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Polygonal Mesh Segmentation by Surfa
e Curvature Di�usionAbstra
t: One of the most popular 3D obje
t representations in Computer Visionis the polygonal mesh, whi
h is a sets of verti
es, edges and fa
ets having someadja
en
y relations. Several appli
ations su
h as shape mat
hing, shape retrieval,3D data 
ompression, et
. require mesh segmentation, whi
h 
onsists in the de-
omposition of an obje
t into its meaningful 
omponents. Mesh segmentation is avery hard problem sin
e it 
an be redu
ed to the graph partition problem whi
h isan NP-Complete. Many supervised or parameters dependent algorithms have beendeveloped to produ
e sub-optimal solutions a

ording to di�erent paradigms su
has Region Growing, Clustering, et
.In this thesis we present a new method based on di�usion of some energy fun
tionover the surfa
e of the obje
t.By miming the heat di�usion pro
ess, Surfa
e Curvature Di�usion (SCD) 
las-si�es the verti
es of a mesh by distributing the mean 
urvature of the obje
t on themesh surfa
e. SCD uses the dis
retization of partial di�erential equations to modelthe di�usion of the 
urvature over time and it segments the mesh by analysing thetrend of su
h a di�usion on the verti
es.SCD depends only on the initial state of the 
urvature and it is performed untilthe energy rea
hes the equilibrium. Then it is parameter-free and time independent.We show some of several experiments 
arried out by using di�erent kinds ofmeshes and we show that SCD is very fast and a

urate. Moreover, it allows torightly dete
t the most of the feature-edges when it is 
ompared to other te
hniquespresent in literature. These features together with the la
k of any tuning makesSCD a very interesting method for mesh segmentation.Keywords: Three-Dimensional Polygonal Mesh, Mesh Fairing, Surfa
e Fit-ting, Mesh Segmentation, Energy Di�usion, Surfa
e Curvature Di�usion, TensorVoting, Normal Voting.
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Introdu
tionThe interest of resear
hers in digital 3D obje
t analysis rise up during the pastde
ades due to the advan
es in 
omputer te
hnologies together with the birth ofnew �elds of resear
h. The generation, representation and manipulation of virtualobje
ts are the prin
ipal problems in several 
ontext su
h as: engineering, roboti
s,
omputer vision, medi
ine, mole
ular biology, entertainment, et
.The generation of 3D virtual obje
ts 
an be a

omplished by either spe
i�
software or parti
ular a
quisition devi
es whi
h allow to generate virtual obje
tsfrom the real world. These devi
es are able to gather the all the information of theobje
ts in order to produ
e 3D data whi
h is typi
ally represented either by volumesor by 
loud of points. In this thesis we are only interested in 3D data obtained bysome laser s
anner a
quisition devi
e, more pre
isely we fo
us on polygonal mesheswhi
h are a parti
ular representation of the surfa
e of the obje
ts by means ofgraph-type stru
tures whose nodes are the points a
quired from the real world.There are many appli
ations relying on the analysis of three-dimensional meshes.For instan
e, the mesh representation is widely used in Computer Gaming and inother �eld of entertainment. In these 
ontexts it is important to simulate physi
alphenomena involving 3D obje
ts e�
iently. Shape retrieval is another importantappli
ation whi
h exploits largely the mesh representation. Indeed, it requires tomat
h an obje
t against some given model in order to retrieve from a database,all the obje
ts having similar shape to the input one. The key problem of manyappli
ation involving 3D representation is the mesh partitioning in its meaningful(semanti
) 
omponents. The meaning of a 
omponent highly depend on the type ofappli
ation, thus there no exists a unique way to perform the obje
t segmentation. Avery popular segmentation exploits the dis
ontinuities of the surfa
e, 
alled feature-edges, to de�ne the di�erent parts of the obje
t.Mesh de
omposition is a very hard task. Starting from a mesh it is possible tode�ne its dual graph, and the mesh segmentation problem is equivalent to the graphpartition problem whi
h is an NP-Complete problem. Hen
e, we need to resort toapproximate solutions.Several mesh segmentation methods are present in literature. Many algorithms,a

ording to di�erent paradigms su
h as Region Growing, Clustering, et
. produ
esub-optimal solutions. Unfortunately most of these te
hniques 
an not be easilyembedded in automati
 segmentation systems, be
ause they require the tuning ofsome parameters or threshold levels, to produ
e a signi�
ant segmentation. Thus,the sear
h for parameter-free methods is parti
ularly interesting.Mesh SegmentationThe surfa
e of an obje
t is de
omposed into segments a

ording to some spe
i�
problem to be solved. Di�erent appli
ations require di�erent type of segments with



2 Introdu
tiondi�erent shapes and properties, and segmentation algorithms 
an be generally 
las-si�ed, a

ording to their goals, into one of the following 
ategories:
• Surfa
e Type Segmentation Algorithms. Appli
ations as texture map-ping, morphing, mesh simpli�
ation, and mesh 
ompression require to de
om-pose the obje
t into small regions satisfying some 
riteria. For instan
e, regionsmay present 
onstant 
urvature or they 
ould mat
h some surfa
es primitive(
ylinders, spheres, et
.).
• Component Type Segmentation Algorithms. Several appli
ations needto understand the obje
t shape to ful�l tasks as shape mat
hing, shape re-trieval, obje
t re
onstru
tion, 
ollision dete
tion, et
. This 
lass of mesh seg-mentation algorithms de
ompose the obje
ts into their meaningful parts. Forexample, an obje
t representing a human hand 
an be de
omposed into its�ngers and palm.Mesh segmentation problem is an NP-Complete problem and di�erent approxi-mate solutions have been proposed, and the three prin
ipal segmentation method-ologies reported in literature are:
• Region Growing Based Methods. This 
lass of algorithms segment anobje
t by growing regions starting from seed elements, where these seed ele-ments 
an be 
hosen in di�erent ways and the region growing pro
ess is ruledby the underlying geometry of the mesh surfa
e.
• Clustering Based Methods. Clustering is widely used in several problemsof data analysis. Here, 
lustering methods are used to perform segmentationsby merging the mesh elements into regions, a

ording to some 
ost fun
tionbased on the lo
al geometri
al properties of the surfa
e.
• Spe
tral Analysis. The eigen analysis of the Lapla
ian matrix of some graphasso
iated with the mesh, is used for mesh 
ompression purposes. Ea
h entryin the matrix en
odes the probability that two elements belong to the samesegment.Thesis ContributionsIn the 
ontext of mesh segmentation based on the lo
al surfa
e analysis, we proposedtwo methods to lo
ate the feature edges over the surfa
e of an obje
ts. Both methods�rst assign a weight to ea
h edge of the mesh, where an edge is the line joining twoverti
es of the triangulation whi
h des
ribe the mesh. A neighbourhood of ea
h edgeis then 
onsidered. Su
h neighbourhood is de
omposed into disjoint layers, a

ordingto the distan
e from the 
entral edge. The �rst method analyses the varian
e of theweights within ea
h layer and 
lassi�es the feature edges through linear regression.The se
ond method de�nes a measure of salien
y of ea
h mesh element based onsome fuzzy membership. The fuzzi�
ation pro
ess indu
es a segmentation of the



Introdu
tion 3surfa
e into three sets: the set of feature edges, the set of smooth surfa
es and theset of ramps, namely the region of the surfa
e 
lose to feature edges.In this thesis we propose the Surfa
e Curvature Di�usion (SCD), whi
h is anautomati
 mesh segmentation method based on the di�usion of some energy fun
tionde�ned over the surfa
e of the mesh. The key idea is to reprodu
e the physi
alphenomenon of the heat di�usion, through the distribution of the mean 
urvature ofthe obje
t over its surfa
e. As the physi
al pro
ess a
ts in the 
ontinuous 
ase, SCDsolves the problem of 
urvature di�usion by means of dis
retized partial di�erentialequations depending on both the spatial 
oordinates of the points and time.At the initial time (t = 0) the energy fun
tion 
oin
ides, point by point, withthe mean 
urvature of the obje
t. The algorithm tra
ks the evolution of the energyover all the points of the surfa
e and it 
lassi�es the obje
t verti
es a

ording to thevariation of their energy. At the end of the pro
ess (t = tmax), feature-edges are
hara
terized by a large loss of energy released to their neighbouring points. While,points lying on smooth surfa
es in
rease their energy.Finally, by using the lo
al energy variation, SCD de�nes an height map andapplies a region growing based algorithm to lo
ate the obje
t 
omponents.SCD uses as input data obtained by range images a
quired by some devi
es,and it is both parameters-free and time independent, be
ause the di�usion pro
essis related only to the shape of the obje
t and always terminates at equilibrium.Furthermore, as the proposed algorithm simulates an adiabati
 pro
ess, the total
urvature of the obje
t is preserved, as in the physi
al phenomenon.Surfa
e fairing is a very important tool in mesh pro
essing. Noise is typi
allysuppressed by moving the verti
es along the normals to the surfa
e with speedequal to the mean 
urvature (mean 
urvature �ow). On the 
ontrary, SCD is ableto perform an e�e
tive surfa
e de-noising only by measuring the total variation ofthe verti
es energy.Several experiments on di�erent kind of meshes show that SCD is robust, fast,a

urate and e�
ient.Thesis OutlineThis thesis is organised as follows:
• Chapter 1 des
ribes the most important 3D data generation methods. Inparti
ular we fo
us on range data representation. Here, we also de�ne theboundary mesh representation as a set of verti
es, edges and 
onvex polygonswith some adja
en
y relation. Furthermore, we brie�y dis
uss about theprin
ipal mesh generation te
hniques.
• In Chapter 2 we dis
uss about the prin
ipal algorithms reported in literatureto estimate di�erential properties of surfa
es and we also introdu
e othersurfa
e des
riptors based on Tensor Voting. Moreover, the basi
 prin
iples ofmesh de-noising are dis
ussed.



4 Introdu
tion
• In Chapter 3 we summarize the state of the art of the mesh segmentationmethods. In parti
ular, here we explain Region Growing, Clustering and Spe
-tral Analysis methods. In this 
hapter we also fo
us on both the WatershedTransform and mesh edge-dete
tion algorithms developed so far. Finally, wedis
uss the Normal Voting approa
h.
• Chapter 4 introdu
es di�usion based image pro
essing and it presents ourSCD method. Some of the experiments 
arried out to validate the e�e
tive-ness of the proposed algorithm are also reported. Moreover, the SDC resultsare 
ompared to the out
ome of some of the most important edge-dete
tionalgorithms present in literature and future works are �nally proposed.



Chapter 1Three-Dimensional Obje
ts
The representation of a three-dimensional obje
t by a 
omputer requires a virtu-alization pro
ess, typi
ally performed by the generation through a model, or bya
quisition of a real-world obje
t, or by a mix of both te
hniques. 3D digital obje
tsare usually divided into two 
ategories: solid, where the obje
ts are represented bya volume and boundary, where the obje
ts are represented by a surfa
e.Sin
e our work relies on triangular meshes, whi
h are a parti
ular type of bound-ary obje
ts, in this 
hapter we will fo
us on the boundary 
ategory.1.1 Three-Dimensional Obje
ts Generation3D modelling and 
omputer gaming fo
uses mainly in generating of 3D modelsthrough spe
ialized software like 3D graphi
al engines and libraries for 
omputerprograms. The rendering of obje
ts for the generation of very realisti
 3D s
enesand the intera
tion with virtual 3D worlds requires to simulate di�erent physi
alphenomena as 
ollisions and motion. Furthermore, features like lighting and tex-turing are widely used. Modelling is also performed in Computer Aided Design(CAD) for engineering purposes. A very important tool used in CAD problems isrepresented by Non-Uniform Rational B-Splines (NURBS) [51℄, whi
h provide somerepresentations of 3D geometry and are able to des
ribe every shape, from a simpleline to a very 
omplex organi
 stru
ture.1.2 Three-Dimensional Obje
ts A
quisition3D virtual obje
ts 
an be also obtained from the real-world by using some kinds ofa
quisition systems [67℄. Di�erent devi
es are able to 
apture the 3D shape of a realobje
t, like a 
amera 
aptures a 2D snapshot of a real s
ene.Data a
quisition is a ne
essary step to represent a real 3D obje
t through a
omputer. This pro
ess gathers all the spatial information of the obje
t by returninga 
olle
tion of data that 
an be easily managed by an automati
 system.There exist several real 3D obje
ts a
quisition devi
es, and di�erent systemsprodu
e di�erent virtual obje
t representations, ea
h one with own advantages anddisadvantages about memory requirement, pro
essing simpli
ity and level of obje
tdetails.The main data types are: range data and volumetri
 data. The former is gen-erally obtained by a
tive range sensor systems, the latter by tomography systems,ultrasounds, satellite terrain mapping systems, Magneti
 Resonan
e Imaging, et
.



6 Chapter 1. Three-Dimensional Obje
tsA general range sensor system is 
omposed by a laser devi
e and a 
amera. Thea
quisition pro
ess uses a beam of laser light to hit the obje
t and the measure of thelight re�e
ted by a point on the obje
t is used to 
ompute the spatial 
oordinates ofsu
h a points. The obje
t is s
anned from di�erent point of view and the resultingimages must be merged together in order to have a full representation. Figure 1.1shows the typi
al range sensor system s
heme. A plane-type beam of light interse
tsthe obje
t in P, by measuring the distan
e between P and the 
amera (depth of thepoint) it is possible to map the 3D 
oordinates of P on P' belonging the 2D 
amera-spa
e. The distan
e between P and P' gives the depth information of P. This pro
essreturns an image (range image), where the point depth repla
es the pixels brightnessintensity information.

Figure 1.1: S
hema of a general range sensor system.Range images are a spe
ial 
lass of digital images and are generally representedin two forms. The �rst is a list of 3D 
oordinates points with no spe
i�
 order,usually denoted as 
loud of points; while the se
ond one is a matrix of depth valueswith expli
it spatial organization, i.e. a matrix A = aij where aij = z(i, j) indi
atesthe depth information of the point with 
oordinates (i, j). Figure 1.2 shows anexample a two range images of the surfa
es of a s
ulpture.Volumetri
 a
quisition systems a
quire data by shooting the obje
t by pene-trating rays (su
h as X-rays). Di�erent materials absorb di�erent rate of radiationand, by measuring the exiting beam it is possible to obtain a set of 
ross-se
tional2D images (sli
es). The whole shape of the obje
t is re
onstru
ted by sta
king theoutput images through the pro
ess of voxelization, see Figure 1.3.Volumetri
 data are represented by a set of voxels. The voxel (volume pixel)is the smallest unit in 3D volumetri
 data. The voxel 
an be represented by eithera box-shaped volume or a sample point on a regular 3D grid, and it stores all theavailable information about the obje
t features in that volume (i.e. 
olour, opa
ity,gray level, labels, et
.).In the 
ase of a 3D latti
e a volumetri
 image is a subset of Z3, voxels are 
ubes



1.2. Three-Dimensional Obje
ts A
quisition 7

Figure 1.2: Two range images (left and 
enter) representing two di�erent points ofview of a s
ulpture, with the re
onstru
ted shape (right)

Figure 1.3: Voxelization s
hema.with edges of unitary length, arranged as in Figure 1.4, and . Note that two voxelsmight share a surfa
e, an edge or a vertex determining three kind of 
onne
tivity.Obje
ts data need often to be des
ribed by some mathemati
al model. Obje
tssurfa
es represented by range data or volumetri
 data 
an be modelled by parametri
surfa
es and impli
it surfa
es, respe
tively. Parametri
 models are usually given bya 2D to 3D mapping fun
tion f , while impli
it surfa
es are represented by threedimensional s
alar �eld f(x, y, z) = 0 [29℄.Several 
onversion te
hniques have been developed to transform a surfa
e repre-sentation into another one. A well know method, for impli
it to expli
it 
onversion,is the Mar
hing Cube (MC ) algorithm [35℄, whi
h performs a sampling of the im-pli
it surfa
e f(x, y, z) = 0 on a uniform spatial grid and 
onsiders the approximateinterse
tions between the grid and the surfa
e. The drawba
k of the method is thepoor re
onstru
tion of sharp features. Over the years, many improvement of theMC te
hnique have been presented. In [61℄ the size of the triangles is adapted to
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Figure 1.4: 3 x 3 three dimensional latti
e. With this kind of 
onne
tivity, aninternal voxel (bla
k box) has 26 neighbours.the shape of the obje
t surfa
e, while in [29℄ a dire
ted distan
e �eld is used alongthe x and y dire
tions at every grid point, resulting in a good re
onstru
tion nearsharp zones.Several algorithms to 
onvert from expli
it to impli
it forms are presented in [28℄,where these algorithms 
onvert 3D geometri
 obje
ts into their dis
rete voxel-maprepresentation by using a Cubi
 Frame Bu�er (CFB), namely, a 3D array of voxelswhi
h stores regular volumetri
 datasets.1.3 Three-Dimensional Boundary Obje
ts Representa-tionOur resear
h fo
us on the 
lass of obje
ts represented by polygonal meshes, whi
hare the most popular 3D obje
t representations approximating the obje
ts surfa
eby a set of simple 
onvex polygons.De�nition 1 (k-simplex) Given a set A of point in the R
n spa
e, the 
onvex
ombination of k+1 a�nely independent points of V ⊆ A is 
alled k-simplex, where

k < n.When it is required to highlight the number of points of a k -simplex we use thenotation ϕk rather than ϕ.De�nition 2 (s-fa
et of a k-simplex) Let ϕ be a k-simplex de�ned by
V = {v0, v1, ..., vk} and let φ be a simplex de�ned by V ′ ⊆ V , where | V ′ |= s + 1.The simplex φ is 
alled s-fa
et of ϕ and this relation is denoted by either ϕ ⊲ φ or
φ⊳ ϕ.In other words, an s-fa
et φ is as a 
onvex 
ombination of s+1 points of V (see�gure 1.6).
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0-simplex 1-simplex

Figure 1.5: Example of k-simpli
es where ea
h k-simplex is a (k -1)-fa
et of thesimplex on the right.De�nition 3 (Simpli
ial 
omplex) A �nite set H of simpli
es is a simpli
ial
omplex if the following 
onditions hold:1. if ϕ ∈ H and φ⊳ ϕ⇒ φ ∈ H, that is, ea
h s-fa
et of a simplex ϕ ∈ H is alsoin H;2. either ϕ∩ϕ′ = ∅ or ϕ∩ϕ′⊳ϕ and ϕ∩ϕ′⊳ϕ′, that is, the interse
tion between
ϕ,ϕ′ ∈ H is either empty or a 
ommon s-fa
et.Figure 1.6 shows some examples of simpli
ial 
omplexes. The dimension ofa simpli
ial 
omplex H, dim(H), is the maximal dimension of its elements. If

dim(H) = k, then H is k-
omplex.
valid simplicial complexFigure 1.6: Valid simpli
ial 
omplex (right) and not valid one (left)De�nition 4 (Simpli
ial k-
omplex) A simpli
ial 
omplex H is k-
omplex if

dim(H) = k.De�nition 5 (Pure simpli
ial 
omplex) A simpli
ial k-
omplex H is pure if
∀φ ∈ H ∃ ϕ ∈ H | φ⊳ ϕ.De�nition 6 (Orientation of a k-simplex) An orientation of a k-simplex is anequivalen
e 
lass of the permutations of its verti
es obtained by an even number oftranspositions.
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Figure 1.7: Orientations of k-simpli
es.De�nition 7 (Underlying spa
e of a simpli
ial 
omplex) The underlyingspa
e of a simpli
ial 
omplex H is |H| = ⋃

ϕ∈H
ϕ.Note that |H| is a topologi
al spa
e and simpli
ial 
omplexes are used to rep-resent manifolds, whi
h are topologi
al spa
es, too. Manifolds are used to de�nesurfa
es (2-manifold) and their properties, like di�erentiability, where it is typi-
ally requires that for ea
h point within the manifold representation, there exists aneighbourhood homomorphi
 to the open disk.De�nition 8 (Triangulation) Given a topologi
al spa
e X, a simpli
ial 
omplexH is a triangulation if |H| is homeomorphi
 to X.A triangulation is maximal if the addition of a new simplex violates the de�nitionof simpli
ial 
omplex.De�nition 9 (Orientable triangulation) A triangulation T is orientable if twok-simpli
es ϕ,ϕ′ ∈ T de�ne two di�erent orientations on the shared (k-1)-fa
et.De�nition 10 (Polyhedral mesh) An orientable triangulation T is a polyhedralmesh if T is a pure orientable k-simpli
ial 
omplex and if ea
h (k-1)-simplex in T isshared by at most two k-simpli
es in T.Given a simpli
ial 
omplex H let us denote V =

⋃

ϕ0∈H
ϕ0, E =

⋃

ϕ1∈H
ϕ1, and

F =
⋃

ϕ2∈H
ϕ2, that represent the sets of verti
es, edges and fa
ets of H, respe
tively.It is possible to de�ne the following three relations:

• vRvee⇔ ∃v
′|(v, v′) = e;

• vRvff ⇔ ∃v
′, v′′|(v, v′, v′′) = f ;

• eReff ⇔ ∃v, v
′, v′′|(v, v′) = e, and (v, v′, v′′) = f ;where v, v′, v′′ ∈ V , e ∈ E, and f ∈ F .De�nition 11 (Triangular boundary mesh) Given a polyhedral mesh de�ned bya set H of 2-simpli
es, a triangular boundary mesh is M = {V,E, F,Rvf , Rve, Ref},

M = {V,E, F} for short.



1.4. Mesh Generation 11In the triangular boundary meshes the neighbourhood of a fa
et is the set ofedges and verti
es in relation to that fa
et, while the neighbourhood of a vertex isthe set of edges and fa
ets adja
ent to the vertex. Su
h neighbourhoods are also
alled 
y
les. When a 
y
le does not 
ontain any hole is said to be single. Notethat two fa
ets are in relation if they share an edge and the 
onne
tivity of a meshis related to the adja
en
y relations of its elements. The 
onne
tivity is required toperform any kind of lo
al analysis as it allows to rea
h the neighbourhood of ea
hvertex.Furthermore a mesh is regular or stru
tured if ea
h vertex has the same numberof adja
ent verti
es, otherwise is non-regular or unstru
tured.The suitability of a mesh depends on several geometri
al features. High qualitymeshes are 
hara
terized by the following properties:- the varian
e of the area en
losed by triangles should not be very large;- the aspe
t ratio of triangles should be 
losed to 1, where the aspe
t ratio isthe ratio between the diameter of the 
ir
ums
ribed 
ir
le and the maximaledge length of the triangle;- in the 
ase of unstru
tured meshes, the varian
e of the number of adja
entneighbours of the verti
es should be as small as possible.1.4 Mesh GenerationMany methodologies have been developed for generating a polyhedral mesh start-ing from a 
loud of points. Triangulation is the most important and widely usedapproa
h for unstru
tured mesh generation; relevant te
hniques are: Delaunay Tri-angulation (DT) [31, 18, 46, 11℄, Advan
ing Front Method (AFM) [23℄ and GradedTriangulation (GT) [44℄.De�nition 12 (Delaunay Triangulation) A triangulation T on a set V of pointsis a Delaunay Triangulation if ea
h simplex of T is 
ir
ums
ribed by an hyperspherethat does not 
ontain any point in V.DT algorithms are 
lassi�ed in di�erent groups depending on the approa
hesused:
• In
remental Insertion. This 
lass of algorithms perform the DT by startingwith a simplex 
ontaining the 
onvex hull of the point set; then other verti
esare inserted progressively. An example is the Watson's algorithm [46℄ for 2Dtriangulations, whi
h starts with a super triangle that en
ompasses the wholedomain.
• Divide and Conquer. These algorithms re
ursively 
arry out a partitionand triangulation on the input points, then a merging phase is applied inorder to join the resulting triangulations [31, 18, 11℄.
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tsThe Advan
ing Front Method (AFM) starts from the boundary of the 
loud ofpoints and adds new simpli
es progressively. The right lo
ation of new elements is
ru
ial and the main issue is represented by the merging of the lo
ated advan
ingfronts. Note that in the three-dimensional spa
e, this method produ
es tetrahedralmeshes.The Graded Triangulation, de�ned in the two-dimensional spa
e, exploits bothDT and AFM. The triangulation is improved by adapting number and size of thetriangles to the shape of the starting boundary.Di�erent appli
ations require di�erent mesh quality 
hara
teristi
s, for instan
ein order to a
hieve very fast motion and rendering, 
omputer gaming meshes areusually de�ned by a small number of elements (triangles or quadrilaterals); on theother hand, s
ienti�
 appli
ations may need to pro
ess large amount of data withhigh level of details for feature extra
tion and surfa
e analysis. A
quisition systemsprodu
e very dense 
loud of points resulting in meshes with a very large numberof triangles [68℄. In this s
enario a very important property is the mesh resolution,whi
h intuitively indi
ates the level of detail of the mesh surfa
e and is it related tothe number of verti
es.The simpli�
ation of the input data may improve the results of su
h algorithmsand may redu
e the exe
ution time. Progressive meshes adapt the set of mesh pointsa

ording to the required level of details, as in some visualization interfa
es wherethe resolution of the virtual obje
t is related to the zoom level allowing e�
ientrendering.Several papers [36, 55, 57, 62, 21℄ have been written about mesh simpli�
ationalgorithms to redu
e the number of verti
es by iteratively perform some operationson either verti
es or edges. In order to preserve the shape of the obje
t, the 
ostof ea
h operation is usually 
omputed as the distan
e between the original meshan the simpli�ed one. Mesh simpli�
ation algorithms are 
lassi�ed a

ording to thetype of operation used to redu
e the number of verti
es:
• Vertex Removal. In [57, 62℄ the mesh is simpli�ed by iteratively sele
tingverti
es for removal, then the neighbourhood of ea
h removed vertex is re-triangulated. The 
ost is 
omputed as the distan
e between the removedpoint and the �ttest-plane de�ned on the neighbouring points;
• Vertex Clustering. These methods [36, 55℄ use a grid stru
ture obtainedfrom the obje
t bounding-box and all the verti
es 
ontained in a grid 
ell are
luster together. The obje
t shape is not guaranteed by these methods.
• Edge Collapse. Many algorithms redu
e the number of verti
es by 
ollapsingthe endpoints of the edges. The approa
h used in [19℄ allows the 
ontrol ofthe obje
t details, it 
omputes both the upper and the lower bounds of theedges length by using two parameters p1 and p2. The parameter p1 indi
atesthe desired resolution, while p2 spe
i�es the deviation of the edges lengthfrom the given resolution p1. The shape of the obje
t is preserved by a shape
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hange measure de�ned as the maximum distan
e between the mesh beforeand after an operation is applied.In Computer Vision it is often required a lo
al obje
t analysis for features ex-tra
tion and segmentation, algorithms often require a topologi
al representation ofthe obje
t where neighbourhood operations 
an be easily performed. For these pur-poses a suitable mesh representation is useful and lo
al analysis 
an be a

omplishedthrough the 
onne
tivity of the verti
es. Noti
e that two adja
ent fa
ets 
ould haveedges with di�erent lengths and this 
hara
teristi
 must be 
onsidered during theevaluation of the surfa
e features, like its di�erential properties. The algorithm pre-sented in [19℄ addresses also this problem and 
an be used to normalize the lengthsof the edges.1.5 Polygonal Mesh Data Stru
turesBasi
 information needed to analyse an obje
t surfa
e deal with the adja
en
y be-tween mesh items, therefore the implementation of obje
ts surfa
es segmentationalgorithms requires to a

ess the mesh elements e�
iently. Mesh data stru
turesmust des
ribe 2-manifolds and store all the needed topologi
al relations betweenelements by keeping tra
k how an item is 
onne
ted to its neighbours.Typi
al mesh queries are:
• a

ess the verti
es of a fa
et;
• a

ess the verti
es of an edge;
• visit the edges of a fa
et a

ording to some order;
• visit the edges adja
ent to a vertex;
• visit the fa
ets adja
ent to a vertex;3D data stru
tures 
an be mainly distinguished into edge-based and fa
e-based,where the topologi
al information are related to either the edges or the fa
ets neigh-bourhood, respe
tively.Edge-based stru
tures store, for ea
h edge in the mesh, some pointers to itsverti
es and to its adja
ent edges. On the 
ontrary, fa
e-based stru
tures store,for ea
h fa
et, some pointers to its adja
ent fa
ets and to its verti
es. Ea
h datastru
ture has its own advantages in terms of memory requirements and simpli
ityfor topologi
al operations, their usage depends on the appli
ation needs. To thebest of our knowledge, at present there are no standard fa
e-based models, whilethere are two well known edge based approa
hes: Winged-Edge [2℄ and Half-Edge.In this thesis the Half-Edge data stru
ture has been adopted when the a

essthe neighbourhood of the mesh elements in lo
al surfa
e analysis is needed.The Half-Edge stru
ture dupli
ates ea
h edge into two virtual half-edges a

ord-ing to the orientation of the 
y
le of its fa
et (see Figure 1.8), moreover it maintainsfor ea
h half-edge the pointers to:
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• the opposite half edges;
• the adja
ent vertex;
• the adja
ent fa
et;
• the next half edge;
• the previous half edge.Note that the previous half-edge 
an be referen
ed by using only the informationabout the next half-edge. Mesh queries 
an be easily implemented by using this datastru
ture and with regular meshes they 
an be performed at 
onstant time.

Figure 1.8: The red edge is dupli
ated into two half-edges ea
h one oriented a

ord-ing to own adja
ent fa
et.



Chapter 2Mesh Surfa
es
Several Computer Vision tasks require the estimation of the lo
al geometri
 prop-erties of the surfa
es. Consider for example the problem of obje
ts segmentation,that is, the problem of dividing the set of obje
t elements into sub-sets having sim-ilar geometri
 features (segments). The re
ognition of a parti
ular segment 
an bedriven by using some a priori knowledge about the surfa
e geometry. Furthermore
lassi�
ation problems need to de
ide if a segment belongs to some surfa
e type,like spheri
al surfa
es, 
ylindri
al surfa
es, et
. Su
h segments des
ription is usedto simplify the re
ognition of a given obje
t in a 2D s
ene. In addition, 3D obje
tretrieval exploit segments to mat
h an obje
t against a given model. In 
ontrast,re
onstru
tion problems need to estimate the �ttest surfa
e approximating an un-organized and sparse 
loud of points, typi
ally represented by range images.These tasks require the analysis of the input data by means of des
riptors in-variant under di�erent transformations, like rotations, translation, s
aling, et
.A

ording to the di�erential geometry theory, the 
oordinate system used torepresent surfa
es does not in�uen
e their properties, whi
h are 
ompletely des
ribedby �rst and se
ond-order derivatives.The problem of re
overing surfa
e properties depends on the input data at hand,polyhedral meshes and range images are usually pro
essed with di�erent approa
hes.In range images, the grid on whi
h points are aligned gives a natural parametriza-tion of the surfa
e. In 
ontrast, triangular meshes have no natural parametrizationde�ned on them [63℄ and impli
it parametrization is no suitable for approximat-ing arbitrary data [45℄. Here, mesh surfa
es are typi
ally des
ribed by se
ond-ordershapes as spheres, paraboloids, ellipsoids, 
ylinders, hyperboloids, et
. Furthermore,experimental results show that higher-order surfa
es gain little advantages [30℄.This 
hapter fo
uses on the pro
ess of estimating di�erential quantities on trian-gle meshes. Noise 
an heavily a�e
t su
h estimation, thus many methods, as surfa
esmoothing (or fairing) have been developed in the past de
ades to redu
e noise dueto high frequen
ies on the surfa
es. We will also dis
uss the basi
 prin
iples of meshdenoising.Important surfa
e features 
an be also 
aptured through a tensor voting ap-proa
h. As explained in se
tion 2.4, the shape of an obje
t 
an be inferred from a
loud of points. The salien
y of ea
h point 
an be des
ribed by tensors whi
h en
odesome information and propagate it to its neighbourhood. Di�usion is implementedby a voting me
hanism, where ea
h point 
olle
ts the votes (i.e. tensors) from itsneighbouring elements. The shape of the obje
t is then obtained by analysing thevotes 
olle
ted at ea
h site. This te
hnique allows to de�ne very useful surfa
e
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esdes
riptors that 
an be used for mesh segmentation purposes.2.1 Di�erential Geometry Ba
kgroundDi�erential geometry has been used in Computer Vision for the des
ription of sur-fa
es [50℄. The lo
al geometry properties are 
omputed on some quadri
 surfa
eapproximating a set of mesh verti
es. In this 
ontext the basi
 
on
ept requiredfor surfa
e analysis is represented by the surfa
e fundamental forms, whi
h are ex-tremely important and useful in order to determine the metri
 properties of surfa
es.Let us assume that S is a surfa
e embedded in R
3, represented by an arbitraryparametrization of two variables X(u, v) whi
h is smooth in the neighbourhood ofa point p(x, y, z).Ea
h mesh vertex is 
hara
terized by a unit normal ve
tor de�ned as the nor-malised 
ross produ
t of the partial derivatives of X:n =

Xu ×Xv

‖ Xu ×Xv ‖For small variations of the parameters (u, v), the �rst fundamental form measuresthe amount of movement on the surfa
e. Su
h measure is rotation and translationinvariant and does not depend on the surfa
e embedding and on the parametrization.While, the se
ond fundamental form depends on the embedding in the 3D spa
e andit measures the 
hanges of the surfa
e normal for some movements of the parameters
(u, v). Therefore, the �rst and se
ond fundamental forms are 
onsidered as impli
itand expli
it properties of surfa
es, respe
tively. Su
h forms are de�ned as follows [6℄:

I(u, v, du, dv) = dX · dX = duTGdu
II(u, v, du, dv) = −dX · dn = duTDduwhere

du = (du, dv)Tand
G =

( Xu ·Xu Xu ·XvXu ·Xv Xv ·Xv

)

D =

( n ·Xuu n ·Xuvn ·Xuv n ·Xvv

)The geometri
 properties of surfa
es are related to the Eu
lidean geometry of 3Dspa
e by the linear shape operator β, whi
h generalises the 
urvature of plain 
urves.Su
h operator is a map β : Γ(p)→ Γ(p), where Γ(p) is the tangent (hyper)plane tothe surfa
e at the point p.Given a ve
tor t tangent to the surfa
e S at p, the shape operator is de�ned as:
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β(t) = −∇tnwhere:

(∇tn)(p) = lim
τ→0

n(p + τt)− n(p)
τIn other words ∇tn represents the dire
tional derivative of n along the dire
tion t.The operator β 
an be expressed in ve
torial form as:

β(t) = G−1DtWith β(t) at hand, the prin
ipal 
urvatures and prin
ipal dire
tions of S onpoint p are obtained by 
omputing the normal 
urvature of the surfa
e at p in thedire
tion of a ve
tor t. The normal 
urvature is de�ned as:
κn(t) = β(t) · t

‖t2‖ (2.1)whi
h measures the 
urvature of the plane 
urve obtained from the interse
tion ofthe plane de�ned by t and n with the surfa
e.The minimum and maximum values of κn are 
alled the prin
ipal 
urvatures
κ1 and κ2, respe
tively. These values are obtained a

ording two dire
tions, repre-sented by the unit ve
tors e1 and e2 denoted as prin
ipal dire
tions. The prin
ipal
urvatures are the eigenvalues of the shape operators, while the prin
ipal dire
tionsare the 
orresponding eigenve
tors. The ve
tors e1 and e2, together with n de�nean orthonormal frame at p, 
alled prin
ipal 
oordinate frame.A

ording to the Euler Formula, the normal 
urvature 
an be de�ned, withoutloss of generality, by 
onsidering the angle θ between e1 and t:

κn(θ) = κ1 cos
2 θ + κ2 sin

2 θ (2.2)The mean 
urvature H and the Gaussian 
urvature K are important surfa
esdes
riptors and they are derived from the prin
ipal 
urvatures:
H =

1

2π

2π
∫

0

κn(θ)dθ (2.3)and
K = κ1κ2. (2.4)Note that H and K are the determinant and the half-tra
e of S, respe
tively, andthey 
hara
terize a surfa
e point p as ellipti
 (if K > 0), hyperboli
 (if K < 0),paraboli
 (if K = 0 and H 6= 0), or planar (if K = H = 0).A neighbourhood of a point p(x, y, z) on a surfa
e S 
an be approximated by aquadri
 surfa
e. Let us represent su
h neighbourhood with z = h(x, y), where the
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oordinate frame is 
entred on p and the z axis is aligned with the normal n at p.The fun
tion h is di�erentiable and by Taylor's expansion of h at p up to order 2,the expression for the prin
ipal quadri
 Q of S 
an be derived:
h(x, y) =

1

2
(hpxxx

2 + 2hpxyxy + hpyyy
2) +R(x, y)where hpxx is hxx evaluated at p and lim

(x,y)→(0,0)

R(x, y)

x2 + y2
= 0 andThe equation:

z =
1

2
(hpxxx

2 + 2hpxyxy + hpyyy
2) (2.5)approximates the surfa
e S, and its zero-set of z de�nes the prin
ipal quadri
 Q of

S at p.The surfa
e Q gives all of the important lo
al di�erential properties of the surfa
e
S. The prin
ipal quadri
 at p 
an be expressed in the prin
ipal 
oordinate frameby a lo
al parametrization X(x, y) = (x, y, h(x, y))T with n = (0, 0, 1)T , resultingin the following matri
es:

G =

(

1 0

0 1

)

S = D =

(

hpxx hpxy
hpxy hpyy

)The prin
ipal 
urvatures κ1 and κ2 are the eigenvalues of S, hen
e the prin
ipalquadri
 is:
z =

1

2
(κ1x

2 + κ2y
2) (2.6)2.2 Approximation of Lo
al Surfa
e PropertiesThough several methods have been proposed in literature to estimate several di�er-ential properties on triangular meshes, there is no 
onsensus on the most appropriateavailable te
hniques [50℄. Furthermore, the 
hoi
e of a parti
ular method may de-pend on the types of data to be pro
essed. Despite there are several points of viewabout the best estimation methods of the surfa
e properties, it seems that the mostsuitable approa
hes are those using the dis
rete analogous of formulas in the 
on-tinuous 
ase. In this 
ontribution, the surfa
e properties are extra
ted by �ttestquadri
, hen
e in the following we will give major emphasis to these te
hniques.2.2.1 Prin
ipal Quadri
 EstimationGiven a triangulation T (see Chapter 1), the estimation of the prin
ipal quadri
 atsome point p on T involves the 
omputation of the normal n at p. Su
h estimationdepends on the mesh stru
ture around ea
h point, then di�erent meshing might
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e Properties 19produ
e di�erent results. Many approa
hes have been adopted to estimate themesh normals, and usually they are based mainly on the average of the normalsbelonging to the fa
ets adja
ent to p. Let us denote by N(p) and M(p) the sets ofverti
es and fa
ets adja
ent to p, respe
tively. The normal at p is estimated throughthe weighted average: n =

i=n
∑

i=1
wini

‖
i=n
∑

i=1
wini ‖

(2.7)where n = |N(p)|.The weights wi 
an be 
omputed a

ording to di�erent approa
hes [43, 24, 39℄.For instan
e it 
an be used the area of the bary
entri
 
ell at p (i.e. the 
ell obtainedby joining the 
entre of mass of ea
h fa
et with the middle point of its edges), orthe angles of the fa
ets adja
ent to p (wi = θi), see Figure 2.1 a and b.
a bFigure 2.1: Lo
al regions around a vertex [17℄. a) Finite volume region usingbary
entri
 
ells. b) External angles of a Voronoi region.The verti
es of a mesh are expressed in the world (global) 
oordinate frame.On
e the normal is estimated, the quadri
 
an be �tted by �rst aligning the neigh-bourhood N(p) of a vertex p with the prin
ipal 
oordinate frame asso
iated with p.The prin
ipal 
oordinate frame 
an be moved on this world by a translation and arotation. The resulting 
oordinates x = (x, y, z)T of a point in the prin
ipal 
oordi-nate frame 
entred in p are related to the its world 
oordinates xw = (xw, yw, zw)

Tas following: x = R(xw − pw)where R is the attitude matrix [41℄ and pw are the global 
oordinates of p.The prin
ipal quadri
 at some point p 
an be expressed in a 
oordinate framex′ = (x′, y′, z′) 
entred in p, related to the prin
ipal 
oordinate frame by a rotationaround its normal at p: x =





cosα sinα 0

− sinα cosα 0

0 0 1



x′
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esThis yields to the rotated prin
ipal quadri
:
z′ = a′x

′2 + b′x′y′ + c′y
′2The asso
iated shape operator matrix is:

S =

(

2a′ b′

b′ 2c′

)and the di�erential properties of the surfa
e at point p are 
omputed as:
κ1 = a′ + c′ +

√

(a′ − c′)2 + b
′2

κ2 = a′ + c′ −
√

(a′ − c′)2 + b′2

α =
1

2
arctan(b′, a′ − c′)

K = 4a′c′ − b
′2 H = a′ + c′In order to obtain the rotated prin
ipal quadri
, the rotation from the world
oordinates to the rotated prin
ipal frame must be de�ned. This is a
hieved byaligning x′, with the proje
tion of xw onto the tangent plane de�ned by n [40℄x′ = R′(xw − pw)where the matrix R′ is de�ned as:

R = (r1, r2, r3)Twith r1 = (I − nnT )i
‖ (I − nnT )i ‖ , r3 = n, r2 = r3 × r1 (2.8)The ve
tor i is the �rst axis in the global 
oordinate frame, while I is the identitymatrix.The rotated verti
es are �nally �tted and the 
oe�
ients of the rotated prin
ipalquadri
 are obtained by solving the following system of linear equations through aleast-squares method:






x21 y21 x1y1... ... ...
x2n y2n xnyn











a′

b′

c′



 =







z1...
zn





The quadri
 re
overy is greatly in�uen
ed by the a

ura
y of the estimatednormal ve
tors at mesh verti
es. A

ording to [40℄, the �tting 
an be improvedby iteratively re�ne the normal estimation, and the authors proposed the followingpro
edure:
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al Surfa
e Properties 211. estimate the rotated prin
ipal extended quadri
;2. estimate the the surfa
e normal;3. use the new normal to 
ompute a new rotation matrix and rotate the data;4. repeat the above steps until the in
remental 
hange in the dire
tion of thenormal falls below some toleran
e levelAt ea
h iteration the estimate of the normal is 
omputed by using the 
oe�
ientsof the extended quadri
 z′ = a′x2 + b′xy + c′y2 + d′x+ e′y:n =
(−d′, e′, 1)T

1 + d′2 + e′2Finally, the mean and Gaussian 
urvature are 
omputed as follows:
K =

4a′c′ − b′2

(1 + d′2 + e′2)2

H =
a′ + c′ + a′e′2 + c′d′2 + b′d′e′

(1 + d′2 + e′2)3/2A

ording to the te
hniques presented, the problem of re
overing quadri
s ontriangle meshes 
an be divided into the following sub-problems:1. estimation of the normal of the surfa
e at some point p;2. 
omputation of the rotation matrix R′;3. rotation of the data expressed in the world 
oordinate frame;4. �tting of the rotated data with a quadri
, alternatively with an extendedquadri
;5. 
omputation of the di�erential properties and the angle α relating the rotatedprin
ipal quadri
 and the prin
ipal 
oordinate frame;6. estimation of the attitude matrix.2.2.2 Spatial AveragesThe de�nition of di�erential quantities in the 
ontinuous 
ase 
an be extended totriangular meshes by 
omputing some spatial average around ea
h vertex p of themesh. The work presented in [17℄ shows that there exist strong analogies between the
ontinuous 
ase and the dis
rete 
ase when the averaging is performed on spe
ialregions 
ontained in the set M(p) of the fa
ets adja
ent to p. Su
h regions aredenoted as �nite volumes and 
an be de�ned in di�erent ways (see Figure 2.2).The dis
rete form of the Gaussian 
urvature 
an be de�ned as:
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K(p) =

1

A

∫∫

A

KdA (2.9)where A is some 
hosen area around vertex p. The �nite volume asso
iated with
A is denoted as AM . If the Gauss-Bonnet theorem is applied on AM , the dis
reteGaussian 
urvature at p 
an be 
omputed as:

1

AM

∫∫

AM

KdA = 2π −
∑

pi∈N(p)

θi (2.10)where θi is the angle at p of the ith fa
et in M(p) (see Figure 2.2 a). The Gauss-Bonnet is an important result of di�erential geometry, it 
onne
ts the geometryof surfa
es to their topology expressed by the Euler 
hara
teristi
. In order to toa

urately estimate the spatial average, a suitable �nite volume must be de�ned.Voronoi 
ells provide tight error bounds [17℄ and assuming that M(p) 
ontains onlynon-obtuse triangles, the total area of the pat
h surrounding p is:
AV oronoi =

1

8

∑

pi∈N(p)

(cotαi + cot βi)‖pi − p‖2 (2.11)As shown in Figure 2.2b, αi and βi represent the angles opposite to the edge
ppi. When the pat
h 
ontains obtuse triangles, the Voronoi 
ells are 
onstru
tedby taking into a

ount the 
ir
um
enters of obtuse fa
ets and the bary
enters ofnon-obtuse ones. The resulting area is denoted as mixed area and the expression ofthe dis
rete Gaussian 
urvature be
omes:

K(p) =
1

Amixed

(

2π −
∑

pi∈N(p)

θi
) (2.12)

a bFigure 2.2: Lo
al regions around a vertex [17℄. b) Lo
al region using Voronoi 
ells.d) Angles opposite to an edge.The dis
rete mean 
urvature at some vertex p of a mesh 
an be derived by usingthe Lapla
e-Beltrami operator K, de�ned as the divergen
e of the gradient of somefun
tion f . On smooth surfa
es, K maps a point p to the ve
tor K = 2Hpnp. On
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al Surfa
e Properties 23triangulations, the operator K over a �nite volume AM 
an be expressed as a lineintegral over the boundary of the volume:
∫∫

AM

KdA =
1

2

∑

pi∈N(p)

(cotαi + cot βi)× (pi − p) (2.13)Again, the mixed area is 
hosen and the Lapla
e-Beltrami operator is 
omputed as:
K(p) =

1

2AMixed

∑

pi∈N(p)

(cotαi + cot βi)× (pi − p) (2.14)Hen
e the mean 
urvature is Hp =
|K(p)|

22.2.3 Covarian
e Matri
esThe 
omputation of di�erentiable properties of surfa
e may be not robust underadditive noise, and surfa
es may not present suitable smoothness to support dif-ferentiation. These problems led several authors to adapt the 
ovarian
e matri
esmethods to triangulations [34, 3℄. Given a point p of the mesh, the 
ovarian
e matrix
CI is 
omputed on the set N(p) as follows:

CI =
1

n

i=n
∑

i=1

(pi − p)(pi − p)T (2.15)where p =
1

n

i=n
∑

i=1
pi represents the mean position ve
tor.The eigenve
tors t1 and t2 of CI de�ne the tangent plane at p, so that thedistan
es of the surfa
e points in N(p) to this plane are minimized. In addition,the eigenve
tor t3 is an estimation of the surfa
e normal n at p and thus CI 
an be
onsidered as the dis
rete equivalent of the �rst fundamental form matrix G.A

ording to [3℄ the dis
rete se
ond fundamental form matrix 
an be de�nedby proje
ting the di�eren
e ve
tors (p − pi) onto the tangent plane determined by

CI . The 
ontribute of ea
h di�eren
e ve
tor is weighted a

ording to the orthogonaldistan
e from pi to the tangent plan:
CII =

1

n

i=n
∑

i=1

(yi − y)(yi − y)T (2.16)where yi = [(pi − p) · n]((pi − p) · t1
(pi − p) · t2)The eigenve
tors of CII are an estimation of the prin
ipal dire
tion at p.Alternatively, sin
e the prin
ipal dire
tions lie on the tangent plane, the 
ovari-an
e matrix C

′

II 
an be built by proje
ting the normal ve
tors in N(p) onto the
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estangent plane. Given an estimation of the normal ni of the neighbouring verti
es piobtained by CI , the matrix C
′

II is 
omputed as CII :
C

′

II =
1

n

i=n
∑

i=1

(yi − y)(yi − y)T (2.17)with yi = (ni · tini · t2).2.3 Mesh De-noising Prin
iplesReal world obje
ts are typi
ally 
hara
terized by smooth surfa
es. Nevertheless,all the a
quisition methods produ
e noisy and rough surfa
es whi
h need somesmoothing pro
ess in order to exploit the di�erential property of the meshes.Surfa
e smoothness refers to the notion of 
ontinuous di�erentiability, and meshde-noising (or fairing) is related to the appearan
e of the obje
t surfa
e and it is usedto a
hieve more a

ura
y in the estimation of di�erential quantities (see Figure 2.3).

Figure 2.3: Example of mesh fairing.The 
lassi
 approa
h for mesh fairing uses a 
onstrained energy minimisation ona fun
tional E(S) de�ned for a surfa
e S:
E(S) =

∫∫

S

(κ21 + κ22)dA (2.18)The non-linear dependen
e of the prin
ipal 
urvatures on S led to employ themembrane and thin-plane fun
tionals denoted as Em(S) and Et(S), respe
tively.
Em(S) =

∫∫

S
(X2

u +X2
v)dudv (2.19)

Et(S) =

∫ ∫

S
(X2

uu + 2X2
uv +X2

vv)dudv (2.20)



2.3. Mesh De-noising Prin
iples 25Observing that the variational derivative 
orresponds to the Lapla
ian, fairing
an be performed by integrating the di�usion equation over time:
∂X
∂t

= λL(X) (2.21)where L(X) = Xuu +Xvv , L2(X) = L ◦ L(X) and λ > 0The di�usion �ow redu
es the noise by smoothing the high frequen
ies on the meshsurfa
e. More details on the di�usion equation will be given in the Chapter 4.At ea
h point p the Lapla
ian 
an be approximated by the umbrella operator u:
u(p) =

∑

pi∈N(p)

wipi

∑

pi∈N(p)

wi
− p (2.22)where the summation wi are positive weights. In order to integrate the di�usionequation in the dis
rete 
ase, an iterative pro
ess must be de�ned. The task is fa
edby generating a sequen
e of meshes by using the following update rule for a dis
retetime step ∆t = 1:

p(j+1) ← p(j) + λu(p(j)) (2.23)This pro
edure is known as Lapla
ian smoothing. At ea
h iteration a vertex ismoved by a displa
ement 
omputed as the average position of the neighbouringverti
es multiplied by some s
ale fa
tor λ. Typi
al 
hoi
es of the weights are wi = 1,alternatively a fun
tion of the length of the edges ppi are used.Lapla
ian smoothing has several disadvantages: unnatural deformation on themesh surfa
e may appear if λ is not small enough, furthermore the result of smooth-ing depends on the sampling of the mesh verti
es. The restri
tion on the s
ale fa
torrequires hundred of iterations to smooth signi�
antly large meshes. Moreover smalldetails are lost due to the la
k of lo
al shape 
ontrol.Variation of the original Lapla
ian smoothing methods have been proposed [65,66℄. Although the deformations 
an be minimised by 
omputing a weighted averageof L and L2, results are still a�e
ted by s
ale problems. A

ording to di�erentauthors, the umbrella operator is not adequate to approximate the Lapla
ian fortriangular meshes.A better approa
h is the mean 
urvature �ow [17℄ whi
h uses the Lapla
e-Beltrami operator to approximate the Lapla
ian. Here the verti
es are moved alongthe surfa
e normal with a speed equal to the mean 
urvature. Given a mesh point
p, in the 
ontinuous 
ase the displa
ement for a time step is:

∂p

∂t
= −H(p)n(p) (2.24)In the dis
rete setting, the lo
al update rule is:

p(j+1) ← p(j) −H(p(j))n(p(j)) (2.25)
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esThis formulation yields to isotropi
 smoothing, namely, the smoothing pro
esshas the same behaviour along all dire
tions. The problem with this approa
h is thelo
al geometry loss, surfa
e features like boundaries, edges and ridges are smoothedin the same way as homogeneous regions. The dete
tion of high 
urvature pointsthrough the prin
ipal dire
tions 
an be used to perform anisotropi
 smoothing. Thisis required in order to redu
e or suppress smoothing on su
h points and preservesmall-s
ale features. The di�usion should be redu
ed or suppressed in the dire
tionof su
h points. In [17℄ the following update rule is proposed:
p(j+1) ← p(j) − σH(p(j))n(p(j))where the smoothing weight σ is de�ned as follows:

σ =



































































1 if |κ1| ≤ τ and |κ2 ≤ τ

0 if |κ1| > τ and |κ2 > τ and K > 0

κ1
H

if |κ1| = min(|κ1|, |κ2|, |H|)

κ2
H

if |κ2| = min(|κ1|, |κ2|, |H|)

1 if |H| = min(|κ1|, |κ2|, |H|)where τ is a user de�ned parameters. This approa
h is also dependent on thesampling of the mesh points and may yield to over-smoothing as time in
reases.Better results are obtained by 
ombining the properties of Lapla
ian smoothing andmean 
urvature �ow. The algorithm proposed in [47℄ moves the verti
es both alongthe normal and along some dire
tion on the tangent plane. This approa
h allowsto smooth the surfa
e while improving the sampling rate of the mesh verti
es. Theupdate rule thus be
omes:
p(j+1) ← p(j) + λ(H(p(j))n(p(j)) + C[u0(p

(j))− (u0(p
(j) · n(p(j)))× u0(p

(j))])where C is a positive 
onstant or a fun
tion of the surfa
e 
urvatures, and u0 is theumbrella operator obtained with 
onstant weight wi = 1. See Figure 2.4 to see someresults obtained though the methods presented.The use of mesh denoising 
an improve the estimation of di�erential quantities.Sin
e mesh pro
essing algorithms often assume the knowledge of some des
riptors asthe prin
ipal 
urvatures, smoothing 
an be used as a pre-pro
essing step althoughthere is no suitable upper bound in the number of iterations. More 
onsiderationsabout this problem will be given in the last 
hapter.
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tion 27
Figure 2.4: Smoothing of a mesh. From left to right: original mesh, smoothingobtained by the method presented in [65, 66℄, mean 
urvature �ow, smoothingobtained by the method presented in [47℄.2.4 Tensor Voting Based Surfa
e Features Extra
tionFrom the Gestalt theory we know that there exist several rules driving the re
og-nition pro
ess of the obje
ts, a

ording to the spatial organization of the elements
omposing the s
ene. For instan
e, in Figure 2.5 a, it is possible to re
ognise twoplain 
urves surrounded by some isolated points. Proximity and good 
ontinuityare just two examples of prin
iples, used to aggregate the elements that 
omposehigher level stru
tures in the image, and Tensor Voting [42℄ allows us to simulatethe human re
ognition pro
ess.Given an obje
t des
ribed by an unorganised set of points in both 2D and 3Dspa
e, its shape 
an be inferred by propagating the information en
oded within ea
hpoint through a voting pro
ess. Hen
e, voting produ
es new information aboutthe underlying global stru
ture of the obje
t. For example, by referring again toFigure 2.5, the input image is just a 
olle
tion of 
oordinates (x, y), after voting,an estimation of the tangent at ea
h point is obtained. Through a given 
on�den
emeasure, isolated point present negligible tangent information. The same reasoning
an be applied for a three-dimensional images, where the normal at ea
h point 
anbe estimated through voting, and used to infer the whole shape of the obje
t.Note that, Tensor Voting theory also de�nes suitable surfa
e des
riptors usefulto perform some obje
ts segmentation, as des
ribed in Chapter 3.The Tensor Voting approa
h presented in [42℄ is a set of pro
edures 
alled thesalient feature inferen
e engine. Ea
h point in the input image maintains itsspatial information together with the estimates of its tangent and normal ve
tors.Note that the method requires at least the spatial position of the input points. Inputelements will be denoted as tokens.The whole algorithm 
an be summarised into three stages:1. Ea
h input token is en
oded as a se
ond order symmetri
 tensor. When the to-ken maintains only the position information, the relative tensor is an isotropi
ball of unitary radius.2. First voting step. The tokens within in a neighbourhood 
ommuni
ate ea
hother their information. During this stage they are transformed into generi
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esse
ond order tensors en
oding the 
on�den
e of the 
urve and surfa
e orien-tation information.3. Se
ond voting step. A dense tensor map is 
omputed by di�using the infor-mation of ea
h token to its neighbours. This tensor map en
odes the salien
yof ea
h token, and it is used to infer the token point-ness, 
urve-ness andsurfa
e-ness.
a b cFigure 2.5: Shape re
onstru
tion from a 
loud of point in 2D. a) Original data. b),
) Voting steps.The 
hoi
e of tensors 
an be roughly argument as follows. A token may representdi�erent types of entities: a point or a 
urve, or a surfa
e, or these entities at thesame time. In Figure 2.5 the interse
tion of the 
urves is both a point with noasso
iated tangent, and two 
urves. Tensors allow to maintain all the possibleinformation at the same time.A se
ond order symmetri
 K tensor in matrix form is written as:
K =

(e1 e2 e3)λ1 0 0

0 λ2 0

0 0 λ3









eT1eT2eT3  (2.26)where λ1 ≥ λ2 ≥ λ3 are the eigenvalues of K and e1, e2 and e3 are their relativeorthonormal eigenve
tors.In order to make expli
it the information en
oded by ea
h token, the tensor
K 
an be de
omposed into three 
omponents representing three di�erent types oftensors, namely, the ball tensor, the plate tensor and the sti
k tensor. These tensorsen
ode the point-ness, 
urve-ness and surfa
e-ness, respe
tively. From the spe
trumtheorem [38℄, K 
an be de
omposed as follows:

K = (λ1 − λ2)e1eT1 + (λ2 − λ3)(e1eT1 + e2eT2 ) + λ3(e1eT1 + e2eT2 + e3eT3 ) (2.27)where e1eT1 des
ribes a sti
k, e1eT1 +e2eT2 des
ribes a plate, and e1eT1 +e2eT2 +e3eT3des
ribes a ball.The �rst voting step uses a tensor voting �eld for ea
h type of tensor and produ
ea tensor map. The tensor K relative to some data point p a

umulates votes by
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e Features Extra
tion 29summing the tensors 
ontributions from neighbouring points. This is a
hieved bymatrix summation.After the �rst step the tensor K is de
omposed into the 
orresponding eigensys-tem, a se
ond voting step is then applied to estimate the orientation of the features.The ball tensor is not oriented and does not propagate any information. At the endof the whole algorithm, a tensor en
odes likelihood (salien
y) of a point belongingto a parti
ular type of feature and the orientation of su
h feature. This means that:
• if a token has a relevant salien
y value λ3 related to its point-ness, there is noorientation information. This 
ondition 
hara
terizes jun
tion points;
• if a token has a relevant salien
y value (λ2−λ3) related to its 
urve-ness, theestimate tangent is obtained by t = e3. This 
ondition 
hara
terizes pointsbelonging to either smooth 
urves or surfa
e jun
tions;
• if a token has a relevant salien
y value (λ1−λ2) related to its surfa
e-ness, theestimate normal is obtained by n = e1. This 
ondition 
hara
terizes pointsbelonging to smooth surfa
es.Finally the global stru
ture of the input obje
t is re
overed by inspe
ting thebehaviour of tensors along a parti
ular dire
tion. For instan
e, a point belongs tothe surfa
e of the obje
t if its salien
y is lo
ally extremal along the dire
tion of su
ha normal. Surfa
e extremality and 
urve extremality are the prin
ipal 
onditionsused to infer the shape of the input points set. Extremal surfa
e points 
an betriangulated to obtain a polygonal mesh (see Figure 2.6).

Figure 2.6: Inferring three-dimensional shape of an obje
t from a 
loud of point.Features orientation is estimated by voting within tensor �elds. A

ording tohuman per
eption prin
iples, these �elds are designed to des
ribe the orientationthat a surfa
e (or a 
urve) should have, when joining the 
entre of the �eld ananother generi
 point in�uen
ed by su
h �eld.We will see in Chapter 3 that tensor voting 
an be employed to perform edgedete
tion on triangle meshes.





Chapter 3Mesh Segmentation
3.1 The Mesh Segmentation ProblemComputer Vision problems usually refer to the automati
 analysis and understand-ing of both 2D and 3D images. The segmentation task 
on
erns with the partitioningof an obje
t into a set of meaningful segments (i.e. non-empty and not overlappingregions) a

ording to some 
riteria. Ea
h segment must 
ontain elements of theobje
t having similar features and the set of segments have to 
over the whole inputdata. The resulting segments are used to represent data by higher-level stru
turesand 
an be used as input for other tasks.When an obje
t is represented by a 3D mesh, its segmentation produ
es a �niteset of sub-meshes that are 
olle
tions of elements of the mesh. Segmentation 
anbe 
arried out starting from either the verti
es, the edges or the fa
ets of the mesh.More formally, given a mesh M = {V,E, F}, a sub-mesh M ′ = {V ′, E′, F ′} of Mis obtained by sele
ting one target subset S of either V , E or F and by gatheringthe other subsets so that their elements are in relation with the target one. Forinstan
e, when the target set is S = V ′ ⊆ V , then E′ ⊆ E and F ′ ⊆ F are thesubsets of elements adja
ent to some verti
es of V ′.LetM = {M0, ...,Mt−1} the set of sub-meshes obtained by some segmentationof M . The elements ofM must satisfy the following 
onditions:1. M =

t−1
⋃

i=0
Mi;2. P (Mi ∪Mj) = 0 for any pair of adja
ent regions Mi,Mj , with i 6= jwhere P is a predi
ate de�ned on ea
h Mi and it indi
ates if some 
riterion fun
tionis satis�ed by all elements within the same region.Mesh segmentation 
an be also stated as an optimization problem [58℄. In thiss
enario we needs to de�ne a 
riterion fun
tion J : P(S) → R, where P(S) is thepower set of S, and the goal is the minimization of J under a set of 
onstraints. Notethat J indu
es a partitioning of S into t disjoint sub-sets, S0, ..., St−1, by asso
iatingea
h Si to a s
ore.The problem of mesh segmentation is stri
tly related to 
onstrained graph parti-tioning. Indeed it is possible to de�ne the dual graph [16℄ G of a mesh M by repre-senting ea
h element of the target set S as a node of G and exploiting the adja
entrelation among the elements of S to link the nodes of the graph (see Figure 3.1).The segmentation of a mesh is equivalent to the partitioning of the dual graph byminimizing the number of 
ut-edges whi
h is an NP-Complete problem [20, 7℄.
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Figure 3.1: Dual graph of a mesh where S = F .The 
omputational 
omplexity of mesh segmentation requires to address ap-proximate solutions in feasible time. Di�erent strategies have been proposed andthe most important are: region growing, hierar
hi
al 
lustering and spe
tral analy-sis, whi
h will des
ribed more a

urately in the next se
tions. Furthermore, meshsegmentation algorithms have several aims and 
an be mainly distinguished into twokinds a

ording to the prin
ipal obje
tives: surfa
e-type methods and 
omponent-type methods.Di�erent works use variants of the L∞ and L2 norms to measure the planarityof segments. Let ax+ by + cz + d = 0 denote the �ttest plane of the elements of apat
h and suppose S = V , the above norms are de�ned as follows:De�nition 13 (L∞ distan
e norm) The maximum distan
e of a vertex v =

(vx, vy, vz) ∈ V from a plane ax + by + cz + d = 0 is 
omputed as
|(vx, vy, vz , 1) · (a, b, c, d)| ≤ εDe�nition 14 (L2 distan
e norm) The average distan
e of verti
es {v1, ..., vt|vi ∈
V } to a plane ax+by+cz+d = 0 is 
omputed as 1

t

t
∑

i=1
((vx, vy, vz , 1) · (a, b, c, d))

2 ≤ ε3.1.1 Surfa
e-base segmentationSurfa
e-based methods lo
ate pat
hes, i.e. surfa
e regions whose elements satisfysome 
onditions (e.g. a 
onstant 
urvature).Many works [15, 5, 73, 22℄ refer to pat
h segmentation for mesh simpli�
ationand re-meshing problems. The basi
 idea is the repla
ement of a planar pat
heswith one or more polygons.Some authors [72℄ de�ne a spe
i�
 segmentation lo
ating regions having smalldistortion after their parametrization onto the 2D spa
e to solve the texture mappingproblem. In 
omputer graphi
 appli
ations, textures 
an be 
onsidered as 2D imagesemployed to give more realism to 3D obje
ts. The texture mapping problem 
onsistsin the mapping of texture points onto the mesh previously unfolded on a plane. Theunfolding pro
ess applied on 
omplex surfa
e yields to big distortions errors, thusthe division into small pat
hes usually improves the result.



3.2. Mesh Segmentation Methods 33Morphing is used to turn an obje
t into another one through a �uid transforma-tion of the surfa
e and it is another �eld of 
omputer graphi
 that takes advantage ofpat
h segmentation. Indeed morphing algorithms 
an be enhan
ed by a

omplishingtransformations between surfa
e pat
hes [73℄.Surfa
e-based methods have been also used to improve the performan
es of those
ompression algorithms [71℄ relying on the Lapla
ian of a graph. Performan
es arelargely improved when the Lapla
ian is evaluated on small pat
hes.3.1.2 Component-based segmentationUnderstanding an obje
t is often a
hieved by the re
ognition of its di�erent semanti

omponents. For example, a human body model 
an be divided into di�erent partrelated to the head, harms, legs, et
. Component-type segmentation is used inseveral 
ontexts and is usually related to the de
omposition of an image into itsmeaningful sub-parts.The disassembly of an obje
t allows the mat
hing of its sub-parts and improvesthe automati
 re
ognition pro
ess [73, 4, 50℄. For example, shapes 
omparisonis required in database retrieval. Furthermore, several appli
ations deal with there
ognition of obje
ts against a given model. The 3D jigsaw problem 
on
erns there
onstru
tion of an obje
t starting from its parts. The set of obje
ts to be "glued"
an be lo
ated by �rst re
ognizing mat
hing sub-regions [48℄.Computer games often require to dete
t 
ollision between 
omplex models. Thebounding box (BB) of the whole obje
ts is inappropriate, thus more pre
ise 
olli-sion dete
tion 
an be performed by 
onsidering BBs en
losing ea
h single 
ompo-nents [69℄.

Figure 3.2: Example of a 
omponent-type segmentation [70℄ (left) and surfa
e-typesegmentation [56℄ (right).3.2 Mesh Segmentation MethodsWe have sket
hed di�erent segmentation strategies have been mentioned in order todes
ribe the main issues related with di�erent appli
ations. Although there exist a



34 Chapter 3. Mesh Segmentationvariety of methods, segmentation rely prin
ipally on two fa
tors. First, the 
riteriaused to identify regions, namely, the rules adopted to assign an element to them.Criteria are usually de�ned by assuming some a priori knowledge about the obje
ts,whi
h is related to some des
riptor as 
urvature, symmetry, angles between polygons,
onvexity and many other. Se
ond, the 
onstraints used to 
ontrol the dimensionand the shape of the regions during the segmentation.Regions identi�
ation is typi
ally performed by applying a bottom-up pro
ess:regions are generated by starting from one element and by su

essively adding new
andidate elements. The insertion order is important, and di�erent orderings yield todi�erent results. To �nd sub-optimal solutions a 
ommon approa
h asso
iates some
ost to ea
h insertion, thus the optimal ordering is typi
ally a
hieved by employingpriority queues of elements, where the priority of an element is in inverse proportionto its 
ost.3.2.1 Region GrowingRegion growing is a te
hnique to lo
ate sub-sets of elements in a input data set,satisfying some 
riteria. Let σ ∈ S be an element of the target set and let NS(σ)be the set of elements σ′ ∈ S adja
ent to σ. The growth of a region Φ starts byinserting the seed element σ and its expansion is then performed by adding thoseelements of NS(σ) satisfying some 
riterion fun
tion. Region growing 
ontinues bytesting the neighbourhood of ea
h new inserted element until no more insertions 
anbe a

omplished. The order used to 
he
k for a valid element to insert is usuallymanaged by a priority queue on the boundary of Φ (see Figure 3.3). On
e a regionis lo
ated, another growing pro
ess begins from another seed not yet 
onsidered.The number of seed elements to initialize a region 
an be arbitrary. Note that theexpansion of a region 
an be implemented by a breadth �rst sear
h on the dual graphof S.The region growing segmentation methods might depend on the 
hoi
e of theseed elements, furthermore the regions are expanded separately during the exe
utionof the algorithm. Thus region growing impose some limitations on the results froma global point of view.
Figure 3.3: Example of region growing. The neighbourhood of the red verti
es isanalysed. Grey verti
es are inserted into the priority queue for future pro
essing.Green verti
es have been pro
essed and inserted into the region whi
h are expandedfrom their boundary.The texture mapping problem introdu
ed previously 
an be solved through a
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h. Texture mapping atlases are obtained by a two-phasealgorithm [33℄: �rst, the features 
ontours are lo
ated, then regions are expandedinward from the boundaries by adding mesh elements. This approa
h simpli�es thetest used to asso
iate an element with an existing region be
ause its boundarieshave been de�ned, already.A general model used by many region growing segmentation algorithms is thewatershed transform. Although there exist several watershed methods, only a fewalgorithms apply it on 3D meshes. Watershed segmentation is based on the de�nitionof an height map f : S → R, obtained by di�erent te
hniques, where S is the targetset. The method 
an be des
ribed by using the analogy with the �ooding pro
essof adja
ent 
at
hment-basins. The segmentation algorithms proposed in this thesisde�nes a height map that we have used together with the watershed algorithm andwhose detailed explanation is provided in se
tion 3.3.3.2.2 Greedy Algorithms for ClusteringClustering algorithms are widely used in di�erent 
ontexts of data analysis, andsegmentation 
an be 
onsidered as a parti
ular 
lustering of the target set.Clustering methods for mesh segmentation do not fo
us on any parti
ular regionssin
e segments are not lo
ated by independent pro
esses. Clustering algorithmspro
eed toward a greedy global solution: regions are assembled by merging adja
entelements or already lo
ated segments, and the algorithm always 
hooses the bestmerging operation a

ording to some 
ost fun
tion (see Figure 3.4).Hierar
hi
al 
lustering methods start by generating a 
luster for ea
h element ofthe target set, then 
lusters are progressively merged until no more operations 
anbe done. The hierar
hi
al fa
e 
lustering method [22℄ performs a partitioning onthe dual graph of S = F . The algorithm produ
es a sequen
e of segmentations su
hthat for ea
h step, the lo
ated regions are larger and 
ontain more elements than theprevious step. Merging of two 
lusters is performed by an edge 
ontra
t operationon the dual graph. The merging 
ost is 
omputed by using an L2 based norm onthe new generated 
luster. This method has been used for di�erent appli
ations asprogressive-meshes, surfa
e simpli�
ation and 
ollision dete
tion.Iterative 
lustering approa
hes assume that the number of output 
lusters isknown a priori. K-means methods are examples of iterative 
lustering. A set of trepresentative elements of the target set is initially used to represent t di�erent 
lus-ters. At ea
h iteration the remaining elements are assigned to one of the t 
lustersa

ording to the 
riterion fun
tion and the representatives are re
omputed. A 
om-mon strategy 
onsiders as representative, the 
enter of mass of ea
h 
luster, hen
ethe elements are assigned to the 
luster if their distan
e from its representative isshorter than the distan
es from all the other representatives. Note that ea
h regionmust be a 
onne
ted 
omponent, while the non-planarity of the surfa
es makes theEu
lidean distan
e unsuitable. Most iterative 
lustering algorithms over
ome thisissues by performing a region growing step before re
omputing the new representa-tives. In [60℄ the k-means method is used in fa
e-based segmentation of two obje
ts
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1

2
3

4
1

2

3
2

1Figure 3.4: Example of 
lustering. Regions labelled with 1,2,3 and 4 are foundthrough region growing and assembled by using an optimal merge operations order-ing.3.2.3 Spe
tral AnalysisThe 
ombinatorial graph partitioning problem 
an be redu
ed to geometri
 spa
epartitioning problem by embedding a graph G into the spa
e R
n by using the �rsteigenve
tors of the Lapla
ian matrix of G [59℄.The algorithm presented in [71℄ uses the Lapla
ian matrix to perform a 
om-pression of the mesh. In order to redu
e the exe
ution time, smaller sub-meshes arepro
essed separately.The method [53℄ uses a symmetri
 a�nity matrix W ∈ matn×n, where n is thenumber of fa
ets in the mesh. The element wij en
odes the probability that thefa
ets i and j are 
lustered in the same region. Su
h matrix 
an be de�ned in twodi�erent ways, a

ording to the required type of segmentability [54℄.In the 
ase of stru
tural segmentability W ∈ matn×n(0, 1) is the adja
en
y ma-trix, then

wij =







1 if ∃ eij ∈ E

0 otherwise.For geometri
al segmentability, ea
h element wij is 
omputed by 
onsideringthe minimal prin
ipal 
urvature −→κi and −→κj of the verti
es i and j, respe
tively asfollowing:
wij =



























0 if eij /∈ E

(|−→κi |+ |
−→κj |) · 〈

−→e ,−→κ 〉 · l if κi < 0 or κj < 0

ε otherwise.Where −→ei is the dire
tion of the edge eij ∈ E and l is the normalized length of e.



3.3. The Watershed Transform 373.3 The Watershed TransformWatershed [52℄ is one of the most important region-based approa
hes. Su
h methodemploys some height map f , de�ned on the image elements, and a graph represen-tation of the image.Let V be a sub-set of the latti
e Z
2, and E ⊆ Z

2 × Z
2 be the set of edgesde�ning the adja
en
y relations among the elements of V , we de�ne the graph asthe set G = (V,E).De�nition 15 (Geodesi
 distan
e) The geodesi
 distan
e dA(a, b) within A be-tween two points a, b ∈ A ⊆ Z

n is the minimum path length among all paths from
a to b within A. Moreover, the geodesi
 distan
e between the point a ∈ A and a set
B ⊆ A is de�ned as dA(a,B) = min

b∈B
dA(a, b).De�nition 16 (Geodesi
 in�uen
e zone) Given a set A ⊆ Z

n and a subset
B ⊆ A partitioned into t 
onne
ted 
omponents B0, ..., Bt−1, the geodesi
 in�uen
ezone gizA(Bi) of a set Bi within A is de�ned as:

gizA(Bi) = {a ∈ A | dA(a,Bi) < dA(a,Bj) ∀j ∈ [0, . . . , t− 1] and j 6= i}The union of all the in�uen
e zones of the sub-sets Bi is de�ned as:
GIZA(B) =

t−1
⋃

i=0

gizA(Bi)The set of points having the same geodesi
 distan
e from at least two nearest 
on-ne
ted 
omponents indu
es a stru
ture 
alled skeleton by in�uen
e zones. Su
h stru
-ture is de�ned as the 
omplement of the set GIZA(B):
SGIZA(B) = A \GIZA(B)Let V ⊆ Z

2 be a 
onne
ted domain, then C(V ) denotes the spa
e of real twi
e
ontinuously di�erentiable fun
tions on a V with only isolated 
riti
al points.De�nition 17 Given a fun
tion f : V → R belonging to C(V ) and h ∈ R
+ ∪ {0},a h-level threshold set is:

Lh = {p ∈ V |f(p) ≤ h}.De�nition 18 (Topographi
al distan
e) Given f ∈ C(V ) and p, q ∈ V , thetopographi
al distan
e between p and q is:
Df (p, q) = inf

ν∈V

∫

ν ‖∇f(ν(s))‖ds,where ν is a generi
 path (smooth 
urve) in V su
h that ν(0) = p and ν(1) = q.



38 Chapter 3. Mesh SegmentationThe watershed transform typi
ally assigns a di�erent label to ea
h region. Su
ha pro
ess starts from the minima for f and it propagates until the segmentation is
ompleted, then all the regions are labelled. In order to simplify the next de�nitionswe denote by mi a minimum of f ∈ C(V ) with label i, and with {mi}i∈I the set ofminima whose labels are in I ⊂ N.De�nition 19 (Cat
hment basin) Given a fun
tion f : V → R belonging to
C(V ) with minima {mi}i∈I for some set of indi
es I, a 
at
hment-basin Q relativeto the minimum mi of f is de�ned as:

Q(mi) = {p ∈ V |∀j ∈ I, i 6= j : f(mi) +Df (p,mi) < f(mj) +Df (p,mj)De�nition 20 (Watershed transform) A

ording to de�nition 19, the watershedof the fun
tion f is de�ned as the set of points not belonging to any 
at
hment basin,formally:
wshed(f) = V ∩ (

⋃

Q(mi))
cThe the watershed transform of f is a mapping γ : V → I ∪W , where W /∈ I isa label:

γ(p) =







i if p ∈ Q(mi)

W if p ∈ wshed(f)In the dis
rete 
ase, the above de�nition of watershed transform is unsuitable ifthe fun
tion f exhibits plateaus, i.e. zones where f is 
onstant. Plateaus are very
ommon features on images and obje
ts surfa
es. In order to label plateaus properly,two di�erent algorithmi
 de�nitions have been proposed: watershed by immersionand watershed by topographi
al distan
e. The former automati
ally takes 
are ofplateaus, the latter needs a pre-pro
essing on the image.Let hmin and hmax be the minimum and maximum values for f , respe
tively, theproblem of plateaus 
an be solved by de�ning a re
ursive pro
ess that in
reases thelevel of f from hmin to hmax. Let Xh denote the union of the 
at
hment basins atlevel h, the set Xh 
an be expanded by 
onsidering a 
onne
ted 
omponent obtainedfrom the threshold set Lh+1 at level h+1. Su
h expansion is performed by 
omputingthe in�uen
e zone of Xh within Lh+1 resulting in an update Xh+1. Note that su
h
onne
ted 
omponent 
an be also a new regional minima.The watershed by immersion is de�ned re
ursively as follows:De�nition 21 (Watershed by immersion) Let MINh be the union of all re-gional minima at level h, then






Xhmin
= Lhmin

= {p ∈ V |f(p) = hmin}

Xh+1 = MINh+1 ∪GIZLh+1
(Xh), h ∈ [hmin, hmax)The watershed by immersion is the 
omplement of the set Xhmax

in V :
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wshed(f) = V \XhmaxA

ording the de�nition 21, all non-basins elements 
ontained in Lh+1 but notin Xh are potential 
andidates to be assigned to a 
at
hment basin in step h + 1.A de�nitive labelling as watershed pixel 
an only happen after all levels have beenpro
essed.The watershed by topographi
al distan
e assumes that the fun
tion f is plateaus-free, more pre
isely, ea
h non minimum element has a neighbourhood having lowervalues for f . In 2D images this restri
tion is relaxed by introdu
ing the lower
ompletion lc(f) of the fun
tion, whi
h transform f into lower 
omplete f∗ = lc(f).The set of neighbours of a point p ∈ V on G = {V,E} is denoted by NG(p).De�nition 22 Given a fun
tion f : V → R belonging to C(V ), the maximal slopelinking a point p ∈ V to any of its neighbours is 
alled the lower slope ls(p), where

ls(p) = max
q∈NG(p)∪p

f(p)− f(q)

d(p, q)and d(p, q) is the length of epq ∈ E.By 
onsidering a 
ost c(p, q) for ea
h edge epq ∈ E, the topographi
al distan
ealong a path πpq = {p0, .., pk | p0 = p and pk = q} of points is 
omputed as:
Dπ

f (p, q) =
k−1
∑

i=0

d(pi, pi+1)c(pi, pi+1)De�nition 23 (topographi
al distan
e) Let Bp,q denote the set of all possiblepaths joining p and q, the topographi
al distan
e between p and q is de�ned as theminimum distan
e path in Bpq:
Df (p, q) = min

π∈Bpq

Dπ
f (p, q)De�nition 24 (Path of steepest des
end) A path πpq is 
alled path of steepestdes
end if pi+1 belongs to the set of neighbours q of pi su
h that f(pi)−f(q)

d(pi,q)
= ls(pi).Cat
hment-basins need to 
onsider the lower 
ompletition f∗ of f . A valuedgraph is 
alled lower 
omplete when ea
h node whi
h is not in a minimum has aneighbouring node of lower value. By employing f∗, the watershed by topographi
aldistan
e follows de�nition 20.Both de�nitions of watershed yield to two di�erent kinds of approa
hes typi
allyknown as bottom-up and top-down watershed methods, whi
h may produ
e unsuit-able results on noisy data, that over-segment the image into many small regions.This problem is usually solved by a su

essive merging pro
ess, where adja
ent re-gions are merged together a

ording to some metri
 indi
ating the salien
y of asegment. Those 
an be mainly distinguished in area-based and boundary-based met-ri
s. In the former 
ase the salien
y is evaluated by 
omputing the area of theregions, while in the latter one the boundary of the regions is 
onsidered.



40 Chapter 3. Mesh SegmentationIn [37℄ the watershed method is generalized to arbitrary meshes, the authors usedthe dis
rete 
urvature at ea
h vertex as height map and a top-down approa
h. Ea
hvertex v follows its steepest des
end path until it rea
hes either a labelled minimumor a labelled vertex, in both 
ases their label is assigned to v. The salien
y of aregion S is 
omputed as the di�eren
e between the vertex v ∈ S of lowest 
urvatureand the vertex on the boundary of S having lower 
urvature than all the otherboundary verti
es (watershed depth).The whole algorithm 
an be summarized as follows:1. 
ompute the 
urvature;2. lo
ate and give an unique label to those verti
es v su
h that ∀v′ ∈ N(v) :

f(v) < f(v′) (lo
al minima);3. Minimum plateaus (i.e surrounded by verti
es having a greater value of f ) arelabelled;4. des
end ea
h unlabelled plateaus to a labelled region;5. des
end all remaining unlabelled verti
es;6. merge regions whose watershed depth is smaller than a given threshold.A region Si is merged into the region Sj adja
ent to the lowest 
urvature vertexwithin the boundary of Si. This merging pro
ess is repeated until all regions havedepth greater than the threshold.The work presented in [8℄ uses a bottom-up approa
h and for ea
h vertex v theheight map is 
omputed a

ording to the 
on
avity of the vertex. Those verti
es vhaving Gaussian 
urvature K(v) < 0 are 
lassi�ed as boundary verti
es and su
hverti
es de�ne the boundary regions (or peaks of the mesh ). The height map f isthen 
omputed as f(v) = 0 when v is a boundary vertex, f(v) = 1 otherwise.Region merging is based on two 
riteria. First the regions to be merged arelo
ated by 
onsidering the number of verti
es within the region. Then the regionsfound with the �rst 
riterion are merged to their adja
ent regions with longestboundary.The whole algorithm 
an be summarized as:1. ea
h lo
al minima is labelled, the remaining areas are 
onsidered as peaks;2. peaks are eroded starting from the boundary between minima and peaks;3. regions are merged.3.4 Polygonal Mesh Edge-Dete
tionTwo-dimensional images are 
hara
terized by sharp 
hanges in brightness, while thesurfa
e of 3D obje
ts may present ridges and other types of dis
ontinuities [50℄.



3.4. Polygonal Mesh Edge-Dete
tion 41The goal of edge-dete
tion is the lo
ation of feature-edges, whi
h provides the mostimportant stru
tural information about the obje
t, thus redu
ing the overall amountof data.In order to avoid any ambiguity we denote with edges and feature-edges theedges in E and dis
ontinuities, respe
tively.Likewise many other segmentation te
hniques, a salien
y fun
tions f must bede�ned on the target mesh elements. Edge-dete
tion algorithms 
an be 
onsidered
omponent-based be
ause a region may be not dis
overed expli
itly, rather it 
an bede�ned through a set of mesh elements bounded by some feature-edges. For thisreason, edge-dete
tion methods 
an be also 
onsidered as impli
it methods.Depending on the nature of the obje
ts, expli
it segmentation algorithms 
anprodu
e regions su
h that their boundaries des
ribe the feature-edges. For instan
e,by 
onsidering the boundaries of the broken surfa
es on simple fragmented obje
ts,feature-edges 
an be retrieved by region growing based on the polygon 
onne
tivityand the fa
e normal distribution [48℄. Therefore, region growing segmentation meth-ods, based on the lo
al 
on
avity of the surfa
e [8℄ (see se
tion 3.3), are unsuitablefor feature-edges dete
tion as ridges 
an not be extra
ted.3.4.1 Thresholding-based Edge-Dete
tionFiltering of f by 
lassi
 and hysteresis thresholding, 
an be suitable for simplemeshes, but usually it is unsuitable for very large and noisy meshes. In [25℄ theauthors 
ope this problem by performing a threshold in a multi-resolution setting,and their algorithm returns a set of line-type features by the following three steps:1. 
lassi�
ation step - the salien
y fun
tions is used to assign some weight to theedges of the mesh;2. dete
tion step - the threshold produ
es a set of feature-edges whi
h is su

es-sively de
omposed into 
onne
ted 
omponents (pat
hes);3. erosion step - the pat
hes are redu
ed to lines by some skeletonizing method.Several operators have been proposed for step 1 (see Figure 3.5), ea
h one 
omputingthe weights on the neighbourhood of the edges. The simplest way to assign a weightto an edge is to 
ompute the dihedral angle between the unitary normals ni andnj of the adja
ent fa
ets fi and fj . A se
ond order operator (SOD) on a edge e isde�ned as:
w(e) = arccos

( ni

‖ni‖
·
nj

‖nj‖

) (3.1)This operator 
an be applied also on the average of the normal ve
tors of trianglesadja
ent to the verti
es of fi and fj opposite to e. In this parti
ular 
ase it is namedExtended Se
ond Order Operator (ESOD).Other operators are based on �tting polynomials. Let π denote the plane per-pendi
ular to e and passing trough its middle point, it de�nes the set of points
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Pe resulting by interse
ting the mesh edges with π. Pe is used to 
ompute the�ttest polynomial fun
tion p(e) belonging to π. The weight of e is then de�ned as
w(e) = p′′(e).Sin
e Pe 
an be split into two subsets, ea
h one lying on the semi-planes de�nedby e, a di�erent method 
omputes the two �ttest polynomial fun
tions pl(e) and
pr(e), obtained from su
h sets, and the weight is 
omputed as:

w(e) = arccos

(

(1, p′l(e))

‖(1, p′l(e))‖
·

(1, p′r(e))

‖(1, p′r(e))‖

) (3.2)These operators are denoted as Best Fit Polynomial operator (BFP) and AngleBetween Best Fit Polynomials operator (ABBFP), respe
tively (see Figure 3.5).The algorithm stores the progressive mesh representation, i.e, a 
oarse meshobtained through simpli�
ation, and a set of vertex split operations that allow tosu

essively re
onstru
t the original obje
t. The above steps are applied to the
oarse mesh and during the re
onstru
tion pro
ess, feature-edges are adapted to thesurfa
e 
hanges.

Figure 3.5: Weighting operators de�ned in [25℄.3.4.2 Edge-Dete
tion Based on Lo
al Surfa
e AnalysisThe algorithm proposed in [12℄ 
omputes the so 
alled salien
y of ea
h ar
 on thesurfa
e, through a fuzzy membership de�ned on a 
ontinuous domain. This domainis automati
ally generated and the fuzzi�
ation pro
ess infers a natural segmentationof the surfa
e, useful for lo
ating 
ontours and edge-type features to represent theobje
ts. The key idea is to exploit the simple operators proposed in [25℄ to performa lo
al analysis over the mesh elements. The method 
omputes a weight w(v) forea
h vertex v and analyses the distribution of the weights with respe
t to someneighbourhood.



3.4. Polygonal Mesh Edge-Dete
tion 43Let M = {V,E, F} denote the input mesh and πee′ be a path from e to e′ where
e, e′ ∈ E. Let us denote by Li(e) = {e

′ | min
e′∈E

length(πee′) = i}, then L0(e) = e andthe Li are disjoint layers. For the sake of simpli
ity, ea
h Li(e) is the i-th layer ofthe breadth �rst sear
h tree with root e. The neighbourhood Nr(e) of radius r isde�ned as follows:
Nr(e) =

i=r
⋃

i=0

Li(e) (3.3)the area of Nr(e) is denoted as Ar(e).Let νr(e) be the varian
e of the weights w relative to the elements in
luded in
Nr(e) 
entred on e and with radius r. The salien
y of an edge e is de�ned as:

s(e) =
∑

i>0

φi(e) (3.4)with φi(e) = ηi(e)
∂νi(e)

∂r
|ν1(e)− νi(e)|where ηi(e) = eAmin(e)−Ai(e) is used to lower the resulting values φi, when mov-ing far from e, with respe
t to the smallest window of radius r = 1, that is

Amin = min
e∈E
{A1(e)}.A
tually, negative values of s 
orrespond to edges, positive values indi
ate ramps(i.e. surfa
e elements near to feature-edges), while values 
lose to zero denote smoothsurfa
es. Therefore, the salien
y formula s assigns a s
ore to ea
h ar
 e, thus todis
riminate among edges, ramps and smooth surfa
es.A similar approa
h is used in [13℄, where the 
lassi�
ation rule is de�ned a

ord-ing to the slope of the regression straight line of the points (i, νi):

slope
(

Nr(a)
)

,

r
∑

i=1

(

i− r+1
2

)

(νi−ν)

r
∑

i=1

(

i− r+1
2

)2
with r>1 (3.5)where ν is the mean value of the varian
es νi.In the parti
ular 
ase of low resolution meshes, it 
an be useful to 
onsider smallvalues of r. When r = 1, it is imposed:

slope
(

N1(e)
)

, ν ′1−ν1,where ν ′1 is the varian
e of N1(e) and ν1 is the varian
e of the �rst layer L1(e). Thatis, we 
he
k if e is relevant with respe
t to its smallest neighbourhood.An ar
 e is 
lassi�ed as edge if both the following 
onditions hold:
1. w(e)×

∣

∣L1(e)
∣

∣>
∑

j
w(e1j);

2. slope
(

Nr(e)
)

<ε,



44 Chapter 3. Mesh Segmentationwhere ε is a threshold value, 
lose to 0, used to take into a

ount also very smallvariations of the weights w.3.4.3 Normal Voting and Watershed SegmentationAnother method to assign a weight to the target set of verti
es is the so 
alled normalvoting [64℄, whi
h adopts the watershed segmentation on a height map de�ned bymeans of a normal voting s
heme. Ea
h vertex v 
olle
ts votes from the normals ofthose fa
ets having geodesi
 distan
e from v less than a given value. The vote n′
igiven by the fa
et Ti to v depends both on the normal ni of Ti in its 
entroid v′ anda weight τi (see Figure 3.6), in parti
ular the authors 
onsidern′

i = 2(ni · τi)τi − ni (3.6)where τi =
(
−→
v′v ∧ ni) ∧

−→
v′v

‖(
−→
v′v ∧ ni) ∧

−→
v′v‖If M is the number of the fa
ets in
luded in the geodesi
 window, the vertex v
olle
ts a tensor T 
omputed as:

T =
M
∑

i=0

µin′
in′T

i (3.7)where µi de
reases exponentially with the geodesi
 distan
e from v to v′.

Figure 3.6: The normal voting s
heme presented in [64℄.In other words n′

i is obtained by transposing ni along the ar
 
onne
ting v and v′.Let λ1 ≥ λ2 ≥ λ3 be the eigenvalues of T 
orresponding to the eigenve
tors γ1,
γ2 and γ3. The weight of v is de�ned as:

w(v) =







1 if |n · γ1| < δ

1 if λ3 > α(λ1 − λ2) and λ3 > β(λ2 − λ3)

(λ2 − λ3)/λ2 otherwise (3.8)where n =
M
∑

i=1
µini and α, β and δ are pre-set values.
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tion 45The 
onditions in the above de�nition are based on the tensor voting theoryand, as already exposed in Chapter 1, tensor voting 
an be used to obtain surfa
edes
riptors. More pre
isely, the se
ond 
ondition gives maximum value to 
ornerverti
es, while the third one is used to approximate the weights in [0, 1]. Finally,the �rst 
ondition ensures sharp features dete
tion where tensor voting fails.3.4.4 A
tive ContoursSnake 
urves [27℄ or a
tive 
ontours represent another relevant te
hnique in the two-dimensional Computer Vision �eld to des
ribe a previously lo
ated 
ontour area ofthe image. The segmentation is driven by the energy minimization of a deformablemodel subje
ted to a set of for
es that a
hieve the equilibrium state. This pro
ess isnot 
arried out on the entire image, but on a region of it, lo
ated by either a manualor automati
 pro
edure. Needless to say that the energy minimization pro
ess highlydepends on the initial position of the snake 
urve, whi
h is de�ned in parametri
form, as:
ν(s, t) = (x(s, t), y(s, t))where t is the evolution time and s ∈ [0, 1].The basi
 mathemati
al model used to des
ribe a
tive 
ontours is represented bythe splines 
urves, whose evolution over time is ruled by both internal and externalenergies. Internal for
es rely on the shape of the 
urve, while external for
es arerelated to the underlying image.The internal energy Eint(ν) is 
hara
terized by both an elasti
ity term and arigidity term. These values are 
omputed by the �rst-order derivative νs and these
ond-order derivative νss of ν, respe
tively.In order to 
ontrol the evolution of the snake, two pre-set weights α and β mustbe provided, and the internal energy is de�ned as:

Eint(ν) =
α(s)‖νs‖

2 + β(s)‖νss‖
2

2
(3.9)The external energy Eext(ν) is 
hosen a

ording to the image features as gradient,
urvature, et
. Thus the total energy is des
ribed as the fun
tional:

E(ν) =

∫ 1

0
(Eint(ν) + Eext(ν))ds (3.10)Note that an a
tive 
ontour 
an develop a 
orner only if β(s) = 0.The minimum of this fun
tional is dete
ted by 
onsidering the zeros set of its�rst-order derivative. The resulting Euler equations in the 
ontinuous spa
e are:























α
∂

∂s
xs + β

∂2

∂s2
xss +

∂

∂x
Eext = 0

−α
∂

∂s
ys + β

∂2

∂s2
yss +

∂

∂y
Eext = 0
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rete 
ase, snakes are represented by a set of n verti
es (xi, yi), andthe energy fun
tional be
omes:
E(ν) =

n
∑

i=1

Eint(i) + Eext(i) (3.11)The derivatives are approximated by �nite di�eren
es, and the Euler equationsbe
ome:
α(xi − xi+1)− α(xi+1 − xi) + β(xi+2 − 2xi+1 + xi)− 2β(xi+1 − 2xi + xi−1)+

+β(xi − 2xi−1 + xi−2) +
∂

∂x
Eext

α(yi − yi+1)− α(yi+1 − yi) + β(yi+2 − 2yi+1 + yi)− 2β(yi+1 − 2yi + yi−1)+

+β(yi − 2yi−1 + yi−2) +
∂

∂y
EextWe 
an also represent the energy minimization problem in matrix form:



















Ax+
∂

∂x
Eext = 0

Ay +
∂

∂y
Eext = 0Here A is a pentadiagonal banded matrix related to the dis
rete Euler equationsabove:

A =

























c d e 0 . . . 0 a b

b c d e 0 . . . 0 a

a b c d e 0 . . . 0

0 a b c d e 0 . . .. . . . . . . . . . . . . . . . . . . . . . . .
e 0 . . . 0 a b c d

d e 0 . . . 0 a b c

























a = β, b = −4β − α, c = 6β + 2α, d = −4β − α, e = βThe snake evolution 
an be implemented as an iterative pro
ess. If thesnake deformation in t results in a de
rease of its energy with respe
t to s,
d

dt
ν(s, t) = −

dE(ν(s, t))

ds
, then the energy variation dE(ν(s, t)) = −

d

dt
ν(s, t)dsyields to the following equations:



















γ(xt − xt−1) = Axt +
∂

∂x
Eext(xt−1, yt−1)

γ(yt − yt−1) = Ayt +
∂

∂y
Eext(xt−1, yt−1)
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xt and yt are the 
oordinates of a point at time t, and the parameter γ 
ontrols the
onvergen
e rate of the algorithm. Sin
e the snake at time t depends on its energyat time t− 1 the position (or deformation) update is given by:



















xt = (A+ γI)−1(γxt−1 +
∂

∂x
Eext(xt−1, yt−1))

yt = (A+ γI)−1(γyt−1 +
∂

∂y
Eext(xt−1, yt−1))

(3.12)To avoid the snake stagnates into energy lo
al minima, the evolution pro
essneeds to be supervised to pla
e the snake by moving some of its verti
es.The snake de�nition above 
an not be applied dire
tly on the surfa
e of a meshbe
ause it does not in
lude the 
onstraints required so that the snake lies on thesurfa
e. Three types of approa
hes have been proposed to evolve a
tive 
ontours ontriangle meshes: level-set methods, 2D snake proje
tion, 3D snake evolution.Level-set methods represent snakes as the zero-level set of some level-set fun
tion,and partial di�erential equation are used to 
ontrol the 
urve over time. In [10℄ themotion of the snake is managed impli
itly by the s
alar level-set fun
tion. Thisapproa
h may give poor results on open 
urves, furthermore it is unsuitable forintera
tive snake repositioning.2D snake proje
tion is a
hieved by extra
ting the surfa
e pat
h that en
loses it(see Figure 3.7 top), and su
h pat
h is parametrized on a 2D plane and the snakeis evolved as above. Fast parametrization requires the surfa
e to be holes-free,and pat
hes should be small enough to avoid distortion errors. In [32℄ the authorsproposed a general framework where the snake is partitioned and ea
h sub-snake isevolved independently. Dis
ontinuities arising at border points are then pro
essedto smooth the whole a
tive 
ontour. Let us 
onsider that ν(s) is partitioned in
νl(s) and νr(s), and the sub-snake νc(s) partially overlaps both νl(s) and νr(s) (seeFigure 3.7 bottom). The algorithm �rst evolves νl(s) and νr(s) independently, thenit re�nes the result by moving νc(s).A
tive 
ontours 
an be dire
tly applied on the mesh surfa
e by a dynami
 pro-gramming approa
h [1℄. The energy of a snake ν = {v0, ..., vk−1} 
an be approxi-mated by the sum of the energy of its verti
es:

E(ν) =
k−1
∑

i=0

E(vi) (3.13)The minimization pro
ess of E(ν) assigns a new position to ea
h snake vertex
vi in order to minimize the overall energy. In [26℄, to update a snake vertex vi =

(xi, yi, zi), the algorithm does not 
he
k for all possible neighbours, but it 
onsidersonly those verti
es PDir(vi) lying along the prin
ipal dire
tions of vi. Then theexternal energy of a snake vertex is 
omputed as:
Eext(vi) =







−κ1(vi) if κ1(vi) > κ1(p), ∀p ∈ PDir(vi)

C ≫ 0 otherwise.
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Figure 3.7: A pat
h en
losing the snake (top). Sub-snakes pro
essed afterparametrization (bottom)The internal energy is:
Eint(vi) = α ‖ vi − vi−1 ‖ +β ‖ vi+1 − 2vi + vi−1 ‖By using this approa
h the topology of the snake must be 
ontrolled to prevent itsverti
es to be dis
onne
ted. Furthermore, on
e the snake rea
hes its �nal position,results 
an be jugged as the snake verti
es are 
onstrained on the mesh verti
es andthey 
an not be moved on the surfa
e of a fa
et. Then results depend both on theresolution of the mesh and on the sampling of its points. Thus segmentation 
an beimproved only by re�ning the mesh area surrounding the a
tive 
ontours.



Chapter 4Di�usion-Based Mesh EdgeDete
tion
There exist many physi
al problems stri
tly related to the evolution of 
urves andsurfa
es. Material interfa
e propagation, �uid motion and 
rystal growth are someexamples of problems whose solution is modelled by non-linear partial di�erentialequations. Geometri
 evolution problems su
h as surfa
e fairing, lead to similar vari-ational approa
hes whi
h allow the mathemati
al modelling on a 
ontinuous spa
e,without 
onsidering any domain dis
retization. Mean 
urvature �ow belongs to the
lass of s
ale-spa
e approa
hes, it is related with the heat di�usion pro
ess, and itis one of the most important representatives in the 
ontext of surfa
e fairing. Thismulti-s
ale approa
h allows to derive, from the input image, a family of images ea
hone 
hara
terized by a di�erent level of detail. This formulation of the fairing prob-lem has been proposed to perform both surfa
e elements 
lassi�
ation and surfa
efairing.4.1 Di�usion-Based Image Pro
essingThe linear heat equation has been widely used to des
ribe the spatial variations ofsome fun
tion f over time. Let Ω ⊂ R

2 and f0 denote the domain of f and its initialvalue at time t = 0, respe
tively. The heat equation is:
∂tf −△f = 0 (4.1)where △f = fxx + fyy is the Lapla
ian of f .By evolving the system, a sequen
e of images {f(t)}t∈R+ is obtained. When Ω = R

2the solution 
oin
ides with the �ltering of the original data with a Gaussian �lter
G∞

σ (x) = (2πσ2)−1e−x2

/2σ2 with standard deviation σ:
f(σ2/2) = G∞

σ (x) ∗ f0In se
tion 2.3 we presented the Lapla
ian smoothing and themean 
urvature �ow.As explained, the major drawba
ks of these approa
hes are obje
t shape deforma-tion and loss of small-s
ale features. The same problems arise in two-dimensionalimage pro
essing. Gaussian �ltering does not preserve the boundaries of the im-age, furthermore the regions boundary 
an not be lo
ated easily when pro
essing at
oarse s
ales be
ause su
h boundaries shift from their original positions during thesmoothing pro
ess. In [49℄, anisotropi
 di�usion has been used in order to redu
e the
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tionblurring on image edges, and the di�usion 
oe�
ient G(·) is modi�ed a

ording tothe gradient of the edges on a parti
ular lo
ation. The anisotropi
 di�usion pro
essis:
∂tf − div

(

G

(

‖∇f‖

λ

)

∇f

)

= 0 (4.2)where div denotes the divergen
e operator and λ ∈ R
+. This results in the suppres-sion of smoothing on areas with high gradient, and it allows to perform both fairingand edge dete
tion on noisy images. The position of edges is preserved during thesmoothing pro
ess, and this simpli�es the 
omparison among images at di�erents
ales.4.2 Generalized Mean Curvature FlowGiven a surfa
e S, the Lapla
e-Beltrami operator KS presented in se
tion 2.3 gener-alizes the Eu
lidean Lapla
ian operator. The geometri
 di�usion of the 
oordinatesof a points p of the family of surfa
es S(t) (by varying time t) is written as:

∂tp = KS(t)pThe mean 
urvature ve
tor H(p)n(p) is opposite to the Lapla
e-Beltrami oper-ator, where n is the normal at p:
H(p)n(p) = −KSpthen mean 
urvature motion 
an be written as:
∂tp = −H(p)n(p)Let M be an orientable manifold of dimension d and p : M → R

d+1 be animmersion with normal n :M→ βd, where β is the shape operator. The generalized
urvature motion [14℄ 
an be de�ned by 
onsidering general endomorphisms of thetangent spa
e T
a : TM → TMand the 
orresponding generalized mean 
urvature �ow:

∂tp = Han, Ha = trace(a ◦ β)From variational 
al
ulus the geometri
 di�usion problem 
an be formulated as:
(∂tp, ϑ) = −

∫

M

Ha(n · ϑ)dA (4.3)for all ϑ ∈ C1
0 (M,Rd+1).Su
h a problem 
an be re-formulated by the relation KSp = −H(p)n(p) as:
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(∂tp, ϑ) =

∫

M

KSp · ϑdA (4.4)and the generalized mean 
urvature is obtained by the relation above. The operator
△a(·) = div(M)(a∇(M)·), applied to p, leads to tangential 
omponents given by thedivergen
e of the endomorphism a.Theorem 1 Let M be an orientable manifold of dimension d and p :M→ R

d+1be an immersion. If a : TM→ TM is di�erentiable, linear and symmetri
 to ea
htangent spa
e TM, then there exists a se
ond-order di�erential operator Θa su
hthat
Θap = −Hanwhere Ha = trace(a ◦ β).Moreover

Θa(·) = △a(·)− (divMa)(·)This theorem allows to express −Han by proje
ting divM(a∇Mp) onto the spa
espanned by the normal n. The equation ∂tp = Han 
an be written as:
∂tp = (v · n)nwhere v = divM(a∇Mp).The 
lassi�
ation of the surfa
e elements as edges, 
orners and smooth surfa
esemploys a tensor whi
h depends on the shape operator βTpMσ . The surfa
eMσ isobtained by �ltering M with a Gaussian-type �lter, implemented by a short-timestep τ = σ2/2 of mean 
urvature motion, where σ denotes the width of the �lter.In [14℄ the authors de�ned this tensor as a symmetri
, positive, linear mappingon the tangent spa
e TpMσ:

aσTpMσ
: TpMσ → TpMσThe symmetri
 shape operator 
an be represented by means of the orthonormalbasis {κσ1 , κσ2} of TpMσ:

βTxMσ =

(

κσ1 0

0 κσ2

)and it is then used to de�ne the above tensor as:
aσTpMσ

=









G

(

κσ1
λ

)

0

0 G

(

κσ2
λ

)









(4.5)where λ is a user-de�ned threshold. This tensor 
lassi�es surfa
e elements as follows:
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tion- if aσ
TpMσ

∼ diag[1, 1], then p belongs to a smooth surfa
e;- if aσ
TpMσ

∼ diag[1, 0], then p belongs to a feature-edge, having dire
tion κσ2assumed κσ1 ≫ κσ2 ;- if aσ
TpMσ

∼ diag[0, 0], then p belongs to a 
orner.Figure 4.1 shows an example of mesh pro
essed with the generalized mean 
urvaturemotion. The mesh is smoothed and the surfa
e elements are 
lassi�ed.

Figure 4.1: Classi�
ation performed at four, interleaved time steps during the gen-eralized mean 
urvature motion [14℄ (from left to right).4.3 Surfa
e Curvature Di�usionIn several appli
ations it is often required to automatize the feature extra
tion pro-
ess. For instan
e, shape mat
hing and database retrieval algorithms should be ableto segment the obje
t without any user intervention. Nevertheless, some user-giventhresholds, weights or toleran
e levels, seem to be ne
essary for all di�erent typesof segmentation strategies so far developed. Although the methods presented in theprevious se
tions are e�e
tive and produ
e good results, the tuning of the requiredparameters is a drawba
k for a fully automati
 obje
t analysis.We propose a parameter-free and fast heuristi
 method for mesh edge-dete
tion,
alled Surfa
e Curvature Di�usion (SCD). We exploit here the heat di�usion on thesurfa
e of an obje
t, that is a problem mathemati
ally solved in the 
ontinuous 
aseby partial di�erential equations.In the 
ontinuous 
ase the heat di�usion is des
ribed by the equation:
∂f

∂t
= ∇2f (4.6)where f is the so 
alled heat fun
tion de�ned on all the surfa
e points.On dis
rete latti
es it is possible to solve the heat equation by an iterative pro
essthat updates the temperature of the mesh verti
es over time. Let M = {V,E, F}be a triangular mesh and f : S → R denote a real fun
tion on ea
h elements of thetarget set S = V , then the total variation of f 
an be dis
retized by:
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f(ti+1) = f(ti) +△(ft→t+1)Indeed, the PDE above is equivalent to ∂f = ∇2f∂t, and for ea
h time step we
ompute the value of f at time step ti+1, f(ti+1), by summing the value of f attime step ti, f(ti), with the total variation of f from time step t to t+1, △(ft→t+1).In order to dis
retize the di�usion equation we need to 
ompute the matrix L′ = ∇2and to apply the update rule for some time step τ :
f(ti+1) = f(ti) + L

′f(ti)τTo 
ompute L′, SCD needs to de�ne a weight matrix W asso
iated to the mesh
M , as follows:

Wij =







1 if ∃vi, vj ∈ V | (vi, vj) ∈ E

0 otherwiseLet d(vi), with i = 1 . . . |V |, denote the number of edges in E adja
ent to avertex vi. In order to derive the non normalized symmetri
 Lapla
ian matrix L, weuse the diagonal matri
es D and D′, de�ned as follows:
Dij =







d(vi) if i = j

0 otherwiseand
D′

ij =















1

d(vi)
if i = j

0 otherwiseThen L is 
omputed as:
L = D −WNow we use L to de�ne the normalized non-symmetri
 Lapla
ian L′:
L′ = D′ − L (4.7)SCD updates the values of f for the verti
es v over time, by performing the followingoperation for ea
h iteration:

f(v) = L′f(v)τ (4.8)By miming the heat di�usion for the adiabati
 pro
esses, where the total heatis 
onserved and it is redistributed on the surfa
e obje
t, SCD 
onserves the totalvalue of some energy fun
tion ϕ and it redistributes ϕ on the verti
es over time.
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tionThe fun
tion used by the proposed algorithm is the absolute value of the mean
urvature Hv of the vertex v, whose value is known at time t = 0:
ϕv(t = 0) = |Hv| (4.9)whereHv is 
omputed by using the extended quadri
 methods presented in Chapter 2.Figure 4.2 shows a mesh, the mean 
urvature H on it and the frequen
y of H. SCDredistributes the 
urvature on the obje
t over time, and it observes asymptoti
allythe behaviour of mesh verti
es with respe
t to their neighbourhood.
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Figure 4.2: Input mesh (top-left). Mean 
urvature H distribution of the input mesh,where red verti
es have H > 0, blue verti
es have H < 0 and green verti
es have
H ∼ 0 (top right). Frequen
y histogram of H (bottom).In other words, as in the real physi
al phenomenon, we 
an 
onsider the mesh
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e Curvature Di�usion 55as in�uen
ed by some heat or energy (
urvature) sour
es. At time t = 0, thevalue of H on ea
h vertex v is known, and the sour
es are disabled instantaneously.Then the heat (
urvature) propagates over the surfa
e obje
t until the whole obje
ttemperature rea
hes the equilibrium state at time t = tmax. In the following, wewill study the ideal di�usion of the energy fun
tion ϕ on two parti
ular 
ases.In the heat di�usion, at the starting time t = 0, heat is 
on
entrated on theedges and 
orners of the obje
t, whi
h dissipate energy isotropi
ally towards theirneighbourhood during the di�usion pro
ess. Similarly, feature verti
es have greater
urvature than their lo
al neighbourhood at t = 0 and ex
hange a few energy (
ur-vature) among themselves, then they must release their 
urvature to the adja
entverti
es on smooth surfa
es. On the 
ontrary, as in the physi
al phenomenon, surfa
epoints absorb energy, both the verti
es belonging to some surfa
e and their ϕv valuemust in
rease over time. Moreover, the absorbed energy is dire
tly proportional tothe distan
e between the surfa
e verti
es and some feature-edge.Sin
e in these two 
ases the 
urve ϕv(t) is either monotoni
ally de
reasing or mono-toni
ally in
reasing, respe
tively, then SCD 
lassi�es the verti
es by analysing the
urve support des
ribed by ϕv(t).In order to improve the segmentation quality, smoothing method 
an be applied.The main di�
ulty of mesh fairing is the 
hoi
e of the suitable number of iterations,thus it 
an not be embedded in a fully automati
 segmentation system. One of theadvantages of the proposed method is the impli
it 
urvature fairing, be
ause highfrequen
y noise is typi
ally 
hara
terized by low energy whi
h is qui
kly dissipatedduring the di�usion pro
ess. Furthermore, no anisotropi
 di�usion is required as weare interested in the total variation of energy on a vertex, over time.The energy ϕv(t) of a vertex v may os
illate over time. For instan
e, let us
onsider a vertex v lying on a smooth surfa
e and near some boundary havinghigher level of 
urvature. At the beginning of the di�usion pro
ess v absorbs energyfrom the feature-edges of the boundary until some time step t = tc. Nevertheless, for
t > tc, v dissipates most of its energy towards the neighbouring verti
es 
hara
terizedby a lower level of 
urvature. Thus, the trend of ϕv(t) should be the same as inFigure 4.3. Furthermore, the trend of energy in a vertex 
ould present several 
riti
alpoints, as a vertex near to several feature-edges with di�erent 
urvature levels.The behaviour of this kind of verti
es, whi
h is 
learly time-s
ale, imposes thatSCD must 
onsider the trend of ϕv(t) for the total time interval, until the equilibriumis rea
hed (t = tmax).The analysis of the whole trend of the energy 
urve is required also to suppresshigh frequen
y noise that 
ould be present on the surfa
es. Indeed, when v is anoise-vertex, its energy is rapidly dissipated until some time step t = tc. Then,for the remaining time, it will usually absorb energy from its neighbourhood. Thisallows SCD to be a powerful unsupervised denoising tool for noise-verti
es (falsepositives) 
lose to the mesh boundaries.By 
onsidering t = tmax, SCD is also able to 
lassify properly surfa
e features
omposed by verti
es having di�erent ranges of 
urvature. In fa
t, if v is a featurevertex with a low value of 
urvature and 
lose to other verti
es with higher energy,
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Figure 4.3: Examples of energy di�usion, where the red arrows represent the energydi�usion dire
tions (top). Energy di�usion 
urves for the vertex vs, on surfa
e, and
ve, on a feature-edge, respe
tively (bottom).then v will absorbs energy from the neighbouring feature verti
es, and then it willrelease su
h energy to its neighbourhood.A

ording to what has been said so far, the 
hange rate of ϕv(t), together withthe asso
iated time interval, are ne
essary to evaluate the salien
y of a vertex, withrespe
t to its neighbours at di�erent time s
ales. Spe
i�
ally, Figure 4.4 shows thedi�usion 
urve of energy for three di�erent verti
es on the mesh of Figure 4.2 overtime.Thus, in order to 
lassify surfa
e verti
es, the key idea of SCD is to measure, forea
h vertex, the global energy variation before the di�usion rea
hes the equilibrium(i.e. the �nal state). Formally, in the 
ontinuous 
ase:

∆ϕv =

tmax
∫

0

dϕv =

tmax
∫

0

ϕ′
vdt = ϕv(tmax)− ϕv(0)Hen
e, in the dis
rete 
ase, the total variation of ϕv 
an be 
omputed as follows:

∆ϕv =

tmax−1
∑

i=0

(ϕv(ti+1)− ϕv(ti)) =

ϕv(1) − ϕv(0) + ϕv(2)− ϕv(1) + · · ·+ ϕv(tmax)− ϕv(tmax − 1) =

ϕv(tmax)− ϕv(0)The value of ∆ϕv indu
es a partitioning of the target set S into two sets. The setof verti
es lying on smooth surfa
es, whi
h are 
hara
terized by ∆ϕv ≥ 0, be
ause
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Figure 4.4: Distribution of the absolute value of H on the input mesh (top-left).Detail of the input mesh (bottom-left) and energy 
urve support for three di�erentmesh verti
es (right). The verti
es are 
oloured from green (|H| ∼ 0) to red (|H| >
0).they re
eive energy from the neighbourhood, and the set of feature verti
es di�usingtheir energy to the neighbourhood, for whi
h ∆ϕv < 0 (see Figure 4.5)Figure 4.6 shows the partitioning indu
ed by ∆ϕv for three di�erent values of
tmax and their asso
iated histograms.For segmentation purposes, we de�ne the following height map:

wϕ(v) =







−∆ϕv if ∆ϕv < 0

0 otherwise

(4.10)Figure 4.7 shows the feature edges dete
ted by SCD and the relative histograms,by using three di�erent thresholds t1 < t2 < t3 of tmax. It is 
lear that wϕ(v) is notsensitive to the value of tmax. On the 
ontrary, the map wnv(v) obtained by normalvoting, strongly depends on the radius of the geodesi
 window a

ording to the s
aleof the mesh (see Figure 4.8).The main steps of the SDC 
an be summarized as follows:
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Figure 4.5: Total variation of energy, ∆ϕv, used to 
lassify the mesh verti
es inFigure 4.4. 1. Compute the energy fun
tion on the mesh verti
es. Inparti
ular, we have used the absolute value of the mean
urvature whi
h has been estimated by �tting the meshverti
es with the extended quadri
 method presented inSe
tion 2.2. Di�use the 
urvature over the mesh and 
ompute ∆ϕv.3. Compute the height map wϕ(v).4. Segment the obje
t by using the watershed algorithm. Inparti
ular, we have applied the watershed implementa-tion [64℄ and the region growing [8℄.
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Figure 4.6: Partitioning of a mesh surfa
e using three di�erent value of tmax,
t1 < t2 < t3 (from top to bottom). The more intense the blue is, the smaller ∆ϕv is;green 
olor represents ∆ϕv ∼ 0; the more intense the red is, the greater ∆ϕv is.4.4 Experimental ResultsWe have tested SCD on several kinds of noisy triangle meshes 
oming from datasetspubli
ly available in http://www.
yberware.
om/produ
ts/s
anners/index.html,http://www-re
h.tele
om-lille1.eu:8080/3dsegben
hmark/dataset.html, andhttp://shape.
s.prin
eton.edu/ben
hmark/.The watershed transform produ
es suitable mesh segmentations if the feature-edges des
ribe 
losed 
urves. This behaviour represents both an advantage and a
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Figure 4.7: Feature-edges lo
ated by SCD at time steps t1 < t2 < t3 (from left toright). The red verti
es have wϕ(v) > 0 while green verti
es have wϕ(v) ∼ 0disadvantage. It is advantageous be
ause the spurious noisy feature verti
es whi
hhave not been suppressed during the di�usion pro
ess are �ooded and eliminatedby the region growing pro
ess. When the important feature-edges are not des
ribedby 
losed 
urves due to noise or defe
ts on the mesh surfa
e, the watershed maybreak the segmentation integrity and merge di�erent areas. In order to redu
e thisside e�e
t we improve the feature-edges by adding those surfa
e points whi
h areadja
ent to at least two feature verti
es, and assigning to them the lowest value of
wϕ(v).Note that the region merging pro
edure needs a threshold value to identify thesmall regions to be merged. We have used the same threshold value for all types ofmeshes.The segmentation integrity problem has been also addressed in [8℄, where the
on
ave points are added to the feature-edges. As shown in Figure 4.9 this approa
hmay be very noise sensitive and add a lot of feature verti
es lying on smooth surfa
es.As observed in [8℄, di�erent 
omponents of the obje
t are 
omposed by verti
eswhi
h have ellipti
 (positive Gaussian 
urvature, K > 0) or paraboli
 behaviour (nullGaussian 
urvature, K = 0), while the verti
es belonging to the regions boundaryhave hyperboli
 behaviour (negative Gaussian 
urvature, K < 0) (see Se
tion 2.1).Sin
e SCD does not distinguish between negative and positive 
urvature, the seg-mentation 
an be 
onsidered both 
omponent-based and surfa
e-based. Indeed, SCD
ould use negative Gaussian 
urvatures to extra
t the 
omponents and su

essivelythese 
omponents 
an be further divided a

ording to the positive mean 
urvaturevalues. Hen
e, this approa
h 
an be used to produ
e an hierar
hy of segments.Despite no standard methodology exists to 
ompare the out
omes of di�erentsegmentation algorithms, some authors proposed to measure the di�eren
es betweenthe results of segmentation algorithms and the ground truth segmentation obtainedby averaging the manually produ
ed and supervised partitioning performed by hu-man users over the Internet [9℄.In the following we will present some results of mesh segmentation. Ea
h lo
ated
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Figure 4.8: Feature-edges lo
ated by normal voting [64℄ (left), and relative his-tograms (right). The red verti
es have wϕ(v) > 0, while green verti
es have
wϕ(v) ∼ 0.region is identi�ed by a di�erent 
olour, and its boundary is 
oloured in red (seeFigures from 4.10 to 4.13). SCD is able to lo
ate all important regions of the obje
tsand it suppresses most of the noise. The algorithm maintains small features andvery few boundaries are �ooded due to their la
k of integrity. Only small regions,due to noise, are maintained, as SCD fails to suppress their verti
es.As explained above, feature edges 
an be 
omposed by verti
es having di�erentranges of 
urvature. This 
hara
teristi
 heavily a�e
ts the threshold-based segmen-tation whi
h does not perform any lo
al surfa
e analysis. Threshold-based seg-mentation strongly depends on the fun
tions de�ned over the mesh verti
es and to
hoose a suitable threshold it needs to observe their histograms.Figure 4.15 shows three di�erent segmentations obtained on a me
hani
al obje
t
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Figure 4.9: Con
ave verti
es on the me
hani
 obje
t.

Figure 4.10: Original 
up obje
t (left). Feature-edges dete
ted by SCD (middle).Watershed segmentation (right).by using three di�erent threshold values of the mean 
urvature. We did not use theoperators de�ned in [25℄ be
ause they are very noise sensitive. These results alsodemonstrate that threshold-based segmentation is unstable when 
ompared to SCD.4.4.1 Con
lusions and Future WorksThree-dimensional obje
t analysis is required in several �eld of resear
h and, a

ord-ing to di�erent appli
ations, obje
ts 
an have di�erent representations. 3D data aretypi
ally obtained from the real world by a
quisition devi
es able to gather eithervolumetri
 information (volumetri
 data) about the obje
ts or spatial informationabout the points belonging to the surfa
e of the obje
t (range data).In this thesis we fo
used on polygonal meshes whi
h are a very popular 3D datarepresentation, where the obje
t is stored by a 
loud of points together with the sets
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Figure 4.11: Original s
rewdriver obje
t (left). Feature-edges dete
ted by SCD(middle). Watershed segmentation (right).
Figure 4.12: Original bunny obje
t (left). Feature-edges dete
ted by SCD (middle).Watershed segmentation (right).of edges and fa
ets.Many appli
ations require the segmentation of the obje
ts in order to obtainan higher level representation whi
h simpli�es several su

essive Computer Visiontasks. A

ording to the problem at hand, the de
omposition 
an be either surfa
e-based or 
omponent-based. The former lo
ates those areas on the mesh surfa
ehaving similar features su
h as 
onstant 
urvature, et
. The latter individuates allthe semanti
 
omponents of the obje
t.In order to segment an obje
t, it needs some a priori knowledge about it. Therules used to identify the mesh regions depend on some feature de�ned over theelements of the surfa
e. The required features 
an be 
omputed by using di�erentte
hniques. The di�erential properties of surfa
es are very useful and 
an be mainlyestimated by re
overing quadri
 surfa
es �tting the mesh verti
es and by spatialaverages (�nite volumes). In addition, tensor voting is a very powerful method that
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Figure 4.13: Original me
hani
al obje
t (left). Feature-edges dete
ted by SCD(middle). Watershed segmentation (right).

Figure 4.14: Original human model (left). Feature-edges dete
ted by SCD (middle).Watershed segmentation (right).
an be employed to 
ompute robust surfa
e des
riptors. Unfortunately there is nogeneral 
onsensus about the best approa
h to 
ompute surfa
e features. Surfa
eproperties are noise dependent and in order to improve their estimation, di�erentsurfa
e denoising algorithms have been developed.Sin
e the segmentation of a mesh is stri
tly related to graph partitioning whi
his a NP-Complete problem, then it is required to �nd approximate solutions e�-
iently. Several mesh pro
essing algorithms have been presented in literature, ea
hone relying on a parti
ular segmentation paradigm su
h as region growing, 
lusteringor Spe
tral Analysis. Mesh segments 
an be also lo
ated by extra
ting the feature-edges of the mesh, i.e. the dis
ontinuities of its surfa
es. Most of the segmentationapproa
hes require to set some parameters or threshold values, and this does notallow to insert these algorithms in automati
 segmentation systems.In this thesis we proposed SCD, that is, a new automati
 edge-dete
tion al-gorithm based on the di�usion pro
ess of some energy fun
tion de�ned over theobje
ts surfa
es. SCD simulates the physi
al phenomenon of heat di�usion by using
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Figure 4.15: Histogram of the me
hani
 obje
t showing three threshold values (top).Watershed segmentation for the 
hosen threshold levels (bottom).the 
urvature as power energy and distributes it on the obje
t over time, until theequilibrium state is rea
hed. The total variation of energy is used to 
lassify thesurfa
e verti
es and to suppress most of the noise. We validated our algorithm ondi�erent types of meshes and the results obtained show that SCD is robust, a

urateand e�
ient.Tensor voting requires to set some parameters to 
ompute the height map andit needs to set the radius of the geodesi
 window. Thus it depends on the parti
ulars
ale of the obje
t and moreover the evaluation of the geodesi
 distan
e is very time
onsuming. Threshold-based segmentations highly depend on the energy fun
tionde�ned over the mesh verti
es. They do not perform any lo
al analysis in theneighbourhood of the verti
es, thus they are not able to lo
ate those importantfeatures having low levels of 
urvature.These highlighted limitations make SCD attra
tive for edge-dete
tion and seg-mentation of meshes obtained from range data.In the next steps of resear
h we will improve SCD as denoising tool by applyingsome statisti
al evaluations of the height map on the feature verti
es. Moreoverwe will perform an hierar
hi
al segmentation by merging the negative Gaussian
urvature and the height map produ
ed by SCD.Some authors proposed re
ently a ben
hmark to test the results of segmentation
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tionalgorithms against the segmentation ground truth obtained by users [9℄. In futureworks we will use su
h ben
hmark to make a quantitative 
omparison with both themanual segmentation and the out
ome of SCD.
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