Bounded elements of C*-inductive locally convex spaces

Giorgia Bellomonte · Salvatore Di Bella · Camillo Trapani

Received: 23 July 2013 / Accepted: 7 November 2014 © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2014

Abstract The notion of bounded element of C*-inductive locally convex spaces (or C*-inductive partial *-algebras) is introduced and discussed in two ways: The first one takes into account the inductive structure provided by certain families of C*-algebras; the second one is linked to the natural order of these spaces. A particular attention is devoted to the relevant instance provided by the space of continuous linear maps acting in a rigged Hilbert space.

Keywords Bounded elements · Inductive limit of C*-algebras · Partial *-algebras

Mathematics Subject Classification 47L60 · 47L40

1 Introduction

Some locally convex spaces exhibit an interesting feature: They contain a large number of C*-algebras that often contribute to their topological structure, in the sense that these spaces can be thought as *generalized* inductive limits of C*-algebras. These objects were called C*-inductive locally convex spaces in [8] and their structure was examined in detail, also taking in mind that they arise naturally when one considers the operators acting in the *joint topological limit* of an inductive family of Hilbert spaces as described in [9]. Indeed, a typical instance of this structure is obtained by considering the space $\mathcal{L}_{\mathsf{B}}(\mathcal{D}, \mathcal{D}^{\times})$ of operators acting in the rigged Hilbert space canonically associated with an O*-algebra of unbounded operators acting on a dense domain \mathcal{D} of Hilbert space \mathcal{H} . In [8], a series of features of this structure was studied giving a particular attention to the order structure, positive linear functionals

G. Bellomonte · S. Di Bella · C. Trapani (🖂)

Dipartimento di Matematica e Informatica, Università di Palermo, 90123 Palermo, Italy

e-mail: camillo.trapani@unipa.it

G. Bellomonte

e-mail: bellomonte@math.unipa.it

Published online: 26 November 2014

S. Di Bella

e-mail: svt.dibella@gmail.com

and representation theory. The space $\mathcal{L}_B(\mathcal{D}, \mathcal{D}^\times)$ contains a subspace isomorphic to the *-algebra $\mathfrak{B}(\mathcal{H})$ of bounded operators in \mathcal{H} whose elements can be in natural way considered as the *bounded elements* of $\mathcal{L}_B(\mathcal{D}, \mathcal{D}^\times)$. The notion of bounded element of a locally convex *-algebra \mathfrak{A} was first introduced by Allan [1] with the aim of developing a spectral theory for topological *-algebras: An element x of the topological *-algebra $\mathfrak{A}[\tau]$ is *Allan bounded* if there exists $\lambda \neq 0$ such that the set $\{(\lambda^{-1}x)^n; n=1,2,\ldots\}$ is a bounded subset of $\mathfrak{A}[\tau]$. This definition was suggested by the successful spectral analysis for closed operators in Hilbert space \mathcal{H} : A complex number λ is in the resolvent set $\rho(T)$ of a closed operator T if $T - \lambda I$ has an inverse in the *-algebra $\mathfrak{B}(\mathcal{H})$ of bounded operators.

There are, however, several other possibilities for defining bounded elements. For instance, one may say that x is bounded if $\pi(x)$ is a bounded operator, for every (continuous, in a certain sense) *-representation π defined on a dense domain \mathcal{D}_{π} of some Hilbert space \mathcal{H}_{π} . This could be a reasonable definition in itself, provided that $\mathfrak A$ possesses sufficiently many *-representations in Hilbert space.

Moreover some attempts to extend this notion to the larger setup of locally convex quasi *-algebras [10,17–20] or locally convex partial *-algebras [2,5,6] have been done. But in these cases, Allan's notion cannot be adopted, since powers of a given element x need not be defined.

In the case of *-algebras, bounded elements in purely algebraic terms have been considered by Vidav [22] and Schmüdgen [15] with respect to some (positive) wedge.

The aim of this paper is to extend the notion of bounded element to the case of C*-inductive locally convex spaces $\mathfrak A$ with defining family of C*-algebras $\{\mathfrak B_{\alpha}; \alpha \in \mathbb F\}$ ($\mathbb F$ is an index set directed upward). There are also in this case several possibilities: The first one consists in taking elements that have *representatives* in every C*-algebra $\mathfrak B_{\alpha}$ of the family whose norms are uniformly bounded; the second one consists into taking into account the order structure of $\mathfrak A$, in the same spirit of the quoted papers of Vidav and Schmüdgen.

The paper is organized as follows. After some preliminaries (Sect. 2), we study, in Sect. 3, how *bounded elements* of $\mathfrak{L}_{\mathsf{B}}(\mathcal{D},\mathcal{D}^{\times})$ can be derived from its C*-inductive structure and from its order structure. We show that these two notions are equivalent and that an element X is bounded if and only if X maps \mathcal{D} into \mathcal{H} and $\overline{X} \in \mathfrak{B}(\mathcal{H})$. Finally, in Sect. 4, we consider the same problem for abstract C*-inductive locally convex spaces and give conditions for some of the characterizations proved for $\mathfrak{L}_{\mathsf{B}}(\mathcal{D},\mathcal{D}^{\times})$ maintain their validity. Some of these results are then specialized to the case where \mathfrak{A} is a C*-inductive locally convex partial *-algebra.

2 Notations and preliminaries

For general aspects of the theory of partial *-algebras and of their representations, we refer to the monograph [3]. For the convenience of the reader, however, we repeat here the essential definitions.

A partial *-algebra $\mathfrak A$ is a complex vector space with conjugate linear involution * and a distributive partial multiplication \cdot , defined on a subset $\Gamma \subset \mathfrak A \times \mathfrak A$, satisfying the property that $(x,y) \in \Gamma$ if, and only if, $(y^*,x^*) \in \Gamma$ and $(x \cdot y)^* = y^* \cdot x^*$. From now on, we will write simply xy instead of $x \cdot y$ whenever $(x,y) \in \Gamma$. For every $y \in \mathfrak A$, the set of left (resp. right) multipliers of y is denoted by L(y) (resp. R(y)), i.e., $L(y) = \{x \in \mathfrak A : (x,y) \in \Gamma\}$, (resp. $R(y) = \{x \in \mathfrak A : (y,x) \in \Gamma\}$). We denote by $L\mathfrak A$ (resp. $R\mathfrak A$) the space of universal left (resp. right) multipliers of $\mathfrak A$. In general, a partial *-algebra is not associative.

The *unit* of partial *-algebra \mathfrak{A} , if any, is an element $e \in \mathfrak{A}$ such that $e = e^*$, $e \in R\mathfrak{A} \cap L\mathfrak{A}$ and xe = ex = x, for every $x \in \mathfrak{A}$.

Let \mathcal{H} be a complex Hilbert space and \mathcal{D} a dense subspace of \mathcal{H} . We denote by $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ the set of all (closable) linear operators X such that $D(X) = \mathcal{D}$, $D(X^*) \supseteq \mathcal{D}$. The map $X \to X^{\dagger} = X^*_{|\mathcal{D}}$ defines an involution on $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$, which can be made into a partial *-algebra with respect to the *weak* multiplication [3]; however, this fact will not be used in this paper.

Let $\mathcal{L}^{\dagger}(\mathcal{D})$ be the subspace of $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ consisting of all its elements which leave, together with their adjoints, the domain \mathcal{D} invariant. Then $\mathcal{L}^{\dagger}(\mathcal{D})$ is a *-algebra with respect to the usual operations. A *-subalgebra \mathfrak{M} of $\mathcal{L}^{\dagger}(\mathcal{D})$, containing the identity I of \mathcal{D} , is called an O*-algebra.

Let \mathfrak{M} be an O*-algebra. The *graph topology* $t_{\mathfrak{M}}$ on \mathcal{D} is the locally convex topology defined by the family $\{\|\cdot\|_A\}_{A\in\mathfrak{M}}$, where

$$\|\xi\|_A = \sqrt{\|\xi\|^2 + \|A\xi\|^2} = \|(I + A^*\overline{A})^{1/2}\xi\|, \quad \xi \in \mathcal{D}.$$

For A=0, the null operator of $\mathcal{L}^{\dagger}(\mathcal{D})$, $\|\cdot\|_0$ is exactly the norm of \mathcal{H} , thus we will omit the 0 in the notation of the norm.

The topology $t_{\mathfrak{M}}$ is finer than the norm topology, unless \mathfrak{M} does consist of bounded operators only.

If \mathfrak{M} is an O*-algebra, we write $A \leq B$ if $||A\xi|| \leq ||B\xi||$, for every $\xi \in \mathcal{D}$. Then, \mathfrak{M} is directed upward with respect to this order relation.

If $A \in \mathfrak{M}$, we denote by \mathcal{H}_A the Hilbert space obtained by endowing $D(\overline{A})$ with the graph norm $\|\cdot\|_A$.

If $A, B \in \mathfrak{M}$ and $A \leq B$, then $U_{BA} = (I + B^*\overline{B})^{-1/2}(I + A^*\overline{A})^{1/2}$ is a contractive map of \mathcal{H}_A into \mathcal{H}_B ; i.e., $\|U_{BA}\xi\|_B \leq \|\xi\|_A$, for every $\xi \in \mathcal{H}_A$.

If the locally convex space $\mathcal{D}[t_{\mathfrak{M}}]$ is complete, then \mathfrak{M} is said to be *closed*.

If $\mathfrak{M} = \mathcal{L}^{\dagger}(\mathcal{D})$ then the corresponding graph topology denoted by t_{\dagger} instead of $t_{\mathcal{L}^{\dagger}(\mathcal{D})}$.

As is known, a locally convex topology t on \mathcal{D} is finer than the topology induced by the Hilbert norm defines, in standard fashion, a *rigged Hilbert space* (RHS)

$$\mathcal{D}[t] \hookrightarrow \mathcal{H} \hookrightarrow \mathcal{D}^{\times}[t^{\times}],$$

where \mathcal{D}^{\times} is the vector space of all continuous conjugate linear functionals on $\mathcal{D}[t]$, i.e., the conjugate dual of $\mathcal{D}[t]$, endowed with the *strong dual topology* $t^{\times} = \beta(\mathcal{D}^{\times}, \mathcal{D})$, and \hookrightarrow denotes a continuous embedding with dense range. The Hilbert space \mathcal{H} is identified (by considering the form which puts \mathcal{D} and \mathcal{D}^{\times} into conjugate duality as an extension of the inner product of \mathcal{D}) with a dense subspace of $\mathcal{D}^{\times}[t^{\times}]$.

Let $\mathfrak{L}(\mathcal{D}, \mathcal{D}^{\times})$ denote the vector space of all continuous linear maps from $\mathcal{D}[t]$ into $\mathcal{D}^{\times}[t^{\times}]$. In $\mathfrak{L}(\mathcal{D}, \mathcal{D}^{\times})$, an involution $X \mapsto X^{\dagger}$ can be introduced by the equality

$$\langle X\xi \mid \eta \, \rangle = \overline{\left\langle X^{\dagger}\eta \mid \xi \, \right\rangle}, \quad \forall \xi, \, \eta \in \mathcal{D}.$$

Hence, $\mathfrak{L}(\mathcal{D}, \mathcal{D}^{\times})$ is a *-invariant vector space.

To every $X \in \mathfrak{L}(\mathcal{D}, \mathcal{D}^{\times})$, there corresponds a separately continuous sesquilinear form θ_X on $\mathcal{D} \times \mathcal{D}$ defined by

$$\theta_X(\xi, \eta) = \langle X\xi | \eta \rangle, \quad \xi, \eta \in \mathcal{D}.$$

The vector space of all *jointly* continuous sesquilinear forms on $\mathcal{D} \times \mathcal{D}$ will be denoted with $\mathsf{B}(\mathcal{D}, \mathcal{D})$. We denote by $\mathfrak{L}_{\mathsf{B}}(\mathcal{D}, \mathcal{D}^{\times})$ the subspace of all $X \in \mathfrak{L}(\mathcal{D}, \mathcal{D}^{\times})$ such that $\theta_X \in \mathsf{B}(\mathcal{D}, \mathcal{D})$ and by $\mathfrak{L}^{\dagger}(\mathcal{D})$ the *-algebra consisting of all operators of $\mathcal{L}^{\dagger}(\mathcal{D})$, which together with their adjoints are continuous from $\mathcal{D}[t]$ into $\mathcal{D}[t]$. If $t = t_{\dagger}$, then $\mathfrak{L}^{\dagger}(\mathcal{D}) = \mathcal{L}^{\dagger}(\mathcal{D})$. We will refer to the rigged Hilbert space defined by endowing \mathcal{D} with the topology t_{\dagger} as to the

canonical rigged Hilbert space defined by $\mathcal{L}^{\dagger}(\mathcal{D})$ on \mathcal{D} . In this case $(\mathfrak{L}_{\mathsf{B}}(\mathcal{D}, \mathcal{D}^{\times}), \mathcal{L}^{\dagger}(\mathcal{D}))$ is a quasi *-algebra [3].

The spaces $\mathfrak{L}(\mathcal{D}, \mathcal{D}^{\times})$ and $\mathfrak{L}_{B}(\mathcal{D}, \mathcal{D}^{\times})$ have been studied at length by several authors (see, e.g., [11–13,21]) and several pathologies concerning their multiplicative structure have been considered (see also [3,4] and references therein). Recently some spectral properties of operators of these classes have also been studied [7].

3 Bounded elements of $\mathfrak{L}_{\mathbf{R}}(\mathcal{D}, \mathcal{D}^{\times})$

The inductive structure of $\mathfrak{L}_{\mathsf{B}}(\mathcal{D}, \mathcal{D}^{\times})$, with \mathcal{D} endowed with the graph topology t_{\dagger} , has been discussed in [8, Section 5]. To keep the paper reasonably self-contained, we sum the main features up.

By the definition itself, $X \in \mathcal{L}_{\mathsf{B}}(\mathcal{D}, \mathcal{D}^{\times})$ if, and only if, there exists $\gamma_X > 0$ and $A \in \mathcal{L}^{\dagger}(\mathcal{D})$ such that

$$|\theta_X(\xi,\eta)| = |\langle X\xi | \eta \rangle| \le \gamma_X \|\xi\|_A \|\eta\|_A, \quad \forall \xi, \eta \in \mathcal{D}. \tag{1}$$

Conversely, if $\theta \in \mathsf{B}(\mathcal{D}, \mathcal{D})$, there exists a unique $X \in \mathfrak{L}_\mathsf{B}(\mathcal{D}, \mathcal{D}^\times)$ such that $\theta = \theta_X$. Thus, the map

$$\mathbb{I}: X \in \mathfrak{L}_{\mathsf{B}}(\mathcal{D}, \mathcal{D}^{\times}) \mapsto \theta_X \in \mathsf{B}(\mathcal{D}, \mathcal{D})$$

is an isomorphism of vector spaces and $\mathbb{I}(\theta^*) = X^{\dagger}$, where $\theta^*(\xi, \eta) = \overline{\theta(\eta, \xi)}$, for every $\xi, \eta \in \mathcal{D}$.

We denote by $\mathsf{B}^A(\mathcal{D},\mathcal{D})$ the subspace of $\mathsf{B}(\mathcal{D},\mathcal{D})$ consisting of all $\theta \in \mathsf{B}(\mathcal{D},\mathcal{D})$ such that (1) holds for fixed $A \in \mathcal{L}^{\dagger}(\mathcal{D})$.

If $\theta \in \mathsf{B}^A(\mathcal{D},\mathcal{D})$, it extends to a bounded sesquilinear form on $\mathcal{H}_A \times \mathcal{H}_A$ (we use the same symbol for this extension). Hence, there exists a unique operator $X_A^\theta \in \mathfrak{B}(\mathcal{H}_A)$ such that

$$\theta(\xi, \eta) = \langle X_A^{\theta} \xi | \eta \rangle_A, \quad \forall \xi, \eta \in \mathcal{H}_A.$$

On the other hand, if $X_A \in \mathfrak{B}(\mathcal{H}_A)$, then the sesquilinear form θ_{X_A} defined by

$$\theta_{X_A}(\xi, \eta) = \langle X_A \xi | \eta \rangle_A, \quad \xi, \eta \in \mathcal{D},$$

is an element of $B^A(\mathcal{D}, \mathcal{D})$ and the map

$$\Phi_A: X_A \in \mathfrak{B}(\mathcal{H}_A) \to \theta_{X_A} \in \mathsf{B}^A(\mathcal{D}, \mathcal{D})$$

is a *-isomorphism of vector spaces with involution.

If $B \succeq A$, then, for $\xi, \eta \in \mathcal{D}$,

$$|\theta_{X_A}(\xi,\eta)| = |\left\langle X_A\xi \mid \eta \right\rangle_A| \leq \|X_A\|_{A,A}\|\xi\|_A \|\eta\|_A \leq \|X_A\|_{A,A}\|\xi\|_B \|\eta\|_B,$$

where $\|\cdot\|_{A,A}$ denotes the operator norm in $\mathfrak{B}(\mathcal{H}_A)$. Hence, there exists a unique $X_B \in \mathfrak{B}(\mathcal{H}_B)$ such that

$$\langle X_A \xi | \eta \rangle_A = \langle X_B \xi | \eta \rangle_B, \quad \forall \xi, \eta \in \mathcal{D}.$$

So it is natural to define

$$J_{BA}(X_A) = X_B, \quad \forall X_A \in \mathfrak{B}(\mathcal{H}_A).$$

It is easily seen that $J_{BA} = \Phi_B^{-1} \Phi_A$.

The space $\mathfrak{L}^A_\mathsf{B}(\mathcal{D},\mathcal{D}^\times) := \mathbb{I}^{-1}\mathsf{B}^A(\mathcal{D},\mathcal{D})$ is a Banach space, with norm

$$||X||^A := \sup_{\|\xi\|_A, \|\eta\|_A \le 1} |\theta_X(\xi, \eta)|$$

and $\mathfrak{L}_{\mathsf{B}}(\mathcal{D}, \mathcal{D}^{\times})$ can be endowed with the inductive topology τ_{ind} defined by the family of subspaces $\{\mathfrak{L}_{\mathsf{B}}^{A}(\mathcal{D}, \mathcal{D}^{\times}); A \in \mathcal{L}^{\dagger}(\mathcal{D})\}$ as in [16, Section 1.2.III].

In conclusion.

$$X_A \in \mathfrak{B}(\mathcal{H}_A) \leftrightarrow \theta_{X_A} \in \mathsf{B}^A(\mathcal{D}, \mathcal{D}) \leftrightarrow X \in \mathfrak{L}_\mathsf{B}^A(\mathcal{D}, \mathcal{D}^\times)$$

are isometric *-isomorphisms of Banach spaces.

Hence, to every $X \in \mathcal{L}_{\mathsf{B}}(\mathcal{D}, \mathcal{D}^{\times})$ one can associate the net $\{X_B; B \in \mathcal{L}^{\dagger}(\mathcal{D}); B \succeq A\}$ of its representatives in each of the spaces \mathcal{H}_B .

Definition 3.1 We say that $X \in \mathfrak{L}_{\mathsf{B}}(\mathcal{D}, \mathcal{D}^{\times})$ is a *bounded element* of $\mathfrak{L}_{\mathsf{B}}(\mathcal{D}, \mathcal{D}^{\times})$ if X has a representative X_A in every $\mathfrak{B}(\mathcal{H}_A)$ and

$$||X||_b := \sup_{A \in \mathcal{L}^{\dagger}(\mathcal{D})} ||X_A||_{A,A} < +\infty.$$

The space $\mathfrak{L}_{\mathsf{B}}(\mathcal{D}, \mathcal{D}^{\times})_b$ of all bounded elements of $\mathfrak{L}_{\mathsf{B}}(\mathcal{D}, \mathcal{D}^{\times})$ is a Banach space with norm $\|\cdot\|_b$.

Proposition 3.2 $\mathfrak{L}_{\mathcal{B}}(\mathcal{D}, \mathcal{D}^{\times})_b$ is *-isomorphic (as Banach space) to a C*-algebra of operators.

Proof Let \mathcal{H}_{\oplus} denote the Hilbert space direct sum of the \mathcal{H}_A , $A \in \mathcal{L}^{\dagger}(\mathcal{D})$; i.e.,

$$\begin{split} \mathcal{H}_{\oplus} &:= \bigoplus_{A \in \mathcal{L}^{\dagger}(\mathcal{D})} \mathcal{H}_{A} \\ &= \left\{ \xi_{\oplus} = (\xi_{A}); \, \xi_{A} \in \mathcal{H}_{A}, \, \forall A \in \mathcal{L}^{\dagger}(\mathcal{D}) \text{ and } \sum_{A} \|\xi_{A}\|_{A}^{2} < +\infty \right\}. \end{split}$$

If $\{X_A\}_{A\in\mathcal{L}^{\dagger}(\mathcal{D})}$ is a net of operators $X_A\in\mathfrak{B}(\mathcal{H}_A), A\in\mathcal{L}^{\dagger}(\mathcal{D})$, we define $X_{\oplus}\xi_{\oplus}=\{X_A\xi_A\}$ provided that $\sum_A\|X_A\xi_A\|^2<+\infty, \xi_A\in\mathcal{H}_A$.

The operator $X_{\oplus} = \{X_A\}$ is bounded if and only if $\sup_A \|X_A\|_{A,A} < +\infty$. The space constructed in this way is $\prod_A \mathfrak{B}(\mathcal{H}_A) = \mathfrak{B}(\mathcal{H}_{\oplus})$. To every $X \in \mathfrak{L}_{\mathsf{B}}(\mathcal{D}, \mathcal{D}^{\times})_b$, we can associate the net $\{X_A\}$ which we have defined above. Clearly, $\{X_A\} \in \mathfrak{B}(\mathcal{H}_{\oplus})$. It is easily seen that the map

$$\tau: X \in \mathfrak{L}_{\mathsf{B}}(\mathcal{D}, \mathcal{D}^{\times})_b \mapsto \{X_A\} \in \mathfrak{B}(\mathcal{H}_{\oplus})$$

is isometric. Thus, the statement is proved.

Remark 3.3 An element $X \in \mathfrak{L}_{\mathsf{B}}(\mathcal{D}, \mathcal{D}^{\times})$ having a representative X_A for every $A \in \mathcal{L}^{\dagger}(\mathcal{D})$ need not be bounded in the sense of Definition 3.1. The spaces $\{\mathcal{H}_A; A \in \mathcal{L}^{\dagger}(\mathcal{D})\}$, together with their conjugate duals, make D^{\times} into an indexed PIP-space [4, Chap. 2]. In that language, operators having representatives in every \mathcal{H}_A are called totally regular operators. For more details on their behavior see [4, Section 3.3.3] where also a C*-agebra corresponding to our bounded elements has been studied.

Our next goal is to characterize bounded elements of $\mathfrak{L}_B(\mathcal{D},\mathcal{D}^\times)$ in several different ways. For doing this, we need to consider the natural order structure of $\mathfrak{L}_B(\mathcal{D},\mathcal{D}^\times)$.

We say that $X \in \mathfrak{L}_{\mathsf{B}}(\mathcal{D}, \mathcal{D}^{\times})$ is *positive*, and write $X \geq 0$, if $\langle X\xi | \xi \rangle \geq 0$, for every $\xi \in \mathcal{D}$.

It is easy to see that if X is positive, then it is *symmetric*; i.e., $X = X^{\dagger}$.

Proposition 3.4 *The following conditions are equivalent.*

- (i) X > 0.
- (ii) There exists $A \in \mathcal{L}^{\dagger}(\mathcal{D})$ such that $X_B \geq 0$, $\forall B \geq A$.

Proof (i) \Rightarrow (ii): Since $X \in \mathcal{L}_{\mathsf{B}}(\mathcal{D}, \mathcal{D}^{\times})$, there exists $A \in \mathcal{L}^{\dagger}(\mathcal{D})$ and $\gamma > 0$ such that

$$|\langle X\xi | \eta \rangle| \le \gamma \|\xi\|_B \|\eta\|_B, \quad B \succeq A.$$

If X > 0, then, for every $\xi \in \mathcal{D}$,

$$\langle X_B \xi | \xi \rangle_B = \langle X \xi | \xi \rangle \ge 0, \quad \forall B \succeq A.$$

Since \mathcal{D} is dense in \mathcal{H}_B , we have $\langle X_B \xi | \xi \rangle_B \geq 0$, $\forall \xi \in \mathcal{H}_B$.

(ii)
$$\Rightarrow$$
(i): Let $X_B \ge 0$ for every $B \ge A$. Then, for every $\xi \in \mathcal{D}$, $\langle X\xi | \xi \rangle = \langle X_B \xi | \xi \rangle_B \ge 0$.

Theorem 3.5 Let $X \in \mathfrak{L}_{\mathcal{B}}(\mathcal{D}, \mathcal{D}^{\times})$. The following statements are equivalent.

- (i) $X: \mathcal{D} \to \mathcal{H}$ and $\overline{X} \in \mathcal{B}(\mathcal{H})$.
- (ii) $X \in \mathfrak{L}_{B}(\mathcal{D}, \mathcal{D}^{\times})_{h}$.
- (iii) There exists $\lambda > 0$ such that

$$-\lambda I \le \Re(X) \le \lambda I, \quad -\lambda I \le \Im(X) \le \lambda I$$

where
$$\Re(X) = \frac{X + X^{\dagger}}{2}$$
 and $\Im(X) = \frac{X - X^{\dagger}}{2i}$.

Proof (i) \Rightarrow (ii): If $X: \mathcal{D} \to \mathcal{H}$ and X is bounded, then, for every $A \in \mathcal{L}^{\dagger}(\mathcal{D})$,

$$|\langle X\xi | \eta \rangle| \le \|\overline{X}\| \|\xi\| \|\eta\| \le \|\overline{X}\| \|\xi\|_A \|\eta\|_A. \tag{2}$$

This means that X has a bounded representative X_A in every $\mathcal{B}(\mathcal{H}_A)$. By (2), $\|X_A\|_{A,A} \leq \|\overline{X}\|$, for every $A \in \mathcal{L}^{\dagger}(\mathcal{D})$, so $\sup_{A \in \mathcal{L}^{\dagger}(\mathcal{D})} \|X_A\|_{A,A} < +\infty$.

(ii)
$$\Rightarrow$$
(i) Let $X \in \mathfrak{L}_{\mathsf{B}}(\mathcal{D}, \mathcal{D}^{\times})_{h}$. Then, for every $A \in \mathcal{L}^{\dagger}(\mathcal{D})$

$$|\langle X\xi | \eta \rangle| \le ||X_A||_{A,A} ||\xi||_A ||\eta||_A, \quad \forall \xi, \eta \in \mathcal{D}.$$

In particular, for A = 0,

$$|\langle X\xi | \eta \rangle| \le ||X_0|| ||\xi|| ||\eta||, \quad \forall \xi, \eta \in \mathcal{D}. \tag{3}$$

By (3), for every $\xi \in \mathcal{D}$, $F(\eta) = \langle X\xi | \eta \rangle$ is a bounded conjugate linear functional on \mathcal{D} , so by Riesz's lemma $X\xi \in \mathcal{H}$. It is finally easily seen that $\overline{X} \in \mathcal{B}(\mathcal{H})$.

(iii) \Rightarrow (i) Suppose first that $X=X^{\dagger}$. Note that the operator X satisfies the following: $0 \leq \frac{X+\lambda I}{2\lambda} \leq I$; so $\frac{X+\lambda I}{2\lambda}$ is a positive operator and $\left(\frac{X+\lambda I}{2\lambda}\xi \mid \xi\right) \leq \langle \xi \mid \xi \rangle$, $\forall \xi \in \mathcal{D}$; this implies that

$$\left| \left\langle \frac{X + \lambda I}{2\lambda} \xi \mid \eta \right\rangle \right| \le \|\xi\| \|\eta\|, \quad \forall \xi, \eta \in \mathcal{D}$$
 (4)

and by Riesz's lemma there exists $\zeta \in \mathcal{H}$ such that

$$\left\langle \frac{X + \lambda I}{2\lambda} \xi \mid \eta \right\rangle = \left\langle \zeta \mid \eta \right\rangle, \quad \forall \xi, \eta \in \mathcal{D}$$
 (5)

and then $\frac{X+\lambda I}{2\lambda}\xi\in\mathcal{H}$. This implies that $X\xi\in\mathcal{H}$ too. Moreover, X has a representative for every $A\in\mathcal{L}^{\dagger}(\mathcal{D})$. Indeed,

$$|\langle X\xi | \eta \rangle| \le \gamma \|\xi\| \|\eta\| \le \gamma \|\xi\|_A \|\eta\|_A \quad \forall A \in \mathcal{L}^{\dagger}(\mathcal{D}),$$

where $\gamma > 0$. From (4), it follows that X is bounded and $\overline{X} \in \mathcal{B}(\mathcal{H})$. In the very same way, one can prove the boundedness of X if $X^{\dagger} = -X$. The result for a general X follows easily. (i) \Rightarrow (iii): This is a standard result of the C*-algebras theory.

4 Bounded elements of C*-inductive locally convex spaces

The results obtained in Sect. 3 have an abstract generalization to locally convex spaces that are inductive limits of C^* -algebras in a generalized sense. These spaces were called C^* -inductive locally convex spaces in [8]. We begin with recalling the basic definitions.

Let $\mathfrak A$ be a vector space over $\mathbb C$. Let $\mathbb F$ be a set of indices directed upward and consider, for every $\alpha \in \mathbb F$, a space $\mathfrak A_\alpha \subset \mathfrak A$ such that:

- (I.1) $\mathfrak{A}_{\alpha} \subseteq \mathfrak{A}_{\beta}$, if $\alpha \leq \beta$;
- (I.2) $\mathfrak{A} = \bigcup_{\alpha \in \mathbb{F}} \mathfrak{A}_{\alpha}$;
- (I.3) $\forall \alpha \in \mathbb{F}$, there exists a C*-algebra \mathfrak{B}_{α} (with unit e_{α} and norm $\|\cdot\|_{\alpha}$) and an isomorphism of vector spaces $\phi_{\alpha} : \mathfrak{B}_{\alpha} \to \mathfrak{A}_{\alpha}$ which makes of \mathfrak{A}_{α} a Banach space under the norm $\|x\|^{\alpha} := \|x_{\alpha}\|_{\alpha}$, if $x \in \mathfrak{A}_{\alpha}$, $x = \phi_{\alpha}(x_{\alpha})$;
- (I.4) $x_{\alpha} \in \mathfrak{B}_{\alpha}^{+} \Rightarrow x_{\beta} = (\phi_{\beta}^{-1} \phi_{\alpha})(x_{\alpha}) \in \mathfrak{B}_{\beta}^{+}$, for every $\alpha, \beta \in \mathbb{F}$ with $\beta \geq \alpha$.

We put $j_{\beta\alpha} = \phi_{\beta}^{-1}\phi_{\alpha}$, if $\alpha, \beta \in \mathbb{F}$, $\beta \geq \alpha$.

If $x \in \mathfrak{A}$, there exists $\alpha \in \mathbb{F}$ such that $x \in \mathfrak{A}_{\alpha}$ and, for every $\beta \geq \alpha$, a unique $x_{\beta} \in \mathfrak{B}_{\beta}$ such that $x = \phi_{\beta}(x_{\beta})$.

Then, we put

$$j_{\beta\alpha}(x_{\alpha}) := x_{\beta} \text{ if } \alpha \leq \beta.$$

By (I.4), it follows easily that $j_{\beta\alpha}$ preserves the involution; i.e., $j_{\beta\alpha}(x_{\alpha}^*) = (j_{\beta\alpha}(x_{\alpha}))^*$.

Remark 4.1 From the previous discussion, it follows that to every $x \in \mathfrak{A}$ there corresponds a family of representatives $\{x_{\beta}; x_{\beta} \in \mathfrak{B}_{\beta}, \beta \geq \alpha\}$. We write, for short, $x = (x_{\beta})$. If $x = (x_{\beta}), y = (y_{\beta})$ and $x_{\beta} = y_{\beta}$, for every β larger than a certain $\gamma \in \mathbb{F}$, then x = y. With this identification, the mentioned correspondence is one-to-one.

The family $\{\mathfrak{B}_{\alpha}, j_{\beta\alpha}, \beta \geq \alpha\}$ is a directed system of C^* -algebras, in the sense that:

- (J.1) for every $\alpha, \beta \in \mathbb{F}$, with $\beta \geq \alpha, j_{\beta\alpha} : \mathfrak{B}_{\alpha} \to \mathfrak{B}_{\beta}$ is a linear and injective map; $j_{\alpha\alpha}$ is the identity of \mathfrak{B}_{α} ,
- (J.2) for every $\alpha, \beta \in \mathbb{F}$, with $\alpha \leq \beta$, $\phi_{\alpha} = \phi_{\beta} j_{\beta\alpha}$,
- (J.3) $i_{\nu\beta}i_{\beta\alpha}=i_{\nu\alpha}, \alpha < \beta < \gamma$.

We assume that, in addition, the $j_{\beta\alpha}$ s are Schwarz maps (see, e.g., [14]); i.e., (sch) $j_{\beta\alpha}(x_{\alpha})^* j_{\beta\alpha}(x_{\alpha}) \leq j_{\beta\alpha}(x_{\alpha}^*x_{\alpha}), \quad \forall x_{\alpha} \in \mathfrak{B}_{\alpha}, \ \alpha \leq \beta.$

For every $\alpha, \beta \in \mathbb{F}$, with $\alpha \leq \beta$, $j_{\beta\alpha}$ is continuous [14] and, moreover,

$$||j_{\beta\alpha}(x_{\alpha})||_{\beta} \le ||x_{\alpha}||_{\alpha}, \quad \forall x_{\alpha} \in \mathfrak{B}_{\alpha}.$$

An involution in $\mathfrak A$ is defined as follows. Let $x \in \mathfrak A$. Then $x \in \mathfrak A_{\alpha}$, for some $\alpha \in \mathbb F$, i.e., $x = \phi_{\alpha}(x_{\alpha})$, for a unique $x_{\alpha} \in \mathfrak B_{\alpha}$. Put $x^* := \phi_{\alpha}(x_{\alpha}^*)$. Then if $\beta \ge \alpha$, we have

$$\phi_{\beta}^{-1}(x^*) = \phi_{\beta}^{-1}(\phi_{\alpha}(x_{\alpha}^*)) = j_{\beta\alpha}(x_{\alpha}^*) = (j_{\beta\alpha}(x_{\alpha}))^* = x_{\beta}^*.$$

It is easily seen that the map $x \mapsto x^*$ is an involution in \mathfrak{A} . Moreover, by the definition itself, it follows that every map ϕ_{α} preserves the involution; i.e., $\phi_{\alpha}(x_{\alpha}^*) = (\phi_{\alpha}(x_{\alpha}))^*$, for all $x_{\alpha} \in \mathfrak{B}_{\alpha}$, $\alpha \in \mathbb{F}$.

Definition 4.2 Let \mathfrak{A} be a vector space with involution * and \mathbb{F} a directed (upward) set.

- A defining system for \mathfrak{A} consists of a family $\{\{\mathfrak{B}_{\alpha}, \phi_{\alpha}\}, \alpha \in \mathbb{F}\}$, where, for every $\alpha \in \mathbb{F}, \mathfrak{B}_{\alpha}$ is a C*-algebra and ϕ_{α} is a linear injective map of \mathfrak{B}_{α} into \mathfrak{A} , satisfying the above conditions (I.1)–(I.4) and (Sch), with $\mathfrak{A}_{\alpha} = \phi_{\alpha}(\mathfrak{B}_{\alpha}), \alpha \in \mathbb{F}$.
- If $\mathfrak A$ is endowed with the locally convex inductive topology τ_{ind} generated by the family $\{\{\mathfrak B_\alpha,\phi_\alpha\},\alpha\in\mathbb F\}$, then we say that $\mathfrak A$ is a C^* -inductive locally convex space.

We notice that the involution is automatically continuous in $\mathfrak{A}[\tau_{ind}]$.

A C*-inductive locally convex space has a natural positive cone.

An element $x \in \mathfrak{A}$ is called *positive* if there exists $\gamma \in \mathbb{F}$ such that $\phi_{\alpha}^{-1}(x) \in \mathfrak{B}_{\alpha}^{+}$, $\forall \alpha \geq \gamma$. We denote by \mathfrak{A}^{+} the set of all positive elements of \mathfrak{A} .

Then,

- (i) Every positive element $x \in \mathfrak{A}$ is hermitian; i.e., $x \in \mathfrak{A}_h := \{y \in \mathfrak{A} : y^* = y\}$.
- (ii) \mathfrak{A}^+ is a non empty convex pointed cone; i.e., $\mathfrak{A}^+ \cap (-\mathfrak{A}^+) = \{0\}$.
- (iii) If $\alpha \in \mathbb{F}$ and $x_{\alpha} \in \mathfrak{B}_{\alpha}^+$, $\phi_{\alpha}(x_{\alpha})$ is positive.

Moreover, every hermitian element $x = x^*$ is the difference of two positive elements, i.e., there exist $x^+, x^- \in \mathfrak{A}^+$ such that $x = x^+ - x^-$.

A linear functional ω is said to be *positive* if $\omega(x) \ge 0$ for every $x = (x_{\alpha}) \in \mathfrak{A}^+$. As shown in [8, Prop. 3.9, 3.10], ω is positive if, and only if, $\omega_{\alpha}(x_{\alpha}) := \omega(\phi_{\alpha}(x_{\alpha})) \ge 0$ for every $\alpha \in \mathbb{F}$. We write, in this case, $\omega = \lim_{n \to \infty} \omega_{\alpha}$.

4.1 Bounded elements

Definition 4.3 Let $\mathfrak A$ be a C*-inductive locally convex space. An element $x=(x_\alpha)\in \mathfrak A$, with $x_\alpha\in \mathfrak B_\alpha$, is called *bounded* if $x\in \mathfrak A_\alpha$, for every $\alpha\in \mathbb F$ and $\sup_{\alpha\in \mathbb F}\|x_\alpha\|_\alpha<\infty$. The set of bounded elements of $\mathfrak A$ is denoted by $\mathfrak A_b$.

Proposition 4.4 The set \mathfrak{A}_b is a Banach space under the norm $\|x\|_b := \sup_{\alpha \in \mathbb{F}} \|x_\alpha\|_{\alpha}$.

Proof We only prove the completeness. Let $\{x_n\}$ be a Cauchy sequence in \mathfrak{A}_b . Then, for every $\alpha \in \mathbb{F}$ the sequence $\{x_n^{\alpha}\}$, with $x_n^{\alpha} := (x_n)_{\alpha}$, is Cauchy in \mathfrak{B}_{α} , so it converges to some $x_{\alpha} \in \mathfrak{B}_{\alpha}$. Since the $j_{\beta\alpha}$'s are continuous, one easily proves that the family $\{x_{\alpha}\}$ defines an element $x = (x_{\alpha})$ of \mathfrak{A} . From the Cauchy condition, for every $\epsilon > 0$, there exists $n_{\epsilon} \in \mathbb{N}$ such that

$$\sup_{\alpha \in \mathbb{F}} \|x_n^{\alpha} - x_m^{\alpha}\|_{\alpha} < \epsilon \tag{6}$$

If $m > n_{\epsilon}$,

$$||x_{\alpha}||_{\alpha} \le ||x_{\alpha} - x_{m}^{\alpha}||_{\alpha} + ||x_{m}^{\alpha}||_{\alpha} \le \epsilon + ||x_{m}^{\alpha}||_{\alpha}.$$

Hence,

$$\sup_{\alpha \in \mathbb{F}} \|x_{\alpha}\|_{\alpha} \le \epsilon + \sup_{\alpha \in \mathbb{F}} \|x_{m}^{\alpha}\|_{\alpha} < \infty.$$

Thus $x \in \mathfrak{A}_b$.

Fix now $n > n_{\epsilon}$ and let $m \to \infty$ in (6). Then,

$$\sup_{\alpha\in\mathbb{F}}\|x_n^{\alpha}-x_{\alpha}\|_{\alpha}\leq\epsilon.$$

This proves that $x_n \to x$.

In what follows, we will consider *-representations of a C*-inductive locally convex space. We recall the basic definitions.

Let \mathbb{F} be a set directed upward by \leq . A family $\{\mathcal{H}_{\alpha}, U_{\beta\alpha}, \alpha, \beta \in \mathbb{F}, \beta \geq \alpha\}$, where each \mathcal{H}_{α} is a Hilbert space (with inner product $\langle \cdot | \cdot \rangle_{(\alpha)}$ and norm $\| \cdot \|_{(\alpha)}$) and, for every $\alpha, \beta \in \mathbb{F}$, with $\beta \geq \alpha$, $U_{\beta\alpha}$ is a linear map from \mathcal{H}_{α} into \mathcal{H}_{β} , is called a *directed contractive system of Hilbert spaces* if the following conditions are satisfied

- (i) $U_{\beta\alpha}$ is injective;
- (ii) $||U_{\beta\alpha}\xi_{\alpha}||_{(\beta)} \leq ||\xi_{\alpha}||_{(\alpha)}, \quad \forall \xi_{\alpha} \in \mathcal{H}_{\alpha};$
- (iii) $U_{\alpha\alpha} = I_{\alpha}$, the identity of \mathcal{H}_{α} ;
- (iv) $U_{\gamma\alpha} = U_{\gamma\beta}U_{\beta\alpha}, \alpha \leq \beta \leq \gamma$.

A directed contractive system of Hilbert spaces defines a conjugate dual pair $(\mathcal{D}^{\times}, \mathcal{D})$ which is called the *joint topological limit* [9] of the directed contractive system $\{\mathcal{H}_{\alpha}, U_{\beta\alpha}, \alpha, \beta \in \mathbb{F}, \beta \geq \alpha\}$ of Hilbert spaces.

Definition 4.5 Let \mathfrak{A} be the C*-inductive locally convex space defined by the system $\{\{\mathfrak{B}_{\alpha}, \Phi_{\alpha}\}, \alpha \in \mathbb{F}\}$ as in Definition 4.2.

For each $\alpha \in \mathbb{F}$, let π_{α} be a *-representation of \mathfrak{B}_{α} in Hilbert space \mathcal{H}_{α} . The collection $\pi := \{\pi_{\alpha}\}$ is said to be a *-representation of \mathfrak{A} if

- (i) for every $\alpha, \beta \in \mathbb{F}$, there exists a linear map $U_{\beta\alpha} : \mathcal{H}_{\alpha} \to \mathcal{H}_{\beta}$ such that the family $\{\mathcal{H}_{\alpha}, U_{\beta\alpha}, \alpha, \beta \in \mathbb{F}, \beta \geq \alpha\}$ is a directed contractive system of Hilbert spaces;
- (ii) the following equality holds

$$\pi_{\beta}(j_{\beta\alpha}(x_{\alpha})) = U_{\beta\alpha}\pi_{\alpha}(x_{\alpha})U_{\beta\alpha}^{*}, \quad \forall x_{\alpha} \in \mathfrak{B}_{\alpha}, \ \beta \ge \alpha. \tag{7}$$

In this case, we write $\pi(x) = \lim_{\alpha \to \infty} \pi(x_{\alpha})$ for every $x = (x_{\alpha}) \in \mathfrak{A}$ or, for short, $\pi = \lim_{\alpha \to \infty} \pi(x_{\alpha})$

The *-representation π is said to be *faithful* if $x \in \mathfrak{A}^+$ and $\pi(x) = 0$ imply x = 0 (of course, $\pi(x) = 0$ means that there exists $\gamma \in \mathbb{F}$ such that $\pi_{\alpha}(x_{\alpha}) = 0$, for $\alpha \geq \gamma$).

Remark 4.6 With this definition (which is formally different from that given in [8] but fully equivalent), $\pi(x)$, $x \in \mathfrak{A}$, is not an operator but rather a collection of operators. But as shown in [8], $\pi(x)$ can be regarded as an operator acting on the joint topological limit $(\mathcal{D}^{\times}, \mathcal{D})$ of $\{\mathcal{H}_{\alpha}, \mathcal{U}_{\beta\alpha}, \alpha, \beta \in \mathbb{F}, \beta \geq \alpha\}$. The corresponding space of operators was denoted by $L_{B}(\mathcal{D}, \mathcal{D}^{\times})$; it behaves in the very same way as the space $\mathcal{L}_{B}(\mathcal{D}, \mathcal{D}^{\times})$ studied in Sect. 3 and reduces to it when the family of Hilbert spaces is exactly $\{\mathcal{H}_{A}; A \in \mathcal{L}^{\dagger}(\mathcal{D})\}$. The main difference consists in the fact that the \mathcal{H}_{α} 's need not be all subspaces of a certain Hilbert space \mathcal{H} .

Lemma 4.7 Let $\pi = \underset{\longrightarrow}{\lim} \pi_{\alpha}$ be a faithful *-representation of \mathfrak{A} . Then, for every $\alpha \in \mathbb{F}$, π_{α} is a faithful *-representation of \mathfrak{B}_{α} .

Proof Let $x_{\alpha} \in \mathfrak{B}_{\alpha}^{+}$ with $\pi_{\alpha}(x_{\alpha}) = 0$. Let $x \in \mathfrak{A}$ be the unique element of \mathfrak{A} such that $x = \phi_{\alpha}(x_{\alpha})$. Then $\pi_{\beta}(x_{\beta}) = \pi_{\beta}(j_{\beta\alpha}(x_{\alpha})) = U_{\beta\alpha}\pi_{\alpha}(x_{\alpha})U_{\beta\alpha}^{*} = 0$. Hence $\pi(x) = 0$, and therefore, x = 0. Thus there exists $\overline{\gamma} \in \mathbb{F}$ such that $x_{\gamma} = 0$, for $\gamma \geq \overline{\gamma}$. Let $\beta \geq \alpha$, $\overline{\gamma}$. Then $0 = x_{\beta} = j_{\beta\alpha}(x_{\alpha})$. Hence, by the injectivity of $j_{\beta\alpha}$, $x_{\alpha} = 0$.

As shown in [8, Proposition 3.16], if a C*-inductive locally convex space $\mathfrak A$ fulfills the following conditions

- (\mathbf{r}_1) if $x_{\alpha} \in \mathfrak{B}_{\alpha}$ and $j_{\beta\alpha}(x_{\alpha}) \geq 0$ for some $\beta \geq \alpha$, then $x_{\alpha} \geq 0$;
- $(\mathbf{r}_2) \ e_{\beta} \in j_{\beta\alpha}(\mathfrak{B}_{\alpha}), \ \forall \alpha, \beta \in \mathbb{F}, \beta \geq \alpha;$
- (r_3) every positive linear functional $\omega = \lim_{\alpha} \omega_{\alpha}$ on $\mathfrak A$ satisfies the following property
- if $\alpha \in \mathbb{F}$ and $\omega_{\beta}(j_{\beta\alpha}(x_{\alpha}^*)j_{\beta\alpha}(x_{\alpha})) = 0$, for some $\beta > \alpha$ and $x_{\alpha} \in \mathfrak{B}_{\alpha}$, then $\omega_{\alpha}(x_{\alpha}^*x_{\alpha}) = 0$:

then, $\mathfrak A$ admits a faithful representation. The conditions $(\mathfrak r_1)$, $(\mathfrak r_2)$, in fact, guarantee that $\mathfrak A$ possesses sufficiently many positive linear functionals, in the sense that for every $x \in \mathfrak A^+$, $x \neq 0$ there exists a positive linear functional ω on $\mathfrak A$ such that $\omega(x) > 0$ [8, Theorem 3.14].

Theorem 4.8 Let \mathfrak{A} be a C^* -inductive locally convex space and $x = (x_{\alpha}) \in \mathfrak{A}$. The following statements hold.

(i) If $x \in \mathfrak{A}_b$, then, for every *-representation $\pi = \lim_{\alpha} \pi$ of \mathfrak{A} , one has

$$\sup_{\alpha\in\mathbb{F}}\|\pi_{\alpha}(x_{\alpha})\|_{\alpha\alpha}<\infty,$$

where $\|\cdot\|_{\alpha\alpha}$ denotes the norm of $\mathfrak{B}(\mathcal{H}_{\alpha})$.

(ii) Conversely, if $\mathfrak A$ admits a faithful *-representation $\pi^f = \lim_{\longrightarrow} \pi_\alpha^f$ and

$$\sup_{\alpha \in \mathbb{F}} \|\pi_{\alpha}^{f}(x_{\alpha})\|_{\alpha\alpha} < \infty,$$

then $x \in \mathfrak{A}_h$.

Proof (i): For every $\alpha \in \mathbb{F}$, π_{α} is a *-representation of the C*-algebra \mathfrak{B}_{α} . Hence

$$\|\pi_{\alpha}(x_{\alpha})\|_{\alpha\alpha} \leq \|x_{\alpha}\|_{\alpha}$$

Thus if $x \in \mathfrak{A}_b$ the statement follows immediately from the definition.

(ii): Let $\pi^f(x) = \lim_{\alpha} \pi^f_{\alpha}(x_{\alpha})$. Then, by Lemma 4.7, for every $\alpha \in \mathbb{F}$, π^f_{α} is a faithful representation of \mathfrak{B}_{α} . The *-representation π^f_{α} is an isometric isomorphism of C*-algebras, for all $\alpha \in \mathbb{F}$; hence

$$\sup_{\alpha \in \mathbb{F}} \|x_{\alpha}\|_{\alpha} = \sup_{\alpha \in \mathbb{F}} \|\pi_{\alpha}^{f}(x_{\alpha})\|_{\alpha\alpha} < \infty.$$

This proves that x is a bounded element of \mathfrak{A} .

4.2 Order bounded elements

Let \mathfrak{A} be a C*-inductive locally convex space. If $x \in \mathfrak{A}$, we put

$$\Re(x) = \frac{x + x^*}{2} \quad \text{and} \quad \Im(x) = \frac{x - x^*}{2i}.$$

Both $\Re(x)$ and $\Im(x)$ are symmetric elements of \mathfrak{A} .

Assume that \mathfrak{A} has an element $u = u^*$ such that $||u_{\alpha}||_{\alpha} \leq 1$, for every $\alpha \in \mathbb{F}$, and there exists $\gamma \in \mathbb{F}$ such that $u_{\beta} = j_{\beta\gamma}(e_{\gamma}) \forall \beta \geq \gamma$, $(e_{\gamma} \text{ is the unit of } \mathfrak{B}_{\gamma})$. For shortness, we call the element u a *pre-unit* of \mathfrak{A} .

Remark 4.9 The pre-unit $u \in \mathfrak{A}$, if any, is unique. Indeed, let suppose there is another $v \in \mathfrak{A}$ satisfying the same properties as u. Then,

$$\exists \gamma, \gamma' \in \mathbb{F}; \ u_{\beta} = j_{\beta\gamma}(e_{\gamma}), \ v_{\beta'} = j_{\beta'\gamma'}(e_{\gamma'}), \ \forall \beta \geq \gamma, \beta' \geq \gamma'$$

so, if $\delta > \gamma$, γ' , one has $u_{\lambda} = v_{\lambda}$, $\forall \lambda > \delta$. The statement then follows from Remark 4.1.

Definition 4.10 Let \mathfrak{A} be a C*-inductive locally convex space with pre-unit u. We say that $x \in \mathfrak{A}$ is *order bounded* (with respect to u) if there exists $\lambda > 0$ such that

$$-\lambda u \le \Re(x) \le \lambda u \qquad -\lambda u \le \Im(x) \le \lambda u.$$

Theorem 4.11 Let $\mathfrak A$ be a C^* -inductive locally convex space satisfying condition $(\mathfrak r_1)$. Assume that $\mathfrak A$ has a pre-unit u.

Then, $x \in \mathfrak{A}_b$ if, and only if, x has a representative for every $\alpha \in \mathbb{F}$ (i.e., for every $\alpha \in \mathbb{F}$, there exists $x_{\alpha} \in \mathfrak{B}_{\alpha}$ such that $x = \phi_{\alpha}(x_{\alpha})$ and x is order bounded with respect u.

Proof Let us assume that $x = x^* \in \mathfrak{A}_b$. Then, x has a representative x_α , with $x_\alpha^* = x_\alpha$, in every \mathfrak{B}_α and $\lambda := \sup_{\alpha \in \mathbb{F}} \|x_\alpha\|_\alpha < \infty$. Hence, we have

$$-\lambda e_{\alpha} < x_{\alpha} < \lambda e_{\alpha}, \quad \forall \alpha \in \mathbb{F},$$

where e_{α} denotes the unit of \mathfrak{B}_{α} . By the definition of u, there exists $\gamma \in \mathbb{F}$ such that $u_{\beta} = j_{\beta\gamma}(e_{\gamma})$ for $\beta \geq \gamma$. Hence, taking into account that the maps $j_{\beta\alpha}$ preserve the order, we have

$$-\lambda u_{\beta} < x_{\beta} < \lambda u_{\beta}, \quad \forall \beta > \gamma.$$

This implies that $-\lambda u \le x \le \lambda u$.

Now, let us suppose that for some $\lambda > 0$, $-\lambda u \le x \le \lambda u$. Then, there exists $\gamma \in \mathbb{F}$ such that

$$-\lambda u_{\beta} \le x_{\beta} \le \lambda u_{\beta}, \quad \forall \beta \ge \gamma. \tag{8}$$

Let now $\alpha \in \mathbb{F}$. Then, there is $\delta \geq \alpha$, γ such that (8) holds. Hence, using (r_1) , we conclude that

$$-\lambda u_{\alpha} < x_{\alpha} < \lambda u_{\alpha}, \quad \forall \alpha \in \mathbb{F}.$$

This implies that $||x_{\alpha}||_{\alpha} \leq \lambda$, for every $\alpha \in \mathbb{F}$. Thus, $x \in \mathfrak{A}_b$.

From the proof of the previous theorem, it follows easily that

Proposition 4.12 Assume that the assumptions of Theorem 4.11 hold and let $x = x^* \in \mathfrak{A}_b$. Put

$$p(x) = \inf\{\lambda > 0; -\lambda u < x < \lambda u\}.$$

Then, $p(x) = ||x||_b$.

5 C*-inductive partial *-algebras

As shown in [8], a partial multiplication in $\mathfrak A$ can be defined by a family $w=\{w_{\alpha}\}$, $w_{\alpha}\in\mathfrak B_{\alpha}$. Let $w=\{w_{\alpha}\}$ be a family of elements, such that each $w_{\alpha}\in\mathfrak B_{\alpha}^+$ and $j_{\beta\alpha}(w_{\alpha})=w_{\beta}$, for all $\alpha,\beta\in\mathbb F$ with $\beta\geq\alpha$.

Let $x, y \in \mathfrak{A}$. The partial multiplication $x \cdot y$ is defined by the conditions:

$$\begin{split} \exists \gamma \in \mathbb{F} : \, \phi_{\beta}(\phi_{\beta}^{-1}(x)w_{\beta}\phi_{\beta}^{-1}(y)) &= \phi_{\beta'}(\phi_{\beta'}^{-1}(x)w_{\beta'}\phi_{\beta'}^{-1}(y)), \,\, \forall \beta, \beta' \geq \gamma \\ x \cdot y &= \phi_{\beta}(\phi_{\beta}^{-1}(x)w_{\beta}\phi_{\beta}^{-1}(y)), \,\, \beta \geq \gamma. \end{split}$$

Then, \mathfrak{A} is an *associative* partial *-algebra with respect to the usual operations and the above-defined multiplication (see [3, Section 2.1.1] for the definitions) and we will call it a C^* -inductive partial *-algebra.

The partial *-algebra $\mathfrak A$ has a unit e (that is, an element e which is a left- and right universal multiplier such that $x \cdot e = e \cdot x = x$, for every $x \in \mathfrak A$) if, and only if, every element w_{α} of the family $\{w_{\alpha}\}$ defining the multiplication is invertible and

$$j_{\beta\alpha}(w_{\alpha}^{-1}) = w_{\beta}^{-1}, \ \forall \alpha, \ \beta \in \mathbb{F}, \ \beta \ge \alpha.$$
 (9)

In this case, $e = \phi_{\alpha}(w_{\alpha}^{-1})$, independently of $\alpha \in \mathbb{F}$.

The element e is called a bounded unit if it is a bounded element of \mathfrak{A} and $||e||_b = 1$.

Proposition 5.1 Let \mathfrak{A} be a C^* -inductive partial *-algebra with the multiplication defined by a family $\{w_{\alpha}\}$. Assume that $e = (w_{\alpha}^{-1})$ is a bounded unit of \mathfrak{A} . Then \mathfrak{A}_b is a Banach partial *-algebra; that is, $\mathfrak{A}_b[\|\cdot\|_b]$ is a Banach space with isometric involution * and there exists C > 1 such that the following inequality holds

$$\|x \cdot y\|_b \le C \|x\|_b \|y\|_b, \quad \forall x, y \in \mathfrak{A}_b \quad with \ x \cdot y \ well-defined.$$
 (10)

Remark 5.2 The constant C in (10) can be taken equal to 1 if $w_{\alpha}^{-1} = e_{\alpha}$, for each $\alpha \in \mathbb{F}$, where e_{α} is the unit of the C*-algebra \mathfrak{B}_{α} . Under the same assumption, the norm of \mathfrak{A}_b satisfies the C*-property, which in our case reads

$$\|x^* \cdot x\|_b = \|x\|_b^2$$
, $\forall x \in \mathfrak{A}_b$ with $x^* \cdot x$ well-defined.

This is no longer true in the general case.

Remark 5.3 In Example 5.3 of [8], two of us tried to construct a family $\{W_A \in \mathfrak{B}(\mathcal{H}_A); A \in \mathcal{L}^{\dagger}(\mathcal{D})\}$ so that the partial multiplication defined in $\mathfrak{L}_{\mathsf{B}}(\mathcal{D}, \mathcal{D}^{\times})$ by the method mentioned above would reproduce the quasi *-algebra structure of $(\mathfrak{L}_{\mathsf{B}}(\mathcal{D}, \mathcal{D}^{\times}), \mathcal{L}^{\dagger}(\mathcal{D}))$ (see Sect. 2). Unfortunately, the conclusion of that discussion is uncorrect (see [8, Erratum/Addendum] for more details).

Let $\mathfrak A$ be a C*-inductive partial *-algebra with the multiplication defined by a family $\{w_{\alpha}\}$ as above. The spaces $R\mathfrak A$ and $L\mathfrak A$ of the right-, respectively, left universal multipliers (with respect to w) of $\mathfrak A$ are algebras. Hence, $\mathfrak A_0 := L\mathfrak A \cap R\mathfrak A$ is a *-algebra and, thus,

- (i) $(\mathfrak{A}, \mathfrak{A}_0)$ is a quasi *-algebra.
- (ii) If $\mathfrak A$ is endowed with τ_{ind} , then the maps $x\mapsto x^*, x\mapsto a\cdot x, x\mapsto x\cdot b, a,b\in\mathfrak A_0$ are continuous.

It is easily seen from the very definition that if $a \in R\mathfrak{A}$ and $x \in \mathfrak{A}^+$, then $a^*xa \in \mathfrak{A}^+$. Hence, if $\mathcal{P}(\mathfrak{A})$ denotes the family of all positive linear functionals on \mathfrak{A} , we have in particular $\omega(a^*xa) \geq 0$, for every $\omega \in \mathcal{P}(\mathfrak{A})$.

Theorem 5.4 Let \mathfrak{A} be a C^* -inductive partial *-algebra with the multiplication defined by a family $\{w_{\alpha}\}$ and with pre-unit u. Assume, moreover, that the following condition (P) holds:

(P) $y \in \mathfrak{A}$, $\omega(a^*ya) \ge 0$, $\forall \omega \in \mathcal{P}(\mathfrak{A})$ and $a \in R\mathfrak{A} \Rightarrow y \in \mathfrak{A}^+$; then, for $x \in \mathfrak{A}$, the following conditions are equivalent.

- (i) x is order bounded with respect to u.
- (ii) There exists $\gamma_x > 0$ such that

$$|\omega(a^*xa)| \le \gamma_x \omega(a^*ua), \quad \forall \omega \in \mathcal{P}(\mathfrak{A}), \quad \forall a \in R\mathfrak{A}.$$

(iii) There exists $\gamma_x > 0$ such that

$$|\omega(b^*xa)|^2 \le \gamma_x \omega(a^*ua)\omega(b^*ub), \quad \forall \omega \in \mathcal{P}(\mathfrak{A}), \ \forall a, b \in R\mathfrak{A}.$$

Proof It is sufficient to consider the case $x = x^*$;

(i) \Rightarrow (ii): Let $\omega \in \mathcal{P}(\mathfrak{A})$. By the hypothesis, $-\gamma u \leq x \leq \gamma u$, for some $\gamma > 0$; then $\omega(\gamma u - x) \geq 0$ and $\omega(a^*(\gamma u - x)a) \geq 0$, $\forall a \in R\mathfrak{A}$. On the other hand, similarly, one can show that $\omega(a^*(x - \gamma u)a) \geq 0$.

(ii) \Rightarrow (i): Assume now that u is a pre-unit and there exists $\gamma_x > 0$ such that

$$|\omega(a^*xa)| \le \gamma_x \omega(a^*ua), \quad \forall \omega \in \mathcal{P}(\mathfrak{A}), \quad a \in R\mathfrak{A}.$$

Then

$$\gamma_x \omega(a^*ua) \pm \omega(a^*xa) \ge 0 \Rightarrow \omega(a^*(\gamma_x u \pm x)a) \ge 0, \quad \forall \omega \in \mathcal{P}(\mathfrak{A}), a \in R\mathfrak{A}.$$

So, by (P), $\gamma_x u \pm x \ge 0$.

(i) \Rightarrow (iii): By the assumption, there exists $\gamma > 0$ such that $-\gamma u \le x \le \gamma u$. Let $\omega \in \mathcal{P}(\mathfrak{A})$. Then, the linear functional ω_a on \mathfrak{A} , defined by $\omega_a(x) := \omega(a^*xa)$, is positive. Hence, if $x = x^*$

$$-\gamma \omega_a(u) \le \omega_a(x) \le \gamma \omega_a(u);$$

i.e.,

$$|\omega(a^*xa)| < \gamma\omega(a^*ua).$$

Now, let $x \in \mathfrak{A}^+$, $a,b \in R\mathfrak{A}$. Let us define $\Omega^x_\omega(a,b) := \omega(b^*xa)$. Then, it is easily checked that Ω^x_ω is a positive sesquilinear form on $R\mathfrak{A} \times R\mathfrak{A}$. Using the Cauchy–Schwartz inequality, we obtain

$$|\omega(b^*xa)| \le \omega(a^*xa)^{1/2}\omega(b^*xb)^{1/2}$$

$$\le \gamma\omega(a^*ua)^{1/2}\omega(b^*ub)^{1/2}.$$

The extension to arbitrary $x \in \mathfrak{A}$ goes through as in the proof of Proposition 4.3 of [8]. (iii) \Rightarrow (ii) It is trivial.

The previous proof shows that if $x = x^* \in \mathfrak{A}$ is order bounded with respect to u then

$$p(x) < \sup\{|\omega(b^*xa)|; \omega \in \mathcal{P}(\mathfrak{A}); a, b \in R\mathfrak{A}; \omega(a^*ua) = \omega(b^*ub) = 1\}.$$

where p(x) is the quantity defined in Proposition 4.12.

The following statement is an easy consequence of Proposition 4.12 and Theorem 5.4.

Theorem 5.5 Let \mathfrak{A} be a C^* -inductive partial *-algebra with the multiplication defined by a family $\{w_{\alpha}\}$ and pre-unit u. Assume that conditions (\mathfrak{r}_1) and (P) are satisfied. For an element $x \in \mathfrak{A}$, having a representative in every \mathfrak{B}_{α} , $\alpha \in \mathbb{F}$, the following statements are equivalent.

- (i) $x \in \mathfrak{A}_h$.
- (ii) x is order bounded with respect to u.
- (iii) For every $\omega \in \mathcal{P}(\mathfrak{A})$

$$|\omega(b^*xa)|^2 \le \gamma_x \omega(a^*ua)\omega(b^*ub), \quad \forall a, b \in R\mathfrak{A}.$$

Acknowledgments This work has been supported by GNAMPA-INdAM.

References

- 1. Allan, G.R.: A spectral theory for locally convex algebras. Proc. Lond. Math. Soc. 15, 399–421 (1965)
- Antoine, J.-P., Bellomonte, G., Trapani, C.: Fully representable and *-semisimple topological partial *-algebras. Stud. Math. 208, 167–194 (2012)
- 3. Antoine, J.-P., Inoue, A., Trapani, C.: Partial *-Algebras and Their Operator Realizations. Kluwer, Dordrecht (2002)
- Antoine, J.-P., Trapani, C.: Partial Inner Product Spaces—Theory and Applications, Springer Lecture Notes in Mathematics, vol. 1986, Berlin, Heidelberg (2009)
- Antoine, J.-P., Trapani, C., Tschinke, F.: Bounded elements in certain topological partial *-algebras. Stud. Math. 203, 223–251 (2011)
- Antoine, J.-P., Trapani, C., Tschinke, F.: Spectral properties of partial *-algebras. Mediterr. J. Math. 7, 123–142 (2010)
- Bellomonte, G., Di Bella, S., Trapani, C.: Operators in Rigged Hilbert spaces: some spectral properties.
 J. Math. Anal. App. 411, 931–946 (2014)
- Bellomonte, G., Trapani, C., Quasi *-algebras and generalized inductive limits of C*-algebras. Stud. Math. 202, 165–190 (2011). Erratum/Addendum, ibid. 217, 95–96 (2013)
- 9. Bellomonte, G., Trapani, C.: Rigged Hilbert spaces and contractive families of Hilbert spaces. Monatshefte f. Math. 164, 271–285 (2011)
- Fragoulopoulou, M., Trapani, C., Triolo, S.: Locally convex quasi *-algebras with sufficiently many *-representations. J. Math. Anal. Appl. 388, 1180–1193 (2012)
- Kürsten, K.-D.: The completion of the maximal O_p* -algebra on a Fréchet domain. Publ. RIMS Kyoto Univ. 22, 151–175 (1986)
- Kürsten, K.-D.: On algebraic properties of partial algebras. Rend. Circ. Mat. Palermo Ser. II Suppl. 56, 111–122 (1998)
- Kürsten, K.-D., Läuter, M.: An extreme example concerning factorization products on the Schwartz space [⊕](Rⁿ). Note Mat. 25, 31–38 (2005/06)
- Palmer, T.W.: Banach Algebras and the General Theory of *-Algebras, vol. 2. Cambridge University Press, Cambridge (2001)
- 15. Schmüdgen, K.: A strict Positivstellensatz for the Weyl algebra. Math. Ann. 331, 779–794 (2005)
- Schmüdgen, K.: Unbounded Operator Algebras and Representation Theory. Birkhäuser Verlag, Basel (1990)
- 17. Trapani, C.: Bounded elements and spectrum in Banach *-algebras. Stud. Math. 172, 249-273 (2006)
- Trapani, C.: Bounded and strongly bounded elements of Banach *-algebras. Contemp. Math. 427, 417– 424 (2007)
- Trapani, C.: *-Representations, seminorms and structure properties of normed quasi *-algebras. Stud. Math. 186, 47–75 (2008)
- Trapani, C.: Unbounded C*-seminorms, biweights and *-representations of partial *-algebras: a review. Int. J. Math. Math. Sci., Vol. 2006, Article ID 79268 (2006)
- Trapani, C., Tschinke, F.: Partial multiplication of operators in rigged Hilbert spaces. Integral Equ. Oper. Theory 51, 583–600 (2005)
- 22. Viday, I.: On some *regular rings. Acad. Serbe Sci. Publ. Inst. Math. 13, 73–80 (1959)

