Index

Abstract:	I
Introduction: Metabolism of n-alkane in Gordonia SoCg	3-7
Chapter I:	8-53
An alkane hydroxylase system of Gordonia sp. strain SoCg is involved in degradation of solid n-alkanes.	
Introduction: Alkane hydroxylases in Gram negative and Gram positive bacteria	8-22
Aerobic bacterial degradation of n-alkane	9
The AlkB family of alkane hydroxylases	10-13
Cytochrome P450 alkane hydroxylases	14
Alkane hydroxylases for long-chain n-alkanes	15
The role of the rubredoxin-rubredoxin reductase system	16
Metabolism of the alcohols and aldehydes derived from the oxidation of alkanes	17-18
Regulation of genes involved in aerobic n-alkane utilization in bacteria	19-22
Aims	22
Materials and Methods:	23-31
Bacterial strains, culture conditions and vectors	23
PFGE analysis	24
Southern hybridization analysis.	24
Cloning and sequence analysis of Gordonia SoCg alk genes	25
Heterologous expression of alkB in S. coelicolor and E. coli	26
Time course of growth on n-alkanes.	26
Time course of n-alkane consumption	27
Analysis of the metabolic intermediates from n-alkanes oxidation pathway	28
Total RNA isolation, RT-PCR analysis, and absolute qRT-PCR	29
 Gordonia SoCg electrocompetents cells 	30
Construction of Gordonia SoCg alkB disruption mutant	30-31

Results:	32-49
Identification and properties of strain SoCg	32-33

Growth on long chain n-alkanes and biotrasformation kinetics.	34-35
Cloning and sequence analysis of SoCg alk genes	36
Characterization of AH system of Gordonia SoCg	37-49
alk genes expression analysis	37-38
Long chain <i>n</i> -alkanes biotransformation	38-39
• The <i>alkB</i> disruption mutant	40-43
AlkB heterologous expression in S. coelicolor and E. coli	44-48
• S. coelicolor M145-AH expressing SoCg alkB grows on n-triacontane	49
Discussions	50-53
Chapter II:	54-77
Converting excess carbon into storage materials.	
Introduction:	55-64
Microbial strategies for accessing long chain n-alkanes	57
Membrane Alterations	58-60
Converting excess carbon into storage materials	61
Physiological role of the neutral lipids	62
Pathways for Wax ester synthesis	62
Atf enzymes	63-64
Aims	64
Materials and Methods:	65-74
Analysis of neutral lipid	65
• TLC analysis	65
• SPME-GC-MS analysis	65
Detection of <i>atfa</i>	66
• In vivo analysis of <i>atfa</i> -like gene expression.	67
Results:	68-74
Analysis of storage compounds	68-70
 Identification of atfa-like gene in Gordonia SoCg 	71-72

Screening for estimation of copy number of the atfa-like gene	73
In vivo expression analysis of atfa-like gene	74
Discussions	75-77
Chapter III:	78-97
Proteomic insights into metabolic adaptation.	
Introduction:	79-84
Behavioral and physiological responses to hydrocarbons	79-82
The genus Streptomyces	83-84
A	0.4
Aims	84
Materials and Methods:	85-87
 Heterologous expression of alkB in S. coelicolor 	85
Analysis of the metabolic intermediates from n-alkanes oxidation pathway.	85
In vivo analysis of heterologous expression of alkB	85
 Total protein extraction and DIGE analysis 	86-87
Results:	88-97
 Experimental design 	88-90
• General results	90
Protein identification	90-94
 Main remarks 7 	94-97
Conclusions:	98-102
Tables:	103-110
• Table I	104-105
• Table 2	105-106
• Table 3	106
• Table 4	107-110

Acknowledgements

References

112-120