following adaptive dynamical 
control law is chosen: 
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  (56) 

where:  

lτ  is the control torque applied to the left wheel; 

rτ  is the control torque applied to the right wheel; 

iθ̂  is the estimation of iθ , i=1,2 (cf. eq. 52); 

Y  and p  are given by (50) and (51); 

p̂  is the estimation of the dynamical parameters of 
p  vector; 

iΣ  (i=1,2) matrices are given by (52), V1 is given 
by (44) and satisfies the assumption 1; 

Ŝ  is the Jacobian matrix (cf eq. 16) and it depends 

on estimated kinematic parameters iθ̂  for i=1,2; 

η~  is given by: 

[ ]T21
~  ~~ ηη=−= ηηη c   (57) 

where cη is given by (48) and η  is the dynamical 
velocity vector of model (18); 

ΨK d , and iΛ are simmetric and positive definite 
matrices.  

Then η~  converges to zero.  

Proof track. The following Lyapunov function is 
chosen: 
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where: 

 222 θθθθθθ ppp −=−=−= ˆ~   ;ˆ~   ;ˆ~
111   (59) 

By considering assumption 1, after some 
calculations, the time derivative of (58) results [7]:  
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  (60) 

From the assumption 1 and (60) the signals 
included in 2V  are bounded, therefore, from 
Barbalat’s lemma, the function (60) is uniformly 
continuous and it can be written: 

 0)(lim 2 =
∞→

tV
t

   (61) 

From (46) and (61), it yields:  

 0)(~lim =
∞→

t
t

η   (62)  

Remark 10. If we assume the adaptive kinematical 
controller of the section III only, the perfect tracking 
velocity hypothesis is considered i.e. the control 
velocity cη  is instantaneously applied to the ground 
vehicle, but it is not true. By inserting the dynamical 
control, instead, the (62) is satisfied and the velocity of 
the nonholonomic vehicle converges to control signal 
after some time due to dynamical effects. This is 
shown in the next section. 

Remark 11. If (62) is satisfied, then boundedness 
and convergence of the tracking errors (21) are 
assured. 

V. SIMULATION RESULTS 

We first simulate the adaptive fuzzy controller for 
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nonholonomic vehicles in Matlab Simulink 
environment to verify the asymptotical stability and 
robustness performance before the experimental 
implementation. Also we use simulation results to 
compare our method whit the control system 
proposed in [7]. In this section two simulations results 
are shown: the first does not consider disturbance; the 
second consider disturbance violating the 
nonholonomic constraints of the vehicle motion. 
Besides, two controller have been simulated in Matlab 
environment:  

1) a controller with adaptive dynamical extension 
assuming knowledge of the parameters (25), i.e. 
adaptive control without fuzzy inference system [7]; 

2) the new controller of this work where the 
parameters (25) are the outputs of the new fuzzy 
system of the section III, with the new adaptive 
kinematical control of the section III .C (cf. eq. 48) and 
the adaptive dynamical control extension of the 
Section IV (cf. eq. 56).  

So the performances and robustness of the two 
motion control system are compared.  

The kinematical and dynamical parameters of the 
electric nonholonomic vehicle are the following: 

 
.0025.0  ;005.0  ;6.15  ;1

30  ;15.0  ;3.0  ;75.0
====
====
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c

IIIkgm
kgmmrmdmb

  

The parameters of the kinematic controller (24) are 
the outputs of the fuzzy system. The parameters of 
the kinematical (41) and dynamical (56) adaptive 
controllers are: 

  5  ;5  20.75;  ;005.0 ==== ψδγ δK   (63) 

About the controller without fuzzy inference 
system, the parameters (25) are chosen as: 

 tkkk yx ∀===     5φ   

About the two DC motors, one must consider the 
following model: 
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where it is: 









=

2

1

a

a

i
i

ai  armature currents; 









=

2

1

a

a

ν
ν

aν  armature voltages; 









=

2

1

c

c
c ν

ν
ν  control voltages; 
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τ  transmitted command torques to right 

and left wheels; 
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m

m
m τ

τ
τ  produced torques; 

ANcm / 34.3 IK ×=  constant torque parameter; 

IK ×= 4  proportionality coefficient between 
produced and transmitted torque; 

Ω×=  10 IR a  armature resistance; 

H 0241.0 ILa ×=  armature inductance; 

and the matrix I is an identity matrix with two rows 
and two columns.  

A. Motion control without disturbance 

 n this test the problem of motion control for 
nonholonomic vehicles is simulated using a feasible, 
nonholonomic reference trajectory (see Fig. 8).  

The initial conditions for the reference position are: 

)48.3,0,0())0(),0(),0(( radyx =φ   (65) 

The initial conditions for the actual vehicle position 
are: 

)68.5,20,30())0(),0(),0(( radyx −=φ . (66) 

So the control laws (48) and (56) are simulated 
suitably. 

 
Fig. 8. Reference trajectory x[m], y[m] 

Figs. 9, 10 show the tracking errors (21) along x 
and y directions where we compare the performances 
of our control system (i.e. fuzzy adaptive motion 
control) with the performances of the control system 
proposed in [7] (i.e. adaptive motion control without 
Fuzzy).  
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Fig. 9. Longitudinal position error ex [m] with (-)and 

without (--) Fuzzy system 

 
Fig.10. Lateral position error ey [m] with (-) and 

without(--) Fuzzy system 

The tracking errors resulting from the new fuzzy 
adaptive control of this work are bounded and 
converge to zero more rapidly than the tracking errors 
of the solution one without fuzzy mechanism [7].  

Fig. 11 shows the orientation error of the fuzzy 
adaptive kinematic and dynamic control system, while 
Figs. 12 and 13 present the estimated kinematical 
parameters β,α    (cf. eq. 41) and the dynamical 

parameters of p̂  vector (cf. eqs. 51 and 56) 
respectively. 

 
Fig. 11. Orientation error with Fuzzy system, ephi 

[rad] 

 
Fig. 12. Adaptive kinematic parameters 

 
Fig. 13. Adaptive dynamical parameters 

Remark 12: From fig. 11 it is evident that the 
trajectory of the robot reach the trajectory with 
inclination which leads to an overshoot of near 45 
degrees on then a posterior correction goes t near -25 
degrees. In fact note that the mass of the ground 
vehiche is 30Kg, so that the vehicle is not a bigger 
one. In any case the control strategy may be applied 
for a variety of vehicles, by varying the input-output 
values of the memberships fuzzy. The experiment of 
this paper have been developed for small vehicles.  

From Fig. 11 it is evident that the orientation error 
is bounded and converges to 0 rad. 

From Figs. 12 and 13 we observe that the adaptive 
control is direct, because the estimated parameters 
are not physical values, but the steady state 
parameters are constant and the tracking errors of 
Figs. 9, 10 and 11 converge to zero. 

Remark 13. Note that all the absolute tracking 
errors values of the simulation tests (see Figs. 9, 10, 
11) are in the range of the numerical inputs of the 
fuzzy system (see Fig. 2). In fact the fuzzy map was 
adjusted based on the control performance as it is 
explained in remark 9. 

Fig. 14 shows the velocity error (57) between the 
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dynamic velocity of the vehicle and the fuzzy control 
velocity (48). As discussed in remarks 8 and 10, due 
to dynamical effects, the physical velocity of the 
vehicle tracks the fuzzy control velocity only after 
some times. The motion control reacts in a good way 
and, after some time instants, the velocity error (57) 
converges to zero. In other words the kinematic 
control signals cannot affect the vehicle velocities 
instantaneously.  

 

Fig. 14. Tracking velocity error η~  [rad/s] 

Now the electrical vehicle has motors installed in 
two wheels. The model of the motor has been shown 
in (64). From our simulations, the control torques (cf. 
eq. (56)) for the left and right wheels can be known 
precisely and therefore we can estimate the currents 
for the motors. Based on the experimental system 
explained in the next section, we consider an 
amplification between the transmitted and the 
produced torques equal to 4. So fig. 15 shows the 
estimated armature currents for right and left motors. 

 
Fig. 15. Estimated armature currents of left and 

right motor 

B. Motion control with disturbance violating non-
holonomic constraints 

This simulation test shows the robustness of the 
Fuzzy adaptive motion control system with respect 
outside disturbances violating the nonholonomic 

constraints (9). The disturbance above can be caused 
by the impact of the vehicle with the external 
environment, as for example the road conditions and 
the contact between the wheels and the ground where 
the vehicle moves. In this sense the dynamic model 
(18) has a bounded unknown disturbance term dτ  
including unstructured dynamics. Now effects of the 
disturbances above, i.e. perturbations of the actual 
trajectory of the vehicle, are considered only. So the 
simulation test consists of generating the slipping of 
the wheels by a step disturbance of the actual lateral 
position y of the vehicle for every 5s. The reference 
trajectory is shown in Fig. 8 and it is feasible, i.e. it 
does not violate the nonholonomic constraints. Fig. 16 
shows the tracking error along y direction in case of 
control with and without Fuzzy system. In case of 
control without Fuzzy system, the parameters (25) are 
fixed as it results in (63). As discussed in remark 2 it is 
evident that, with respect to the itself control without 
Fuzzy inference [7], the adaptive Fuzzy control 
system of our paper reacts to the disturbance, 
recovering the vehicle motion with a very good control 
effort.  

 
Fig. 16. Lateral position error ey [m] with (-) and 

without (--) Fuzzy system 

VI EXPERIMENTAL RESULTS 

In this section a motion control experiment has 
been established based on the fuzzy control laws (48) 
and (56). Experimentation is performed on a vehicle 
with the same dynamical and kinematical parameters 
of the simulations.  

A. Main technical aspects of the nonholonomic 
vehicle and of the implemented fuzzy adaptive control 
system  

The details of our vehicle are shown in Fig. 17. The 
vehicle above is constituted by a mechanical support 
of circular form, under which two independent traction 
axis have been installed (differential drive actuation). 
The informations on linear and angular velocities and 
therefore on position and orientation of the vehicle 
have been obtained by two proprioceptive sensors, 
i.e. one encoder for each wheel.  
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Fig. 17. Nonholonomic vehicle top and rear views: 

PC target and independent traction axis. 

The electric motors are controlled by on board 
personal computer (PC Target) with Pentium 
Processor. The signals for the actuators are PWM 
type. Therefore drivers for the motors have been 
installed. The motors and the drivers require a set of 
two on board batteries of 12 V. 

Principal components of the experimental system 
are: 

two DC motors; 

two encoders Baumer, BHK series; 

two drivers LMD18200; 

PC Target on board with Encoder Card PCL-833, 
Multifunctional Card PCL-1800 

We use another PC (host computer) for motion 
control, where the adaptive fuzzy motion controller 
has been implemented by using Matlab Simulink. 

About the motors, they have been chosen for the 
good torques and robustness performance. The 
parameters of the model have been shown in the 
simulation section. The main characteristics of the 
motors are: 

Nominal tension value: 24 V 

Nominal current value: 2.8A 

Continuous torque: 6 Ncm 

Constant torque-current: 3.34 Ncm/A  

The employed drivers produce current for the 
motors to generate the torques. However the drivers 
above assure maximum current of 3A for the motors 
with consequential very low torque. So we do not 
change the driver, but we use a system of motor-axis 
pulley (see Fig. 18) introducing an amplification 
between the produced and the transmitted torque. To 
use the driver LMD18200, the amplification above is 
1:4.  

 
Fig. 18. Motor axis pulley local view 

The circuit for the PWM generation has been 
shown in Fig. 19. In our experimental system the card 
above is positioned upon the PC target (see Fig. 17- 
top view). Note that the LMD18200 has three input: 
PWM, DIR and BRAKE. The brake input can be 
controlled by microcontroller. In our experiments the 
input above is not used. So it is “ground”. The input 
“DIR” is the direction of the motor rotation. Now the 
multifunctional card PCL-1800 has A/D converter, 
buffer FIFO of 1Kword, two converters D/A 12 bit, 16 
digital inputs and 16 digital outputs. From the D/A of 
the PCL-1800, reference voltages proportional to the 
currents are obtained. The card above has been 
employed to monitor the armature currents, the 
reference voltages and the current signs. So the 
difference between the current reference and the 
measure current feedback is fed into a current control 
block. Hence, it generates the duty ratio for the PWM 
converter which provides bidirectional current control 
of the DC motors.  

 
Fig. 19. PWM generation for driver LMD18200 

The encoders have been employed to evaluate the 
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velocity rotation of the axis. They use two pulse trains, 
90 degree out of phase. 

The host computer loads to the PC Target of the 
vehicle the program and the reference trajectory, 
while the PC Target communicates to it some 
variables, as for example the actual position. The host 
PC reads motor positions for use in graphics routines 
by using matlab software. The PC target passes latest 
position to the fuzzy control algorithm implemented in 
the host PC using matlab simulink. So the Fuzzy 
control algorithm calculates the new outputs for the 
DAC of the PCL-1800 generating the reference 
voltage and waits for the next command from the PC 
target.  

About the software implementation of the fuzzy 
control laws (48) and (56), the system has been 
realized by using Matlab Simulink, 
RealTimeWorkShop and XpcTarget toolboxes. In 
particular we have used Matlab Simulink to implement 
the dynamical and kinematical fuzzy controllers and 
the blocks for the card I/O interfaces. So, by 
employing RealTimeWorkShop toolbox, the blocks 
above are converted in C language suitably. The 
executable code is generated by using Visual C 
Compilator. Therefore the code above is downloaded 
in the PC target, where there is a real-time operative 
system. So we monitor the parameters in the remote 
PC by graphical routines of Matlab. 

Fig. 20 shows the block diagram for the acquisition 
of the encoders data, i.e. angular velocities of the right 
and left wheels. The data above are downloaded in 
the host PC. So, by using matlab simulink blocks to 
implement equation (16), they are processed to obtain 
the feedback signal and the motion errors (21) of the 
control system. 

 
Fig. 20. Interface for data acquisition from 

encoders 

In conclusion the control architecture has three 
levels: 

- from the positions errors (21), the adaptive fuzzy 
kinematic control generates the speed control (cf. eq. 
48); 

- from the velocity error (57), the adaptive dynamic 
control generates the desired torque commands (cf. 
eq. 56);  

- actuation of the torques above by the PCL-1800 
with generation of error between the reference and 

the measured current  

 for the PWM input generation of the driver 
LMD18200. 

B. Results 

 In this section experimental results are shown to 
confirm the simulation results. In the host computer 
we have implemented a reference curvilinear 
trajectory. The trajectory above is shown in Fig. 21 
and it is equal to the curvilinear length of the 
simulation tests (see Fig.8). The initial conditions of 
the reference trajectory and of the vehicle position are 
the same of the simulation tests (cf. eqs. 65, 66). 

 
Fig. 21. Reference trajectory 

By using the fuzzy control laws (48) and (56), time 
after time, we have monitored the actual position of 
the vehicle. Figs. 22 and 23 show the experimental 
results of the system output response to the reference 
trajectory of Fig. 21. In particular the reference and 
experimental actual trajectories along x direction 
versus time are shown in Fig. 22, while Fig 23 shows 
the same functions along y direction versus time. To 
compare experimental and simulation results directly, 
it is evident that the vertical distances between the 
trace of the actual and of the reference trajectories 
(see Figs. 22, 23) represent the longitudinal and the 
lateral tracking errors. The values of the distances 
above are similar to the values of the simulation 
results (see Figs. 9 and 10).  

 
Fig. 22. Reference and actual experimental 

trajectory along x direction 
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Fig. 23. Reference and actual experimental 

trajectory along y direction 

Figs 24 and 25 show the reference voltages and 
the sign of the currents for the left and right motors 
respectively. The informations above come from 
output DAC of PCL 1800 card.  

 
Fig 24. Reference voltage and current left-motor 

sign from PCL 1800 card. 

 
Fig 25. Reference voltage and current right-motor 

sign from PCL-1800 card. 

Fig. 26 shows the measured armature currents for 

right and left motors. Note that the driver may done 3A 
max to the motors. The measured armature currents 
of Fig. 26 are similar to the simulation results of Fig. 
15. 

 
Fig. 26. Measured armature currents 

CONCLUSIONS 

In this paper an evolution of the adaptive control 
for motion control of autonomous nonholonomic 
vehicles by inserting a new Fuzzy inference system 
has been presented. In particular the fuzzy inference 
determines the parameters of the kinematic controller 
with better performance than the adaptive controller 
without fuzzy proposed in [7]. An adaptive mechanism 
on line estimated the unknown dynamical and 
kinematical parameters of the vehicle model. Also, by 
using the dynamical extension, it is evident that the 
hypothesis of perfect velocity tracking cannot be 
satisfied because it is not true practically. Our 
concepts are formulated to have the asymptotical 
stability of the tracking errors through Lyapunov’s 
theory and Barbalat’s Lemma. The stability results are 
based on the input-output properties of the fuzzy 
inference system. Based on theoretical and simulation 
results we conclude: 

• Lyapunov’s stability theory can be 
effectively applied to determine the properties of 
Fuzzy system for problem of motion control of 
nonholonomic vehicles; 

• the Fuzzy adaptive approach of this paper 
reduces the response time of the tracking errors with 
respect to controller without Fuzzy inference 
mechanism [7];  

• the simulation results show the robustness, 
the asymptotical stability and the fast convergence of 
the motion errors; 

• the experimental results confirm the validity 
of the proposed method.  
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