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Matching Image Features

Abstract: Matching points across different images is a fundamental task in most
computer vision applications, since it allows in general to retrieve the position of im-
age points. Three-dimensional object reconstruction, mosaicing, object and action
detection and classification are some of the most popular computer vision applica-
tions that rely upon it. Several feature detectors and descriptors, as well as matching
algorithms built upon them, have been presented in the last decades. Though a lot
of progress has been done in this field, the problem of matching points across differ-
ent images is far to be fully solved. The performances of the algorithms are closely
related to the complexity and the type of the scenes, as well as the transformations
between the images.

In this thesis contributes to the field of the image feature matching are presented.
A new feature detector, named HarrisZ, has been developed. It improves the Harris
corner detector by providing stable and robust features around the images in terms
of the repeatability index and the matching score. The results are comparable with
the state of the art affine detectors, such as the Hessian-affine detector and the
MSER detector.

The sGLOH descriptor, an extension of the GLOH descriptor, has also been
proposed. The new feature descriptor can check the similarity between two features
not only in the gradient dominant orientation but also according to a set of discrete
rotations, obtained by shifting the descriptor vector. This improves the descriptor
stability to rotation for a reasonable computational cost.

A RANSAC based matching algorithm, called soft sparse matching, has been
designed. As its main features, the proposed matching algorithm uses an image-
guided selection of the error threshold, a soft matching strategy in contrast to the
one-to-one matching required by RANSAC, and a global-to-local selection of the
candidate matches inspired by the simulated annealing process. Moreover, the final
matches are forced to be homogeneously distributed along the image, resulting in a
more stable estimation of the correspondences.

Lastly, a validation framework to test feature detectors, descriptors and
matching algorithms has also been proposed. It uses only geometric information
and does not require complex methods to obtain the ground truth data, which
makes it very attractive.

Keywords: feature detector, feature descriptors, image feature matching,
Harris corner, SIFT, RANSAC, epipolar geometry
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Introduction

The last goal of computer vision is to obtain a full understanding of the environment
by the acquisition of one or more images of the surrounding area. To accomplish this
task, high level data information about the objects in the scene and their interactions
has to be extracted from low level data. In particular, the position of the points in
the scene and their intensity similarities are required to obtain almost all the object
relationships.

Matching points across different images is a fundamental task in most computer
vision applications, since it allows to retrieve the position and the intensity of image
points in general. All real objects must obey to geometric and radiometric constrains
imposed by the physic laws, thus every time a new correspondence is found for a
point, the derived constraint can be used to improve the information about its
position in the real world. Three-dimensional object reconstruction, mosaicing,
object and action detection and classification are some of the most popular computer
vision applications based on point matching.

The disparity map between images, i.e. the function which maps points from
one image to another, can be used to characterize the matching algorithms. Dense
disparity maps are computed for all the image points (except for occlusions) and
allow a detailed and fine representation, however they are difficult to obtain when
the images are not very close (for instance when they are taken from very different
points of view). Sparse disparity maps are computed only for a relatively small
subset of salient image points, called image features. A rough image representation
is obtained, which is more robust when images are not very close and it is less
computational expensive, since not all point correspondences have to be computed.
Moreover a sparse map can be used as a starting point to build a dense disparity
map.

Several feature detectors and descriptors, as well as matching algorithms, have
been presented in the last decades. Though a lot of progress has been done in this
field, the problem of matching point around different images is far to be fully solved.
The quality of the results is closely related to the complexity of the type of the scene,
which implies to know some prior information about the images to be processed.

Thesis contributions and outline

The following contributions in the field of the image feature matching are mainly
presented in this thesis:

• The HarrisZ feature detector, an improved affine detector based on the Har-
ris corner detector. It provides stable and robust features in terms of the
repeatability index and the matching score, without requiring a fine tuning
of the algorithm parameters. According to the standard Oxford dataset for
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planar scenes and its extension to three-dimensional object, the results are
comparable with those obtained by the state of the art affine detectors, such
as the Hessian-affine detector and the MSER detector.

• The sGLOH descriptor, an extension of the GLOH descriptor. It provides
stable feature descriptors by checking the similarity between two features not
only in the predefined dominant orientation, but also according to a set of
discrete rotations. This can be accomplished with a reasonable computational
cost by shifting the descriptor vector and by using an improved feature dis-
tance. The proposed descriptor, has been compared with the SIFT and the
GLOH descriptors on the Oxford image dataset and good results, which point
out its robustness and stability, have been obtained.

• The sparse soft matching algorithm, based on RANSAC. Its main features
are an image-guided selection of the error threshold, a soft matching strategy
in contrast to the one-to-one matching required by RANSAC, which increases
the number of the absolute matches. It also does a less random choice of
candidate matches, guided by a global-to-local constrain generation inspired
by the simulated annealing process. Final matches are forced to be homo-
geneously distributed on the images, thus a more stable estimation of the
homography or of the fundamental matrix associated is achieved. As a weak
point, it is more computationally expensive than RANSAC.

• A validation framework to test feature detectors, descriptors and matching
algorithms. It uses only geometric information and does not require complex
methods to obtain the ground truth data, which makes it very attractive. The
soft sparse matching algorithm and RANSAC have been compared according
to this new proposed framework.

According to the contributions, this thesis is divided in two main sections, where
in the former section feature detectors and descriptors are discussed, while stereo
geometry and matching algorithm are described in the latter.

In Chapters 1–5 an introduction to the state of the art feature detectors and
descriptors developed in the last decades is given, followed by a comparison of the
different methodologies and results. The section ends with Chapter 6, where the pro-
posed HarrisZ detector is described, evaluated and compared with other detectors.
Moreover, the novel sGLOH feature descriptor is also presented and a comparison
with other feature descriptors is done.

In Chapter 7 the matching problem is presented, together with a short descrip-
tion of its application to the stereo three-dimensional reconstruction. The RANSAC
paradigm as well as its extensions are also presented. In Chapter 8 the new soft
sparse matching algorithm is proposed and evaluated according to the new validation
framework. Conclusions are discussed in Chapter 9.



Chapter 1

Feature-based computer vision

techniques

1.1 Historical background

Image features, interest points and region of interests are terms commonly used to
define image regions which have some given properties. It is a very general definition,
since every image region (here also a point, identified by a single pixel, is considered
a region) can be a feature, depending of the task purpose.

Apart from specific image features which can have a semantic meaning, such as
edges, blobs and junctions, nowadays any image region which is stable on image
transformations and distinctive across other regions of the same image is consid-
ered a feature. Here, an image transformation refers to a wide range of situations,
related to the task. In image reconstruction or mosaicing applications, transforma-
tions are related to the image acquisition process, in particular with the camera
properties: perspective transformations, including scale and rotation, blur or illu-
mination changes and instrumental noise are the most common ones. For object
detection and classification, different instances of the same object around a class
can be seen as transformations of the ideal object.

The first use of feature-based algorithm in computer vision can be traced back
to the work of Marr and Poggio [103] and Harris and Stephens [69] on the stereo
correspondence algorithms in the 1970s. The use of features instead of all available
pixels provides a reasonable coverage of the object of interest with a reasonable
computational cost. Furthermore, the distinctiveness of the points increases by
improving the quality of the match. A further interest in image features raised in
the 2000s when feature based techniques for object recognition [134, 46, 99] were
developed, as features can be organized as primitives that compose the final object,
thus providing a more simple data analysis at a less computational cost.

1.2 Feature definition

1.2.1 Feature properties

According to [177], good features should have the following properties:

• Repeatability : the same features should be present in the image after a trans-
formation. It means that a feature should be robust to small image transfor-
mations and should have invariant properties for a wide degree of transfor-
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mations. Of course it does not hold if the object to which the features are
associated disappears from the scene after the image transformation.

• Distinctiveness/informativeness : the features in the same image should be
different and a same feature should not varies across images of the same scene
in order to be distinguished and matched.

• Locality : features should be local to reduce the probability of occlusions, for
instance in object detection.

• Quantity : the number of features found could be varied according to the
application purpose, to cover the best distribution. For instance in three-
dimensional reconstruction, features should cover the image to allow the best
reconstruction. This requirement should clearly be balanced with the distinc-
tiveness criterion, since as the number of features increases the probability of
wrong matches increases too.

• Accuracy : the localization of the features should be as accurate as possible.
This property is relevant for example in camera calibration, while it can be
almost neglected in object classification.

• Efficiency : the computational cost in time and space should be reasonable
according to the application. It is a critical requirement for real-time appli-
cations, such as object tracking, or dealing with a large amount of data, such
as high resolution three-dimensional reconstructions.

According to the feature requirements, from an operative point of view, two types of
algorithms have been developed: feature detector algorithms and feature descriptor

algorithms. A feature detector extracts the features from images. The extraction
process provides the position of the feature, together with its support region and
some other possible data which further characterize the feature, such as its scale
and orientation. Example of feature detectors are the Harris corner detector [69]
and the SIFT [100] detector.

Feature descriptors take the extracted feature and compute some meaningful
vector which contains the information about it. The most simple feature descriptor
is provided by the grid of the pixel intensities of the support region, while more
complex descriptors are given by the gradient orientation histogram of the feature
support region, as the popular SIFT descriptor [100], or by a combination of the
responses of the support region to some image filters, such as the steerable filters [62].

As described above, a feature should be invariant to some transformations de-
fined by the application task, this is achieved by the feature descriptor. Instead to
be invariant, features are often covariant to transformations [114], i.e. the degree of
transformations should vary gradually with the measure associated to the feature
descriptor vector. Pre-normalizing the feature support region, also known as the de-

scriptor patch, the descriptor vector becomes invariant to the given transformation.
For example, steerable filters [62] are invariant to rotations, while in the case of the



1.2. Feature definition 5

SIFT descriptor and other similar descriptors [100, 164, 113, 11, 85, 86] the feature
patch should be rotated in the direction of the dominant gradient orientation before
computing the descriptor vector to become rotationally invariant. Affine-covariant
feature detectors such as the Harris-affine and the Hessian-affine detectors [112] have
gained attention since projective transformations can be approximated by piecewise
local affine transformations.

1.2.2 Feature matching

The choice of the distance/similarity measure used to compare features is trictly
related to the feature descriptor and to the matching process. Minkowski distances,
such as the Euclidean distance, are a common choice as well as cross-correlation, but
more complex distances have been developed. For example, slight feature variations
can influence distant bins in histogram-based feature descriptors; the pyramid match
kernel [67], the diffusion distance [97] and the SIFT-rank descriptor [163] can be used
to alleviate this issue.

Lastly, the effective matching is done. The similarity threshold, the nearest
neighbour or the nearest neighbour ratio approaches [100] are commonly used. The
matching can be further refined when some constraining hypotheses exist. Regis-
tration tasks, mosaicing and three-dimensional reconstruction by RANSAC [51] or
similar robust regression paradigms [169, 190, 170] can adjust matches while esti-
mating the best camera parameters [70]. Homographies [70] are used to constrain
matches for planar objects, while the fundamental matrix [44] and the trifocal ten-
sor [70] can be used respectively for stereo vision and three view vision.

Another topic is the organization of the extracted features in pictorial dictio-
naries. This kind of approach is used together with learning algorithms for object
recognition and classification, but also for data compression. The organization of
the features in structures to allow a fast extraction and comparison is relevant for
this kind of applications. The kd-tree [31] or the ANN tree [90] are examples of
these structures. In the bag-of-words approach [87, 36] object can be extracted and
classified by comparing their features according to a pictorial dictionary, created by
a learning or a clustering algorithm.

1.2.3 Feature evaluation

Though it is often taken apart, the evaluation of feature detector and descriptor
algorithms, as well as matching strategies, is a crucial and difficult topic. The main
issue is related to the existence of a solid ground truth database, which considers
the most common image transformations, not easy to obtain. In the case of planar
objects, the popular Oxford dataset [114] is the first challenge a new detector or a
new descriptor should deal with. It has been extended to three-dimensional objects
in [59], however it contains only a few image sequences for each transformation to
allow a really robust comparison. Apart from the Oxford database, which uses the
repeatability index and the matching score as evaluation measures [149, 114], other
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approaches exist [119, 54], but their are less common. From all the cited evalua-
tions [114] what rises up is that no detector outperforms the other ones for all trans-
formations, though some detectors such as the MSER [107] and the Hessian-affine
detector [112] usually perform better. About the feature descriptors, histogram-
based descriptors are in general the best choice. However, the performances on
three-dimensional data are poor and the complementarity between different kinds
of features can improve the performances of feature based algorithms [41, 59].

Features have to be invariant to image transformations in order to be matched
from one image to another one. Image transformations can be divided in two classes:
geometric transformations and radiometric transformations. Geometric transfor-
mations modify the shape and the position of the feature in the space thus they
can be subdivided according to a well known hierarchy of geometric transforma-
tions [161, 70], while radiometric transformations influence the feature appearance,
i.e. the intensity value of the pixels.

1.3 Feature invariance

1.3.1 The hierarchy of geometric transformations

Homogeneous coordinates are first introduced [70]. Given a point x = [x, y]T ∈ R
2

in the plane or X = [X,Y, Z]T ∈ R
3 in the space, their respective homogeneous

coordinates are x = w[x, y, 1]T ,w ∈ R and X = W [X,Y, Z, 1]T ,W ∈ R, so that
inhomogeneous points are mapped respectively to the rays starting from the coordi-
nate centre which go through the points itself (see fig. 1.1). Moreover homogeneous
points of the form l = [x, y, 0]T and L = [X,Y, Z, 0]T , called points at infinity or
ideal points, represent respectively the pencils of lines and of planes with normals
n = [x, y]T , N = [X,Y, Z]T [70]. To be noted that the homogeneous point O, a zero
vector, does not represent any inhomogeneous point [70]. The relations ≃ between
homogeneous points implies that they represent the same inhomogeneous point, i.e.
their respective vectors are equals up to a scale factor and this relation can be also
extended to matrices

p ≃ q ⇔ p = wq

p ≃ q ⇔ p =WQ

M ≃ N ⇔ M = mN

(1.1)

Given a two-dimensional point x = [x, y]T ∈ R
2, the translation is the most simple

geometric transformation

x′ = x+ t (1.2)

where t = [tx, ty]
T ∈ R

2 is the translation vector, which gives two degrees of freedom.
Next, the rotation

x′ = Rx+ t (1.3)

where R ∈ R
2×2 is an orthonormal matrix, has three degrees of freedom (two for t

and one for R). The similarity adds another degree of freedom given by the scale
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Figure 1.1: Homogeneous representation of a two-dimensional Euclidean space. The
inhomogeneous points x and x′ on the plane are represented respectively as the two
rays from the origin O to their homogeneous representations x and x′. The straight
line joining x and x′ is represented by the homogeneous vector x×x′ orthogonal to
the plane where both x and x′ lie

s ∈ R

x′ = sRx+ t (1.4)

that can be put together in homogeneous coordinates

x′ ≃
[
sR t

0T 1

]
x (1.5)

where 0 is a vector of zeros. A more interesting transformation is the affine trans-
formation

x′ = Ax (1.6)

for A ∈ R
2×3 which has six degrees of freedom. The affine transformation maps

points at infinity to points at infinity, and it can be decomposed in homogeneous
coordinates as

x′ ≃
[

A

0T 1

]
x ≃

[
sR t

0T 1

] [
K 0

0T 1

]
x (1.7)

where K is an upper triangular matrix which describes the shear effects [70] for
which det(K) 6= 0. Lastly, the perspective transformation or homography has eight
degrees of freedom and can be expressed in homogeneous coordinates as

x′ ≃ Hx ≃
[
sR t

0T 1

] [
K 0

0T 1

] [
I 0

vT v

]
x (1.8)

where v 6= 0 and v is a generic vector, so that points to infinity can be mapped to
finite points and vice-versa [70].

Starting from the more complex transformations toward the simplest ones, per-
spective transformations preserve only straight lines, i.e. the incidence between
lines, affine transformations also the parallelism between lines, while similarities,
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rotations and translations additively preserve also angles, distances and orientations
(see fig. 1.2 for a schematic representation of the different transformations).

Though the perspective transformations are the most general geometric trans-
formations, which cover all the other geometric transformations, it preserves only
straight lines (and not their measures or orientations) due to its high degrees of
freedom, so feature invariants to perspective transformations are poor in terms of
feature distinctiveness and are not used.

More interesting are the affine transformations, which preserve the parallelism
between lines and give a sufficient degree of distinctiveness between features. More-
over, perspective transformations can be approximated very well by piecewise local
affine transformations [114, 177] (see fig. 1.3).

It is a common approach to normalize the feature patch in order to obtain
invariance [113, 100, 114, 177, 112, 3, 96, 108]. Translation is trivially resolved by
using the feature patch centre as the coordinate origins, while rotation, scaling and
shearing require more details.

Figure 1.2: From left to right, the different geometric transformations. Every trans-
formation includes the earlier, i.e. they are nested. Image adapted from [161]

1.3.2 Rotation invariants

Feature patches are usually normalized by a rotation according to the gradient dom-

inant orientation [100]. Assuming that an image I is a continuous and differentiable
two-dimensional function, the image gradient in a point x of the patch is

∇I(x) =
∂

∂x
I(x) = [dx, dy]

T (1.9)

An histogram of the gradient orientation φI(x) = arctan (dy/dx) weighted by the
squared gradient magnitude MI(x) = dx

2 + dy
2 is built up and the orientation of

the maximal bin is selected (see fig. 1.4).
Differential invariants to rotations also exist [83, 162], the most common examples
are the gradient magnitude and the Laplacian

LI(x) = ∇2
I(x) =

∂2

∂x2
I(x) +

∂2

∂y2
I(x) (1.10)
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Figure 1.3: Perspective transformations can be approximated by piecewise local
affine transformations. In the example a rectangular patch ongoing to a perspective
transformation (the green boundary) could not be well approximated by an affine
transformation, while the approximation error using local affine transformation de-
creases by decreasing the patch size (respectively the blue, the orange and the red
boundaries)

1.3.3 The Gaussian scale-space

To handle the feature scale, the Gaussian scale-space theory has been intro-
duced [94]. The main idea is to simulate the scale change factor σ by convolving
the image with a Gaussian kernel with zero mean of the form

gσ(x) =
1

2πσ2
e−

x2+y2

2σ2 (1.11)

Different motivations have been adduced which yield to the choose of Gaussian ker-
nel. Koendering [82] showed that the scale-space must satisfy the diffusion equation
for which a Gaussian convolution is the only solution, while the different formula-
tions proposed by Babaud [1], Lindeberg [91] and Florack [52] also conclude that
the Gaussian kernel is the best choice.

The Gaussian filter benefits from the linearity, the separability, the causality and
the semi group properties [94]. The separability property states that a multidimen-
sional Gaussian kernel can be obtained as the product of one-dimensional Gaussian
kernels

gσ(x) = gσ(x)gσ(y) =
1√
2πσ

e−
x2

2σ2
1√
2πσ

e−
y2

2σ2 =
1

2πσ2
e−

x2+y2

2σ2 (1.12)

The causality property states that no new local maxima appear while increasing the
scale, whereas the semi group property states that n successive convolutions with a
scale factor σ are equal to a single convolution with a scale factor n σ

gσ(·)∗gσ(·) = g2σ(·) (1.13)

where ∗ means the convolution.
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Figure 1.4: An image patch (a), its gradient orientation map (b) and the gradient
magnitude map (c). The gradient orientation histogram (bottom row) is obtained
using a small neighbourhood of the gradient magnitude map (d). The dominant
gradient orientation is the direction for which there is the maximal peak in the
gradient orientation histogram (red dot)

The scale-space derivative Li1...im(I(x), σ) of the point x of image I at scale σ of
order m respect to the Cartesian coordinates i1. . .im can be obtained by convolving
the image with the Gaussian kernel gσ(·) and then taking the derivative, which
is equivalent to convolving the image with the derivative of the Gaussian kernel.
The normalization factor σm is introduced to take into account the decrease in the
amplitude of the signal with the scales

Li1...im(I(x), σ) = σm gσ(·)∗
∂m

∂i1 . . . ∂im
I(x) = σm

∂m

∂i1 . . . ∂im
gσ(·)∗I(x) (1.14)

In fact, if I and I ′ are images related to a scale change by a factor s and x′ = sx+ t

I(x) = I ′(x′) (1.15)

it follows that

Li1...im(I
′(x′), σ) = σm

∂m

∂i1 . . . ∂im
gσ(·)∗I ′(x′) =

smσm
∂m

∂i1 . . . ∂im
gsσ(·)∗I(x) = Li1...im(I(x), sσ)

(1.16)

that is, the scale factor is correctly taken into account as the value σ is supposed to
be the scale unit [94].
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In the scale-space theory the definitions of the inner scale and the outer scale are
also introduced [94], the former is the minimal scale for which feature information
can be detected and it is related to the image resolution, the latter is the minimal
scale for which the feature is completely visible. Though the scale-space allows to
simulate scale changes, the feature scale has to be chosen in order to normalize the
support region of the feature.

While it possible to take a feature patch at different sampled scales [148], usually
obtained by the computation of a Gaussian pyramid [20, 35] for efficiency, it is
a common approach to select for each feature a characteristic scale for which a
given function shows a particular property, for instance a local extremum over the
scales [95] (see fig. 1.5). According to the results in [111], the detection of local
maxima of the Laplacian over scales is a good choice.

Figure 1.5: The same image at different scales (left) and the Laplacian (see eq.1.25)
computed in the centre of a circular window for different scale factors σ (right).
The characteristic scales detected for noise clean peaks of the Laplacian (red dots)
correspond to the yellow circles in the images

1.3.4 The Affine scale-space

The uniform scale-space described so far, can be extended to the affine scale-

space [94], which also considers affine transformations by introducing the covariance

matrix Σ of the feature patch [74], also called second moment matrix or autocor-

relation matrix. If X ∈ R
n×m is a matrix whose element Xij represents the j-th

feature of the i-th data (here a feature does not mean an image feature) the general
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expression for the covariance matrix is

Σ = (X−X)T (X−X) (1.17)

where Xij =
1
n

∑n
i=1Xij is the mean value of the j-th feature. The Gaussian kernel

becomes

gΣ(x) =
1

2πdet(Σ)
e−

x
TΣ−1

x

2 (1.18)

The covariance matrix is symmetric, thus it has positive eigenvalues and can be
diagonalized. In particular in a two-dimensional space, i.e. X ∈ R

n×2

Σ = RDRT (1.19)

where D = diag(λ1, λ2) is a diagonal matrix, R is a orthonormal matrix and λ1, λ2
are the eigenvalues of Σ. As equation xTΣx = 0, an ellipse is associated to the covari-
ance matrix, centred in the mean value of the data xc = [X1,X2]

T with axis lengths
and directions given respectively by the squared roots of the eigenvalues

√
λ1,
√
λ2

and their associated normalized eigenvectors. The affine coordinate change

x′ = Ax (1.20)

where A = D− 1
2RT , related to the Mahalanobis distance

M(x1,x2) = xT
1 Σ

−1x2 = xT
1 A

TAx2 (1.21)

with x1,x2 ∈ R
2, allows to normalize the patch with respect to affine transforma-

tions. It geometrically corresponds to rotate the patch according to the eigenvectors
of Σ and then to stretch the patch so that the eigenvalues have the same normal-
ized length. It should be noted that the translation by a vector t can be neglected,
assuming the feature centre as the coordinate origin. As shown in fig. 1.6 after this
normalization the ellipse associated to Σ becomes a circle, so that affine covariant
features become effectively affine invariant, since the stretching effects are removed.

The uniform scale-space can be seen as a particular case of the affine scale-space

Σ = σ2I (1.22)

where I ∈ R
2×2 is the identity matrix, so that replacing the uniform Gaussian gσ

with the affine Gaussian gΣ and using
√

det(Σ) instead of σ as scale factor in the
normalized derivative Li1...im(I(x), σ), all the formulas for the uniform scale-space
still hold in the affine scale-space.

A kind of covariance matrix commonly used by feature detectors [118, 69, 56,
152, 112, 3] is the autocorrelation matrix of the intensity gradient

µ (I(x), σI , σD) =

= gσI
(·) ∗

[
L
2
x(I(x), σD) Lx(I(x), σD)Ly(I(x), σD)

Lx(I(x), σD)Ly(I(x), σD) L
2
y(I(x), σD)

]
(1.23)
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Figure 1.6: The original feature patch (a) is rotated so that the axes of the ellipse
correspond to the reference coordinate axes (b) and the ellipse axes are scaled to
have the same value (c)

where σI ,σD are respectively the integration scale and the differentiation scale, which
can be associated with the outer scale and the inner scale respectively.

The Hessian matrix is also employed as covariance matrix in many feature de-
tectors [112, 5]

H (I(x), σD) =

[
Lx2(I(x), σD) Lxy(I(x), σD)

Lxy(I(x), σD) Ly2(I(x), σD)

]
(1.24)

To be noted that the Laplacian is the trace of the Hessian matrix

L (I(x), σD) = trace (H (I(x), σD)) (1.25)

1.3.5 Subpixel precision

In order to better characterize the feature point, a subpixel precision localization
can be performed. The most common approach [174] fits a parabola along both
the x and y directions by using the point neighbourhood and takes the respective
maxima as coordinates (see fig. 1.7(c)). If the initial point estimation is x = [x, y]T

then

Aw = b

A′w′ = b′
(1.26)

represent the equations of the fitted parabolas respectively on the x and y axes,
where

A =




1 −1 1

0 0 1

1 1 1


 , w =

[
a b c

]
, b =



I(x− 1, y)

I(x, y)

I(x+ 1, y)




A′ =




1 −1 1

0 0 1

1 1 1


 , w′ =

[
a′ b′ c′

]
, b′ =



I(x, y − 1)

I(x, y)

I(x, y + 1)




(1.27)
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are respectively the point coordinates on the parabolas (see fig. 1.7(b)), the parabola
coefficients and the parabola values for each axis. Solving by w and w′

w = A−1b

w′ = A′−1b′
(1.28)

the equations of the parabolas are obtained, for which the maxima can be computed,
i.e. the vertices. The final estimate of the point obtained by adding the correction
factor ∆∗ is

x′ = x+∆∗ = x+

[
−b/2a
−b′/2a′

]
(1.29)

A more sophisticated approach fits the the 8-neighbourhood of the point to a
paraboloid [140] (see fig. 1.7(d)). A linear system can be obtained starting from
the paraboloid equation as done before

a x2 + b y2 + c xy + d x+ e y + f = I(x, y) (1.30)

which can be solved by least-square since it is overdetermined using for instance
the pseudoinverse matrix. After retrieving the coefficients, the maximum can be
obtained by imposing the partial derivatives equal to 0, which yields to the new
estimate of the feature point

x′ = x+∆⋆ = x+




2 bd− ce
c2 − 4 ab

2 ae− cd
c2 − 4 ab


 (1.31)

Proposed by Lowe and Brown [17], a last method approximates the image around
the feature point x by the second order Taylor expansion

I(x+∆) = I(x) +∇T
I(x)∆+

1

2
∆HI(x)∆ (1.32)

so that by imposing the derivatives equal to zero

∇I(x) +HI(x)∆ = 0 ⇒ ∆ = −H−1
I(x)∇I(x) (1.33)

the location of the new estimate maximum x′ with respect to x is obtained

x′ = x−H−1
I(x)∇I(x) (1.34)

where the derivatives in x can be estimated numerically.

1.3.6 Affine illumination invariance

General radiometric transformations are more difficult to handle, but in the most
cases it is sufficient that features are invariant to affine illumination changes (see
fig. 1.8)

I ′(x) = aI(x) + b (1.35)
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Figure 1.7: The discrete estimation of the maximum (a) can be further refined by
fitting two different parabolas along each axis (c) by using the coordinate systems
described in (b). A better refinement can be obtained by a paraboloid fitting (d)
using a 8-neighbourhood (b). Images from [140]

where I(x) is the pixel intensity and a, b ∈ R. Invariance for image derivatives of
order n to affine illumination changes can be obtained through a division by the
first derivative [111]

∂n

∂xn
(aI(x) + b))

∂

∂x
(aI(x) + b))

=
a
∂n

∂xn
I(x)

a
∂

∂x
I(x)

=

∂n

∂xn
I(x)

∂

∂x
I(x)

(1.36)

A more general approach is to normalize the intensity value I(x) by the mean I and
standard deviation std(I) of the feature patch [113] because

I
′
= aI + b (1.37)

std(I ′) = a std(I) (1.38)

thus

I ′(x)− I ′

std(I ′)
=
aI(x) + b− aI + b

a std(I)
=
a
(
I(x)− I

)

a std(I)
=
I(x)− I
std(I)

(1.39)

1.4 Invariance between object instances and classes

Though not real transformations, in this section the feature invariance to instance

transformations and between class transformations will be examined. Both these
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Figure 1.8: The original image (a) and some results for different affine illumination
transformations (b,c)

transformations are related to detection and recognition tasks, the former is referred
to a particular instance of an object, while the latter to an object class.

Objects and their classes can be considered as entities composed from some basis
features, called visual words [153, 129, 132], which characterize their properties.

1.4.1 Object detection

First works about object detection can be traced back to Lowe [99], where after the
extraction of SIFT features, the detection is performed by using a Hough transform

approach [150], i.e. every feature increases the vote for a particular object in prede-
fined positions, orientations and scales. In [186, 27] this approach has been extended
to the local affine frame by the geometric hashing to improve the efficiency of the
search. Though these approaches work well, the computation becomes prohibitive
as the number of objects in the database increases. Another approach described
in [49] improves the detection by increasing the number of the matched features on
a candidate object while simultaneously increasing and refining the confidence of
the estimation.

Using information retrieval techniques, Sivic and Zisserman [153], proposed the
following method. They first compute the covariance matrix between normalize
feature patches and then they match the features by using the Mahalanobis distance
to finally cluster the features by the k-means [74] and obtain the final visual words.
For each object in the database the term frequency-inverse document frequency (tf-

idf) vector is computed with respect to the visual words and used whenever a query
is presented. The final best candidates are verified by using geometric constrains.
The computational efficiency of this method can be increased by the hierarchical

vocabulary tree [129], where feature vectors are hierarchically clustered into a k-way
tree of prototypes, or by the randomized forest of k-d trees [132], which allow a faster
and more efficient database construction and query search.
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1.4.2 Class recognition

Though object detection and classification are similar problems, the latter is more
challenging, since the object ownership to a class is not only related to its ap-
pearance but also to its uses and its context. The most simple approach is the
bag-of-words [87, 36], where a vocabulary of visual words is built up by a k-means
clustering, and frequency histograms between the training images and the query im-
ages are compared. Differently form the object detection, no geometric verification
is performed.

A finer approach uses the pyramid match kernel [67] to compare two collections
of feature directly, without using visual words. At each level of the pyramid, more
coarser histograms are computed (i.e. the bin size increases as the pyramid level
increases). For each level the intersection between the histograms is computed as
the minimum value between two corresponding bins and the final similarity measure
is obtained summing up the weighted intersection between the histograms of each
level, so that finer pyramid levels are more relevant (see fig. 1.9).

The spatial pyramid matching kernel [87] includes also geometric information.
Quantized pairs of interest point location and descriptor are considered as base
elements and coarser levels are obtained by merging histograms only by locations.
In this way, the representation captures the distribution of both the appearance and
the location of the interest points.

Figure 1.9: An example of the pyramid matching kernel computation for two sets
X, Y . At each level Li, i = 0, 1, 2 the bin size of the histograms H(X) and H(Y )

doubles, while the weight wi halves. The intersection between two corresponding
bins is given by their minimum, and the number of new matches Ni is the difference
of the matches found minus the matches of the previous levels. The final score
between X and Y is

∑
iwiNi. Image from [67]

A further improvement is represented by the proximity distribution kernel [98], which
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overcomes the limit given by expressing the position by absolute coordinates. The
idea is to start from triplets given by two descriptors and their relative distances
to obtain coarser histograms by merging the relative distance. A generalization of
these kernels is provide by the relaxed matching kernels introduced in [181].

Another approach to object classification is provided by the part-based mod-

els [19, 45, 34, 47], where object base elements are found and their geometric rela-
tionships measured. Different topologies for the geometric connections can be used,
with different computational impact and performances. The most tractable are the
tree model [45] or the star model [34], while the full constellation model [47] requires
a low number of nodes, i.e. object parts, to be practical. The distribution of the re-
lationships between visual words in an image can also be employed for classification,
as done by correlatons [145].

To be mentioned also some models inspired by the visual cortex system, as the
HMAX [137] and the CNN [88] (Convolutional Neural Networks), which have pro-
vided good results in classification tasks. Starting from low level layers of simple
filters, such as a Gabor filter bank [66], these models combine each layer hierarchi-
cally. Small perturbations in localizations and shapes are allowed to obtain the final
classification.
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Feature detectors

2.1 Introduction

Feature detectors are used to detect interest points. They usually not only pro-
vide information about the positions of the points but also on the shape of their
support regions. Feature detectors can be classified according to the extracted re-
gions as corner detectors and blob detectors. Obviously, edge detectors or detectors
for more specific structures also exist, for instance line detectors have been applied
successfully to wide baseline stereo matching [50], but they are out of the scope
of this thesis. A corner detector extracts corners, defined as regions of the image
with strong intensity variations along all directions. Corners usually correspond to
junctions, even if the corner detectors extract a more general class of features, such
as spots over uniform regions. A blob detector detects blob-like structures, i.e. re-
gions with uniform intensity values. The two classes of detectors are not truly well
separated: for instance the Hessian matrix was first used as a corner detector since
it finds corner points, but these are usually localized at the boundaries of uniform
regions, thus it should be considered as a blob detector [112]. Some authors [177]
use to introduce the additional class of the region detectors, which are concerned
with extraction of image regions in general, however such detectors can be usually
classified as blob detectors.

2.2 Corner detectors

2.2.1 The autocorrelation matrix properties

The first corner detector can be attributed to Moravec [118]. As shown in fig. 2.1,
checking the intensity variation along all the possible directions by a sliding window
centered on the interest point, the following cases can be distinguished:

• no relevant intensity variation along all directions, i.e. a flat region;

• a strong intensity variation along one direction, i.e. an edge in the orthogonal
direction of the intensity variation;

• a strong intensity variation along all directions, i.e. a corner.

The above considerations have been formalized by the mean of the autocorrelation
matrix [69, 101]. If

C(x) =
∑

xi∈R

[I(xi)− I(xi +∆)]2 (2.1)
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where R is the window centered in x, ∆ = t is the shift vector and xi ∈ R
2 is a pixel

inside the window, the first order Taylor expansion can be used to approximate the
translation

I(xi +∆)≈I(xi) +∇T
I(xi)

∆ (2.2)

where

∇I(xi) =
∂

∂xi
I(xi) = [dxi

, dyi ]
T (2.3)

Thus, by substituting equation 2.2 in equation 2.1

C(x) =
∑

xi∈R

[I(xi)− I(xi +∆)]2 =
∑

xi∈R

[
I(xi)− I(xi)− (∇T

I(xi)
∆)
]2

=

=
∑

xi∈R

∆T∇I(xi)∇T
I(xi)

∆ = ∆Tµ (I(x))∆
(2.4)

where µ (I(x)) is the autocorrelation matrix

µ (I(x)) =




∑

xi∈R

d2xi

∑

xi∈R

dxi
dyi

∑

xi∈R

dxi
dyi

∑

xi∈R

d2yi


 (2.5)

The autocorrelation matrix µ is symmetric thus it has positive eigenvalues λ1, λ2
where λ1 ≥ λ2 and the following relations can be derived:

• λ1 ≈ 0 and λ2 ≈ 0, the region is flat since there are no relevant intensity
variations;

• λ1 ≫ λ2 and λ2 ≈ 0, there is an edge since there is a strong intensity variation
along the direction orthogonal to the eigenvector corresponding to λ1;

• λ1 ≈ λ2 and λ1, λ2 ≫ 0, there is a corner where the directions of maximum
intensity variation are given by the eigenvectors of µ.

Moreover, since eigenvalues are invariant to rotation, the extracted feature is also
rotational invariant.

2.2.2 The Harris corner detector

Different function have been proposed to take into account the cornerness relation
given by the eigenvalues of the autocorrelation matrix. Considering that for a generic
matrix the product of its eigenvalues is its determinant while their sum corresponds
to its trace, Harris e Stephens proposed the function [69]

H = det(µ)− κ trace2(µ) (2.6)

since the determinant is mostly sensible to corners (see fig. 2.2(d)), while the trace is
sensible to both corners and edges (see fig. 2.2(e)). The linear coefficient κ is chosen
empirically and feasible values usually range in [0.04, 0.06] [112]. A cornerness map

for all points in the image is computed and local maxima greater than a threshold
value H > thH are selected, as described in fig. 2.2(f).
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Figure 2.1: A flat region is present when the intensity variation of a sliding window
along all directions is negligible (a). For edges the intensity variation is relevant
only along the direction orthogonal to the edge (b). When the intensity variation is
strong along all direction there is a corner (c)

2.2.3 The Förstner detector

The measure F similar to H was proposed by Förstner [56] (see fig. 2.2(g))

F =
det(µ)

trace2(µ)
(2.7)

C = 1−
(
λ1 − λ2
λ1 + λ2

)2

=
4 det(µ)

trace2(µ)
(2.8)

where C measures the eccentricity of the ellipse associated with the autocorrelation
matrix µ, with axes given by its eigenvectors (see fig. 2.2(h)). A point is selected
as interest point if both F > thF and C > thC where thF is usually chosen in
[0.5, 1.5]F , with F the mean value of F over the image, and C ranges in [0.5, 0.75].
The SFOP (Scale-invariant Feature OPerator) detector [55] is an extensions in the
scale-space of the Förstner detector which unifies different types of features within
the same framework by using the general spiral feature model by Bigün [15].

2.2.4 The Shi and Tomasi detector

Shi and Tomasi [152, 165] proposed to use the minimum eigenvalue (see fig. 2.2(i))

S = λ2 (2.9)

and to take the local maxima greater than a threshold S > thS .

2.2.5 The adaptive non-maximal suppression

Most feature detectors look for local maxima in the 8-neighbourhood to extract
the feature. This can lead to an irregular distribution of the features, for instance
there can be more features in regions of higher contrast. To alleviate this problem
the adaptive non-maximal suppression introduced in [18] can be used. A point is
selected as feature if it attains to a local maximum which is significantly greater
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Figure 2.2: The original image (a) and the derivatives of the luminance map Ix,
Iy (b,c). The determinant det(µ) (d) and the squared trace trace2(µ) (e) of the
autocorrelation matrix used to compute the cornerness function H (f). The maps
F , C used by the Förstner detector (g,h). The map of minimum eigenvalue S used
by Shi and Tomasi (i). Brighter points of H, F and S indicate higher cornerness
values

than all its neighbours within a radius r (see fig. 2.3). The adaptive non-maximal
suppression can be done efficiently using a sorted list [161].

In a similar way in [140] instead of using a global threshold, the image is divided
into different equal sized subregions and an adaptive threshold is applied for each
subregion in order to optimize the point distribution, avoiding an unfavourable
accumulations of features.

2.2.6 Scale and affine extensions to corner detectors

The autocorrelation matrix can be easily extended to the scale-space by using the
equation 1.23, where the window size is given in terms of the integration scale
σI , while the image resolution is computed according to the differentiation scale
σD. Features at different scales can be extracted by varying σI , σD, where the
ratio between the two standard deviations is kept fixed to reduce the computational
complexity, i.e. σI = sσD with s ∈ R. A finer approach is done by the Harris-
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Figure 2.3: The strongest 250 corners (left) and 500 cornes (right), as best local
maxima (top) and using the adaptive non-maximal suppression (bottom) by de-
creasing the radius r. It can be seen that in the latter case features are better
distributed along the image. Images from [18]

Laplace detector [112] by computing the characteristic scale given by the Laplacian
of the image (1.25). For each Harris corner (x, σ) extracted at scale σ, the local
maximum over a set of scales near the current scale, i.e. σ = [0.7, . . . , 1.4]σ, is
searched and the local neighbourhood of x is inspected to maximize the function H
at the new scale. These steps are repeated until no change in the position or in the
scale occurs (see fig. 2.4).

Corner detection can be extended in similar way in the case of the affine scale-
space [95, 3, 112], where the shape of the corner patch is obtained from the ellipse
associated to the autocorrelation matrix µ. The Harris-affine detector [112] is the
most popular affine covariant Harris detector. For each extracted Harris corner
(x, σI , σD), starting in the uniform coordinate space (see eq. 1.22), the the following
steps are repeated until convergence (see fig. 2.5):

• normalize the coordinate space as described by equation 1.20 where the co-
variance matrix Σ is given by the autocorrelation matrix µ;

• update σI to the the best integration scale as done for the Harris-Laplace
method;

• select the differentiation scale from [0.5, . . . , 0.75]σD which maximizes the
ratio λ2/λ1 for µ;

• update the corner localization, by choosing from the point neighbours which
maximized the H (2.6) as in the Harris-Laplace detector.
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Figure 2.4: Initial points selected at different scales (top) and the final points selected
by the Harris-Laplace detector by using the characteristic scale given by the image
Laplacian (bottom) for different image scale factors (left, right). Images from [111]

Figure 2.5: The affine refinement steps performed by the Harris-affine detector (left
to right) for two corresponding regions (top, bottom). Images from [111]

Another strategy which considers clusters of Harris corners is followed by the MSCC
(Maximal Stable Corner Cluster) detector [60]. These clusters are obtained by
building the MST (minimum spanning tree) [31] of the extracted features and then
by cutting the edges of the MST for different increasing thresholds. The connected
components obtained for each threshold represent the final features. The feature
patch shapes are obtained by using the covariance matrix given by the coordinates
of the corners which form a cluster (see fig. 2.7).

2.2.7 Detectors based on the Hessian matrix

The Hessian matrix (eq. 1.24) has also been used as a corner detector [5]. When a
surface is expressed as a Monge patch [30], i.e. by a triple (x, y, I(x, y)), as an image
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Figure 2.6: Features detected by the Harris-Laplace detector (left) and by the Harris
affine detector (right). Images from [177]

Figure 2.7: Features detected by the MSCC detector (blue ellipses) by clustering
the Harris corners (red crosses) on two different views of the same object. Images
from [60]

commonly is, the Gaussian curvature [30] of a point is

K = κ1κ2 =
det(H)

(1 +M)2
(2.10)

where κ1, κ2 are the principal curvatures, H is the Hessian and M is the squared
gradient magnitude. It is known from the differential geometry that

• κ1, κ2 > 0 for an elliptic point ;

• κ1, κ2 = 0 for a parabolic point ;

• κ1, κ2 < 0 for a hyperbolic point ;

moreover the denominator of eq. 2.10 is always positive and can be neglected in
this classification. It was shown [40] that on both the edge sides of a corner (here
a corner means a junction) there is an elliptic and an hyperbolic part and only
an elliptic maximum (positive maximum along all directions) with no hyperbolic
maxima (negative minima along all directions). Moreover the use of the Hessian
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matrix is robust in detecting corners but not in their localization, as the point
location is pushed away from the corner. This make the Hessian based detectors
more appealing to detect blob structure near corners.

2.2.8 Junction detectors

Another junction detector was proposed by Kitchen and Rosenfeld [81]. They first
detect the edges on the image by a non-maxima suppression [174] on the gradient
magnitude and next the cornerness function is computed as the the product of the
curvature for a plane curve times the gradient magnitude

K =
LxxL

2
y − 2LxyLxLy + LyyL

2
x

L2
x + L2

y

(2.11)

This corner detector is not robust to noise as it relies on second-order derivatives
and has a poor localization rate [40], however it was successively extended in the
first example of automatic scale selection by Lindeberg [93]. In the first phase the
scale-space formulation of K is used to locate the possible corner candidates and in
the next step the localization of the point x is improved iteratively by solving

min
x∈R2

∫

x′∈R2

D(x,x′)2w(x′ − x) dx′ (2.12)

where w is a weighting function, for instance a Gaussian, and D is the distance
function (see fig. 2.8). The minimization is performed by considering that the di-
rection, given by a point on the the edge of a corner and the centre of the corner
itself, should be perpendicular to the edge gradient in that point, i.e. D = 0 (see
fig. 2.8) for

D(x,x′) = ∇T
I(x′) (x− x′) (2.13)

as proposed by Förstner and Gülch [56].

Figure 2.8: The initial localization x0 of the corner is refined using eq. 2.12 obtaining
the final estimate x1. Image from [93]

A more sophisticated approach was the Kona (corner in Hindi) detector [130], which
fits a feature patch to the best piecewise constant junction model (see fig. 2.9) by
using the dynamic programming paradigm.
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Figure 2.9: Initial image patches detected by Kona (top) and the final junction
estimations (bottom). Image from [130]

2.2.9 Corner detector based on kernel masks

Another class of corner detectors is based on the difference between the intensity
values of the points within a kernel mask and its centre [154, 172, 141]. These
detectors can detect other features more than corners and do not rely on derivatives.
Moreover, they are very fast, with good results on synthetic test images but they are
less performing on real data and they are not affine invariant. The SUSAN (Smallest
Univalue Segment Assimilating Nucleus) detector [154], places a circular mask R
centred on the point x with radius t (see fig. 2.10) and computes the following
function

N(x) =
∑

xi∈R

e
(I(xi)−I(x))6

t (2.14)

The final cornerness function S is

S(x) =

{
thg −N(x) if N(x)− thg < 0

0 otherwise
(2.15)

where thg is the threshold value used to select the corners.

Figure 2.10: According to the percentage of the points inside the kernel mask R
with intensity values close to that of the central point x inside the mask, the SUSAN
detector can classify a region as flat zone (a,c,e), as a corner (b) or as an edge (d).
Image from [154]
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In a similar way the FAST (Features from Accelerated Segment Test) detector [141],
considers a point as a corner if there is a predefined number of continuous pixels
with intensity value less than that of point in the centre of the kernel mask. The
detector proposed by Trajkovic and Hedley [172] uses opposing pixels on the kernel
plus the central kernel pixel. If xi,x

′
i are the opposing pixels on the diameter of the

kernel mask R centered in x (see fig. 2.11), the cornerness function

T (x) = min
xi∈R

(I(xi)− I(x))2 +
(
I(x′

i)− I(x)
)2

(2.16)

is low for plane regions and edges, as shown in fig. 2.11, however this detector is not
robust to noise, though it is computational efficient.

Figure 2.11: The Trajkovic detector uses the information provided by opposing
points p, p′ in the mask and its central point c on a line segment l. If only one
segment exists for which the intensity values of p, p′ and c are similar, the region
is on an edge (a,c), while in the case of a flat region this holds for almost all the
segments (b,d). Lastly, if the value of the central point is similar only to one of its
extrema point values for the majority of segments then a corner is detected (e)

2.3 Blob detectors

2.3.1 The MSER detector

The MSER (Maximaly Stable Extremal Regions) detector [107] is one of the most
popular affine covariant blob detector (even if in some new classification it is reported
as a region detector, since it does not only detect blobs but more general uniform
shapes [177]). It is a watershed based method [150] which sequentially thresholds the
image. The most stable connected components with respect to different thresholds
are taken as feature regions (see fig. 2.12). In particular a region Ri is considered as
a feature if for all its n nested connected component R1, . . . ,Ri, . . . ,Rn, obtained
for different threshold values, it attains to a local minimum for the function qi =

|Ri+∆−Ri−∆|/|Ri|, where |·| is the cardinality of the connected component in pixels
and ∆ ∈ N is a user defined parameter. The final feature patch shape is obtained by
using the covariance matrix given by the coordinates of the connected component
(see fig. 2.13). The MSER detector is very robust to affine transformation [114],
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especially for non textured images, but it suffers from blurred images. An extension
to resolve this issue was proposed in [54], where the MSER algorithm is executed at
different levels of a scale pyramid, while another extension was proposed in [53] to
improve the detection for colour images.

Figure 2.12: Original image (a) and sequential thresholds (b-d). It can be noted that
the image patch highlighted in the original image is very stable across the different
thresholds

Figure 2.13: Original features detected by the MSER (left) and the associated el-
liptical patches (right). Image from [177]

The MSER detector has also been employed in the local affine frame [108]. Given
three affine covariant points for each MSER feature, for instance the associated el-
lipse centre and the two axes scaled to the unit according to their ratio, the local
affine frame is obtained by an affine normalization which maps the point to a canon-
ical frame (see fig. 2.14). For each local affine frame L a triplet of points associated
with another MSER feature which is close to L in the affine transformation inducted
by L itself is considered using polar coordinates. The descriptor so obtained has
been used in object recognition with geometric hashing [27] as an extension of the
Hough transform to vote for the model supported by L.

2.3.2 Hessian based blob detectors

One of the first blob detector was proposed by Lindeberg [92]. The points (x, σ) in
the scale-space which are local maxima or minima for the Laplacian of a Gaussian
L (see eq. 1.25) are selected as blobs. As it can be seen from fig. 2.15 the Laplacian
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Figure 2.14: Corresponding features extracted by the MSER detector (left column),
detected local affine frames using bi-tangants, i.e. the line segments of convex hull
bridging concavities (central column), and the final normalized frames (right col-
umn). Images from [108]

kernel gives a positive, negative strong response respectively to a light, dark circular
blob. Another similar function proposed in [95] is the scale-space determinant of
the Hessian det(H), which was first introduced as a corner detector by Beaudet [5].
As it can be seen from fig. 2.15, the Laplacian, i.e. the trace of the Hessian matrix,
and the determinant of the Hessian, correspond to similar filter, where the latter is
more peaked.

Figure 2.15: The Laplacian (left) and the determinant of the Hessian (right) of a
Gaussian kernel

Several affine scale-space detectors have been proposed [95, 3, 112, 107, 176, 76]
that try to iteratively refine the scale by using the Laplacian L as the characteristic
scale and the Hessian determinant det(H) as the covariance matrix Σ. For instance
the Hessian-Laplace [112] and the Hessian-affine [112] detectors (see fig. 2.16) are
the equivalent blob detectors of the Harris-Laplace and the Harris-affine corner
detectors respectively, where the cornerness function H (see eq.2.6) is replaced by
det(H). Both the detectors have been proved to give robust and stable features with
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respect to the scale and to affine transformations respectively.

Figure 2.16: Features detected by the Hessian-Laplace detector (left) and by the
Hessian affine detector (right). Images from [177]

2.3.3 The SURF detector

The SURF (Speed Up Robust Feature) detector [4] searches for local maxima of
the Hessian determinant in the scale-space (see fig. 2.17). For each scale the Hes-
sian determinant is computed efficiently by using a discrete approximation of the
Gaussian second order partial derivatives L̂xx, L̂yy, L̂xy (see fig. 2.18), which can be
done very fast by integral images [182]. A proper weight w ≈ 0.9 is introduced to
correct the Gaussian partial derivatives in order to compute a better approximation
det(Happrox) of the Hessian determinant

det(Happrox) = L̂xxL̂yy − (wL̂xy)
2 (2.17)

Differently from other approaches, the scale is not obtained by decreasing the image
size after a proper smooth [20, 35], but by increasing the discrete kernel dimension.
The final localization of the maxima is improved by using eq. 1.34 (see fig. 2.19).

Figure 2.17: Features detected by the SURF detector. Image from [4]
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Figure 2.18: Gaussian second order partial derivatives (left), their quantized versions
(center) and the approximations used by the SURF detector (right). The partial
derivatives Lyy and Lyx are obtained by rotating the corresponding kernels by 90◦

degrees. Image adapted from [4]

Figure 2.19: While it is the common approach to downsample the image, holding
the kernel dimension fixed to be fast (left), the SURF detector increases the kernel
dimension while the image size remain fixed by integral images (right). Image
adapted from [4]

2.3.4 The SIFT detector

The most popular blob detector is definitively the SIFT (Scale Invariant Feature
Transform) detector [100]. It is based on the DoG (Difference of Gaussians) operator
D computed on an scale pyramid image representation

D = (gσ − gσ′)∗ (2.18)

where ∗ mean the convolution and σ, σ′ ∈ R. The difference of Gaussians can be
seen as an approximation of the Laplacian of Gaussian L because from the diffusion
equation [100]

∂

∂σ
gσ = σ∇2 gσ =

L
σ

(2.19)

by finite difference approximation it follows that

L
σ

=
∂

∂σ
gσ≈

gkσ − gσ
kσ − σ ⇒ gkσ − gσ ≈ (k − 1)L (2.20)
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where L is intended to be scale-space normalized. The difference of Gaussians can
be computed efficiently by smoothing each image octave with different Gaussian
kernels and then by subtracting them (see fig. 2.20). Local scale-space maxima are
detected and their localization improved by using eq. 1.34.

Moreover in order to drop false features due to edges, since the eigenvalues
λ1, λ2 = κλ1 of H, with λ1 > λ2, are proportional to the principal curvatures of the
image, the candidate features can be discarded as done for the cornerness response
H (see eq. 2.6), by a threshold ths on the eigenvalue ratio κ

trace(H)2
det(H) =

(λ1 + λ2)
2

λ1λ2
=

(λ1 + κλ1)
2

κλ21
=

(1 + κ)2

κ
> ths (2.21)

Though it is only rotation and scale invariant, the SIFT detector is widely used
because it is computational efficient and it provides good results, even for relatively
high perspective transformations (see fig. 2.21). An affine invariant extension of
the SIFT detector has been proposed as for other detectors. The ASIFT (Affine
SIFT) [120] detector simulates the distortions caused by a variation of the direction
of the camera optical axis by transforming artificially the image and then executes
the SIFT detector for each warped image.

Figure 2.20: For each octave, obtained by smoothing and downsampling the image,
the DoG is computed by the difference between successive smoothed versions of the
octave. Image adapted from [100]

To be mentioned also the work described in [175], where two feature operatorsG1, G2

have been discovered by using genetic programming [2]

G1(x) = (g3 − g2)∗I(x)
G2(x) = g1 ∗ det(HI(x))

(2.22)

As it can be seen, the former is a difference of Gaussians, while the latter is the
Hessian determinant convolved with a Gaussian kernel. They both provide another
clue on the goodness of the DoG and the det(H) operators as detectors.
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Figure 2.21: Features detected by the SIFT detector. Image from [177]

2.3.5 Other blob detectors

Another blob detector similar to the MSER was proposed in [176]. The IBR (Inten-
sity Based Region) detector [176] (see fig. 2.22) starts from an image extremum x0

and for each ray xr,θ, with radius r along the direction θ exiting from x0, evaluates
the function

Tr,θ(x0) =
abs (I(xr,θ)− I(x0))

max

(
1

r

∫ r
r′=0 abs

(
I(xr′,θ)− I(x0)

)
dr′, ε

) (2.23)

where ε is a small value to avoid an accidental division by zero. The radii for
the possible directions θ for which Tr,θ gives a maximum are connected to form
the boundaries of the feature patch and the final elliptic region is obtained by the
covariance matrix of the edge coordinates (see fig.2.23).

Figure 2.22: Features detected by the IBR detector. Image from [177]

Though they are not pure blob detectors, the EBR (Edge Based Region) detec-
tor [176] and the salient region detector [76], should also be mentioned. The EBR
(see fig. 2.24) starts by extracting Harris corners, to be used as anchor points, near
edges obtained by the Canny edge detector [21]. For each anchor point p two points
p1,p2, move at the same speed on the edge in opposite directions, drawing a family
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Figure 2.23: Starting from an intensity extremum, the function T is computed
along each ray r. Points along the rays for which maxima of T are connected (red
boundary) and the final corresponding feature ellipse is extracted. Image adapted
from [176]

of parallelograms. A set of functions related on the centre of mass q of the par-
allelogram which measure how much it is pushed away from the diagonals of the
parallelogram has been designed by the authors so that the extrema of the func-
tions are affine invariant. When the points p1,p2 move away and extrema for any of
these functions are met, the corresponding parallelogram is taken as a feature (see
fig. 2.25).

Figure 2.24: Original features detected by the EBR detector (left) and the associated
elliptic patches (right). Images from [177]

The salient region detector characterizes features by the entropy (see fig. 2.26).
Given the probability p(v,x, σ) of the intensity value v ∈ R

+ in the region centered
in x at scale σ, the entropy of the region is

Hσ(x) = −
∫

v∈R+

p(v,x, σ) log2 p(v,x, σ)dv (2.24)

A further weight is required to discriminate between unstructured random region
and meaningful region

Wσ(x) = σ

∫

v∈R+

abs

(
∂

∂σ
p(v,x, σ)

)
dv (2.25)
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Figure 2.25: Given a patch (left) and its affine transformation (right), for each
anchor point, respectively p and p′, two points p1,p2 and p′

1,p
′
2 move at the same

speed on the edge in opposite directions. A set of functions related on the centres of
mass, respectively q, q′ of the corresponding parallelograms are computed. When
the points move away and an extremum of any of these functions is met a feature
is detected. Image from [176]

since when the neighbourhood of a region with random values increases, there should
not be variations in the probability of the intensity values (see fig. 2.27). The saliency
function is

S = Hσ′Wσ′ > ths (2.26)

where σ′ is the scale value for which the function H attains to a maximum. After ap-
plying the global threshold ths, points close in the scale-space are clustered together.
As proposed in its first implementation, the salient detector is not affine invariant,
but it has been extended by iteratively refining the scale and the shape of the region
until no variation in both scale and position is present. While the best scale search
is achieved by searching for the maxima of H, the (elliptic) shape is searched by
applying some small deformation and by retrieving the one which maximizes W .
The salient detector performances are lower than those of other detectors [114] but
it has successfully been used in recognition tasks [77].

Figure 2.26: Features detected by the Salient region detector. Image from [177]
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Figure 2.27: Original image (top) and a random permutation of its pixels (bottom).
For a meaningful region there is a fast variation of the entropy as the scale increases,
which is not present for a patch of random points. Image from [76]





Chapter 3

Feature descriptors

3.1 Introduction

A feature descriptor for the k-th feature Fk is a numeric vector which embodies
feature data information Fk = [fk1, . . . , fkn]

T ∈ R
n. The descriptor vectors are

used to compare features by a similarity/dissimilarity function d(F1,F2). A good
feature vector should be compact, discriminant and robust to noise. The simplest
feature detector is the feature patch itself, where patches can be compared by the
simple SSD (Sums of Squared Distance). However, the use the patch as descriptor
is not a good choice because it has an high dimension, it is very sensible to small
variations and it is very redundant.

The state of the art descriptors can be divided into the following main classes:
distribution based descriptors, differential descriptors and spacial-frequency based

descriptors.
Spacial-frequency descriptors include texture analysis techniques such as Gabor

filters [66], DCT (Discrete Cosine Transform) [66] or wavelets [66], however their
performances are relatively poor in comparison to other descriptors.

3.2 Distribution based descriptors

3.2.1 Patch normalization

Distribution based descriptors are mainly based on the histograms which represent
the distribution of some particular data relationship between features. In order to
compute the distribution, the feature patch has to be normalized. The normalization
of the intensity values by mean and standard deviation makes the patch invariant
to affine illumination changes (see Sec. 1.3.6). The translation factor is removed by
fixing the coordinate origin into the feature central point, while for affine invariant
detector the relative covariance matrix Σ is used to remove the shear (see Sec. 1.3.4).
The affine coordinate change described in eq. 1.20 is applied to the covariance matrix,
so that the elliptic neighbourhood is normalized to a circular one and the scale
information is used to normalize to a unit scale. More in detail, the circular patch
radius of the normalized feature, usually chosen to be 3σ where σ is the feature
scale, is mapped to the radius of the normalized patch r, usually 20 pixels, that is

x′ =
r

3σ
x (3.1)
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3.2.2 Orientation normalization

The orientation invariance is obtained by a rotation of the patch toward the direc-
tion of the dominant gradient orientation (see Sec. 1.3.2). The most common used
approach was proposed by Lowe [100]. The gradient orientation histogram of the
patch R, weighted by the gradient magnitude and by a Gaussian window centered
in the patch center xc, is computed

hθ =
∑

x∈Rθ

gσ(x− xc)
√
L2
x (I(x)) + L2

y (I(x)) (3.2)

where Rθ is the set of points in the normalized patch with gradient orientation
θ = arctan(Ly/Lx). The dominant gradient orientation is given by

Θ = argmax
θ

hθ (3.3)

In order to increase the robustness of the estimation, Lowe proposes in its original
paper to also take the orientations for which the histogram bins are within the 80%

of the maximal bin and to use a parabolic fitting (see Sec. 1.3.5) to increase the
accuracy of the estimation, however these last steps are usually neglected [113].

Another approach was proposed by Mikolajczyk [111], which uses the gradient
orientation in the feature centre corrected by the average gradient orientation of the
local neighbourhood

Θ′ = θxc −
∑

x∈R gσ/3(x− xc) (θxc − θx)∑
x∈R gσ/3(x− xc)

(3.4)

After the patch is fully normalized the descriptor is computed.

3.2.3 The rank and the census transforms

The first distribution based detectors can be found in [188] where the rank and the
census transforms were introduced. The rank transform is the number of pixels q

in the feature patch R which have an intensity value greater than the value of the
central pixel c

R(F) = |{q : I(q) > I(c) ∧ q ∈ R}| (3.5)

where | · | is the cardinality of the set (see fig. 3.1). The concatenation
⊕

of the
boolean values given by the evaluation of the inequality used for the rank transform

B(p,q) =

{
1 if I(q) > I(c)

0 otherwise
(3.6)

can be used instead to obtain the census transform (see fig. 3.1)

C(F) =
⊕

q∈R

B(q, c) (3.7)

which can be evaluated by using the Hamming distance [74].
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Figure 3.1: Given a pixel, highlighted in red, and a window centered in it (left),
each pixel can be labelled according to the sign of the difference between its value
and that of the central pixel (right). The rank transform counts the number of pixel
with the same label of the central pixel, while the census transform is the ordered
concatenation of the labels of each pixel

3.2.4 Spin images

Another approach is the spin image [85], originally developed for three-dimensional
range images [75]. A spin image is a two-dimensional soft histogram where one
dimension is given by the distance from the centre of the feature patch and the
other one by the range of the intensity values (see fig. 3.2)

HP (d, v) =
∑

q∈R

e
−
(

‖q−c‖−d

2σ2 +
I(q)−v

2σ′2

)

(3.8)

where ‖ · ‖ is the Euclidean distance and σ, σ′ are the smoothing factors. The final
descriptor is obtained by concatenating the histogram bins for the radius set D and
the orientation set V

P (F) =
⊕

i∈D,j∈V

HP (d, v) (3.9)

Figure 3.2: A feature patch (left) and the corresponding spin image (right). The
bin locations of some pixels, according to their intensity value I and the distance r
from the centre, are highlighted. Image adapted from [85]
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3.2.5 Shape context

The shape context was proposed in [11]. It is a three-dimensional histogram of
locations and orientations of edge points. The bins are arranged into a log-polar grid,
which simulates the human eye behaviour [184]. Each point in the bins is weighted
by its gradient magnitude and the gradient orientation of the central point in the
grid is used as the reference orientation (see fig. 3.3(a-f)). To be mentioned that the
shape context descriptor has been used in a more sophisticated approach to recognize
deformation in objects [11], where correspondences are found by solving the bipartite
graph matching problem [31] and by obtaining the best shape transformation on the
thin plate model [43] (see fig. 3.3(g)).

Figure 3.3: Two similar shapes (a-b) and the log-polar grid used by the shape
context descriptor (c). The two-dimensional histograms (d-f) are respectively the
shape context representations of the points 1-3. The thin plate model is used to
compute the best transformation between the two shapes (g). Image from [11]

3.2.6 The SIFT descriptor

The SIFT descriptor [100] introduced by Lowe is nowadays the most popular feature
descriptor. The feature patch, weighted by a Gaussian window centered in the patch
xc, is subdivided by a Cartesian grid and for each cell Rk of the grid an histogram
of gradient orientations, weighted by the gradient magnitudes, is computed (see
fig. 3.4)

HS(k, θ) =
∑

xi∈Rk,θ

gσ(xi − xc)
√
L2
x (I(xi) + L2

y (I(xi)) (3.10)
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where Rk,θ is the set of the points in the k-th cell with gradient orientation θ. In
order to obtain a smoothed histogram Lowe proposes to use a trilinear interpolation
on the bin dimensions. Each bin entry is multiplied by a weight of 1 − d for each
dimension, where d is the distance of the point sample from the bin centre. The
distance d is measured in units of the histogram bin spacing [100]. In most other
implementations the patch is instead convolved with a small Gaussian kernel g1 [113].
The typical size of the grid is 4× 4 for 8 directions so that the resulting histogram
size is 4× 4× 8 = 128. The histogram is then normalized to the unit to remove the
effect of affine illumination transformations. Moreover, to further remove non linear
illumination changes due to camera saturation or surface properties, a threshold on
each bin is applied so that each normalized bin cannot exceed 0.2 and the histogram
is normalized to the unit again.

Figure 3.4: The feature patch is divided by a 4× 4 grid and the gradient magnitude
is weighted by a Gaussian window (left). For each cell grid the gradient orientation
histogram is computed (right). Image adapted from [100]

Many extensions of the SIFT descriptor has been proposed in the last decade. The
PCA-SIFT descriptor [78] uses the PCA (Principal Component Analysis) [74] to
reduce the descriptor dimension and remove useless data; other data reduction
methodologies have also been applied to the SIFT [24, 72] (see Sec. 4.2.2). The
GLOH (Gradient Local Orientation Histogram) detector [113] uses a log-polar grid
to compute a histogram of size 272 which is successively reduced by the PCA to
128. Also overlapping grid cells have been employed [37], which seem to improve
the descriptor robustness to scale (see fig. 3.5). The search of the best standard
deviation for the gradient computation has also been performed in [121] by using
the Gabor filters. The RIFT (Rotational Invariant Feature Transform) detector [85]
uses concentric rings as bins and obtains the rotation invariance by computing the
orientation at each point relative to the direction pointing outward from the center,
avoiding the dominant gradient orientation estimation (see fig. 3.6).
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Figure 3.5: A comparison between the SIFT descriptor (top) and the irregular ori-
entation histogram binning (bottom). The descriptors are computed on the original
feature patches (first, second columns). By rescaling the second patch (third col-
umn) it can be noted a better overlap between cells for the irregular binning method
(fourth column). Images from [37]

3.2.7 The DAISY descriptor

Another fast descriptor which has been employed in dense map estimation with
good result is the DAISY descriptor [164]. It uses a circular grid with small overlap
between cells and, to improve the descriptor robustness, circular cells of increasing
radius, weighted by a Gaussian window. The name DAISY is due to its shape (see
fig. 3.7). For each cell the gradient orientations weighted by the gradient magni-
tudes are computed and each cell histogram is normalized to the unit. The DAISY
descriptor can be densely computed on the image very efficiently. More in detail,
the gradient along the axis directions are first computed using the kernels [−1 1],
[−1 1]T to obtain the gradient along the direction θ (usually there are 8 directions)
as a linear combination

∂

∂θ
I = cos θ

∂

∂x
I + sin θ

∂

∂y
I (3.11)

The value of a bin in the direction θ for a particular grid cell is just the value of the
convolution in the cell centre of the gradient map θ with a Gaussian kernel where
the standard deviation is given by the cell radius. A dense computation can then
be achieved efficiently by using successive convolutions on the gradient orientation
maps.
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Figure 3.6: A feature patch (left) and the corresponding RIFT descriptor (right).
For each pixel the corresponding bin is given by its distance from the centre r and its
gradient orientation θ. The reference orientation is given by the direction outward
from the center. Bin locations of some pixels are highlighted. Image from [85]

Figure 3.7: The grid cells used by the DAISY descriptor. It can be noted that there
is a small amount of overlap between adjacent cells. Image from [164]

3.3 Other descriptors

3.3.1 Generalized color moment

Other descriptors to be mentioned are the invariants up to second order based on
the generalized color moments with order p + q and degree a + b + c introduced
in [116]

Mabc
xy =

∫∫

(x,y)∈R
xpyqRa(x, y)Gb(x, y)Bc(x, y)dxdy (3.12)

where R(x, y), G(x, y), B(x, y) are the three color values for the pixel (x, y). The
generalized moments characterize the shape, the intensity and the color distribution
in the feature neighbourhood.

3.3.2 The geometric blur

The geometric blur [12, 13] is a smoothed version of the signal around a feature
point, blurred by a spatially varying kernel. The geometric blur version of a patch
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centred in xc is defined as

Bxc(x) = I∗gα‖x‖+β(xc − x) (3.13)

The final descriptor is made up of sampled points of the geometric blur of the patch
on a log-polar grid (see fig. 3.8).

Figure 3.8: A feature patch (left) is extracted and its geometric blur is computed
(right), where the patch centre is highlighted by a red dot. The descriptor vector
is obtained by sampling only the geometric blur in the location highlighted by the
dots. Image from [12]

3.3.3 Differential descriptors

Differential descriptors arise from the Taylor series approximation of a function

I(x0 + x, y0 + y) = I(x0, y0) + x
∂

∂x
I(x0, y0) + y

∂

∂y
I(x0, y0)+

+ . . .+
N∑

i=1

xpyN−p ∂N

∂xp∂yN−p
I(x0, y0) +O(xN , yN )

(3.14)

so that the derivatives can be seen as the fingerprints of the function in a local
neighbourhood. The local jet J N for a scale factor σ is defined as a set of local
derivatives up to order N [83]

J N (I(x), σ) = {Li1,...,in (I(x), σ) : n = 0, . . . , N ; ik ∈ {x, y}; k = 1, . . . , n} (3.15)

The derivatives can “be steered” along any direction θ as described in [62] using the
components of the local jet

Lθ = Lx cos θ + Ly sin θ (3.16)

and by iterating

Lθ2 = Lxx cos
2 θ + Lxy cos θ sin θ + Lyx cos θ sin θ + Lyy sin

2 θ =

= Lxx cos
2 θ + 2Lyx cos θ sin θ + Lyy sin

2 θ
(3.17)
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that is

Lθn =
n∑

k=0

(
n

k

)
Lxn−kykcos

n−kθ sink θ (3.18)

where
(
n
k

)
is the binomial coefficient. Illumination invariance can be easily achieved

by using eq. 1.36. Moreover, the directional derivative of n-th order can be rep-
resented by a combination of the n + 1 basis directional derivative Lθni,n

[62], with
θi,n = iπ/(n+ 1) + θg where i = 0, . . . , n and θg is an orientation related to the
image structure. The following feature vector of length 12 can be used [62, 111]

[
Lθ20,2

Lθ0,2

, . . . ,
Lθ22,2

Lθ2,2

,
Lθ30,3

Lθ0,3

, . . . ,
Lθ33,3

Lθ3,3

,
Lθ40,4

Lθ0,4

, . . . ,
Lθ44,4

Lθ4,4

]
(3.19)

Differential invariants to rotation combining the local jet have been introduced in [83,
162]
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(3.20)

they can also be made invariant to affine illumination changes by eliminating the
first two components and by dividing the other invariants by a proper power of the
second component, i.e. the squared gradient magnitude.

A complex bank of filters, similar to the Gaussian derivatives is applied in [3, 146]
instead

K(m,n) = (x+ iy)m(x− iy)ngσ(x, y) (3.21)

the effect of a rotation by θ on the filter is a multiplication by ei(m−n)θ. For all the
value c = m− n the filters give the same response and for different values of c they
are orthogonal, so an orthonormal filter bank is obtained. The filter bank differs
from the Gaussian derivatives by a linear change of coordinates in the filter response
space. The magnitude of response is not affected by the transformations, but only
the phase. The authors obtain 16 filters by combining m and n which avoid the
problems related to the estimation of a dominant orientation of a local feature.

3.3.4 The self-similarity descriptor

The self-similarity descriptor [151] has been used for template matching. The SSD
between a small neighbourhood of a point xc (tipically 5 × 5 pixels) and the sur-
rounding region R is computed by obtaining the correlation surface

Sxc(x) = e
SSD(x,xc)

max(σnoise,σauto(x)) (3.22)
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where x ∈ R and σnoise is a constant that corresponds to acceptable photomet-
ric variations, while σauto(x) takes into account the patch contrast and its pattern
structure. The correlation surface is then mapped into a log-polar grid centered
in xc and the maximum value in each grid cell is taken to form the final descrip-
tor vector (see fig. 3.9). Self-similarities are treated as local image properties and
are accordingly measured locally. Moreover, the log-polar representation accounts
for local affine deformations in the self-similarity descriptors while by choosing the
maximal correlation value in each bin, the descriptor becomes insensitive to the
exact position of the best matching patch within that bin [151]. The descriptor is
computed densely on the whole image and through a modified version of the en-
semble matching algorithm [151], which employs a probabilistic star graph model.
This descriptor has been reported to provide good results in the template matching
tasks.

3.3.5 The SURF descriptor

Similar to the SIFT, the SURF descriptor [4] uses a Cartesian grid but instead of
computing a gradient orientation for each grid cell, the Haar wavelet [150] along the
directions of the axes are computed. For each direction the sums of their values and
of their absolute values are retained to obtain the descriptor.

Figure 3.9: Two similar images (left) and the self similarity descriptors for the point
highlighted by the blue squares (right). Image from [151]
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Feature similarity distances

4.1 The standard approaches

The choice of the right similarity/dissimilarity measure between two feature descrip-
tor vectors is a well discussed topic. The Minkowski distance of order m

Lm(F1,F2) =

(
n∑

i=1

|f1i − f2i|m
)1/m

(4.1)

is the most common choice. In particular, the Manhattan distance, the Euclidean

distance and the Chessboard distance respectively for m = 1, 2,∞ are commonly
used. Another common similarity measure derived by statistics is the Chi squared

distance

χ2(F1,F2) =
n∑

i=1

2(f1i − f2i)2
f1i + f2i

(4.2)

which follows a chi squared distribution with n − 1 degrees of freedom under the
assumption that the n vector elements are sampled from independent Gaussian
variables [143, 111], i.e. they are not correlated.

The cross correlation and the normalized cross correlation are related to the
independence of the two vector distributions [143, 33]

C(F1,F2) =
1

n

n∑

i=1

(
(f1i −F1)(f2i −F2)

)

C⋆(F1,F1) =
C(F1,F2)√

C2(F1,F1)C2(F2,F2)

(4.3)

where Fw =
1

k

∑k
i=1 fwi. Further distances are the symmetric Kullback-Leibler

divergence (also known as Jeffrey divergence)

J (F1,F2) =

n∑

i=1

(
f1i log

f1i
f2i

+ f2i log
f2i
f1i

)
(4.4)

which measures how inefficient on average it would be to code one histogram by
using the other one as the code-book and vice-versa [143, 33], and the Bhattacharyya

distance

B(F1,F2) =

√√√√
n∑

i=1

f1if2i (4.5)



50 Chapter 4. Feature similarity distances

that is an approximate measurement of the amount of overlap between two statistical
samples [42] which is commonly used to compare histograms [73]. A last distance is
the intersection distance between two histograms [143, 160]

⋂
(F1,F2) =

n∑

i=1

min(f1i, f2i) (4.6)

The distance measures described above do not take into account the correlation
between the different vector elements. In particular, the data provided by the de-
scriptor are usually redundant, noisy and some descriptor elements are more dis-
criminative than others. Moreover, dealing with histogram based descriptors, spatial
relation between bins is not considered, especially for three-dimensional histograms
as in the SIFT because the histogram is linearized into the descriptor vector. To
be also noted the crucial role played by the bin size, since a coarse binning has no
sufficient discriminative power, while a fine binning could be too discriminative [143].

4.2 Feature space dimension reduction

4.2.1 Mahalanobis distance and PCA reduction

Data analysis techniques are employed to reduce the correlation between the de-
scriptor elements and to remove useless data, decreasing the descriptor dimension.
The most common tools are the Mahalanobis distance and the PCA, which are
very similar. In particular they both remove the correlation between descriptor el-
ements while the latter also decreases the descriptor dimension, removing useless
data. The covariance matrix Σ (see eq. 1.17) of the descriptor vector is learnt on
a large database of feature patches. As seen in Sec. 1.3.4 the covariance matrix for
the m× n descriptor matrix X = [F1 . . .Fm]T is

Σ = (X−X)(X−X)T (4.7)

where Xij = 1
n

∑n
i=1Xij is the mean value of the j-th element. The covariance

matrix is symmetric, thus it has positive eigenvalues and can be diagonalized

Σ = RDRT (4.8)

where D = diag(λ1, . . . , λn) is a diagonal matrix, R is a orthonormal matrix and
λ1, . . . , λn are the eigenvalues of Σ. If the features are normalized by the mean of
each element in the covariance matrix, i.e. X = 0, the Mahalanobis distance

M(F1,F2) = F2Σ
−1F1 = F2A

TAF1 = F̂T
2 F̂1 (4.9)

where A = D− 1
2RT allows to use the Euclidean distance in an uncorrelated feature

space inducted by the transformation F̂ = AF . Moreover, in the new space the
data are uncorrelated since the correlation matrix becomes

Σ̂ = AΣAT = D− 1
2RTΣRD− 1

2 =

= D− 1
2RTRDRTRD− 1

2 = I
(4.10)
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For the sake of efficiency, in practice the feature vectors are pre-multiplied by A.
The PCA is an extension to the Mahalanobis distance which removes the elements
with a low variance in a new feature space inducted by F̂ = AF , i.e. the less
meaningful elements. The eigenvalues of D are ordered so that λ1 ≥ . . . ,≥ λn
and the dimensions i, . . . , n for which

∑i
k=1 λi > thλ are removed, replacing D by

D̂ = diag(λ1, . . . , λi) and R by R = [R1 . . .Ri], where Rk is the k-th column vector
of R, i.e. the eigenvector corresponding to λk.

4.2.2 Linear embeddings

More complex data manipulations have been also proposed in recent years. The
linear discriminative embedding [72] learns the best projection w ∈ R

n which maxi-
mizes the ratio of the variance between the non-match and match differences along
the direction w.

Q(w) =

∑
lij=1

(
wT (Fi −Fj)

)2
∑

lij=0 (w
T (Fi −Fj))

2 (4.11)

where lij = 1 if the i-th and the j-th descriptor vectors belong to the same feature,
i.e. the patches represent the same feature after a transformation, and lij = 0

otherwise. The expression 4.11 can be rewritten in terms of the covariance matrix

Q⋆(w) =
wT

(∑
lij=1 (Fi −Fj) (Fi −Fj)

T
)
w

wT
(∑

lij=0 (Fi −Fj) (Fi −Fj)
T
)
w

=
wTAw

wTBw
(4.12)

The solution is provided by the eigenvector associated to the largest eigenvalue of
the generalized eigensystem

Aw = λBw (4.13)

To form a linear embedding, the first n eigenvectors associated with the largest n
generalized eigenvalues are chosen. In order to provide a better projection space,
some regularizations on the eigenvalues of the covariance matrices and the orthog-
onality constrain can be imposed [72]. Similar solution have been obtained start-
ing from a different problem formulation in the LDE (Local Discriminant Embed-
ding) [24]. Moreover, extensions to non linear transformations by using kernels have
also been proposed [23], as well as the combinations of several transformations by
averaging different models in the UFT (Universal Feature Transform) [23].

4.2.3 Learning methods

It has been shown in [179] that also the SVM (support vector machine) [32] can
improve the distance. In particular a polynomial SVM kernel D of the form
D(F1,F2) < th, is learnt in the L2 norm space by using correct feature correspon-
dences as positive examples and wrong correspondences very close in the descriptor
space as negative samples. The learned distance D shows a better a discriminative
power.
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Another approach by [185] learns on a large training dataset the best parameters
which maximize the relative ROC (receive operator characteristic) curve [74] for
different descriptor configurations.

Also the entropy maximization has been used to find the best patch normaliza-
tion before computing the descriptor [180].

4.3 Cross bin distances

4.3.1 Quadratic form distance

In order to improve the histogram based descriptor similarity, several cross-bin dis-

tances has been proposed, which try to take into account the relative spatial position
between bins. The quadratic form distance [125]

Q(F1,F2) =
√

(F1 −F2)TA(F1 −F2) (4.14)

improves the cross-bin information by using the matrix A where Aij = 1−dij/dmax,
dij is the distance between the bin centres and dmax the maximum distance, however
its performances are not so good as expected [143].

4.3.2 The earth moving distance

A better choice is provided by the Earth Moving Distance (EMD) [143]. Intuitively,
given two distributions, one seen as a mass of earth distributed in the space and the
other as holes in the same space, the EMD is the minimum amount of work to fill
the holes with earth.

The EMD solution is based on the well-known transportation problem [122].
Given a number of suppliers of a limited capacity, a number of consumers should
be satisfied by giving a defined amount of goods stored in the suppliers. For each
customer-supplier pair, a cost for transporting a single unit of goods is given. The
transportation problem is solved by finding the least-expensive flow of goods from
the suppliers to the consumers. The problem can be formalized as the following
linear problem where the quantity

m∑

i=1

n∑

j=1

dijsij (4.15)

must be minimized, subject to

sij > 0 1 ≤ i ≤ m, 1 ≤ j ≤ n∑n
j=1 sij ≤ f1i 1 ≤ j ≤ n∑m
i=1 sij ≤ f2j 1 ≤ i ≤ m

∑m
i=1

∑n
j=1 sij = min

(∑m
i=1 f1i,

∑n
j=1 f2j

)
(4.16)

The value dij is the distance between the i-th and j-th bin centres and sij is the flux
from bin i to bin j. The first constrain says that the flux cannot be negative, while
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the others impose a limit on the total flux from each bin, i.e. the goods cannot be
more than those provided by the corresponding supplier or no more than those the
customer can use. The final EMD distance is

E(F1,F2) =

∑m
i=1

∑n
j=1 dijsij∑m

i=1

∑n
j=1 sij

(4.17)

Though the EMD distance provides good results, it is really slow to compute
because it requires the solution of a minimization problem which can be resolved
by the simplex method [122] or as a network flow minimization [31] in O(n3 log n).
Moreover it is a metric only if the histograms are normalized to the unit.

4.3.3 The earth moving distance approximations

In [131] an EMD based distance, named SIFT distance, is derived. A circular cross
bin distance is used with a transportation cost equal to 1 for two nearby bins, while
distant bins have a transportation cost equal to 2. The circularity of the cross bin
takes into account the cyclic nature of the gradient orientations. The final SIFT
distance is obtained by summing up the EMD based distances for each SIFT cell.
The SIFT distance can be computed efficiently in linear time.

Faster approximations of the EMD have been developed [97, 187], some of them
model the histogram difference by the diffusion process and are similar to the pyra-
midal matching kernel (see Sec. 1.4.2).

The heat diffusion equation for an isolated temperature field T (x, t) with initial
condition T (x, 0)

∂

∂t
T =

∂

∂x2
T (4.18)

has an unique solution
T (x, t) = gt∗T (x, 0) (4.19)

Since it is a conservative field, the mean distance is zero and as t increases T (x, t)
goes to zero. In this sense, T (x, t) can be viewed as a process of exchanges be-
tween histogram bins until they become equal. A dissimilarity can be extracted by
measuring the process diffusion. The diffusion process of the difference between the
histograms through the time can be seen as successive small steps in the transporta-
tion problem to balance the same difference, where the system conservation equals
the EMD constrains (see fig. 4.1).

The diffusion distance [97] is then given as the sum of different layers which
mimics the histogram difference diffusion for increasing discrete time intervals

G(F1,F2) =
m∑

i=0

gi ∗ D(F1,F2) (4.20)

where D is a distance, for instance the Manhattan L1, and m is the final state for
which the difference is zero. In practice each layer of the diffusion distance can
be obtained from the precedent by smoothing with a Gaussian gσ with a constant
standard deviation, and then subsampling, so that m = log n.
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Figure 4.1: Given two bins p and q for which any standard approach would give a
maximum distance though the bins are very close, successive diffusion steps (blue,
green and red lines), makes the bin difference close to zero

In a similar way the topology preserved diffusion distance is derived [187]. In com-
parison with the diffusion distance, the topology of the bin distribution can be taken
into account by using numerical methods to solve the diffusion equation.

4.4 Rank based distances

In the SIFT rank descriptor [163] the rank order of the descriptor vector is used, i.e.
the feature vector Fk = [fk1, . . . , fkn]

T is replaced by F∗
k = [f∗k1, . . . , f

∗
kn]

T where f∗ki
is the rank of fki, i.e.

f∗ki = |{fkw : fkw≤fki}| (4.21)

the Spearman correlation coefficient [157]

ρ(F∗
1 ,F∗

2 ) = 1− 6
∑n

i=1(f
∗
1i − f∗2i)2

n(n2 − 1)
(4.22)

or the Kendall coefficient [79]

τ(F∗
1 ,F∗

2 ) = 1−
2
∑n

i=1

∑n
j=i+1 sign(f

∗
1i − f∗1j) sign(f∗2i − f∗2j)

n(n− 1)
(4.23)

can be used to measure the similarity between the two rank order descriptors.



Chapter 5

Feature detector and descriptor

evaluation

5.1 Evaluation methodologies

The comparison between feature descriptors and detectors is a difficult task, because
it not easy to define a reliable quantitative measure to compare detectors or descrip-
tors for all possible situations. Some detectors as well as some descriptors are more
sensible to a class of images than others, or to a particular kind of transformations,
thus the choice of the image dataset is critical. Moreover implementation details
can also cause different results. Another issue is represented by the availability of
a ground truth data, especially for three-dimensional scenes, which is more diffi-
cult to obtain. To overcome this issue synthetic generated images have been used
sometimes [179].

5.1.1 The repeatability index

The repeatability index is commonly adopted the test the detectors [149]. Given
a reference image, the repeatability index measures how well the features are re-
peated for some transformation of the image (see fig. 5.1). In order to define the
repeatability index, the overlap error [149] between two feature patches should be
introduced. Here the i-th feature is considered as the pair p = (x,R) where x is the
feature centre and R is the shape of the patch, not normalized, i.e the associated
ellipse. The overlap error between two features is

Eo(p1, p2) = 1− R1
⋂R2

R1
⋃R2

(5.1)

and it is Eo(p1, p2) = 0 if the feature patches are the same, Eo(p1, p2) = 1 if they
do not overlap (see fig. 5.2). Let the reference image Ia contain the set of features
A = {ai} and let the test image Ib contain the feature set B = {bj}, with i = 1, . . . , n

and j = 1, . . . ,m. The transformation T which maps points from Ia to Ib, where
T (p) is the reprojection of the feature ellipse from Ia to Ib should also be known.

Given a dissimilarity score D(p, q) with p ∈ A and q ∈ B, in order to obtain a
hard match an ordered set QD(A,B) = {q1, . . . , qk} of pairs (p, q), p ∈ A, q ∈ B, is
built as follows. All possible pairs according to the dissimilarity value D(p, q) are
ordered by their increasing values and starting by an empty set QD, the first pair is
inserted in the set QD. All other pairs that share the same p or q are removed and
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Figure 5.1: The feature patch is transferred from the right image to left and some
error measure between corresponding patches, such as the repeatability index or the
matching score, is computed

Figure 5.2: The overlap errors Eo for different patch superimposition. Image adapted
from [114]

the process is repeated until there are no more pairs left. Clearly the cardinality of
the set is |QD(A,B)| = min(m,n)

An hard match set QEo is built for a given overlap error threshold tho as
well as the set Q

Etho
o

which contains all the pair elements (p, q) ∈ QEo for which

Eo
(
p, T −1(q)

)
< tho. The repeatability index is the ratio between the cardinality

of the two sets

rpttho
(A,B) =

∣∣∣QEtho
o

(A,B)
∣∣∣

|QEo(A,B)| (5.2)

The repeatability index assesses the goodness of a detector in terms of stability and
robustness of the extracted features.

However some considerations should be done. A detector which extracts a high
number of features has a high probability to increase its repeatability score but it
decreases the chances of a correct match due to more possible matches, so detectors
should output the same reasonable number of features on average in the test. The
location accuracy of the feature, measured from the patch centre, and of the overlap
error, depend on the scale, i.e. on the ellipse size (see fig. 5.3), so it could be a good
choice to normalize the patches to the same scale before computing the overlap error.
It should be noted that while for some applications, for instance object detection, the
localization error is less relevant, it is critical for others, such as three-dimensional
reconstruction or registration.
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Figure 5.3: Overlapping patches (left) and the same patches with a double scale
factor (right). Though both patches have the same overlap error Ro = 0.5, the
localization error of the left patch is doubled. Image from [68]

5.1.2 The matching score

Another measure is the matching score [114], where the set QEm is built as done for
the repeatability index, by using the dissimilarity measure obtained by applying the
L2 distance on pairs of SIFT descriptors. Given also the set Q

Etho
m

which contains
the pairs of QEm with an overlap error less than tho, the matching score is then
defined by

matchtho
(A,B) =

∣∣∣QEtho
m

(A,B)
∣∣∣

|QEm(A,B)| (5.3)

The use of the SIFT descriptor is nowadays standard due to its robustness and
popularity.

5.1.3 Datasets

The most popular database which has become standard for detectors comparison is
the Oxford dataset, available at [114, 115]. It contains six different image sequences,
subject to different transformations. The images can be divided in textured images,
i.e. with a large number of textures and repeated patterns, and structured images,
i.e. with homogeneous and well defined regions. In particular the “graffiti” and
“wall” scenes represent respectively structured and textured images under different
perspective transformations, the “boat” and the “bark” sequences under scale and
rotation, the “bikes” and the “trees” under blur, while the “Leuven” sequence contains
a balance between structured and textured regions for luminance changes, as well
as the “UBC” sequence for JPEG compression (see figs. 5.4–5.7). This database
contains only planar scenes, so the ground truth is easy to estimate. The database
lacks of three-dimensional sequences, which are crucial to compare detectors and
descriptors for real applications.

The Oxford dataset has been extended to three-dimensional images in [59, 58].
Two sequences have been added, the “group” sequence contains a full three-
dimensional scene with different planar surfaces, while the “room” sequence a more
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Figure 5.4: The bark sequence (top) and the boat sequence (bottom) for different
scale and rotation degrees of transformation (left to right). Images from [115]

Figure 5.5: The graffiti sequence (top) and the wall sequence (bottom) for different
viewpoints (left to right). Images from [115]
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Figure 5.6: The bikes sequence (top) and the trees sequence (bottom) for different
degrees of blur (left to right). Images from [115]

Figure 5.7: The Leuven sequence (top) and the UBC sequence (bottom), respectively
for different JPEG compression factors and illuminations (left to right). Images
from [115]
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Figure 5.8: The group sequence (top) and the room sequence (bottom), for various
viewpoint changes (left to right). Images from [58]

complex three-dimensional scene (see fig. 5.8). In order to generate the ground truth
an intermediate image between two transformations is used. A dense disparity map
between the reference image and the intermediate image is computed, which al-
lows to find the location of the points. Then, by using the trifocal tensor [70],
the location of a point can be finally found on the test image. Points on uniform
regions for which the dense estimation could not be achieved are considered as a
non-intersection for the computation of the overlap error. However detectors usually
do not detect features in these regions, so this issue can be neglected.

5.1.4 Polar relationship

Another approach to compare detectors in three-dimensional scenes is provided
in [54]. The fundamental matrix [70] (see Sec. 7.2.4 for more details) for the epipo-
lar stereo geometry is first computed by taking correspondences by hand. Polar
relationships are invariant to perspective transformations (the polar of a point to a
curve is the straight line incident to the tangent point on the curve of the consid-
ered point, and perspective transformations preserve line incidence), which allow to
use the polar relation of the epipole and the feature ellipse for the evaluation. In
particular the tangent points t1, t2 of the ellipse p1 through the epipole e in the
reference image are projected in the test image to epipolar lines l1, l2. The epipolar
lines intersect in r1 and r2 the line through the tangents t′1, t

′
2 of the epipole e′ in

the corresponding ellipse p2 of the test image (see fig. 5.9). An overlapping error
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Figure 5.9: An ellipse patch p1 on the first image I1 (left) and the candidate match
p2 on the second image I2 (right). In I1 the polar line to the epipole e intersects
the ellipse p1 into the points t1 and t2 and, in similar way, in I2 the polar line to
the epipole e′ intersects the ellipse p2 into the points t′1 and t′2. The image of these
point in I2 through the fundamental matrix are the epipolar lines l1 and l2, which
intersect the polar line into r1 and r2. The overlap error E ′o is computed as the ratio
between the inner “smaller” red segment and the outer “wider” blue segment. Image
adapted from [54]

between segments is computed as the ratio

E ′o(p1, p2) = 1− max (0,min(rh, t
′
h)−max(rl, t

′
l))

max(rh, t′h)−min(rl, t′l)
(5.4)

where rl, rh are the lower and the higher point of {r1, r2} as t′l, t
′
h are for {t′1, t′2},

for a fixed direction on the incident line. This method does not need an intermediate
image, so missed matches due to the presence of the feature point only in the refer-
ence image or only in the intermediate image are avoided, however it can generate
some false matches, but according to the authors they are quite rare.

5.1.5 Epipolar relation using intermediate images

A last method which also makes use of an intermediate image was proposed [119]
for the purpose of testing detectors and descriptors for object recognition. The
authors build a database of images obtained by rotating a turntable and proceed as
follows. A feature patch p is extracted from a reference image and paired with its
nearest neighbour q according to the nearest neighbour ratio measure proposed by
Lowe [100]

D(p, q)
D(p, q′) (5.5)

where D is a distance and q′ is the second nearest neighbour of p. The pair is
considered if the similarity between p and q is below a threshold, otherwise it is
discarded and counted as “no match”. If both the features are not related to the
same object the pair counts as “false alarm”, otherwise a further check is performed.
The epipolar line corresponding to the point p is computed on the intermediate image
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and the features t1, . . . , tm in the intermediate image close to the epipolar line are
scanned. If the intersection of the epipolar lines of p and one of t1, . . . , tm into the
test image where there is q are close to q there is a “correct match” otherwise another
“false alarm” is generated (see fig. 5.10). If no point from t1, . . . , tm was present,
the pair does not contribute to any statistics, because the inability to establish a
triple match is not caused by a poor performance of the detector on the target
image. ROC curves [74] of the “false alarms” with respect to the “correct matches”
are obtained by varying the similarity threshold. This methods is fully geometrical
and does not require any further information as the feature shape. Some matching
errors can be present due to the estimation of the fundamental matrix and when
incident epipolar line are almost parallel, but the author verified statistically that
the error is below 0.05%.

Aside from the tests depicted above, other comparisons to asses the complemen-
tarity between different detectors have been done [59, 41] as well as some tests to
measure the informative content extracted by the detectors.

Figure 5.10: A feature point (yellow dot) in the reference view is mapped into the
epipolar lines in the auxiliary and the test image using the respective fundamental
matrices (green and red line). If in the auxiliary image a feature point close to the
epipolar line exists (yellow dot) it is also mapped into an epipolar line in the test
image (blue line). If the candidate match (yellow dot) in the test image is close to
the intersection of the two epipolar line then the match is accepted
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5.2 Detector comparison

To conclude the feature detector evaluation, a resume of the results from the cited
comparisons is given. Non affine-covariant detectors perform well for scene were
there is not a high degree of perspective distortion, especially the SIFT detector,
and sometimes can outperform their affine covariant counterparts [59]. The MSER
detector has good performances in particular on planar and structured scene, usu-
ally followed by the Hessian-affine and Harris-affine detectors [114]. However for
fully three-dimensional scenes the performances on any detector degrade notice-
ably [119]. Corner based detectors seem to be more stable to illumination changes
and in junction localization, instead of blob detectors which are however more stable
to strong perspective distortion, because uniform regions are less like to be strongly
modified by a geometric distortion [177]. The localization error depends linearly
on the region size, with the exception of the MSER, so a filtering on the feature
size can improve the matching process [68]. Moreover a careful implementation, as
well as the choice of detector parameters, is also relevant for the detector perfor-
mances [140]. The choice of the best detector is related to the input images and to
the task. A combination of detectors based on different approaches can increase the
overall performances [41].

Also to be mentioned, a theoretical comparison between autocorrelation based
cornerness functions [80]. According to their assumption the authors show that the
Shi and Tomasi function (see eq. 2.9) has the best theoretical properties followed
by the Förstner function (see eq. 2.7), while the Harris and Stephens function (see
eq. 2.6) seems to be the worst. However, their assumption are a bit constrained, for
instance they assume that the pixel intensity variation between transformations is
constant and not at least linear, and they restrict the comparison to affine trans-
formations only. Moreover, some properties presented, valid for multidimensional
or multispectral images, are unneeded in the usual image definition and practical
applications have shown the validity of all the cornerness function described.

5.3 Descriptor evaluation framework

The most used framework to evaluate feature descriptors [113] is also based on the
Oxford dataset. The features are extracted by a detectors (the Hessian-affine in
the original paper) and matched (the L2 metric is commonly used as distance D).
Three different approaches are presented to match features. The threshold matching
associates features if

D(F1,F2) < th (5.6)

The other two criteria are the nearest neighbour according to the rank, i.e. the
first thnn ∈ N elements of the ordered set QD (see eq. 5.2) are considered, and the
nearest neighbour ratio, i.e. the elements of QD are re-scored according to the ratio
in eq. 5.5 and a threshold thnnr ∈ [0, 1] is applied.

The descriptors are evaluated according to the 1-precision/recall curve obtained
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by increasing the corresponding threshold value for a given overlap error. The recall
is defined as the number of correct matches over all possible correspondences for
the given overlap error, while the “1-precision” is the number of the correct matches
over all matched pairs. A perfect descriptor would give a recall equal to 1 for
any precision, but in practice, the recall increases by increasing the threshold as
the noise introduced by the image transformations increases the distance between
similar descriptors. Horizontal curves indicate that the recall is attained with a
high precision while a slowly increasing curve shows that the descriptor is affected
by image degradation [113].

5.4 Descriptor comparison

Different comparisons have been done [113, 37, 163, 185, 121]. However, though
the evaluation frameworks adopted are similar, there are some differences in the
choice of some parameters. The histograms-based descriptors usually give the best
results [113, 185], in particular the SIFT-based descriptors. Steerable filters are
however a good choice when a low dimensionality is needed [113, 185]. The EMD
distance usually gives the best results, followed by its approximations [97, 131, 187],
however the performance gain with respect to the use of the Minkowsky norms is
not so high. Dimensionality reduction methods such as the LDE are more effective
than the PCA to drastically reduce the dimension of the SIFT descriptor while
maintaining a high discriminative power [72].



Chapter 6

Improvements to feature detection

and description

6.1 Overview

In the following a new feature detector based on the Harris corner (see Sec. 2.2.2)
and an improvement to the SIFT descriptor (see Sec. 3.2.6) are presented.

The new detector, called HarrisZ [10, 9], allows a fine and stable corner selection
without tuning the method. It achieves good results comparable with other state
of the art detectors on the Oxford dataset and its three dimensional extension (see
Sec. 5.1.3).

An extension of the GLOH descriptor (see Sec. 3.2.6), which improves the ro-
bustness to rotations is also presented. The proposed descriptor, called sGLOH [8],
has also been compared on the Oxford image dataset (see Sec. 5.3), with good results
which point out its stability.

6.2 The HarrisZ detector

6.2.1 Motivations and basic assumptions

As described in Sec. 2.2.2, the coefficient κ controls the corner response function
H (see eq. 2.6). In particular, the sensitivity of H is reduced when κ is increased.
Moreover, a point is selected as a corner if its response to H is greater than thH .
It should also be noted that both thH and κ rely upon local properties of the input
image, such as luminosity, noise or the intrinsic structure of the image (e.g. textured
and non-textured image regions).

In data analysis, the mean can be adopted as a reference point to compare
inhomogeneous data, while the standard deviation can be used as measure unit.
Therefore, a good normalization choice is given by the z-score [74] function

Z(x) =
x− x
σ

(6.1)

where x and σ are respectively the mean value and the standard deviation. If
two different quantities x1 and x2, with their respective mean values x1, x2 and
standard deviations σ1, σ2, are associated to the same conditions, then x1 and x2
can be compared after a z-score normalization.
These argumentations provide the basic assumptions for the new detector. Indeed,
both the average values of the determinant and of the trace of the autocorrelation
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matrix of the gradient magnitude map can be associated to flat regions, usually
considered as background. Moreover, corners are usually near edges, or where a
strong intensity variation is noticeable. The mean gradient magnitude itself provides
a rough separation between flat regions and edges.

The proposed algorithm starts by computing an edge mask, used to enhance
the derivatives according to the edges. Next the corner strength is measured by a
function Hz, based on H, using the z-score normalization. According to Hz, corners
are points x for which Hz(x)>0. Selected points which attain to a local maximum
over Hz and are close to edges, according to the edge mask, are finally selected as
corners. All these steps are repeated for different scales.

6.2.2 Algorithm description

Let Lx(x, σ), Ly(x, σ) be the scale-normalized derivatives (see eq. 1.14) and let

G(x, σ) =
√
L2
x(x, σ) + L2

y(x, σ) be the gradient magnitude. A simple threshold

mask computed on the whole image through the mean value of the gradient G, is
used to separate flat regions and edges

KσD
(x) =

{
0 if G(x, σD)≤G
1 otherwise

(6.2)

where σD is the differentiation scale (see Sec. 1.3.3). By assuming that discontinu-
ities have the same order of the current image resolution given by σD, the mask K
is convolved with the Gaussian kernel gσD

which smooths strong discontinuities (see
fig. 6.1(a-d))

M(x, σD) = gσD
∗K(x, σD) (6.3)

The initial derivatives are enhanced by a pixel-wise multiplication with the edge
mask M (see fig. 6.1(e-h))

Lx(p, σD) =M(p, σD) Lx(p, σD)

Ly(p, σD) =M(p, σD) Ly(p, σD)
(6.4)

The resulting derivatives Lx(p, σD) and Ly(p, σD) are used in place of Lx(p, σD)

and Ly(p, σD) in the autocorrelation matrix µ(p, σI , σD) (eq. 1.23), to suppress the
current scale noise.

Similar to the function H (see eq. 2.6), the cornerness function Hz is defined in
a in a local neighbourhood determined by the integration scale σI as

Hz(x, σI , σD) = Z (det (µ(x, σI , σD)))− Z
(
trace2 (µ(x, σI , σD))

)
(6.5)

where the autocorrelation matrix is computed according to eq. 1.23 using the im-
proved derivatives Lx and Ly while the mean and the standard deviation in the
z-score (see eq. 6.1) are computed on the whole image. The function Hz allows the
comparison of the determinant and the squared trace of the autocorrelation matrix
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without the usual coefficient κ. Moreover, the mean values of both the determinant
and the trace, which are equal to zero after the z-score normalization, can be asso-
ciated to flat regions. Negative and positive values of Hz are shown in fig. 6.2(a,b)
as dark and bright regions respectively.

Recalling that the determinant of the autocorrelation matrix is sensitive to cor-
ners, while the trace is sensitive to both edges and corners, it follows that

• Hz≫0, when the corner response is greater than the edge response;

• Hz≪0, when the edge response is greater than the corner response.

A candidate corner x is selected if it attains to a local maximum for Hz greater than
zero, within a circular window with the same radius of the Gaussian kernel gσD

, and
if x is close to an edge, that is when M(x, σD)>thm, for a proper threshold value
thm (see fig. 6.2(c,d)). A general lower bound for the threshold thm = 0.31 which
does not depend on the edge position neither on the scale is derived in the next
section.

The whole method is repeated for different scales σI and the affine invariance
is obtained by considering the ellipse associated to the autocorrelation matrix µ as
described in Sec. 1.3.4 (see fig. 6.2(e,f). It should be noted that no image pyramid
approach [20, 35] has been used, but increasing kernels are instead employed as done
by the SURF detector (see Sec. 2.3.3), though the former approach speeds-up the
process, because it also decreases the corner localization accuracy. Moreover the
automatic scale selection (see Sec. 1.3.3) is not performed and, to better distribute
features along the image, an approach similar to the adaptive non-maximal suppres-
sion (see Sec. 2.2.5) is used, which models the local maxima window according to
the differentiation scale σD.

6.2.3 Threshold derivation

The following general notes must be considered for the choice of the threshold value
thm. Firstly, it must be noted that the values of M range in [0, 1] (see eq. 6.3),
since they have been obtained by the Gaussian convolution of the binary mask K

(see eq. 6.2). The differentiation scale σD can be assumed to be the unit length of
a pixel at the current observation scale, thus its size is σD.

As in fig. 6.3, let consider a long enough ideal step edge f(x) in x = 0, that
is the pixel on the ramp lies in [−0.5σD, 0.5σD]. After the convolution of f with
gσD

, the initial value of the pixel can be restored with a cut-off at x=−0.5σD, that
corresponds to thm≈0.31

thm = gσD
∗f(−0.5σD) =

∫∞
−∞ f(x) gσD

(x+0.5σD)dx =

=
∫∞
0 gσD

(x+0.5σD)dx =
∫ 0.5σD

0 gσD
(x)dx =

= Ψ0,σD
(0.5σD) = Ψ0,1(0.5) ≈ 0.31

(6.6)

where Ψη,σ(x) is the normal cumulative distribution with mean η and standard
deviation σ. Here, the assumption that the pixel is centred in x= 0 was done so
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Figure 6.1: Original image (a), gradient magnitude (b), the binary mask K (c)
and the final mask M (d). The original derivatives Lx, Ly (e,f) and the final
enhanced derivatives Lx, Ly (g,h). The results are obtained for i = 3, σIi = 1.4i

and σDi
= 0.7σIi
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Figure 6.2: The Hz cornerness function (a) with superimposed local maxima (b)
and the edge mask M(x, σD) > thm (c) with final selected corners (d). Corners on
the image at the current scale (e) and patch ellipses obtained at multiple scales (f).
The current scale used is determined by i = 3, σIi = 1.4i and σDi

= 0.7σIi , while
for (f) i = 3, . . . , 8

that the left border of the pixel is in x=−0.5σD. A threshold thm=0.31 guarantees
a general lower bound which does not depend on the position of the step edge neither
on σD, and also includes the case thm=0.5, which corresponds to a pixel border in
x=0.

6.2.4 Implementation details

The observation scale depends on the detail level required by the image processing
task and should be provided by the user. The scales have been set according to
σIi = ξiσI0 and σDi

= sσIi , with ξ = 1.4, σI0 = 1 and s= 0.7, as reported in [112].
Coarser scales are obtained by increasing the index i.

Table 6.1 shows the average computational time required to process a single scale
in the case of i from 1 to 11 and the respective cumulative time, together with the
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Figure 6.3: An ideal step edge (bold line) and its smoothed version (thin line). If
σD is used as pixel resolution, a cutoff point is obtained for thm ≈ 0.31

percentage of corners extracted with respect to i=1. The tests have been performed
on the Oxford image dataset [114]. The algorithm has been implemented on a Linux
system with kernel version 2.6.27, running on Intel R© CoreTM2 Duo E8500 CPUs.
As the scale increases, the computational time almost doubles and the number of
extracted corners halves.
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Table 6.1: The average computational time required to process a single scale in
the case of i from 1 to 11 and the respective cumulative time, together with the
percentage of extracted corners with respect to i=1

To further refine the corner selection, points with
√
λ2/λ1<0.25 have been dis-

carded. Only 1.9% on average of the initially extracted corners have been removed,
underlining the consistency of the new method.

The floating-point computation of the maximum value of Hz (see eq. 6.5) within
a circular window of radius 3σD is particularly time consuming for high values of the
index i. To speed-up the algorithm, a heap structure [31] was implemented which
updates only border elements through auxiliary indexes when the window is shifted
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(see fig. 6.4).

�� �� �� �� �� ��

�� �� �� �� �� 	�

�� �� �� �� �� ��

�� A� �� �� �� A�

�� �� 	� �� �� ��

��

��

��

��

��

�� �� �� �� �� ��

�� �� �� �� �� 	�

�� �� �� �� �� ��

�� A� �� �� �� A�

�� �� 	� �� �� ��

��

��

��

��

��

�� �� �� �� �� ��

�� �� �� �� �� 	�

�� �� �� �� �� ��

�� A� �� �� �� A�

�� �� 	� �� �� ��

��

��

��

��

��

�� �� �� �� �� ��

�� �� �� �� �� 	�

�� �� �� �� �� ��

�� A� �� �� �� A�

�� �� 	� �� �� ��

��

��

��

��

��

Figure 6.4: When the max filter window is shifted (bottom row) only border elements
are updated in the corresponding heap (top row)

The whole absolute time of the detector is quite high compared to other covariant
feature detectors [114, 4, 100], but it is still suitable for off-line tasks, moreover a
parallel implementation has also been developed through a dynamic scheduler to
balance the workload which was shown to perform better with respect to a static
scheduler [6]. In any case, it should be noted that no approximations, which usually
improve the computational performances, have been made.

Observing the small amount of features corresponding to more time consuming
coarser scales, a reasonable compromise between the number of extracted corners
and the computational performances (see table 6.1, columns “corners” and “time”)
is provided for scale indexes i<9.

6.2.5 Experimental results

The new detector was tested according to the repeatability index (see eq. 5.2) and
the matching score (see eq. 5.3) on the Oxford dataset and its extension to three
dimensional objects using the setup described in [114]. The SIFT and the recent
SFOP detectors (see Sec. 2.2.3) have also been included in the comparison, using
the code freely distributed by the authors, with their default parameters. To fairly
compare about the same number of points detected for indexes i = 3, . . . , 8, a subset
of points, called SIFT⋆, was considered, obtained by the SIFT with scales σI>1.68

(see table 6.2).
Results are reported in figs. 6.5–6.10, according to the repeatability index and

the matching score, referred not only to the proposed algorithm, but obtained also
through the Harris-affine detector [112] (HA in the plots), the SFOP and the SIFT
methodologies. The absolute number of correspondences and matches are also re-
ported. Tests reported in [114, 59], also in the case of further detectors, show that
our approach is better then the Harris-affine methodology and comparable with the
Hessian-affine and MSER detectors. We have experimentally verified that the new
algorithm is also comparable with the SFOP and the SIFT approaches, though the
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Table 6.2: Percentage of extracted corners of the HarrisZ detector for different scale
ranges with respect to other corner detectors. HA refers to the Harris-affine detector,
while SIFT⋆ is obtained for SIFT with σI>1.68

latter returns a slightly better matching score in the cases of the “bark” and of the
“boat” sequences, which correspond to scale and rotation changes.

The discrimination between features and noise at finer scales is a difficult task,
indeed the feature stability increases with coarser scales. This conclusion can also
be inferred from fig. 6.11 which shows the average repeatability index with respect
to the overlap error on the Oxford database.

Furthermore, for high scale indexes, the results of the HarrisZ detector are al-
most unchanged, because only a negligible number of corners is extracted and their
computation can be avoided, reducing the running time. In order to compare dif-
ferent detectors, both the repeatability index and the matching score require about
the same number of extracted points. Actually, our algorithm with i≥3, the Harris-
affine procedure and the SFOP and SIFT⋆ detectors returned a comparable number
of points.

Further discussions should be carried out for the “graffiti” sequence, where the
new algorithm behaves like the Harris-affine detector for high viewpoint angles.
Projective transformations are assumed piecewise locally affine, in the case of small
projective distortions. Moreover, since corners rely on contour stability unlike blob-
like features, which are based on homogeneous flat regions, corner detectors are
more sensitive to relevant viewpoint changes (see Sec. 5.2). Besides, the HarrisZ
detector returns good results in the case of non-planar scenes, comparable with
those obtained by the MSER detector, thus underlining the stability and validity of
our approach (see figs. 6.9–6.10).

6.2.6 Final remarks

As reported in Sec. 6.2.5, tests show the validity of the proposed methodology that
returns good results when compared to other recent feature detectors.

In terms of repeatability index and matching score, the new HarrisZ detector
provides better results, with respect to the standard Harris-affine detector, which
are comparable with respect to the Hessian-affine and MSER approaches under all
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Figure 6.5: Absolute number of correspondences for the Oxford dataset
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Figure 6.6: Repeatability index for the Oxford dataset
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Figure 6.7: Number of correct matches for the Oxford dataset
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Figure 6.8: Matching score for the Oxford dataset
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Figure 6.9: Results on the group sequence
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Figure 6.10: Results on the room sequence
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Figure 6.11: Average repeatability index for different overlap errors on the Oxford
dataset

kinds of transformations applied in the Oxford dataset. These considerations still
hold for the non-planar sequences in the three dimensional extension of the Oxford
dataset.

The z-score function normalizes the determinant and the trace used by the Harris
function and does not demand the user to set the value of the linear combination
coefficient, which depends on the image to analyse. The mask to limit the search
only to corners close to the edges returns a stable output, which is no longer affected
by the threshold value that relies on the content of the whole image.

It can be noted that corners are complementary to blob-like features, thus they
provide additional information that can be combined to obtain better results. We
have proved experimentally that a complete pyramidal structure is not required and
that just a limited number of scales are sufficient to locate almost all of the corners
present in the image.

Though the method is not fast, it is still appropriate for off-line tasks which re-
quire high accuracy. A possible application regards the combination of the proposed
method with other feature detectors in order to refine the final result.

6.3 The sGLOH descriptor

6.3.1 The main idea

An extension of the GLOH descriptor (see Sec. 3.2.6) is proposed. The new sGLOH
(shifting GLOH) descriptor avoids to rotate the feature patch before computing the
descriptor vector using a polar grid. Instead of rotating the patch in the estimated
dominant orientation, for which an accurate computation can be difficult, the de-
scriptor compares different discrete orientations which can be obtained by shifting
the descriptor vector at a reasonable computational cost, and the best is selected.

Though the RIFT descriptor is also rotational invariant (see Sec. 3.2.6), its
performances are similar to those provided by the spin image [85], which was shown
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to be less good than the SIFT in a popular comparison [113]. Though the proposed
approach to get the best orientation is not a novelty [178], it has never been extended
and evaluated on the SIFT framework.

6.3.2 Descriptor details

The sGLOH descriptor grid is made up of n circular rings centered on the feature
point. Each ring contains m regions, equally distributed along m directions, defining
a region Rr,d with r = {1, 2, . . . , n} and d = {0, 1, . . . ,m− 1}. The inner circular
region can be divided in m radial sectors (see fig. 6.12) defining the single region
R0,0 or more regions R0,d. Given a descriptor vector H, a function Ψ(H) is defined
as equal to 0 if a single region is defined, 1 otherwise.

Figure 6.12: Cartesian grid used by the SIFT descriptor (left) and circular grids
investigated by the sGLOH descriptor

For each region, the orientation histogram weighted by the gradient magnitude is
computed in m quantized orientation. In order to obtain a better estimation of the
gradient distribution, for each region the bin value hi where i = 0, 1, . . .,m − 1 is
computed by the Gaussian kernel density estimation

hir,d =
1√
2πσ

∑

p∈Rr,d

Gm(p) e−
(M2π(Gd(p)−mi))

2

2σ2 (6.7)

where Gm(p), Gd(p) are respectively the gradient magnitude and orientation of a
pixel p in the regionRr,d, with r = {0, 1, . . . , n} and d = {0, 1, . . . ,m− 1}, mi =

2π
m i

is the i-th bin center, and σ = 2π
m c, with c ∈ R

+, is the standard deviation. The
function Mq(x) is used to take into account a periodicity of length q

Mq(x) =

{
x if x < q

2

q − x otherwise
(6.8)

In modular arithmetic, [i + d]m shifts cyclically by d positions the element i of a
vector of size m, given the congruence modulo m relation a ≡ b(mod m), where the
congruence class is represented by [a]m. Defining a block histogram

Hr,d =

m−1⊕

i=0

h
[d+i]m
r,d , (6.9)
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where
⊕

is the concatenation operator, so that for each block the first bin has
direction d, the final descriptor vector H is obtained by concatenating histograms

H =
n⊕

i=0

m−1⊕

j=0

Hi,j (6.10)

where H0,k for k = 1, . . . ,m− 1 is not considered if Ψ(H) = 0. The final descriptor
length is l = m(mn+ 1 + (m− 1)Ψ(H)).

The rotation of the descriptor by a factor αk where α = 2π
m is obtained by a

cyclic shift of the block histogram inside a ring (see fig. 6.13)

Hαk =





n⊕
i=0

m−1⊕
j=0

Hi,[k+j]m if Ψ(H) = 1

H0,k

n⊕
i=1

m−1⊕
j=0

Hi,[k+j]m otherwise

(6.11)

where H0,k =
m−1⊕
i=0

h
[i+k+d]m
0,d . The distance between two features H and H is then

given by
D̂(H,H) = min

k=0,...,m−1
D(H,Hαk) (6.12)

where D(·, ·) is a common distance measure (see Sec. 4.1 and Sec. 4.3) and each
descriptor vector has been normalized to the unit length.

Figure 6.13: A discrete rotation of the feature patch can be obtained for the sGLOH
descriptor by shifting the block histograms and the bins inside each block

6.3.3 Experimental result

The sGLOH descriptor has been compared with both the SIFT and the GLOH de-
scriptors on the well-known Oxford database (see Sec. 5.3). The same experimental
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setup described in [113] has been used, while key points have been extracted with the
HarrisZ detector which has been proved to give robust and stable features. The first
and fourth images of each sequence in the dataset have been used for the validation.

The number of correct matches and of correspondences is computed according
to the overlap error (see Sec. 5.1). As in [113], the overlap error is fixed to ε = 0.5,
the feature patch is 41 × 41 pixels, while the nearest neighbour matching strategy
is adopted. The sGLOH descriptor has been tested for c = 0.7, m = 8, n = 0, 1, 2,
so that the descriptor grid radii are respectively {20}, {12, 20}, {7, 13, 20} pixels.
When n = 1, 2, also the different cases Ψ(H) = 0, 1 have been examined, obtaining
descriptors of lengths l = 64, 72, 128, 136, 192.
The best distance measures between L1, L2 have been used for each descriptor. The
sGLOH descriptor performs better with L1, while the L2 distance was used in the
case of the SIFT and the GLOH descriptors.

Plots are shown in figs. 6.14–6.15. The results are comparable with those ob-
tained by SIFT (blue surface) and the GLOH (green surface), in particular the
sGLOH descriptor with length l = 128 represents a good compromise between the
length and the performances of the descriptor.

Only in the case of the “bark” sequence, the SIFT performs better, but only
for really high precision. This can be due to the kernel density estimation used
in the sGLOH descriptor which smooths the patch, because the bark sequence is
heavy textured and the smooth can decrease the discriminative power of the method.
From the plots it can also be seen that sGLOH detector presents local minima for
l = 72, 136, underlining better result for the configurations with Ψ(H) = 1.

While plots in fig. 6.14 refer to scale, rotation and viewpoint changes and are
more relevant in the test, the plots in fig. 6.15 are also helpful. In fact, though the
latter image sequences do not present any scale, rotation or viewpoint changes, so
clearly the proposed sGLOH detector will give the better estimation of the patch
orientation, they provide clues that the dominant gradient orientation estimation
used by the SIFT and the GLOH descriptors can lead sometimes to bad patch
alignments, not due only to repeated patterns in the images which also affect the
sGLOH descriptor.

The sGLOH descriptors does not introduce any relevant computational cost in
the generation of the descriptor vector. The new distance measure d̂ is more time
consuming, but still acceptable. Plot in fig. 6.16 shows the average cumulative
running time for the SIFT, the GLOH and the sGLOH descriptors respectively for
each image sequence plus the time to compute the distance for all vector pairs. As
it can be seen the increasing time is reasonable for all sequences, also considering
that the matching cost is quadratic with respect to the number of descriptors. Only
for a very high number of features as in the “wall” sequence and for a descriptor
length l > 128 the proposed descriptor is slower.

As final remarks, the sGLOH descriptor retains good results in terms of robust-
ness and stability, at a reasonable increase in the computational cost.



82 Chapter 6. Improvements to feature detection and description

64
72

128
136

192 0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

64
72

128
136

192 0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

64 72 128 136 192 0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

64 72 128 136 192 0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 6.14: 1-precision/recall plots for scale, rotation and viewpoint changes on
the Oxford database
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Figure 6.15: 1-precision/recall plots for blur, JPEG compression and illumination
changes on the Oxford database
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Figure 6.16: The average cumulative time on 15 runs for the “bark”, “boat”, “graffiti”
and “wall” sequences. The blue and the green bars refer to the time required by the
descriptors, while the red bar refers to the time spent to evaluate the distance. Each
cluster reports from left to right the time for the SIFT, GLOH and sGLOH with
descriptor length of 64, 72, 128, 136, 192



Chapter 7

Stereo matching

7.1 Overview

Stereo vision is one of the principal topic in computer vision. Given two cameras with
known intrinsic and extrinsic parameters, it is possible to get the three-dimensional
structure of the scene from the point correspondences in these two images by triangu-

lation [70]. Moreover, the calibration parameters [70] can be extracted by a relative
small amount of point correspondences and their positions in the three-dimensional
space [70].

Furthermore, the stereo epipolar geometry [70, 44, 174] allows to constrain possi-
ble matching candidates to lie on a straight line and a three-dimensional reconstruc-
tion can be obtained. The main object of the epipolar geometry is the fundamental

matrix, which can be computed by an exiguous number of point matches between
the stereo pairs [70] and allows a three-dimensional reconstruction up to a projec-
tive transformation [70]. When the camera intrinsic parameters are also known
the essential matrix [70] can be computed and a fully Euclidean reconstruction is
possible [70]. In some cases (in particular at least three views are needed) by im-
posing some constrains on the camera parameters it is also possible to obtain the
Euclidean reconstruction with the fundamental matrix by means of autocalibration

algorithms [70]. Moreover, by combining the matches provided by more than a
stereo pair, further matches can be obtained as well as their consistency can be
improved [48].

Multiview reconstruction extends these approaches and obtains finer results [70,
161] (see fig. 7.1). Usually a new camera is added at each time, which leads to
very time expensive algorithms, the structure is recovered by factorization [166,
70] and the bundle adjustment is used to minimize the error on the whole scene
framework [173, 70, 44, 156]. Recent new methods [155, 64] allow to merge different
cameras in an efficient way.

The feature matching is also a relevant topic in the disparity map estimation.
Nowadays sparse disparity maps have been replaced by dense disparity maps [161],
which allow a more precise three-dimensional reconstruction. Before applying a good
algorithm to estimate the dense disparity map, images have to be rettified [63, 133],
which usually implies the estimation of the fundamental matrix. Matching features
obtained by a sparse depth map can also be used as seed points for extending a
dense disparity map [89, 191], especially in the case of a wide-baseline stereo match-
ing [65]. Wide-baseline stereo is harder than a narrow-baseline disparity estimation,
where dense disparity algorithms work well [161, 167, 147]. Besides, points corre-
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Figure 7.1: A multi view reconstruction of the Trevi Fountain obtained by the Photo
Tourism software. Image from [156]

spondences can also be used for image registration [161] and for body modelling and
tracking [161].

Simply matching strategies described in Sec. 5.3, generate a large number of
outliers which seriously affect the accuracy of the estimation of a plane homography
or of the fundamental matrix. Several algorithms based on robust statistics has been
developed to find the best set of inliers, most of them are based on the RANSAC
(RANdom SAmple Consensus) approach [51], which provide a relatively fast and
robust inlier estimation.

7.2 The stereo framework

7.2.1 The camera model

The perspective camera is modelled as a matrix P ∈ R
3×4 which takes a three-

dimensional point X in homogeneous coordinates (see Sec. 1.3.1) and projects it to
x in the image plane π

x ≃ PX (7.1)

In particular the pinhole camera model [70, 174, 44] (see fig. 7.2) is used to describe
a standard camera. Under the pinhole camera model the camera matrix P can be
decomposed as K [R|t] where K ∈ R

3×3 represent the camera intrinsic parameters
and the matrix [R|t] ∈ R

3×4 embeds the Euclidean transformation from the world
to the camera coordinate frames [70], i.e. a three-dimensional point X is mapped



7.2. The stereo framework 87

in the camera coordinate frame (see fig. 7.2) as

Xcam = RX+ t (7.2)

or
Xcam ≃ [R|t]X (7.3)

In the camera coordinate frame the matrix K projects the ray from the camera centre

C = 0 through a three-dimensional point Xcam into the point x on the image plane

π at the distance f from the principal axis [70] (see fig. 7.2)

x ≃ KXcam =



f cx

f cy
1


Xcam (7.4)

where cx and cy are the coordinates of the principal point in the plane image reference
frame. More in general, to take into account the CCD grid of a real camera, which
cannot be squared or with orthogonal axes, the matrix K is generalized as [70]

K =



ax s cx

ay cy
1


 (7.5)

i.e. an affine transformation of the image plane coordinates is considered. The 3×4

projective camera P has 11 degrees of freedom because camera matrices are equal up
to scale and the camera centre C is given by the right null space of P, i.e. PC ≃ 0.
For further information about the camera matrix properties see [70].

Figure 7.2: Under the pin-hole camera model, a three-dimensional point X, ex-
pressed according to the reference frame X, Y , Z, is projected into the point x on
the image plane π through the ray from the camera centre C. The camera reference
frame x, y, z is obtained by the rotation matrix R and the translation vector T.
The z axis intersect the image plane π in the principal point c, where its distance
from the camera centre is given by the focal length f , while its coordinates in the
image plane reference frame are [cx, cy]. Image adapted from [174]

Image coordinates can be normalized [70] by pre-multiplying them with K−1, i.e.
x′ = K−1x so that only the extrinsic parameters have to be considered because

x′ ≃ K−1x ≃ K−1PX ≃ K−1K [R|t]X ≃ [R|t]X (7.6)
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where the normalized camera matrix [70] is given by P′ = [R|t].
To better characterized the camera model, the radial distortion correction fac-

tors [70] can also be incorporated to the model (see fig. 7.3). If r = [rx, ry]
T is the

centre of the radial distortion, the correction factor applied to the point xr after the
projection to the image plane could be modelled as

x = r+ L(‖ xr − r ‖2)(xr − r) (7.7)

where the error divergence can be approximated by Taylor expansion [70]

L(r) = 1 + κ1r + . . .+ κnr
n (7.8)

It can be noted that the radial distortion error increases with the distance from the
radial distortion centre which usually is close to the image centre.

Figure 7.3: Calibration patterns used to estimate the radial distortion and a test im-
age (top). The same images after the correction is applied by the method described
in [7] (bottom)

7.2.2 The epipolar stereo geometry

As shown in fig. 7.4, given two cameras that see the same scene, the plane πX
through the three-dimensional point X and the two camera centre C1, C2, known
as epipolar plane, is projected into the straight line l1X,l2X, called epipolar lines on
the two image planes π1, π2 [70]. The baseline, i.e. the line joining the two camera
centres, intersects the image planes into two points e1,e2 called epipoles, which are
common to all the respective epipolar lines for different points X. The epipoles
describe the stencils of epipolar lines through them.

7.2.3 Triangulation

A narrow baseline provides a easier estimation of the correspondences because the
coordinates of a point on an image should not be searched far in the other view.
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Figure 7.4: Given a stereo camera pairs specified respectively by the the image planes
π1, π2 and the camera centres C1, C2, a three dimensional point X is projected into
the points x1, x2 in the image planes, which both lie on the epipolar plane πX
given by the point X an the camera centres C1, C2. The line through the camera
centres is the baseline, which intersects the image planes in the respective epipoles
e1, e2, while the lines l1X, l2X in the image planes from the epipoles through the point
projections x1, x2, are known as epipolar lines. A plane π not passing through the
baseline induces a plane homography Hπ, which projects a point of the ray from C1

through x1 into the epipolar line l2X and in similar way for the other camera. Image
from [70]

A wide baseline is better to estimate the three-dimensional position of a point in
the space by triangulation (see fig. 7.5). For error free camera matrices and point
coordinates, the three dimensional location of a point is given by the intersection
of the corresponding rays from the cameras (see fig. 7.4), while in real cases an
estimation is provided by minimizing an error cost [70, 174, 161]. As it can be seen
from fig. 7.5, when corresponding rays are almost parallel in the narrow baseline
case, the error in the estimation of the position is greater [70].

Given the projection x1 of X on the plane π1, and the epipoles, the projection
x2 on π2 is constrained to lay on the epipolar line l2X, and in a similar way for the
projection x1 on the epipolar line l1X.

7.2.4 The fundamental matrix

The epipolar line relationship can be expressed by mean of the fundamental matrix

F [102]. Given a plane π not passing through the two camera centers C1, C2, a ray
from C1 to a point X intersects the plane π in a point x′ and the planes π1, π2 in
x1, x2 respectively. The projection x′′ of x′ in the image plane π2 through the ray
passing through C2 must lay on the epipolar line l2X because x′ is on the epipolar
plane πX (see fig. 7.4), so that lines are mapped to lines by the transformation
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Figure 7.5: Different stereo configurations from a wide baseline to a narrow baseline
(left to right). As the baseline distance decreases, though the error in point estima-
tion of the stereo pairs remains the same (light gray cone), the uncertainty in the
deep estimation of the three dimensional point increases (dark gray area). Images
from [70]

inducted by the plane π, i.e. the plane π induces an homography from x1 to x′′ [70]

x′′ ≃ Hπx1 (7.9)

In homogeneous coordinates the line through two points a, b is given by the cross
product l ≃ a× b, which can be expressed as the matrix product l ≃ [a]×b where

a =



x

y

z


 and [a]× =




0 −z y

z 0 −x
−y x 0


 (7.10)

moreover aT l = 0, i.e. a point lies on a line if their dot product is equal to zero.
The epipolar line l2X joins the epipole e2 and the point x′′

l
2
X ≃ e2 × x′′ ≃ e2×Hπx1 ≃ [e2]×Hπx1 (7.11)

and since x2 lies on l2X the fundamental matrix relation is obtained as [70]

xT
2 l

2
X = xT

2 [e2]×Hπx1 = xT
2 Fx1 = 0 (7.12)

where the fundamental matrix F is

F ≃ [e2]×Hπ (7.13)

A similar derivation can be obtained starting by the epipolar line l2X. The funda-
mental matrix F has rank 2 because it raises from the matrix product by the matrix
[e2]×, which has rank 2 in the non-degenerate case [70], and the full rank matrix
Hπ. Moreover, it has 7 degrees of freedom since it is not a full rank matrix and it is
known up to scale [70]. The epipolar lines are obtained as

l
2
X ≃ Fx1

l
1
X ≃ xT

2 F
T

(7.14)
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while the epipoles e1, e2 are respectively the right and left null spaces of F, because
for all points in the image planes π1, π2 the epipolar lines for both the cameras
should pass through them [70], i.e.

eT2 Fx1 = 0 , ∀x1 ⇒ eT2 F = 0

xT
2 Fe1 = 0 , ∀x2 ⇒ Fe1 = 0

(7.15)

When the image point coordinates are normalized (see Sec. 7.2.1) the fundamental
matrix is called essential matrix [70]. The essential matrix E = KT

2 FK1 can be easily
derived from the fundamental matrix F and the matrices K1, K2 of the intrinsic
parameters because

x′T
2 Ex′

1 ≃ xT
2 K

−T
2

(
KT

2 FK1

)
K−1

1 x1 ≃ xT
2 Fx1 (7.16)

where x′
1, x

′
2 are the normalized coordinates.

A stereo pair can be transformed by homographies so that corresponding epipolar
lines corresponds to the same scanline (see fig. 7.6). This transformation is called
image rectification [63, 133] and it is commonly used as preprocessing stage for
dense disparity algorithms. For more information about the topics of this section
see [70, 44, 174, 161].

Figure 7.6: In the rectification process the image cameras (black stereo pair) are
moved (usually by rotating and scaling the image plane) so that corresponding
epipolar lines lie on the same line (gray stereo pair). Image from [174]

7.3 Fundamental matrix computation

Since planar homographies (see Sec. 1.3.1) also play a crucial role in the three-
dimensional framework, before discussing the methodologies to compute the funda-
mental matrix, the computation of planar homographies is introduced.
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7.3.1 Planar homography computation

Two homogeneous vectors a, b representing the same inhomogeneous points are
parallel, i.e. they differ only by a scale factor, if their cross product is equal to
zero [70]

a ≃ b⇒ a× b = 0 (7.17)

For homographies the following expression then holds

x′
i ≃ Hxi ⇒ x′

i ×Hxi = 0 (7.18)

where x′
i = [x′i, y

′
i, w

′
i]
T and xi = [xi, yi, wi]

T , which can be written as

Ah =




0T −w′
ix

′
i
T −y′ix′

i
T

w′
ix

′
i
T

0T −x′ix′
i
T

−y′ix′
i
T x′ix

′
i
T

0T







h1

h2

h3


 = 0 (7.19)

where

H =




h1T

h2T

h3T


 (7.20)

which for each corresponding pairs of points x′
i, xi gives rise to three equations,

whose two only are linear independent [70]. The homography matrices have 8 degrees
of freedom because they are equal up to scale, thus 4 points suffice in determining
the homography by using two of the set of three equations obtained for each point.
The solution of the obtained homogeneous system [70] is given by the right null
space of the matrix A when only 4 points are used.

For an over determined system, i.e. when more than 4 point correspondences
are used, more robust to noise, the linear system can be solved by imposing for
an element of the matrix A the constrain hij = 1 or by using the Singular Value

Decomposition (SVD) [70, 161, 174].
The SVD decomposition of a generic matrix A ∈ R

m×n is

A = UΣVT (7.21)

where U ∈ R
m×p and V ∈ R

p×n with p = min(m,n) are orthogonal matrices and
Σ ∈ R

p×p is a diagonal matrix [161]. The diagonal element of Σ are known as
singular values while the columns of U, V are called respectively the left and right
singular vectors [161].

It can be proved [174] that finding the vector h which minimizes ‖ Ah ‖ subject
to ‖ h ‖= 1, is an approximation of the searched homography matrix. The solution
is given by the right singular vector corresponding to the smallest singular value
of A [174]. This last method involving the SVD decomposition is called Discrete

Linear Trasform (DLT) algorithm [70]. The DLT algorithm is not stable, however,
pre-normalizing the points on two images so that their centroids are at the origin
and the mean distance from the origin is

√
2 using two similarity transformation T1

and T2 avoids this issue and makes the DLT algorithm very robust and effective in
the homography computation [70]. The final homography matrix Ĥ is obtained by
deleting the similarity transformation, i.e. Ĥ = TT

2 HT1 [70].
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7.3.2 Error cost functions

The cost function used in the DLT algorithm (see Sec. 7.3.1) is called the algebraic

error [70]
Dalg

(
x′
i,Hxi

)
=‖ Ah ‖2 (7.22)

and it does not have a geometric or statistical meaning, even if it can be related to
the the geometric error [70]

Dgeom

(
x′
i,Hxi

)
=‖ x′

i −Hxi ‖2 (7.23)

where with an abuse of notation Hxi is the reprojection by the plane homography
H of xi expressed in inhomogeneous coordinates. Different geometric errors can be
considered, as the symmetric transfer error [70] assuming the error in one image
only

Dsym

(
x′
i,Hxi

)
=‖ x′

i −Hxi ‖2 + ‖ xi −H−1x′
i ‖2 (7.24)

or in both images

Dreproj

(
x′
i,Hxi

)
=‖ x̂i − xi ‖2 + ‖ x̂′

i − x′
i ‖2 subject to x̂′

i = Hx̂i (7.25)

In the last case in addition to the homography matrix also the true point locations
x̂i and x̂′

i have to be estimated [70]. A last error measure is the Sampson error [70],
which is the error distance to the first order approximation of the function. If x and
x̂ are a point and its estimation, for a given function F its approximation can be
written by Taylor expansion up to the first order as

F(x̂) = F(x) + ∂F
∂x

δx (7.26)

where δx = x̂− x. The Sampson error is defined as

DSamp (x̂,F(x)) =
∣∣∣∣
∣∣∣∣
∂F
∂x

δx

∣∣∣∣
∣∣∣∣
2

(7.27)

It can be proved that in the case of homographies the Sampson error is identical
to the corresponding geometric error [70]. Moreover the geometric error is also
optimal under the assumption of isotropic Gaussian noise, i.e. the minimization the
geometric error is equal to find the Maximum Likehood Estimation (MLE) [70] for
homographies [70]. For a non-isotropic Gaussian noise distribution, the geometric
error should be modified by substituting the Euclidean distance by the Mahalanobis
distance (see Sec. 4.2.1) [70].

Thought minimizing the geometric or the Sampson error provides better re-
sults, it requires to use an iterative non linear minimization algorithm, such as the
Levenberg-Marquardt method [70], and a good initial solution usually obtained by
the DLT algorithm (see Sec. 7.3.1). However these methodologies are more compu-
tational expensive and the accuracy of the DLT solution is usually good for common
computer vision tasks [70].



94 Chapter 7. Stereo matching

7.3.3 The eight point algorithm

The DLT algorithm (see Sec. 7.3.1) can also be applied for estimating the funda-
mental matrix F (see Sec. 7.2.4). In this case the DLT algorithm is known as the
eight point algorithm [70]. The fundamental matrix constraint x′

iFxi = 0 where
x′
i = [x′i, y

′
i, w

′
i]
T and xi = [xi, yi, wi]

T are corresponding homogeneous points in the
two images, can be written explicitly as

AT
i f = [x′ixi, x

′
iyi, x

′
i, y

′
ixi, y

′
iyi, y

′
i, xi, yi, 1]




f1

f2

f2


 = 0 (7.28)

where

F =




f1T

f2T

f3T


 (7.29)

By stacking at least 8 point correspondences in the matrix A = [AT
1 , . . . ,A

T
n ]

T , with
n ≥ 8 because the matrix F is known up to a scale factor, an homogeneous system
Af = 0 is derived whose solution can be computed by using the DLT algorithm (see
Sec. 7.3.1). In particular the vector f is the right singular vector corresponding to
the smallest singular value of A.

The fundamental matrix is singular (see Sec. 7.2.4) but the solution found by
the eight point algorithm not. It can be proved [70] that in the Frobenious norm

the singular matrix close to a full-rank matrix can be obtained by replacing in its
SVD decomposition the smallest singular value with 0. So, in order to reinforce the
singularity constraint on the fundamental matrix F in the last step of the eight point
algorithm the smallest singular value of the SVD decomposition of F is replaced by
0. As in Sec. 7.3.1, a normalization step on the two sets of point in the images should
be applied in order to obtain a robust estimation of the fundamental matrix [70].

7.3.4 Using less than eight points

Less than 8 points can be used to solve the homogeneous system Af = 0, which
corresponds to find more than one plausible fundamental matrix [70]. In particular
if 7 points are used [70], the homogeneous system solution is given by a linear
combination of the two basis vectors F1, F2 of the right null space of A, i.e. it is of
the form F = αF1 + (1− α)F2. The matrix F is singular so it is possible to impose
the constraint det(F) = det(αF1+(1−α)F2) = 0 which yields to a cubic polynomial
equation in α. Solving this equation leads to find one or three real solutions which
can be substituted to α to get one or three fundamental matrices. In a similar way
six or five point correspondences can be used by imposing more constrains which
yield to respectively a maximum of 6 or 10 solutions [127, 138].
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7.3.5 Other non linear methods

The algebraic minimization algorithm [70] and the non linear iterative minimization
schemes to minimize the geometric or the Sampson errors [70] (see Sec. 7.3.2) can also
be used. In particular the three-dimensional point coordinates have to be obtained
by triangulation, using camera matrices compatible with the fundamental matrix,
to estimate the geometric error. This makes the cost of the solution computationally
expensive [70]. More feasible solutions can be found by using the Sampson error
which explicitly is [70]

DSamp(x
′
iFxi) =

(x′
iFxi)

2

(Fxi)
2
1 + (Fxi)

2
2 + (FTx′

i)
2
1 + (FTx′

i)
2
2

(7.30)

where (a)k means the k-th element of the vector a. The symmetric epipolar error [70]

Dep(x
′
iFxi) = Del(x

′
i,Fxi) +Del(xi,F

Tx′
i) (7.31)

where Del(x
′
i,Fxi) is the squared distance of the point to the corresponding epipolar

line

Del(x
′
i,Fxi) =

(x′
iFxi)

2

(Fxi)
2
1 + (Fxi)

2
2

(7.32)

has been reported not to give good results, through it is similar to the Sampson
error [70].

The same considerations done in the case of the plane homography estimation
(see Sec.7.3.1) hold. The 8 point algorithm is usually enough precise for common
applications [70], moreover the algebraic minimization algorithm and non-linear iter-
ative minimization schemes require an initial estimation of the fundamental matrix
and they are more computational expensive.

7.4 The RANSAC approach

The simply matching strategies described in Sec. 5.3, generate a large number of
outliers. Several algorithms based on robust statistic have been developed to find
the best set of inliers while computing the fundamental matrix (or the plane homog-
raphy in the case of planar scenes), most of them based on the RANSAC (RANdom
SAmple Consensus) approach [51].

Given the candidate matching correspondences (x,x′), RANSAC starts by com-
puting a model M by using a minimum hypothesis set, i.e. four point correspon-
dences for a plane homography (see Sec. 7.3.1) and eight or less for the estimation
of the fundamental matrix (see Secs. 7.3.3–7.3.4). The modelM, obtained by a ran-
dom sampling of the candidate correspondences, is validated using a robust error
measure ρM(x,x′) on the whole set of candidate matches.

The error cost function used by RANSAC to validate the model is given by the
cardinality of the inlier set M according to a threshold value th, i.e. the sum over
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all matches of the function ρ

ρM(x,x′) =

{
1 if DM(x,x′) ≤ th
0 otherwise

(7.33)

where D is an error measure such as one seen in Sec. 7.3.2. Since the model is
estimated by a minimum number of matches, the probability to be contaminated
by outliers is low and the model check is relatively fast.

In the standard RANSAC approach, the putative matching correspondences
are usually obtained by taking for each feature point in the first image its nearest
neighbour in the second image according to the similarity of their descriptors [112].
It is a common practice introduced by [100] to score these matches using the nearest
neighbour ratio (see Sec. 5.3) and then by applying a threshold equal to 0.8, in order
to limit the number of wrong matches.

Moreover, input correspondences are usually limited so that there are no matches
which share the same feature point, because it can lead to a degenerate model
estimation. This can be accomplished by removing correspondences for points that
are not mutual nearest neighbours [128], i.e. x should be the nearest neighbour of
x′ and vice versa for a match (x,x′). Otherwise the similarity score function D for
match features can be made symmetric, such as [109]

D⋆(x,x′) =
D(x,x′) +D(x′,x)

2
(7.34)

However is was noted [189] that in general the nearest neighbour of a point is not
the true corresponding point, which usually lies in the first k nearest neighbours (see
fig. 7.7). To deal with this issue, generalizations of the RANSAC for relaxed cor-
respondences have been proposed [189, 16], where the data input contains multiple
candidate matches for each feature.

In particular in [189] the generalized RANSAC builds the hypothesis model
by sampling points on the first image and then to complete the match it chooses
the corresponding point on the second image from the first k nearest neighbours
according to a given probability distribution. Clearly, a check is done to avoid that
the last sampled correspondence contains no points that were already present in the
model. A similar approach can be found in [16].

The number of iterations which the RANSAC should do is estimated by con-
sidering the estimated fraction of inliers ξ, given a model M of cardinality m [70].
Since the samples are drawn independently the probability to get a corrupted model,
i.e. with at least an outlier, is 1− ξm. The probability to obtain at least an outlier
free model in N trial is P = 1− (1− ξm)N . An outlier free model with a confidence
given by P , for instance P = 0.99 should be found in N iteration, thus

N =
log(1− p)
log(1− ξm)

(7.35)

Since the inlier fraction ξ is usually not known a priori, RANSAC can start by
imposing an initial value for ξ and by determining adaptively the inlier fraction by
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updating the value of ξ with the fraction of inliers of the best model obtained so
far. A check is performed to test if the number of iterations done is greater that the
current estimate of N . [70]. The number of iterations to be done is dependent from
the fraction of inliers and on the model size. For complex model or when the number
of correct matches is low, RANSAC may become prohibitive [70]. Nowadays, a
model obtained by 7 or 5 correspondences is used to reduce the number of iterations
for the estimation of the fundamental matrix [128, 138]. In this way, one or more
matrices for a single hypothesis set (see Sec. 7.3.4) are obtained and validated on
the data.

Figure 7.7: When a dominant plane is present, identified in this example by the
building facades, almost all matches (yellow crosses) lie on it, leading to a wrong
estimation of the fundamental matrix. A better estimation can be obtained by
using off-of-the-plane matches (blue segments). Moreover, if repeated patterns are
present, the first nearest neighbour match could not be correct (yellow solid and
dotted segments) and the consistency given by closed matched pairs (green segments
in the red circle) can be used to disambiguate the match

7.4.1 Improving the cost function

Other robust cost functions have been proposed [169, 170]. MSAC (M-estimator
SAmple Consensus) [170] uses the Huber measure [142]

τM(x,x′) =

{
(DM(x,x′))2 if (DM(x,x′))2 ≤ th2

th2 otherwise
(7.36)

while MLESAC (Maximum Likehood Estimation SAmple Consensus) [170] tries
to maximize the likelihood of the model. The error distribution is modelled by a
mixture of the inlier error distribution and the outlier error distribution. The former
is modelled as a Gaussian distribution gσ with zero mean (see eq. 1.11) and the latter
as an uniform distribution in 〈0, Z〉. The error function becomes

ψM(x,x′) = κ
1√
2πσ

e−
(DM(x,x′))2

2σ2 + (1− κ) 1
Z

(7.37)
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where the mixing parameter κ is estimated by using the Expectation Maximization

(EM) [71]. AMLESAC (Adaptive MLESAC) [84] is a noise adaptive variant of
MLESAC estimator, which simultaneously estimates the mixing parameter κ and
the inlier noise level σ.

7.4.2 Improving the sampling strategy

Different sampling strategies have been proposed in order to reduce the running
time and to improve the inlier estimation [123, 105, 135, 110, 16, 124, 144, 104, 106,
29, 57].

NAPSAC (N Adjacent Points SAmple Consensus) [123], under the assumption
that the inlier correspondences (x,x′) tend to be close in their four-dimensional
space, modifies the sampling strategy. In particular, after the random selection of
the first candidate match, the other candidates are chosen within a hypersphere
centred in the first putative match with radius r, according to their distance from
the centre.

Through in RANSAC it is assumed that a model obtained by an uncontaminated
sample is consistent with all inliers, this is not the case in practice [26]. However,
by observing that a good model tends to find a significant fraction of inliers, the set
of putative inliers so found can be used to achieve a better model estimation. LO-
RANSAC (Local Optimization RANSAC) [28], runs an optimization scheme every
time a new better model is found. In particular a nested inner RANSAC can be
performed, by sampling further models from the inlier set of the best model found
and by verifying them against all candidate correspondences [28].

In a similar way Cov-RANSAC [136] computes the covariance error matrix of
the best model estimated so far and propagates the model uncertainty to validate
the other matches [70]. This allows to incorporate other possible inliers which were
excluded due to the noisy of the data (see fig. 7.8). An inner RANSAC is then
performed on the obtained set of putative inliers [136].

Figure 7.8: An example of the Cov-RANSAC method in the case of the homography
estimation. The homography is estimated in the left image from four points (blue
crosses), where the circle around them represent the error uncertainty. The error
estimation is propagated so that for further points (green cross) the uncertainty of
the reprojection (red ellipse) is taken into account. Image from [136]
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Observing that a model which produces an high number of outliers contains points
which are less probably inliers, the BaySAC [16] reduces their probability to be
drawn again in the sampling by using the Bayes’ rule. In a similar way SimSAC [16]
simulates a status vector of inlier/outliers for all the data according to a prior prob-
ability. If the outlier outcomes are compatible with the previous failed hypothesized
models, the frequency histograms for each data selected as inlier in the simulation
is incremented. After T simulations compatible with the old hypotheses, the new
model is formed by the first m peaks of the frequency histogram.

PROgressive SAmple Consensus (PROSAC) [105], assumes that the similarity
information of the descriptors provides a good priory estimate of the correctness of
the match. The algorithm starts by selecting models formed by high rank matches,
because they can speed up the research for a good model. As the number of iterations
increases without find a good model, PROSAC modifies its behaviour towards a
random sampling because there is an evidence that the assumption done on the
descriptor ranking was not correct.
Similar to PROSAC, BetaSAC [110], selects the model sample by preferring high
rank matches first. However, by using the beta distribution [61] it offers a selection
conditional on the previous data selected for the hypothesis set [110]. BetaSAC
converges towards RANSAC in the worst case, moreover it behaves as PROSAC by
an appropriate parameter setting.

Assuming that there exists some grouping in the data, obtained for instance by
clustering on the optical flow or by image segmentation [66], the GroupSAC [124]
drives the sampling process so that the model samples are drawn from different
data groups (see fig. 7.9). Defining a configuration as a set of groups, the sampling
process starts by exploring the configurations in increasing order of their cardinality,
such that each group at least contributes to one data point for a configuration.
Among the configurations with the same cardinality, those for which the sum of the
cardinality of their groups is higher are preferred, since there is a clue of the data
consistency [124].

Figure 7.9: Candidate matches (left) with highlighted inliers (blue arrows) and
outliers (red arrows). Clustering by the optical flow and taking the first two relevant
classes (center, right), it can be noted that almost all elements in the classes are
inliers. Images from [124]

SCRAMSAC [144] builds a reduced set of candidate matches on a Spatial Consis-
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tency Check (SCC) which is used to draw the hypothesis models. For each point
which composes a correspondence, a local circular neighbourhood N of points with
similar scale factor is defined where the radius is determined in relation to the the
scale of the feature point [144] (see fig. 7.7). The Spatial Consistency Check for
a matched pair (x,x′) is given according to the ratio of the cardinality of the set
of correspondences (xi,x

′
j) which are in a local neighbourhood of both the points

which compose the match, i.e. xi ∈ N (x) and x′
j ∈ N (x′), divided by the cardinal-

ity of the set of the correspondences which are only in the local neighbourhood of
one point, i.e xi ∈ N (x).

7.4.3 Degenerate configurations

Degenerate model configuration may arise in the sampling step in the case of the
fundamental matrix estimation if the sampled points are all compatible with a plane
homography. This can lead to a wrong estimation of the fundamental matrix, be-
cause the null space of the homogeneous system 1.3.1 has a dimension greater than
one, which implies that multiple fundamental matrices are compatible with the
model. This case is likely to happen when a dominant plane is present in the image
(see fig. 7.7), and the points in the hypothesis model are usually sampled from this
plane. This may lead to estimate wrongly other inliers which do not lie on the plane
as outliers and to obtain a wrong fundamental matrix.

For plane homography estimation the degenerate configuration is provided when
the sampled points are collinear. Clearly this is also a degenerate case for the
fundamental matrix estimation.

For completeness, if both the camera optical centres and the three-dimensional
points which define the correspondences lie on the critical surface [70], the funda-
mental matrix is also degenerate. It is also the case when using only 7 correspon-
dences which is easily handled as described in Sec. 7.3.4.

In [168] the Geometric Robust Information Criterion (GRIC) score is proposed
to select the best model

GRIC =
∑

ρ(e2i ) + 2dn+ 2k (7.38)

where n is the number of data points. The parameter d is the dimension of the con-
strains, with d = 3 for the fundamental matrix and d = 2 for the plane homography
because in the former case all the corresponding three-dimensional points lie in a
three-dimensional space, while in the latter on a plane surface [171]. The parameter
k is the number of model parameters, where k = 7 for the fundamental matrix due
to the scale and singularity constrains, and 8 for the plane homography due to scale
constrain only [168]. The robust error function ρ on the error measure ei for the
i-th data is defined as

ρ(e2) =





e2

σ2
if
e2

σ2
< 2(r − d)

2(r − d) otherwise
(7.39)
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where r is the data dimension, with r = 4 in both the case of the fundamental
matrix and of the plane homography [168].

Later in [29] DEGENSAC was proposed to improve the RANSAC estimation of
the fundamental matrix in the case of a dominant plane. DEGENSAC also returns
the best plane homography found in the case of degenerate configuration. Whenever
a new better model is found, i.e. a model with a greater inlier support set, a test
is performed to see if there exist five correspondences related by a homography.
Using the same notation of Sec. 7.2.2, given three points correspondences (xi,x

′
i),

i = 1, 2, 3, and the fundamental matrix F, the related homography H is [70]

H = A− e2(M
−1b)T (7.40)

where A = [e2]× F, MT = [x1,x2,x3]
T and b = [b1, b2, b3]

T with

bi =
(
x′
i × (Axi)

)T (
x′
i × e2

)
‖ x′

i × e2 ‖−2 (7.41)

The possible homographies are computed by using the fundamental matrix F and
three correspondences from the five taken from the sampled model [29]. It can be
shown that at most five different homographies have to be tested [29]. If the test finds
a compatible homography with a greater support set than the last best homography
model validated, it is stored. Moreover, using the plane-and-parallax algorithm [70]
which requires a homography and only two matches, an inner RANSAC is run,
paying attention to not select correspondences on the estimated plane of H, i.e.
leaving out the homography inliers.

Lastly, QDEGSAC [57], a RANSAC for (Quasi-)Degenerate data, has been pre-
sented, which provides a general framework that can be used not only in the case
of fundamental matrix estimation [57]. Since in the case of degenerate data the
homogeneous system associated with the model estimation (see Sec. 7.3.3) has a
null space of dimension greater than one [70], a robust measurement on the rank of
the data matrix provided by the inliers can be used to detect degeneracies. After
a first RANSAC, successive RANSACs are performed on the inlier support set of
the previous one until their ratio is less then a predefined threshold. Each of these
RANSAC steps look for degenerate inliers which satisfy the constraints of the model
for increasing dimensions of the null space. When the final set of degenerate inliers
is found, the correct model which completes the model obtained by the degenerate
points is retrieved by running a RANSAC on the outliers set.

The described methodologies have been incorporated to other RANSAC ap-
proaches [144, 135, 124].

7.4.4 Faster model check verification

Different strategies have been developed to reduce the time to verify the models.
In [104] the Td,d test is performed, where the test is passed if the evaluation

model is consistent with d random selected correspondences. Models which pass the
test are then evaluated on the whole set of data. Thought the number of model
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evaluated increases since good models can be rejected by mistake, the total cost of
the method is reduced. This happens because the number of total verification steps
is reduced, especially for the value d = 1 suggested by the authors [104].

In a similar way the Bail-out test [22] breaks the evaluation of the current model
if during the test of the i-th candidate match an approximate probability of estimate
a better model is low. The WaldSAC strategy [106] avoids the full validation of the
dataset if the Wald’s Sequential Probability Ratio Test (SPRT) [183] is not satisfied.

The Td,d test and SPRT have been incorporated in many RANSAC based ap-
proaches to speed-up the process [135, 144, 124].

The Preemptive RANSAC [126] was designed for real time applications. A fixed
number of hypotheses is generated and evaluated on a subset of the data points.
The hypotheses are then reordered based on the results of the scoring procedure
and only a fraction of the hypotheses are evaluated on the next subset of data until
one hypothesis is left.

The Adaptive Real-Time Random SAmple Consensus (ARRSAC) [135] extends
the Preemptive RANSAC scheme by generating new hypotheses after retaining a
fraction of the evaluated hypotheses on a block of data. The number of the new
hypotheses to generate is computed by an estimation of the inlier ratio based on the
best ranked hypothesis so far. Clearly the new hypotheses have to be also validated
on the previous blocks of data.

7.4.5 Other approaches

Similar to the RANSAC, the LMedS (Least Median Square) algorithm [190, 142],
searches for the best model which minimized the median value of the squared error
distance D over the correspondence set, under the assumption that ξ ≥ 0.5 [26],
while the MINPRAN algorithm selects the model that MINimizes the Probability
of RANdomness of the solution [158]. The RANSAC method has been also combined
with the Hough transform [66] to estimate the fundamental matrix. This allows a
fast model estimation under the presence of outliers, obtained by sampling a smaller
than the minimal subset, followed by a voting process of the remaining data [39].
Also genetic algorithms [117] have been employed in GANSAC [139], where a gene
codifies the inlier/outlier statuses of the data and the usual operations of crossover
and mutation are applied [117]. The pbM-estimator (projection based M-estimator)
algorithm [159] instead reframes the regression problem of the best model estimation
into a projection pursuit framework [25].



Chapter 8

A new sparse soft matching

algorithm

8.1 Overview

In the following a matching algorithm based on RANSAC (see Sec. 7.4) is described.
Its main features are a image-guided selection of the error threshold and a soft match-

ing strategy in contrast to the one-to-one matching usually adopted by RANSAC
(see Sec. 7.4), which increases the absolute matches. Moreover, the sampling process
(see Sec. 7.4.2) is guided by a global-to-local constraint generation. The final inlier
matches are homogeneously better distributed along the image, resulting in a more
stable estimation of the homography or the fundamental matrix associated to the
stereo pair. As a weak point, it is computationally more expensive than RANSAC
and it considerably relies on the descriptor similarity.

An evaluation framework similar to that proposed by Moreels and Perona in [119]
is also presented. It is pure geometrical, i.e. it only uses the feature position, not
any further information provided by the feature detector such as the scale, the
orientation and the shape of the patch. Moreover, it allows a slight computation of
the ground truth data.

8.2 Algorithm description

8.2.1 The main idea

The main idea of the method resembles the simulated annealing process [14]. Dif-
ferent RANSACs are repeated as in the inner RANSAC scheme (see Sec. 7.4.2). At
each RANSAC run the set S of putative matches from where the candidate model
M is sampled and the set T ⊃ S used to validate the model, increase their cardi-
nalities. New candidate matches are added to S and T according to the increment
of the percentage of the estimated inliers, the rank of the matches provided by the
feature descriptor similarities and to a resolution factor l. At the same time, the
error threshold th used to validate the inliers decreases to obtain a finer model at
every RANSAC.

If a model M, represented by the set of matches I which agree with it, found
in the current RANSAC run is better than the best model I found in all previous
runs, both S and T grow slowly. On the other hand, |S| and |T | increase faster
because the use of the similarity to rank the matches does not give a good clues on
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the true inliers and a random selection should achieve a better result. Moreover,
the probability of sampling a correspondence, represented by a table W, is updated
by considering the history of the previous RANSAC runs.

The sampling strategy is similar to that proposed by other guided sampling ap-
proaches (see Sec. 7.4.2), however the selection also depends on the image resolution
as will be described next. The threshold error th, related to the current resolution,
makes the process similar to the inner RANSAC scheme with iterations [28], where
nested RANSACs are repeated on smaller inliers subset, by decreasing a threshold
value. However, in the new proposed method, the validation set is not provided by
the initial input set of all matches P , but it varies with the iterations. Moreover,
the process provides sets of increasing cardinality which incorporate the previous
ones in contrast to nested subsets.

As other characteristics, soft matches are used, i.e. pairs can share a common
point, as done for some RANSAC based approaches (see Sec. 7.4), but differently
from other existent methodologies, to estimate the model M the sampling tries to
force points which are distant from each others. It allows a better estimation (see
fig. 8.1), though RANSAC-based approaches where matches are chosen close to each
others have been used successfully (see Sec. 7.4.2).

Before an effective description of the algorithm, the selection of the candidate
matches, the sampling strategy and the model validation are described in more
details in the next subsections.

Figure 8.1: Given the same measurement error (red line), a better estimation on
the line through o is obtained if a far points x′ is used (dark gray cone) instead of
a close point x (light gray cone)

8.2.2 Putative matches selection

The selection strategy is based on subsets Ul of the set P = {
(
x1,x2

)
} of the initial

input candidate matches, where x1 and x2 are respectively in the first and in the
second image of the stereo pair Ii, i = {1, 2}. The set Ul depends on the scale
resolution parameter l. Each image of the stereo pair, respectively of size mi × ni,
is divided into a squared grid where the stride is si = min(mi, ni)/l.

A putative match
(
x1,x2

)
belongs to the k-th block in the i-th image Bilk for a

scale parameter l if the respective point xi of the pair is inside the region delimited
by that block.
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For each block Bilk, the best putative match pilk ∈ P inside the block is chosen
according to the similarity D of the corresponding descriptors (see Chapter 4)

pilk = argmin
(x1,x2)∈Bi

lk

D
(
x1,x2

)
(8.1)

Clearly, {p1lk} 6= {p2lk} in general for the two sets {p1lk},{p2lk}, because the number of
blocks in the two images are not equal and the elements of a match pair cannot be
mutually neighbours (see fig. 7.4). The union of the two sets

Ul = {p1lk} ∪ {p2lk} (8.2)

gives the final set Ul from which to sample the model (see fig. 8.2). As other methods
described in Sec. 2.2.5 it allows a better distribution of the points on the images and
provides soft matches, in the sense that there can be pairs which share one element.
This can alleviate the issue of a bad input set of matches which can occur when
pairs of candidate matches are not allowed to share an element.

Figure 8.2: The set U3 of the correspondences, superimposed on the stereo image
pair I1, I2 (left, right image). In particular the red matches represent the set {p13k},
while the green one gives the set {p23k}

8.2.3 Model sampling

The seven or four matches from which to build the model M, respectively in the
case of a plane homography or in the case of the fundamental matrix, are obtained
from a set S = {sj} of the candidate inliers as follows. Let T be the set used to
validate the model M, |S| = n, so that S ⊂ T ⊂ P.

Matched pairs sk ∈ S, where k = 4 or k = 7 respectively in the case of a
plane homography or the fundamental matrix, are sampled in order, according to a
probability distribution pkj associated to the pair sj at the selection of the k-th pair.
The probability pkj is updated to p(k+1)j after the k-th sampled pair is selected.
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The probability p1j associated to sj =
(
x1,x2

)
for the first sampled pair is

p1j =
w(sj)d(sj)q(sj)z(sj)

b1
(8.3)

It is the product of different weights. The term b1 is chosen so that
∑n

j=1 p1j = 1,
the weight w(sj) indicates the goodness of the pair over the RANSAC history and
it will be discussed later.

The weight d(sj) defines the inner similarity of the descriptor associated with
xi, i.e. the uniqueness in the respective images of the features associated with the
pair. In particular given the ratio

Ai
v(sj) =

D
(
xi, x̂i

2

)

D (xi, x̂i
v)

(8.4)

where x̂i
r is the r-th nearest neighbour of xi among all features detected in Ii and v

is a fixed parameter, the inner similarity is

d(sj) = 1−A1
v(sj)A

2
v(sj) (8.5)

Pairs for which d(sj) is very close to 1, are formed of features which correspond
to repeated patterns in the images, so they are more ambiguous than others (see
fig. 8.3). The measure can be seen as an extension of the nearest neighbour ratio
(see Sec. 5.1.5), however by varying v it allows to take into the account the fact that
the same feature is often selected at different but very close scales.

Figure 8.3: A stereo pair with superimposed detected features. The colour of the
features sj vary from green to blue as d(sj) decreases toward zero

The weight z(sj) defines the cross similarity of the pair in the set T , i.e. how many
matches in T share common points,

z(sj) =
1√

B1(x1)B2(x2)
(8.6)

where Bj(xi) is the number of pairs in T which share the same element xi. The
cross similarity also indicates how ambiguous is the match, but in contrast to the
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inner similarity it works on the relationship between the two images and not inside
of them.

The last weight q(sj) defines a consistency similarity and indicates the geometric
consistency of the pair. If Cir(xi) is the set of match pairs where the corresponding
element in Ii has a distance less than r from xi and r = th

q(sj) =
C1r (sj) ∩ C2r (sj)
C1r (sj) ∪ C2r (sj)

(8.7)

This formulation is similar to SCC (see Sec. 7.4.2), however to be independent from
the feature descriptor it does not take into account the scale given by the feature
and it is symmetric.

After the k-th pair ŝk = sj is sampled and added to the modelM, the probability
p(k+1)i of the pairs in Cfr (ŝk), with f = mod(k, 2) + 1, and of the pairs which share
a point with ŝk is set to zero. The remaining values are normalized to the unit to
get a new consistent probability distribution (see fig. 8.4). This strategy removes a
random neighbourhood of the points Cfr (ŝk) and forces the model to be composed
by distant points, though as shown by NAPSAC and GroupSAC (see Sec. 7.4.2),
inliers are often close to each other. As shown in fig. 8.1 in the case of a straight
line, since the estimation by close points of geometric entities subject to noise is less
accurate, this strategy can enhance the selection of the inliers.

Figure 8.4: Successive steps of the model sampling for the sparse soft matching.
A match is selected (yellow segment) and all matches in the first image inside the
corresponding neighbour (yellow circle) are removed. The process is repeated for
the next sampled matches by alternating the image for the deletion of neighbours

8.2.4 Model validation

In order to validate the model M, the error cost used is given by the maximum
between the symmetric reprojection errors. In particular in the case of the fun-
damental matrix F, the error cost ρF is the maximum of the distances Del of the
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corresponding points in the pair tj =
(
x1,x2

)
∈ T from the respective epipolar lines

(see Sec. 7.3.5)
ρF(tj) = max

(
Del(x

2,Fx1),Del(x
1,FTx2)

)
(8.8)

For a planar homography H, the error cost ρH uses the geometric error Dgeom (see
Sec. 7.3.2)

ρH(tj) = max
(
Dgeom

(
x2,Hx1

)
,Dgeom

(
x1,H−1x2

))
(8.9)

The use of the maximum value instead of the symmetric error (see Sec. 7.3.2) imposes
a more rigid constraint on the error. Pairs for which the error is less than a threshold
value th are included in the set T ′ = {t′j}, j = 1, . . . ,m of matches which can be
considered inliers. This set can contain pairs which share a same element so, in order
to disambiguate the matches, the pairs t′j are ranked according to a function K and
the final set I = QK of hard match inliers is obtained as described in Sec. 5.1.1.
The value of the function K for a pair t′j = (x1,x2) is

K(t′j) = ρ(t′j)c(t
′
j)
(
1− d(t′j)

) (
1− q(t′j)

) (
1− z(t′j)

)
(8.10)

The value ρ is the error cost from ρF, ρH normalized so that the sum over the set
T ′ gives the unit, q(t′j) and d(t′j) are respectively the consistency similarity and the
inner similarity indexes described in Sec. 8.2.3, while z(t′j) is the cross similarity
over the set T ′. Lastly, the value c(t′j) is the descriptor similarity, i.e. the distance
computed on the feature descriptors associated to the pair, normalized on the set
T ′.

An ordering relation I > I ′ between inliers set I, I ′ is defined so that I > I ′ if
|I| > |I ′| or, in the case their cardinality are equals, if the median value of ρ for I
is less than that of I ′.

8.2.5 Merging all together

Algorithm 1 shows the main body of the method. The threshold value th in line 9
is computed as

th = κ
min(m1,m2, n1, n2)

k + kstep
(8.11)

where κ is a constant factor. The threshold th is a fraction of the minimum block
size used to generate the validation set T (see Sec. 8.2.2) where κ was set to κ = 1/4

in the test, th represents the radius of a block with half size with respect to the block
Bilk. The number of iterations k′max (line 16) inside a RANSAC run depends on the
current outer iteration k, so that more iterations are required as the sampling set S
and the validation set T grow.

In particular an empirical linear function has been used

k′max(k) = 8 +
5

2
k (8.12)

As an annealing process (as well as other non-linear minimization algorithms such
as the Levemberg-Marquadt iteration), when the algorithm is near a good inlier set,



8.2. Algorithm description 109

Algorithm 1 pseudocode for the soft sparse matching
1: // initiate the parameters
2: k ← 2

3: kstep ← 1

4: W ← 1

5: Ibest ← ∅

6: // main loop
7: while k < kmax do

8: // set the threshold
9: th← threshold(k + kstep)

10: // generate the sampling set
11: S ← Uk
12: // generate the validation set
13: T ← Uk

⋃Uk+kstep

14: flag ← 0

15: // execute the RANSAC
16: for k′ ← 1 to k′max(k) do

17: M← sample(S, T ,W, th)

18: I ← eval(S, T , th)
19: if I > Ibest then

20: flag ← 1

21: Ibest ← I
22: end if

23: end for

24: // update the parameters
25: if flag then

26: kstep ← max(1, kstep)

27: W ← update(W, I)
28: else

29: kstep ← 2kstep
30: end if

31: if kstep > kmaxstep then

32: return Ibest
33: end if

34: k ← k + kstep
35: end while

36: return Ibest
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it tries to slowly increase the inlier set for a better estimation. Otherwise, it looks
for a bigger, and probably random, set so an estimation between the errors of the
point matches is also performed. Moreover, if the difference, given by kstep, between
the sampling set S and the validation set T is large, the algorithm breaks because
this means that the guided sampling does not perform well.

In the experiments the max allowed kstep is kmaxstep = 8, the rank value v used
to compute the inner similarity (see Sec. 8.2.3) was set to 16, while kmax = 64.

The table W has an entry w′(x1,x2) set to 1 at line 4 for each possible input
match pairs in P . Whenever a new inlier set Ibest is found, W is updated at line
27 and w′(p) = w′(p) + 2q(p) for each pair p ∈ Ibest, where q is the consistency
similarity (see Sec. 8.2.3). The value w(sj) used in Secs. 8.2.3,8.2.4 is the entry
value of w′(sj) normalized over the set S

w(sj) =
w′(sj)∑

s∈S

w′(s)
(8.13)

Clearly, the soft sparse matching requires more computational time than the
RANSAC approach. Example of the results are shown in figs. 8.5–8.7 in comparison
with a standard RANSAC. For RANSAC, the maximum number of iterations is set
to 5000 and the Sampson error is used with a threshold of 3.5 pixels.

Figure 8.5: A planar homography estimation by the sparse soft matching method.
Matched features (green dots) are superimposed on the stereo pair (left, right), and
matches are superimposed on both merged images (centre)

8.2.6 Dominant plane and repeated patterns

A treacherous configuration involving dominant planes which cannot be handled
by RANSAC (see Sec. 7.4.3), is represented by a dominant plane π with repeated
patterns lying on same lines. These lines intersect the images Ii respectively in two
points, finite or infinite, denoted by bi, as shown in fig. 8.10(top row).

The plane induces an homography Hπ and this can lead to a wrong estimation
of the fundamental matrix Fπ when the model M is sampled by pairs of points
lying on the dominant plane π. It happens frequently because the dominant plane
extends among all the image surfaces. Moreover the epipoles are wrongly found
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Figure 8.6: Fundamental matrix estimation by the sparse soft matching (top) and
by RANSAC (bottom). Corresponding epipolar lines (blue lines) and matched fea-
tures (green dots) between the stereo pair (left, central columns) and superimposed
images with matches (blue segments, right). More and better distributed features
are obtained with the proposed method, as well as a better estimation of the epipolar
lines

into the points bi and the error function ρF becomes disadvantageous, because the
wrong matches are on the incorrect estimate epipolar lines (see fig. 8.10).

In order to deal with this not so infrequent configuration, the following simple
strategy can be applied. First a trivial check is performed to establish the presence
of a dominant plane. The sparse soft matching algorithm is applied to estimate the
dominant plane π with a sample model of 4 matches, obtaining the plane homog-
raphy Hπ and an inliers set IHπ , but also for estimating a fundamental matrix F

by using a model of 7 pairs, obtaining an inlier set IF. If |IHπ | > α|IF| where for
instance α = 0.4, the fundamental matrix has to be estimated again by using Hπ.

In particular the set P of all possible pairs is updated so that the pairs in P
which share one corresponding point with a pair in IHπ are removed.

The set S and T become S = S ∪ IHπ and T = T ∪ IHπ . Moreover, the model
M is forced to have at maximum 3 pairs from IHπ , by setting the probability of the
pairs in S which are in IHπ equal to 0 after the third pair in IHπ was found. Even
if the plane-and-parallax algorithm [70] requires only the homography Hπ and two
off-on-the-plane pairs to estimate the fundamental matrix F, the proposed method
forces a model estimation more independent from Hπ.
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Figure 8.7: Fundamental matrix estimation by the sparse soft matching (top) and by
RANSAC (bottom). Corresponding epipolar lines (blue lines) and matched features
(red dots) between the stereo pair (left, central columns) and superimposed images
with matches (blue segments, right). Both RANSAC and the proposed method fail
to estimate the correct epipolar geometry

The entries of the table W for pairs (x1,x2) ∈ IHπ are updated in line 27 so that
w′(x1,x2) = w′(x1,x2) + 1, while more insight is used in the model validation. In
particular the corresponding Voronoi diagrams [38] in the images Ii are built for the
pairs (x1,x2) ∈ IHπ , and the set T ′ (see Sec. 8.2.4) is further refined so that point
in the pairs (x1,x2) ∈ T ′ should lie in the same corresponding Voronoi regions (see
fig. 8.10, central row). This is often the common case, but for very wide baseline
stereo pairs it can lead to drop some inliers.

The time required to compute the correct matches, though good result are ob-
tained, is higher. An example of the final result is shown in fig. 8.10 (bottom).

8.3 Algorithm evaluation

8.3.1 Test setup

In order to test the proposed method in the case of the estimation of the fundamental
matrix, a strategy similar to that proposed in [119] was adopted (see Sec. 5.1.5).
This strategy does not work for rectified images but it is only geometric and the
ground truth can be estimated easily. Three images I0, I1, and I2 are used, where
the ground truth fundamental matrices F01, F12 and F02 are estimated by taking
point correspondences by hands using the 8 point algorithm (see Sec. 7.3.3). To be
more fair, the correspondences has been estimated by three different people for each
stereo pairs.

The check is performed as follows, given three inliers sets I01, I12 and I02 as
input. The chain set Cikj of quadruplets of two inlier sets Iik and Ikj is formed so
that (xi,xk,x′k,xj) ∈ Cikj if two pairs (xi,xk) ∈ Iik and (x′k,xj) ∈ Ikj exist for
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Figure 8.8: Fundamental matrix estimation by the sparse soft matching (top) and by
RANSAC (bottom). Corresponding epipolar lines (blue lines) and matched features
(green dots) between the stereo pair (left, central columns) and superimposed images
with matches (blue segments, right). Also in this case a better feature distribution
and a better fundamental matrix estimation are obtained by the sparse soft matching

which the Euclidean distance of the point locations in the same image Ik is less than
a threshold th

L2(x
k,x′k) < th (8.14)

Three different sets C012, C120 and C201 are obtained for the pairs I01 and I12, I12
and I20, I10 and I02 respectively, where the set Imn = Inm is obtained by swapping
the points inside a pair.

The chain set Cikj is tested to check if the two pairs which form a quadruplet are
inliers, obtaining two inlier sets Cikikj and Ckjikj , one for each stereo pair of the chain.

If all point composing the quadruplet are at the maximum distance th from
the epipolar lines, obtained by projecting the corresponding points through the
respective fundamental matrices, both the pairs are considered correct matches, i.e.
if the test is positive from (xi,xk,x′k,xj) ∈ Cikj it follows that (xi,xk) ∈ Cikikj and

(x′k,xj) ∈ Ckjikj . More in detail, three epipolar lines correspond to xi and xj , while

only two for the points xk and x′k, so a total of 10 point-to-epipolar-line distances
are checked (see fig.8.11). Clearly, there can be some false positive, especially when
the epipolar lines corresponding to a point are almost parallel, however as it was
verified in the next tests and as it was noted in [119], it happens with a relatively
low probability. For each initial inlier set Iqz, the set of correct matches according
to the proposed test is Gqz =

⋃
i,j,k C

qz
ijk.

The main issue with this approach is that some matches can be wrongly discarded if
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Figure 8.9: Fundamental matrix estimation by the sparse soft matching (top) and by
RANSAC (bottom). Corresponding epipolar lines (blue lines) and matched features
(red dots) between the stereo pair (left, central columns) and superimposed images
with matches (blue segments, right). A better epipolar line estimation is obtained
for the proposed method

the point is not present in all images, which can happen for high degree of transfor-
mation between images and due to a detector failure. A good measure to validate
the consistency of the method is provided by the inlier percentage

Zij =
|Iij

⋂Gij |
|Iij |

(8.15)

If the triplets of images Ii are sorted according to the image transformation degree,
it can be easily seen that the stereo pair I0, I2 should have the high percentage
of correct matches because it contains matches obtained from strongly repeated
features.

Since it not easy to order the transformations in general, in the proposed frame-
work only the inlier set G which has the higher inlier percentage Zij is used from
the three possible choices Gij , i.e.

G = argmax
i,j

Zij (8.16)
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Figure 8.10: Fundamental matrix estimation without taking into account the dom-
inant plane (top row), the stereo pair with the matched features (left, central
columns) and the matches on the superimposed images (right column). The epipoles
are badly located in the vertical direction on the build facades. Corresponding
Voronoi cells (central row) used to locate matches (left, central columns) according
to the plane homography estimation (right column). The final fundamental matrix
estimation obtained by using the Voronoi cell to constrain the matches (bottom
row). To note the estimation of the epipolar lines, close to the true solution

8.3.2 Experimental result

To validate the soft sparse matching, four different measures are considered

• the percentage of inliers I;

• the absolute number of inliers I;

• the percentage of the maximal convex hull area H between the two stereo
images corresponding to G;

• the percentage of the maximal area coverage V obtained by the relative de-
scriptors.

The error threshold th was set to 5 pixels. In order to compare the matching
strategy RANSAC has also been included in the test with different measure errors.
The different methodologies have been tested on different triplets of images, reported
in figs. 8.12–8.22.

In particular, RANSAC, MLESAC, MSAC and LMedS (see Sec. 7.4.1) have
been tested using the Sampson error and the point-to-epipolar-line distance (see
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Figure 8.11: The matched pairs (xi,xk), (x′k,xj) (blue dotted lines) are considered
as inliers if the distance between xk, x′k and the distance from a matched point to
any epipolar line in the corresponding image are less than th (the circle radius)

Sec. 7.3.2), for an error threshold from 1 to 9 pixels. To merge the errors obtained
by the point-to-epipolar-line distance in both the images, three different strategies
were adopted. If ε = [ε1, ε2] is the error vector for a match pair, the symmetric

error is defined as (ε1 + ε2)/2, the geometric error as
√
ε21 + ε22 and the max error

as max(ε1, ε2). A total of 4× 4 different RANSAC methodologies were applied.

The maximum number of iterations was set to 5000. For RANSAC methodolo-
gies the nearest neighbour selection on a hard match set (see Sec. 5.1.1) was adopted
as the input set P, while the soft sparse matching takes as input all the possible
matches. The HarrisZ detector was used to detect features, while the feature de-
scriptor vectors were extracted by the sGLOH descriptor (see Sec. 6).

Since all RANSAC based algorithms do not output the same inlier set at each
run, a total of five runs has been executed for each stereo pair obtaining 53 = 125

different validation sets. The stereo pair which maximized the mean value of G
(see eq. 8.16) among all different methods has been selected from the three possible
choices.

The average value for each measure, as well as the maximum, the minimum and
the standard deviation are reported, the same statistics about the running time are
also shown. The average inlier percentage is used to rank the algorithms and, among
various RANSACs for a fixed methodology and a fixed error measure, only the best
result is reported from all the possible choices of the threshold error.

Evaluation results are reported in tables 8.1–8.11, according to the inlier percent-
age I(%), the absolute number of inliers I(#), the max convex hull area percentage
H(%) and the maximal feature area coverage percentage V(%). The errors in the
human estimation of the ground truth fundamental matrix is also reported as well
as the running time of each method, implemented in Matlab.

As it can be seen from the tables, the difference in the average inlier percentage is
quite similar for all the image sequences, however the soft sparse matching is ranked
in the first positions in most cases. Moreover the absolute number of matches in I,
as well as the maximal convex hull area H and coverage area V for the soft sparse
matching are the highest almost in all sequences. It should also be noted that the
input set is larger for the soft sparse matching so that it must contains an higher
percentage of outliers.
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In figs. 8.12–8.22 the best results for each sequence are reported. In particular
the upper rows show the best result obtained for the sparse soft matching, while the
lower rows show the best ranked method according to the average inlier percentage
reported in the corresponding table. For each method, in the first row the stereo
pair with superimposed inlier feature ellipses and the intermediate image are shown
(left to right). The max convex hull and the corresponding hull in the other image
are also reported (blue boundaries). Moreover, the second row for each method
shows the detected inlier matches (red) on the first image and the outliers on the
second image (green), according to the evaluation criterion. The last image of each
second row shows the images of the sequence superimposed with the correct chains,
according to the threshold of 5 pixels.

By inspecting the standard deviation of the absolute number of inliers it can be
seen that the proposed algorithm is quite stable. There is also no RANSAC method
that is better among the others.

As a main drawback, the computational time is higher, however the use of faster
model check (see Sec. 7.4.4) in the soft sparse method was not investigated. As
strong point, the proposed method does not require any error threshold in contrast
to the other RANSAC methods. If no information about the errors in the images is
given, more than one RANSAC runs are required.

The soft sparse matching is strongly guided by the feature descriptor similarities
and it can fail when the feature descriptors do not provided good clues on the
matches, as shown in fig. 8.7 for the “plant” scene. In this case also RANSAC fails,
while PROSAC has been reported to be successful [105], but on a different setup.

The evaluation framework is promising. However some matches which can look
correct to human inspections are wrong in the sense of the pure geometrical test
performed, which gives an accurate estimation of the inliers. Future works may
include further information provided by the feature patch, such as the scale and the
shape, to alleviate this issue.

8.3.3 Final remarks

The proposed soft sparse matching is very promising, in particular for the high
number of correct matches and the high coverage of the image. Some aspects have
to be further investigated, as the use of a fast model check to reduce the running
time, and a stop criterion based on statistical hypothesis.

The proposed validation framework seems effective. New tests to validate not
only other matching strategies but also feature detectors and descriptors can be
performed. Further measures can be included to obtain more insights in the accuracy
of the algorithms to test.
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Figure 8.12: The corridor image sequence with the best results (see text for details)
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Sequence: corridor

Best image pairs 0 2 with a 5 pixel chain error threshold

Groundtruth fund. matrix estimation pixel reprojection error

Image 1st image 2nd image
pair min mean max std min mean max std

0–1 0.00 1.28 5.90 1.12 0.00 1.02 4.30 0.90
1–2 0.00 1.08 5.64 1.04 0.00 0.65 4.29 0.62
1–2 0.02 0.98 5.13 0.93 0.01 0.73 4.70 0.68

Algorithm statistics Running time

I(%) I(#) H(%) V(%) I(%) I(#) H(%) V(%) time(s) time(s)

sparse soft matching

mean 87.56 69 45.30 15.97 best 91.25 73 45.43 15.96 mean 196 max 334
std 2.85 1 1.25 0.64 worst 81.70 67 43.25 16.13 std 119 min 72

ransac with geometric error distance and 4 pixel threshold

mean 87.47 60 33.18 11.50 best 95.18 79 41.16 15.01 mean 28 max 37
std 6.04 11 5.30 2.59 worst 76.92 50 26.82 7.80 std 14 min 8

msac with symmetric error distance and 3 pixel threshold

mean 87.13 62 31.96 10.92 best 93.93 62 34.79 11.95 mean 27 max 37
std 8.00 11 5.01 3.40 worst 70.49 43 22.09 5.13 std 13 min 8

mlesac with sampson error distance and 1 pixel threshold

mean 86.16 38 22.33 7.58 best 92.85 39 32.26 5.07 mean 38 max 62
std 5.18 3 5.17 1.65 worst 71.73 33 20.46 7.04 std 27 min 12

msac with geometric error distance and 4 pixel threshold

mean 85.93 49 28.39 9.08 best 92.42 61 38.09 10.27 mean 27 max 37
std 4.26 6 5.25 1.29 worst 78.94 45 29.13 8.38 std 14 min 8

ransac with max error distance and 4 pixel threshold

mean 85.26 63 33.22 11.49 best 91.30 84 44.74 14.79 mean 26 max 37
std 6.50 13 7.72 2.64 worst 74.24 49 26.46 9.22 std 11 min 10

mlesac with max error distance and 2 pixel threshold

mean 85.18 66 34.97 12.04 best 92.85 91 45.62 17.19 mean 28 max 39
std 6.18 16 9.80 3.79 worst 75.80 47 22.93 8.32 std 13 min 9

msac with max error distance and 4 pixel threshold

mean 84.80 53 26.69 8.33 best 91.93 57 28.87 10.88 mean 25 max 38
std 5.64 3 2.80 1.30 worst 73.84 48 22.96 7.83 std 11 min 10

ransac with symmetric error distance and 4 pixel threshold

mean 84.79 62 30.62 10.70 best 91.66 88 45.09 16.39 mean 26 max 37
std 4.22 12 7.33 2.97 worst 80.00 56 26.92 8.95 std 10 min 10

msac with sampson error distance and 3 pixel threshold

mean 84.15 71 33.99 12.68 best 92.04 81 38.65 14.80 mean 26 max 38
std 5.22 12 6.71 2.92 worst 78.08 57 32.33 11.38 std 10 min 10

ransac with sampson error distance and 2 pixel threshold

mean 81.88 55 29.77 11.35 best 94.44 68 39.55 12.99 mean 27 max 38
std 10.96 11 5.56 1.82 worst 57.62 34 25.67 7.22 std 12 min 9

mlesac with geometric error distance and 2 pixel threshold

mean 80.36 43 23.41 7.39 best 84.90 45 19.72 7.65 mean 29 max 39
std 5.48 3 4.08 1.55 worst 69.81 37 22.56 5.44 std 14 min 9

mlesac with symmetric error distance and 2 pixel threshold

mean 75.71 52 28.55 8.56 best 83.82 57 31.47 10.45 mean 26 max 38
std 6.78 6 2.74 1.08 worst 67.79 40 30.34 7.39 std 11 min 10

lmeds with symmetric error distance and 8 pixel threshold

mean 68.75 46 23.35 8.19 best 74.24 49 22.96 6.93 mean 24 max 38
std 4.07 4 5.36 2.04 worst 63.29 50 31.38 10.64 std 6 min 12

lmeds with max error distance and 6 pixel threshold

mean 68.44 39 20.62 7.55 best 79.48 62 35.11 9.37 mean 29 max 51
std 5.70 11 11.35 2.10 worst 57.81 37 26.80 8.27 std 9 min 11

lmeds with sampson error distance and 7 pixel threshold

mean 67.99 64 27.09 11.53 best 71.27 67 30.93 13.42 mean 23 max 38
std 2.27 7 3.36 2.62 worst 63.00 63 23.64 11.35 std 5 min 13

lmeds with geometric error distance and 9 pixel threshold

mean 63.19 40 22.86 7.43 best 70.37 38 18.22 9.74 mean 26 max 38
std 3.70 4 6.86 2.04 worst 56.96 45 27.90 8.61 std 7 min 10

Table 8.1: Evaluation results on the corridor sequence (see the text for details)
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Figure 8.13: The DC image sequence with the best results (see text for details)
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Sequence: DC

Best image pairs 0 2 with a 5 pixel chain error threshold

Groundtruth fund. matrix estimation pixel reprojection error

Image 1st image 2nd image
pair min mean max std min mean max std

0–1 0.00 0.83 4.97 0.81 0.00 0.80 4.36 0.78
1–2 0.00 0.94 5.86 0.85 0.00 0.92 5.89 0.82
1–2 0.00 0.75 3.10 0.66 0.00 0.76 4.17 0.66

Algorithm statistics Running time

I(%) I(#) H(%) V(%) I(%) I(#) H(%) V(%) time(s) time(s)

sparse soft matching

mean 79.41 128 45.81 11.05 best 83.43 141 47.33 12.46 mean 812 max 1041
std 1.89 6 1.18 0.90 worst 76.04 127 46.21 11.18 std 648 min 120

msac with sampson error distance and 2 pixel threshold

mean 76.92 90 36.12 7.30 best 83.18 94 33.00 7.49 mean 74 max 150
std 4.23 8 4.54 1.24 worst 71.69 76 29.99 5.48 std 16 min 51

msac with max error distance and 4 pixel threshold

mean 76.63 94 36.80 7.52 best 80.70 92 40.61 7.51 mean 73 max 158
std 3.71 13 3.58 0.98 worst 68.64 81 29.44 6.56 std 10 min 58

mlesac with max error distance and 2 pixel threshold

mean 76.11 107 39.74 8.19 best 83.21 119 40.53 8.77 mean 76 max 157
std 5.06 18 3.13 1.14 worst 68.91 102 44.75 7.39 std 12 min 58

ransac with max error distance and 3 pixel threshold

mean 75.53 90 37.78 6.85 best 81.32 135 44.67 10.26 mean 74 max 155
std 3.77 22 5.76 1.98 worst 65.45 72 33.16 5.00 std 17 min 50

msac with symmetric error distance and 4 pixel threshold

mean 74.64 115 37.10 8.93 best 82.82 135 30.38 9.09 mean 73 max 151
std 5.77 22 6.42 1.61 worst 67.88 93 32.10 6.64 std 10 min 58

msac with geometric error distance and 5 pixel threshold

mean 74.51 95 32.88 7.05 best 77.34 99 34.77 8.16 mean 71 max 159
std 1.76 8 4.73 0.75 worst 71.54 88 26.82 7.74 std 16 min 53

ransac with geometric error distance and 6 pixel threshold

mean 74.40 109 39.19 8.51 best 80.39 164 44.70 12.20 mean 72 max 154
std 4.04 28 5.68 2.20 worst 67.47 83 38.73 5.43 std 9 min 59

mlesac with geometric error distance and 2 pixel threshold

mean 73.53 85 37.68 7.07 best 79.83 95 40.89 7.99 mean 73 max 155
std 3.36 9 2.15 0.98 worst 69.09 76 38.61 5.78 std 16 min 54

ransac with sampson error distance and 4 pixel threshold

mean 73.28 139 42.94 10.52 best 79.90 167 46.73 12.07 mean 64 max 158
std 4.01 18 5.15 1.17 worst 68.62 140 46.70 10.66 std 6 min 50

ransac with symmetric error distance and 3 pixel threshold

mean 72.68 88 33.13 6.70 best 77.88 81 31.71 5.20 mean 76 max 152
std 3.59 18 4.15 1.45 worst 65.55 59 29.42 5.36 std 14 min 55

mlesac with symmetric error distance and 2 pixel threshold

mean 71.33 106 36.75 7.87 best 79.33 119 37.60 9.32 mean 73 max 156
std 8.43 21 4.00 1.87 worst 56.15 73 31.97 4.72 std 13 min 56

mlesac with sampson error distance and 2 pixel threshold

mean 70.51 146 42.05 11.04 best 73.36 135 35.23 8.99 mean 60 max 152
std 2.27 11 4.25 1.09 worst 67.13 143 47.02 11.15 std 6 min 45

lmeds with sampson error distance and 2 pixel threshold

mean 68.23 57 33.64 4.44 best 76.13 67 35.56 4.82 mean 77 max 157
std 5.00 6 3.03 0.55 worst 57.47 50 30.91 4.56 std 16 min 51

lmeds with geometric error distance and 6 pixel threshold

mean 65.47 82 30.48 5.72 best 69.49 82 29.93 6.39 mean 69 max 162
std 2.96 16 5.63 1.48 worst 58.62 51 22.65 2.92 std 9 min 57

lmeds with symmetric error distance and 7 pixel threshold

mean 64.98 108 34.62 8.32 best 70.06 103 38.21 7.91 mean 62 max 152
std 2.82 17 4.27 1.46 worst 60.47 101 28.64 7.88 std 6 min 54

lmeds with max error distance and 4 pixel threshold

mean 61.51 65 27.41 5.81 best 76.28 119 40.33 9.85 mean 76 max 159
std 7.33 29 10.16 2.50 worst 53.84 42 25.81 3.59 std 11 min 58

Table 8.2: Evaluation results on the DC sequence (see the text for details)
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Figure 8.14: The desk image sequence with the best results (see text for details)
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Sequence: desk

Best image pairs 0 2 with a 5 pixel chain error threshold

Groundtruth fund. matrix estimation pixel reprojection error

Image 1st image 2nd image
pair min mean max std min mean max std

0–1 0.00 1.29 16.80 1.67 0.00 1.17 15.83 1.54
1–2 0.01 1.12 6.32 1.23 0.01 1.09 6.23 1.19
1–2 0.00 1.21 9.84 1.59 0.00 1.28 15.44 1.68

Algorithm statistics Running time

I(%) I(#) H(%) V(%) I(%) I(#) H(%) V(%) time(s) time(s)

msac with symmetric error distance and 4 pixel threshold

mean 84.80 130 31.73 9.75 best 89.20 157 36.10 11.62 mean 54 max 79
std 2.27 19 3.79 1.49 worst 82.22 111 26.15 8.15 std 32 min 16

ransac with geometric error distance and 7 pixel threshold

mean 84.65 151 37.35 12.40 best 86.41 140 36.12 12.39 mean 51 max 79
std 1.24 12 3.50 0.62 worst 82.95 146 42.62 11.82 std 20 min 20

msac with geometric error distance and 5 pixel threshold

mean 84.41 98 24.69 8.20 best 89.65 130 35.53 10.99 mean 60 max 80
std 3.43 17 7.63 1.67 worst 78.99 94 16.48 6.18 std 45 min 11

mlesac with sampson error distance and 2 pixel threshold

mean 84.07 149 38.03 12.04 best 87.62 170 39.93 12.89 mean 50 max 81
std 2.66 18 1.29 0.56 worst 80.66 121 35.97 11.33 std 25 min 17

msac with max error distance and 4 pixel threshold

mean 84.01 108 29.01 8.82 best 87.00 154 31.38 12.71 mean 60 max 80
std 2.01 23 5.11 2.04 worst 79.82 91 27.08 6.58 std 40 min 13

ransac with sampson error distance and 2 pixel threshold

mean 83.93 104 27.16 8.57 best 87.05 121 28.21 10.31 mean 68 max 119
std 2.08 23 8.85 2.09 worst 79.43 85 16.99 6.14 std 46 min 19

msac with sampson error distance and 2 pixel threshold

mean 83.89 108 27.78 9.14 best 86.29 107 28.76 8.48 mean 69 max 130
std 1.55 6 3.51 1.28 worst 80.83 97 21.64 7.72 std 45 min 23

ransac with max error distance and 3 pixel threshold

mean 83.65 92 23.37 7.10 best 85.85 85 27.16 7.98 mean 64 max 102
std 1.97 14 5.44 1.41 worst 78.33 94 22.54 7.81 std 45 min 17

ransac with symmetric error distance and 3 pixel threshold

mean 83.05 104 27.41 8.80 best 89.16 107 23.08 7.91 mean 73 max 149
std 2.97 9 4.45 1.61 worst 79.19 118 33.29 10.74 std 42 min 26

mlesac with geometric error distance and 2 pixel threshold

mean 82.30 95 27.72 7.45 best 86.58 142 33.76 10.18 mean 72 max 141
std 4.12 22 4.92 1.56 worst 73.58 78 33.61 6.38 std 46 min 27

mlesac with symmetric error distance and 2 pixel threshold

mean 80.59 109 28.06 8.41 best 84.26 150 29.64 11.00 mean 56 max 83
std 3.34 21 3.04 1.63 worst 74.56 85 29.04 5.88 std 30 min 16

mlesac with max error distance and 2 pixel threshold

mean 80.31 104 32.36 8.66 best 88.11 126 38.10 9.35 mean 57 max 84
std 4.75 17 3.21 1.08 worst 74.00 74 34.53 7.48 std 35 min 15

sparse soft matching

mean 74.90 117 48.61 10.52 best 77.70 122 51.83 11.85 mean 682 max 850
std 1.32 5 3.16 1.27 worst 71.89 110 49.63 8.00 std 519 min 108

lmeds with max error distance and 7 pixel threshold

mean 73.34 70 22.12 6.04 best 82.88 92 21.26 7.44 mean 50 max 82
std 8.93 22 5.95 1.27 worst 58.18 32 17.89 4.37 std 19 min 22

lmeds with symmetric error distance and 4 pixel threshold

mean 72.54 51 26.48 4.34 best 81.81 63 12.78 3.91 mean 63 max 98
std 8.26 11 9.52 0.74 worst 56.06 37 27.16 3.90 std 30 min 17

lmeds with geometric error distance and 6 pixel threshold

mean 70.91 56 19.95 4.56 best 79.26 65 13.76 4.18 mean 55 max 82
std 6.25 12 6.13 0.72 worst 60.63 57 20.34 4.88 std 31 min 16

lmeds with sampson error distance and 3 pixel threshold

mean 63.79 55 23.29 4.70 best 75.00 105 29.15 9.60 mean 57 max 79
std 11.01 29 6.24 2.77 worst 43.75 14 15.44 0.81 std 27 min 12

Table 8.3: Evaluation results on the desk sequence (see the text for details)
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Figure 8.15: The ET image sequence with the best results (see text for details)
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Sequence: ET

Best image pairs 0 2 with a 5 pixel chain error threshold

Groundtruth fund. matrix estimation pixel reprojection error

Image 1st image 2nd image
pair min mean max std min mean max std

0–1 0.00 0.63 4.59 0.58 0.00 0.69 4.99 0.63
1–2 0.00 0.82 4.40 0.74 0.00 0.91 5.10 0.84
1–2 0.00 0.87 8.32 1.09 0.01 0.89 4.28 1.11

Algorithm statistics Running time

I(%) I(#) H(%) V(%) I(%) I(#) H(%) V(%) time(s) time(s)

msac with symmetric error distance and 3 pixel threshold

mean 84.19 83 57.42 8.02 best 91.56 76 65.70 7.08 mean 36 max 66
std 4.49 10 6.82 1.43 worst 77.65 73 49.87 6.63 std 8 min 20

sparse soft matching

mean 82.83 100 65.66 9.49 best 84.42 103 64.92 10.59 mean 294 max 382
std 1.15 1 1.58 0.62 worst 80.16 97 64.92 8.81 std 249 min 38

ransac with max error distance and 5 pixel threshold

mean 82.77 88 56.77 8.10 best 88.67 94 53.89 9.13 mean 28 max 53
std 5.48 19 7.70 1.81 worst 73.75 59 43.51 5.28 std 6 min 15

msac with geometric error distance and 9 pixel threshold

mean 82.25 139 68.25 12.75 best 84.30 145 69.18 13.10 mean 22 max 41
std 1.07 3 1.88 0.53 worst 80.12 133 69.54 12.78 std 5 min 14

ransac with geometric error distance and 7 pixel threshold

mean 81.76 102 59.88 9.12 best 88.51 131 65.90 10.58 mean 24 max 41
std 4.49 23 11.68 2.11 worst 77.06 84 37.06 7.24 std 5 min 14

msac with max error distance and 7 pixel threshold

mean 81.53 127 66.02 11.04 best 83.95 136 68.56 13.18 mean 20 max 42
std 2.20 19 2.73 1.99 worst 77.58 90 61.65 7.42 std 4 min 15

msac with sampson error distance and 1 pixel threshold

mean 80.91 48 36.13 3.97 best 88.57 62 51.87 6.13 mean 58 max 81
std 6.64 9 13.96 1.15 worst 67.27 37 26.84 2.72 std 40 min 14

mlesac with symmetric error distance and 2 pixel threshold

mean 80.56 84 59.27 6.56 best 89.65 130 63.73 10.44 mean 30 max 54
std 4.83 23 3.42 1.97 worst 75.24 76 54.82 6.05 std 5 min 15

ransac with symmetric error distance and 3 pixel threshold

mean 80.31 76 46.79 6.52 best 83.94 115 65.70 10.33 mean 37 max 105
std 3.27 21 11.16 2.21 worst 74.24 49 32.00 3.86 std 9 min 24

mlesac with geometric error distance and 2 pixel threshold

mean 79.45 65 48.54 6.26 best 89.70 61 52.33 6.07 mean 41 max 68
std 7.62 18 9.77 1.60 worst 64.38 47 32.59 5.47 std 9 min 19

mlesac with max error distance and 2 pixel threshold

mean 78.52 83 56.68 7.09 best 80.00 104 63.61 8.27 mean 32 max 68
std 0.78 15 6.59 1.55 worst 76.62 59 55.86 4.56 std 7 min 19

mlesac with sampson error distance and 2 pixel threshold

mean 78.36 91 51.55 8.18 best 86.40 89 47.50 7.32 mean 22 max 42
std 6.28 15 7.70 1.60 worst 67.79 80 40.16 7.21 std 5 min 14

ransac with sampson error distance and 4 pixel threshold

mean 76.96 99 53.00 8.51 best 84.51 131 64.78 10.85 mean 22 max 41
std 5.92 21 15.76 2.46 worst 66.36 73 28.72 5.11 std 4 min 15

lmeds with symmetric error distance and 3 pixel threshold

mean 74.14 41 37.40 3.49 best 88.57 62 40.25 4.32 mean 41 max 92
std 10.43 14 8.92 0.83 worst 61.36 27 20.84 2.55 std 10 min 24

lmeds with geometric error distance and 6 pixel threshold

mean 71.81 47 39.42 4.65 best 81.39 70 53.24 6.96 mean 33 max 66
std 7.44 17 19.34 1.88 worst 55.00 33 21.10 3.32 std 6 min 19

lmeds with sampson error distance and 4 pixel threshold

mean 71.56 59 48.19 5.32 best 79.80 83 57.67 7.19 mean 22 max 41
std 8.57 16 11.76 1.39 worst 55.35 31 26.14 2.93 std 4 min 15

lmeds with max error distance and 6 pixel threshold

mean 69.54 61 44.38 6.14 best 83.83 140 69.12 13.44 mean 21 max 41
std 14.20 42 15.95 3.87 worst 42.22 19 29.89 3.01 std 5 min 14

Table 8.4: Evaluation results on the ET sequence (see the text for details)
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Figure 8.16: The Kermit image sequence with the best results (see text for details)
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Sequence: Kermit

Best image pairs 0 1 with a 5 pixel chain error threshold

Groundtruth fund. matrix estimation pixel reprojection error

Image 1st image 2nd image
pair min mean max std min mean max std

0–1 0.00 0.66 4.55 0.68 0.01 0.69 4.02 0.69
1–2 0.00 0.74 4.99 0.81 0.00 0.70 4.52 0.75
1–2 0.00 0.69 3.61 0.70 0.00 0.61 4.15 0.60

Algorithm statistics Running time

I(%) I(#) H(%) V(%) I(%) I(#) H(%) V(%) time(s) time(s)

ransac with max error distance and 7 pixel threshold

mean 61.86 71 22.84 8.26 best 68.96 80 24.64 9.86 mean 41 max 55
std 3.47 6 3.72 0.98 worst 55.81 72 20.99 8.56 std 30 min 10

ransac with geometric error distance and 9 pixel threshold

mean 61.79 70 24.86 8.74 best 67.56 75 24.68 9.06 mean 41 max 55
std 3.98 10 4.66 1.04 worst 53.33 56 14.95 7.26 std 30 min 9

msac with geometric error distance and 7 pixel threshold

mean 61.53 58 17.82 6.95 best 67.59 73 22.27 8.63 mean 40 max 55
std 3.91 10 3.35 1.45 worst 55.20 53 19.46 6.00 std 30 min 9

msac with max error distance and 5 pixel threshold

mean 61.32 64 21.87 7.71 best 67.24 78 25.84 10.01 mean 41 max 57
std 4.60 9 5.18 1.65 worst 53.57 45 13.46 5.21 std 30 min 10

ransac with symmetric error distance and 6 pixel threshold

mean 61.09 61 20.69 7.46 best 66.66 76 27.13 8.84 mean 40 max 55
std 4.31 7 3.34 1.30 worst 50.52 48 17.38 5.11 std 30 min 10

msac with symmetric error distance and 7 pixel threshold

mean 60.96 70 25.53 8.51 best 63.38 90 32.96 11.02 mean 40 max 55
std 1.68 11 5.04 1.79 worst 55.14 59 17.43 7.15 std 29 min 10

mlesac with geometric error distance and 3 pixel threshold

mean 60.42 64 19.52 7.33 best 64.60 73 21.80 7.77 mean 41 max 55
std 3.23 7 4.65 0.65 worst 49.50 50 13.01 5.40 std 29 min 10

msac with sampson error distance and 5 pixel threshold

mean 60.00 80 27.63 9.88 best 63.84 83 27.16 8.68 mean 40 max 55
std 1.89 6 3.89 1.15 worst 56.19 68 27.20 8.79 std 29 min 10

sparse soft matching

mean 59.80 54 30.49 7.52 best 65.65 65 31.55 8.27 mean 184 max 278
std 2.81 4 2.25 0.90 worst 52.87 46 29.38 5.93 std 64 min 75

mlesac with max error distance and 2 pixel threshold

mean 58.58 47 17.93 5.57 best 65.78 50 19.78 5.34 mean 41 max 56
std 4.40 9 5.45 1.20 worst 47.61 30 4.78 3.38 std 27 min 10

ransac with sampson error distance and 3 pixel threshold

mean 58.27 53 19.86 6.35 best 67.50 54 20.62 6.09 mean 41 max 55
std 4.50 7 4.42 1.40 worst 50.61 41 15.18 4.46 std 30 min 10

mlesac with sampson error distance and 2 pixel threshold

mean 57.73 64 26.44 8.77 best 64.48 69 29.21 9.23 mean 41 max 57
std 3.74 11 4.92 1.22 worst 51.85 56 15.20 6.83 std 30 min 10

mlesac with symmetric error distance and 3 pixel threshold

mean 55.50 74 26.59 9.44 best 61.86 73 29.57 9.59 mean 39 max 55
std 3.73 5 3.13 0.69 worst 49.25 66 23.94 8.69 std 30 min 8

lmeds with max error distance and 9 pixel threshold

mean 46.16 47 13.80 5.95 best 56.60 60 12.41 7.38 mean 40 max 56
std 7.35 11 7.01 1.40 worst 27.35 29 10.63 2.49 std 29 min 10

lmeds with symmetric error distance and 9 pixel threshold

mean 43.44 41 19.13 5.41 best 59.25 64 18.67 8.45 mean 42 max 57
std 8.24 14 5.01 1.75 worst 21.91 16 15.07 1.54 std 30 min 10

lmeds with geometric error distance and 9 pixel threshold

mean 40.29 29 9.78 3.18 best 56.86 29 5.94 1.71 mean 40 max 55
std 16.93 17 8.09 2.15 worst 4.16 1 0.00 0.05 std 29 min 10

lmeds with sampson error distance and 8 pixel threshold

mean 38.09 38 14.82 4.63 best 45.61 52 20.33 6.73 mean 40 max 55
std 6.63 12 3.86 1.50 worst 24.13 21 13.54 3.50 std 29 min 9

Table 8.5: Evaluation results on the Kermit sequence (see the text for details)
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Figure 8.17: The pen image sequence with the best results (see text for details)
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Sequence: pen

Best image pairs 0 2 with a 5 pixel chain error threshold

Groundtruth fund. matrix estimation pixel reprojection error

Image 1st image 2nd image
pair min mean max std min mean max std

0–1 0.00 1.73 22.31 2.36 0.00 1.69 21.90 2.33
1–2 0.00 0.96 6.51 1.00 0.00 1.00 6.54 1.04
1–2 0.00 0.90 5.46 0.95 0.00 0.96 21.62 1.02

Algorithm statistics Running time

I(%) I(#) H(%) V(%) I(%) I(#) H(%) V(%) time(s) time(s)

msac with max error distance and 3 pixel threshold

mean 82.73 84 24.33 5.14 best 91.42 96 27.91 5.44 mean 59 max 85
std 5.03 9 5.70 0.73 worst 68.69 79 20.67 5.64 std 43 min 14

msac with geometric error distance and 2 pixel threshold

mean 80.55 50 11.90 2.65 best 87.50 77 21.55 4.05 mean 62 max 86
std 6.70 15 4.33 0.77 worst 65.21 30 8.19 1.55 std 44 min 16

ransac with max error distance and 3 pixel threshold

mean 79.64 71 18.67 4.14 best 86.17 81 25.76 4.74 mean 59 max 82
std 6.05 11 6.54 0.83 worst 68.62 70 19.33 4.12 std 42 min 14

ransac with geometric error distance and 6 pixel threshold

mean 79.31 116 26.19 7.04 best 83.12 133 25.25 7.81 mean 51 max 91
std 3.23 16 6.45 1.22 worst 73.43 94 21.36 5.25 std 35 min 13

msac with sampson error distance and 2 pixel threshold

mean 78.96 87 20.25 4.87 best 87.21 116 23.32 6.67 mean 60 max 83
std 7.79 19 3.78 1.00 worst 64.36 56 13.87 3.29 std 43 min 14

ransac with symmetric error distance and 4 pixel threshold

mean 78.67 97 20.05 5.77 best 87.23 123 28.91 7.37 mean 48 max 59
std 4.55 17 5.62 1.05 worst 74.25 75 11.61 4.40 std 38 min 6

msac with symmetric error distance and 2 pixel threshold

mean 78.12 62 15.40 3.89 best 82.47 80 22.51 4.30 mean 66 max 134
std 3.24 12 5.38 0.53 worst 71.66 43 7.84 3.29 std 43 min 24

mlesac with symmetric error distance and 2 pixel threshold

mean 77.57 93 21.42 5.35 best 81.74 103 23.21 6.52 mean 52 max 60
std 2.00 5 3.05 0.53 worst 74.33 84 21.47 4.76 std 43 min 6

mlesac with geometric error distance and 2 pixel threshold

mean 75.95 81 17.93 4.93 best 85.41 123 25.23 7.62 mean 61 max 85
std 8.74 27 4.64 1.48 worst 62.65 52 16.07 3.81 std 44 min 15

mlesac with max error distance and 2 pixel threshold

mean 75.79 82 18.54 4.79 best 81.08 90 14.17 4.77 mean 53 max 83
std 2.92 4 3.94 0.22 worst 71.81 79 23.77 4.77 std 38 min 11

mlesac with sampson error distance and 2 pixel threshold

mean 74.99 117 34.32 7.06 best 79.11 125 42.61 8.26 mean 45 max 61
std 2.51 7 10.00 0.61 worst 72.22 104 19.20 6.65 std 17 min 13

ransac with sampson error distance and 3 pixel threshold

mean 74.58 95 22.07 5.65 best 78.46 102 25.07 6.05 mean 48 max 60
std 2.77 7 3.51 0.59 worst 70.39 88 19.70 4.92 std 33 min 8

sparse soft matching

mean 72.82 85 36.36 6.76 best 83.47 101 41.27 8.21 mean 549 max 755
std 5.38 8 6.68 0.67 worst 65.48 74 39.80 5.93 std 345 min 134

lmeds with symmetric error distance and 5 pixel threshold

mean 71.36 83 17.58 5.01 best 78.23 115 20.08 6.35 mean 47 max 59
std 5.30 21 3.65 0.92 worst 64.55 51 12.10 3.95 std 25 min 9

lmeds with geometric error distance and 9 pixel threshold

mean 68.59 95 26.90 6.26 best 74.73 139 45.63 8.33 mean 43 max 59
std 5.11 23 10.99 1.38 worst 56.92 74 14.35 4.87 std 19 min 12

lmeds with sampson error distance and 5 pixel threshold

mean 67.98 106 32.21 6.59 best 71.95 118 41.29 7.10 mean 42 max 61
std 3.35 18 8.80 1.18 worst 62.34 101 30.45 6.03 std 20 min 15

lmeds with max error distance and 9 pixel threshold

mean 61.76 88 23.23 5.31 best 69.51 130 32.50 7.61 mean 40 max 60
std 5.96 28 6.98 1.78 worst 54.23 64 12.75 3.96 std 15 min 17

Table 8.6: Evaluation results on the pen sequence (see the text for details)
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Figure 8.18: The shelf image sequence with the best results (see text for details)
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Sequence: shelf

Best image pairs 0 1 with a 5 pixel chain error threshold

Groundtruth fund. matrix estimation pixel reprojection error

Image 1st image 2nd image
pair min mean max std min mean max std

0–1 0.00 0.78 3.63 0.72 0.00 0.80 3.73 0.74
1–2 0.00 0.98 4.03 0.78 0.00 0.91 3.82 0.71
1–2 0.00 0.88 5.82 0.84 0.00 0.81 3.13 0.77

Algorithm statistics Running time

I(%) I(#) H(%) V(%) I(%) I(#) H(%) V(%) time(s) time(s)

sparse soft matching

mean 46.77 63 40.18 4.73 best 52.20 71 40.25 5.55 mean 754 max 973
std 2.47 4 2.28 0.47 worst 40.97 59 39.37 3.95 std 602 min 122

ransac with symmetric error distance and 9 pixel threshold

mean 41.84 69 30.31 5.51 best 49.64 69 27.75 4.74 mean 45 max 52
std 4.67 10 5.45 0.70 worst 31.07 55 22.55 5.09 std 40 min 4

ransac with max error distance and 9 pixel threshold

mean 39.59 68 32.93 5.21 best 47.69 93 38.74 6.70 mean 45 max 51
std 5.64 20 6.91 1.25 worst 30.20 45 28.27 3.36 std 41 min 3

msac with sampson error distance and 8 pixel threshold

mean 39.57 76 34.31 5.68 best 42.50 85 36.03 6.42 mean 46 max 51
std 1.84 6 4.32 0.70 worst 35.26 67 25.70 4.68 std 40 min 4

msac with max error distance and 9 pixel threshold

mean 39.09 59 28.11 5.03 best 46.66 63 36.02 5.49 mean 45 max 51
std 4.45 17 7.96 1.07 worst 31.34 42 26.21 4.16 std 40 min 3

ransac with sampson error distance and 9 pixel threshold

mean 38.57 82 38.58 6.13 best 43.10 100 43.59 7.14 mean 46 max 51
std 4.47 16 4.26 0.93 worst 28.88 52 31.16 4.33 std 41 min 3

mlesac with symmetric error distance and 3 pixel threshold

mean 38.52 63 29.35 5.13 best 42.66 64 30.51 4.36 mean 46 max 52
std 2.11 3 4.16 0.44 worst 34.31 58 28.17 5.23 std 42 min 3

mlesac with geometric error distance and 4 pixel threshold

mean 38.50 73 34.08 5.79 best 42.79 98 39.90 6.88 mean 47 max 53
std 3.28 12 3.69 0.60 worst 31.21 54 30.02 5.14 std 42 min 4

mlesac with max error distance and 4 pixel threshold

mean 38.19 83 38.36 6.01 best 44.95 98 43.59 7.09 mean 46 max 51
std 4.31 14 4.55 1.39 worst 30.33 54 30.22 3.14 std 40 min 3

msac with symmetric error distance and 7 pixel threshold

mean 38.09 53 25.97 4.52 best 49.16 88 37.23 6.54 mean 45 max 51
std 6.13 15 9.72 1.02 worst 26.36 29 4.98 3.26 std 39 min 4

ransac with geometric error distance and 8 pixel threshold

mean 37.81 42 27.15 3.38 best 49.48 48 31.65 4.12 mean 45 max 51
std 6.62 8 5.94 1.05 worst 25.00 26 12.05 1.21 std 41 min 3

msac with geometric error distance and 9 pixel threshold

mean 37.20 47 28.86 3.69 best 50.93 82 43.38 6.65 mean 46 max 52
std 7.13 14 8.91 1.48 worst 25.22 28 18.04 1.73 std 40 min 4

mlesac with sampson error distance and 3 pixel threshold

mean 36.60 71 33.74 5.46 best 44.00 99 43.09 6.85 mean 46 max 53
std 4.95 14 5.31 0.77 worst 29.44 58 30.52 4.45 std 41 min 3

lmeds with max error distance and 9 pixel threshold

mean 25.27 19 10.76 1.53 best 37.33 28 17.86 3.46 mean 45 max 51
std 7.64 7 6.36 0.75 worst 11.39 9 0.29 0.83 std 41 min 4

lmeds with symmetric error distance and 5 pixel threshold

mean 16.94 9 13.39 0.73 best 31.74 20 22.94 0.89 mean 45 max 52
std 7.82 4 7.73 0.38 worst 3.70 2 0.00 1.05 std 41 min 4

lmeds with sampson error distance and 7 pixel threshold

mean 16.09 16 13.87 1.39 best 26.31 30 24.32 2.50 mean 46 max 53
std 4.57 5 6.49 0.56 worst 9.09 11 14.61 0.81 std 39 min 4

lmeds with geometric error distance and 5 pixel threshold

mean 15.17 6 4.99 0.44 best 30.76 12 19.08 0.86 mean 45 max 52
std 6.47 3 5.88 0.22 worst 0.00 0 0.00 0.00 std 41 min 3

Table 8.7: Evaluation results on the shelf sequence (see the text for details)
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Figure 8.19: The Spongebob image sequence with the best results (see text for
details)
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Sequence: Spongebob

Best image pairs 0 2 with a 5 pixel chain error threshold

Groundtruth fund. matrix estimation pixel reprojection error

Image 1st image 2nd image
pair min mean max std min mean max std

0–1 0.03 1.83 29.68 2.39 0.03 1.87 31.66 2.54
1–2 0.00 1.10 11.43 1.37 0.00 1.11 11.41 1.37
1–2 0.00 1.05 4.26 1.02 0.00 1.04 31.49 1.01

Algorithm statistics Running time

I(%) I(#) H(%) V(%) I(%) I(#) H(%) V(%) time(s) time(s)

ransac with geometric error distance and 4 pixel threshold

mean 87.75 143 34.07 9.20 best 90.36 150 30.13 11.02 mean 65 max 117
std 1.87 12 2.91 1.49 worst 84.72 122 34.25 6.66 std 33 min 21

mlesac with max error distance and 2 pixel threshold

mean 87.64 156 34.87 10.18 best 90.44 161 33.51 10.64 mean 47 max 84
std 2.81 15 1.22 1.41 worst 83.63 138 34.95 8.90 std 18 min 20

msac with sampson error distance and 2 pixel threshold

mean 86.60 144 32.07 9.55 best 91.83 135 35.51 9.88 mean 70 max 116
std 2.83 14 3.25 1.16 worst 81.93 127 32.13 9.40 std 37 min 25

mlesac with geometric error distance and 2 pixel threshold

mean 86.49 132 35.81 9.45 best 89.74 140 33.88 9.10 mean 72 max 109
std 3.16 26 3.59 1.19 worst 78.44 91 32.02 7.48 std 47 min 18

ransac with symmetric error distance and 2 pixel threshold

mean 86.20 122 35.02 8.27 best 90.69 156 37.72 9.96 mean 99 max 123
std 2.79 19 2.68 1.20 worst 80.17 93 31.31 6.19 std 60 min 27

msac with max error distance and 2 pixel threshold

mean 85.82 109 30.18 6.99 best 89.78 123 33.41 7.47 mean 100 max 123
std 3.21 18 7.54 0.84 worst 78.76 89 32.39 6.20 std 61 min 27

mlesac with sampson error distance and 1 pixel threshold

mean 85.82 82 27.09 4.81 best 93.25 83 25.55 5.05 mean 104 max 127
std 5.59 17 5.50 1.19 worst 74.35 58 27.34 3.54 std 61 min 27

msac with symmetric error distance and 2 pixel threshold

mean 85.51 109 27.66 7.66 best 92.05 139 31.41 8.72 mean 97 max 125
std 3.36 19 4.72 0.85 worst 80.18 89 31.52 7.72 std 60 min 27

ransac with max error distance and 3 pixel threshold

mean 85.20 135 31.28 8.99 best 89.54 137 24.59 9.59 mean 73 max 125
std 2.79 19 5.41 1.04 worst 80.39 123 27.43 9.11 std 39 min 25

mlesac with symmetric error distance and 2 pixel threshold

mean 85.10 150 34.69 9.73 best 86.70 137 30.92 8.47 mean 47 max 66
std 1.22 12 2.34 1.50 worst 83.15 158 37.17 10.76 std 21 min 19

msac with geometric error distance and 4 pixel threshold

mean 84.08 120 30.08 7.44 best 87.67 128 35.84 7.11 mean 73 max 120
std 3.38 7 5.38 0.96 worst 78.94 120 23.55 7.90 std 35 min 20

ransac with sampson error distance and 3 pixel threshold

mean 82.93 175 34.00 11.01 best 88.35 220 53.42 13.82 mean 49 max 103
std 2.67 22 6.14 1.68 worst 78.60 147 26.43 9.85 std 20 min 21

sparse soft matching

mean 80.77 138 52.10 9.82 best 86.59 155 52.19 10.44 mean 736 max 1015
std 2.37 7 0.64 0.42 worst 77.90 134 51.67 9.69 std 524 min 129

lmeds with geometric error distance and 7 pixel threshold

mean 80.26 155 37.60 10.45 best 84.61 220 52.78 13.80 mean 41 max 64
std 1.95 39 6.55 2.17 worst 76.86 103 36.58 7.33 std 15 min 17

lmeds with max error distance and 7 pixel threshold

mean 80.09 189 39.25 11.96 best 84.37 189 37.92 10.72 mean 32 max 63
std 3.54 29 2.27 2.24 worst 74.01 151 36.53 10.35 std 8 min 22

lmeds with symmetric error distance and 3 pixel threshold

mean 79.70 120 34.97 8.32 best 88.29 166 43.23 10.20 mean 63 max 94
std 8.44 39 8.40 1.70 worst 62.63 57 24.85 5.80 std 35 min 15

lmeds with sampson error distance and 7 pixel threshold

mean 69.64 148 32.35 10.18 best 71.84 148 36.86 10.54 mean 30 max 96
std 2.10 22 4.79 1.85 worst 65.68 111 26.50 6.51 std 6 min 29

Table 8.8: Evaluation results on the Spongebob sequence (see the text for details)
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Figure 8.20: The ruins image sequence with the best results (see text for details)
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Sequence: ruins

Best image pairs 0 2 with a 5 pixel chain error threshold

Groundtruth fund. matrix estimation pixel reprojection error

Image 1st image 2nd image
pair min mean max std min mean max std

0–1 0.02 0.80 5.57 0.79 0.02 0.78 4.55 0.74
1–2 0.00 0.98 13.54 1.63 0.00 0.86 13.31 1.44
1–2 0.00 0.85 7.15 0.97 0.00 0.78 4.03 0.88

Algorithm statistics Running time

I(%) I(#) H(%) V(%) I(%) I(#) H(%) V(%) time(s) time(s)

sparse soft matching

mean 80.75 119 46.43 6.21 best 87.33 131 48.03 6.84 mean 1177 max 1858
std 3.48 10 1.34 0.48 worst 76.25 106 46.35 5.60 std 710 min 301

msac with max error distance and 5 pixel threshold

mean 76.03 100 35.37 5.24 best 84.07 132 38.73 7.02 mean 81 max 101
std 5.50 17 4.42 1.01 worst 66.66 78 33.97 4.12 std 59 min 16

ransac with sampson error distance and 2 pixel threshold

mean 75.01 78 23.98 4.38 best 85.29 87 31.41 5.17 mean 82 max 105
std 7.44 16 6.23 0.94 worst 61.95 57 20.63 3.14 std 58 min 17

msac with symmetric error distance and 4 pixel threshold

mean 74.00 101 35.77 5.63 best 80.59 108 41.46 6.45 mean 86 max 154
std 3.78 9 5.42 0.80 worst 69.81 111 32.90 6.42 std 59 min 25

ransac with geometric error distance and 3 pixel threshold

mean 73.51 60 24.91 3.65 best 86.55 103 40.75 5.91 mean 88 max 158
std 9.67 22 7.87 1.23 worst 48.27 28 11.89 1.94 std 57 min 29

msac with sampson error distance and 3 pixel threshold

mean 72.63 96 26.09 5.27 best 77.35 123 34.37 6.27 mean 82 max 119
std 3.18 19 3.97 0.85 worst 67.70 65 26.73 3.83 std 58 min 19

msac with geometric error distance and 2 pixel threshold

mean 72.47 53 22.36 2.95 best 87.59 113 35.14 6.18 mean 84 max 154
std 9.45 28 9.22 1.50 worst 52.08 25 7.30 1.33 std 60 min 25

ransac with max error distance and 4 pixel threshold

mean 72.45 80 27.06 4.36 best 80.00 84 31.76 5.11 mean 81 max 102
std 6.35 16 6.64 0.73 worst 60.67 54 15.40 3.65 std 57 min 17

ransac with symmetric error distance and 4 pixel threshold

mean 70.30 84 32.24 4.83 best 76.81 106 34.89 5.87 mean 82 max 100
std 6.33 14 6.61 0.74 worst 56.73 59 14.90 3.69 std 60 min 17

mlesac with sampson error distance and 2 pixel threshold

mean 68.24 115 32.27 6.22 best 70.87 146 36.90 7.77 mean 77 max 103
std 2.28 18 4.18 0.93 worst 64.66 97 32.70 5.23 std 60 min 18

lmeds with symmetric error distance and 4 pixel threshold

mean 67.04 89 28.08 4.71 best 75.18 100 31.36 4.95 mean 82 max 103
std 7.18 25 9.32 1.42 worst 50.58 43 10.95 2.08 std 59 min 17

mlesac with geometric error distance and 3 pixel threshold

mean 66.03 96 30.31 5.06 best 73.29 129 43.01 6.72 mean 82 max 160
std 4.38 17 6.88 1.06 worst 60.56 86 22.19 4.42 std 53 min 28

mlesac with max error distance and 3 pixel threshold

mean 65.79 124 34.50 6.65 best 70.17 160 42.67 8.51 mean 72 max 101
std 3.45 25 4.50 1.46 worst 60.13 86 31.25 4.34 std 47 min 21

mlesac with symmetric error distance and 2 pixel threshold

mean 65.37 80 25.91 4.43 best 74.58 135 37.72 7.30 mean 88 max 151
std 6.27 32 9.22 1.77 worst 56.09 46 17.60 2.68 std 60 min 26

lmeds with max error distance and 6 pixel threshold

mean 61.11 74 27.82 3.87 best 74.81 101 27.27 5.46 mean 82 max 100
std 8.65 20 4.45 1.18 worst 42.72 47 23.86 2.05 std 59 min 17

lmeds with geometric error distance and 4 pixel threshold

mean 54.92 40 17.03 2.21 best 70.00 63 26.24 3.30 mean 86 max 161
std 11.41 13 7.37 0.76 worst 21.66 13 6.97 0.69 std 59 min 26

lmeds with sampson error distance and 5 pixel threshold

mean 52.55 72 24.29 3.57 best 67.37 95 24.73 4.64 mean 82 max 107
std 12.71 39 6.15 2.14 worst 35.52 27 20.43 1.22 std 57 min 18

Table 8.9: Evaluation results on the ruins sequence (see the text for details)
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Figure 8.21: The Teddy image sequence with the best results (see text for details)
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Sequence: Teddy

Best image pairs 0 1 with a 5 pixel chain error threshold

Groundtruth fund. matrix estimation pixel reprojection error

Image 1st image 2nd image
pair min mean max std min mean max std

0–1 0.00 1.24 14.41 1.74 0.00 1.24 16.42 1.91
1–2 0.00 1.01 16.29 1.67 0.00 1.00 17.93 1.75
1–2 0.00 0.65 2.86 0.58 0.00 0.65 16.96 0.59

Algorithm statistics Running time

I(%) I(#) H(%) V(%) I(%) I(#) H(%) V(%) time(s) time(s)

ransac with max error distance and 3 pixel threshold

mean 84.32 82 44.15 15.23 best 90.29 93 51.60 17.88 mean 35 max 44
std 2.97 13 3.84 1.63 worst 78.66 59 40.41 15.67 std 17 min 8

ransac with geometric error distance and 4 pixel threshold

mean 84.29 84 39.58 15.21 best 86.72 98 45.66 17.47 mean 35 max 42
std 1.59 7 7.12 3.11 worst 80.95 85 46.29 19.40 std 21 min 8

msac with symmetric error distance and 4 pixel threshold

mean 84.09 96 44.04 18.49 best 91.59 109 48.88 18.37 mean 31 max 43
std 4.06 9 4.27 1.77 worst 78.89 86 37.22 18.71 std 12 min 12

msac with geometric error distance and 4 pixel threshold

mean 83.93 74 38.59 15.18 best 86.20 75 40.83 15.01 mean 35 max 43
std 1.80 8 3.58 1.41 worst 80.23 69 38.98 17.02 std 16 min 8

msac with sampson error distance and 3 pixel threshold

mean 83.23 106 45.58 19.84 best 87.02 114 45.72 20.73 mean 32 max 44
std 3.96 12 7.28 2.44 worst 75.00 81 30.53 15.06 std 13 min 13

ransac with sampson error distance and 2 pixel threshold

mean 82.54 81 39.09 15.47 best 87.38 97 50.90 20.13 mean 34 max 43
std 2.78 9 10.51 2.23 worst 77.90 67 22.69 15.56 std 16 min 9

msac with max error distance and 5 pixel threshold

mean 82.30 104 45.25 19.22 best 85.71 120 51.99 21.23 mean 30 max 43
std 2.32 11 4.88 1.89 worst 77.23 95 46.72 20.21 std 11 min 13

mlesac with geometric error distance and 2 pixel threshold

mean 81.96 79 37.04 13.54 best 86.36 95 46.25 15.69 mean 35 max 43
std 3.44 7 7.35 1.82 worst 75.00 69 37.85 12.37 std 19 min 8

mlesac with max error distance and 2 pixel threshold

mean 81.87 90 46.13 17.21 best 86.44 102 50.93 18.92 mean 33 max 44
std 3.65 11 4.47 1.68 worst 74.44 67 34.23 13.55 std 11 min 12

ransac with symmetric error distance and 3 pixel threshold

mean 81.79 82 38.58 15.33 best 88.67 94 50.88 20.50 mean 33 max 43
std 3.42 8 7.85 2.95 worst 75.82 69 35.67 13.60 std 16 min 9

mlesac with sampson error distance and 1 pixel threshold

mean 81.38 45 33.59 10.62 best 86.79 46 25.94 10.92 mean 50 max 72
std 3.05 2 6.51 1.19 worst 72.72 40 34.01 9.94 std 38 min 13

mlesac with symmetric error distance and 1 pixel threshold

mean 80.16 37 27.02 7.31 best 89.58 43 33.34 7.92 mean 51 max 72
std 6.30 3 3.39 1.33 worst 67.34 33 26.32 7.37 std 36 min 14

sparse soft matching

mean 75.45 73 49.28 16.22 best 82.82 82 48.42 16.81 mean 159 max 239
std 3.26 4 2.83 0.41 worst 68.04 66 51.57 15.96 std 91 min 47

lmeds with symmetric error distance and 7 pixel threshold

mean 72.34 70 32.09 13.28 best 79.05 117 47.16 20.02 mean 30 max 44
std 3.63 23 9.54 3.70 worst 66.19 47 20.41 9.06 std 8 min 15

lmeds with max error distance and 9 pixel threshold

mean 71.41 84 39.75 15.99 best 73.94 105 42.63 18.83 mean 29 max 43
std 3.41 17 5.33 2.02 worst 64.70 55 29.42 12.93 std 6 min 16

lmeds with geometric error distance and 8 pixel threshold

mean 71.35 63 32.56 12.60 best 77.30 109 46.68 19.61 mean 32 max 42
std 3.66 26 8.40 5.24 worst 62.71 74 35.91 16.57 std 11 min 12

lmeds with sampson error distance and 6 pixel threshold

mean 69.13 70 38.95 14.31 best 77.27 85 48.43 16.17 mean 29 max 43
std 4.51 9 8.28 2.09 worst 61.62 53 41.86 10.82 std 6 min 16

Table 8.10: Evaluation results on the Teddy sequence (see the text for details)
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Figure 8.22: The tribal image sequence with the best results (see text for details)
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Sequence: tribal

Best image pairs 0 2 with a 5 pixel chain error threshold

Groundtruth fund. matrix estimation pixel reprojection error

Image 1st image 2nd image
pair min mean max std min mean max std

0–1 0.00 1.57 25.57 2.63 0.00 1.63 27.17 2.78
1–2 0.00 0.99 4.71 0.86 0.00 1.06 5.65 0.93
1–2 0.01 1.04 6.45 0.98 0.01 1.07 27.06 1.03

Algorithm statistics Running time

I(%) I(#) H(%) V(%) I(%) I(#) H(%) V(%) time(s) time(s)

msac with max error distance and 3 pixel threshold

mean 66.12 78 26.64 5.28 best 77.86 95 24.10 6.47 mean 60 max 69
std 8.81 13 5.90 1.14 worst 47.24 60 19.34 3.95 std 52 min 5

msac with symmetric error distance and 3 pixel threshold

mean 61.74 83 31.98 5.40 best 72.03 85 26.93 5.81 mean 59 max 68
std 4.99 21 8.06 1.14 worst 50.00 43 26.15 2.89 std 47 min 6

mlesac with sampson error distance and 2 pixel threshold

mean 61.51 107 31.50 6.84 best 65.19 118 27.27 7.34 mean 61 max 70
std 3.73 13 5.84 0.78 worst 53.12 85 32.37 5.31 std 49 min 6

msac with sampson error distance and 4 pixel threshold

mean 61.39 96 28.98 6.42 best 66.66 82 18.40 5.49 mean 60 max 68
std 3.46 19 9.36 1.11 worst 56.14 96 35.03 6.51 std 49 min 5

ransac with symmetric error distance and 5 pixel threshold

mean 60.77 97 29.42 6.58 best 65.36 117 33.44 7.43 mean 60 max 68
std 3.10 15 1.98 0.61 worst 53.78 71 25.56 5.75 std 48 min 5

msac with geometric error distance and 7 pixel threshold

mean 60.59 97 33.46 6.30 best 68.42 91 25.41 5.85 mean 61 max 69
std 5.22 24 8.68 1.34 worst 51.26 81 31.39 5.62 std 46 min 6

ransac with sampson error distance and 3 pixel threshold

mean 60.37 87 32.29 5.95 best 66.29 118 35.59 7.83 mean 61 max 69
std 4.99 20 7.05 1.34 worst 51.21 63 25.18 4.30 std 55 min 5

sparse soft matching

mean 60.37 94 47.88 6.55 best 64.59 104 53.75 7.70 mean 857 max 1107
std 2.76 4 4.39 0.51 worst 55.55 90 48.30 6.28 std 525 min 125

ransac with max error distance and 6 pixel threshold

mean 60.06 94 31.55 6.26 best 66.94 81 25.01 5.53 mean 60 max 67
std 5.20 21 9.23 1.30 worst 46.45 59 24.70 4.21 std 54 min 5

ransac with geometric error distance and 9 pixel threshold

mean 59.38 105 34.35 6.88 best 65.23 137 38.13 8.78 mean 61 max 70
std 4.53 21 4.55 1.33 worst 51.89 82 33.62 5.49 std 55 min 5

mlesac with geometric error distance and 2 pixel threshold

mean 58.43 69 25.00 4.45 best 69.29 79 26.69 5.23 mean 61 max 70
std 6.46 13 5.97 0.90 worst 45.91 45 15.25 3.41 std 49 min 7

mlesac with max error distance and 2 pixel threshold

mean 55.89 79 26.32 5.23 best 64.81 105 31.58 5.96 mean 61 max 71
std 6.04 18 10.61 0.95 worst 40.74 66 18.19 4.32 std 50 min 6

mlesac with symmetric error distance and 2 pixel threshold

mean 49.99 64 25.59 4.42 best 65.34 115 48.79 7.23 mean 61 max 71
std 9.51 26 10.01 1.64 worst 25.84 23 18.75 1.69 std 47 min 6

lmeds with symmetric error distance and 7 pixel threshold

mean 47.45 89 34.18 5.72 best 58.79 117 42.30 7.02 mean 60 max 70
std 5.66 17 7.81 0.87 worst 35.23 68 26.86 3.87 std 49 min 5

lmeds with max error distance and 7 pixel threshold

mean 47.41 80 32.11 5.48 best 54.82 125 49.41 7.20 mean 61 max 69
std 5.87 24 6.46 1.30 worst 35.19 44 24.40 2.87 std 55 min 4

lmeds with sampson error distance and 7 pixel threshold

mean 43.94 91 33.56 5.95 best 54.22 109 41.81 7.00 mean 60 max 69
std 6.12 23 9.32 1.53 worst 32.65 64 27.63 4.82 std 49 min 6

lmeds with geometric error distance and 9 pixel threshold

mean 41.61 60 21.19 4.25 best 58.65 105 35.86 7.07 mean 61 max 69
std 8.99 22 8.28 1.46 worst 30.70 39 16.38 2.73 std 55 min 5

Table 8.11: Evaluations result on the tribal sequence (see the text for details)





Chapter 9

Conclusions and future works

In this thesis the following contributes in field of the image feature matching have
been presented:

• the HarrisZ detector, an improved affine feature detector based on the Harris
corner detector. It provides stable and robust results in terms of the repeata-
bility index and the matching score, without the requirement of a fine tuning
of the algorithm parameters. The results obtained for planar and three dimen-
sional objects are comparable with the state of the art affine detectors, such
as the Hessian-affine detector and the MSER detector. Though the method is
not fast, it is still appropriate for off-line tasks which require high accuracy;

• the sGLOH descriptor, an extension of the GLOH descriptor. By using the
proposed descriptor, the similarity between two features can be checked not
only in a predefined orientation, the dominant gradient orientation, but also
according to a set of discrete rotations. This can be achieved by shifting
the descriptor vector with a reasonable computational cost and by using an
improved feature distance. The proposed descriptor has been compared with
the SIFT and the GLOH descriptors on the Oxford image dataset, and shows
good results which point out its robustness and stability;

• a RANSAC-based matching algorithm, named sparse soft matching. It
achieves an image-guided selection of the error threshold and uses a soft
matching strategy in contrast to the one-to-one matching required by
RANSAC, which increases the absolute number of matches. Moreover it per-
forms a less random choice of candidate matches, according to a global-to-local
constrain generation. The final matches are homogeneously distributed along
the image, resulting in a more stable estimation of the homography or the
fundamental matrix. As weak point, it is computationally more expensive
than RANSAC;

• a validation framework to test feature detectors, descriptors and matching
algorithms has been also proposed. It is effective, uses only geometric infor-
mation and can obtain the ground truth data very easy.

All the proposed algorithms are promising. Future works will include a faster ap-
proximation to improve the HarrisZ detectors, as well as further evaluations. The
sGLOH descriptor is robust, and an extension to include distances based on the
EMD could be interesting. The proposed soft sparse matching generates an high
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number of correct matches and an high coverage of the image, however some as-
pects have to be further investigated. In particular the use of a fast model check to
reduce the running time. Lastly, the proposed validation framework can be used to
test and validate not only other matching strategies but also feature detectors and
descriptors. The framework can be also extended to include other measures and
further information about the features, such as their patch shapes.
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