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Matching Image Features

Abstract: Matching points across different images is a fundamental task in most
computer vision applications, since it allows in general to retrieve the position of im-
age points. Three-dimensional object reconstruction, mosaicing, object and action
detection and classification are some of the most popular computer vision applica-
tions that rely upon it. Several feature detectors and descriptors, as well as matching
algorithms built upon them, have been presented in the last decades. Though a lot
of progress has been done in this field, the problem of matching points across differ-
ent images is far to be fully solved. The performances of the algorithms are closely
related to the complexity and the type of the scenes, as well as the transformations
between the images.

In this thesis contributes to the field of the image feature matching are presented.
A new feature detector, named HarrisZ, has been developed. It improves the Harris
corner detector by providing stable and robust features around the images in terms
of the repeatability index and the matching score. The results are comparable with
the state of the art affine detectors, such as the Hessian-affine detector and the
MSER detector.

The sGLOH descriptor, an extension of the GLOH descriptor, has also been
proposed. The new feature descriptor can check the similarity between two features
not only in the gradient dominant orientation but also according to a set of discrete
rotations, obtained by shifting the descriptor vector. This improves the descriptor
stability to rotation for a reasonable computational cost.

A RANSAC based matching algorithm, called soft sparse matching, has been
designed. As its main features, the proposed matching algorithm uses an image-
guided selection of the error threshold, a soft matching strategy in contrast to the
one-to-one matching required by RANSAC, and a global-to-local selection of the
candidate matches inspired by the simulated annealing process. Moreover, the final
matches are forced to be homogeneously distributed along the image, resulting in a
more stable estimation of the correspondences.

Lastly, a validation framework to test feature detectors, descriptors and
matching algorithms has also been proposed. It uses only geometric information
and does not require complex methods to obtain the ground truth data, which
makes it very attractive.

Keywords: feature detector, feature descriptors, image feature matching,
Harris corner, SIFT, RANSAC, epipolar geometry
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Introduction

The last goal of computer vision is to obtain a full understanding of the environment
by the acquisition of one or more images of the surrounding area. To accomplish this
task, high level data information about the objects in the scene and their interactions
has to be extracted from low level data. In particular, the position of the points in
the scene and their intensity similarities are required to obtain almost all the object
relationships.

Matching points across different images is a fundamental task in most computer
vision applications, since it allows to retrieve the position and the intensity of image
points in general. All real objects must obey to geometric and radiometric constrains
imposed by the physic laws, thus every time a new correspondence is found for a
point, the derived constraint can be used to improve the information about its
position in the real world. Three-dimensional object reconstruction, mosaicing,
object and action detection and classification are some of the most popular computer
vision applications based on point matching.

The disparity map between images, i.e. the function which maps points from
one image to another, can be used to characterize the matching algorithms. Dense
disparity maps are computed for all the image points (except for occlusions) and
allow a detailed and fine representation, however they are difficult to obtain when
the images are not very close (for instance when they are taken from very different
points of view). Sparse disparity maps are computed only for a relatively small
subset of salient image points, called image features. A rough image representation
is obtained, which is more robust when images are not very close and it is less
computational expensive, since not all point correspondences have to be computed.
Moreover a sparse map can be used as a starting point to build a dense disparity
map.

Several feature detectors and descriptors, as well as matching algorithms, have
been presented in the last decades. Though a lot of progress has been done in this
field, the problem of matching point around different images is far to be fully solved.
The quality of the results is closely related to the complexity of the type of the scene,
which implies to know some prior information about the images to be processed.

Thesis contributions and outline

The following contributions in the field of the image feature matching are mainly
presented in this thesis:

e The HarrisZ feature detector, an improved affine detector based on the Har-
ris corner detector. It provides stable and robust features in terms of the
repeatability index and the matching score, without requiring a fine tuning
of the algorithm parameters. According to the standard Oxford dataset for
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planar scenes and its extension to three-dimensional object, the results are
comparable with those obtained by the state of the art affine detectors, such
as the Hessian-affine detector and the MSER detector.

e The sGLOH descriptor, an extension of the GLOH descriptor. It provides
stable feature descriptors by checking the similarity between two features not
only in the predefined dominant orientation, but also according to a set of
discrete rotations. This can be accomplished with a reasonable computational
cost by shifting the descriptor vector and by using an improved feature dis-
tance. The proposed descriptor, has been compared with the SIFT and the
GLOH descriptors on the Oxford image dataset and good results, which point
out its robustness and stability, have been obtained.

e The sparse soft matching algorithm, based on RANSAC. Its main features
are an image-guided selection of the error threshold, a soft matching strategy
in contrast to the one-to-one matching required by RANSAC, which increases
the number of the absolute matches. It also does a less random choice of
candidate matches, guided by a global-to-local constrain generation inspired
by the simulated annealing process. Final matches are forced to be homo-
geneously distributed on the images, thus a more stable estimation of the
homography or of the fundamental matrix associated is achieved. As a weak
point, it is more computationally expensive than RANSAC.

e A validation framework to test feature detectors, descriptors and matching
algorithms. It uses only geometric information and does not require complex
methods to obtain the ground truth data, which makes it very attractive. The
soft sparse matching algorithm and RANSAC have been compared according
to this new proposed framework.

According to the contributions, this thesis is divided in two main sections, where
in the former section feature detectors and descriptors are discussed, while stereo
geometry and matching algorithm are described in the latter.

In Chapters 1-5 an introduction to the state of the art feature detectors and
descriptors developed in the last decades is given, followed by a comparison of the
different methodologies and results. The section ends with Chapter 6, where the pro-
posed HarrisZ detector is described, evaluated and compared with other detectors.
Moreover, the novel sGLOH feature descriptor is also presented and a comparison
with other feature descriptors is done.

In Chapter 7 the matching problem is presented, together with a short descrip-
tion of its application to the stereo three-dimensional reconstruction. The RANSAC
paradigm as well as its extensions are also presented. In Chapter 8 the new soft
sparse matching algorithm is proposed and evaluated according to the new validation
framework. Conclusions are discussed in Chapter 9.



CHAPTER 1
Feature-based computer vision
techniques

1.1 Historical background

Image features, interest points and region of interests are terms commonly used to
define image regions which have some given properties. It is a very general definition,
since every image region (here also a point, identified by a single pixel, is considered
a region) can be a feature, depending of the task purpose.

Apart from specific image features which can have a semantic meaning, such as
edges, blobs and junctions, nowadays any image region which is stable on image
transformations and distinctive across other regions of the same image is consid-
ered a feature. Here, an image transformation refers to a wide range of situations,
related to the task. In image reconstruction or mosaicing applications, transforma-
tions are related to the image acquisition process, in particular with the camera
properties: perspective transformations, including scale and rotation, blur or illu-
mination changes and instrumental noise are the most common ones. For object
detection and classification, different instances of the same object around a class
can be seen as transformations of the ideal object.

The first use of feature-based algorithm in computer vision can be traced back
to the work of Marr and Poggio [103] and Harris and Stephens [69] on the stereo
correspondence algorithms in the 1970s. The use of features instead of all available
pixels provides a reasonable coverage of the object of interest with a reasonable
computational cost. Furthermore, the distinctiveness of the points increases by
improving the quality of the match. A further interest in image features raised in
the 2000s when feature based techniques for object recognition [134, 46, 99| were
developed, as features can be organized as primitives that compose the final object,
thus providing a more simple data analysis at a less computational cost.

1.2 Feature definition

1.2.1 Feature properties
According to [177], good features should have the following properties:

o Repeatability: the same features should be present in the image after a trans-
formation. It means that a feature should be robust to small image transfor-
mations and should have invariant properties for a wide degree of transfor-
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mations. Of course it does not hold if the object to which the features are
associated disappears from the scene after the image transformation.

e Distinctiveness/informativeness: the features in the same image should be
different and a same feature should not varies across images of the same scene
in order to be distinguished and matched.

e Locality: features should be local to reduce the probability of occlusions, for
instance in object detection.

e Quantity: the number of features found could be varied according to the
application purpose, to cover the best distribution. For instance in three-
dimensional reconstruction, features should cover the image to allow the best
reconstruction. This requirement should clearly be balanced with the distinc-
tiveness criterion, since as the number of features increases the probability of
wrong matches increases too.

e Accuracy: the localization of the features should be as accurate as possible.
This property is relevant for example in camera calibration, while it can be
almost neglected in object classification.

e FEfficiency: the computational cost in time and space should be reasonable
according to the application. It is a critical requirement for real-time appli-
cations, such as object tracking, or dealing with a large amount of data, such
as high resolution three-dimensional reconstructions.

According to the feature requirements, from an operative point of view, two types of
algorithms have been developed: feature detector algorithms and feature descriptor
algorithms. A feature detector extracts the features from images. The extraction
process provides the position of the feature, together with its support region and
some other possible data which further characterize the feature, such as its scale
and orientation. Example of feature detectors are the Harris corner detector [69]
and the SIFT [100] detector.

Feature descriptors take the extracted feature and compute some meaningful
vector which contains the information about it. The most simple feature descriptor
is provided by the grid of the pixel intensities of the support region, while more
complex descriptors are given by the gradient orientation histogram of the feature
support region, as the popular SIFT descriptor [100], or by a combination of the
responses of the support region to some image filters, such as the steerable filters [62].

As described above, a feature should be invariant to some transformations de-
fined by the application task, this is achieved by the feature descriptor. Instead to
be invariant, features are often covariant to transformations [114], i.e. the degree of
transformations should vary gradually with the measure associated to the feature
descriptor vector. Pre-normalizing the feature support region, also known as the de-
scriptor patch, the descriptor vector becomes invariant to the given transformation.
For example, steerable filters [62] are invariant to rotations, while in the case of the
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SIFT descriptor and other similar descriptors [100, 164, 113, 11, 85, 86] the feature
patch should be rotated in the direction of the dominant gradient orientation before
computing the descriptor vector to become rotationally invariant. Affine-covariant
feature detectors such as the Harris-affine and the Hessian-affine detectors [112]| have
gained attention since projective transformations can be approximated by piecewise
local affine transformations.

1.2.2 Feature matching

The choice of the distance/similarity measure used to compare features is trictly
related to the feature descriptor and to the matching process. Minkowski distances,
such as the Euclidean distance, are a common choice as well as cross-correlation, but
more complex distances have been developed. For example, slight feature variations
can influence distant bins in histogram-based feature descriptors; the pyramid match
kernel [67], the diffusion distance [97] and the SIFT-rank descriptor [163] can be used
to alleviate this issue.

Lastly, the effective matching is done. The similarity threshold, the nearest
neighbour or the nearest neighbour ratio approaches [100] are commonly used. The
matching can be further refined when some constraining hypotheses exist. Regis-
tration tasks, mosaicing and three-dimensional reconstruction by RANSAC [51] or
similar robust regression paradigms [169, 190, 170] can adjust matches while esti-
mating the best camera parameters [70]. Homographies [70] are used to constrain
matches for planar objects, while the fundamental matrix [44] and the trifocal ten-
sor [70] can be used respectively for stereo vision and three view vision.

Another topic is the organization of the extracted features in pictorial dictio-
naries. This kind of approach is used together with learning algorithms for object
recognition and classification, but also for data compression. The organization of
the features in structures to allow a fast extraction and comparison is relevant for
this kind of applications. The kd-tree [31] or the ANN tree [90] are examples of
these structures. In the bag-of-words approach [87, 36] object can be extracted and
classified by comparing their features according to a pictorial dictionary, created by
a learning or a clustering algorithm.

1.2.3 Feature evaluation

Though it is often taken apart, the evaluation of feature detector and descriptor
algorithms, as well as matching strategies, is a crucial and difficult topic. The main
issue is related to the existence of a solid ground truth database, which considers
the most common image transformations, not easy to obtain. In the case of planar
objects, the popular Oxford dataset [114] is the first challenge a new detector or a
new descriptor should deal with. It has been extended to three-dimensional objects
in [59], however it contains only a few image sequences for each transformation to
allow a really robust comparison. Apart from the Oxford database, which uses the
repeatability index and the matching score as evaluation measures [149, 114|, other
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approaches exist [119, 54|, but their are less common. From all the cited evalua-
tions [114] what rises up is that no detector outperforms the other ones for all trans-
formations, though some detectors such as the MSER [107] and the Hessian-affine
detector [112] usually perform better. About the feature descriptors, histogram-
based descriptors are in general the best choice. However, the performances on
three-dimensional data are poor and the complementarity between different kinds
of features can improve the performances of feature based algorithms [41, 59].

Features have to be invariant to image transformations in order to be matched
from one image to another one. Image transformations can be divided in two classes:
geometric transformations and radiometric transformations. Geometric transfor-
mations modify the shape and the position of the feature in the space thus they
can be subdivided according to a well known hierarchy of geometric transforma-
tions [161, 70|, while radiometric transformations influence the feature appearance,
i.e. the intensity value of the pixels.

1.3 Feature invariance

1.3.1 The hierarchy of geometric transformations

Homogeneous coordinates are first introduced [70]. Given a point x = [z, y]T € R?
in the plane or X = [X,Y, Z]7 € R? in the space, their respective homogeneous
coordinates are X = wlz,y,1]7,w € R and X = W[X,Y,Z, 1] )W € R, so that
inhomogeneous points are mapped respectively to the rays starting from the coordi-
nate centre which go through the points itself (see fig. 1.1). Moreover homogeneous
points of the form 1 = [z,y,0]7 and L = [X,Y, Z,0]7, called points at infinity or
ideal points, represent respectively the pencils of lines and of planes with normals
n = [z,y]7, N = [X,Y, Z]T [70]. To be noted that the homogeneous point O, a zero
vector, does not represent any inhomogeneous point [70]. The relations ~ between
homogeneous points implies that they represent the same inhomogeneous point, i.e.
their respective vectors are equals up to a scale factor and this relation can be also
extended to matrices

P~q © P=uq
p~q & p=WQ (1.1)
M~N < M=mN

Given a two-dimensional point x = [z, y]T € R?, the translation is the most simple
geometric transformation

X =x+t (1.2)

where t = [t,, ty]T € R? is the translation vector, which gives two degrees of freedom.
Next, the rotation
x' =Rx+t (1.3)

where R € R?*2 is an orthonormal matrix, has three degrees of freedom (two for t
and one for R). The similarity adds another degree of freedom given by the scale
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Figure 1.1: Homogeneous representation of a two-dimensional Euclidean space. The
inhomogeneous points x and x’ on the plane are represented respectively as the two
rays from the origin O to their homogeneous representations X and X’. The straight
line joining x and x’ is represented by the homogeneous vector x x x’ orthogonal to
the plane where both X and X’ lie

seR
x =sRx+t (1.4)

that can be put together in homogeneous coordinates
_ sR t | _
x ~ { o 1 :|X (1.5)

where 0 is a vector of zeros. A more interesting transformation is the affine trans-
formation

x' = Ax (1.6)

for A € R?*3 which has six degrees of freedom. The affine transformation maps
points at infinity to points at infinity, and it can be decomposed in homogeneous

clf (B e

where K is an upper triangular matrix which describes the shear effects [70] for
which det(K) # 0. Lastly, the perspective transformation or homography has eight
degrees of freedom and can be expressed in homogeneous coordinates as

x’:ng[zl;‘ngT(”[ITo]x (1.8)

A% v

coordinates as

where v £ 0 and v is a generic vector, so that points to infinity can be mapped to
finite points and vice-versa [70].

Starting from the more complex transformations toward the simplest ones, per-
spective transformations preserve only straight lines, i.e. the incidence between
lines, affine transformations also the parallelism between lines, while similarities,
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rotations and translations additively preserve also angles, distances and orientations
(see fig. 1.2 for a schematic representation of the different transformations).

Though the perspective transformations are the most general geometric trans-
formations, which cover all the other geometric transformations, it preserves only
straight lines (and not their measures or orientations) due to its high degrees of
freedom, so feature invariants to perspective transformations are poor in terms of
feature distinctiveness and are not used.

More interesting are the affine transformations, which preserve the parallelism
between lines and give a sufficient degree of distinctiveness between features. More-
over, perspective transformations can be approximated very well by piecewise local
affine transformations [114, 177] (see fig. 1.3).

It is a common approach to normalize the feature patch in order to obtain
invariance [113, 100, 114, 177, 112, 3, 96, 108|. Translation is trivially resolved by
using the feature patch centre as the coordinate origins, while rotation, scaling and
shearing require more details.

A
)

traslation similarity

( ) Bucldean
N/

v

Figure 1.2: From left to right, the different geometric transformations. Every trans-
formation includes the earlier, i.e. they are nested. Image adapted from [161]

1.3.2 Rotation invariants

Feature patches are usually normalized by a rotation according to the gradient dom-
inant orientation [100]. Assuming that an image [ is a continuous and differentiable
two-dimensional function, the image gradient in a point x of the patch is

0
Vi) = 5 1(%) = [de,dy]" (1.9)

An histogram of the gradient orientation ¢y = arctan(d,/d,) weighted by the
squared gradient magnitude M) = d.? + dy2 is built up and the orientation of
the maximal bin is selected (see fig. 1.4).

Differential invariants to rotations also exist [83, 162, the most common examples
are the gradient magnitude and the Laplacian

0? 0?

531 (%) + 5 51(x) (1.10)

vz
L1t = Vi) = By
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Figure 1.3: Perspective transformations can be approximated by piecewise local
affine transformations. In the example a rectangular patch ongoing to a perspective
transformation (the green boundary) could not be well approximated by an affine
transformation, while the approximation error using local affine transformation de-
creases by decreasing the patch size (respectively the blue, the orange and the red
boundaries)

1.3.3 The Gaussian scale-space

To handle the feature scale, the Gaussian scale-space theory has been intro-
duced [94]. The main idea is to simulate the scale change factor o by convolving
the image with a Gaussian kernel with zero mean of the form

1 _322+y2

e 22 (1.11)

9o(x) = 2702

Different motivations have been adduced which yield to the choose of Gaussian ker-
nel. Koendering [82] showed that the scale-space must satisfy the diffusion equation
for which a Gaussian convolution is the only solution, while the different formula-
tions proposed by Babaud [1]|, Lindeberg [91] and Florack [52] also conclude that
the Gaussian kernel is the best choice.

The Gaussian filter benefits from the linearity, the separability, the causality and
the semi group properties [94]. The separability property states that a multidimen-
sional Gaussian kernel can be obtained as the product of one-dimensional Gaussian
kernels

1 o2 1 v 1 o2 4y?

_ _ = — 5 1.12
9o (%) = 9o ()95 (y) ey 53¢ (1.12)

The causality property states that no new local maxima appear while increasing the
scale, whereas the semi group property states that n successive convolutions with a
scale factor o are equal to a single convolution with a scale factor n o

9o ()90 (-) = g20(-) (1.13)

where * means the convolution.
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’(‘

0° 90° 180° 270° 360°
orientation

Figure 1.4: An image patch (a), its gradient orientation map (b) and the gradient
magnitude map (c). The gradient orientation histogram (bottom row) is obtained
using a small neighbourhood of the gradient magnitude map (d). The dominant
gradient orientation is the direction for which there is the maximal peak in the
gradient orientation histogram (red dot)

The scale-space derivative L;, . ; (I(x),0) of the point x of image I at scale o of
order m respect to the Cartesian coordinates 4. . .i,, can be obtained by convolving
the image with the Gaussian kernel ¢,(-) and then taking the derivative, which
is equivalent to convolving the image with the derivative of the Gaussian kernel.
The normalization factor ¢ is introduced to take into account the decrease in the
amplitude of the signal with the scales

om om

Livin(1(x),0) = 0™ go ()2 grgi I(x) = 0™ o

go()xI(x) (1.14)

In fact, if I and I’ are images related to a scale change by a factor s and x’ = sx+t

16x) = I'(x) (1.15)
it follows that
I, om .
0i1...0%, (116
sTa mgsa(-)*f (x) = Li.in(I(x),50)

that is, the scale factor is correctly taken into account as the value o is supposed to
be the scale unit [94].
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In the scale-space theory the definitions of the inner scale and the outer scale are
also introduced [94], the former is the minimal scale for which feature information
can be detected and it is related to the image resolution, the latter is the minimal
scale for which the feature is completely visible. Though the scale-space allows to
simulate scale changes, the feature scale has to be chosen in order to normalize the
support region of the feature.

While it possible to take a feature patch at different sampled scales [148], usually
obtained by the computation of a Gaussian pyramid [20, 35| for efficiency, it is
a common approach to select for each feature a characteristic scale for which a
given function shows a particular property, for instance a local extremum over the
scales [95] (see fig. 1.5). According to the results in [111], the detection of local
maxima of the Laplacian over scales is a good choice.

20
15
10
5
0
0 10 20 30 40 50 60
g
25
20
15
10
5
0
0 10 20 30 40 50 60
g

Figure 1.5: The same image at different scales (left) and the Laplacian (see eq.1.25)
computed in the centre of a circular window for different scale factors o (right).
The characteristic scales detected for noise clean peaks of the Laplacian (red dots)
correspond to the yellow circles in the images

1.3.4 The Affine scale-space

The wuniform scale-space described so far, can be extended to the affine scale-
space [94], which also considers affine transformations by introducing the covariance
matriz 3 of the feature patch [74], also called second moment matriz or autocor-
relation matriz. If X € R™ is a matrix whose element X;; represents the j-th
feature of the i-th data (here a feature does not mean an image feature) the general
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expression for the covariance matrix is
Yy=X-X)IX-X) (1.17)

where X;; = % >, X;j is the mean value of the j-th feature. The Gaussian kernel

becomes
1 _ xTy—1x

= 2ndet(D)

The covariance matrix is symmetric, thus it has positive eigenvalues and can be

gs(x) (1.18)

diagonalized. In particular in a two-dimensional space, i.e. X € R™*?
> = RDRT (1.19)

where D = diag(A1, A2) is a diagonal matrix, R is a orthonormal matrix and Aj, Ay
are the eigenvalues of ¥. As equation x” ¥x = 0, an ellipse is associated to the covari-
ance matrix, centred in the mean value of the data x. = [X1, X3]? with axis lengths
and directions given respectively by the squared roots of the eigenvalues /A1, v/ Ao
and their associated normalized eigenvectors. The affine coordinate change

x' = Ax (1.20)
where A = D_%RT, related to the Mahalanobis distance
M(x1, %) = xT D7 Ixy = xT AT Axy (1.21)

with x1,x9 € R?, allows to normalize the patch with respect to affine transforma-
tions. It geometrically corresponds to rotate the patch according to the eigenvectors
of ¥ and then to stretch the patch so that the eigenvalues have the same normal-
ized length. It should be noted that the translation by a vector t can be neglected,
assuming the feature centre as the coordinate origin. As shown in fig. 1.6 after this
normalization the ellipse associated to X becomes a circle, so that affine covariant
features become effectively affine invariant, since the stretching effects are removed.

The uniform scale-space can be seen as a particular case of the affine scale-space

¥ =01 (1.22)

where I € R?*? is the identity matrix, so that replacing the uniform Gaussian g,
with the affine Gaussian gs, and using /det(X) instead of o as scale factor in the
normalized derivative L;, ;. (I(x),0), all the formulas for the uniform scale-space
still hold in the affine scale-space.

A kind of covariance matrix commonly used by feature detectors [118, 69, 56,
152, 112, 3] is the autocorrelation matriz of the intensity gradient

,LL(I(X),O‘],O‘D) =
RU0p) L6000 L(I(x),op) ] (1.23)

~ | Lot i) Bow)
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a b ¢
Figure 1.6: The original feature patch (a) is rotated so that the axes of the ellipse

correspond to the reference coordinate axes (b) and the ellipse axes are scaled to
have the same value (c)

where o7,0p are respectively the integration scale and the differentiation scale, which
can be associated with the outer scale and the inner scale respectively.

The Hessian matriz is also employed as covariance matrix in many feature de-
tectors [112, 5]

H(1(0,0p) = | =100 o) ball.0) (124
0D Lyy(I(x),0p) Ly2(I(x),0p) .

To be noted that the Laplacian is the trace of the Hessian matrix

L (I(x),0p) = trace (H (I(x),0p)) (1.25)

1.3.5 Subpixel precision

In order to better characterize the feature point, a subpizel precision localization
can be performed. The most common approach [174] fits a parabola along both
the = and y directions by using the point neighbourhood and takes the respective
maxima as coordinates (see fig. 1.7(c)). If the initial point estimation is x = [z, ]
then

Aw =D

A — b (1.26)

represent the equations of the fitted parabolas respectively on the x and y axes,

where

[1 —1 17 [ I(z—1,y) ]

A=10 0 1|, w=[a bc], b= I(z,y)
11 1 Iz +1,y) |
] ] : ( )_ (1.27)
1 -1 1 I(z,y—1)

Al=10 0 1|, w=[d ¥V ], b= I(z,y)
(1 1 1 | I(z,y+1) |
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are respectively the point coordinates on the parabolas (see fig. 1.7(b)), the parabola
coefficients and the parabola values for each axis. Solving by w and w’

w=A"b
o — a1y (1.28)

the equations of the parabolas are obtained, for which the maxima can be computed,
i.e. the vertices. The final estimate of the point obtained by adding the correction

factor A* is
—b/2a
- /2d'
A more sophisticated approach fits the the 8-neighbourhood of the point to a

X =x+A"=x+ (1.29)

paraboloid [140] (see fig. 1.7(d)). A linear system can be obtained starting from
the paraboloid equation as done before

ax? + by’ +caxy+dr+ey—+ f=1(z,y) (1.30)

which can be solved by least-square since it is overdetermined using for instance
the pseudoinverse matrix. After retrieving the coefficients, the maximum can be
obtained by imposing the partial derivatives equal to 0, which yields to the new
estimate of the feature point

2bd — ce
2 —4ab
2ae — cd
2 —4ab

X =x+A"=x+ (1.31)

Proposed by Lowe and Brown [17], a last method approximates the image around
the feature point x by the second order Taylor expansion

I(x+A) = I(%) + VA + éAHI(X)A (1.32)
so that by imposing the derivatives equal to zero
Vie +HiA=0 = A= —H;(;)v,(x) (1.33)
the location of the new estimate maximum x’ with respect to x is obtained
x' =%~ Hy0 Vi (1.34)

where the derivatives in x can be estimated numerically.

1.3.6 Affine illumination invariance

General radiometric transformations are more difficult to handle, but in the most
cases it is sufficient that features are invariant to affine illumination changes (see
fig. 1.8)

I'(x) =al(x)+b (1.35)
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Figure 1.7: The discrete estimation of the maximum (a) can be further refined by
fitting two different parabolas along each axis (c) by using the coordinate systems
described in (b). A better refinement can be obtained by a paraboloid fitting (d)
using a 8-neighbourhood (b). Images from [140]

where I(x) is the pixel intensity and a,b € R. Invariance for image derivatives of
order n to affine illumination changes can be obtained through a division by the
first derivative [111]

on on o"
p (al(x)+0)) B a%I(X) - @I(X)

; _ ‘o _ % (1.36)
32 (al(x)+1D)) G%I(X) %I(X)

A more general approach is to normalize the intensity value I(x) by the mean I and
standard deviation std(I) of the feature patch [113] because

I'=al+b (1.37)
std(I') = a std(I) (1.38)
thus
I'x)-T _al(x)+b—al+b _a (I(x)—1) _Ix) -1 (1.39)
std(1”) a std(I) a std(I) std (1)

1.4 Invariance between object instances and classes

Though not real transformations, in this section the feature invariance to instance
transformations and between class transformations will be examined. Both these
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Figure 1.8: The original image (a) and some results for different affine illumination
transformations (b,c)

transformations are related to detection and recognition tasks, the former is referred
to a particular instance of an object, while the latter to an object class.

Objects and their classes can be considered as entities composed from some basis
features, called visual words [153, 129, 132], which characterize their properties.

1.4.1 Object detection

First works about object detection can be traced back to Lowe [99], where after the
extraction of SIFT features, the detection is performed by using a Hough transform
approach [150], i.e. every feature increases the vote for a particular object in prede-
fined positions, orientations and scales. In [186, 27| this approach has been extended
to the local affine frame by the geometric hashing to improve the efficiency of the
search. Though these approaches work well, the computation becomes prohibitive
as the number of objects in the database increases. Another approach described
in [49] improves the detection by increasing the number of the matched features on
a candidate object while simultaneously increasing and refining the confidence of
the estimation.

Using information retrieval techniques, Sivic and Zisserman [153], proposed the
following method. They first compute the covariance matrix between normalize
feature patches and then they match the features by using the Mahalanobis distance
to finally cluster the features by the k-means 74| and obtain the final visual words.
For each object in the database the term frequency-inverse document frequency (tf-
idf ) vector is computed with respect to the visual words and used whenever a query
is presented. The final best candidates are verified by using geometric constrains.
The computational efficiency of this method can be increased by the hierarchical
vocabulary tree [129], where feature vectors are hierarchically clustered into a k-way
tree of prototypes, or by the randomized forest of k-d trees [132], which allow a faster
and more efficient database construction and query search.
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1.4.2 Class recognition

Though object detection and classification are similar problems, the latter is more
challenging, since the object ownership to a class is not only related to its ap-
pearance but also to its uses and its context. The most simple approach is the
bag-of-words 87, 36], where a vocabulary of visual words is built up by a k-means
clustering, and frequency histograms between the training images and the query im-
ages are compared. Differently form the object detection, no geometric verification
is performed.

A finer approach uses the pyramid match kernel |67] to compare two collections
of feature directly, without using visual words. At each level of the pyramid, more
coarser histograms are computed (i.e. the bin size increases as the pyramid level
increases). For each level the intersection between the histograms is computed as
the minimum value between two corresponding bins and the final similarity measure
is obtained summing up the weighted intersection between the histograms of each
level, so that finer pyramid levels are more relevant (see fig. 1.9).

The spatial pyramid matching kernel [87] includes also geometric information.
Quantized pairs of interest point location and descriptor are considered as base
elements and coarser levels are obtained by merging histograms only by locations.
In this way, the representation captures the distribution of both the appearance and
the location of the interest points.

X Y H(X) HY) HX)NH(Y)
— No=2-0=
Ly = wo =1
I g - Ni=5-2=3
_77,77: W1:1/2
el e Ny=5-5=0
Loy - wy =1/4

Figure 1.9: An example of the pyramid matching kernel computation for two sets
X, Y. At each level L;, i = 0, 1,2 the bin size of the histograms H(X) and H(Y)
doubles, while the weight w; halves. The intersection between two corresponding
bins is given by their minimum, and the number of new matches N; is the difference
of the matches found minus the matches of the previous levels. The final score
between X and Y is ), w;N;. Image from [67]

A further improvement is represented by the prozimity distribution kernel [98], which
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overcomes the limit given by expressing the position by absolute coordinates. The
idea is to start from triplets given by two descriptors and their relative distances
to obtain coarser histograms by merging the relative distance. A generalization of
these kernels is provide by the relazed matching kernels introduced in [181].

Another approach to object classification is provided by the part-based mod-
els [19, 45, 34, 47|, where object base elements are found and their geometric rela-
tionships measured. Different topologies for the geometric connections can be used,
with different computational impact and performances. The most tractable are the
tree model [45] or the star model [34], while the full constellation model |47| requires
a low number of nodes, i.e. object parts, to be practical. The distribution of the re-
lationships between visual words in an image can also be employed for classification,
as done by correlatons [145].

To be mentioned also some models inspired by the visual cortex system, as the
HMAX [137] and the CNN [88] (Convolutional Neural Networks), which have pro-
vided good results in classification tasks. Starting from low level layers of simple
filters, such as a Gabor filter bank [66], these models combine each layer hierarchi-
cally. Small perturbations in localizations and shapes are allowed to obtain the final
classification.
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Feature detectors

2.1 Introduction

Feature detectors are used to detect interest points. They usually not only pro-
vide information about the positions of the points but also on the shape of their
support regions. Feature detectors can be classified according to the extracted re-
gions as corner detectors and blob detectors. Obviously, edge detectors or detectors
for more specific structures also exist, for instance line detectors have been applied
successfully to wide baseline stereo matching [50], but they are out of the scope
of this thesis. A corner detector extracts corners, defined as regions of the image
with strong intensity variations along all directions. Corners usually correspond to
Junctions, even if the corner detectors extract a more general class of features, such
as spots over uniform regions. A blob detector detects blob-like structures, i.e. re-
gions with uniform intensity values. The two classes of detectors are not truly well
separated: for instance the Hessian matrix was first used as a corner detector since
it finds corner points, but these are usually localized at the boundaries of uniform
regions, thus it should be considered as a blob detector [112]. Some authors [177]
use to introduce the additional class of the region detectors, which are concerned
with extraction of image regions in general, however such detectors can be usually
classified as blob detectors.

2.2 Corner detectors

2.2.1 The autocorrelation matrix properties

The first corner detector can be attributed to Moravec [118|. As shown in fig. 2.1,
checking the intensity variation along all the possible directions by a sliding window
centered on the interest point, the following cases can be distinguished:

e no relevant intensity variation along all directions, i.e. a flat region;

e a strong intensity variation along one direction, i.e. an edge in the orthogonal
direction of the intensity variation;

e a strong intensity variation along all directions, i.e. a corner.
The above considerations have been formalized by the mean of the autocorrelation
matrix [69, 101]. If
Clx)= Y [(x)—I(x+A) (2.1)

X;ER
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where R is the window centered in x, A = t is the shift vector and x; € R? is a pixel
inside the window, the first order Taylor expansion can be used to approximate the

translation
I(x; + A)=I (%) + Vi A (2.2)
where 5
T
vl(xi) = TXZ'I(Xi) = [dﬂﬁwdyz‘] (2.3)
Thus, by substituting equation 2.2 in equation 2.1
2
Cx) = 3 [T0x) — 10+ AP = 37 [Ix0) — 1) = (Vi 8)] =
X;ER X, ER (24)
=Y ATV ) Vi A = ATu(I(x) A
X;ER
where p (I(x)) is the autocorrelation matrix
X;ER X;ER
p (1)) = : (25)
> dedy, D d,
X, ER X, ER

The autocorrelation matrix p is symmetric thus it has positive eigenvalues A, Ao
where A1 > Ay and the following relations can be derived:

e A\ = 0 and o ~ 0, the region is flat since there are no relevant intensity
variations;

e A1 > Ao and Ay = 0, there is an edge since there is a strong intensity variation
along the direction orthogonal to the eigenvector corresponding to Aj;

e )\ = Ay and A1, Ao > 0, there is a corner where the directions of maximum
intensity variation are given by the eigenvectors of .

Moreover, since eigenvalues are invariant to rotation, the extracted feature is also
rotational invariant.

2.2.2 The Harris corner detector

Different function have been proposed to take into account the cornerness relation
given by the eigenvalues of the autocorrelation matrix. Considering that for a generic
matrix the product of its eigenvalues is its determinant while their sum corresponds
to its trace, Harris e Stephens proposed the function [69]

H = det(p) — s trace?(u) (2.6)

since the determinant is mostly sensible to corners (see fig. 2.2(d)), while the trace is
sensible to both corners and edges (see fig. 2.2(e)). The linear coefficient  is chosen
empirically and feasible values usually range in [0.04,0.06] [112]. A cornerness map
for all points in the image is computed and local maxima greater than a threshold
value H > thy are selected, as described in fig. 2.2(f).
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Figure 2.1: A flat region is present when the intensity variation of a sliding window
along all directions is negligible (a). For edges the intensity variation is relevant
only along the direction orthogonal to the edge (b). When the intensity variation is
strong along all direction there is a corner (c)

2.2.3 The Forstner detector

The measure F' similar to H was proposed by Forstner [56] (see fig. 2.2(g))

det(u)
F = — 2-
trace?(j) 27)
. Al — Ao 2 B 4 det(,u)
=1 <)\1 - )\2)  trace?(u) (28)

where C' measures the eccentricity of the ellipse associated with the autocorrelation
matrix p, with axes given by its eigenvectors (see fig. 2.2(h)). A point is selected
as interest point if both F > thp and C > thg where thyr is usually chosen in
[0.5,1.5] F', with F' the mean value of F over the image, and C ranges in [0.5,0.75].
The SFOP (Scale-invariant Feature OPerator) detector [55] is an extensions in the
scale-space of the Forstner detector which unifies different types of features within
the same framework by using the general spiral feature model by Bigiin [15].

2.2.4 The Shi and Tomasi detector

Shi and Tomasi [152, 165] proposed to use the minimum eigenvalue (see fig. 2.2(i))
S =X (2.9)

and to take the local maxima greater than a threshold S > thg.

2.2.5 The adaptive non-maximal suppression

Most feature detectors look for local maxima in the 8-neighbourhood to extract
the feature. This can lead to an irregular distribution of the features, for instance
there can be more features in regions of higher contrast. To alleviate this problem
the adaptive non-mazimal suppression introduced in [18] can be used. A point is
selected as feature if it attains to a local maximum which is significantly greater
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Figure 2.2: The original image (a) and the derivatives of the luminance map I,
I, (b,c). The determinant det(u) (d) and the squared trace trace?(u) (e) of the
autocorrelation matrix used to compute the cornerness function H (f). The maps
F, C used by the Forstner detector (g,h). The map of minimum eigenvalue S used
by Shi and Tomasi (i). Brighter points of H, F' and S indicate higher cornerness
values

than all its neighbours within a radius r (see fig. 2.3). The adaptive non-maximal
suppression can be done efficiently using a sorted list [161].

In a similar way in [140] instead of using a global threshold, the image is divided
into different equal sized subregions and an adaptive threshold is applied for each
subregion in order to optimize the point distribution, avoiding an unfavourable
accumulations of features.

2.2.6 Scale and affine extensions to corner detectors

The autocorrelation matrix can be easily extended to the scale-space by using the
equation 1.23, where the window size is given in terms of the integration scale
o1, while the image resolution is computed according to the differentiation scale
op. Features at different scales can be extracted by varying o7,op, where the
ratio between the two standard deviations is kept fixed to reduce the computational
complexity, i.e. o = sop with s € R. A finer approach is done by the Harris-
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Figure 2.3: The strongest 250 corners (left) and 500 cornes (right), as best local
maxima (top) and using the adaptive non-maximal suppression (bottom) by de-
creasing the radius r. It can be seen that in the latter case features are better
distributed along the image. Images from [18§]

Laplace detector [112] by computing the characteristic scale given by the Laplacian
of the image (1.25). For each Harris corner (x,0) extracted at scale o, the local
maximum over a set of scales near the current scale, ie. @ = [0.7,...,1.4]0, is
searched and the local neighbourhood of x is inspected to maximize the function H
at the new scale. These steps are repeated until no change in the position or in the
scale occurs (see fig. 2.4).

Corner detection can be extended in similar way in the case of the affine scale-
space [95, 3, 112], where the shape of the corner patch is obtained from the ellipse
associated to the autocorrelation matrix p. The Harris-affine detector [112] is the
most popular affine covariant Harris detector. For each extracted Harris corner
(x,07,0p), starting in the uniform coordinate space (see eq. 1.22), the the following
steps are repeated until convergence (see fig. 2.5):

e normalize the coordinate space as described by equation 1.20 where the co-
variance matrix X is given by the autocorrelation matrix u;

e update o; to the the best integration scale as done for the Harris-Laplace
method;

e seclect the differentiation scale from [0.5,...,0.75]ocp which maximizes the
ratio Ao /Ay for p;

e update the corner localization, by choosing from the point neighbours which
maximized the H (2.6) as in the Harris-Laplace detector.
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Figure 2.4: Initial points selected at different scales (top) and the final points selected
by the Harris-Laplace detector by using the characteristic scale given by the image
Laplacian (bottom) for different image scale factors (left, right). Images from [111]

Figure 2.5: The affine refinement steps performed by the Harris-affine detector (left
to right) for two corresponding regions (top, bottom). Images from [111]

Another strategy which considers clusters of Harris corners is followed by the MSCC
(Maximal Stable Corner Cluster) detector [60]. These clusters are obtained by
building the MST (minimum spanning tree) [31] of the extracted features and then
by cutting the edges of the MST for different increasing thresholds. The connected
components obtained for each threshold represent the final features. The feature
patch shapes are obtained by using the covariance matrix given by the coordinates
of the corners which form a cluster (see fig. 2.7).

2.2.7 Detectors based on the Hessian matrix

The Hessian matrix (eq. 1.24) has also been used as a corner detector [5]. When a
surface is expressed as a Monge patch [30], i.e. by a triple (x,y, I(x,y)), as an image
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Figure 2.6: Features detected by the Harris-Laplace detector (left) and by the Harris
affine detector (right). Images from [177]

Figure 2.7: Features detected by the MSCC detector (blue ellipses) by clustering
the Harris corners (red crosses) on two different views of the same object. Images
from [60]

commonly is, the Gaussian curvature |30] of a point is

det(H)

A mP (2.10)

K =kKiko =
where k1, ko are the principal curvatures, H is the Hessian and M is the squared
gradient magnitude. It is known from the differential geometry that

e rk1,kg > 0 for an elliptic point;
e r1,ky = 0 for a parabolic point;
e k1,ky < 0 for a hyperbolic point;

moreover the denominator of eq. 2.10 is always positive and can be neglected in
this classification. It was shown [40]| that on both the edge sides of a corner (here
a corner means a junction) there is an elliptic and an hyperbolic part and only
an elliptic maximum (positive maximum along all directions) with no hyperbolic
maxima (negative minima along all directions). Moreover the use of the Hessian
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matrix is robust in detecting corners but not in their localization, as the point
location is pushed away from the corner. This make the Hessian based detectors
more appealing to detect blob structure near corners.

2.2.8 Junction detectors

Another junction detector was proposed by Kitchen and Rosenfeld [81]. They first
detect the edges on the image by a non-maxima suppression [174] on the gradient
magnitude and next the cornerness function is computed as the the product of the
curvature for a plane curve times the gradient magnitude

i = Looly— 2;;-@59;9 + LyyLs (2.11)

z y
This corner detector is not robust to noise as it relies on second-order derivatives
and has a poor localization rate [40], however it was successively extended in the
first example of automatic scale selection by Lindeberg [93]. In the first phase the
scale-space formulation of K is used to locate the possible corner candidates and in
the next step the localization of the point x is improved iteratively by solving

min / D(x,x)? w(x' — x)dx’ (2.12)
xeR? Jyrere

where w is a weighting function, for instance a Gaussian, and D is the distance
function (see fig. 2.8). The minimization is performed by considering that the di-
rection, given by a point on the the edge of a corner and the centre of the corner
itself, should be perpendicular to the edge gradient in that point, i.e. D = 0 (see
fig. 2.8) for

D(x,x') = V] (x = x') (2.13)

as proposed by Forstner and Giilch [56].

X1

X0

T
X Vien

Figure 2.8: The initial localization xq of the corner is refined using eq. 2.12 obtaining
the final estimate x;. Image from [93]

A more sophisticated approach was the Kona (corner in Hindi) detector [130], which
fits a feature patch to the best piecewise constant junction model (see fig. 2.9) by
using the dynamic programming paradigm.
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Figure 2.9: Initial image patches detected by Kona (top) and the final junction
estimations (bottom). Image from [130]

2.2.9 Corner detector based on kernel masks

Another class of corner detectors is based on the difference between the intensity
values of the points within a kernel mask and its centre [154, 172, 141]. These
detectors can detect other features more than corners and do not rely on derivatives.
Moreover, they are very fast, with good results on synthetic test images but they are
less performing on real data and they are not affine invariant. The SUSAN (Smallest
Univalue Segment Assimilating Nucleus) detector [154], places a circular mask R
centred on the point x with radius ¢ (see fig. 2.10) and computes the following
function )

Nx) =) L) (2.14)

X;ER
The final cornerness function S is
thy — N(x) if N(x) —thy, <0
S(x) = { ! ! (2.15)

0 otherwise

where thy is the threshold value used to select the corners.

mask boundary @ @
( ) @ d @
C
(&
a

mask nucleus

Figure 2.10: According to the percentage of the points inside the kernel mask R
with intensity values close to that of the central point x inside the mask, the SUSAN
detector can classify a region as flat zone (a,c,e), as a corner (b) or as an edge (d).
Image from [154]
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In a similar way the FAST (Features from Accelerated Segment Test) detector [141],
considers a point as a corner if there is a predefined number of continuous pixels
with intensity value less than that of point in the centre of the kernel mask. The
detector proposed by Trajkovic and Hedley [172] uses opposing pixels on the kernel
plus the central kernel pixel. If x;,x] are the opposing pixels on the diameter of the
kernel mask R centered in x (see fig. 2.11), the cornerness function

T(x) = min (I(x;) — I(x))* + (I(x}) — I(x))

min (2.16)

is low for plane regions and edges, as shown in fig. 2.11, however this detector is not
robust to noise, though it is computational efficient.

520 )

a d

Figure 2.11: The Trajkovic detector uses the information provided by opposing
points p, p’ in the mask and its central point ¢ on a line segment 1. If only one
segment exists for which the intensity values of p, p’ and ¢ are similar, the region
is on an edge (a,c), while in the case of a flat region this holds for almost all the
segments (b,d). Lastly, if the value of the central point is similar only to one of its
extrema point values for the majority of segments then a corner is detected (e)

2.3 Blob detectors

2.3.1 The MSER detector

The MSER (Maximaly Stable Extremal Regions) detector [107] is one of the most
popular affine covariant blob detector (even if in some new classification it is reported
as a region detector, since it does not only detect blobs but more general uniform
shapes [177]). It is a watershed based method [150] which sequentially thresholds the
image. The most stable connected components with respect to different thresholds
are taken as feature regions (see fig. 2.12). In particular a region R; is considered as
a feature if for all its n nested connected component R1,...,R;, ..., R,, obtained
for different threshold values, it attains to a local minimum for the function ¢; =
|RitA—Ri—al|/|Ri|, where |-| is the cardinality of the connected component in pixels
and A € N is a user defined parameter. The final feature patch shape is obtained by
using the covariance matrix given by the coordinates of the connected component
(see fig. 2.13). The MSER detector is very robust to affine transformation [114],
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especially for non textured images, but it suffers from blurred images. An extension
to resolve this issue was proposed in [54], where the MSER algorithm is executed at
different levels of a scale pyramid, while another extension was proposed in [53] to
improve the detection for colour images.

Figure 2.12: Original image (a) and sequential thresholds (b-d). It can be noted that
the image patch highlighted in the original image is very stable across the different
thresholds

Figure 2.13: Original features detected by the MSER (left) and the associated el-
liptical patches (right). Image from [177]

The MSER detector has also been employed in the local affine frame [108]. Given
three affine covariant points for each MSER feature, for instance the associated el-
lipse centre and the two axes scaled to the unit according to their ratio, the local
affine frame is obtained by an affine normalization which maps the point to a canon-
ical frame (see fig. 2.14). For each local affine frame L a triplet of points associated
with another MSER feature which is close to L in the affine transformation inducted
by L itself is considered using polar coordinates. The descriptor so obtained has
been used in object recognition with geometric hashing [27] as an extension of the
Hough transform to vote for the model supported by L.

2.3.2 Hessian based blob detectors

One of the first blob detector was proposed by Lindeberg [92]. The points (x,0) in
the scale-space which are local maxima or minima for the Laplacian of a Gaussian
L (see eq. 1.25) are selected as blobs. As it can be seen from fig. 2.15 the Laplacian
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Figure 2.14: Corresponding features extracted by the MSER detector (left column),
detected local affine frames using bi-tangants, i.e. the line segments of convex hull
bridging concavities (central column), and the final normalized frames (right col-
umn). Images from [108|

kernel gives a positive, negative strong response respectively to a light, dark circular
blob. Another similar function proposed in [95] is the scale-space determinant of
the Hessian det(#H ), which was first introduced as a corner detector by Beaudet [5].
As it can be seen from fig. 2.15, the Laplacian, i.e. the trace of the Hessian matrix,
and the determinant of the Hessian, correspond to similar filter, where the latter is
more peaked.

P A

-

L det(H)

Figure 2.15: The Laplacian (left) and the determinant of the Hessian (right) of a
Gaussian kernel

Several affine scale-space detectors have been proposed [95, 3, 112, 107, 176, 76|
that try to iteratively refine the scale by using the Laplacian £ as the characteristic
scale and the Hessian determinant det(?{) as the covariance matrix . For instance
the Hessian-Laplace [112] and the Hessian-affine [112] detectors (see fig. 2.16) are
the equivalent blob detectors of the Harris-Laplace and the Harris-affine corner
detectors respectively, where the cornerness function H (see eq.2.6) is replaced by
det(?). Both the detectors have been proved to give robust and stable features with
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respect to the scale and to affine transformations respectively.

Figure 2.16: Features detected by the Hessian-Laplace detector (left) and by the
Hessian affine detector (right). Images from [177]

2.3.3 The SURF detector

The SURF (Speed Up Robust Feature) detector [4] searches for local maxima of
the Hessian determinant in the scale-space (see fig. 2.17). For each scale the Hes-
sian determinant is computed efficiently by using a discrete approximation of the
Gaussian second order partial derivatives Em, Eyy, Emy (see fig. 2.18), which can be
done very fast by integral images [182]. A proper weight w ~ 0.9 is introduced to
correct the Gaussian partial derivatives in order to compute a better approximation

det(Happroz) of the Hessian determinant

~

det(Happrom) = meEyy - (U)Lmy)2 (217)

Differently from other approaches, the scale is not obtained by decreasing the image
size after a proper smooth [20, 35|, but by increasing the discrete kernel dimension.
The final localization of the maxima is improved by using eq. 1.34 (see fig. 2.19).

Figure 2.17: Features detected by the SURF detector. Image from [4]
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Figure 2.18: Gaussian second order partial derivatives (left), their quantized versions
(center) and the approximations used by the SURF detector (right). The partial
derivatives Ly, and L., are obtained by rotating the corresponding kernels by 90°
degrees. Image adapted from [4]

scale
scale

Figure 2.19: While it is the common approach to downsample the image, holding
the kernel dimension fixed to be fast (left), the SURF detector increases the kernel
dimension while the image size remain fixed by integral images (right). Image
adapted from [4]

2.3.4 The SIFT detector

The most popular blob detector is definitively the SIFT (Scale Invariant Feature
Transform) detector [100]. It is based on the DoG (Difference of Gaussians) operator
D computed on an scale pyramid image representation

D = (g, — gor)s (2.18)

where * mean the convolution and 0,0’ € R. The difference of Gaussians can be
seen as an approximation of the Laplacian of Gaussian £ because from the diffusion
equation [100]

0 9 L
— gy = - = — 2.1
5597 =V 95 =~ (2.19)
by finite difference approximation it follows that
L 0 9ko — Yo
Z=— g~ = gy — 9o~ (K= 1)L 2.20
S T 559 Gko — 9o = (k= 1) (2.20)
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where L is intended to be scale-space normalized. The difference of Gaussians can
be computed efficiently by smoothing each image octave with different Gaussian
kernels and then by subtracting them (see fig. 2.20). Local scale-space maxima are
detected and their localization improved by using eq. 1.34.

Moreover in order to drop false features due to edges, since the eigenvalues
A1, A2 = kA1 of H, with Ay > A9, are proportional to the principal curvatures of the
image, the candidate features can be discarded as done for the cornerness response
H (see eq. 2.6), by a threshold ths on the eigenvalue ratio s

2 2 2 2
race(H)? _ (u+X)® it mh)? (04 m° (2.21)
det(H) A1 A2 KAL x

Though it is only rotation and scale invariant, the SIFT detector is widely used
because it is computational efficient and it provides good results, even for relatively
high perspective transformations (see fig. 2.21). An affine invariant extension of
the SIFT detector has been proposed as for other detectors. The ASIFT (Affine
SIFT) [120] detector simulates the distortions caused by a variation of the direction
of the camera optical axis by transforming artificially the image and then executes
the SIFT detector for each warped image.

== ==
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i I
_—

Figure 2.20: For each octave, obtained by smoothing and downsampling the image,
the DoG is computed by the difference between successive smoothed versions of the
octave. Image adapted from [100]

To be mentioned also the work described in [175], where two feature operators G1, G
have been discovered by using genetic programming 2]

G1(x) = (g3 — g2)*1(x)

(2.22)
Ga(x) = g1 * det(H(x))

As it can be seen, the former is a difference of Gaussians, while the latter is the
Hessian determinant convolved with a Gaussian kernel. They both provide another
clue on the goodness of the DoG and the det(?) operators as detectors.
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Figure 2.21: Features detected by the SIFT detector. Image from [177]

2.3.5 Other blob detectors

Another blob detector similar to the MSER was proposed in [176]. The IBR (Inten-
sity Based Region) detector [176] (see fig. 2.22) starts from an image extremum xg
and for each ray x, g, with radius r along the direction 6 exiting from xg, evaluates
the function

abs (1(x,,9) — 1(x0))
max (% f;zo abs (I(x,1,9) — I(x0)) dr’, <€>

Trp(x0) = (2.23)

where € is a small value to avoid an accidental division by zero. The radii for
the possible directions 6 for which T,y gives a maximum are connected to form
the boundaries of the feature patch and the final elliptic region is obtained by the
covariance matrix of the edge coordinates (see fig.2.23).

Figure 2.22: Features detected by the IBR detector. Image from [177]

Though they are not pure blob detectors, the EBR (Edge Based Region) detec-
tor [176] and the salient region detector |76, should also be mentioned. The EBR
(see fig. 2.24) starts by extracting Harris corners, to be used as anchor points, near
edges obtained by the Canny edge detector [21]. For each anchor point p two points
P1, P2, move at the same speed on the edge in opposite directions, drawing a family
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Figure 2.23: Starting from an intensity extremum, the function 7' is computed
along each ray r. Points along the rays for which maxima of 7" are connected (red
boundary) and the final corresponding feature ellipse is extracted. Image adapted
from [176]

of parallelograms. A set of functions related on the centre of mass q of the par-
allelogram which measure how much it is pushed away from the diagonals of the
parallelogram has been designed by the authors so that the extrema of the func-
tions are affine invariant. When the points p1, p2 move away and extrema for any of
these functions are met, the corresponding parallelogram is taken as a feature (see
fig. 2.25).

Figure 2.24: Original features detected by the EBR detector (left) and the associated
elliptic patches (right). Images from [177]

The salient region detector characterizes features by the entropy (see fig. 2.26).

Given the probability p(v,x, o) of the intensity value v € RT in the region centered
in x at scale o, the entropy of the region is

(0= [ , p0x.0) og, p{v. x.0)do (2:24)
IS

A further weight is required to discriminate between unstructured random region
and meaningful region

W,(x) = o / s (%p(v,x,a}) v (2.25)
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Figure 2.25: Given a patch (left) and its affine transformation (right), for each
anchor point, respectively p and p’, two points p1, p2 and p}, p5, move at the same
speed on the edge in opposite directions. A set of functions related on the centres of
mass, respectively q, q’ of the corresponding parallelograms are computed. When
the points move away and an extremum of any of these functions is met a feature
is detected. Image from [176]

since when the neighbourhood of a region with random values increases, there should
not be variations in the probability of the intensity values (see fig. 2.27). The saliency
function is

S =HyWgy > ths (2.26)

where ¢ is the scale value for which the function H attains to a maximum. After ap-
plying the global threshold thg, points close in the scale-space are clustered together.
As proposed in its first implementation, the salient detector is not affine invariant,
but it has been extended by iteratively refining the scale and the shape of the region
until no variation in both scale and position is present. While the best scale search
is achieved by searching for the maxima of H, the (elliptic) shape is searched by
applying some small deformation and by retrieving the one which maximizes W.
The salient detector performances are lower than those of other detectors [114] but
it has successfully been used in recognition tasks [77].

Figure 2.26: Features detected by the Salient region detector. Image from [177]
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Figure 2.27: Original image (top) and a random permutation of its pixels (bottom).
For a meaningful region there is a fast variation of the entropy as the scale increases,
which is not present for a patch of random points. Image from |76]






CHAPTER 3

Feature descriptors

3.1 Introduction

A feature descriptor for the k-th feature Fj is a numeric vector which embodies
feature data information Fj, = [fi1,. .., fan]? € R™. The descriptor vectors are
used to compare features by a similarity /dissimilarity function d(Fi, F2). A good
feature vector should be compact, discriminant and robust to noise. The simplest
feature detector is the feature patch itself, where patches can be compared by the
simple SSD (Sums of Squared Distance). However, the use the patch as descriptor
is not a good choice because it has an high dimension, it is very sensible to small
variations and it is very redundant.

The state of the art descriptors can be divided into the following main classes:
distribution based descriptors, differential descriptors and spacial-frequency based
descriptors.

Spacial-frequency descriptors include texture analysis techniques such as Gabor
filters [66], DCT (Discrete Cosine Transform) [66] or wavelets [66], however their
performances are relatively poor in comparison to other descriptors.

3.2 Distribution based descriptors

3.2.1 Patch normalization

Distribution based descriptors are mainly based on the histograms which represent
the distribution of some particular data relationship between features. In order to
compute the distribution, the feature patch has to be normalized. The normalization
of the intensity values by mean and standard deviation makes the patch invariant
to affine illumination changes (see Sec. 1.3.6). The translation factor is removed by
fixing the coordinate origin into the feature central point, while for affine invariant
detector the relative covariance matrix ¥ is used to remove the shear (see Sec. 1.3.4).
The affine coordinate change described in eq. 1.20 is applied to the covariance matrix,
so that the elliptic neighbourhood is normalized to a circular one and the scale
information is used to normalize to a unit scale. More in detail, the circular patch
radius of the normalized feature, usually chosen to be 30 where o is the feature
scale, is mapped to the radius of the normalized patch r, usually 20 pixels, that is
, T

= — d
X =g-X (3.1)
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3.2.2 Orientation normalization

The orientation invariance is obtained by a rotation of the patch toward the direc-
tion of the dominant gradient orientation (see Sec. 1.3.2). The most common used
approach was proposed by Lowe [100]. The gradient orientation histogram of the
patch R, weighted by the gradient magnitude and by a Gaussian window centered
in the patch center x., is computed

ho =Y go(x—x0)y/ L3 (1(x)) + L (1(x)) (3:2)

XERy

where Ry is the set of points in the normalized patch with gradient orientation
§ = arctan(Ly/L;). The dominant gradient orientation is given by

© = argmax hy (3.3)
0
In order to increase the robustness of the estimation, Lowe proposes in its original
paper to also take the orientations for which the histogram bins are within the 80%
of the maximal bin and to use a parabolic fitting (see Sec. 1.3.5) to increase the
accuracy of the estimation, however these last steps are usually neglected [113].
Another approach was proposed by Mikolajczyk [111], which uses the gradient
orientation in the feature centre corrected by the average gradient orientation of the
local neighbourhood

erR 90/3(X —xc) (Ox, — Ox)
ZXER go/S(X - Xc)

0 =0, — (3.4)

After the patch is fully normalized the descriptor is computed.

3.2.3 The rank and the census transforms

The first distribution based detectors can be found in [188] where the rank and the
census transforms were introduced. The rank transform is the number of pixels q
in the feature patch R which have an intensity value greater than the value of the
central pixel c

R(F) =Ka:I(q) > I(c) hq € R} (3.5)

where | - | is the cardinality of the set (see fig. 3.1). The concatenation € of the
boolean values given by the evaluation of the inequality used for the rank transform

1 «f I I
Bip.q :{ S (q).> (c) (36)
0 otherwise

can be used instead to obtain the census transform (see fig. 3.1)

C(F) =P B(a,c) (3.7)

qeR

which can be evaluated by using the Hamming distance [74].
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Figure 3.1: Given a pixel, highlighted in red, and a window centered in it (left),
each pixel can be labelled according to the sign of the difference between its value
and that of the central pixel (right). The rank transform counts the number of pixel
with the same label of the central pixel, while the census transform is the ordered
concatenation of the labels of each pixel

3.2.4 Spin images

Another approach is the spin image [85], originally developed for three-dimensional
range images [75]. A spin image is a two-dimensional soft histogram where one
dimension is given by the distance from the centre of the feature patch and the
other one by the range of the intensity values (see fig. 3.2)

,( la—c|—d M)

Hp(d,v) =Y e\ 20t o (3.8)
qeER
where || - || is the Euclidean distance and o, ¢’ are the smoothing factors. The final

descriptor is obtained by concatenating the histogram bins for the radius set D and
the orientation set V

P(F)= & Hr(d,v) (3.9)

1€D,jeV

Figure 3.2: A feature patch (left) and the corresponding spin image (right). The
bin locations of some pixels, according to their intensity value I and the distance r
from the centre, are highlighted. Image adapted from [85]
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3.2.5 Shape context

The shape context was proposed in [11]. It is a three-dimensional histogram of
locations and orientations of edge points. The bins are arranged into a log-polar grid,
which simulates the human eye behaviour [184]. Each point in the bins is weighted
by its gradient magnitude and the gradient orientation of the central point in the
grid is used as the reference orientation (see fig. 3.3(a-f)). To be mentioned that the
shape context descriptor has been used in a more sophisticated approach to recognize
deformation in objects [11], where correspondences are found by solving the bipartite
graph matching problem [31] and by obtaining the best shape transformation on the
thin plate model [43] (see fig. 3.3(g)).

1 2
e
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a b
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d e f g

Figure 3.3: Two similar shapes (a-b) and the log-polar grid used by the shape
context descriptor (c¢). The two-dimensional histograms (d-f) are respectively the
shape context representations of the points 1-3. The thin plate model is used to
compute the best transformation between the two shapes (g). Image from [11]

3.2.6 The SIFT descriptor

The SIFT descriptor [100] introduced by Lowe is nowadays the most popular feature
descriptor. The feature patch, weighted by a Gaussian window centered in the patch
X, is subdivided by a Cartesian grid and for each cell Ry of the grid an histogram
of gradient orientations, weighted by the gradient magnitudes, is computed (see

fig. 3.4)

Hs(k,0) = " go(xi = x0)y/12 (I(x:) + I3 (I(x:)) (3.10)
0

X; €ERk,
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where Ry, ¢ is the set of the points in the A-th cell with gradient orientation 6. In
order to obtain a smoothed histogram Lowe proposes to use a trilinear interpolation
on the bin dimensions. Each bin entry is multiplied by a weight of 1 — d for each
dimension, where d is the distance of the point sample from the bin centre. The
distance d is measured in units of the histogram bin spacing [100]. In most other
implementations the patch is instead convolved with a small Gaussian kernel g; [113].
The typical size of the grid is 4 x 4 for 8 directions so that the resulting histogram
size is 4 x 4 x 8 = 128. The histogram is then normalized to the unit to remove the
effect of affine illumination transformations. Moreover, to further remove non linear
illumination changes due to camera saturation or surface properties, a threshold on
each bin is applied so that each normalized bin cannot exceed 0.2 and the histogram
is normalized to the unit again.

e 3R RK
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Figure 3.4: The feature patch is divided by a 4 x 4 grid and the gradient magnitude
is weighted by a Gaussian window (left). For each cell grid the gradient orientation
histogram is computed (right). Image adapted from [100]

Many extensions of the SIFT descriptor has been proposed in the last decade. The
PCA-SIFT descriptor |78| uses the PCA (Principal Component Analysis) [74] to
reduce the descriptor dimension and remove useless data; other data reduction
methodologies have also been applied to the SIFT [24, 72| (see Sec. 4.2.2). The
GLOH (Gradient Local Orientation Histogram) detector [113] uses a log-polar grid
to compute a histogram of size 272 which is successively reduced by the PCA to
128. Also overlapping grid cells have been employed [37], which seem to improve
the descriptor robustness to scale (see fig. 3.5). The search of the best standard
deviation for the gradient computation has also been performed in [121] by using
the Gabor filters. The RIFT (Rotational Invariant Feature Transform) detector [85]
uses concentric rings as bins and obtains the rotation invariance by computing the
orientation at each point relative to the direction pointing outward from the center,
avoiding the dominant gradient orientation estimation (see fig. 3.6).
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Figure 3.5: A comparison between the SIFT descriptor (top) and the irregular ori-
entation histogram binning (bottom). The descriptors are computed on the original
feature patches (first, second columns). By rescaling the second patch (third col-
umn) it can be noted a better overlap between cells for the irregular binning method
(fourth column). Images from [37]

3.2.7 The DAISY descriptor

Another fast descriptor which has been employed in dense map estimation with
good result is the DAISY descriptor [164]. It uses a circular grid with small overlap
between cells and, to improve the descriptor robustness, circular cells of increasing
radius, weighted by a Gaussian window. The name DAISY is due to its shape (see
fig. 3.7). For each cell the gradient orientations weighted by the gradient magni-
tudes are computed and each cell histogram is normalized to the unit. The DAISY
descriptor can be densely computed on the image very efficiently. More in detail,
the gradient along the axis directions are first computed using the kernels [—1 1],
[—~11]7 to obtain the gradient along the direction § (usually there are 8 directions)
as a linear combination

%I = cos 9%] + sin 49(%[ (3.11)
The value of a bin in the direction 6 for a particular grid cell is just the value of the
convolution in the cell centre of the gradient map 6 with a Gaussian kernel where
the standard deviation is given by the cell radius. A dense computation can then
be achieved efficiently by using successive convolutions on the gradient orientation
maps.
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Figure 3.6: A feature patch (left) and the corresponding RIFT descriptor (right).
For each pixel the corresponding bin is given by its distance from the centre r and its
gradient orientation . The reference orientation is given by the direction outward
from the center. Bin locations of some pixels are highlighted. Image from [85]

Figure 3.7: The grid cells used by the DAISY descriptor. It can be noted that there
is a small amount of overlap between adjacent cells. Image from [164]

3.3 Other descriptors

3.3.1 Generalized color moment

Other descriptors to be mentioned are the invariants up to second order based on
the generalized color moments with order p + ¢ and degree a 4+ b + ¢ introduced
in [116]

abc a c
= [ R By 312)
(z,y)eR
where R(z,y),G(z,y), B(z,y) are the three color values for the pixel (x,y). The

generalized moments characterize the shape, the intensity and the color distribution
in the feature neighbourhood.

3.3.2 The geometric blur

The geometric blur [12, 13| is a smoothed version of the signal around a feature
point, blurred by a spatially varying kernel. The geometric blur version of a patch
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centred in x. is defined as

Bxc (X) = I*ga||x||+ﬂ(xc - X) (313)

The final descriptor is made up of sampled points of the geometric blur of the patch
on a log-polar grid (see fig. 3.8).

Figure 3.8: A feature patch (left) is extracted and its geometric blur is computed
(right), where the patch centre is highlighted by a red dot. The descriptor vector
is obtained by sampling only the geometric blur in the location highlighted by the
dots. Image from [12]

3.3.3 Differential descriptors

Differential descriptors arise from the Taylor series approximation of a function

0 0
I(xo + x,y0 +y) = I(x0,y0) + 93%1(1‘0, Yo) + y@1($o,yo)+

N oN (3.14)
+ ...+ ZﬁUpyNipWWI(ajO) yO) + O(xN7 yN)
=1

so that the derivatives can be seen as the fingerprints of the function in a local
neighbourhood. The local jet JV for a scale factor o is defined as a set of local
derivatives up to order N [83]

IN(I(x),0) = {Li,.. i, (I(x),0):n=0,...,N;ip € {z,y};k=1,...,n} (3.15)

The derivatives can “be steered” along any direction 6 as described in [62] using the
components of the local jet

Ly = Lycos®+ Lysinf (3.16)
and by iterating

Lg2 = Ly, cos® 0 + Ly cos@sin® + Ly, cosOsin® + Ly, sin? 6 =

3.17
= L, cos®0 + 2Ly, cos@sin@ + Ly, sin® 0 ( )
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that is .

Lgn = Z <Z) an—kkaOSnike sin® @ (3.18)

k=0

where (Z) is the binomial coefficient. Illumination invariance can be easily achieved
by using eq. 1.36. Moreover, the directional derivative of n-th order can be rep-
resented by a combination of the n + 1 basis directional derivative Lgr [62], with
0in = im/(n+1) + 0y where i = 0,...,n and 6, is an orientation related to the
image structure. The following feature vector of length 12 can be used [62, 111]

Log, Lo, Loy, Lo, Loy, Luy, (3.19)
Sy , Sy , ey .
L90,2 L92,2 L90,3 L93,3 L90,4 L94,4

Differential invariants to rotation combining the local jet have been introduced in [83,
162]

L
LoLy + LyLy
Lz + Lyy
LuwLaLe + 2LgyLaLy + LyyLyLy
LywLzy + 2LmyL$y + Lnyyy
LuweLyLyLy + 3Layy Ly Lz Ly — 3Laay Ly Ly Ly — LyyyLe Lo Ly
LawzLoLyLy + Lygy(—2Ls Lo Ly + LyLyLy) + Layy(—2Lg Ly Ly + Ly Ly Ly) + Lyyy Lo Ly Ly
Lywy(—LzLoLy + 202 LyLy) 4+ Layy(—2Ls Ly Ly + LyLyLy) — LyyyLae Ly Ly + Loga Lo L Ly
szwLwLach + 3wayLwLwLy + 3LwnywLyLy + LynyyLyLy

(3.20)

they can also be made invariant to affine illumination changes by eliminating the
first two components and by dividing the other invariants by a proper power of the
second component, i.e. the squared gradient magnitude.
A complex bank of filters, similar to the Gaussian derivatives is applied in |3, 146]
instead
K(m,n) = (@ + i)™ (@ — iy)" g0 (x,y) (3.21)

the effect of a rotation by @ on the filter is a multiplication by ™~ For all the
value ¢ = m — n the filters give the same response and for different values of ¢ they
are orthogonal, so an orthonormal filter bank is obtained. The filter bank differs
from the Gaussian derivatives by a linear change of coordinates in the filter response
space. The magnitude of response is not affected by the transformations, but only
the phase. The authors obtain 16 filters by combining m and n which avoid the
problems related to the estimation of a dominant orientation of a local feature.

3.3.4 The self-similarity descriptor

The self-similarity descriptor [151] has been used for template matching. The SSD
between a small neighbourhood of a point x. (tipically 5 x 5 pixels) and the sur-
rounding region R is computed by obtaining the correlation surface

SSD(x,xc)

SXC (X) =e max(0p0ise:7auto (X)) (322)
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where x € R and o5 1S a constant that corresponds to acceptable photomet-
ric variations, while o4y4(x) takes into account the patch contrast and its pattern
structure. The correlation surface is then mapped into a log-polar grid centered
in X, and the maximum value in each grid cell is taken to form the final descrip-
tor vector (see fig. 3.9). Self-similarities are treated as local image properties and
are accordingly measured locally. Moreover, the log-polar representation accounts
for local affine deformations in the self-similarity descriptors while by choosing the
maximal correlation value in each bin, the descriptor becomes insensitive to the
exact position of the best matching patch within that bin [151]. The descriptor is
computed densely on the whole image and through a modified version of the en-
semble matching algorithm [151], which employs a probabilistic star graph model.
This descriptor has been reported to provide good results in the template matching
tasks.

3.3.5 The SURF descriptor

Similar to the SIFT, the SURF descriptor |4] uses a Cartesian grid but instead of
computing a gradient orientation for each grid cell, the Haar wavelet [150] along the
directions of the axes are computed. For each direction the sums of their values and
of their absolute values are retained to obtain the descriptor.

Figure 3.9: Two similar images (left) and the self similarity descriptors for the point
highlighted by the blue squares (right). Image from [151]
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Feature similarity distances

4.1 The standard approaches

The choice of the right similarity /dissimilarity measure between two feature descrip-
tor vectors is a well discussed topic. The Minkowski distance of order m

1/m
m(F1, Fa) = (Z\flz f2i ) (4.1)

is the most common choice. In particular, the Manhattan distance, the Fuclidean
distance and the Chessboard distance respectively for m = 1,2, 00 are commonly
used. Another common similarity measure derived by statistics is the Chi squared
distance . 25 fa)?
2 1o — J2¢
(1 72) ; Jri + foi (4.2)
which follows a chi squared distribution with n — 1 degrees of freedom under the
assumption that the n vector elements are sampled from independent Gaussian
variables [143, 111], i.e. they are not correlated.
The cross correlation and the normalized cross correlation are related to the
independence of the two vector distributions [143, 33]

n

C(F1,F2) = %Z ((fri = F1)(fai — F2))

=1 43
C(F1, Fa) 3

VO (F1, F1)C(Fa, o)

C*(Fi, F1) =

— 1
where F,, = z Zle fwi- Further distances are the symmetric Kullback-Leibler

divergence (also known as Jeffrey divergence)

J(F1,F2) = Z (flleg fa + foilog ;21>
i=1 Li

which measures how inefficient on average it would be to code one histogram by

(4.4)

using the other one as the code-book and vice-versa [143, 33|, and the Bhattacharyya
distance

B(F1,F2) =
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that is an approximate measurement of the amount of overlap between two statistical
samples [42] which is commonly used to compare histograms [73]. A last distance is
the intersection distance between two histograms [143, 160]

n
(\(F1. F2) = min(fui, fa:) (4.6)

i=1
The distance measures described above do not take into account the correlation
between the different vector elements. In particular, the data provided by the de-
scriptor are usually redundant, noisy and some descriptor elements are more dis-
criminative than others. Moreover, dealing with histogram based descriptors, spatial
relation between bins is not considered, especially for three-dimensional histograms
as in the SIFT because the histogram is linearized into the descriptor vector. To
be also noted the crucial role played by the bin size, since a coarse binning has no
sufficient discriminative power, while a fine binning could be too discriminative [143].

4.2 Feature space dimension reduction

4.2.1 Mahalanobis distance and PCA reduction

Data analysis techniques are employed to reduce the correlation between the de-
scriptor elements and to remove useless data, decreasing the descriptor dimension.
The most common tools are the Mahalanobis distance and the PCA, which are
very similar. In particular they both remove the correlation between descriptor el-
ements while the latter also decreases the descriptor dimension, removing useless
data. The covariance matrix ¥ (see eq. 1.17) of the descriptor vector is learnt on
a large database of feature patches. As seen in Sec. 1.3.4 the covariance matrix for

the m x n descriptor matrix X = [F; ... Fp,]T is

Y=X-X)(X-X)T (4.7)

where X@'j = %2?21 X;j is the mean value of the j-th element. The covariance
matrix is symmetric, thus it has positive eigenvalues and can be diagonalized

¥ = RDR” (4.8)
where D = diag(A1,...,\,) is a diagonal matrix, R is a orthonormal matrix and
A1, ..., A, are the eigenvalues of . If the features are normalized by the mean of

each element in the covariance matrix, i.e. X = 0, the Mahalanobis distance
M(F1, Fo) = FoX 7' F1 = RoATAF, = FI 7y (4.9)

1
where A = D72R7 allows to use the Euclidean distance in an uncorrelated feature
space inducted by the transformation F = AJF. Moreover, in the new space the
data are uncorrelated since the correlation matrix becomes

S = AYAT = D :RTSRD z =

) ) (4.10)
=D 2R'RDR'RD 2z =1
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For the sake of efficiency, in practice the feature vectors are pre-multiplied by A.
The PCA is an extension to the Mahalanobis distance which removes the elements
with a low variance in a new feature space inducted by F = AF , i.e. the less
meaningful elements. The eigenvalues of D are ordered so that Ay > ..., > A\,
and the dimensions ¢,...,n for which 22:1 A; > th) are removed, replacing D by

D= diag(A1,...,A\;) and R by R = [Ry ... R;], where Ry is the k-th column vector
of R, i.e. the eigenvector corresponding to Ag.

4.2.2 Linear embeddings

More complex data manipulations have been also proposed in recent years. The
linear discriminative embedding [72] learns the best projection w € R™ which maxi-
mizes the ratio of the variance between the non-match and match differences along
the direction w.

S (W FE - F)’
Stym0 (W (Fi = Fp))°

where [;; = 1 if the i-th and the j-th descriptor vectors belong to the same feature,

Q(w) (4.11)

i.e. the patches represent the same feature after a transformation, and I;; = 0
otherwise. The expression 4.11 can be rewritten in terms of the covariance matrix

Q" (w) = " (le‘jzl (Fi = Fj) (Fi = ]:J')T) v _ wlAw (4.12)
wl (Zzij:o (Fi = Fj) (Fi — fj)T) w  WiBw

The solution is provided by the eigenvector associated to the largest eigenvalue of
the generalized eigensystem
Aw = \Bw (4.13)

To form a linear embedding, the first n eigenvectors associated with the largest n
generalized eigenvalues are chosen. In order to provide a better projection space,
some regularizations on the eigenvalues of the covariance matrices and the orthog-
onality constrain can be imposed [72]. Similar solution have been obtained start-
ing from a different problem formulation in the LDE (Local Discriminant Embed-
ding) [24]. Moreover, extensions to non linear transformations by using kernels have
also been proposed [23], as well as the combinations of several transformations by
averaging different models in the UFT (Universal Feature Transform) [23].

4.2.3 Learning methods

It has been shown in [179] that also the SVM (support vector machine) [32]| can
improve the distance. In particular a polynomial SVM kernel D of the form
D(F1, Fa) < th, is learnt in the Ly norm space by using correct feature correspon-
dences as positive examples and wrong correspondences very close in the descriptor
space as negative samples. The learned distance D shows a better a discriminative
power.
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Another approach by [185] learns on a large training dataset the best parameters
which maximize the relative ROC (receive operator characteristic) curve [74] for
different descriptor configurations.

Also the entropy maximization has been used to find the best patch normaliza-
tion before computing the descriptor [180].

4.3 Cross bin distances

4.3.1 Quadratic form distance

In order to improve the histogram based descriptor similarity, several cross-bin dis-
tances has been proposed, which try to take into account the relative spatial position
between bins. The quadratic form distance [125]

Q(F, Fo) = \/(F1 — Fa)TA(F) — Fa) (4.14)

improves the cross-bin information by using the matrix A where A;; = 1—d;;/dmaq,
d;; is the distance between the bin centres and dy,q, the maximum distance, however
its performances are not so good as expected [143].

4.3.2 The earth moving distance

A better choice is provided by the Earth Moving Distance (EMD) [143]. Intuitively,
given two distributions, one seen as a mass of earth distributed in the space and the
other as holes in the same space, the EMD is the minimum amount of work to fill
the holes with earth.

The EMD solution is based on the well-known t¢ransportation problem [122].
Given a number of suppliers of a limited capacity, a number of consumers should
be satisfied by giving a defined amount of goods stored in the suppliers. For each
customer-supplier pair, a cost for transporting a single unit of goods is given. The
transportation problem is solved by finding the least-expensive flow of goods from
the suppliers to the consumers. The problem can be formalized as the following
linear problem where the quantity

DY digsi (4.15)
i=1 j=1

must be minimized, subject to

535 >0 1<i<m,1<53<n
> i1 8ij < fu I<j<n
Yoty sii < foj 1<i<m

ity Dj—1 8ij = min (Z?il Frin 225 ij)

The value d;; is the distance between the i-th and j-th bin centres and s;; is the flux
from bin ¢ to bin j. The first constrain says that the flux cannot be negative, while

(4.16)
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the others impose a limit on the total flux from each bin, i.e. the goods cannot be
more than those provided by the corresponding supplier or no more than those the
customer can use. The final EMD distance is

Doiny iy dijsij
>ty Z?:l Sij

Though the EMD distance provides good results, it is really slow to compute

E(F1, F) =

(4.17)

because it requires the solution of a minimization problem which can be resolved
by the simplex method [122] or as a network flow minimization [31] in O(n3logn).
Moreover it is a metric only if the histograms are normalized to the unit.

4.3.3 The earth moving distance approximations

In [131] an EMD based distance, named SIFT distance, is derived. A circular cross
bin distance is used with a transportation cost equal to 1 for two nearby bins, while
distant bins have a transportation cost equal to 2. The circularity of the cross bin
takes into account the cyclic nature of the gradient orientations. The final SIFT
distance is obtained by summing up the EMD based distances for each SIFT cell.
The SIFT distance can be computed efficiently in linear time.

Faster approximations of the EMD have been developed |97, 187], some of them
model the histogram difference by the diffusion process and are similar to the pyra-
midal matching kernel (see Sec. 1.4.2).

The heat diffusion equation for an isolated temperature field T'(x,t) with initial
condition T'(x,0)

0 0
—T=—T 4.18
ot Ox? (4.18)
has an unique solution
T(z,t) = gxT(x,0) (4.19)

Since it is a conservative field, the mean distance is zero and as t increases T'(x,t)
goes to zero. In this sense, T'(z,t) can be viewed as a process of exchanges be-
tween histogram bins until they become equal. A dissimilarity can be extracted by
measuring the process diffusion. The diffusion process of the difference between the
histograms through the time can be seen as successive small steps in the transporta-
tion problem to balance the same difference, where the system conservation equals
the EMD constrains (see fig. 4.1).

The diffusion distance [97] is then given as the sum of different layers which
mimics the histogram difference diffusion for increasing discrete time intervals

m
G(F1, F2) =Y gi* D(F1, Fa) (4.20)
i=0
where D is a distance, for instance the Manhattan £1, and m is the final state for
which the difference is zero. In practice each layer of the diffusion distance can
be obtained from the precedent by smoothing with a Gaussian g, with a constant
standard deviation, and then subsampling, so that m = logn.
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Figure 4.1: Given two bins p and ¢ for which any standard approach would give a
maximum distance though the bins are very close, successive diffusion steps (blue,
green and red lines), makes the bin difference close to zero

In a similar way the topology preserved diffusion distance is derived [187]. In com-
parison with the diffusion distance, the topology of the bin distribution can be taken
into account by using numerical methods to solve the diffusion equation.

4.4 Rank based distances

In the SIFT rank descriptor [163] the rank order of the descriptor vector is used, i.e.
the feature vector F = [fx1, ., fin)® is replaced by F; = [fiy,-- -, fi,)T where f7;
is the rank of fy;, i.e.

the Spearman correlation coefficient [157]
* €\ 62?:1(]?1 _f;z')Q

or the Kendall coefficient |79]

23005 Z?:iﬂ sign(f; — ffj) sign(f3; — f2*j)

T(*Fl?fQ):l_ n(n—l)

(4.23)

can be used to measure the similarity between the two rank order descriptors.



CHAPTER b5
Feature detector and descriptor
evaluation

5.1 Evaluation methodologies

The comparison between feature descriptors and detectors is a difficult task, because
it not easy to define a reliable quantitative measure to compare detectors or descrip-
tors for all possible situations. Some detectors as well as some descriptors are more
sensible to a class of images than others, or to a particular kind of transformations,
thus the choice of the image dataset is critical. Moreover implementation details
can also cause different results. Another issue is represented by the availability of
a ground truth data, especially for three-dimensional scenes, which is more diffi-
cult to obtain. To overcome this issue synthetic generated images have been used
sometimes [179].

5.1.1 The repeatability index

The repeatability index is commonly adopted the test the detectors [149]. Given
a reference image, the repeatability index measures how well the features are re-
peated for some transformation of the image (see fig. 5.1). In order to define the
repeatability index, the overlap error [149] between two feature patches should be
introduced. Here the i-th feature is considered as the pair p = (x, R) where x is the
feature centre and R is the shape of the patch, not normalized, i.e the associated
ellipse. The overlap error between two features is

Ri(NR2

i UR URs (5.1)

50(]917172) =1-

and it is &,(p1,p2) = 0 if the feature patches are the same, &,(p1,p2) = 1 if they
do not overlap (see fig. 5.2). Let the reference image I, contain the set of features
A = {a;} and let the test image I; contain the feature set B = {b;}, withi =1,...,n
and j = 1,...,m. The transformation 7 which maps points from I, to I, where
T (p) is the reprojection of the feature ellipse from I, to I should also be known.
Given a dissimilarity score D(p,q) with p € A and ¢ € B, in order to obtain a
hard match an ordered set Qp(A, B) = {q1,...,qx} of pairs (p,q),p € A, q € B, is
built as follows. All possible pairs according to the dissimilarity value D(p,q) are
ordered by their increasing values and starting by an empty set Qp, the first pair is
inserted in the set Qp. All other pairs that share the same p or ¢ are removed and
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Figure 5.1: The feature patch is transferred from the right image to left and some
error measure between corresponding patches, such as the repeatability index or the
matching score, is computed

© 0 © ¢

E,~0 E,~0.3 E,~0.6 E,~1

Figure 5.2: The overlap errors &, for different patch superimposition. Image adapted
from [114]

the process is repeated until there are no more pairs left. Clearly the cardinality of
the set is |Qp(A, B)| = min(m,n)

An hard match set Qg, is built for a given overlap error threshold th, as
well as the set Qggho which contains all the pair elements (p,q) € Qg, for which
& (p,T'(q)) < the. The repeatability index is the ratio between the cardinality
of the two sets
(Qesn (4, B)|

|Qe, (A, B)|
The repeatability index assesses the goodness of a detector in terms of stability and
robustness of the extracted features.

rptin, (A, B) = (5.2)

However some considerations should be done. A detector which extracts a high
number of features has a high probability to increase its repeatability score but it
decreases the chances of a correct match due to more possible matches, so detectors
should output the same reasonable number of features on average in the test. The
location accuracy of the feature, measured from the patch centre, and of the overlap
error, depend on the scale, i.e. on the ellipse size (see fig. 5.3), so it could be a good
choice to normalize the patches to the same scale before computing the overlap error.
It should be noted that while for some applications, for instance object detection, the
localization error is less relevant, it is critical for others, such as three-dimensional
reconstruction or registration.
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x2
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Figure 5.3: Overlapping patches (left) and the same patches with a double scale
factor (right). Though both patches have the same overlap error R, = 0.5, the
localization error of the left patch is doubled. Image from [68§|

5.1.2 The matching score

Another measure is the matching score [114], where the set Q¢, is built as done for
the repeatability index, by using the dissimilarity measure obtained by applying the
Ly distance on pairs of SIFT descriptors. Given also the set @i, which contains
the pairs of Qg,, with an overlap error less than th,, the matching score is then
defined by

h (A B) ’Q(C/‘;Zlo (A7 B)‘
matchy,, (A, B) = —————

Qe,. (A, B)|

The use of the SIFT descriptor is nowadays standard due to its robustness and
popularity.

(5.3)

5.1.3 Datasets

The most popular database which has become standard for detectors comparison is
the Oxford dataset, available at [114, 115]. It contains six different image sequences,
subject to different transformations. The images can be divided in textured images,
i.e. with a large number of textures and repeated patterns, and structured images,
i.e. with homogeneous and well defined regions. In particular the “graffiti” and
“wall” scenes represent respectively structured and textured images under different
perspective transformations, the “boat” and the “bark” sequences under scale and
rotation, the “bikes” and the “trees” under blur, while the “Leuven” sequence contains
a balance between structured and textured regions for luminance changes, as well
as the “UBC” sequence for JPEG compression (see figs. 5.4-5.7). This database
contains only planar scenes, so the ground truth is easy to estimate. The database
lacks of three-dimensional sequences, which are crucial to compare detectors and
descriptors for real applications.

The Oxford dataset has been extended to three-dimensional images in |59, 58|.
Two sequences have been added, the “group” sequence contains a full three-
dimensional scene with different planar surfaces, while the “room” sequence a more
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Figure 5.4: The bark sequence (top) and the boat sequence (bottom) for different
scale and rotation degrees of transformation (left to right). Images from [115]

Figure 5.5: The graffiti sequence (top) and the wall sequence (bottom) for different
viewpoints (left to right). Images from [115]
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Figure 5.6: The bikes sequence (top) and the trees sequence (bottom) for different
degrees of blur (left to right). Images from [115]

Figure 5.7: The Leuven sequence (top) and the UBC sequence (bottom), respectively
for different JPEG compression factors and illuminations (left to right). Images
from [115]
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Figure 5.8: The group sequence (top) and the room sequence (bottom), for various
viewpoint changes (left to right). Images from [58]

complex three-dimensional scene (see fig. 5.8). In order to generate the ground truth
an intermediate image between two transformations is used. A dense disparity map
between the reference image and the intermediate image is computed, which al-
lows to find the location of the points. Then, by using the trifocal tensor [70],
the location of a point can be finally found on the test image. Points on uniform
regions for which the dense estimation could not be achieved are considered as a
non-intersection for the computation of the overlap error. However detectors usually
do not detect features in these regions, so this issue can be neglected.

5.1.4 Polar relationship

Another approach to compare detectors in three-dimensional scenes is provided
in [54]. The fundamental matriz [70] (see Sec. 7.2.4 for more details) for the epipo-
lar stereo geometry is first computed by taking correspondences by hand. Polar
relationships are invariant to perspective transformations (the polar of a point to a
curve is the straight line incident to the tange