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Abstract The notion of bounded element of C*-inductive locally convex spaces (or C*-
inductive partial *-algebras) is introduced and discussed in two ways: The first one takes into
account the inductive structure provided by certain families of C*-algebras; the second one
is linked to the natural order of these spaces. A particular attention is devoted to the relevant
instance provided by the space of continuous linear maps acting in a rigged Hilbert space.
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1 Introduction

Some locally convex spaces exhibit an interesting feature: They contain a large number of
C*-algebras that often contribute to their topological structure, in the sense that these spaces
can be thought as generalized inductive limits of C*-algebras. These objects were called
C*-inductive locally convex spaces in [8] and their structure was examined in detail, also
taking in mind that they arise naturally when one considers the operators acting in the joint
topological limit of an inductive family of Hilbert spaces as described in [9]. Indeed, a typical
instance of this structure is obtained by considering the space LB(D, D×) of operators acting
in the rigged Hilbert space canonically associated with an O*-algebra of unbounded operators
acting on a dense domain D of Hilbert space H. In [8], a series of features of this structure
was studied giving a particular attention to the order structure, positive linear functionals
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and representation theory. The space LB(D, D×) contains a subspace isomorphic to the *-
algebra B(H) of bounded operators in H whose elements can be in natural way considered
as the bounded elements of LB(D, D×). The notion of bounded element of a locally convex
*-algebra A was first introduced by Allan [1] with the aim of developing a spectral theory for
topological *-algebras: An element x of the topological *-algebra A[τ ] is Allan bounded if
there exists λ �= 0 such that the set {(λ−1x)n; n = 1, 2, . . .} is a bounded subset of A[τ ]. This
definition was suggested by the successful spectral analysis for closed operators in Hilbert
space H: A complex number λ is in the resolvent set ρ(T ) of a closed operator T if T − λI
has an inverse in the *-algebra B(H) of bounded operators.

There are, however, several other possibilities for defining bounded elements. For instance,
one may say that x is bounded if π(x) is a bounded operator, for every (continuous, in a
certain sense) *-representation π defined on a dense domain Dπ of some Hilbert space Hπ .
This could be a reasonable definition in itself, provided that A possesses sufficiently many
*-representations in Hilbert space.

Moreover some attempts to extend this notion to the larger setup of locally convex quasi
*-algebras [10,17–20] or locally convex partial *-algebras [2,5,6] have been done. But in
these cases, Allan’s notion cannot be adopted, since powers of a given element x need not
be defined.

In the case of *-algebras, bounded elements in purely algebraic terms have been considered
by Vidav [22] and Schmüdgen [15] with respect to some (positive) wedge.

The aim of this paper is to extend the notion of bounded element to the case of C*-inductive
locally convex spaces A with defining family of C*-algebras {Bα;α ∈ F}(F is an index set
directed upward). There are also in this case several possibilities: The first one consists in
taking elements that have representatives in every C*-algebra Bα of the family whose norms
are uniformly bounded; the second one consists into taking into account the order structure
of A, in the same spirit of the quoted papers of Vidav and Schmüdgen.

The paper is organized as follows. After some preliminaries (Sect. 2), we study, in Sect.
3, how bounded elements of LB(D, D×) can be derived from its C*-inductive structure and
from its order structure. We show that these two notions are equivalent and that an element X
is bounded if and only if X maps D into H and X ∈ B(H). Finally, in Sect. 4, we consider the
same problem for abstract C*-inductive locally convex spaces and give conditions for some
of the characterizations proved for LB(D, D×) maintain their validity. Some of these results
are then specialized to the case where A is a C*-inductive locally convex partial *-algebra.

2 Notations and preliminaries

For general aspects of the theory of partial *-algebras and of their representations, we refer to
the monograph [3]. For the convenience of the reader, however, we repeat here the essential
definitions.

A partial *-algebra A is a complex vector space with conjugate linear involution ∗ and a
distributive partial multiplication ·, defined on a subset � ⊂ A × A, satisfying the property
that (x, y) ∈ � if, and only if, (y∗, x∗) ∈ � and (x · y)∗ = y∗ · x∗. From now on, we will
write simply xy instead of x · y whenever (x, y) ∈ �. For every y ∈ A, the set of left (resp.
right) multipliers of y is denoted by L(y) (resp. R(y)), i.e., L(y) = {x ∈ A : (x, y) ∈ �},
(resp. R(y) = {x ∈ A : (y, x) ∈ �}). We denote by LA (resp. RA) the space of universal
left (resp. right) multipliers of A. In general, a partial *-algebra is not associative.

The unit of partial *-algebra A, if any, is an element e ∈ A such that e = e∗, e ∈ RA∩ LA

and xe = ex = x , for every x ∈ A.
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Let H be a complex Hilbert space and D a dense subspace of H. We denote by L†(D, H)

the set of all (closable) linear operators X such that D(X) = D, D(X*) ⊇ D. The map
X → X† = X∗

�D defines an involution on L†(D, H), which can be made into a partial
*-algebra with respect to the weak multiplication [3]; however, this fact will not be used in
this paper.

Let L†(D) be the subspace of L†(D, H) consisting of all its elements which leave, together
with their adjoints, the domain D invariant. Then L†(D) is a *-algebra with respect to the
usual operations. A *-subalgebra M of L†(D), containing the identity I of D, is called an
O*-algebra.

Let M be an O*-algebra. The graph topology tM on D is the locally convex topology
defined by the family {‖ · ‖A}A∈M, where

‖ξ‖A =
√

‖ξ‖2 + ‖Aξ‖2 = ‖(I + A∗ A)1/2ξ‖, ξ ∈ D.

For A = 0, the null operator of L†(D), ‖ · ‖0 is exactly the norm of H, thus we will omit the
0 in the notation of the norm.

The topology tM is finer than the norm topology, unless M does consist of bounded
operators only.

If M is an O*-algebra, we write A 
 B if ‖Aξ‖ ≤ ‖Bξ‖, for every ξ ∈ D. Then, M is
directed upward with respect to this order relation.

If A ∈ M, we denote by HA the Hilbert space obtained by endowing D(A) with the graph
norm ‖ · ‖A.

If A, B ∈ M and A 
 B, then UB A = (I + B∗ B)−1/2(I + A∗ A)1/2 is a contractive map
of HA into HB ; i.e., ‖UB Aξ‖B ≤ ‖ξ‖A, for every ξ ∈ HA.

If the locally convex space D[tM ] is complete, then M is said to be closed.
If M = L†(D) then the corresponding graph topology denoted by t† instead of tL†(D).
As is known, a locally convex topology t on D is finer than the topology induced by the

Hilbert norm defines, in standard fashion, a rigged Hilbert space (RHS)

D[t] ↪→ H ↪→ D×[t×],
where D× is the vector space of all continuous conjugate linear functionals on D[t], i.e.,
the conjugate dual of D[t], endowed with the strong dual topology t× = β(D×, D), and
↪→ denotes a continuous embedding with dense range. The Hilbert space H is identified (by
considering the form which puts D and D× into conjugate duality as an extension of the inner
product of D) with a dense subspace of D×[t×].

Let L(D, D×)denote the vector space of all continuous linear maps from D[t] into D×[t×].
In L(D, D×), an involution X �→ X† can be introduced by the equality

〈Xξ |η 〉 = 〈
X†η |ξ 〉

, ∀ξ, η ∈ D.

Hence, L(D, D×) is a *-invariant vector space.
To every X ∈ L(D, D×), there corresponds a separately continuous sesquilinear form θX

on D × D defined by

θX (ξ, η) = 〈Xξ |η 〉 , ξ, η ∈ D.

The vector space of all jointly continuous sesquilinear forms on D × D will be denoted
with B(D, D). We denote by LB(D, D×) the subspace of all X ∈ L(D, D×) such that θX ∈
B(D, D) and by L†(D) the *-algebra consisting of all operators of L†(D), which together
with their adjoints are continuous from D[t] into D[t]. If t = t†, then L†(D) = L†(D). We
will refer to the rigged Hilbert space defined by endowing D with the topology t† as to the
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canonical rigged Hilbert space defined by L†(D) on D. In this case (LB(D, D×), L†(D)) is
a quasi *-algebra [3].

The spaces L(D, D×) and LB(D, D×) have been studied at length by several authors
(see, e.g., [11–13,21]) and several pathologies concerning their multiplicative structure have
been considered (see also [3,4] and references therein). Recently some spectral properties of
operators of these classes have also been studied [7].

3 Bounded elements of LB(D, D×)

The inductive structure of LB(D, D×), with D endowed with the graph topology t†, has been
discussed in [8, Section 5]. To keep the paper reasonably self-contained, we sum the main
features up.

By the definition itself, X ∈ LB(D, D×) if, and only if, there exists γX > 0 and A ∈ L†(D)

such that
|θX (ξ, η)| = | 〈Xξ |η 〉 | ≤ γX‖ξ‖A ‖η‖A, ∀ξ, η ∈ D. (1)

Conversely, if θ ∈ B(D, D), there exists a unique X ∈ LB(D, D×) such that θ = θX .
Thus, the map

I : X ∈ LB(D, D×) �→ θX ∈ B(D, D)

is an isomorphism of vector spaces and I(θ∗) = X†, where θ∗(ξ, η) = θ(η, ξ), for every
ξ, η ∈ D.

We denote by BA(D, D) the subspace of B(D, D) consisting of all θ ∈ B(D, D) such that
(1) holds for fixed A ∈ L†(D).

If θ ∈ BA(D, D), it extends to a bounded sesquilinear form on HA × HA (we use the
same symbol for this extension). Hence, there exists a unique operator X θ

A ∈ B(HA) such
that

θ(ξ, η) = 〈
X θ

Aξ |η 〉
A , ∀ξ, η ∈ HA.

On the other hand, if X A ∈ B(HA), then the sesquilinear form θX A defined by

θX A (ξ, η) = 〈X Aξ |η 〉A , ξ, η ∈ D,

is an element of BA(D, D) and the map

�A : X A ∈ B(HA) → θX A ∈ BA(D, D)

is a *-isomorphism of vector spaces with involution.
If B � A, then, for ξ, η ∈ D,

|θX A (ξ, η)| = | 〈X Aξ |η 〉A | ≤ ‖X A‖A,A‖ξ‖A ‖η‖A ≤ ‖X A‖A,A‖ξ‖B ‖η‖B ,

where ‖ · ‖A,A denotes the operator norm in B(HA). Hence, there exists a unique X B ∈
B(HB) such that

〈X Aξ |η 〉A = 〈X Bξ |η 〉B , ∀ξ, η ∈ D.

So it is natural to define

JB A(X A) = X B , ∀X A ∈ B(HA).

It is easily seen that JB A = �−1
B �A.
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The space LA
B(D, D×) := I

−1BA(D, D) is a Banach space, with norm

‖X‖A := sup
‖ξ‖A,‖η‖A≤1

|θX (ξ, η)|

and LB(D, D×) can be endowed with the inductive topology τind defined by the family of
subspaces {LA

B(D, D×); A ∈ L†(D)} as in [16, Section 1.2.III].
In conclusion,

X A ∈ B(HA) ↔ θX A ∈ BA(D, D) ↔ X ∈ LA
B(D, D×)

are isometric *-isomorphisms of Banach spaces.
Hence, to every X ∈ LB(D, D×) one can associate the net {X B; B ∈ L†(D); B � A} of

its representatives in each of the spaces HB .

Definition 3.1 We say that X ∈ LB(D, D×) is a bounded element of LB(D, D×) if X has a
representative X A in every B(HA) and

‖X‖b := sup
A∈L†(D)

‖X A‖A,A < +∞.

The space LB(D, D×)b of all bounded elements of LB(D, D×) is a Banach space with
norm ‖ · ‖b.

Proposition 3.2 LB(D, D×)b is *-isomorphic (as Banach space) to a C*-algebra of opera-
tors.

Proof Let H⊕ denote the Hilbert space direct sum of the HA, A ∈ L†(D); i.e.,

H⊕ :=
⊕

A∈L†(D)

HA

=
{

ξ⊕ = (ξA); ξA ∈ HA,∀A ∈ L†(D) and
∑

A

‖ξA‖2
A < +∞

}

.

If {X A}A∈L†(D) is a net of operators X A ∈ B(HA), A ∈ L†(D), we define X⊕ξ⊕ = {X AξA}
provided that

∑
A ‖X AξA‖2 < +∞, ξA ∈ HA.

The operator X⊕ = {X A} is bounded if and only if supA ‖X A‖A,A < +∞. The space
constructed in this way is

∏
A B(HA) = B(H⊕). To every X ∈ LB(D, D×)b, we can

associate the net {X A} which we have defined above. Clearly, {X A} ∈ B(H⊕). It is easily
seen that the map

τ : X ∈ LB(D, D×)b �→ {X A} ∈ B(H⊕)

is isometric. Thus, the statement is proved. ��

Remark 3.3 An element X ∈ LB(D, D×) having a representative X A for every A ∈ L†(D)

need not be bounded in the sense of Definition 3.1. The spaces {HA; A ∈ L†(D)}, together
with their conjugate duals, make D× into an indexed PIP-space [4, Chap. 2]. In that language,
operators having representatives in every HA are called totally regular operators. For more
details on their behavior see [4, Section 3.3.3] where also a C*-agebra corresponding to our
bounded elements has been studied.
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Our next goal is to characterize bounded elements of LB(D, D×) in several different ways.
For doing this, we need to consider the natural order structure of LB(D, D×).

We say that X ∈ LB(D, D×) is positive, and write X ≥ 0, if 〈Xξ |ξ 〉 ≥ 0, for every
ξ ∈ D.

It is easy to see that if X is positive, then it is symmetric; i.e., X = X†.

Proposition 3.4 The following conditions are equivalent.

(i) X ≥ 0.
(ii) There exists A ∈ L†(D) such that X B ≥ 0, ∀B � A.

Proof (i)⇒(ii): Since X ∈ LB(D, D×), there exists A ∈ L†(D) and γ > 0 such that

| 〈Xξ |η 〉 | ≤ γ ‖ξ‖B‖η‖B , B � A.

If X ≥ 0, then, for every ξ ∈ D,

〈X Bξ |ξ 〉B = 〈Xξ |ξ 〉 ≥ 0, ∀B � A.

Since D is dense in HB , we have 〈X Bξ |ξ 〉B ≥ 0, ∀ξ ∈ HB .
(ii)⇒(i): Let X B ≥ 0 for every B � A. Then, for every ξ ∈ D, 〈Xξ |ξ 〉 = 〈X Bξ |ξ 〉B ≥ 0.

��
Theorem 3.5 Let X ∈ LB(D, D×). The following statements are equivalent.

(i) X : D → H and X ∈ B(H).
(ii) X ∈ LB(D, D×)b.

(iii) There exists λ > 0 such that

−λI ≤ �(X) ≤ λI, −λI ≤ �(X) ≤ λI

where �(X) = X+X†

2 and �(X) = X−X†

2i .

Proof (i)⇒(ii): If X : D → H and X is bounded, then, for every A ∈ L†(D),

| 〈Xξ |η 〉 | ≤ ‖X‖‖ξ‖‖η‖ ≤ ‖X‖‖ξ‖A‖η‖A. (2)

This means that X has a bounded representative X A in every B(HA). By (2),‖X A‖A,A ≤ ‖X‖,
for every A ∈ L†(D), so supA∈L†(D) ‖X A‖A,A < +∞.

(ii)⇒(i) Let X ∈ LB(D, D×)b. Then, for every A ∈ L†(D)

| 〈Xξ |η 〉 | ≤ ‖X A‖A,A ‖ξ‖A ‖η‖A, ∀ξ, η ∈ D.

In particular, for A = 0,

| 〈Xξ |η 〉 | ≤ ‖X0‖‖ξ‖‖η‖, ∀ξ, η ∈ D. (3)

By (3), for every ξ ∈ D, F(η) = 〈Xξ |η 〉 is a bounded conjugate linear functional on D,
so by Riesz’s lemma Xξ ∈ H. It is finally easily seen that X ∈ B(H).

(iii)⇒(i) Suppose first that X = X†. Note that the operator X satisfies the following:
0 ≤ X+λI

2λ
≤ I ; so X+λI

2λ
is a positive operator and

〈 X+λI
2λ

ξ |ξ 〉 ≤ 〈ξ |ξ 〉 , ∀ξ ∈ D; this
implies that ∣

∣
∣
∣

〈
X + λI

2λ
ξ |η

〉∣∣
∣
∣ ≤ ‖ξ‖ ‖η‖, ∀ξ, η ∈ D (4)

123



Bounded elements of C*-inductive spaces

and by Riesz’s lemma there exists ζ ∈ H such that
〈

X + λI

2λ
ξ |η

〉
= 〈ζ |η 〉 , ∀ξ, η ∈ D (5)

and then X+λI
2λ

ξ ∈ H. This implies that Xξ ∈ H too. Moreover, X has a representative for
every A ∈ L†(D). Indeed,

| 〈Xξ |η 〉 | ≤ γ ‖ξ‖‖η‖ ≤ γ ‖ξ‖A‖η‖A ∀A ∈ L†(D),

where γ > 0. From (4), it follows that X is bounded and X ∈ B(H). In the very same way,
one can prove the boundedness of X if X† = −X . The result for a general X follows easily.

(i)⇒ (iii): This is a standard result of the C*-algebras theory. ��

4 Bounded elements of C*-inductive locally convex spaces

The results obtained in Sect. 3 have an abstract generalization to locally convex spaces that are
inductive limits of C*-algebras in a generalized sense. These spaces were called C*-inductive
locally convex spaces in [8]. We begin with recalling the basic definitions.

Let A be a vector space over C. Let F be a set of indices directed upward and consider,
for every α ∈ F, a space Aα ⊂ A such that:

(I.1) Aα ⊆ Aβ , if α ≤ β;
(I.2) A = ⋃

α∈F
Aα;

(I.3) ∀α ∈ F, there exists a C*-algebra Bα (with unit eα and norm ‖·‖α) and an isomorphism
of vector spaces φα : Bα → Aα which makes of Aα a Banach space under the norm
‖x‖α := ‖xα‖α , if x ∈ Aα, x = φα(xα);

(I.4) xα ∈ B+
α ⇒ xβ = (φ−1

β φα)(xα) ∈ B+
β , for every α, β ∈ F with β ≥ α.

We put jβα = φ−1
β φα , if α, β ∈ F, β ≥ α.

If x ∈ A, there exists α ∈ F such that x ∈ Aα and, for every β ≥ α, a unique xβ ∈ Bβ

such that x = φβ(xβ).
Then, we put

jβα(xα) := xβ if α ≤ β.

By (I.4), it follows easily that jβα preserves the involution; i.e., jβα(x∗
α) = ( jβα(xα))∗.

Remark 4.1 From the previous discussion, it follows that to every x ∈ A there corre-
sponds a family of representatives {xβ; xβ ∈ Bβ, β ≥ α}. We write, for short, x = (xβ).
If x = (xβ), y = (yβ) and xβ = yβ , for every β larger than a certain γ ∈ F, then x = y.
With this identification, the mentioned correspondence is one-to-one.

The family {Bα, jβα, β ≥ α} is a directed system of C*-algebras, in the sense that:

(J.1) for every α, β ∈ F, with β ≥ α, jβα : Bα → Bβ is a linear and injective map; jαα is
the identity of Bα ,

(J.2) for every α, β ∈ F, with α ≤ β, φα = φβ jβα,

(J.3) jγβ jβα = jγα, α ≤ β ≤ γ .

We assume that, in addition, the jβαs are Schwarz maps (see, e.g., [14]); i.e.,
(sch) jβα(xα)∗ jβα(xα) ≤ jβα(x∗

αxα), ∀xα ∈ Bα, α ≤ β.
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For every α, β ∈ F, with α ≤ β, jβα is continuous [14] and, moreover,

‖ jβα(xα)‖β ≤ ‖xα‖α, ∀xα ∈ Bα.

An involution in A is defined as follows. Let x ∈ A. Then x ∈ Aα , for some α ∈ F, i.e.,
x = φα(xα), for a unique xα ∈ Bα . Put x∗ := φα(x∗

α). Then if β ≥ α, we have

φ−1
β (x∗) = φ−1

β (φα(x∗
α)) = jβα(x∗

α) = ( jβα(xα))∗ = x∗
β .

It is easily seen that the map x �→ x∗ is an involution in A. Moreover, by the definition
itself, it follows that every map φα preserves the involution; i.e., φα(x∗

α) = (φα(xα))∗, for all
xα ∈ Bα, α ∈ F.

Definition 4.2 Let A be a vector space with involution ∗ and F a directed (upward) set.

• A defining system for A consists of a family {{Bα, φα}, α ∈ F}, where, for every α ∈ F, Bα

is a C*-algebra and φα is a linear injective map of Bα into A, satisfying the above
conditions (I.1)–(I.4) and (sch), with Aα = φα(Bα), α ∈ F.

• If A is endowed with the locally convex inductive topology τind generated by the family
{{Bα, φα}, α ∈ F}, then we say that A is a C*-inductive locally convex space.

We notice that the involution is automatically continuous in A[τind].
A C*-inductive locally convex space has a natural positive cone.
An element x ∈ A is called positive if there exists γ ∈ F such that φ−1

α (x) ∈ B+
α ,∀α ≥ γ .

We denote by A+ the set of all positive elements of A.
Then,

(i) Every positive element x ∈ A is hermitian; i.e., x ∈ Ah := {y ∈ A : y∗ = y} .
(ii) A+ is a non empty convex pointed cone; i.e., A+ ∩ (−A+) = {0}.

(iii) If α ∈ F and xα ∈ B+
α , φα(xα) is positive.

Moreover, every hermitian element x = x∗ is the difference of two positive elements, i.e.,
there exist x+, x− ∈ A+ such that x = x+ − x−.

A linear functional ω is said to be positive if ω(x) ≥ 0 for every x = (xα) ∈ A+. As
shown in [8, Prop. 3.9, 3.10], ω is positive if, and only if, ωα(xα) := ω(φα(xα)) ≥ 0 for
every α ∈ F. We write, in this case, ω = lim−→ωα .

4.1 Bounded elements

Definition 4.3 Let A be a C*-inductive locally convex space. An element x = (xα) ∈ A,
with xα ∈ Bα , is called bounded if x ∈ Aα , for every α ∈ F and supα∈F

‖xα‖α < ∞. The
set of bounded elements of A is denoted by Ab.

Proposition 4.4 The set Ab is a Banach space under the norm ‖x‖b := supα∈F
‖xα‖α .

Proof We only prove the completeness. Let {xn} be a Cauchy sequence in Ab. Then, for
every α ∈ F the sequence {xα

n }, with xα
n := (xn)α , is Cauchy in Bα , so it converges to some

xα ∈ Bα . Since the jβα’s are continuous, one easily proves that the family {xα} defines an
element x = (xα) of A. From the Cauchy condition, for every ε > 0, there exists nε ∈ N

such that
sup
α∈F

‖xα
n − xα

m‖α < ε (6)

If m > nε ,

‖xα‖α ≤ ‖xα − xα
m‖α + ‖xα

m‖α ≤ ε + ‖xα
m‖α.
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Bounded elements of C*-inductive spaces

Hence,

sup
α∈F

‖xα‖α ≤ ε + sup
α∈F

‖xα
m‖α < ∞.

Thus x ∈ Ab.
Fix now n > nε and let m → ∞ in (6). Then,

sup
α∈F

‖xα
n − xα‖α ≤ ε.

This proves that xn → x . ��
In what follows, we will consider *-representations of a C*-inductive locally convex space.

We recall the basic definitions.
Let F be a set directed upward by ≤. A family {Hα, Uβα, α, β ∈ F, β ≥ α}, where each

Hα is a Hilbert space (with inner product 〈· |· 〉(α) and norm ‖ · ‖(α)) and, for every α, β ∈ F,
with β ≥ α, Uβα is a linear map from Hα into Hβ , is called a directed contractive system of
Hilbert spaces if the following conditions are satisfied

(i) Uβα is injective;
(ii) ‖Uβαξα‖(β) ≤ ‖ξα‖(α), ∀ξα ∈ Hα;

(iii) Uαα = Iα , the identity of Hα;
(iv) Uγα = UγβUβα, α ≤ β ≤ γ .

A directed contractive system of Hilbert spaces defines a conjugate dual pair (D×, D)

which is called the joint topological limit [9] of the directed contractive system {Hα, Uβα, α,

β ∈ F, β ≥ α} of Hilbert spaces.

Definition 4.5 Let A be the C*-inductive locally convex space defined by the system
{{Bα,�α}, α ∈ F} as in Definition 4.2.

For each α ∈ F, let πα be a *-representation of Bα in Hilbert space Hα . The collection
π := {πα} is said to be a *-representation of A if

(i) for every α, β ∈ F, there exists a linear map Uβα : Hα → Hβ such that the family
{Hα, Uβα, α, β ∈ F, β ≥ α} is a directed contractive system of Hilbert spaces;

(ii) the following equality holds

πβ( jβα(xα)) = Uβαπα(xα)U∗
βα, ∀xα ∈ Bα, β ≥ α. (7)

In this case, we write π(x) = lim−→πα(xα) for every x = (xα) ∈ A or, for short, π = lim−→πα .

The *-representation π is said to be faithful if x ∈ A+ and π(x) = 0 imply x = 0 (of
course, π(x) = 0 means that there exists γ ∈ F such that πα(xα) = 0, for α ≥ γ ).

Remark 4.6 With this definition (which is formally different from that given in [8] but fully
equivalent), π(x), x ∈ A, is not an operator but rather a collection of operators. But as shown
in [8], π(x) can be regarded as an operator acting on the joint topological limit (D×, D)

of {Hα, Uβα, α, β ∈ F, β ≥ α}. The corresponding space of operators was denoted by
LB(D, D×); it behaves in the very same way as the space LB(D, D×) studied in Sect. 3
and reduces to it when the family of Hilbert spaces is exactly {HA; A ∈ L†(D)}. The main
difference consists in the fact that the Hα’s need not be all subspaces of a certain Hilbert
space H.

Lemma 4.7 Let π = lim−→πα be a faithful *-representation of A. Then, for every α ∈ F, πα

is a faithful *-representation of Bα .
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Proof Let xα ∈ B+
α with πα(xα) = 0. Let x ∈ A be the unique element of A such that

x = φα(xα). Then πβ(xβ) = πβ( jβα(xα)) = Uβαπα(xα)U∗
βα = 0. Hence π(x) = 0, and

therefore, x = 0. Thus there exists γ ∈ F such that xγ = 0, for γ ≥ γ . Let β ≥ α, γ . Then
0 = xβ = jβα(xα). Hence, by the injectivity of jβα, xα = 0. ��

As shown in [8, Proposition 3.16], if a C*-inductive locally convex space A fulfills the
following conditions

(r1) if xα ∈ Bα and jβα(xα) ≥ 0 for some β ≥ α, then xα ≥ 0;
(r2) eβ ∈ jβα(Bα), ∀α, β ∈ F, β ≥ α;
(r3) every positive linear functional ω = lim−→ωα on A satisfies the following property

• if α ∈ F and ωβ( jβα(x∗
α) jβα(xα)) = 0, for some β > α and xα ∈ Bα , then ωα(x∗

αxα) =
0;

then, A admits a faithful representation. The conditions (r1), (r2), in fact, guarantee that
A possesses sufficiently many positive linear functionals, in the sense that for every x ∈
A+, x �= 0 there exists a positive linear functional ω on A such that ω(x) > 0 [8, Theorem
3.14].

Theorem 4.8 Let A be a C∗-inductive locally convex space and x = (xα) ∈ A. The following
statements hold.

(i) If x ∈ Ab, then, for every *-representation π = lim−→πα of A, one has

sup
α∈F

‖πα(xα)‖αα < ∞,

where ‖ · ‖αα denotes the norm of B(Hα).
(ii) Conversely, if A admits a faithful *-representation π f = lim−→π

f
α and

sup
α∈F

‖π f
α (xα)‖αα < ∞,

then x ∈ Ab.

Proof (i): For every α ∈ F, πα is a *-representation of the C*-algebra Bα . Hence

‖πα(xα)‖αα ≤ ‖xα‖α.

Thus if x ∈ Ab the statement follows immediately from the definition.
(ii): Let π f (x) = lim−→π

f
α (xα). Then, by Lemma 4.7, for every α ∈ F, π

f
α is a faithful repre-

sentation of Bα . The *-representation π
f

α is an isometric isomorphism of C∗-algebras,
for all α ∈ F; hence

sup
α∈F

‖xα‖α = sup
α∈F

‖π f
α (xα)‖αα < ∞.

This proves that x is a bounded element of A.
��
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4.2 Order bounded elements

Let A be a C*-inductive locally convex space. If x ∈ A, we put

�(x) = x + x∗

2
and �(x) = x − x∗

2i
.

Both �(x) and �(x) are symmetric elements of A.
Assume that A has an element u = u∗ such that ‖uα‖α ≤ 1, for every α ∈ F, and there

exists γ ∈ F such that uβ = jβγ (eγ )∀β ≥ γ , (eγ is the unit of Bγ ). For shortness, we call
the element u a pre-unit of A.

Remark 4.9 The pre-unit u ∈ A, if any, is unique. Indeed, let suppose there is another v ∈ A

satisfying the same properties as u. Then,

∃γ, γ ′ ∈ F; uβ = jβγ (eγ ), vβ ′ = jβ ′γ ′(eγ ′), ∀β ≥ γ, β ′ ≥ γ ′

so, if δ ≥ γ, γ ′, one has uλ = vλ,∀λ ≥ δ. The statement then follows from Remark 4.1.

Definition 4.10 Let A be a C*-inductive locally convex space with pre-unit u. We say that
x ∈ A is order bounded (with respect to u) if there exists λ > 0 such that

−λu ≤ �(x) ≤ λu − λu ≤ �(x) ≤ λu.

Theorem 4.11 Let A be a C*-inductive locally convex space satisfying condition (r1).
Assume that A has a pre-unit u.

Then, x ∈ Ab if, and only if, x has a representative for every α ∈ F (i.e., for every α ∈ F,
there exists xα ∈ Bα such that x = φα(xα)) and x is order bounded with respect u.

Proof Let us assume that x = x∗ ∈ Ab. Then, x has a representative xα , with x∗
α = xα , in

every Bα and λ := supα∈F
‖xα‖α < ∞. Hence, we have

−λeα ≤ xα ≤ λeα, ∀α ∈ F,

where eα denotes the unit of Bα . By the definition of u, there exists γ ∈ F such that
uβ = jβγ (eγ ) for β ≥ γ . Hence, taking into account that the maps jβα preserve the order,
we have

−λuβ ≤ xβ ≤ λuβ, ∀β ≥ γ.

This implies that −λu ≤ x ≤ λu.
Now, let us suppose that for some λ > 0,−λu ≤ x ≤ λu. Then, there exists γ ∈ F such

that
− λuβ ≤ xβ ≤ λuβ, ∀β ≥ γ. (8)

Let now α ∈ F. Then, there is δ ≥ α, γ such that (8) holds. Hence, using (r1), we conclude
that

−λuα ≤ xα ≤ λuα, ∀α ∈ F.

This implies that ‖xα‖α ≤ λ, for every α ∈ F. Thus, x ∈ Ab. ��
From the proof of the previous theorem, it follows easily that

Proposition 4.12 Assume that the assumptions of Theorem 4.11 hold and let x = x∗ ∈ Ab.
Put

p(x) = inf{λ > 0; −λu ≤ x ≤ λu}.
Then, p(x) = ‖x‖b.
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5 C*-inductive partial *-algebras

As shown in [8], a partial multiplication in A can be defined by a family w = {wα}, wα ∈ Bα .
Let w = {wα} be a family of elements, such that each wα ∈ B+

α and jβα(wα) = wβ , for all
α, β ∈ F with β ≥ α.

Let x, y ∈ A. The partial multiplication x · y is defined by the conditions:

∃γ ∈ F : φβ(φ−1
β (x)wβφ−1

β (y)) = φβ ′(φ−1
β ′ (x)wβ ′φ−1

β ′ (y)), ∀β, β ′ ≥ γ

x · y = φβ(φ−1
β (x)wβφ−1

β (y)), β ≥ γ.

Then, A is an associative partial *-algebra with respect to the usual operations and the
above-defined multiplication (see [3, Section 2.1.1] for the definitions) and we will call it a
C*-inductive partial *-algebra.

The partial *-algebra A has a unit e (that is, an element e which is a left- and right universal
multiplier such that x · e = e · x = x , for every x ∈ A) if, and only if, every element wα of
the family {wα} defining the multiplication is invertible and

jβα(w−1
α ) = w−1

β , ∀α, β ∈ F, β ≥ α. (9)

In this case, e = φα(w−1
α ), independently of α ∈ F.

The element e is called a bounded unit if it is a bounded element of A and ‖e‖b = 1.

Proposition 5.1 Let A be a C*-inductive partial *-algebra with the multiplication defined
by a family {wα}. Assume that e = (w−1

α ) is a bounded unit of A. Then Ab is a Banach partial
*-algebra; that is, Ab[‖ · ‖b] is a Banach space with isometric involution ∗ and there exists
C ≥ 1 such that the following inequality holds

‖x · y‖b ≤ C‖x‖b‖y‖b, ∀x, y ∈ Ab with x · y well-defined. (10)

Remark 5.2 The constant C in (10) can be taken equal to 1 if w−1
α = eα , for each α ∈ F,

where eα is the unit of the C*-algebra Bα . Under the same assumption, the norm of Ab

satisfies the C*-property, which in our case reads

‖x∗ · x‖b = ‖x‖2
b, ∀x ∈ Ab with x∗ · x well-defined.

This is no longer true in the general case.

Remark 5.3 In Example 5.3 of [8], two of us tried to construct a family {WA ∈ B(HA); A ∈
L†(D)} so that the partial multiplication defined in LB(D, D×) by the method mentioned
above would reproduce the quasi *-algebra structure of (LB(D, D×), L†(D)) (see Sect. 2).
Unfortunately, the conclusion of that discussion is uncorrect (see [8, Erratum/Addendum]
for more details).

Let A be a C*-inductive partial *-algebra with the multiplication defined by a family {wα}
as above. The spaces RA and LA of the right-, respectively, left universal multipliers (with
respect to w) of A are algebras. Hence, A0 := LA ∩ RA is a *-algebra and, thus,

(i) (A, A0) is a quasi *-algebra.
(ii) If A is endowed with τind, then the maps x �→ x∗, x �→ a · x, x �→ x · b, a, b ∈ A0 are

continuous.

It is easily seen from the very definition that if a ∈ RA and x ∈ A+, then a∗xa ∈ A+.
Hence, if P(A) denotes the family of all positive linear functionals on A, we have in particular
ω(a∗xa) ≥ 0, for every ω ∈ P(A).
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Theorem 5.4 Let A be a C*-inductive partial *-algebra with the multiplication defined by a
family {wα} and with pre-unit u. Assume, moreover, that the following condition (P) holds:

(P) y ∈ A, ω(a∗ya) ≥ 0,∀ω ∈ P(A) and a ∈ RA ⇒ y ∈ A+ ;
then, for x ∈ A, the following conditions are equivalent.

(i) x is order bounded with respect to u.
(ii) There exists γx > 0 such that

|ω(a∗xa)| ≤ γxω(a∗ua), ∀ω ∈ P(A), ∀a ∈ RA.

(iii) There exists γx > 0 such that

|ω(b∗xa)|2 ≤ γxω(a∗ua)ω(b∗ub), ∀ω ∈ P(A), ∀a, b ∈ RA.

Proof It is sufficient to consider the case x = x∗;
(i)⇒(ii): Let ω ∈ P(A). By the hypothesis, −γ u ≤ x ≤ γ u, for some γ > 0; then

ω(γ u − x) ≥ 0 and ω(a∗(γ u − x)a) ≥ 0,∀a ∈ RA. On the other hand, similarly, one can
show that ω(a∗(x − γ u)a) ≥ 0.

(ii)⇒(i): Assume now that u is a pre-unit and there exists γx > 0 such that

|ω(a∗xa)| ≤ γxω(a∗ua), ∀ω ∈ P(A), a ∈ RA.

Then

γxω(a∗ua) ± ω(a∗xa) ≥ 0 ⇒ ω(a∗(γx u ± x)a) ≥ 0, ∀ω ∈ P(A), a ∈ RA.

So, by (P), γx u ± x ≥ 0.

(i)⇒(iii): By the assumption, there exists γ > 0 such that −γ u ≤ x ≤ γ u. Let ω ∈ P(A).
Then, the linear functional ωa on A, defined by ωa(x) := ω(a∗xa), is positive. Hence, if
x = x∗

−γωa(u) ≤ ωa(x) ≤ γωa(u);
i.e.,

|ω(a∗xa)| ≤ γω(a∗ua).

Now, let x ∈ A+, a, b ∈ RA. Let us define �x
ω(a, b) := ω(b∗xa). Then, it is easily

checked that �x
ω is a positive sesquilinear form on RA × RA. Using the Cauchy–Schwartz

inequality, we obtain

|ω(b∗xa)| ≤ ω(a∗xa)1/2ω(b∗xb)1/2

≤ γω(a∗ua)1/2ω(b∗ub)1/2.

The extension to arbitrary x ∈ A goes through as in the proof of Proposition 4.3 of [8].
(iii)⇒(ii) It is trivial. ��
The previous proof shows that if x = x∗ ∈ A is order bounded with respect to u then

p(x) ≤ sup{|ω(b∗xa)|;ω ∈ P(A); a, b ∈ RA;ω(a∗ua) = ω(b∗ub) = 1}.
where p(x) is the quantity defined in Proposition 4.12.

The following statement is an easy consequence of Proposition 4.12 and Theorem 5.4.

Theorem 5.5 Let A be a C*-inductive partial *-algebra with the multiplication defined by a
family {wα} and pre-unit u. Assume that conditions (r1) and (P) are satisfied. For an element
x ∈ A, having a representative in every Bα, α ∈ F, the following statements are equivalent.
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(i) x ∈ Ab.
(ii) x is order bounded with respect to u.

(iii) For every ω ∈ P(A)

|ω(b∗xa)|2 ≤ γxω(a∗ua)ω(b∗ub), ∀a, b ∈ RA.
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