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Abstract: Cardiomyopathies are still the first cause of death in the world. The identification of resident stem cells, com-

prising those derived from sub-endocardial stroma, suggests the possible self regeneration of the heart under 

autocrine/paracrine modulation in the cardiac microenvironment. Nevertheless, because of the limited in vivo regeneration 

potential of damaged cardiac tissue, the use of drugs and ultimately cardiac transplantation remain the common treatments 

of heart diseases and defects. The differentiative potential of embryonic and mesenchymal stem cells (MSCs) derived 

from different tissues (such as bone marrow and adipose tissue) was extensively explored in cell therapy for regenerative 

medicine. Many groups have been focused, in recent years, on isolation, characterization, and differentiation potential of 

MSCs derived from perinatal (or extraembryonic) tissues, mainly the placenta and the human umbilical cord. In this re-

view, we summarized recent works about the stemness of Wharton’s jelly stromal cells and their potential in cardiac re-

generation with favourable use in cell therapy and regenerative medicine. The peculiar features of these cells, as the ex-

pression of cardiac-specific transcription factors and immunomodulatory molecules suggest that human umbilical cord 

may be considered as a reliable alternative source of MSC useful for advanced therapy in cardiac regenerative medicine. 
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1. HEART RESIDENT STEM CELLS AND THEIR 
LIMITATION IN CARDIAC REGENERATION 

 Cardiomyopathies (congenital heart diseases, myocar-
dium infarction, heart failure) are still the first cause of death 
in the world. As well reviewed by Anversa and colleagues, 
the concept on the heart as a post-mitotic organ featuring 
irreplaceable myocytes has changed during the last two dec-
ades, creating a strong debate in the scientific world [1]. In 
fact, the identification of human cardiac stem cells (hCSCs) 
which feature the essential properties of all stem cells (self-
renewal, clonogenicity, multipotency) was the basis for in 
vitro and in vivo studies on animal models that highlighted 
their ability to regenerate cardiomyocytes [2]. The regenera-
tive ability of cardiac tissue is probably based on the activa-
tion of numerous genetic and epigentic events, as the activa-
tion of chromatin remodelling factors and transcription fac-
tors (such as GATA 4, Nkx2-5, Tbx 5) [3]. 
Autocrine/paracrine modulation in the cardiac microenvi-
ronment is thought to act on these resident stem cells, per-
haps through the secretion of growth factors by stressed car 
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diomyocytes, such as insuline-like growth factor 1 (IGF-1), 
hepatocyte growth factor (HGF), and stromal-derived factor 
1 (SDF-1), which exert their paracrine effects on progenitor 
cells. In addition, these progenitor cells seem to secrete car-
dioprotective factors, such as adrenomedulin, connective 
tissue growth factor, and interleukin-1 receptor-like 1 [4]. 
Resident cardiac stem cells were characterized by various 
groups as different populations, such as Lin- c-kit+ (isolated 
from adult rat heart), Sca-1+, isl-1+ cells, and side population 
(SP). Functional characterization experiments showed that 
these populations possess different efficacy in generating 
action potentials, expressing cardiac markers, mature sar-
comeric structures formation, thus resulting in improved 
cardiac functionality. By contrast, these cells constitute a low 
percentage of total resident ones and need to be co-cultured 
in vitro to improve their cardiogenic potential [5-11]. The 
latter evidence may explain in part the poor regenerative 
power of the heart by itself. As well discussed by Van-
dervelde and co-workers, there are many signaling factors 
released by myocardium after injury that induce mobilization 
and homing of bone marrow-derived stem cells from periph-
eral blood to the site of cardiac damage [12]. Among these 
factors, hematopoietic factors (granulocyte-colony stimulat-
ing factor, G-CSF and stem cell factor, SCF), Interleukin-8 
(IL-8), tumor necrosis factor-alpha (TNF- ), vascular endo-
thelial growth factor (VEGF), SDF-1 (together with its re-
ceptor CXCR4), fibroblast growth factor (FGF), IGF, HGF, 
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platelet-derived growth factor (PDGF), and others, seem to 
play pivotal roles in mobilization, homing, proliferation, 
differentiation, and cardiac protection [12-14]. Pathological 
conditions of cardiac tissue are also related to the onset of 
oxidative stress cascade, leading to the activation of pro-
survival responses such as the expression of erythropoietin 
(EPO) [12], cyclooxygenase-2 and heme oxygenase-1 [15], 
myeloperoxidase (MPO) [16-18] and heat shock proteins 
(HSPs) [19-27], as well as biomarkers of nitrosative stress 
[18, 28]. Because of the limited in vivo regeneration poten-
tial of damaged cardiac tissue, the use of drugs and, at last, 
cardiac transplantation are, at instance, the common treat-
ments of heart diseases and defects. Nevertheless, there are 
many limitations to these approaches, especially related to 
the number of organ donors. For this reason, new frontiers in 
therapeutic approaches were recently focused on the applica-
tion of cell therapy, strictly related with cardiac tissue engi-
neering by design appropriate in vitro approaches and/or in 
vivo transplantation [29, 30]. Very recently, our group has 
described a new and reproducible non-enzymatic isolation 
method in order to obtain mesenchymal stem cells derived 
from sub-endocardial zone (HSE-MSCs) of human left ven-
tricle from patients undergoing heart transplant for post-
infarct chronic heart failure. We showed that these cells ex-
pressed markers and featured a differentiation potential simi-
lar to other MSC populations, as well as we reported for the 
first time the expression of immunomodulatory molecules, 
namely non-classical major histocompatibility complex 
(MHC) class I HLA-E and HLA-F (class Ib HLA) and 

costimulatory molecules B7-1 (but not B7-2) and the immu-
nosuppressive marker B7-H3, suggesting an inhibitory effect 
on immune system and a favourable outcome from an im-
mune modulation after transplantation. Moreover, these cells 
showed the expression of cardiac markers (connexins-26, -
43, and -45, myosin heavy chain) and cardiac-specific tran-
scription factors (Isl-1, Nkx 2.5, MEF2C, myocardin) [31]. 
The latter findings suggested and highlighted the existence 
of a regeneration potential in failed human hearts and de-
serve further investigations about new sources of MSCs with 
similar features to HSE-MSCs. Apart heart-derived cells, 
different sources of stem cells were explored to be applied in 
cardiac regenerative medicine, as outlined in the following 
sections of the review. 

2. EMBRYONIC STEM CELLS AND INDUCED 
PLURIPOTENT STEM CELLS 

 Embryonic stem cells (ESCs), derived from inner cell 
mass at blastocyst stage of the embryo, are able to generate 
all tissue cell types, leading to the formation of the three 
germ layers (ectoderm, mesoderm, and endoderm), and can 
also differentiate into cardiomyocytes [32 and refs. therein], 
but they may conversely generate tumor formation and im-
mune rejection response by the host [33, 34]. Moreover, the 
ethical problems related to their procurement and use, to-
gether with tumorigenity and rejection response [35], made 
necessary to find other sources of cells with similar behav-
iour. Induced pluripotent stem cells (iPSC), firstly described 
by Takahashi and Yamanaka in the 2006 [36] were derived 

 

Fig. (1). Schematic representation of the main cellular sources for heart therapy compared to the main cellular populations of heart resident 

stem cells. Bone marrow, adipose tissue and perinatal tissues represent the main alternatives to be explored for cellular therapy of human 

heart. Conversely, Human hearts have been proved to contain stem/progenitor cells populations which biology has only been partly explored. 

No data exist on the possible interactions between endogenous and exogenous stem cells in heart repair mechanisms. 
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from adult somatic cells and in vitro genetically manipulated 
by both viral and nonviral methods to express four factors, 
Oct 3/4, Sox2, Krüppel-like factor 4 (klf-4), and cellular 
myelocytomatosis oncogene (c-myc) (in mouse fibroblast), 
or together with Oct 3/4, Sox2, Nanog, and Lin28 transcrip-
tion factors (in human fibroblasts) [37 and refs. therein]. 
Progenitor cells from other adult tissues were hypothesized 
as other possible source for potentially cardiogenic transdif-
ferentation, by genetic incorporation of several transcription 
factors. Fibroblasts were reprogrammed towards cardiomyo-
cytes or endothelial progenitor cells [38]. Human embryonic 
stem cell-derived mesenchymal stem cells, were repro-
grammed to express fusogens that can create multinucleate 
cells [39], and selected stem cell antigen 1-negative (Sca-1-) 
skeletal muscle [40]. A comparison between different adult 
somatic cells from bone marrow, hair keratinocytes, and skin 
fibroblasts, induced towards cardiomyocytes, showed an 
higher differentiation efficiency for bone marrow cells than 
other cell types [41]. Several differentiation methods have 
been reported using embryoid body formation, coculture 
with stromal cells (visceral endoderm-like cells), or 2D sys-
tem (Matrigel) culture, and supplementation of cytokines and 
bone morphogenic protein (BMP) [37]. Nevertheless, some 
problems still remain concerning the incomplete integration 
of vectors and the associated risk of tumorigenesis [42]. 
Moreover, transplantation methods and post-transplantation 
efficiency of these cells need to be better improved, due to 
their poor survival, the reduced engraftment potential, and 
the safety issues. As reviewed in literature, the drug or hy-
poxic preconditioning of stem cells populations, in addition 
with growth factor cocktails, resulted in an upregulation of 
all those factors involved in survival, migration, myocardial 
tolerance, and possible differentiation towards a cardiac fate 
[43, 44]. 

3. BONE MARROW AND ADIPOSE-DERIVED MES-
ENCHYMAL STEM CELLS 

 Adult tissues (blood, bone marrow, muscle, bone, dermis, 
adipose tissue, and others) host adult mesenchymal stem 
cells (MSCs) that can potentially differentiate into mesoder-
mal derivatives, such as adipocytes, fibroblasts, chondro-
cytes, osteoblasts/osteocytes, stromal cells (reviewed in [45]) 
and towards neural cells (as for bone marrow-derived stem 
cells, BMSCs) [46], or eventually, neuron protecting cells 
(as for adipose-derived stem cells, ASCs) [47]. As reviewed 
by Elnakish and colleagues, the use of MSCs in preclinical 
trials (especially in experimental animal models) showed an 
improvement of left ventricular function, a decreased size of 
infarcted area, and a decreased mortality [48]. Nevertheless, 
bone marrow (BM) and adipose tissue (AT) were extensively 
studied and still remain the major sources of adult stem cells 
used in most clinical trials, since their transplantation seems 
to be related to an improvement of heart physiology [49-53]. 
Coculture protocols with neonatal rat ventricular myocytes 
highlighted the cardiogenic potential of BM-MSCs, suggest-
ing the influence of soluble factors [54]. Studies in rat mod-
els showed the efficiency of both intravenously-injected 
BM-MSCs and endogenous BM-MSCs in homing and re-
generating myocardium under the oral administration of car-
diogenin, a natural active compound extracted from Geum 

japonicum, even if the use of exogenous BM-MSCs may be 
associated with the risks related to dangerous intramyocar-
dial injection, as well as possible immune rejection response, 
and the oral administration of cardiogenin is not yet studied 
at pharmacodynamic and pharmacokinetic level for clinical 
therapy [55]. In a similar way, rat adipose-derived MSCs 
(ACSs) treated with phorbolmyristate acetate, a protein 
kinase C (PKC) activator, showed the expression of cardiac-
specific markers (such as cardiac troponin T, myosin light 
chain, myosin heavy chain) and a reduction of infarct size, 
interstitial fibrosis, and apoptotic index, suggesting a possi-
ble role in restoration of electromechanical function in in-
farcted rat hearts [56]. Zuk and co-workers analyzed the dif-
ferentiation potential of adipose MSCs from human lipoaspi-
rate towards adipogenic, osteogenic, chondrogenic, neuro-
genic and myogenic lineages [57]. Cardioprotection induced 
by BM-MSCs and ASCs seems to be related also to hypoxia 
condition and reduced both senescence [58] and apoptosis 
due to the release of VEGF and IGF-1 [59]. In parallel, the 
oxidative stress resulting after cardiac injury may play an 
important role on the prevention of apoptosis, perhaps by 
expression of specific receptors on BM-MSCs, such as Toll-
like receptor 4 (TLR-4) (reviewed in [60]). BM-MSCs are 
able to differentiate in vitro towards adipocytes, chondro-
cytes, and osteocytes, after treatment with tissue-specific 
growth factor-supplied culture media [61]. As summarized 
by Pourrajab and co-workers, it was also supposed that the 
mechanisms by which BM-MSCs can reach the site of injury 
and exert their regulation in cardioprotection is related to the 
modification of extracellular matrix (ECM) under the 
stressed cardiac cells releasing of proteinases, such as metal-
loproteinases (MMPs), on the different collagen molecules 
[60]. MMPs constitute a broad family of extracellular prote-
inases which are involved in the development, function and 
pathogensis of several tissues and organs [62-64] as well as 
in immunomodulation by mesenchymal stem cells (reviewd 
in [65]). ECM fragments seem to be involved in BM-MSCs 
chemotaxis and were also associated to the subsequent 
downregulation of collagen synthesis by resident cardiac 
fibroblasts [60]. Remodelling of ECM and its alterations 
exerted by MMPs under stress conditions may critically af-
fect microenvironmental influence on adult cardiac progeni-
tor cells and cardiac regeneration potential [66]. These find-
ings highlighted that paracrine molecules may have crucial 
therapeutic effects in cardioprotection and regeneration. De-
spite their extensive use in research, adipose tissue and bone 
marrow are still affected by heterogeneity of the cell pheno-
type [51, 67], highlighting the complexity to isolate specific 
subpopulation, such as mesenchymal stem cells (MSCs). 
Moreover, the amount of MSCs that can be isolated from 
bone marrow is too low (estimated at about 0.001 to 0,01% 
for 1.073 g/ml of bone marrow aspirate) [61], because also 
the problem related to the availability of bone marrow tissue. 
In contrast to other adult stem cells, BM-MSCs were pheno-
typically described as non-hematopoietic (CD14-, CD34-, 
and CD45-) fibroblast-like cells, that are negative also for 
endothelial marker CD31, and possess a specific immuno-
modulatory activity, due to the absence of MHC class II and 
co-stimulatory molecules (CD80-, CD86-) that may render T 
lymphocytes anergic (reviewed in [68]), suggesting the pos-
sibility of allogeneic transplantation. 
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4. HUMAN UMBILICAL CORD: THE HIDDEN PO-
TENTIAL OF A DISCARDED TISSUE 

 Despite the extensive use of BM-MSCs in pre-clinical 
studies, many groups were involved, in recent years, on iso-
lation, characterization, and differentiation potential of 
MSCs derived foetus-associated organs, known as perinatal 
(or extraembryonic) tissues, mainly the placenta and the hu-
man umbilical cord. Currently, they are both discarded as a 
waste of the labour, but they proved to contain large num-
bers of multipotent mesenchymal cells, which were supposed 
to feature intermediate characteristics between embryonic 
and adult stem cells [69]. The amnios has shown to bear ad-
herent MSCs with classical pattern of molecular markers and 
multipotency (as shown by in vitro differentiation towards 
endodermal, mesodermal, and ectodermal lineages) [70]. 
These cells express cardiac-specific transcription factors 
(such as those belonging to GATA family), and MHC class I 
molecules HLA-A, -B, and –C. It has been demonstrated that 
these cells exert in vivo a differentiative potential towards 
cardiomyocytes and result in improved cardiac function [71, 
72]. Moreover, as well demonstrated by Park et al. (2011), 
perivascular cells from placental villi showed adhering and 
migratory behaviour and myogenic differentiation in both in 
vitro and in vivo experiments [73]. Parolini’s group well re-
viewed and analyzed regenerative potential of placenta-
derived cells [74]. Moreover, they demonstrated the effect of 
human amniotic membrane fragments on restoration of car-
diac ischemia (in a rat model), showing an amelioration of 
cardiac dysfunction [75, 76]. These effects may be due to 
release of mediators rather than direct differentiation of am-
niotic cells. Placenta-derived amniotic MSCs were also ana-
lyzed and proposed for use in therapy, due to their immuno-
modulatory activity (exerted by the inhibition of T lympho-
cyte proliferation) for which the release of prostaglandins 
has been suggested at the main mechanism [77]. Recent data 
highlighted the human umbilical cord (hUC) as a source of 
mesenchymal stromal cells. hUC is an extraembryonic for-
mation that originates at day 13 of the embryonic develop-
ment [78] that connects foetus and mother during pregnancy 
through the placenta. At term, HUC consists of a simple 
squamous epithelium (except the cubical amniotic epithe-
lium at the junction of the cord with the placenta), which 
embrace three major vessels (two arteries and one vein) im-
mersed in a surrounding connective tissue (mature mucous 
connective tissue), which does not present neither lower 
calibre vascular structures nor neural elements [79]. The 
stromal connective tissue consists of an abundant ECM dis-
tinguishable in three zones, the subamniotic stroma, the 
Wharton’s jelly (WJ), and the vessels’ adventitia, and rich in 
collagen (types I, III and VI) and in basement membrane 
molecules such as collagen type IV, laminin and heparan 
sulphate proteoglycan [80, 81]. Type VII collagen is ex-
pressed in the epithelium and in the endothelial cells, but it 
was found as predominately expressed by fibroblast-like 
stromal cells [82]. ECM components are a storage of growth 
factors (including IGFs, FGFs and TGF- ) that sustain these 
stromal cells [83] (Sobolewski et al., 2005). The abundant 
ECM of umbilical cord stroma contain dispersed stromal 
mesechymal stem cells (MSCs). Studies by Takechi and col-
leagues [84] referred to these cells as ‘myofibroblasts’, a 
term firstly used by Majno and colleagues (1971) [85, 86]. 

Wharton’s jelly cells (WJCs) are fibroblast-like cells sharing 
common markers (such as CD13, CD29, CD44, CD73, 
CD90, CD105, -smooth muscle actin, and vimentin) with 
other MSCs [87-91]. Since many protease-based isolation 
protocols described in literature could lead to damages to 
surface molecules, we set up and standardized an in vitro 
non-enzymatic isolation protocol of stromal cells from WJ, 
named Wharton’s jelly cells (WJCs) or ‘human extraembry-
onic mesoderm stem cells’ (HEMSCs), on the basis of the 
migratory capability of mesenchymal cells to the plastic sur-
face of culture flasks, thus preventing cell membrane pro-
teins integrity [92]. These cells showed a fibroblastoid mor-
phology, genetic stability, telomere activity, and good clon-
ing efficiency (10-12%) after several passages in culture, a 
pattern of markers similar to other mesenchymal stem cells 
(including CD10 and CD13), at both protein and RNA level. 
They featured multipotency and were differentiated into os-
teoblasts and adipocytes. We also suggested a possible im-
mune suppression mechanism due to the expression of mole-
cules involved in T cell response inhibition, such as a par-
ticular MHC class I, HLA-G, normally expressed by tro-
phoblastic lineage in order to inhibit NK cells response ver-
sus allogeneic foetus [92]. As reviewed by Prasanna and 
Jahanavi (2011), WJCs showed a lymphoproliferative sup-
pression stronger than those exerted by BM-MSCs [93]. 
Moreover, we demonstrated that WJCs maintained immu-
nomodulatory molecules (HLA-G, -E, and -F) also after dif-
ferentiation in vitro, supporting our concept about the large 
plasticity of these cells and their use in regenerative medi-
cine for allogeneic therapy [92, 94-98]. As for placenta-
derived MSCs described above, also in WJCs lymphoprolif-
erative inhibition was linked to the expression and release of 
soluble factors as prostaglandins [99] and IL-10 [100]. Im-
mune tolerance instauration during pregnancy (thus prevent-
ing rejection of allogeneic foetus) is also ensured by the re-
lease of soluble 10 kDa Heat Shock Protein (HSP10), also 
known in literature as Early Pregnancy Factor (EPF) by pla-
cental structures [101]. In addition, we demonstrated that 
these cells do express CD68, a typical monocyte/macrophage 
cells marker at both protein and mRNA level [102]. This 
result highlighted the need to understand and to explain the 
biological function of ‘non-classical’ patterns, taking into 
account the novel panel of markers which we previously 
described, such as the expression of costimulatory CD80 
(B7-1), but not of CD86 (B7-2), and the expression of HLA-
A and especially HLA-G, but not of HLA-DR (MHC class 
II) [92]. Moreover, Zhou and colleagues described a reduced 
secretion of TGF-  and IFN-  by lymphocytes induced in 
co-culture with WJCs [103]. Thus their immunomodulatory 
capability support our hypothesis about their possible use in 
regenerative medicine. Moreover, the expression of 
vimentin, -smooth muscle actin, and cardiac-specific mole-
cules, mainly connexin 43, c-kit/CD117, GATA 4 [92, 104], 
reinforces the concept that hUC is a novel and promising 
source of readily available autologous cells for cardiac tissue 
engineering. This concept would be applied not only to im-
prove damages related to heart failure or ischemia, but also 
to provide innovative therapies for paediatric patients with 
congenital heart pathologies and defects [105-107]. Costa 
Pereira and colleagues isolated WJCs with an enzymatic 
protocol. The cells underwent differentiation towards car-
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diomyocytes, using 5-azacytidine. After 21 days the adherent 
cells showed cardiomyogenic morphology and a slight spon-
taneous beating [108]. Hollweck et al. (2011) described the 
effect of six different cardiac differentiation protocols on 
WJCs, assessing the efficiency of oxytocin with respect to 5-
azacytidine [109]. Nevertheless, the use of enzyme isolation 
protocols may drastically induce damages on surface mark-
ers that could result in modification in phenotype 
characterization and regarding their response when 
transplanted in vivo. Future investigation is needed in order 
to unify isolation protocols, create co-banking of WJCs, and 
establishing hUC as a reliable source of stem cells without 
ethical and safety issues [110]. Moreover, little is known 
about differentiation of WJCs towards cardiomyocytes with 
both in vitro and in vivo experiments for further application 
in pre-clinical and clinical trials. 
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