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Polygonal Mesh Segmentation by Surface Curvature Diffusion

Abstract: One of the most popular 3D object representations in Computer Vision
is the polygonal mesh, which is a sets of vertices, edges and facets having some
adjacency relations. Several applications such as shape matching, shape retrieval,
3D data compression, etc. require mesh segmentation, which consists in the de-
composition of an object into its meaningful components. Mesh segmentation is a
very hard problem since it can be reduced to the graph partition problem which is
an NP-Complete. Many supervised or parameters dependent algorithms have been
developed to produce sub-optimal solutions according to different paradigms such
as Region Growing, Clustering, etc.

In this thesis we present a new method based on diffusion of some energy function
over the surface of the object.

By miming the heat diffusion process, Surface Curvature Diffusion (SCD) clas-
sifies the vertices of a mesh by distributing the mean curvature of the object on the
mesh surface. SCD uses the discretization of partial differential equations to model
the diffusion of the curvature over time and it segments the mesh by analysing the
trend of such a diffusion on the vertices.

SCD depends only on the initial state of the curvature and it is performed until
the energy reaches the equilibrium. Then it is parameter-free and time independent.

We show some of several experiments carried out by using different kinds of
meshes and we show that SCD is very fast and accurate. Moreover, it allows to
rightly detect the most of the feature-edges when it is compared to other techniques
present in literature. These features together with the lack of any tuning makes
SCD a very interesting method for mesh segmentation.

Keywords: Three-Dimensional Polygonal Mesh, Mesh Fairing, Surface Fit-
ting, Mesh Segmentation, Energy Diffusion, Surface Curvature Diffusion, Tensor
Voting, Normal Voting.
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Introduction

The interest of researchers in digital 3D object analysis rise up during the past
decades due to the advances in computer technologies together with the birth of
new fields of research. The generation, representation and manipulation of virtual
objects are the principal problems in several context such as: engineering, robotics,
computer vision, medicine, molecular biology, entertainment, etc.

The generation of 3D virtual objects can be accomplished by either specific
software or particular acquisition devices which allow to generate virtual objects
from the real world. These devices are able to gather the all the information of the
objects in order to produce 3D data which is typically represented either by volumes
or by cloud of points. In this thesis we are only interested in 3D data obtained by
some laser scanner acquisition device, more precisely we focus on polygonal meshes
which are a particular representation of the surface of the objects by means of
graph-type structures whose nodes are the points acquired from the real world.

There are many applications relying on the analysis of three-dimensional meshes.
For instance, the mesh representation is widely used in Computer Gaming and in
other field of entertainment. In these contexts it is important to simulate physical
phenomena involving 3D objects efficiently. Shape retrieval is another important
application which exploits largely the mesh representation. Indeed, it requires to
match an object against some given model in order to retrieve from a database,
all the objects having similar shape to the input one. The key problem of many
application involving 3D representation is the mesh partitioning in its meaningful
(semantic) components. The meaning of a component highly depend on the type of
application, thus there no exists a unique way to perform the object segmentation. A
very popular segmentation exploits the discontinuities of the surface, called feature-
edges, to define the different parts of the object.

Mesh decomposition is a very hard task. Starting from a mesh it is possible to
define its dual graph, and the mesh segmentation problem is equivalent to the graph
partition problem which is an NP-Complete problem. Hence, we need to resort to
approximate solutions.

Several mesh segmentation methods are present in literature. Many algorithms,
according to different paradigms such as Region Growing, Clustering, etc. produce
sub-optimal solutions. Unfortunately most of these techniques can not be easily
embedded in automatic segmentation systems, because they require the tuning of
some parameters or threshold levels, to produce a significant segmentation. Thus,
the search for parameter-free methods is particularly interesting.

Mesh Segmentation

The surface of an object is decomposed into segments according to some specific
problem to be solved. Different applications require different type of segments with
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different shapes and properties, and segmentation algorithms can be generally clas-
sified, according to their goals, into one of the following categories:

e Surface Type Segmentation Algorithms. Applications as terture map-
ping, morphing, mesh simplification, and mesh compression require to decom-
pose the object into small regions satisfying some criteria. For instance, regions
may present constant curvature or they could match some surfaces primitive
(cylinders, spheres, etc.).

e Component Type Segmentation Algorithms. Several applications need
to understand the object shape to fulfil tasks as shape matching, shape re-
trieval, object reconstruction, collision detection, etc. This class of mesh seg-
mentation algorithms decompose the objects into their meaningful parts. For
example, an object representing a human hand can be decomposed into its
fingers and palm.

Mesh segmentation problem is an NP-Complete problem and different approxi-
mate solutions have been proposed, and the three principal segmentation method-
ologies reported in literature are:

e Region Growing Based Methods. This class of algorithms segment an
object by growing regions starting from seed elements, where these seed ele-
ments can be chosen in different ways and the region growing process is ruled
by the underlying geometry of the mesh surface.

e Clustering Based Methods. Clustering is widely used in several problems
of data analysis. Here, clustering methods are used to perform segmentations
by merging the mesh elements into regions, according to some cost function
based on the local geometrical properties of the surface.

e Spectral Analysis. The eigen analysis of the Laplacian matrix of some graph
associated with the mesh, is used for mesh compression purposes. Each entry
in the matrix encodes the probability that two elements belong to the same
segment.

Thesis Contributions

In the context of mesh segmentation based on the local surface analysis, we proposed
two methods to locate the feature edges over the surface of an objects. Both methods
first assign a weight to each edge of the mesh, where an edge is the line joining two
vertices of the triangulation which describe the mesh. A neighbourhood of each edge
is then considered. Such neighbourhood is decomposed into disjoint layers, according
to the distance from the central edge. The first method analyses the variance of the
weights within each layer and classifies the feature edges through linear regression.
The second method defines a measure of saliency of each mesh element based on
some fuzzy membership. The fuzzification process induces a segmentation of the
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surface into three sets: the set of feature edges, the set of smooth surfaces and the
set of ramps, namely the region of the surface close to feature edges.

In this thesis we propose the Surface Curvature Diffusion (SCD), which is an
automatic mesh segmentation method based on the diffusion of some energy function
defined over the surface of the mesh. The key idea is to reproduce the physical
phenomenon of the heat diffusion, through the distribution of the mean curvature of
the object over its surface. As the physical process acts in the continuous case, SCD
solves the problem of curvature diffusion by means of discretized partial differential
equations depending on both the spatial coordinates of the points and time.

At the initial time (¢ = 0) the energy function coincides, point by point, with
the mean curvature of the object. The algorithm tracks the evolution of the energy
over all the points of the surface and it classifies the object vertices according to the
variation of their energy. At the end of the process (t = t,nqz), feature-edges are
characterized by a large loss of energy released to their neighbouring points. While,
points lying on smooth surfaces increase their energy.

Finally, by using the local energy variation, SCD defines an height map and
applies a region growing based algorithm to locate the object components.

SCD uses as input data obtained by range images acquired by some devices,
and it is both parameters-free and time independent, because the diffusion process
is related only to the shape of the object and always terminates at equilibrium.
Furthermore, as the proposed algorithm simulates an adiabatic process, the total
curvature of the object is preserved, as in the physical phenomenon.

Surface fairing is a very important tool in mesh processing. Noise is typically
suppressed by moving the vertices along the normals to the surface with speed
equal to the mean curvature (mean curvature flow). On the contrary, SCD is able
to perform an effective surface de-noising only by measuring the total variation of
the vertices energy.

Several experiments on different kind of meshes show that SCD is robust, fast,
accurate and efficient.

Thesis Outline

This thesis is organised as follows:

e Chapter 1 describes the most important 3D data generation methods. In
particular we focus on range data representation. Here, we also define the
boundary mesh representation as a set of vertices, edges and convex polygons
with some adjacency relation. Furthermore, we briefly discuss about the
principal mesh generation techniques.

e In Chapter 2 we discuss about the principal algorithms reported in literature
to estimate differential properties of surfaces and we also introduce other
surface descriptors based on Tensor Voting. Moreover, the basic principles of
mesh de-noising are discussed.
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e In Chapter 3 we summarize the state of the art of the mesh segmentation
methods. In particular, here we explain Region Growing, Clustering and Spec-
tral Analysis methods. In this chapter we also focus on both the Watershed
Transform and mesh edge-detection algorithms developed so far. Finally, we
discuss the Normal Voting approach.

e Chapter 4 introduces diffusion based image processing and it presents our
SCD method. Some of the experiments carried out to validate the effective-
ness of the proposed algorithm are also reported. Moreover, the SDC results
are compared to the outcome of some of the most important edge-detection
algorithms present in literature and future works are finally proposed.
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Three-Dimensional Objects

The representation of a three-dimensional object by a computer requires a wvirtu-
alization process, typically performed by the generation through a model, or by
acquisition of a real-world object, or by a mix of both techniques. 3D digital objects
are usually divided into two categories: solid, where the objects are represented by
a volume and boundary, where the objects are represented by a surface.

Since our work relies on triangular meshes, which are a particular type of bound-
ary objects, in this chapter we will focus on the boundary category.

1.1 Three-Dimensional Objects Generation

3D modelling and computer gaming focuses mainly in generating of 3D models
through specialized software like 3D graphical engines and libraries for computer
programs. The rendering of objects for the generation of very realistic 3D scenes
and the interaction with wvirtual 3D worlds requires to simulate different physical
phenomena as collisions and motion. Furthermore, features like lighting and tex-
turing are widely used. Modelling is also performed in Computer Aided Design
(CAD) for engineering purposes. A very important tool used in CAD problems is
represented by Non-Uniform Rational B-Splines (NURBS) [51|, which provide some
representations of 3D geometry and are able to describe every shape, from a simple
line to a very complex organic structure.

1.2 Three-Dimensional Objects Acquisition

3D virtual objects can be also obtained from the real-world by using some kinds of
acquisition systems [67]. Different devices are able to capture the 3D shape of a real
object, like a camera captures a 2D snapshot of a real scene.

Data acquisition is a necessary step to represent a real 3D object through a
computer. This process gathers all the spatial information of the object by returning
a collection of data that can be easily managed by an automatic system.

There exist several real 3D objects acquisition devices, and different systems
produce different virtual object representations, each one with own advantages and
disadvantages about memory requirement, processing simplicity and level of object
details.

The main data types are: range data and volumetric data. The former is gen-
erally obtained by active range sensor systems, the latter by tomography systems,
ultrasounds, satellite terrain mapping systems, Magnetic Resonance Imaging, etc.
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A general range sensor system is composed by a laser device and a camera. The
acquisition process uses a beam of laser light to hit the object and the measure of the
light reflected by a point on the object is used to compute the spatial coordinates of
such a points. The object is scanned from different point of view and the resulting
images must be merged together in order to have a full representation. Figure 1.1
shows the typical range sensor system scheme. A plane-type beam of light intersects
the object in P, by measuring the distance between P and the camera (depth of the
point) it is possible to map the 3D coordinates of P on P’ belonging the 2D camera-
space. The distance between P and P’ gives the depth information of P. This process
returns an image (range image), where the point depth replaces the pixels brightness
intensity information.

laser

Figure 1.1: Schema of a general range sensor system.

Range images are a special class of digital images and are generally represented
in two forms. The first is a list of 3D coordinates points with no specific order,
usually denoted as cloud of points; while the second one is a matrix of depth values
with explicit spatial organization, i.e. a matrix A = a;; where a;; = 2(7, j) indicates
the depth information of the point with coordinates (i,j). Figure 1.2 shows an
example a two range images of the surfaces of a sculpture.

Volumetric acquisition systems acquire data by shooting the object by pene-
trating rays (such as X-rays). Different materials absorb different rate of radiation
and, by measuring the exiting beam it is possible to obtain a set of cross-sectional
2D images (slices). The whole shape of the object is reconstructed by stacking the
output images through the process of vozelization, see Figure 1.3.

Volumetric data are represented by a set of voxels. The wvozel (volume pixel)
is the smallest unit in 3D volumetric data. The voxel can be represented by either
a box-shaped volume or a sample point on a regular 3D grid, and it stores all the
available information about the object features in that volume (i.e. colour, opacity,
gray level, labels, etc.).

In the case of a 3D lattice a volumetric image is a subset of Z3, voxels are cubes
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Figure 1.2: Two range images (left and center) representing two different points of
view of a sculpture, with the reconstructed shape (right)

o2 = 70—

T Cross-sectional image

Figure 1.3: Voxelization schema.

with edges of unitary length, arranged as in Figure 1.4, and . Note that two voxels
might share a surface, an edge or a vertex determining three kind of connectivity.

Objects data need often to be described by some mathematical model. Objects
surfaces represented by range data or volumetric data can be modelled by parametric
surfaces and implicit surfaces, respectively. Parametric models are usually given by
a 2D to 3D mapping function f, while implicit surfaces are represented by three
dimensional scalar field f(z,y,z) =0 [29].

Several conversion techniques have been developed to transform a surface repre-
sentation into another one. A well know method, for implicit to explicit conversion,
is the Marching Cube (MC') algorithm [35], which performs a sampling of the im-
plicit surface f(x,y,z) = 0 on a uniform spatial grid and considers the approximate
intersections between the grid and the surface. The drawback of the method is the
poor reconstruction of sharp features. Over the years, many improvement of the
MC technique have been presented. In [61] the size of the triangles is adapted to
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Figure 1.4: 3 x 3 three dimensional lattice. With this kind of connectivity, an
internal voxel (black box) has 26 neighbours.

the shape of the object surface, while in [29] a directed distance field is used along
the z and y directions at every grid point, resulting in a good reconstruction near
sharp zones.

Several algorithms to convert from explicit to implicit forms are presented in [28],
where these algorithms convert 3D geometric objects into their discrete voxel-map
representation by using a Cubic Frame Buffer (CFB), namely, a 3D array of voxels
which stores regular volumetric datasets.

1.3 Three-Dimensional Boundary Objects Representa-
tion

Our research focus on the class of objects represented by polygonal meshes, which
are the most popular 3D object representations approximating the objects surface
by a set of simple convex polygons.

Definition 1 (k-simplex) Given a set A of point in the R™ space, the convex
combination of k+1 affinely independent points of V- C A is called k-simplex, where
k<n.

When it is required to highlight the number of points of a k-simplex we use the
notation ¢y rather than ¢.

Definition 2 (s-facet of a k-simplex) Let ¢ be a k-simplexr defined by
V = {vg,v1,...,vr} and let ¢ be a simplezx defined by V' C V| where | V' |= s+ 1.
The simplex ¢ is called s-facet of @ and this relation is denoted by either ¢ > ¢ or
¢ Q.

In other words, an s-facet ¢ is as a convex combination of s+1 points of V' (see
figure 1.6).
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[ ] o0————0
0-simplex 1-simplex

2-simplex 3-simplex

Figure 1.5: Example of k-simplices where each k-simplex is a (k-1)-facet of the
simplex on the right.

Definition 3 (Simplicial complex) A finite set H of simplices is a simplicial
complex if the following conditions hold:

1. ifpe H and ¢ <p = ¢ € H, thal is, each s-facet of a simplex ¢ € H 1is also
i H;
2. either N’ =0 or pNY' < and pN Y’ ', that is, the intersection between

0,0 € H is either empty or a common s-facet.

Figure 1.6 shows some examples of simplicial complexes. The dimension of
a simplicial complex H, dim(H), is the maximal dimension of its elements. If
dim(H) = k, then H is k-complez.

valid simplicial complex not valid simplicial complex
Figure 1.6: Valid simplicial complex (right) and not valid one (left)
Definition 4 (Simplicial k-complex) A simplicial complex H is k-complez if
dim(H) = k.

Definition 5 (Pure simplicial complex) A simplicial k-complex H is pure if
Voe HIpeH|p<Qop.

Definition 6 (Orientation of a k-simplex) An orientation of a k-simplex is an
equivalence class of the permutations of its vertices obtained by an even number of
transpositions.
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Q@4

Orientable simplices Orientable triangulation

Figure 1.7: Orientations of k-simplices.

Definition 7 (Underlying space of a simplicial complex) The underlying
space of a simplicial complex H is |H| = | .
peH

Note that |H| is a topological space and simplicial complexes are used to rep-
resent manifolds, which are topological spaces, too. Manifolds are used to define
surfaces (2-manifold) and their properties, like differentiability, where it is typi-
cally requires that for each point within the manifold representation, there exists a
neighbourhood homomorphic to the open disk.

Definition 8 (Triangulation) Given a topological space X, a simplicial complex
H is a triangulation if |H| is homeomorphic to X.

A triangulation is maximal if the addition of a new simplex violates the definition
of simplicial complex.

Definition 9 (Orientable triangulation) A triangulation T is orientable if two
k-simplices @, ¢’ € T define two different orientations on the shared (k-1)-facet.

Definition 10 (Polyhedral mesh) An orientable triangulation T is a polyhedral
mesh if T is a pure orientable k-simplicial complex and if each (k-1)-simplex in T is
shared by at most two k-simplices in T.

Given a simplicial complex H let us denote V.= |J ¢o, E = | 1, and
poeH pr1eEH
F = |J o, that represent the sets of vertices, edges and facets of H, respectively.
p2€H
It is possible to define the following three relations:

e VR e = F|(v,0) = ¢

e vR,pf < I,V |(v,0,0") = f;

o ¢R.pf < v, v, V"|(v,V) =€, and (v,v',v") = f;
where v,v',v" € V,e€ E,and f € F.

Definition 11 (Triangular boundary mesh) Given a polyhedral mesh defined by
a set H of 2-simplices, a triangular boundary mesh is M = {V, E, F, Ry¢, Rye, Ret},
M ={V,E,F} for short.
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In the triangular boundary meshes the neighbourhood of a facet is the set of
edges and vertices in relation to that facet, while the neighbourhood of a vertex is
the set of edges and facets adjacent to the vertex. Such neighbourhoods are also
called cycles. When a cycle does not contain any hole is said to be single. Note
that two facets are in relation if they share an edge and the connectivity of a mesh
is related to the adjacency relations of its elements. The connectivity is required to
perform any kind of local analysis as it allows to reach the neighbourhood of each
vertex.

Furthermore a mesh is reqular or structured if each vertex has the same number
of adjacent vertices, otherwise is non-regular or unstructured.

The suitability of a mesh depends on several geometrical features. High quality
meshes are characterized by the following properties:

- the variance of the area enclosed by triangles should not be very large;

- the aspect ratio of triangles should be closed to 1, where the aspect ratio is
the ratio between the diameter of the circumscribed circle and the maximal
edge length of the triangle;

- in the case of unstructured meshes, the variance of the number of adjacent
neighbours of the vertices should be as small as possible.

1.4 Mesh Generation

Many methodologies have been developed for generating a polyhedral mesh start-
ing from a cloud of points. Triangulation is the most important and widely used
approach for unstructured mesh generation; relevant techniques are: Delaunay Tri-
angulation (DT) [31, 18, 46, 11], Advancing Front Method (AFM) [23] and Graded
Triangulation (GT) [44].

Definition 12 (Delaunay Triangulation) A triangulation T on a set V of points
s a Delaunay Triangulation if each simplex of T is circumscribed by an hypersphere
that does mot contain any point in V.

DT algorithms are classified in different groups depending on the approaches
used:

e Incremental Insertion. This class of algorithms perform the DT by starting
with a simplex containing the convex hull of the point set; then other vertices
are inserted progressively. An example is the Watson’s algorithm [46] for 2D
triangulations, which starts with a super triangle that encompasses the whole
domain.

e Divide and Conquer. These algorithms recursively carry out a partition
and triangulation on the input points, then a merging phase is applied in
order to join the resulting triangulations [31, 18, 11].
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The Advancing Front Method (AFM) starts from the boundary of the cloud of
points and adds new simplices progressively. The right location of new elements is
crucial and the main issue is represented by the merging of the located advancing
fronts. Note that in the three-dimensional space, this method produces tetrahedral
meshes.

The Graded Triangulation, defined in the two-dimensional space, exploits both
DT and AFM. The triangulation is improved by adapting number and size of the
triangles to the shape of the starting boundary.

Different applications require different mesh quality characteristics, for instance
in order to achieve very fast motion and rendering, computer gaming meshes are
usually defined by a small number of elements (triangles or quadrilaterals); on the
other hand, scientific applications may need to process large amount of data with
high level of details for feature extraction and surface analysis. Acquisition systems
produce very dense cloud of points resulting in meshes with a very large number
of triangles [68]. In this scenario a very important property is the mesh resolution,
which intuitively indicates the level of detail of the mesh surface and is it related to
the number of vertices.

The simplification of the input data may improve the results of such algorithms
and may reduce the execution time. Progressive meshes adapt the set of mesh points
according to the required level of details, as in some visualization interfaces where
the resolution of the virtual object is related to the zoom level allowing efficient
rendering.

Several papers [36, 55, 57, 62, 21] have been written about mesh simplification
algorithms to reduce the number of vertices by iteratively perform some operations
on either vertices or edges. In order to preserve the shape of the object, the cost
of each operation is usually computed as the distance between the original mesh
an the simplified one. Mesh simplification algorithms are classified according to the
type of operation used to reduce the number of vertices:

e Vertex Removal. In [57, 62| the mesh is simplified by iteratively selecting
vertices for removal, then the neighbourhood of each removed vertex is re-
triangulated. The cost is computed as the distance between the removed
point and the fittest-plane defined on the neighbouring points;

e Vertex Clustering. These methods [36, 55| use a grid structure obtained
from the object bounding-box and all the vertices contained in a grid cell are
cluster together. The object shape is not guaranteed by these methods.

e Edge Collapse. Many algorithms reduce the number of vertices by collapsing
the endpoints of the edges. The approach used in [19] allows the control of
the object details, it computes both the upper and the lower bounds of the
edges length by using two parameters p; and py. The parameter p; indicates
the desired resolution, while po specifies the deviation of the edges length
from the given resolution p;. The shape of the object is preserved by a shape



1.5. Polygonal Mesh Data Structures 13

change measure defined as the maximum distance between the mesh before
and after an operation is applied.

In Computer Vision it is often required a local object analysis for features ex-
traction and segmentation, algorithms often require a topological representation of
the object where neighbourhood operations can be easily performed. For these pur-
poses a suitable mesh representation is useful and local analysis can be accomplished
through the connectivity of the vertices. Notice that two adjacent facets could have
edges with different lengths and this characteristic must be considered during the
evaluation of the surface features, like its differential properties. The algorithm pre-
sented in [19] addresses also this problem and can be used to normalize the lengths
of the edges.

1.5 Polygonal Mesh Data Structures

Basic information needed to analyse an object surface deal with the adjacency be-
tween mesh items, therefore the implementation of objects surfaces segmentation
algorithms requires to access the mesh elements efficiently. Mesh data structures
must describe 2-manifolds and store all the needed topological relations between
elements by keeping track how an item is connected to its neighbours.

Typical mesh queries are:

e access the vertices of a facet;

e access the vertices of an edge;

e visit the edges of a facet according to some order;
e visit the edges adjacent to a vertex;

e visit the facets adjacent to a vertex;

3D data structures can be mainly distinguished into edge-based and face-based,
where the topological information are related to either the edges or the facets neigh-
bourhood, respectively.

Edge-based structures store, for each edge in the mesh, some pointers to its
vertices and to its adjacent edges. On the contrary, face-based structures store,
for each facet, some pointers to its adjacent facets and to its vertices. Each data
structure has its own advantages in terms of memory requirements and simplicity
for topological operations, their usage depends on the application needs. To the
best of our knowledge, at present there are no standard face-based models, while
there are two well known edge based approaches: Winged-Edge [2| and Half-Edge.

In this thesis the Half-Fdge data structure has been adopted when the access
the neighbourhood of the mesh elements in local surface analysis is needed.

The Half-Edge structure duplicates each edge into two wvirtual half-edges accord-
ing to the orientation of the cycle of its facet (see Figure 1.8), moreover it maintains
for each half-edge the pointers to:
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e the opposite half edges;
e the adjacent vertex;

e the adjacent facet;

e the next half edge;

e the previous half edge.

Note that the previous half-edge can be referenced by using only the information
about the next half-edge. Mesh queries can be easily implemented by using this data
structure and with regular meshes they can be performed at constant time.

Target vertex

abpe-jey aysoddo

Figure 1.8: The red edge is duplicated into two half-edges each one oriented accord-
ing to own adjacent facet.



CHAPTER 2

Mesh Surfaces

Several Computer Vision tasks require the estimation of the local geometric prop-
erties of the surfaces. Consider for example the problem of objects segmentation,
that is, the problem of dividing the set of object elements into sub-sets having sim-
ilar geometric features (segments). The recognition of a particular segment can be
driven by using some a priori knowledge about the surface geometry. Furthermore
classification problems need to decide if a segment belongs to some surface type,
like spherical surfaces, cylindrical surfaces, etc. Such segments description is used
to simplify the recognition of a given object in a 2D scene. In addition, 3D object
retrieval exploit segments to match an object against a given model. In contrast,
reconstruction problems need to estimate the fittest surface approximating an un-
organized and sparse cloud of points, typically represented by range images.

These tasks require the analysis of the input data by means of descriptors in-
variant under different transformations, like rotations, translation, scaling, etc.

According to the differential geometry theory, the coordinate system used to
represent surfaces does not influence their properties, which are completely described
by first and second-order derivatives.

The problem of recovering surface properties depends on the input data at hand,
polyhedral meshes and range images are usually processed with different approaches.
In range images, the grid on which points are aligned gives a natural parametriza-
tion of the surface. In contrast, triangular meshes have no natural parametrization
defined on them [63] and implicit parametrization is no suitable for approximat-
ing arbitrary data [45]. Here, mesh surfaces are typically described by second-order
shapes as spheres, paraboloids, ellipsoids, cylinders, hyperboloids, etc. Furthermore,
experimental results show that higher-order surfaces gain little advantages [30].

This chapter focuses on the process of estimating differential quantities on trian-
gle meshes. Noise can heavily affect such estimation, thus many methods, as surface
smoothing (or fairing) have been developed in the past decades to reduce noise due
to high frequencies on the surfaces. We will also discuss the basic principles of mesh
denoising.

Important surface features can be also captured through a tensor voting ap-
proach. As explained in section 2.4, the shape of an object can be inferred from a
cloud of points. The saliency of each point can be described by tensors which encode
some information and propagate it to its neighbourhood. Diffusion is implemented
by a voting mechanism, where each point collects the votes (i.e. tensors) from its
neighbouring elements. The shape of the object is then obtained by analysing the
votes collected at each site. This technique allows to define very useful surface
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descriptors that can be used for mesh segmentation purposes.

2.1 Differential Geometry Background

Differential geometry has been used in Computer Vision for the description of sur-
faces [50]. The local geometry properties are computed on some quadric surface
approximating a set of mesh vertices. In this context the basic concept required
for surface analysis is represented by the surface fundamental forms, which are ex-
tremely important and useful in order to determine the metric properties of surfaces.

Let us assume that S is a surface embedded in R3, represented by an arbitrary
parametrization of two variables X(u,v) which is smooth in the neighbourhood of
a point p(z,y, z).

Each mesh vertex is characterized by a unit normal vector defined as the nor-
malised cross product of the partial derivatives of X:

X, x X,

n=-————
| Xy x Xy ||

For small variations of the parameters (u, v), the first fundamental form measures
the amount of movement on the surface. Such measure is rotation and translation
invariant and does not depend on the surface embedding and on the parametrization.
While, the second fundamental form depends on the embedding in the 3D space and
it measures the changes of the surface normal for some movements of the parameters
(u,v). Therefore, the first and second fundamental forms are considered as implicit
and ezxplicit properties of surfaces, respectively. Such forms are defined as follows [6]:

I(u,v,du,dv) = dX - dX = du? Gdu

I1(u,v,du,dv) = —dX - dn = du’ Ddu

where

du = (du, dv)”

and
X, X, X, X,

D n-X,, n-Xg.
n-X,, n-Xg,

The geometric properties of surfaces are related to the Euclidean geometry of 3D
space by the linear shape operator (3, which generalises the curvature of plain curves.
Such operator is a map §: I'(p) — I'(p), where I'(p) is the tangent (hyper)plane to
the surface at the point p.

Given a vector t tangent to the surface S at p, the shape operator is defined as:
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,B(t) = —th

where:

(VmMﬁzy%MV“?—n@

In other words V¢n represents the directional derivative of n along the direction t.
The operator 3 can be expressed in vectorial form as:

B(t) =G 'Dt

With 5(t) at hand, the principal curvatures and principal directions of S on
point p are obtained by computing the normal curvature of the surface at p in the
direction of a vector t. The normal curvature is defined as:

maw:%%ﬁ- (2.1)

which measures the curvature of the plane curve obtained from the intersection of
the plane defined by t and n with the surface.

The minimum and maximum values of x, are called the principal curvatures
k1 and kg, respectively. These values are obtained according two directions, repre-
sented by the unit vectors e; and ey denoted as principal directions. The principal
curvatures are the eigenvalues of the shape operators, while the principal directions
are the corresponding eigenvectors. The vectors e; and es, together with n define
an orthonormal frame at p, called principal coordinate frame.

According to the Fuler Formula, the normal curvature can be defined, without
loss of generality, by considering the angle 6 between e; and t:

kin(0) = K1 cos? 0 + ko sin® 6 (2.2)

The mean curvature H and the Gaussian curvature K are important surfaces
descriptors and they are derived from the principal curvatures:

21
1
H=— [ r.(0)d0 2.
3= [ #n® (23)
0
and
K= KR1K2. (24)

Note that H and K are the determinant and the half-trace of S, respectively, and
they characterize a surface point p as elliptic (if K > 0), hyperbolic (if K < 0),
parabolic (if K =0 and H # 0), or planar (if K = H = 0).

A neighbourhood of a point p(z,y, z) on a surface S can be approximated by a
quadric surface. Let us represent such neighbourhood with z = h(z,y), where the
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coordinate frame is centred on p and the z axis is aligned with the normal n at p.
The function h is differentiable and by Taylor’s expansion of h at p up to order 2,
the expression for the principal quadric () of S can be derived:

1
h(w,y) = 5 (hg,a® + 215wy + W y*) + R(@,y)

R(z,y)

where hb, is hy, evaluated at p and  lim =0 and
(2,5)—(0,0) 7% + y?
The equation:
1 P2 P P o2
z= §(hmx + 2h8, xy + bl y*) (2.5)

approximates the surface S, and its zero-set of z defines the principal quadric @ of
S at p.

The surface Q) gives all of the important local differential properties of the surface
S. The principal quadric at p can be expressed in the principal coordinate frame
by a local parametrization X(z,y) = (x,y, h(z,y))" with n = (0,0,1)7, resulting
in the following matrices:

10
(0 1)

p p
S:D:<hm: hzy)

Wy hiy
The principal curvatures k1 and ko are the eigenvalues of S, hence the principal
quadric is:

1
z= 5(/4;1362 + Koy?) (2.6)

2.2 Approximation of Local Surface Properties

Though several methods have been proposed in literature to estimate several differ-
ential properties on triangular meshes, there is no consensus on the most appropriate
available techniques [50]. Furthermore, the choice of a particular method may de-
pend on the types of data to be processed. Despite there are several points of view
about the best estimation methods of the surface properties, it seems that the most
suitable approaches are those using the discrete analogous of formulas in the con-
tinuous case. In this contribution, the surface properties are extracted by fittest
quadric, hence in the following we will give major emphasis to these techniques.

2.2.1 Principal Quadric Estimation

Given a triangulation 7' (see Chapter 1), the estimation of the principal quadric at
some point p on 7" involves the computation of the normal n at p. Such estimation
depends on the mesh structure around each point, then different meshing might
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produce different results. Many approaches have been adopted to estimate the
mesh normals, and usually they are based mainly on the average of the normals
belonging to the facets adjacent to p. Let us denote by N(p) and M(p) the sets of
vertices and facets adjacent to p, respectively. The normal at p is estimated through
the weighted average:

=n
Z wing
i=1

n

| ;wim |

where n. = |N(p)|.

The weights w; can be computed according to different approaches [43, 24, 39|.
For instance it can be used the area of the barycentric cell at p (i.e. the cell obtained
by joining the centre of mass of each facet with the middle point of its edges), or
the angles of the facets adjacent to p (w; = 6;), see Figure 2.1 a and b.

AP
KL\
Wz

a b

Figure 2.1: Local regions around a vertex [17]. a) Finite volume region using
barycentric cells. b) External angles of a Voronoi region.

The vertices of a mesh are expressed in the world (global) coordinate frame.
Once the normal is estimated, the quadric can be fitted by first aligning the neigh-
bourhood N (p) of a vertex p with the principal coordinate frame associated with p.
The principal coordinate frame can be moved on this world by a translation and a
rotation. The resulting coordinates x = (x,y, z)” of a point in the principal coordi-
nate frame centred in p are related to the its world coordinates X, = (Tw, Y Zw)’
as following:

X = R(Xw - pw)

where R is the attitude matriz [41] and p,, are the global coordinates of p.
The principal quadric at some point p can be expressed in a coordinate frame
x' = (2/,y,7') centred in p, related to the principal coordinate frame by a rotation

around its normal at p:

cosa sina 0

. /
X = —sinaa cosa 0 X

0 0 1
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This yields to the rotated principal quadric:

/ /
Zl:a/x2+b/x/yl+cly2

The associated shape operator matrix is:

2a b
S = C/L /
b 2c
and the differential properties of the surface at point p are computed as:
leal+c/+ (a/_cl)2+b/2
ky=a +c —/(a — )2+ b2
1 / / /
a= §arctan(b ya'— )

K:4a'c'—b/2H:a'+c'

In order to obtain the rotated principal quadric, the rotation from the world
coordinates to the rotated principal frame must be defined. This is achieved by
aligning x/, with the projection of x,, onto the tangent plane defined by n [40]

x' =R (xy — pu)

where the matrix R’ is defined as:

R = (ry,r9,1r3)"
with

TN\
ry = ﬁ, rs=mn, ro = rg X ry (2.8)
The vector i is the first axis in the global coordinate frame, while I is the identity
matrix.

The rotated vertices are finally fitted and the coefficients of the rotated principal
quadric are obtained by solving the following system of linear equations through a

least-squares method:

2 2
1 Y1 T a’ z1
. . . b/ _
2 2 /
xn yn mnyn ¢ Zn

The quadric recovery is greatly influenced by the accuracy of the estimated
normal vectors at mesh vertices. According to [40], the fitting can be improved
by iteratively refine the normal estimation, and the authors proposed the following
procedure:
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1. estimate the rotated principal extended quadric;
2. estimate the the surface normal;
3. use the new normal to compute a new rotation matrix and rotate the data;

4. repeat the above steps until the incremental change in the direction of the
normal falls below some tolerance level

At each iteration the estimate of the normal is computed by using the coefficients
of the extended quadric 2’ = a’z? + Vay + dy?> + d'xz + €'y

_ (_d,, 6,’ 1)T
n= 14+ dr2 + o2

Finally, the mean and Gaussian curvature are computed as follows:
4a'd — b'?
a+cd +de?+dd?+vde
(1 +d? + 612)3/2

H=

According to the techniques presented, the problem of recovering quadrics on
triangle meshes can be divided into the following sub-problems:

1. estimation of the normal of the surface at some point p;
2. computation of the rotation matrix R’;
3. rotation of the data expressed in the world coordinate frame;

4. fitting of the rotated data with a quadric, alternatively with an extended
quadric;

5. computation of the differential properties and the angle « relating the rotated
principal quadric and the principal coordinate frame;

6. estimation of the attitude matrix.

2.2.2 Spatial Averages

The definition of differential quantities in the continuous case can be extended to

triangular meshes by computing some spatial average around each vertex p of the

mesh. The work presented in [17] shows that there exist strong analogies between the

continuous case and the discrete case when the averaging is performed on special

regions contained in the set M (p) of the facets adjacent to p. Such regions are

denoted as finite volumes and can be defined in different ways (see Figure 2.2).
The discrete form of the Gaussian curvature can be defined as:
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K(p) = %// KdA (2.9)
A

where A is some chosen area around vertex p. The finite volume associated with
A is denoted as Ay;. If the Gauss-Bonnet theorem is applied on Ay, the discrete
Gaussian curvature at p can be computed as:

1
i /KdA: o — )ai (2.10)

A piEN(p

where 6; is the angle at p of the ith facet in M(p) (see Figure 2.2 a). The Gauss-
Bonnet is an important result of differential geometry, it connects the geometry
of surfaces to their topology expressed by the Euler characteristic. In order to to
accurately estimate the spatial average, a suitable finite volume must be defined.
Voronoi cells provide tight error bounds [17] and assuming that M (p) contains only
non-obtuse triangles, the total area of the patch surrounding p is:

1
AV oronoi = g Z (COt a; + cot 52)”1% - pH2 (211)

pi€N(p)

As shown in Figure 2.2b, a; and ; represent the angles opposite to the edge
pp;. When the patch contains obtuse triangles, the Voronoi cells are constructed
by taking into account the circumcenters of obtuse facets and the barycenters of
non-obtuse ones. The resulting area is denoted as mized area and the expression of
the discrete Gaussian curvature becomes:

K(p) = —— <27T - 2 9@') (2.12)

Figure 2.2: Local regions around a vertex [17]. b) Local region using Voronoi cells.
d) Angles opposite to an edge.

The discrete mean curvature at some vertex p of a mesh can be derived by using
the Laplace-Beltrami operator I, defined as the divergence of the gradient of some
function f. On smooth surfaces, K maps a point p to the vector K = 2Hpn,. On
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triangulations, the operator I over a finite volume Aj; can be expressed as a line
integral over the boundary of the volume:

/ KdA = % Z (cot a; + cot 3;) X (pi — p) (2.13)

At Pi€N(p)

Again, the mixed area is chosen and the Laplace-Beltrami operator is computed as:

1
Kp) = —— (cot a; + cot 3;) X (pi — p) (2.14)
2AMia:ed )
pi€N(p)
I
Hence the mean curvature is Hp = @

2.2.3 Covariance Matrices

The computation of differentiable properties of surface may be not robust under
additive noise, and surfaces may not present suitable smoothness to support dif-
ferentiation. These problems led several authors to adapt the covariance matrices
methods to triangulations [34, 3]. Given a point p of the mesh, the covariance matrix
C7 is computed on the set N(p) as follows:

1 =n 3 3
Cr=— > i —p)pi—p)" (2.15)
i=1
i=n
where p = — ; represents the mean position vector.
here p pi Tep h positi
=1

The eigenvectors t; and to of C define the tangent plane at p, so that the
distances of the surface points in N(p) to this plane are minimized. In addition,
the eigenvector t3 is an estimation of the surface normal n at p and thus C; can be
considered as the discrete equivalent of the first fundamental form matrix G.

According to [3] the discrete second fundamental form matrix can be defined
by projecting the difference vectors (p — p;) onto the tangent plane determined by
C7. The contribute of each difference vector is weighted according to the orthogonal
distance from p; to the tangent plan:

1 i=n

Cir = - Z(YZ -y - ¥)7" (2.16)

i=1

where

yi = [(pi —p) - n] <(Pz‘ -p)- tl)

(pi —p) - t2

The eigenvectors of Cj; are an estimation of the principal direction at p.
Alternatively, since the principal directions lie on the tangent plane, the covari-
ance matrix C’} ; can be built by projecting the normal vectors in N(p) onto the
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tangent plane. Given an estimation of the normal n; of the neighbouring vertices p;
obtained by C7, the matrix C} 7 is computed as Cfy:

1 i=n

Crr = o Z(yz -y —9)" (2.17)

i=1
: it
with y; = (:111 . tz)'
2.3 Mesh De-noising Principles

Real world objects are typically characterized by smooth surfaces. Nevertheless,
all the acquisition methods produce noisy and rough surfaces which need some
smoothing process in order to exploit the differential property of the meshes.
Surface smoothness refers to the notion of continuous differentiability, and mesh
de-noising (or fairing) is related to the appearance of the object surface and it is used
to achieve more accuracy in the estimation of differential quantities (see Figure 2.3).

Figure 2.3: Example of mesh fairing.

The classic approach for mesh fairing uses a constrained energy minimisation on
a functional E(S) defined for a surface S:

E(S) = //(n% + Kk2)dA (2.18)
S

The non-linear dependence of the principal curvatures on S led to employ the
membrane and thin-plane functionals denoted as E,,(S) and E;(S), respectively.

En(S) = / /S (X2 + X2)dudv (2.19)

Ey(S) = / /S (X2, +2X2 + X2 )dudv (2.20)
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Observing that the variational derivative corresponds to the Laplacian, fairing
can be performed by integrating the diffusion equation over time:

X
-, = M(X) (2.21)

where £(X) = Xy + Xy, L2(X) = Lo L(X) and A > 0

The diffusion flow reduces the noise by smoothing the high frequencies on the mesh
surface. More details on the diffusion equation will be given in the Chapter 4.

At each point p the Laplacian can be approximated by the umbrella operator u:

> wipi
pi€N(p)
up)=—<=——-p (2.22)
> w
Pi€N(p)

where the summation w; are positive weights. In order to integrate the diffusion
equation in the discrete case, an iterative process must be defined. The task is faced
by generating a sequence of meshes by using the following update rule for a discrete
time step At = 1:

pUtY  p@ 4 Au(pW) (2.23)

This procedure is known as Laplacian smoothing. At each iteration a vertex is
moved by a displacement computed as the average position of the neighbouring
vertices multiplied by some scale factor A\. Typical choices of the weights are w; = 1,
alternatively a function of the length of the edges pp; are used.

Laplacian smoothing has several disadvantages: unnatural deformation on the
mesh surface may appear if A is not small enough, furthermore the result of smooth-
ing depends on the sampling of the mesh vertices. The restriction on the scale factor
requires hundred of iterations to smooth significantly large meshes. Moreover small
details are lost due to the lack of local shape control.

Variation of the original Laplacian smoothing methods have been proposed [65,
66]. Although the deformations can be minimised by computing a weighted average
of £ and £?, results are still affected by scale problems. According to different
authors, the umbrella operator is not adequate to approximate the Laplacian for
triangular meshes.

A better approach is the mean curvature flow [17] which uses the Laplace-
Beltrami operator to approximate the Laplacian. Here the vertices are moved along
the surface normal with a speed equal to the mean curvature. Given a mesh point
p, in the continuous case the displacement for a time step is:

%~ Hpn®) (224

In the discrete setting, the local update rule is:

pUtD  pU) — H(pW)n(pl)) (2.25)
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This formulation yields to isotropic smoothing, namely, the smoothing process
has the same behaviour along all directions. The problem with this approach is the
local geometry loss, surface features like boundaries, edges and ridges are smoothed
in the same way as homogeneous regions. The detection of high curvature points
through the principal directions can be used to perform anisotropic smoothing. This
is required in order to reduce or suppress smoothing on such points and preserve
small-scale features. The diffusion should be reduced or suppressed in the direction
of such points. In [17] the following update rule is proposed:

Ut () aH(p(j))n(p(j))
where the smoothing weight o is defined as follows:
(1 if |k1| <7 and |ky <7

0 if |k1|>7 and |ke >7 and K >0

o={ 7 i |mf=min(r]|s] [H])
% if |ro| = min(|r1], |kal, [H|)

L if [H| = min(]r], [k2], [H])

where 7 is a user defined parameters. This approach is also dependent on the
sampling of the mesh points and may yield to owver-smoothing as time increases.
Better results are obtained by combining the properties of Laplacian smoothing and
mean curvature flow. The algorithm proposed in [47] moves the vertices both along
the normal and along some direction on the tangent plane. This approach allows
to smooth the surface while improving the sampling rate of the mesh vertices. The
update rule thus becomes:

P e pD 4+ AH (D)) + Clug (@) — (uo(p - n(p)) x uo(p))])

where C' is a positive constant or a function of the surface curvatures, and ug is the
umbrella operator obtained with constant weight w; = 1. See Figure 2.4 to see some
results obtained though the methods presented.

The use of mesh denoising can improve the estimation of differential quantities.
Since mesh processing algorithms often assume the knowledge of some descriptors as
the principal curvatures, smoothing can be used as a pre-processing step although
there is no suitable upper bound in the number of iterations. More considerations
about this problem will be given in the last chapter.
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Figure 2.4: Smoothing of a mesh. From left to right: original mesh, smoothing
obtained by the method presented in [65, 66], mean curvature flow, smoothing
obtained by the method presented in [47].

2.4 Tensor Voting Based Surface Features Extraction

From the Gestalt theory we know that there exist several rules driving the recog-
nition process of the objects, according to the spatial organization of the elements
composing the scene. For instance, in Figure 2.5 q, it is possible to recognise two
plain curves surrounded by some isolated points. Prozimity and good continuity
are just two examples of principles, used to aggregate the elements that compose
higher level structures in the image, and Tensor Voting [42] allows us to simulate
the human recognition process.

Given an object described by an unorganised set of points in both 2D and 3D
space, its shape can be inferred by propagating the information encoded within each
point through a voting process. Hence, voting produces new information about
the underlying global structure of the object. For example, by referring again to
Figure 2.5, the input image is just a collection of coordinates (z,y), after voting,
an estimation of the tangent at each point is obtained. Through a given confidence
measure, isolated point present negligible tangent information. The same reasoning
can be applied for a three-dimensional images, where the normal at each point can
be estimated through voting, and used to infer the whole shape of the object.

Note that, Tensor Voting theory also defines suitable surface descriptors useful
to perform some objects segmentation, as described in Chapter 3.

The Tensor Voting approach presented in [42] is a set of procedures called the
salient feature inference engine. Each point in the input image maintains its
spatial information together with the estimates of its tangent and normal vectors.
Note that the method requires at least the spatial position of the input points. Input
elements will be denoted as tokens.

The whole algorithm can be summarised into three stages:

1. Each input token is encoded as a second order symmetric tensor. When the to-
ken maintains only the position information, the relative tensor is an isotropic
ball of unitary radius.

2. First voting step. The tokens within in a neighbourhood communicate each
other their information. During this stage they are transformed into generic



28 Chapter 2. Mesh Surfaces

second order tensors encoding the confidence of the curve and surface orien-
tation information.

3. Second wvoting step. A dense tensor map is computed by diffusing the infor-
mation of each token to its neighbours. This tensor map encodes the saliency
of each token, and it is used to infer the token point-ness, curve-ness and
surface-ness.

Figure 2.5: Shape reconstruction from a cloud of point in 2D. a) Original data. b),
c) Voting steps.

The choice of tensors can be roughly argument as follows. A token may represent
different types of entities: a point or a curve, or a surface, or these entities at the
same time. In Figure 2.5 the intersection of the curves is both a point with no
associated tangent, and two curves. Tensors allow to maintain all the possible
information at the same time.

A second order symmetric K tensor in matrix form is written as:

A0 0 el
K=(e; e e3)[ 0 X 0| |el (2.26)
0 0 A3/ \el

where A1 > Ay > A3 are the eigenvalues of K and ey, es and e3 are their relative
orthonormal eigenvectors.

In order to make explicit the information encoded by each token, the tensor
K can be decomposed into three components representing three different types of
tensors, namely, the ball tensor, the plate tensor and the stick tensor. These tensors
encode the point-ness, curve-ness and surface-ness, respectively. From the spectrum
theorem [38], K can be decomposed as follows:

K=(\— )\Q)elelT + (A2 — Ag)(elelT + e2e§) + )\3(618,{ + eQeg + egeg) (2.27)

where ejel describes a stick, e;el +egel describes a plate, and ejel +esel +ezel

describes a ball.
The first voting step uses a tensor voting field for each type of tensor and produce
a tensor map. The tensor K relative to some data point p accumulates votes by
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summing the tensors contributions from neighbouring points. This is achieved by
matrix summation.

After the first step the tensor K is decomposed into the corresponding eigensys-
tem, a second voting step is then applied to estimate the orientation of the features.
The ball tensor is not oriented and does not propagate any information. At the end
of the whole algorithm, a tensor encodes likelihood (saliency) of a point belonging
to a particular type of feature and the orientation of such feature. This means that:

e if a token has a relevant saliency value Az related to its point-ness, there is no
orientation information. This condition characterizes junction points;

e if a token has a relevant saliency value (A2 — A3) related to its curve-ness, the
estimate tangent is obtained by t = es. This condition characterizes points
belonging to either smooth curves or surface junctions;

e if a token has a relevant saliency value (A — \2) related to its surface-ness, the
estimate normal is obtained by n = e;. This condition characterizes points
belonging to smooth surfaces.

Finally the global structure of the input object is recovered by inspecting the
behaviour of tensors along a particular direction. For instance, a point belongs to
the surface of the object if its saliency is locally extremal along the direction of such
a normal. Surface extremality and curve extremality are the principal conditions
used to infer the shape of the input points set. Extremal surface points can be
triangulated to obtain a polygonal mesh (see Figure 2.6).

Figure 2.6: Inferring three-dimensional shape of an object from a cloud of point.

Features orientation is estimated by voting within tensor fields. According to
human perception principles, these fields are designed to describe the orientation
that a surface (or a curve) should have, when joining the centre of the field an
another generic point influenced by such field.

We will see in Chapter 3 that tensor voting can be employed to perform edge
detection on triangle meshes.






CHAPTER 3

Mesh Segmentation

3.1 The Mesh Segmentation Problem

Computer Vision problems usually refer to the automatic analysis and understand-
ing of both 2D and 3D images. The segmentation task concerns with the partitioning
of an object into a set of meaningful segments (i.e. non-empty and not overlapping
regions) according to some criteria. Each segment must contain elements of the
object having similar features and the set of segments have to cover the whole input
data. The resulting segments are used to represent data by higher-level structures
and can be used as input for other tasks.

When an object is represented by a 3D mesh, its segmentation produces a finite
set of sub-meshes that are collections of elements of the mesh. Segmentation can
be carried out starting from either the vertices, the edges or the facets of the mesh.
More formally, given a mesh M = {V,E, F}, a sub-mesh M’ = {V' E' F'} of M
is obtained by selecting one target subset S of either V', E/ or F' and by gathering
the other subsets so that their elements are in relation with the target one. For
instance, when the target set is S = V/ C V, then E' C F and F’ C F are the
subsets of elements adjacent to some vertices of V',

Let M = {My, ..., M;_1} the set of sub-meshes obtained by some segmentation
of M. The elements of M must satisfy the following conditions:

1. M= 2EUI M;;

i=0

2. P(M; UM;) =0 for any pair of adjacent regions M;, M;, with ¢ # j
where P is a predicate defined on each M; and it indicates if some criterion function
is satisfied by all elements within the same region.

Mesh segmentation can be also stated as an optimization problem [58]. In this
scenario we needs to define a criterion function J : P(S) — R, where P(S) is the
power set of S, and the goal is the minimization of J under a set of constraints. Note
that J induces a partitioning of S into ¢ disjoint sub-sets, Sy, ..., St_1, by associating
each S; to a score.

The problem of mesh segmentation is strictly related to constrained graph parti-
tioning. Indeed it is possible to define the dual graph [16] G of a mesh M by repre-
senting each element of the target set S as a node of G and exploiting the adjacent
relation among the elements of S to link the nodes of the graph (see Figure 3.1).
The segmentation of a mesh is equivalent to the partitioning of the dual graph by
minimizing the number of cut-edges which is an NP-Complete problem [20, 7].
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Figure 3.1: Dual graph of a mesh where S = F.

The computational complexity of mesh segmentation requires to address ap-
proximate solutions in feasible time. Different strategies have been proposed and
the most important are: region growing, hierarchical clustering and spectral analy-
sis, which will described more accurately in the next sections. Furthermore, mesh
segmentation algorithms have several aims and can be mainly distinguished into two
kinds according to the principal objectives: surface-type methods and component-
type methods.

Different works use variants of the Lo, and Lo norms to measure the planarity
of segments. Let ax + by + cz + d = 0 denote the fittest plane of the elements of a
patch and suppose S =V, the above norms are defined as follows:

Definition 13 (L., distance norm) The mazimum distance of a verter v =
(Vg vy,v2) € V. from a plane ax + by + cz + d = 0 is computed as
|(vr’vyavz’1) : (a’ ba Cad)| <e

Definition 14 (L distance norm) The average distance of vertices {vy, ..., v¢|v; €
1 ¢
V'} to a plane ax+by+cz+d = 0 is computed as i S (v, vy, 02, 1) - (a,b,¢,d))* < e
i=1

3.1.1 Surface-base segmentation

Surface-based methods locate patches, i.e. surface regions whose elements satisfy
some conditions (e.g. a constant curvature).

Many works [15, 5, 73, 22| refer to patch segmentation for mesh simplification
and re-meshing problems. The basic idea is the replacement of a planar patches
with one or more polygons.

Some authors [72] define a specific segmentation locating regions having small
distortion after their parametrization onto the 2D space to solve the texture mapping
problem. In computer graphic applications, textures can be considered as 2D images
employed to give more realism to 3D objects. The texture mapping problem consists
in the mapping of texture points onto the mesh previously unfolded on a plane. The
unfolding process applied on complex surface yields to big distortions errors, thus
the division into small patches usually improves the result.
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Morphing is used to turn an object into another one through a fluid transforma-
tion of the surface and it is another field of computer graphic that takes advantage of
patch segmentation. Indeed morphing algorithms can be enhanced by accomplishing
transformations between surface patches [73].

Surface-based methods have been also used to improve the performances of those
compression algorithms [71] relying on the Laplacian of a graph. Performances are
largely improved when the Laplacian is evaluated on small patches.

3.1.2 Component-based segmentation

Understanding an object is often achieved by the recognition of its different semantic
components. For example, a human body model can be divided into different part
related to the head, harms, legs, etc. Component-type segmentation is used in
several contexts and is usually related to the decomposition of an image into its
meaningful sub-parts.

The disassembly of an object allows the matching of its sub-parts and improves
the automatic recognition process [73, 4, 50|. For example, shapes comparison
is required in database retrieval. Furthermore, several applications deal with the
recognition of objects against a given model. The 3D jigsaw problem concerns the
reconstruction of an object starting from its parts. The set of objects to be "glued"
can be located by first recognizing matching sub-regions [48|.

Computer games often require to detect collision between complex models. The
bounding boxr (BB) of the whole objects is inappropriate, thus more precise colli-
sion detection can be performed by considering BBs enclosing each single compo-
nents [69].

Figure 3.2: Example of a component-type segmentation [70] (left) and surface-type
segmentation [56] (right).

3.2 Mesh Segmentation Methods

We have sketched different segmentation strategies have been mentioned in order to
describe the main issues related with different applications. Although there exist a
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variety of methods, segmentation rely principally on two factors. First, the criteria
used to identify regions, namely, the rules adopted to assign an element to them.
Criteria are usually defined by assuming some a priori knowledge about the objects,
which is related to some descriptor as curvature, symmetry, angles between polygons,
convexity and many other. Second, the constraints used to control the dimension
and the shape of the regions during the segmentation.

Regions identification is typically performed by applying a bottom-up process:
regions are generated by starting from one element and by successively adding new
candidate elements. The insertion order is important, and different orderings yield to
different results. To find sub-optimal solutions a common approach associates some
cost to each insertion, thus the optimal ordering is typically achieved by employing
priority queues of elements, where the priority of an element is in inverse proportion
to its cost.

3.2.1 Region Growing

Region growing is a technique to locate sub-sets of elements in a input data set,
satisfying some criteria. Let o € S be an element of the target set and let Ng(o)
be the set of elements ¢/ € S adjacent to 0. The growth of a region ® starts by
inserting the seed element o and its expansion is then performed by adding those
elements of Ng(o) satisfying some criterion function. Region growing continues by
testing the neighbourhood of each new inserted element until no more insertions can
be accomplished. The order used to check for a valid element to insert is usually
managed by a priority queue on the boundary of ® (see Figure 3.3). Once a region
is located, another growing process begins from another seed not yet considered.
The number of seed elements to initialize a region can be arbitrary. Note that the
expansion of a region can be implemented by a breadth first search on the dual graph
of S.

The region growing segmentation methods might depend on the choice of the
seed elements, furthermore the regions are expanded separately during the execution
of the algorithm. Thus region growing impose some limitations on the results from
a global point of view.

% 5o Ry B

Figure 3.3: Example of region growing. The neighbourhood of the red vertices is
analysed. Grey vertices are inserted into the priority queue for future processing.

Green vertices have been processed and inserted into the region which are expanded
from their boundary.

The texture mapping problem introduced previously can be solved through a
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region growing approach. Texture mapping atlases are obtained by a two-phase
algorithm [33]: first, the features contours are located, then regions are expanded
inward from the boundaries by adding mesh elements. This approach simplifies the
test used to associate an element with an existing region because its boundaries
have been defined, already.

A general model used by many region growing segmentation algorithms is the
watershed transform. Although there exist several watershed methods, only a few
algorithms apply it on 3D meshes. Watershed segmentation is based on the definition
of an height map f : S — R, obtained by different techniques, where S is the target
set. The method can be described by using the analogy with the flooding process
of adjacent catchment-basins. The segmentation algorithms proposed in this thesis
defines a height map that we have used together with the watershed algorithm and
whose detailed explanation is provided in section 3.3.

3.2.2 Greedy Algorithms for Clustering

Clustering algorithms are widely used in different contexts of data analysis, and
segmentation can be considered as a particular clustering of the target set.

Clustering methods for mesh segmentation do not focus on any particular regions
since segments are not located by independent processes. Clustering algorithms
proceed toward a greedy global solution: regions are assembled by merging adjacent
elements or already located segments, and the algorithm always chooses the best
merging operation according to some cost function (see Figure 3.4).

Hierarchical clustering methods start by generating a cluster for each element of
the target set, then clusters are progressively merged until no more operations can
be done. The hierarchical face clustering method [22] performs a partitioning on
the dual graph of S = F'. The algorithm produces a sequence of segmentations such
that for each step, the located regions are larger and contain more elements than the
previous step. Merging of two clusters is performed by an edge contract operation
on the dual graph. The merging cost is computed by using an L, based norm on
the new generated cluster. This method has been used for different applications as
progressive-meshes, surface simplification and collision detection.

Tterative clustering approaches assume that the number of output clusters is
known a priori. K-means methods are examples of iterative clustering. A set of ¢
representative elements of the target set is initially used to represent ¢ different clus-
ters. At each iteration the remaining elements are assigned to one of the t clusters
according to the criterion function and the representatives are recomputed. A com-
mon strategy considers as representative, the center of mass of each cluster, hence
the elements are assigned to the cluster if their distance from its representative is
shorter than the distances from all the other representatives. Note that each region
must be a connected component, while the non-planarity of the surfaces makes the
Euclidean distance unsuitable. Most iterative clustering algorithms overcome this
issues by performing a region growing step before recomputing the new representa-
tives. In [60] the k-means method is used in face-based segmentation of two objects
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for morphing.

LN

Figure 3.4: Example of clustering. Regions labelled with 1,2,3 and 4 are found

through region growing and assembled by using an optimal merge operations order-
ing.

3.2.3 Spectral Analysis

The combinatorial graph partitioning problem can be reduced to geometric space
partitioning problem by embedding a graph G into the space R™ by using the first
eigenvectors of the Laplacian matrix of G [59].

The algorithm presented in [71] uses the Laplacian matrix to perform a com-
pression of the mesh. In order to reduce the execution time, smaller sub-meshes are
processed separately.

The method [53] uses a symmetric affinity matrix W € mat, «,, where n is the
number of facets in the mesh. The element w;; encodes the probability that the
facets ¢ and j are clustered in the same region. Such matrix can be defined in two
different ways, according to the required type of segmentability [54].

In the case of structural segmentability W € mat,«,(0,1) is the adjacency ma-
trix, then

1 if 3 eij € E
wij =
0  otherwise.

For geometrical segmentability, each element w;; is computed by considering
the minimal principal curvature x; and /?3 of the vertices i and j, respectively as

following:
0 if e;; ¢ E
wij =14 ("] + 7)) (&, ")l if k;<0ork; <0
€ otherwise.

Where ?Z is the direction of the edge e;; € F and [ is the normalized length of e.



3.3. The Watershed Transform 37

3.3 The Watershed Transform

Watershed [52] is one of the most important region-based approaches. Such method
employs some height map f, defined on the image elements, and a graph represen-
tation of the image.

Let V be a sub-set of the lattice Z2, and E C Z? x Z? be the set of edges

defining the adjacency relations among the elements of V', we define the graph as
the set G = (V, E).

Definition 15 (Geodesic distance) The geodesic distance da(a,b) within A be-
tween two points a,b € A C 7" is the minimum path length among all paths from

a to b within A. Moreover, the geodesic distance between the point a € A and a set
B C A is defined as da(a,B) = rbnilgldA(a, b).
c

Definition 16 (Geodesic influence zone) Given a set A C Z™ and a subset
B C A partitioned into t connected components By, ..., B;_1, the geodesic influence
zone giza(B;) of a set B; within A is defined as:

giza(B;) ={a € A | da(a,B;) < da(a,B;) Vje [0, ..., t —1] and j # i}

The union of all the influence zones of the sub-sets B; is defined as:

t—1
GIZA(B) = | ] giza(B;)
1=0
The set of points having the same geodesic distance from at least two nearest con-

nected components induces a structure called skeleton by influence zones. Such struc-
ture is defined as the complement of the set GIZA(B):

SGIZA(B) = A\ GIZA(B)

Let V C Z2 be a connected domain, then C(V) denotes the space of real twice
continuously differentiable functions on a V' with only isolated critical points.

Definition 17 Given a function f:V — R belonging to C(V) and h € Rt U {0},
a h-level threshold set is:

Ly={peV|f(p) <h}.

Definition 18 (Topographical distance) Given f € C(V) and p,q € V, the
topographical distance between p and q is:

Dy(p.q) = inf [, IV£((5))]lds,

where v is a generic path (smooth curve) in V such that v(0) = p and v(1) = q.
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The watershed transform typically assigns a different label to each region. Such
a process starts from the minima for f and it propagates until the segmentation is
completed, then all the regions are labelled. In order to simplify the next definitions
we denote by m; a minimum of f € C(V') with label 7, and with {m;}ics the set of
minima whose labels are in I C IN.

Definition 19 (Catchment basin) Given a function f : V. — R belonging to
C(V) with minima {m;};cr for some set of indices I, a catchment-basin Q relative
to the minimum m; of f is defined as:

Q(mi) ={peVIVjel,i#j: f(mi)+ Ds(p,m;) < f(m;)+ Ds(p,m;)

Definition 20 (Watershed transform) According to definition 19, the watershed
of the function f is defined as the set of points not belonging to any catchment basin,

formally:
wshed(f) =V N (U Q(m;))*

The the watershed transform of f is a mapping v : V — IUW, where W ¢ I is
a label:

i if peQ(m)
1(p) =
Wit p e wshed(f)

In the discrete case, the above definition of watershed transform is unsuitable if
the function f exhibits plateaus, i.e. zones where f is constant. Plateaus are very
common features on images and objects surfaces. In order to label plateaus properly,
two different algorithmic definitions have been proposed: watershed by immersion
and watershed by topographical distance. The former automatically takes care of
plateaus, the latter needs a pre-processing on the image.

Let Apin and hypqe be the minimum and maximum values for f, respectively, the
problem of plateaus can be solved by defining a recursive process that increases the
level of f from hyin t0 hpmas- Let Xp, denote the union of the catchment basins at
level h, the set X} can be expanded by considering a connected component obtained
from the threshold set Ly at level h+1. Such expansion is performed by computing
the influence zone of X}, within Lj 1 resulting in an update Xj.q. Note that such
connected component can be also a new regional minima.

The watershed by immersion is defined recursively as follows:

Definition 21 (Watershed by immersion) Let MIN, be the union of all re-
gional minima at level h, then

Xh+1 = MINh+1 U GIZLh+1 (Xh)a h € [hmma hmaz)

The watershed by immersion is the complement of the set Xy, . inV:
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wshed(f) =V \ Xn,,0a

According the definition 21, all non-basins elements contained in Lj 1 but not
in X}, are potential candidates to be assigned to a catchment basin in step h + 1.
A definitive labelling as watershed pixel can only happen after all levels have been
processed.

The watershed by topographical distance assumes that the function f is plateaus-
free, more precisely, each non minimum element has a neighbourhood having lower
values for f. In 2D images this restriction is relaxed by introducing the lower
completion lc(f) of the function, which transform f into lower complete f* = lc(f).

The set of neighbours of a point p € V on G = {V, E} is denoted by Ng(p).

Definition 22 Given a function f : V — R belonging to C(V'), the mazimal slope
linking a point p € V' to any of its neighbours is called the lower slope ls(p), where

- flp) — f(q)
ls(p) = seNep  d(p, q)

and d(p,q) is the length of epq € E.

By considering a cost ¢(p,q) for each edge e,, € E, the topographical distance
along a path 7, = {po, ..., pr | o = p and pr, = q} of points is computed as:

k—1
Df P, q denpz—i—l plap’H—l)
=0

Definition 23 (topographical distance) Let B, , denote the set of all possible
paths joining p and q, the topographical distance between p and q is defined as the
manimum distance path in Bp,:

D = min D7
7(p,q) Jnin F(p,q)

Definition 24 (Path of steepest descend) A path mp, is called path of steepest

[00=1@) _ o).

descend if p;11 belongs to the set of neighbours q of p; such that —dra)

Catchment-basins need to consider the lower completition f* of f. A valued
graph is called lower complete when each node which is not in a minimum has a
neighbouring node of lower value. By employing f*, the watershed by topographical
distance follows definition 20.

Both definitions of watershed yield to two different kinds of approaches typically
known as bottom-up and top-down watershed methods, which may produce unsuit-
able results on noisy data, that over-segment the image into many small regions.
This problem is usually solved by a successive merging process, where adjacent re-
gions are merged together according to some metric indicating the saliency of a
segment. Those can be mainly distinguished in area-based and boundary-based met-
rics. In the former case the saliency is evaluated by computing the area of the
regions, while in the latter one the boundary of the regions is considered.
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In [37] the watershed method is generalized to arbitrary meshes, the authors used
the discrete curvature at each vertex as height map and a top-down approach. Each
vertex v follows its steepest descend path until it reaches either a labelled minimum
or a labelled vertex, in both cases their label is assigned to v. The saliency of a
region S is computed as the difference between the vertex v € S of lowest curvature
and the vertex on the boundary of S having lower curvature than all the other
boundary vertices (watershed depth).

The whole algorithm can be summarized as follows:

1. compute the curvature;

2. locate and give an unique label to those vertices v such that Vo' € N(v) :
f(v) < f(v') (local minima);

3. Minimum plateaus (i.e surrounded by vertices having a greater value of f) are
labelled;

4. descend each unlabelled plateaus to a labelled region;
5. descend all remaining unlabelled vertices;

6. merge regions whose watershed depth is smaller than a given threshold.

A region S; is merged into the region S; adjacent to the lowest curvature vertex
within the boundary of S;. This merging process is repeated until all regions have
depth greater than the threshold.

The work presented in [8] uses a bottom-up approach and for each vertex v the
height map is computed according to the concavity of the vertex. Those vertices v
having Gaussian curvature K (v) < 0 are classified as boundary vertices and such
vertices define the boundary regions (or peaks of the mesh ). The height map f is
then computed as f(v) = 0 when v is a boundary vertex, f(v) =1 otherwise.

Region merging is based on two criteria. First the regions to be merged are
located by considering the number of vertices within the region. Then the regions
found with the first criterion are merged to their adjacent regions with longest
boundary.

The whole algorithm can be summarized as:

1. each local minima is labelled, the remaining areas are considered as peaks;
2. peaks are eroded starting from the boundary between minima and peaks;

3. regions are merged.

3.4 Polygonal Mesh Edge-Detection

Two-dimensional images are characterized by sharp changes in brightness, while the
surface of 3D objects may present ridges and other types of discontinuities [50].
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The goal of edge-detection is the location of feature-edges, which provides the most
important structural information about the object, thus reducing the overall amount
of data.

In order to avoid any ambiguity we denote with edges and feature-edges the
edges in E and discontinuities, respectively.

Likewise many other segmentation techniques, a saliency functions f must be
defined on the target mesh elements. Edge-detection algorithms can be considered
component-based because a region may be not discovered explicitly, rather it can be
defined through a set of mesh elements bounded by some feature-edges. For this
reason, edge-detection methods can be also considered as implicit methods.

Depending on the nature of the objects, explicit segmentation algorithms can
produce regions such that their boundaries describe the feature-edges. For instance,
by considering the boundaries of the broken surfaces on simple fragmented objects,
feature-edges can be retrieved by region growing based on the polygon connectivity
and the face normal distribution [48]. Therefore, region growing segmentation meth-
ods, based on the local concavity of the surface [8] (see section 3.3), are unsuitable
for feature-edges detection as ridges can not be extracted.

3.4.1 Thresholding-based Edge-Detection

Filtering of f by classic and hysteresis thresholding, can be suitable for simple
meshes, but usually it is unsuitable for very large and noisy meshes. In [25] the
authors cope this problem by performing a threshold in a multi-resolution setting,
and their algorithm returns a set of line-type features by the following three steps:

1. classification step - the saliency functions is used to assign some weight to the
edges of the mesh;

2. detection step - the threshold produces a set of feature-edges which is succes-
sively decomposed into connected components (patches);

3. erosion step - the patches are reduced to lines by some skeletonizing method.

Several operators have been proposed for step 1 (see Figure 3.5), each one computing
the weights on the neighbourhood of the edges. The simplest way to assign a weight
to an edge is to compute the dihedral angle between the unitary normals n; and

n; of the adjacent facets f; and f;. A second order operator (SOD) on a edge e is
defined as:

w(e)zarccos( - > (3.1)

[mgf| Iyl
This operator can be applied also on the average of the normal vectors of triangles
adjacent to the vertices of f; and f; opposite to e. In this particular case it is named
Extended Second Order Operator (ESOD).
Other operators are based on fitting polynomials. Let 7 denote the plane per-
pendicular to e and passing trough its middle point, it defines the set of points
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P, resulting by intersecting the mesh edges with m. P, is used to compute the
fittest polynomial function p(e) belonging to m. The weight of e is then defined as
wle) = p'(e).

Since P, can be split into two subsets, each one lying on the semi-planes defined
by e, a different method computes the two fittest polynomial functions p;(e) and
pr(e), obtained from such sets, and the weight is computed as:

w(e) = arccos (Lp{(e)) . (1,P;~(€))
“ <H(1ap§(e))H H(l,p;(e))u> (3.2)

These operators are denoted as Best Fit Polynomial operator (BFP) and Angle
Between Best Fit Polynomials operator (ABBFP), respectively (see Figure 3.5).

The algorithm stores the progressive mesh representation, i.e, a coarse mesh
obtained through simplification, and a set of vertex split operations that allow to
successively reconstruct the original object. The above steps are applied to the
coarse mesh and during the reconstruction process, feature-edges are adapted to the
surface changes.

Figure 3.5: Weighting operators defined in [25].

3.4.2 Edge-Detection Based on Local Surface Analysis

The algorithm proposed in [12] computes the so called saliency of each arc on the
surface, through a fuzzy membership defined on a continuous domain. This domain
is automatically generated and the fuzzification process infers a natural segmentation
of the surface, useful for locating contours and edge-type features to represent the
objects. The key idea is to exploit the simple operators proposed in [25] to perform
a local analysis over the mesh elements. The method computes a weight w(v) for
each vertex v and analyses the distribution of the weights with respect to some
neighbourhood.
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Let M = {V, E, F'} denote the input mesh and 7. be a path from e to ¢’ where
e,e’ € E. Let us denote by L;(e) = {€ | miglength(wee/) =i}, then Ly(e) = e and
e'e
the L; are disjoint layers. For the sake of simplicity, each L;(e) is the i-th layer of
the breadth first search tree with root e. The neighbourhood N, (e) of radius r is
defined as follows:

No(e) = | Lite) (3.3
=0

the area of N, (e) is denoted as A, (e).
Let v,.(e) be the variance of the weights w relative to the elements included in
N, (e) centred on e and with radius r. The saliency of an edge e is defined as:

s(e) = Z oi(e) (3.4)

>0

with 0u(e) = me) 20D by ) — (o)
where n;(e) = eAmin(e)=Ai(e) ig yged to lower the resulting values ¢;, when mov-
ing far from e, with respect to the smallest window of radius » = 1, that is
Appin = reréig{Al(e)}.

Actually, negative values of s correspond to edges, positive values indicate ramps
(i.e. surface elements near to feature-edges), while values close to zero denote smooth
surfaces. Therefore, the saliency formula s assigns a score to each arc e, thus to
discriminate among edges, ramps and smooth surfaces.

A similar approach is used in [13], where the classification rule is defined accord-
ing to the slope of the regression straight line of the points (i, ;):

i (i—%)(w—ﬁ)
slope(N,.(a)) £ = 5 with r>1 (3.5)

£()

where 7 is the mean value of the variances v;.

In the particular case of low resolution meshes, it can be useful to consider small
values of . When r = 1, it is imposed:
slope(Ni(e)) £ v —v1,

where 1] is the variance of Ny (e) and vy is the variance of the first layer L(e). That
is, we check if e is relevant with respect to its smallest neighbourhood.
An arc e is classified as edge if both the following conditions hold:

1. w(e)x ‘L1(6)| > wley);
j
2. slope(N,(e)) <e,
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where ¢ is a threshold value, close to 0, used to take into account also very small
variations of the weights w.

3.4.3 Normal Voting and Watershed Segmentation

Another method to assign a weight to the target set of vertices is the so called normal
voting 64|, which adopts the watershed segmentation on a height map defined by
means of a normal voting scheme. Each vertex v collects votes from the normals of
those facets having geodesic distance from v less than a given value. The vote nj
given by the facet T} to v depends both on the normal n; of T; in its centroid v’ and
a weight 7; (see Figure 3.6), in particular the authors consider

Il; - 2(112‘ . Ti)Ti —n; (36)
— —
(Vv An;) AV
where 7, = —— —3

~

|(v'v Ang) Av'vl|
If M is the number of the facets included in the geodesic window, the vertex v

collects a tensor T computed as:

M
T=>" pmm;" (3.7)
=0

where p; decreases exponentially with the geodesic distance from v to v’

Figure 3.6: The normal voting scheme presented in [64].

In other words n; is obtained by transposing n; along the arc connecting v and v’.
Let A1 > Ay > A3z be the eigenvalues of T" corresponding to the eigenvectors =1,
~v9 and 3. The weight of v is defined as:

1 if |ﬁ . ’}/1| <4
w(v) = 1 if A3 > Oé()\l — )\2) and Az > ﬂ()\g — )\3) (38)
(A2 — A3)/A2  otherwise
M

where 1 = > yu;n; and o, 8 and § are pre-set values.
i=1
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The conditions in the above definition are based on the tensor voting theory
and, as already exposed in Chapter 1, tensor voting can be used to obtain surface
descriptors. More precisely, the second condition gives maximum value to corner
vertices, while the third one is used to approximate the weights in [0, 1]. Finally,
the first condition ensures sharp features detection where tensor voting fails.

3.4.4 Active Contours

Snake curves |27| or active contours represent another relevant technique in the two-
dimensional Computer Vision field to describe a previously located contour area of
the image. The segmentation is driven by the energy minimization of a deformable
model subjected to a set of forces that achieve the equilibrium state. This process is
not carried out on the entire image, but on a region of it, located by either a manual
or automatic procedure. Needless to say that the energy minimization process highly
depends on the initial position of the snake curve, which is defined in parametric
form, as:

v(s,t) = (x(s,t),y(s,1))
where t is the evolution time and s € [0, 1].

The basic mathematical model used to describe active contours is represented by
the splines curves, whose evolution over time is ruled by both internal and external
energies. Internal forces rely on the shape of the curve, while external forces are
related to the underlying image.

The internal energy Ej,:(v) is characterized by both an elasticity term and a
rigidity term. These values are computed by the first-order derivative v and the
second-order derivative v of v, respectively.

In order to control the evolution of the snake, two pre-set weights a and 8 must
be provided, and the internal energy is defined as:

2 2
a(s)|lvs||? + B(s)||v
Byuts) = Sl £ B 59)
The external energy Ee,:(v) is chosen according to the image features as gradient,

curvature, etc. Thus the total energy is described as the functional:

B(v) = /0 (Bint(v) + Euot(v))ds (3.10)

Note that an active contour can develop a corner only if 5(s) = 0.
The minimum of this functional is detected by considering the zeros set of its
first-order derivative. The resulting Euler equations in the continuous space are:
0 0? 0
a%-%’s + ﬁ@xss + %Eeart =0
0? 0

0
_aays + ﬁ@yss + a_yEext =0
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In the discrete case, snakes are represented by a set of n vertices (x;,¥;), and
the energy functional becomes:

n
E(V) = Z Eznt(z) + Eemt(i) (311)
i=1
The derivatives are approximated by finite differences, and the Euler equations
become:
(i — Tiy1) — a(Tip1 — i) + B(Tite — 2zip1 + 33) — 26(@ip1 — 22 + @i1)+
0
_Ee:vt

ox
a(yi — yiy1) — a(Yiv1 — vi) + BWive — 2viv1 + vi) — 268(Yi+1 — 2yi + yi—1)+

+08(x; — 2xi—1 + xi—2) +

0
+B8(yi — 2yi—1 + yi—2) + a_yEewt

We can also represent the energy minimization problem in matrix form:

0
A _Eem =
x + 92 t 0

Ay + 2E’emt =0
dy

Here A is a pentadiagonal banded matrix related to the discrete Euler equations

above:
c d e 0 0 a b
b c d e 0 0 a
a b c d e 0 0
A=10 a b c d 0
e o ... 0 a b c
d e 0O ... 0 a b c

a=06,b=—-4—-a, c=60+2a, d=—-40—a, e=f

The snake evolution can be implemented as an iterative process. If the

snake deformation in ¢ results in a decrease of its energy with respect to s,
d dE(v(s,t))
au(s, t) = —————=

yields to the following equations:

, then the energy variation dE(v(s,t)) = —%l/(s,t)ds

0
V(e — x4-1) = Az + %Eext(xt—ly Yi—1)

0
V(e — yr—1) = Ay + a_yEe:vt(xtflaytfl)
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x; and y; are the coordinates of a point at time ¢, and the parameter  controls the
convergence rate of the algorithm. Since the snake at time t depends on its energy
at time ¢ — 1 the position (or deformation) update is given by:

xp = (A+~yI) My + %Eemt(xt—hyt—l))
(3.12)
= (A D) e + 5 But(1, 1)

To avoid the snake stagnates into energy local minima, the evolution process
needs to be supervised to place the snake by moving some of its vertices.

The snake definition above can not be applied directly on the surface of a mesh
because it does not include the constraints required so that the snake lies on the
surface. Three types of approaches have been proposed to evolve active contours on
triangle meshes: level-set methods, 2D snake projection, 3D snake evolution.

Level-set methods represent snakes as the zero-level set of some level-set function,
and partial differential equation are used to control the curve over time. In [10] the
motion of the snake is managed implicitly by the scalar level-set function. This
approach may give poor results on open curves, furthermore it is unsuitable for
interactive snake repositioning.

2D snake projection is achieved by extracting the surface patch that encloses it
(see Figure 3.7 top), and such patch is parametrized on a 2D plane and the snake
is evolved as above. Fast parametrization requires the surface to be holes-free,
and patches should be small enough to avoid distortion errors. In [32] the authors
proposed a general framework where the snake is partitioned and each sub-snake is
evolved independently. Discontinuities arising at border points are then processed
to smooth the whole active contour. Let us consider that v(s) is partitioned in
v(s) and v, (s), and the sub-snake v.(s) partially overlaps both v;(s) and v,.(s) (see
Figure 3.7 bottom). The algorithm first evolves v;(s) and v,(s) independently, then
it refines the result by moving v.(s).

Active contours can be directly applied on the mesh surface by a dynamic pro-
gramming approach [1]. The energy of a snake v = {vg,...,v5_1} can be approxi-
mated by the sum of the energy of its vertices:

k—1
E(v) =) _ E(v) (3.13)
1=0

The minimization process of E(v) assigns a new position to each snake vertex
v; in order to minimize the overall energy. In [26], to update a snake vertex v; =
(x4, 9i, 2i), the algorithm does not check for all possible neighbours, but it considers
only those vertices PDir(v;) lying along the principal directions of v;. Then the
external energy of a snake vertex is computed as:

—kr1(vy) if Ki1(vi) > k1(p), Vp € PDir(v;)

Eezt (vz) -
C>0 otherwise.
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14 : Vp

Figure 3.7: A patch enclosing the snake (top). Sub-snakes processed after
parametrization (bottom)

The internal energy is:

Eint(vi)) = a || vi —vi—1 || 8 || vig1 — 2v; +vi—1 ||

By using this approach the topology of the snake must be controlled to prevent its
vertices to be disconnected. Furthermore, once the snake reaches its final position,
results can be jugged as the snake vertices are constrained on the mesh vertices and
they can not be moved on the surface of a facet. Then results depend both on the
resolution of the mesh and on the sampling of its points. Thus segmentation can be
improved only by refining the mesh area surrounding the active contours.



CHAPTER 4

Diffusion-Based Mesh Edge
Detection

There exist many physical problems strictly related to the evolution of curves and
surfaces. Material interface propagation, fluid motion and crystal growth are some
examples of problems whose solution is modelled by non-linear partial differential
equations. Geometric evolution problems such as surface fairing, lead to similar vari-
ational approaches which allow the mathematical modelling on a continuous space,
without considering any domain discretization. Mean curvature flow belongs to the
class of scale-space approaches, it is related with the heat diffusion process, and it
is one of the most important representatives in the context of surface fairing. This
multi-scale approach allows to derive, from the input image, a family of images each
one characterized by a different level of detail. This formulation of the fairing prob-
lem has been proposed to perform both surface elements classification and surface
fairing.

4.1 Diffusion-Based Image Processing

The linear heat equation has been widely used to describe the spatial variations of
some function f over time. Let Q C R? and fy denote the domain of f and its initial
value at time ¢ = 0, respectively. The heat equation is:

Of — Af=0 (4.1)

where Af = fuz + fyy is the Laplacian of f.

By evolving the system, a sequence of images {f(t)};cg+ is obtained. When Q = R?
the solution coincides with the filtering of the original data with a Gaussian filter
G (z) = (2102)Le " /202 with standard deviation o

F(0%/2) = GX(x) = fo

In section 2.3 we presented the Laplacian smoothing and the mean curvature flow.
As explained, the major drawbacks of these approaches are object shape deforma-
tion and loss of small-scale features. The same problems arise in two-dimensional
image processing. Gaussian filtering does not preserve the boundaries of the im-
age, furthermore the regions boundary can not be located easily when processing at
coarse scales because such boundaries shift from their original positions during the
smoothing process. In [49], anisotropic diffusion has been used in order to reduce the
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blurring on image edges, and the diffusion coefficient G(+) is modified according to
the gradient of the edges on a particular location. The anisotropic diffusion process
is:

B,f — div <G (@) Vf> —0 (4.2)

where div denotes the divergence operator and A € R™. This results in the suppres-
sion of smoothing on areas with high gradient, and it allows to perform both fairing
and edge detection on noisy images. The position of edges is preserved during the
smoothing process, and this simplifies the comparison among images at different
scales.

4.2 Generalized Mean Curvature Flow

Given a surface S, the Laplace-Beltrami operator g presented in section 2.3 gener-
alizes the Euclidean Laplacian operator. The geometric diffusion of the coordinates
of a points p of the family of surfaces S(¢) (by varying time ¢) is written as:

Op = ICS(t)p

The mean curvature vector H(p)n(p) is opposite to the Laplace-Beltrami oper-
ator, where n is the normal at p:

H(p)n(p) = —Ksp

then mean curvature motion can be written as:

Op = —H (p)n(p)

Let M be an orientable manifold of dimension d and p : M — R be an
immersion with normal n : M — 8%, where /3 is the shape operator. The generalized
curvature motion [14] can be defined by considering general endomorphisms of the
tangent space T

a:TM—=TM

and the corresponding generalized mean curvature flow:

Op = Hyn, H, = trace(ao [3)

From variational calculus the geometric diffusion problem can be formulated as:

(O, 9) = —/Ha(n -9)dA (4.3)
M

for all ¥ € C} (M, RIH1).
Such a problem can be re-formulated by the relation gp = —H (p)n(p) as:
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(Orp, ) = //Csp-ﬁdA (4.4)
M

and the generalized mean curvature is obtained by the relation above. The operator
Na(r) = div(M)(aV(M)-), applied to p, leads to tangential components given by the
divergence of the endomorphism a.

Theorem 1 Let M be an orientable manifold of dimension d and p : M — R+
be an immersion. If a : T M — T M is differentiable, linear and symmetric to each

tangent space T M, then there exists a second-order differential operator ©, such
that

where H, = trace(a o 3).
Moreover

Ou() = Aa(") — (divpma)(-)

This theorem allows to express —H,n by projecting diva(aV aqp) onto the space
spanned by the normal n. The equation d;p = H,n can be written as:

Op = (v-n)n

where v = divpy (aV D).

The classification of the surface elements as edges, corners and smooth surfaces
employs a tensor which depends on the shape operator 87, u¢,. The surface M, is
obtained by filtering M with a Gaussian-type filter, implemented by a short-time
step 7 = ¢2/2 of mean curvature motion, where ¢ denotes the width of the filter.

In [14] the authors defined this tensor as a symmetric, positive, linear mapping
on the tangent space T,M,:

G%Mg cTpMe = TpMs

The symmetric shape operator can be represented by means of the orthonormal

basis {7, k3 } of TpM,:
(k] O
B’TxMU - < O K/g)

and it is then used to define the above tensor as:

G (’%’) 0
a%’MU = o (45)
! 0 G (%)

where ) is a user-defined threshold. This tensor classifies surface elements as follows:
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- if aT m, ~ diag|[1, 1], then p belongs to a smooth surface;

- if a%MJ ~ diag[1,0], then p belongs to a feature-edge, having direction xJ
assumed k7 > KJ;

- if a7 pm, ™~ diag|0,0], then p belongs to a corner.

Figure 4.1 shows an example of mesh processed with the generalized mean curvature
motion. The mesh is smoothed and the surface elements are classified.

Figure 4.1: Classification performed at four, interleaved time steps during the gen-
eralized mean curvature motion [14] (from left to right).

4.3 Surface Curvature Diffusion

In several applications it is often required to automatize the feature extraction pro-
cess. For instance, shape matching and database retrieval algorithms should be able
to segment the object without any user intervention. Nevertheless, some user-given
thresholds, weights or tolerance levels, seem to be necessary for all different types
of segmentation strategies so far developed. Although the methods presented in the
previous sections are effective and produce good results, the tuning of the required
parameters is a drawback for a fully automatic object analysis.

We propose a parameter-free and fast heuristic method for mesh edge-detection,
called Surface Curvature Diffusion (SCD). We exploit here the heat diffusion on the
surface of an object, that is a problem mathematically solved in the continuous case
by partial differential equations.

In the continuous case the heat diffusion is described by the equation:

of 2
a vef (4.6)
where f is the so called heat function defined on all the surface points.

On discrete lattices it is possible to solve the heat equation by an iterative process
that updates the temperature of the mesh vertices over time. Let M = {V, E, F}
be a triangular mesh and f: S — R denote a real function on each elements of the
target set S =V, then the total variation of f can be discretized by:
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ftiv1) = f(ti) + A(froe41)

Indeed, the PDE above is equivalent to f = V2f0t, and for each time step we
compute the value of f at time step t;11, f(ti+1), by summing the value of f at
time step t;, f(t;), with the total variation of f from time step ¢ to t+1, A(fi—t41)-
In order to discretize the diffusion equation we need to compute the matrix £/ = V2
and to apply the update rule for some time step 7:

f(tiva) = f(ti) + L' f(t)T

To compute £, SCD needs to define a weight matrix W associated to the mesh
M, as follows:

1 Zf Hvi,vj eV ‘ (Ui,?}j) eFE
Wij =
0  otherwise
Let d(v;), with ¢ = 1...]V/|, denote the number of edges in E adjacent to a

vertex v;. In order to derive the non normalized symmetric Laplacian matrix £, we
use the diagonal matrices D and D', defined as follows:

dv;) ifi=j
Dij =
0 otherwise
and
1
ifi=j
D/ _ d(’l)z)

0 otherwise

Then £ is computed as:
L=D-W
Now we use £ to define the normalized non-symmetric Laplacian £':

L'=D-L (4.7)

SCD updates the values of f for the vertices v over time, by performing the following
operation for each iteration:

flo) =L f(v)r (4.8)

By miming the heat diffusion for the adiabatic processes, where the total heat
is conserved and it is redistributed on the surface object, SCD conserves the total
value of some energy function ¢ and it redistributes ¢ on the vertices over time.
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The function used by the proposed algorithm is the absolute value of the mean
curvature H, of the vertex v, whose value is known at time ¢t = 0:

va(t = 0) = |Hv| (49)

where H, is computed by using the extended quadric methods presented in Chapter 2.
Figure 4.2 shows a mesh, the mean curvature H on it and the frequency of H. SCD
redistributes the curvature on the object over time, and it observes asymptotically
the behaviour of mesh vertices with respect to their neighbourhood.

curvature histogram
3500 T T T

3000

2500

2000

1500

1000

500

Figure 4.2: Input mesh (top-left). Mean curvature H distribution of the input mesh,
where red vertices have H > 0, blue vertices have H < 0 and green vertices have
H ~ 0 (top right). Frequency histogram of H (bottom).

In other words, as in the real physical phenomenon, we can consider the mesh
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as influenced by some heat or energy (curvature) sources. At time ¢ = 0, the
value of H on each vertex v is known, and the sources are disabled instantaneously.
Then the heat (curvature) propagates over the surface object until the whole object
temperature reaches the equilibrium state at time ¢ = t,,4,,. In the following, we
will study the ideal diffusion of the energy function ¢ on two particular cases.

In the heat diffusion, at the starting time ¢t = 0, heat is concentrated on the
edges and corners of the object, which dissipate energy isotropically towards their
neighbourhood during the diffusion process. Similarly, feature vertices have greater
curvature than their local neighbourhood at t = 0 and exchange a few energy (cur-
vature) among themselves, then they must release their curvature to the adjacent
vertices on smooth surfaces. On the contrary, as in the physical phenomenon, surface
points absorb energy, both the vertices belonging to some surface and their ¢, value
must increase over time. Moreover, the absorbed energy is directly proportional to
the distance between the surface vertices and some feature-edge.

Since in these two cases the curve ¢, (t) is either monotonically decreasing or mono-
tonically increasing, respectively, then SCD classifies the vertices by analysing the
curve support described by ().

In order to improve the segmentation quality, smoothing method can be applied.
The main difficulty of mesh fairing is the choice of the suitable number of iterations,
thus it can not be embedded in a fully automatic segmentation system. One of the
advantages of the proposed method is the implicit curvature fairing, because high
frequency noise is typically characterized by low energy which is quickly dissipated
during the diffusion process. Furthermore, no anisotropic diffusion is required as we
are interested in the total variation of energy on a vertex, over time.

The energy ¢, (t) of a vertex v may oscillate over time. For instance, let us
consider a vertex v lying on a smooth surface and near some boundary having
higher level of curvature. At the beginning of the diffusion process v absorbs energy
from the feature-edges of the boundary until some time step ¢t = t.. Nevertheless, for
t > t., v dissipates most of its energy towards the neighbouring vertices characterized
by a lower level of curvature. Thus, the trend of ¢,(¢) should be the same as in
Figure 4.3. Furthermore, the trend of energy in a vertex could present several critical
points, as a vertex near to several feature-edges with different curvature levels.

The behaviour of this kind of vertices, which is clearly time-scale, imposes that
SCD must consider the trend of ¢, (t) for the total time interval, until the equilibrium
is reached (t = tnaz)-

The analysis of the whole trend of the energy curve is required also to suppress
high frequency noise that could be present on the surfaces. Indeed, when v is a
noise-verter, its energy is rapidly dissipated until some time step ¢t = t.. Then,
for the remaining time, it will usually absorb energy from its neighbourhood. This
allows SCD to be a powerful unsupervised denoising tool for noise-vertices (false
positives) close to the mesh boundaries.

By considering t = t,,4,, SCD is also able to classify properly surface features
composed by vertices having different ranges of curvature. In fact, if v is a feature
vertex with a low value of curvature and close to other vertices with higher energy,



56 Chapter 4. Diffusion-Based Mesh Edge Detection

Ve Ve

t <t t >t

(29 Pue A
SO'Ue (tc)

>
>

tC tmax tmaz

>
>

Figure 4.3: Examples of energy diffusion, where the red arrows represent the energy
diffusion directions (top). Energy diffusion curves for the vertex vy, on surface, and
Ve, on a feature-edge, respectively (bottom).

then v will absorbs energy from the neighbouring feature vertices, and then it will
release such energy to its neighbourhood.

According to what has been said so far, the change rate of ¢, (t), together with
the associated time interval, are necessary to evaluate the saliency of a vertex, with
respect to its neighbours at different time scales. Specifically, Figure 4.4 shows the
diffusion curve of energy for three different vertices on the mesh of Figure 4.2 over
time.

Thus, in order to classify surface vertices, the key idea of SCD is to measure, for
each vertex, the global energy variation before the diffusion reaches the equilibrium
(i.e. the final state). Formally, in the continuous case:

tmaz tmaz
Mou= [ = [ it = ultmar) ~ 00)
0 0

Hence, in the discrete case, the total variation of ¢, can be computed as follows:

tmax - 1

Apy = D (poltivr) — pu(ti) =

1=0
va(l) - va(o) + SDU(2) - Spv(l) + -+ Spv(tmam) - Spv(tma;c - 1) —
@v(tmam) - <Pv(0)

The value of Ay, induces a partitioning of the target set .S into two sets. The set
of vertices lying on smooth surfaces, which are characterized by Ay, > 0, because
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Py

700

Figure 4.4: Distribution of the absolute value of H on the input mesh (top-left).
Detail of the input mesh (bottom-left) and energy curve support for three different
mesh vertices (right). The vertices are coloured from green (|H| ~ 0) to red (|H| >
0).

they receive energy from the neighbourhood, and the set of feature vertices diffusing
their energy to the neighbourhood, for which Ay, < 0 (see Figure 4.5)

Figure 4.6 shows the partitioning induced by A, for three different values of
tmaz and their associated histograms.

For segmentation purposes, we define the following height map:

_AQO'U Zf AQOU <0
wy(v) = (4.10)
0 otherwise

Figure 4.7 shows the feature edges detected by SCD and the relative histograms,
by using three different thresholds ¢; < to < t3 of t;4. It is clear that wy(v) is not
sensitive to the value of ¢,,4,. On the contrary, the map wy,(v) obtained by normal
voting, strongly depends on the radius of the geodesic window according to the scale
of the mesh (see Figure 4.8).

The main steps of the SDC can be summarized as follows:



58 Chapter 4. Diffusion-Based Mesh Edge Detection

Puq

L L L L L L
100 200 300 400 500 600 700

P

I
0 100 200 300 400 500 600 700

Pus

09

0.1

Figure 4.5: Total variation of energy, Agy,, used to classify the mesh vertices in
Figure 4.4.

1. Compute the energy function on the mesh vertices. In
particular, we have used the absolute value of the mean
curvature which has been estimated by fitting the mesh
vertices with the extended quadric method presented in
Section 2.

2. Diffuse the curvature over the mesh and compute Ayp,.
3. Compute the height map wy(v).

4. Segment the object by using the watershed algorithm. In
particular, we have applied the watershed implementa-
tion [64] and the region growing [8].
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Figure 4.6: Partitioning of a mesh surface using three different value of t,,4:,
t1 < tg < ts (from top to bottom). The more intense the blue is, the smaller Ay, is;
green color represents A, ~ 0; the more intense the red is, the greater Ay, is.

4.4 Experimental Results

We have tested SCD on several kinds of noisy triangle meshes coming from datasets
publicly available in http://www.cyberware.com/products/scanners/index.html,
http://www-rech.telecom-lillel.eu:8080/3dsegbenchmark /dataset.html, and
http://shape.cs.princeton.edu/benchmark/.

The watershed transform produces suitable mesh segmentations if the feature-
edges describe closed curves. This behaviour represents both an advantage and a
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Figure 4.7: Feature-edges located by SCD at time steps t1 < ty < t3 (from left to
right). The red vertices have w,(v) > 0 while green vertices have w,(v) ~ 0

disadvantage. It is advantageous because the spurious noisy feature vertices which
have not been suppressed during the diffusion process are flooded and eliminated
by the region growing process. When the important feature-edges are not described
by closed curves due to noise or defects on the mesh surface, the watershed may
break the segmentation integrity and merge different areas. In order to reduce this
side effect we improve the feature-edges by adding those surface points which are
adjacent to at least two feature vertices, and assigning to them the lowest value of
we (V).

Note that the region merging procedure needs a threshold value to identify the
small regions to be merged. We have used the same threshold value for all types of
meshes.

The segmentation integrity problem has been also addressed in [8], where the
concave points are added to the feature-edges. As shown in Figure 4.9 this approach
may be very noise sensitive and add a lot of feature vertices lying on smooth surfaces.

As observed in [8], different components of the object are composed by vertices
which have elliptic (positive Gaussian curvature, K > 0) or parabolic behaviour (null
Gaussian curvature, K = 0), while the vertices belonging to the regions boundary
have hyperbolic behaviour (negative Gaussian curvature, K < 0) (see Section 2.1).
Since SCD does not distinguish between negative and positive curvature, the seg-
mentation can be considered both component-based and surface-based. Indeed, SCD
could use negative Gaussian curvatures to extract the components and successively
these components can be further divided according to the positive mean curvature
values. Hence, this approach can be used to produce an hierarchy of segments.

Despite no standard methodology exists to compare the outcomes of different
segmentation algorithms, some authors proposed to measure the differences between
the results of segmentation algorithms and the ground truth segmentation obtained
by averaging the manually produced and supervised partitioning performed by hu-
man users over the Internet [9].

In the following we will present some results of mesh segmentation. Each located
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Figure 4.8: Feature-edges located by normal voting [64] (left), and relative his-
tograms (right). The red vertices have w,(v) > 0, while green vertices have
wy(v) ~ 0.

region is identified by a different colour, and its boundary is coloured in red (see
Figures from 4.10 to 4.13). SCD is able to locate all important regions of the objects
and it suppresses most of the noise. The algorithm maintains small features and
very few boundaries are flooded due to their lack of integrity. Only small regions,
due to noise, are maintained, as SCD fails to suppress their vertices.

As explained above, feature edges can be composed by vertices having different
ranges of curvature. This characteristic heavily affects the threshold-based segmen-
tation which does not perform any local surface analysis. Threshold-based seg-
mentation strongly depends on the functions defined over the mesh vertices and to
choose a suitable threshold it needs to observe their histograms.

Figure 4.15 shows three different segmentations obtained on a mechanical object
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Figure 4.9: Concave vertices on the mechanic object.

009

Figure 4.10: Original cup object (left). Feature-edges detected by SCD (middle).
Watershed segmentation (right).

by using three different threshold values of the mean curvature. We did not use the
operators defined in [25] because they are very noise sensitive. These results also
demonstrate that threshold-based segmentation is unstable when compared to SCD.

4.4.1 Conclusions and Future Works

Three-dimensional object analysis is required in several field of research and, accord-
ing to different applications, objects can have different representations. 3D data are
typically obtained from the real world by acquisition devices able to gather either
volumetric information (volumetric data) about the objects or spatial information
about the points belonging to the surface of the object (range data).

In this thesis we focused on polygonal meshes which are a very popular 3D data
representation, where the object is stored by a cloud of points together with the sets
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Figure 4.11: Original screwdriver object (left). Feature-edges detected by SCD
(middle). Watershed segmentation (right).

Figure 4.12: Original bunny object (left). Feature-edges detected by SCD (middle).
Watershed segmentation (right).

of edges and facets.

Many applications require the segmentation of the objects in order to obtain
an higher level representation which simplifies several successive Computer Vision
tasks. According to the problem at hand, the decomposition can be either surface-
based or component-based. The former locates those areas on the mesh surface
having similar features such as constant curvature, etc. The latter individuates all
the semantic components of the object.

In order to segment an object, it needs some a priori knowledge about it. The
rules used to identify the mesh regions depend on some feature defined over the
elements of the surface. The required features can be computed by using different
techniques. The differential properties of surfaces are very useful and can be mainly
estimated by recovering quadric surfaces fitting the mesh vertices and by spatial
averages (finite volumes). In addition, tensor voting is a very powerful method that
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Figure 4.13: Original mechanical object (left). Feature-edges detected by SCD
(middle). Watershed segmentation (right).

Figure 4.14: Original human model (left). Feature-edges detected by SCD (middle).
Watershed segmentation (right).

can be employed to compute robust surface descriptors. Unfortunately there is no
general consensus about the best approach to compute surface features. Surface
properties are noise dependent and in order to improve their estimation, different
surface denoising algorithms have been developed.

Since the segmentation of a mesh is strictly related to graph partitioning which
is a NP-Complete problem, then it is required to find approximate solutions effi-
ciently. Several mesh processing algorithms have been presented in literature, each
one relying on a particular segmentation paradigm such as region growing, clustering
or Spectral Analysis. Mesh segments can be also located by extracting the feature-
edges of the mesh, i.e. the discontinuities of its surfaces. Most of the segmentation
approaches require to set some parameters or threshold values, and this does not
allow to insert these algorithms in automatic segmentation systems.

In this thesis we proposed SCD, that is, a new automatic edge-detection al-
gorithm based on the diffusion process of some energy function defined over the
objects surfaces. SCD simulates the physical phenomenon of heat diffusion by using
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Figure 4.15: Histogram of the mechanic object showing three threshold values (top).
Watershed segmentation for the chosen threshold levels (bottom).

the curvature as power energy and distributes it on the object over time, until the
equilibrium state is reached. The total variation of energy is used to classify the
surface vertices and to suppress most of the noise. We validated our algorithm on
different types of meshes and the results obtained show that SCD is robust, accurate
and efficient.

Tensor voting requires to set some parameters to compute the height map and
it needs to set the radius of the geodesic window. Thus it depends on the particular
scale of the object and moreover the evaluation of the geodesic distance is very time
consuming. Threshold-based segmentations highly depend on the energy function
defined over the mesh vertices. They do not perform any local analysis in the
neighbourhood of the vertices, thus they are not able to locate those important
features having low levels of curvature.

These highlighted limitations make SCD attractive for edge-detection and seg-
mentation of meshes obtained from range data.

In the next steps of research we will improve SCD as denoising tool by applying
some statistical evaluations of the height map on the feature vertices. Moreover
we will perform an hierarchical segmentation by merging the negative Gaussian
curvature and the height map produced by SCD.

Some authors proposed recently a benchmark to test the results of segmentation



66 Chapter 4. Diffusion-Based Mesh Edge Detection

algorithms against the segmentation ground truth obtained by users [9]. In future
works we will use such benchmark to make a quantitative comparison with both the
manual segmentation and the outcome of SCD.
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