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Multi Layer Analysis

Abstract: This thesis presents a new methodology to analyze one-dimensional

signals trough a new approach called Multi Layer Analysis, for short MLA. It also

provides some new insights on the relationship between one-dimensional signals

processed by MLA and tree kernels, test of randomness and signal processing

techniques.

The MLA approach has a wide range of application to the fields of pattern discovery

and matching, computational biology and many other areas of computer science

and signal processing. This thesis includes also some applications of this approach

to real problems in biology and sismology.
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Introduction

What this thesis is about

This thesis presents a new methodology called Multi Layer Analysis (MLA) that

acts a transformation from the space of one-dimensional signals to a new space

called space of intervals. The main idea of this approach, shared by several other

ones, is the decomposition of the input signal into basic features that allows to

better extract its useful information.

The main motivation of this study was to develop a new high scalable method-

ology in order to extract shape information from one-dimensional signals. This be-

cause a lot of real problems fall in this context. In fact, several application domains

such as Geology, Biomedicine and Biology require the analysis of one-dimensional

signals in which their features are encoded in the shapes of whole signals or on the

shapes of their sub-fragments (e.g seismic signals, ECG tracks or chip-chip or chip-

seq tracks). The kind of analysis obviously depends on the application domains but

usually involves Pattern Discovery, Clustering or Classification methodologies. The

main advantages of the MLA compared to other similar methods, are its scalabil-

ity and the possibility to represent a one-dimensional signal in terms of a tree of

intervals, and this permits to express or characterize explicitly any kind of shape.

Consequently, this has strong implications since it establishes a connection between

the class of algorithms that process one dimensional signals, such as digital signal

processing techniques, and algorithms on trees and graphs.

Contributions and Thesis Outline

The MLA methodology can be used as preprocessing step in different fields of appli-

cation e.g.: Classification, Clustering, Pattern Discovery and Test of Randomness.

Thus, it can be used as tool in the field of data analysis. More in details:

• This method has been applied to the biological problem of nucleosome po-

sitioning providing similar performances to the state of the art method, but

better scalability and computational time. This is a fundamental point be-

cause it allows to analyze more complex organisms. It is also able to recover

the positions of fuzzy nucleosomes.

• A new nonparametric test of randomness based on MLA, that exploits shape

features that are rare in a random signal, was developed.

• It allows to map a one-dimensional signal in a tree of intervals. Consequently

some tree kernels, used in different contexts, have been adapted to this repre-

sentation, providing new kernels that explicitly encode the shape information

of a one-dimensional signal expressed as a tree of intervals.



2 Introduction

• The mapping of a one-dimensional signal in a tree of intervals creates a new

and important connection between two fundamental classes of algorithms:

signal processing algorithms and algorithms on trees and graphs.

Chapter 1 presents the motivations of MLA, focusing on different methodologies

that exploit and share the same idea. Some approaches, at first sight disjointed,

but actually exploiting the same idea of multi-resolution or multi-views analysis,

are presented. Some aspects of these methods are related to the MLA analysis; in

particular similarities or advantages of one method with respect to the others are

highlighted. In addition, all the basic definitions of the problems where the MLA

can be productively applied are briefly given.

Chapter 2 provides a detailed and formal description of the MLA, explaining

step by step the MLA transformation and highlighting its limits and properties.

Finally, some general guidelines on how to use the MLA as a preprocessing step for

several problems are provided.

Chapter 3 explains how MLA can be integrated in the context of Pattern

Discovery and Classification. In addition, a case study that regards a particular

biological problem in which the MLA was successfully used is introduced: the

nucleosome spacing. Moreover, an alternative approach for the same problem based

on Hidden Markov Model and a comparison of the two methods are presented.

Finally, the last section is devoted to the description of a new one-class classifier

that was used as new classifier module of the MLA.

Chapter 4 presents a new nonparametric test of randomness applicable to a

set of one-dimensional signals that takes advantage of MLA preprocessing step.

In particular, this procedure is based on the probability density function of the

symmetrized Kullback-Leibler distance, estimated via a Monte Carlo simulation on

the intervals lengths obtained by MLA. The main advantage of this new approach

is to perform an exploratory analysis in order to directly verify the presence of

several kinds of structures in an input signal. In particular, this test differs from

the other approaches since it exploits shape features that are rare in a random signal.

Chapter 5 presents how the MLA can help on designing new kernel functions that

explicitly take into account the shape information contained in a one-dimensional

signal. The main idea of Kernel Methods is presented, giving more details on a

particular subclass of kernel functions applicable to structured data, in particular

trees. The MLA is used to define a mapping from the set of one-dimensional signal

to the set of trees. Two new kernels that use the MLA representation are finally

defined and a case study that regards sismographic signals is presented.



Chapter 1

Multi-resolution or multi-scale

methodologies

The proposed methodology is essentially a multi-level decomposition of a one-

dimensional signal. The key point of this method is the multi-level analysis. The

idea of “multi-level” or “multi-resolution” is shared by several apparently disjointed

methodologies.

1.1 Motivation of Multi Layer Analysis

Recently the multi-scale or multi-resolution models have been research topics in

rapid evolution, with great impact on Computer Science, Applied Mathematic, Im-

age Analysis and Signal Processing. The key idea of the MLA is to obtain several

“views” or “features” of the same input data (at different scale, resolution or in a

different domain) in order to perform a better and maybe more understandable

analysis. Using this approach it is possible to focus on the regions of interest with a

finer resolution, having as a consequence an increase on the precision. The regions

of interest can be detected by views or features at lower resolution; in this way it is

possible to both obtain better results and an improvement in computational time.

The idea of multi-scale analysis comes from the fact that many real systems have

different behaviors at different scales. For example in physics there are different laws

to describe a phenomenon at different scale or resolution, e.g. classical mechanics

for describing the motion of macroscopic objects in opposition to quantum mechan-

ics that describes atoms and molecules. It is not an exaggeration to say that many

real problems can be handled using different scales or resolutions. For example the

human being organizes his time using seconds, hours, days, weeks, months, years

reflecting the multi-scale dynamic of the solar system, using scale depending on the

problem he is handling. The folding of a protein can require a time in the scale of

seconds, while the scale of vibration of covalent bonds is in the order of 10−15 sec-

onds. In general, the more details of a system we want to model, the more complex

the required laws to describe it becomes.

1.1.1 Multi-resolution or multi-scale methodologies

In the following sections some approaches will be presented, at first sight disjointed,

but actually exploiting the same idea of multi-resolution or multi-views analysis. In

fact, the shared motivation of all these approaches is that in some cases it is easier,
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given an input signal, to extract and analyze a set of features or views that represents

different information contained in it that analyzes the original signal. This is done

by each methodology in different ways but the main idea that connects them is to

decompose a signals into simpler parts (in frequency, time domain or in another

scale or resolution) and perform the analysis combining the results information on

each part. The MLA as well as the other methods exploits the same idea, in which

the analysis is performed on several “parts” of the original signal obtained, as it

will be explained in the next chapter, by a simple operation called threshold. Some

aspects of these methods will be related to the MLA analysis in particular where

there are strongly similarities or advantages of one method respect to the others.

1.1.2 Discrete Fourier Transform

One of the well-known methods that firstly exploited this idea is the Fourier

Transform and in particular its variant for discrete signals called Discrete Fourier

Transform (DFT). This transformation is mainly adopted when the information

of interest are encoded in the frequency domain of a signal. In fact, the Fourier

Transform and its discrete version i.e. DFT is an operation able to transform a

discrete signal from the time domain into the frequency domain. This is done by

decomposing it as a linear combination of sinusoidal components. Here the parts

of the original signal are the pure sinusoids at different frequencies and phases. In

more details the DFT decomposes a signal into a discrete spectra composed by its

frequency components, while the inverse transform synthesizes the original signal

from the frequency components into its spectra[78]. More formally:

Definition DFT

Given a discrete signal x(n) of N samples its DFT , and its inverse DFT are

defined by these equations:

• Synthesis equation:

x(n) =

N−1∑

k=0

cke
2πjkn

N (1.1)

• Analysis equation:

ck =
1

N

N−1∑

n=0

x(n)e−
j2πkn

N (1.2)

In more details, the DFT allows to extract frequency, phase and amplitude

information of the sinusoids coming from the decomposition of a signal. In addition,

with the DFT, it is possible to find the frequency response of a system from its

impulse response and viceversa. In this way it is possible to analyze a system in the
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frequency domain as it is possible to use the convolution to analyze a signal in the

time domain. This approach in some sense extracts several views of the same input

signal correspondent to the frequency components that it contains. However one of

the main limitation of this approach is that it not perform well for non-stationary

signals, and in addition it cannot characterize directly the shapes contained in a

signal as it is possible instead to do with the MLA analysis.

1.1.3 Wavelet Analysis

A method that overcome some limitations of the Fourier Analysis is the Wavelet

Analysis. A wavelet is a mathematical function and it is used to decompose a signal

in components with different frequencies, resolutions and positions[1]. The position

component is particulary useful when the input signal is not stationary i.e. it has

been generated by a stochastic process whose joint probability distribution does not

change when shifted in time or space. For this reason wavelets are become popular

and nowadays are widely used in multi-resolution analysis. The wavelets transform

is the representation of a signal in term of scaled and translated copies of the same

function called mother wavelet. More in detail, the wavelet transform is obtained

by the convolution between a signal and a wavelet function, as illustrated in figure

1.1. It is possible to see in figure 1.2 an example of scaling and translating a mother

wavelet. A mother wavelet needs to satisfy some properties such as finite length

and zero mean value. These properties make wavelet analysis more powerful than

Fourier analysis since a signal can be decomposed as a sum of the same wavelet

properly translated and scaled, instead of using smooth and continuous function

like sinusoids. This leads to a good decomposition also in the case of signal that

shows discontinuities or in the case of non stationary processes. Figures 1.3,1.4,1.5

show some possible mother wavelets.

Figure 1.1: Convolution of a signal with a wavelet function. (Part of) this figure is

taken from [1]

Now it will be formally introduced the Continuous Wavelet Transform and the

Inverse Continuous Wavelet Transform.
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Figure 1.2: Scaling and translation of a mother wavelet. (Part of) this figure is

taken from [1]

Definition Continuous Wavelet Transform

The continuous wavelet transform or CWT of a continuous signal x(t), considering

the mother wavelet ψ(a, b) is defined as:

T (a, b) = w(a)

∞∫

−∞

x(t)ψ∗
(
t− b
a

)
dt (1.3)

where ψ∗ is the complex conjugate of the function ψ, w(a) is a weighting function

usually equal to 1√
a

or 1
a , a control the location of ψ and b its scale.

Definition Inverse Continuous Wavelet Transform

The continuous inverse wavelet transform or ICWT of the wavelet transform T (a, b)

of continuous signal x(t) with respect to the mother wavelet ψ(a, b) is defined as:
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x(t) =
1

Cg

∞∫

−∞

∞∫

0

T (a, b)ψa,b(t)
dadb

a2
(1.4)

where a control the location of ψ used and b its scale.
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Figure 1.3: Haar wavelet.
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Figure 1.4: Mexican hat wavelet.

1.1.4 Scale Space Theory

Another methodology that exploits the idea of decomposition of a signal in simpler

“parts” is the Scale Space Theory that is a framework for a multi-scale representation

of signals developed in the fields of computer vision, image processing and signal

processing [50]. It is a formal theory applied to manipulate signals of one or more

dimensions at different scales. Here the “parts” of a signal are structures or features
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Figure 1.5: Morlet wavelet.

at different scales contained in it and as in the wavelet approach the parts are

obtained by a convolution of a base signal at different scales. The main difference is

how the convolution is performed and how the information of the parts are combined.

The concept of scale space is general and it can be used in an arbitrary number of

dimensions. For simplicity, here the most used framework, that is the case of linear

scale space in two dimensions, will be described.

Definition Linear Scale Space

Given a two-dimensional signal f(x, y) (e.g. an image), its linear scale space is a

family of derived signals L(x, y, t) defined by the convolution of signal f(x, y) with

a Gaussian kernel g:

g(x, y, t) =
1

2πt
e−

x2+y2

2t (1.5)

such that:

L(x, y, t) = g(x, y, t) ∗ f(x, y) (1.6)

Where t = σ2 is the variance of the Gaussian.

The reason for generating a scale space representation of an image, for example,

derives from the consideration that real world objects consist of different structures

at different scales. This implies that the real-world objects are different from those

of the idealized mathematical entities, such as points or lines, and may appear

differently depending on the scale we use to observe them. For example, the concept

of tree is appropriate if we think in the scale of meters, while the concept of leaf

requires a finer scale. For example, a machine vision system that has to analyze an

unknown scene, cannot know in advance which scales are appropriate to describe the

data in the scene. For this reason, a reasonable approach is to consider descriptions

of the scene at different scales simultaneously. An example of this approach is

illustrated in figure 1.6.
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1.1.5 Quadtree Analysis

Quadtree Analysis is another image analysis technique that consists in iteratively

splitting an image into blocks that are more homogeneous than the image itself by

using a particular data structure called quadtree [20]. This technique, examining

the image at different resolutions, allows to obtain information about its structure.

It is also used as the first step in adaptive algorithms for image compression. The

technique consists in dividing a square image into four blocks of equal size, and then

test whether each block meets some homogeneity criterion (for example, if the gray

levels of all pixels belonging into a block have a specific range of values). If the

block meets the criterion it will not be further splitted, otherwise it will be again

divided into four blocks that will be tested again according to some homogeneity

criterion. This process is iterated until each block meets the criteria. The entire

process obviously will split the image into blocks of different sizes. An example of

quadtree analysis, used to detect salient objects in an image, is shown in figure 1.7.

1.1.6 String methods

In a lot of discipline the input data comes in natural form as string: bio-sequences,

graphs and text documents. In this scenario there are several methodologies that

exploit the “multi views” approach in terms of subsequences or substrings of the input

string. For example there are several similarity measures between string objects

in which the more similar, the greater it is the number of the factors they share

[53]. Another example that will be presented in detail in chapter 5 is the family

of convolution kernels[34]. The basic idea of a convolution kernel is to decompose

(a) L(x, y, t) at scale t = 0

(original image)

(b) L(x, y, t) at scale t = 1 (c) L(x, y, t) at scale t = 4

(d) L(x, y, t) at scale t = 16 (e) L(x, y, t) at scale t = 64 (f) L(x, y, t) at scale t = 256

Figure 1.6: Scale Space representation



10 Chapter 1. Multi-resolution or multi-scale methodologies

Figure 1.7: Quadtree image segmentation

a data object into simpler parts and then define a kernel function in terms of such

parts. A very common kernel for string classification (especially protein sequences)

that exploits this idea is the spectrum kernel. The main idea behind it, is that the

more substrings with a fixed length are shared by two string, the more similar they

are (see [49] for details). More formally let’s consider the following definition:

Definition Spectrum Kernel

Let Σ be a finite alphabet, Σ∗ denote all possible string over Σ and Σk all the string

over Σ of length k. Let #x[w] denote the number of occurrences of w in x e.g.

#x[w] = |{y|x = y ·w · z ∧ y, z ∈ Σ∗}| and Gk[x] the k-gram vector of x over all the

string in Σk e.g. Gk[x] = (#x[w])w∈Σk . Given a k ∈ N the spectrum kernel can be

defined as:

Sk(s1, s2) =
∑

w∈Σk

#s1[w] ·#s2[w] = 〈Gk[s1], Gk[s2]〉 (1.7)

1.1.7 Level Set

Another approach that decompose a signal in parts and that is very close to the

MLA is the Level Set method that is a numerical technique for the recognition of

shapes in a signal [74]. This methods is based on the fact that usually, it is easier

to characterize a shape using a particular set of auxiliary functions called Level Sets

than using the shape directly. In fact the level sets allow to characterize a shape

considering several of its levels or subviews. In figure 1.8 it is possible to see a

pictorial representation of this approach on a function of 2 variables. Now it will be

provided the formal definition of Level Set:

Definition Level Set of a function

Starting from a function f : Rn− > R a level set is a set of the form:

{(x1, . . . , xn)|f(x1, . . . , xn) = k} (1.8)

If n = 2 this set is called level curve, if n = 3 the set is called level surface or

more in general if n > 3 it is called level hypersurface. In particular using a level
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set it is possible to express a closed curve Γ indirectly using the the function f and

considering the level set: Γ = {(x1, . . . , xn)|f(x1, . . . , xn) = 0}

As it will be possible to see later, the MLA idea in some sense is very close to

this approach since the information that characterize the signal are similar. The

main difference is the way the information are organized, in fact with MLA it is

possible to characterize any shape in a natural and elegant way using a particular

structure to store these information.

Figure 1.8: Level Set representation for a function depending on 2 variables.

1.2 Pattern Discovery and Classification

The next section presents two machine learning techniques in which the MLA can

be promiscuously integrated. For this reason here will be introduced the general

problems of Pattern Discovery and Classification, while in chapter 3 will be cover

in detail how to integrate the MLA in these contexts.

1.2.1 Pattern Discovery

Pattern discovery is a general discipline in which the main goal is to process a large

amounts of data in order to efficiently extract unknown useful knowledge [87]. In

other words a pattern discovery method discovers subsets of input data that are

meaningful accordingly to a formal criteria. More in general, the pattern discovery

is a research area that provides efficient methods to uncover, without using “a priory”

knowledge on the data, patterns that are repetitive, unexpected or interesting, using

a formal criteria.
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In order to better understand pattern discovery, it is first necessary to define

the meaning of pattern. Informally a pattern is any relation in the data that is of

our interest and that is not casual or random. In other words it is necessary to

answer to the question: how meaningful is a pattern? This is because the human

mind has the tendency to see patterns everywhere. For this reason, it is necessary to

understand if a pattern is significative in a rigorous way. More formally, a pattern

is a data vector serving to describe an anomalously high local density of data points

[32]. This means that particular points have a different behavior than the points in

other regions usually called “background” and that are not interesting since in those

regions they have a behavior not related to the true process that has generated the

“anomalies”.

During the last years a lot of attention was paid to this problem so that it is

possible to find several tools in the realm of Statistic and in the Computer Science

to address this problem. In particular these techniques can be fruitfully applied

to several unconnected application domains such as: speech recognition, biology,

finance and econometric, biomedicine, text analysis, statistics. As a matter of fact

the data involved in the pattern discovery methods are of different kinds such as

sequence, image, sound and structured data such as tree and graphs [87, 15, 6, 61,

13, 83].

1.2.2 General schema of a Pattern Discovery method

A general pattern discovery method can be subdivided in three main parts[83] as it

is possible to see in figure 1.9.

Figure 1.9: Pattern Discovery parts

• A language to describe the pattern;

• a score function to assesses the interestingness of a pattern;

• an efficient algorithm that identifies the most interesting patterns using the

score function.

Obviously, these three parts depend strongly on the particular application domains

taken into consideration. In particular, this is true for the language used to describe

the patterns, in fact the data are not always in the form of feature vectors or in term
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of some formal languages (or grammars). In this sense languages can be thought

as a transformation that encodes the information present in the data in a suitable

form for a particular score function. Another important point is the choice of the

most suitable score function for the particular process that has generated the data,

in order to discover the “anomalies”. The last but not least important point is

the scalability of the algorithm that is fundamental in many practical application

domains. In particular, this last point usually depends on the complexity of the

language used to express the patterns and on the computational efficiency of the

score function. For this reason it is necessary to consider a compromise between the

expressivity and the computational efficiency of languages and score functions.

1.2.3 Classification

In recent years, several algorithms have been developed for classification, but all

allow, albeit with different techniques, to match a set of elements defined over a

space of features, with a set of labels corresponding to different groups or classes [24].

This is equivalent to partition the space of features into regions, assigning to each

region a specific label. In general, classification refers to the class of methodologies

of machine learning that given in input a set of data assign subparts of the input

data to a given class taken from a finite number of categories. More formally, let’s

consider a set of observations X ∈ R
n, a set of elements Y = y1, . . . , yM called

labels and a function f : X → Y that defines the true mapping from the set

X of observations to the set of labels. A classification algorithms considering a set

D = (x1, y1), . . . , (xn, yn) called training set produce in output a function g : X → Y

that approximate as close as possible the function f . The classification can also be

seen as a problem of parameter estimation, where the goal is to estimate a set of

functions of the form:

P (class|x) = f
(
x;
−→
θ
)

(1.9)

where x ∈ X represents the vector of input features for each item to be classified,

and f is a function depending on a vector of parameters denoted by
−→
θ related to

the specific classification problem. This function represents the probability that the

element represented by the vector of characteristics, belongs to a particular class.

In any case, the classification process generally follows the following steps:

1. Selection of the classes of interest;

2. Selection of the set of training;

3. Statistical analysis of the set of training in order to assess whether they rep-

resent well the problem being tackled;

4. Algorithm Selection for classification;

5. Classification of data using the chosen algorithm;

6. Validation of the results and their interpretation.
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The most common algorithms to perform classification are: Bayesian Classifier,

K-Nearest Neighbors, Support Vector Machine, Decision Tree and Neural Networks.

The interested readers can found a good survey of the principal classification algo-

rithms here [24].



Chapter 2

Multi Layer Analysis

In this chapter a detailed and formal description of the Multi Layer Analysis (MLA)

will be presented. The MLA is a general feature extraction method that can be

adapted to discover patterns on one-dimensional signals or as a preprocessing step

to classification, clustering and other data analysis techniques.

2.1 The Multi Layer Analysis

The MLA is a feature extraction method in which the processed input data can be

used by a classifier or a clustering method in order to distinguish between several

kinds of patterns. It is based on the generation of several sub-samples of the input

signal, each one carried out by a particular threshold operation, chosen by respecting

cut-set optimal conditions, within respect to the input data. In figure 2.1, it is shown

a flowchart of the whole methodology. As it is possible to see in that figure, the

method starting from the input signal and applying a set of simple operations, called

thresholds, extracts a set of intervals. These intervals opportunely aggregated can

encode the shape information of the input signal that can be used to characterize

it or to discover structures contained in it. In the following, the formal definition of

the threshold operation will be given, together with some some generic application

of this transformation.

2.1.1 The threshold operation

Definition Threshold operation

Given an input signal f the threshold operation σk is defined as follows:

σk(x) =

{
f(x) if p(f(x)) is true

k otherwise

where p is a generic condition defined on the elements of f .

In the simplest case f can be defined in R and it is possible to set:

p(f(x)) =

{
true if f(x) ≤ φ
false otherwise

(2.1)

This approach detects sub-samples deriving from threshold operations that satisfy

structural or shape properties. An example of a simple threshold operation with
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Figure 2.1: Schema of MLA processing

condition expressed in equation 2.1 is depicted in figure 2.2.

Figure 2.2: Thresold operation for three different values of φ

The key idea behind the MLA is to explore the input signal at different threshold

levels that corresponds to its decomposition into several sub-signals, in order to

discover the hidden pattern of interest.
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Definition General MLA

The MLA can be defined as a set of sub-samples of a one-dimensional signal f

MLA(f) = {σ1(x), σ2(x), · · · , σK(x)} (2.2)

where each threshold operation indicated by the subscript of σ could be characterized

by a specific condition.

The MLA is more accurate and robust in comparison to a naive methodology that,

using a single threshold operation could give inaccurate results especially in the real

case when the input data is affected by noise. The accuracy and robustness are

due the fact that MLA uses more conditions p in order to validate the same hy-

pothesis or conditions on the multiple sub-samples extracted from the input signals

f . For this reason this technique introduces a sort of “flexibility” to the analysis

of a signal. After the multiple threshold operations called horizontal sampling it is

possible to extract a set of intervals from the original signal and define its interval

representation; it is also possible to organize these intervals using a particular rule

called aggregation rule. A summary of the overall process is shown in figure 2.1.

The next two subparagraph explain in details the horizontal sampling, the interval

representation and the aggregation rule of a signal.

2.1.2 The Horizontal Sampling, the Intervals Representation and

the Aggregation Rule

The core of the MLA is the interval identification obtained through the horizontal

sampling procedure.

Definition Horizontal sampling

Given a bounded signal f : [α, β] → R
+ and K ∈ N threshold operations σk

(k = 1, ...,K) for each k it is possible to build a set of intervals:

Ik =
{
i1k, i

2
k, · · · , ink

k

}
(2.3)

where itk = [atk, b
t
k] with t = 1, · · · , nk, and atk, b

t
k ∈ R

In the simple case in which the condition p of the generic threshold operation σk is

that expressed in equation 2.1 it is easy to prove that f(atk) = f(btk) = tk. After the

horizontal sampling process, a different representation of the input signal, called

Interval representation of f is drawn and it will be denoted with Υ(f).

Definition Disambiguation operation

To avoid ambiguities in the case f is discrete i.e. f : {1, 2, · · · , L} → R
+, and

f(1) 6= min(f) or f(L) 6= min(f), f is transformed into a new signal f ′ : [a, b] →
R
+:
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f ′(x) =

{
min(f) if x = a

∨
x = b

f(x) if 1 ≤ x ≤ L
where

a =

{
0 if f(1) 6= min(f)

1 otherwise

and

b =

{
L+ 1 if f(L) 6= min(f)

L otherwise

Definition Interval Representation

Given a signal f and K threshold operations σk (k = 1, ...,K), and let Ik ={
i1k, i

2
k, · · · , i

nk

k

}
the set of intervals corresponding to σk, then the interval repre-

sentation of f indicated as Υ(f) is:

Υ(f) = {I1, I2, · · · , IK} (2.4)

Definition Aggregation Rule

Given a signal f and its interval representation Υ(f) = {I1, I2, · · · , IK} an aggre-

gation rule is a rule that constructs sets of intervals taken from Υ(f) in order to

characterize or represent “interesting” subparts of f . In general it is possible to

define several aggregation rules to express different shape properties present in a

signal. In the next chapters it will be presented several examples of aggregation

rules applied to different application domains.

Definition Equally spaced simple MLA

Without loss of generality, let assume that f : R → [0, 1] and K ≥ 2. The equally

spaced simple MLA is carried out by considering the thresholds σk with 1 ≤ k ≤ K
defined as follow:

σk(x, φk) =

{
f(x) if f(x) ≤ φk
φk otherwise

with φk = 1
K × (k − 1)

As convention the first threshold operation corresponds to σ1(x, 0) and the last to

σK(x, 1). Note that all the intervals extracted by the last threshold operation σK by

convention encompass a single point corresponding to the intersection of the signal

with the straight line of equation: y = 1. In other words, these intervals IK have the

property that atK = btK , ∀1 ≤ t ≤ K. In addition, by definition the first threshold

operation collects only one intervals [1, L] where L = β + 1. An example of equally

spaced simple MLA is depicted in figure 2.3.
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Figure 2.3: Equally spaced simple MLA

In general the interval representation is lossy because it can only keep a subset of

points of f that form the intervals in Υ(f) (see figure 2.4).

Figure 2.4: Interval representation of a signal

Notice that as many other transformations presented in chapter 1, by using the

MLA it is always possible to reconstruct a lossless version of the input signal if some

conditions arise, and this will be discussed later. Obviously, the information loss in

this representation decreases as the number K of threshold operations increases. Of

course, it is always possible to reconstruct a lossy version of the original signal using

an interpolation algorithm and using only the points of its interval representation.

Given a generic signal f it is also obvious that it is always possible to obtain a lossless

reconstruction of f from its representation Υ(f) as k →∞. If f is a discrete signal, it

is easy to prove that is always possible to obtain a lossless representation imposing

that at least one of the threshold levels intersect each point of f , in particular

the following theorem gives a way to calculate the minimum number of thresholds

operations K to use in order to build a lossless representation using equally spaced

thresholds.
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Theorem 2.1.1 Let εmin be the precision required, and let f : [α, β] → [0, 1] be a

discrete time signal of length L (|[α, β]| = L). Then the lower bound of threshold

operations K allowing a lossless representation h of f using the equally spaced simple

MLA (i.e. for each pair of adjacent point in h, dn = |h(n + 1) − h(n)| = c with

c ∈ R) is:

K =
1

g

L−1∑

n=1

[
dn
εmin

]
≈

[
1

g × εmin

]
(2.5)

with g the GCD (Greatest Common Divisor) between all the integers: F ={[
dn

εmin

]
, n = 1, 2, · · · , L

}
.

Proof Using a precision of εmin it is possible to map the set of the absolute differ-

ences D = {dn = |f(n+1)− f(n)|, n = 1, 2, · · · , L} in the set of natural numbers

F =
{[

dn
εmin

]
, n = 1, 2, · · · , L

}
and let g = GCD(F ). By definition of g it results

that [
dn
εmin

]
= g ×mn

with mn ∈ N, and

K =
L−1∑

n=1

mn =
L−1∑

n=1

1

g

[
dn
εmin

]

Lemma 2.1.2 Let εmin the precision required, and let f a discrete signal of length

L and without loss of generality let us assume that f as values in [0, 1]. Then

K =

L−1∑

n=1

[
dn
εmin

]
(2.6)

is the upper bound on the number of threshold operations K to obtain a lossless

representation of f using an equally spaced subdivision of f .

Proof The proof is straightforward, it is possible to obtain the largest K when the

GCD g assume its minimum value, this value is 1 because one property of GCD is

that g ≥ 1.

Although the previous theorem and lemma show a lower and upper bound on K

allowing a lossless representation of a discrete signal f , it is usually convenient for

several reasons to optimize the search for the best smallest K allowing a reasonable

lossy representation of f . It is obvious that the number of threshold operations

strongly depends on the signal shape. For this reason, this representation is sug-

gested when the information of the signal is encoded in the time space because it

well characterizes the shape information (as a solution to this problem it could be

possible to use the Fourier Transform and apply this methodology on the spectra of
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the signal). In figure 2.6 it is shown the progressive degradation of a signal as the

number of threshold operations decreases, and in table 2.1 the number of points re-

quired to represent a signal giving a fixed level of K thresholds, and the correlation

coefficient between the original and the reconstructed signal. In the subsection 2.2

a calibration procedure to select the proper value of K will be described.
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Figure 2.5: Original signal
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(a) Signal reconstructed with

K = 3
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(b) Signal reconstructed with

K = 4
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(c) Signal reconstructed with

K = 8
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(d) Signal reconstructed with

K = 16
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(e) Signal reconstructed with

K = 32
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(f) Signal reconstructed with

K = 64

Figure 2.6: Degradation of the signal for different values of K

Note that this transformation cannot be simply related to the theory of sampling

and in particular to the Sampling Theorem[64], because the non trivial distortion

in the spectral components of the original signal that MLA could be introduce.

Theorem 2.1.3 (Sampling Theorem [64]) If the highest frequency contained in an

analog signals , xa(t) is Fmax = B and the signal is sampled at a rate Fs > 2Fmax =

2B, then xa(t) can be exactly recovered from its sample values using the interpolation
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Number of threshold operation K Kendall Correlation Length of representation

2 0.6900 4

4 0.2846 68

8 0.9420 130

16 0.9973 280

32 0.9987 566

64 0.9999 1440

Table 2.1: Degradation of the signal for different values of K

function:

g(t) =
sin(2πBt)

2πBt
(2.7)

In other words it does not exist a simple mathematical relation that link the

two transformations because they extract different information from the signal, fre-

quency and shape information as stressed before. As a enlighten example, consider

two simple but opposite cases: a sinusoidal signal and a rectangular pulse signal.

Looking at the figure 2.7 and 2.8 it is clear that this transformation introduces arti-

fact on the spectrum for the simple sinusoidal signal, that can be represented only

by one component with the Fourier Transform, but it is not present any artifact

on the rectangular pulse signal that, in the continuous case, require infinite com-

ponents to be represented properly in the frequency domain. In other words the

number of threshold operations doesn’t depend directly on the frequency content

of the input signal but only on the quantization levels needed to properly represent

it. The quantization levels are obviously proportional to the smallest variation εmin

that it is necessary to capture in the signal. If it is necessary to obtain in term

of threshold operations an equally spaced “horizontally sampling” as in the case of

equally spaced simple MLA it is possible to use the theorem 2.1.2.

In some sense the MLA representation is related to the wavelet representation.

In fact it is possible to think a signal as composed by scaled and shifted components

(in sense of wavelet components) in which the mother wavelet is a single rectangle

pulse as depicted in figure 2.9. The main difference with wavelet approach is that

in MLA transformation the data are represented in a different way and the MLA

“mother” doesn’t need to have mean zero although it has finite duration.

2.2 Choosing the right value for the number of thresh-

olds

The bounds on the values of K given a quantization precision of εmin in the case of

N equally spaced thresholds have been previously stated. An interesting question

is: is it necessary to use all the levels that the upper bound stated in theorem 2.1.2?
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Figure 2.7: MLA reconstruction of the simple sinusoidal signal with K = 8

The short answer is no. A practical approach to follow, is to define a similarity

measure between the original input signal and the reconstructed signal in order to

have an idea on the “amount” of information that MLA representation induces. A

set of natural similarity functions that can be suitable to this scope belongs to the

family of correlation functions. Among the correlation functions, the most known

are the Pearson, Spearman and Kendall correlation indices.

Definition Pearson, Spearman, and Kendall correlation Given two signal x and y

then the correlation indices are defined as:

• Pearson correlation

r =

∑m
i=1(xi − x̄)(yi − ȳ)∑m

i=1(xj − x̄)2
∑m

j=1(yj − ȳ)2
(2.8)

• Spearman correlation

ρ = 1− 6
∑m

i=1 ∆
2
i

n(n2 − 1)
(2.9)

• Kendall correlation

τ =
nc − nd

1
2n(n− 1)

(2.10)
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Figure 2.8: MLA reconstruction of the rectangular pulse signal with K = 2

where x̄ = 1
m

∑
i xi, ȳ = 1

m

∑
i yi, ∆i is the difference between the ranks of xi and yi,

while nc and nd are their number of concording and discording pairs, respectively.

In figure 2.10 it is possible to see four examples of real world and synthetic

signals: an earthquake signal, a gaussian noise signal generated in accordance to

the Gaussian distribution equation 2.12, a random uniform signal, generated in

accordance to the uniform distribution equation 2.11, and a sinusoidal signal.

Definition Uniform Distribution The uniform distribution [27] is a distribution

that has constant probability over an interval [a, b], and its probability density func-

tion p is:

p(x) =





0 for x < a
1

b−a for a ≤ x ≤ b
0 for x > b

(2.11)

Definition Normal or Gaussian Distribution The Normal or Gaussian distribution

[27] is a probability distribution with probability density function:

f(x) =
1√
2π

e−x2/2. (2.12)
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Figure 2.9: MLA “mother” function.

Table 2.2 shows the number of levels required to obtain a correlation value of at

least 0.9 (using the Kendall’s correlation, equation 2.10) in the case of four exam-

ples. It is also important to take into account the length of the signal representation

that obviously strongly depends on the number of levels used. The following theo-

rem gives an upper bound on the length of the representation of a signal using K

threshold operations.

signal / K 5 10 50 100

earthquake 0.3856 0.6488 0.9399 0.9470

gaussian 0.9484 0.9890 0.9994 1

uniform 0.9916 0.9990 1 1

sin 0.9936 0.9937 0.9950 0.9950

Table 2.2: Information loss on the signal for different values of K
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Theorem 2.2.1 Given a discrete signal f of length L ≥ 3 and let K ≥ 2 the number

of threshold levels in the equally spaced simple MLA transformation then the upper

bound Imax on the number of intervals of its representation Υ(f) is:

Imax(L) =

⌈
L

2

⌉
∗ (K − 1) + 1 (2.13)

and the real numbers required to represent the intervals are in number of:

nmax(L) = 2 ∗
⌈
L

2

⌉
∗ (K − 1) + 2 (2.14)

Proof To avoid confusion, remember that for definition the equally spaced simple

MLA adds at the beginning (or to the end) of the signal f a point equal to min(f)

if f(1) 6= min(f) (or if f(L) 6= min(f) ) by the disambiguation operation. It is

possible to define two kinds of worst case signal, one for L odd (see figure 2.11

(a)), and one for L even (see figure 2.11 (b)). The even worst case signal involves

always the addiction of a single new point by disambiguation, while two points are

added in the case of a worst case odd signal. Moreover, the addition of a new

point to the signal, involves the introduction of K − 1 new intervals as it possible
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(c) Uniform noise
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(d) Sinusoidal signal

Figure 2.10: Different examples of signals (all of length 400)
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to see in figure 2.12. Further it will be considered a generic threshold operation

σk with k 6= 1 because by definition, the first threshold operation extracts always

only one interval independently on the length of the signal. Note also that, in the

case of the best case signal with L odd points, the number of interval is exactly

Imin(L) =
⌊
L
2

⌋
∗ (K − 1) + 1 (see figure 2.11 (c)).

21:46 original points

points added by disambiguation operation

(a)

(b)

(c)

Figure 2.11: (a) Odd worst case,(b) Even best and worst case,(c) Odd best case

{K-1
+1

{

Figure 2.12: Intervals increment: each point added can be add no more than k − 1

intervals
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Let’s recall two simple properties of the ceil and floor function:

if L ∈ N is even then: ⌈
L

2

⌉
=

⌈
L− 1

2

⌉
(2.15)

if L ∈ N is odd then: ⌊
L

2

⌋
+ 1 =

⌈
L

2

⌉
(2.16)

Suppose to have a signal of length L, consider two cases, L even or odd:

• (L) even: Since L is even, only a new point has to be added. The resulting

signal can be seen as the extension of the best case signal with L−1 odd points

by adding two new points, and applying the induction, and the properties 2.15,

2.16 it results that Imax(L) = Imin(L− 1) + (K − 1) =
⌊
L−1
2

⌋
∗ (K − 1) + 1+

(K−1) = (
⌊
L−1
2

⌋
+1)∗ (K−1)+1 =

⌈
L−1
2

⌉
∗ (K−1)+1 =

⌈
L
2

⌉
∗ (K−1)+1.

• (L) odd : Since L is odd, the worst case signal involve the addiction of two

new points. The resulting signal can be seen as the extension of a best case

signal with L odd points by adding two new points, and by applying the

induction, and the property 2.16 it results that Imax(L) = Imin(L)+(K−1) =⌊
L
2

⌋
∗ (K − 1) + 1 + (K − 1) = (

⌊
L
2

⌋
+ 1) ∗ (K − 1) + 1 =

⌈
L
2

⌉
∗ (K − 1) + 1.

Lemma 2.2.2 Given a discrete signal f of length L and let K ≥ 2 the number

of threshold levels in the equally spaced simple MLA then the complexity of this

transformation is O(K ∗ L)

Proof Using the previous theorem, it is clear that in the worst case it is possible

to obtain
⌈
L
2

⌉
intervals for a generic threshold operation. Since the transformation

uses in total K threshold operations in the worst case it is possible to obtain
⌈
L
2

⌉
∗K

interval extractions.

2.3 Usage of the MLA as preprocessing step

In general it is possible to find two principal problems in which MLA can be suc-

cessfully used:

• given a family of signals and a signal in this family, characterize it in terms of

the other signals in the family;

• given a signal, discover if it contains interesting substructures in some formal

sense.
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In more details given a signal f and its MLA representation Υ(f) there are several

ways to use it, the most trivial is to use the intervals “as they are” in a feature

vectors fashion. It is important to note that they are not real feature vectors since

given two signals of equal length not always involve the same representation. In

other words it is not possible to have a positional representation of the feature of

a signal as in a classic feature vector. For this reason, in order to compare two

or more signal using the MLA representation, special distances or more in general

dissimilarity functions need to be defined. One way to overcome this problem is to

use a set of probability distributions to model the output of threshold operations.

It will be shown an example of this approach on chapter 4 where a randomness

test that exploits this idea will be presented. If we need intstead to characterize

subparts of a signal, it is necessary to define aggregation rules that reflect our

“interestingness”. It will be presented this approach in the next chapter where a

rule that well characterizes a biological structure (the nucleosomes) will be defined.

An extension of this approach will be presented in chapter 5 where a new structure

using a particular intervals aggregation rule, called Tree Interval Representation,

will be introduced. It will give also the possibility to define a new kernel function by

taking inspiration from the well-known tree kernels that have been successfully used

in a completely different context: the processing of natural languages and the text

categorization. In particular each of these chapters will be organized in two parts:

the first part will show the formal definitions and the second part will present the

real problem and the proposed solution, highlighting where the MLA takes place

and, if possible, a comparison with the state of the art methodologies.





Chapter 3

Pattern Discovery and

Classification by MLA

This chapter presents the MLA in the context of Pattern Discovery and Classifi-

cation; in particular the section 3.1 explains how MLA can be integrated in these

contexts. Then in section 3.3 a case study is introduced: it regards a particular bi-

ological problem, the nucleosome spacing, in which the MLA was successfully used

(see section 3.1). In addition, in section 3.4, an alternative approach for this problem

based on Hidden Markov Model is presented, while in section 3.6 a comparison of

the two methods is presented. Finally, the last section is devoted to the description

of a new one-class classifier that was used as new classifier module of the MLA.

3.1 MLA in Pattern Discovery and Classification

This section explains how it is possible to apply the MLA in the context of pattern

discovery. A general schema of pattern discovery that takes advantage of the MLA

is presented in figure 3.1. The important point here is that MLA plays the role of

the language to express the pattern as it was explained in chapter 1. In particular,

given a signal f the patterns correspond to subregions of f that can be found using

its interval representation Υ(f) together with an appropriative aggregation rule. In

particular as expressed in chapter 2 it is convenient to use the MLA in order to

characterize or discover patterns in term of their shapes. This means that a general

criteria to assess if a pattern is interesting into this context, is to check how close a

subregion of a signal expressed in term of intervals meets a particular aggregation

rule criteria or intervals distribution. In the latter case this means that it is possible

to define an expected intervals distribution for a “background” that can be used

to assesse how interesting a pattern is. This approach, as it will be shown in a

case study described in the next section, is particularly useful and natural for signal

segmentation.

Figure 3.1: Pattern Discovery by MLA and signal segmentation
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In the classification problem, since it is necessary to provide an explicit training

set (i.e. some examples for each class to discriminate), the MLA can be used as

feature extractor, in the sense that each element can be expressed using MLA as

its interval representation, or more in general in a structure built on its interval

representation using a particular aggregation rule. Here, an element of a class can

be a whole signal or a subpart of a signal maybe extracted with a pattern discovery

approach.

In the next section, the basic biological notions will be provided in order to

introduce the MLA in the context of pattern discovery and classification for a

particular biological problem: the nucleosome spacing.

3.2 Fundamentals of Molecular Biology

In this section some concepts and notions of biology will be described, in order to

introduce the basic terminology that can be useful for the comprehension of the

matter.

3.2.1 DNA

DNA is a double helix molecule formed by two chains (helices) oriented in opposite

directions, as shown in the figure 3.2. DNA is present in every cell in the body and

contains all the genetic information necessary for the body. The major classes of

organisms are eukaryotes and prokaryotes. In eukaryotes DNA is contained within

the nucleus, separated from the cytoplasm; in prokaryotes, instead, it is contained in

cytoplasm. DNA is composed of four distinct types of bases, called nucleotides, that

consist of three parts: a phosphate group, a sugar (deoxyribose) and a nitrogenous

base (purine or pyrimidine). The four bases that forms the DNA are: adenine

(indicated by A), cytosine (indicated by C), thymine (indicated by T) and guanine

(indicated by G). The DNA bases are complementary: a C always pairs with a G

and an A with a T. The complementarity of the two chains allows to represent a

DNA sequence using only one of the two because the other one is complementary

and then the information it contains is redundant.

3.2.2 Genes and proteins

Genes correspond to particular sub-sequences of DNA. They belong to the genome

of an organism, which can be composed of DNA or RNA; the genes in particular

direct physical and behavioral development of the body. Genes also determine the

amino acid sequence of proteins, which are the most involved macromolecules in

biochemical and metabolic processes of the cell. Some other genes do not encode

proteins but encode RNA that plays a key role in gene expression. In a cell there

are thousands of different proteins, each with a distinct amino acid sequence. In

particular each amino acid is encoded by exactly 3 nucleotides as it is possible to
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Figure 3.2: DNA structure

see in figure 3.3 and there are 20 amino acids in total. In general, a protein is a

polymer composed by different combinations of amino acids that bind each other

through some interactions that are called peptide bonds. Proteins play a variety

of tasks in the cell. In fact, they transmit messages between cells, turn on and

off genes, are essential in muscle contraction, and finally build structures such as

hair. Proteins are characterized by a three-dimensional structure articulated on four

structural levels, in relation to each other:

1. The primary structure is the one that identifies the specific sequence of amino

acids from the peptide chain.

2. The secondary structure corresponds to several configurations such as the

spiral shape (or alpha helix), the planar (or beta sheet), the three intertwined

filaments and those belonging to the globular KEMF (keratin, epidermina,

myosin, fibrinogen).

3. The tertiary structure represents the three-dimensional configuration of the

polypeptide chain. This configuration is permitted and maintained by different

chemical bonds, including the sulfide bridges and the forces of Van der Waals.

4. The quaternary structure determines the association of two or more polypep-

tide units, or of protein and non-protein units, joined together by weak

bonds,such as sulfide bridges, but in a very specific way, such as it occurs

in the formation of the enzyme phosphorylase, consisting of four sub-units, or

from hemoglobin, which is the molecule responsible for transporting oxygen

in the body.
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Figure 3.3: Amino acids alphabet in terms of DNA alphabet

3.2.3 Protein production and expression level of a gene

The production of a protein from a gene is called gene expression. To obtain a

protein from a gene, the information in DNA is copied through a process called

RNA transcription. RNA in the form of mRNA acts as a messenger and delivers

information from the cell nucleus (where DNA is located) to the cytoplasm. Once

in the cytoplasm, the mRNA is translated in its product, the protein, thanks to

the usage of the alphabet of amino acids. Then the protein is built starting from

the original DNA sequence representing the gene, as it possible to see in figure 3.4.

Each cell of an organism contains the same DNA, so the same information; however

cells are specialized according to their function. This specialization is because not

all genes are expressed at the same time and within the same cell. In fact, gene

expression is a controlled dynamic phenomenon so that the processes of a cell are

carried out in a controlled way. This phenomenon is regulated by several proteins

that bind each other different regions of DNA. This adjustment may depend on the

function that a cell has to make and it is regulated by both external factors and

internal factors produced by the cell.

3.2.4 Nucleosome and chromatin

As said before, DNA contains all the information of an organism and it is organized

in a specific space configuration called chromatin and in particular in chromosomes.

More in detail, there are fundamental units called nucleosomes that package DNA

into chromatin and there are several levels of space organization from DNA to a

chromosome as it is possible to see in figure 3.5. The nucleosome, whose discovery

dates back to 1974, is the fundamental unit of chromatin structure and consists of a
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Figure 3.4: From a genomic sequence to a protein

segment of about 150bp of DNA associated with a quaternary structure of proteins

called histone octamer. The nucleosome has a compact globular shape and plays

the role to compact DNA in a eukaryotic cell. In figure 3.6 it is possible to see the

stylized structure of a nucleosome. Nucleosomes have a diameter of about 11 nm

and are spaced from each other by a stretch of DNA linker varying in length from a

few to about 80 pairs of nucleotides. The resulting structure has the characteristic

appearance of a necklace of pearls and is the first level of compaction of chromatin.

The formation of nucleosomes in fact converts a molecule of DNA in a strand of

chromatin along about a third of the original length. This structural organization

was highlighted after isolating the nucleosomes from chromatin. Several factors can

influence the nucleosome organizations [72] and therefore the chromatin. Recent

studies has shown that one of this factor is the sequence specificity that consists

in the nucleosomes preference for some sequences: in particular, in vitro studies

have shown that nucleosomes have a strong preference for some DNA sequences [70]

and instead “don’t like” other sequences such as poly (da,dt) tracts [71]. Another

important factor is their statistical positioning [46]. This theory is based on the

concept of barriers, that are regions on the dna in which the nucleosomes cannot stay.

Barriers in particular on average regulates the positions of nucleosomes around them.

An important result is that it is possible to derive mathematically the probability

function on the preferences of nucleosome around the barrier. The last point is the

set of chromatin remodeler complexes that actively move the nucleosomes across

DNA [66].

3.2.5 Microarray

A DNA microarray (commonly known as gene chip, DNA chip, or biochip) is a

collection of microscopic DNA probes attached to a solid surface such as glass,

plastic or silicon chip forming an array [3]. These arrays are used to examine the

expression profile of a gene or to identify the presence of a gene or of a short sequence

on thousands (often the entire genome of an organism). Each location corresponds

to a specific gene (or a specific sequence) and it does contain multiple copies of a
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Figure 3.5: From DNA to chromatin

filament with a particular sequence of bases. These DNA strands are anchored to

the surface of the substrate, and are used as probes to measure the amount of other

DNA molecules (which are also single-stranded) derived from mRNA transcripts

and contained in a solution that is deposited on the surface of the microarray. The

main approaches used in the manufacturing process of the microarrays are two: one

process is to deposit, with the help of a robot, a solution containing the DNA probes

on the surface of the solid support. The probes can be made of a single-stranded

cDNA (complementary DNA obtained by an mRNA transcript having a length

of 200-2400 bases) or can be made of pre-chemically synthesized oligonucleotides

(short sequences of nucleotides with a length of 50-100 bases). Microarrays made

by this process, are called “cDNA microarraies” [3]. The other process is to directly

synthesize oligonucleotides on the surface of the microarray(in situ); this operation

is carried out mainly with photolithographic techniques (typical of Affymetrix) and
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Figure 3.6: Nucleosome structure: in blue the octamer, in orange the DNA

inkjet printing [3].

The advantage of using microarrays is the possibility to examine a large amount

of data per experiment; for example, it is possible to monitor the expression levels

of thousands of genes at a time. In the figure 3.7 it is possible to see the workflow

that is usually followed when using the microarray technique:

• Preparation and marking of the sample (different samples are labeled with

different markers)

• Hybridization and alignment

• Cleaning

• Image acquisition and data analysis

3.3 Case Study: Nucleosome Positioning

The biological problem under consideration concerns the positioning of nucleosomes

in DNA. This problem is very interesting because the accurate and precise measure-

ment of the nucleosomes position on genomic scale could improve the understanding

of the chromatin structure and its function. Alterations in chromatin and hence in

nucleosome organizations can result in a variety of diseases. In fact, the emergence

of diseases is thought to be due to the fact that the altered chromosomes condensa-

tion leads to the expression increase of certain genes, causing abnormal production
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Figure 3.7: Microarray workflow

of proteins in the cell. This motivates the use of a methodology capable of deter-

mining the position of nucleosomes, in order to study the implication of nucleosome

spacing in the chromatin condensation phenomena. This may be investigated by

comparing the positions of nucleosomes in different contexts in which there are dif-

ferent amounts of proteins that remodel chromatin by changing their position. This

would figure out which is the molecular basis of chromosome condensation defects

or defects in gene expression caused by the partial or total absence of these molec-

ular machines. In fact, it would be possible that the nuclesome spacing is the basis

of this, which would mean that in the absence of such molecular machines, nucle-

osomes were not spaced properly carrying abnormalities in the cell. So it is very

important to understand the processes that modulate the chromatin dynamics and

in particular the nucleosome positioning. Their positioning in fact plays a direct

role in gene regulation [51]. While the packaging that they provide allows the cell

to organize a large and complex genome in the nucleus, they can also block the

access of transcription factors and other proteins to DNA [17]. For example, under

normal conditions the Pho5 promoter in yeast is occupied by well-positioned nucle-

osomes, preventing the transcription factor Pho4 from binding to its target binding

site. When induced by phosphate starvation, the nucleosomes are depleted from

the promoter region so that Pho4 can bind to its target DNA binding sequence thus

activating the Pho5 gene transcription [79]. However, nucleosome binding can some-

times enhance transcription by bringing distant DNA regulatory elements together

[84]. Genome-wide studies have found that transcription activity is inversely pro-

portional to nucleosome depletion in promoter regions in general [5, 63, 47]. With
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the help of tiling arrays at 20bp resolution, Yuan et Al. [90] have looked at nucle-

osome occupancy relative to gene regulatory regions on 4% of the yeast genome

by using an Hidden Markov Model approach HMM. The used microarray-based

method allows the identification of nucleosomal and linker DNA sequences on the

basis of susceptibility of linker DNA to micrococcal nuclease. This method allows

the representation of microarray data as a signal of green/red ratio values showing

nucleosomes as peaks of about 150 base pairs long, surrounded by lower ratio val-

ues corresponding to linker regions. Consistent with previous studies, Yuan et Al.

found that 87% of the transcription factor binding sites [33] are free of nucleosome

binding. A substantial improvement over this work has been recently done by Lee

et al. [48] where the genome-wide nucleosome positions in yeast have been mapped

at 4bp resolution. A similar approach has also been used to look at differences in

nucleosome spacing occurring in the absence of a chromatin remodeler [86]. A num-

ber of other groups have developed analysis methods to detect nucleosomes as well

as transcription factor binding sites [10, 40, 45, 91, 43, 44, 55, 88]. Compared to

transcription factors, it is more challenging to detect nucleosome positions since the

majority of a eukaryotic genome is wrapped into nucleosomes. Another difficulty

is that the raw data may contain complex trends that are unrelated to nucleosome

binding [90]. An intuitive method to deconvolve data trend is to define a peak-to-

trough difference measure and to detect its local maxima. However, Yuan et Al.

[90] have found that although this method can detect local peaks, it suffers from

amplifying observation noise. A similar approach has been adapted in [60] to map

nucleosome positions in human. Although an intrinsic DNA code for nucleosome

positioning has been recently reported [69], a significant technological development

in genome-wide location of nucleosomes has been made using “deep sequencing” ap-

proaches [2, 4, 56, 41], which differs from microarray-based approach in that the

isolated DNA of interest is mapped to genome via direct DNA sequencing, instead

of microarray hybridization. For this new technology, the input data correspond to

peaks of DNA fragment counts instead of high hybridization ratio. However, the

task of peak detection remains a key problem for the statistical analysis of the input

data. Unlike microarray-based approaches, where data collection is constraint to a

regular grid, “deep sequencing” data are intrinsically base-pair resolution and there-

fore less statistically stable. One solution to this problem is to first map the data

onto a regular grid by binning. However, more sophisticated methods need to be

developed to balance the resolution vs variance dilemma. The analysis of stochastic

signals aims to both extract significant patterns from noisy background and to study

their spatial relations (periodicity, long term variation, burst, etc.). The problem

becomes more complex whenever the noise background is structured and unknown.

Examples of such kind of data correspond to protein-sequences in the study of fold-

ing [21] and the positioning of nucleosomes along chromatin in the study of gene

expression [90]. The analysis carried out in both cases has been based on proba-

bilistic networks [39] (for example, Hidden Markov Models [26], Bayesian networks).

Methods based on probabilistic networks are suitable for the analysis of such kind

of signal data; however, they suffer of high computational complexity and results
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can be biased from locality that depends on the memory steps they use [90, 21]. In

the next section it will be presented an approach that takes advantage of the MLA

and its comparison with the proposed method based on HMM. The main advantage

of MLA over HMM is its scalability that produce a significant reduction in compu-

tational time over the HMM. In this case study in particular it was considered the

performances of these two methods to both synthetic and microarray-based nucleo-

some positioning data and their ability to recover distinct nucleosome configuration.

This configurations could be underlie important regulatory roles, highlighting the

impact of these methodologies on genome-wide nucleosome positioning studies in

higher eukaryotes.

3.3.1 The microarray and the signal

The following describes the microarray structure designed and used in the Bauer

Center laboratory for Genomics Research, Harvard University [90]. As mentioned

before, a DNA microarray was used to extract the sequences corresponding to nucle-

osomes and those corresponding to the linker, in order to identify the nucleosomes

on a genomic scale. In particular the microarray data, S, are organized in T con-

tiguous fragments S1, · · · , ST which represents DNA sub-sequences. In order to

obtain the signal on which subsequent processing are made, carrying out as follows

is needed: Firstly, DNA wrapped in the nucleosome is isolated and labeled with a

green fluorescent dye (it is marked the entire genomic DNA of the organism, chro-

matin is then digested with a particular enzyme that cuts in the linker regions of

nucleosomes but leaves intact the DNA around the nucleosome). At the same time

the genomic DNA is marked with a red fluorescent dye. At this point there is a com-

petitive hybridization; if both probes are hybridized in equal proportions, a yellow

spot will be obtained, while a red spot if the probe with the red marker is the more

hybridized, otherwise a green spot. As a result red or green spots will be obtained

as it is possible to see in figure 3.8.

Figure 3.8: Microarray probes
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In particular, in such data, each spot corresponds to a sequence of 50 base pairs.

These sequences are overlapped of 30 base pairs in order to obtain a final resolution

of 20 base pairs. With this resolution a nucleosome, which occupies about 150 base

pairs, will correspond to about 6-8 probes in the microarray. These nucleosomes

are called well-positioned nucleosomes. There is also a class of decentralized nucle-

osomes, that can occupy multiple positions due to thermodynamics factors or that

can correspond to segments that may come from cells in different states. The next

step is to excite the two dyes with a laser scanner, using different wavelengths; in

this way a separate scanning of red and green channels is obtained. To see if the

sequences are hybridized or not, their logarithmic ratio has to be considered:

S = log2

(
G

R

)
(3.1)

This will give a signal with a pattern which will have peaks in the presence of

nucleosomes. An overview of this method and a fragment of this signal is shown in

figure 3.9

Figure 3.9: From microarray to one-dimensional signal

3.3.2 Preprocessing

Before the analysis, the signal coming from the microarray is normalized in order

to remove possible measurement errors (bias) and to reduce the influence of cross-

hybridization. Normalization is a two-step process:

• the mean and variance of each group of spots is taken into account,

• the cross-hybridization and the entropy of the signal (base sequence) is taken

into account.

The cross-hybridization is the hybridization of segments that do not have a

perfect match but only a partial one, and consequently do not match and should
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not be considered. The entropy here is intended the classic definition proposed by

Shannon:

Ei = −
li∑

k=1

pk log pk (3.2)

Where pk represents the probability of emission of the k− th symbol, that is defined

in the alphabet of the bases that constitute the DNA (A, T, C, G), and li indicates

the length of segments in each spot.

The first phase of standardization will reduce the bias caused of different groups

in which take place the hybridization. In particular this phase uses the following

model:

yij = σj (µi + βj) + ε (3.3)

where yij represents the logarithmic ratio of the observed value of i − th probe of

the j − th group, µi is the normalized value desired, βj and σj are respectively the

mean and variance of the j − th group and ε is an instrumental error term, which

is assumed to be independent and have zero mean.

In the second phase of standardization the objective is at least to reduce the

effects of cross-hybridization, as this is considered unavoidable because of the large

number of bases considered. In trying to reduce cross-hybridization two factors are

considered:

• A specific component that measures the number of small sequences that cross-

hybridize with long overlaps with the sequences of the probes;

• An unspecified component that measures the case in which a large number of

sequences are weakly cross-hybridized with small overlaps with the sequences

of the probes.

The first component was modeled by a discrete value Bi, which is set to 1 if

the sequence of a probe, (which as mentioned before is 50 bases long) corresponds

to another sequence of equal length for at least 30 pairs of basis (a partial match,

but not negligible), which would introduce an unwanted positive contribution to the

signal of the logarithmic ratio. Otherwise, the value of Bi is set to 0. The second

component was modeled with Ei, i.e. the entropy of the i− th sequence present in

a probe. The normalized value v of the probe i of the group j is then obtained as:

vi = µi + (wBµi + qb)Bi + (wEµi + qE)Ei (3.4)

where wB qB e wE qE are the linear coefficients estimated respectively for the first

and second component, obtained by linear regression.
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3.4 First solution: Hidden Markov Model

In this paragraph a formal definition of HMM will be outlined, and then a model

topology designed for the particular biological problem of nucleosome identification

will be given.

The HMM is a statistical signal modeling technique used in various disciplines

such as alignment of gene sequences, acoustic modeling, speech recognition and

OCR techniques [25, 65, 9]. In this model, once defined the alphabet of symbols

that make up the signal, a set of states are defined, each of one is associated with a

particular probability distribution to produce a particular symbol of the alphabet.

It also necessary to define the probability of transition from one state to another,

and the probability distribution of initial states. In this way this model leads to a

weighted graph where the edge weights represent the probability of transiting from

one vertex to an adjacent one. The modeling of the signal can then be seen as a

visit on this graph, where every time a vertex is visited, a symbol is produced. A

formal definition of HMM will now be given.

Definition Hidden Markov Model

Let Σ an alphabet of M symbols.

A HMM is a quintuple: λ = (N,M,A,B, π) where:

• N is the number of states of the model indicated by the integers 1,2, . . ., N ;

• M is the number of symbols of the alphabet that each state can produce or

recognize;

• A = (aij) is a matrix called transition matrix where aij represent the prob-

ability of transition from the state i to the state j with 1 ≤ i, j ≤ N . This

matrix must also satisfies the following condition:
∑
j
aij = 1, ∀i

• B is the probability distribution of the observations, where bj (σ) represents

the probability of recognizing or generating the symbol σ ∈ Σ if you are in the

state j. In addition, The condition
∑
σ∈Σ

bj (σ) = 1, ∀j needs to be met;

• π ut is the probability distribution of initial states, where with πi is de-

noted the probability of starting from the state i. In addition, the condition∑
i
πi = 1, ∀i needs to be met;

The transition matrix A induces a directed graph where nodes represent states, and

arcs are labeled with their corresponding transition probabilities. The term hidden

refers to the fact that, given a sequence of symbols that composes the signal you

want to model, and set a model, the sequence of states is hidden and not unique,

unlike other models such as Markov Chains [12] for example.
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The HMMs can be used, as it will be shown in the following paragraphs, both

as generators and as recognizers of signals.

3.4.1 HMM as generators

A HMM can be used to generate a sequence of Σ∗. Let X = x1x2 . . . xT ∈ Σ∗. This

sequence can be generated by a sequence of states Q = q1q2 . . . qT as follows:

1. Set i ← 1 and choose the state qi according to the probability distribution π

of initial states;

2. Assuming to be in the state qi (having already generated x1x2 . . . xi−1) produce

in output xi according to the probability distribution bi ;

3. If i < T , then i← i+1 and go to the state qi+1 in agreement with A [i, 1 : N ]

and repeat step 2 otherwise end.

The probability of observing X = x1x2 . . . xT and the sequence of states Q =

q1q2 . . . qT is:

P (X,Q) = π1

T∏

i=1

bi(xi)aii+1 (3.5)

This probability is often not very useful because it is unknown which sequence

of states has produced the string X (since it is possible to have multiple sequences

of states that can generate it). Algorithms that solve this problem will be shown

later.

3.4.2 HMM as recognizers

A HMM can be used as a probabilistic validator of a sequence of Σ∗ because it returns

a measure, in terms of mass of the probability of how well a HMM recognizes or

observes X. This probability is defined as:

P (X|λ) =
T∏
t=1

N∑
i=1

P (qt = i) bi (xt)

with P (qt = j) =





πj if t = 1
N∑
i=1

P (qt−1 = i) aijbi (xt−1)

(3.6)

As mentioned earlier, the HMM through the transition matrix A induces a multi-

parted graph. This graph can be represented as a matrix with N rows, which

correspond to N states of λ, and for all t ≥ 1 columns t and t+ 1 form a complete

bipartite graph, with arcs directed from vertices in column t to vertices in column

t+ 1 (1 ≤ t ≤ T − 1). The recognition consists of superimpose X over all possible

paths of length T in this graph (which is called trellis), starting from the vertices

in column 1. For a given vertex i in column t on a given path, the measure of how

well it is possible to recognize the symbol xt consists of two parts: the probability
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of being in the state P (qt = i) and the probability that the state emits the symbol

xt given by bi(xt).

3.4.3 Problems related to HMM

Given an HMM model λ, three main issues are considered:

1. Given a sequence of observations X = x1x2 . . . xT ∈ Σ∗ and a model λ =

(N,M,A,B, π), calculate the probability of observing the sequence X using

the model λ i.e. P (X|λ);

2. Given a sequence of observations X = x1x2 . . . xT ∈ Σ∗ and a model λ =

(N,M,A,B, π),choose the corresponding sequence of states Q = q1q2 . . . qT
that best explains the observations using the model λ and an optimization

criterion;

3. Calculate the values of model parameters λ = (N,M,A,B, π) in order to

maximize P (X|λ).

The first problem is solved efficiently by an algorithm called forward procedures,

the second by the Viterbi algorithm, while the third by the Baum Welch algorithm.

3.4.4 Forward procedures

By using this algorithm, is possible to calculate P (X|λ) in O(N ×T × δmax) where

δmax is the maximum degree among all HMM states. This algorithm uses dynamic

programming and consider a variable αt(i) defined as:

αt (i) = P (x1x2 . . . xt, qt = i|λ) (3.7)

that is the probability that at time t, it is possible to observe the partial sequence

x1x2 . . . xt and reach the state i. The procedure consists of three phases:

• Initialization:

α1 (i) = πibi (x1) with 1 ≤ i ≤ N (3.8)

• Induction:

αt+1 (j) =

(
N∑
i=1

αt (i) aij

)
bj (xt+1)

with

1 ≤ t ≤ T − 1, 1 ≤ j ≤ N

(3.9)

• Termination:

P (X|λ) =
N∑

i=1

α
T
(i) (3.10)
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Figure 3.10: Forward procedure

In figure 3.10 the single steps that allow to calculate αt+1 (j) are shown. The

number of possible paths grows exponentially with the length of the sequence, so it

is not possible, in many applications, to consider all paths. For this reason a good

approximation is to consider only the probability of the most likely path. There is

also a variant of this algorithm that,at the end of computation, calculates the same

probability starting from the possible terminal states used to recognize (or generate)

the sequence X. This variant, which is called the backward procedures, as well as

the forward procedure, uses a variable βt (i) defined as:

βt (i) = P (xt+1xt+2 . . . xT |qt = i, λ) (3.11)

that represents the probability at time t, to observe a partial sequence from time

t + 1 until the end, being in the state i under the assumption of the model λ. In

figure 3.11 the single steps that allow to calculate βt (i) are shown.

3.4.5 Viterbi algorithm

The Viterbri algorithm provides an efficient solution to the second problem of HMM

i.e. computing the optimal sequence of states for the recognition of the sequence X

with the model λ. The term “optimum” depends on the particular problem taken

in exam. In any case, one of the most used criteria is to find the best sequence of

states that generates X maximizing P (Q|X,λ) or equivalently P (Q,X|λ) . The

Viterbi algorithm uses dynamic programming and computes:

• βt (i) = max
q1q2...qt−1

P (q1q2 . . . qt−1, qt = i, x1x2 . . . xt|λ) i.e. the probability of

the most likely path that takes into account of the first t observations and

that ends in state i;

• γt (i) that represents the state that leads to the state i at time t.
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Figure 3.11: Backward procedure

The procedure consists of four phases:

1. Initialization:

β1 (i) = πibi (x1)

γ1 (i) = 0
with 1 ≤ i ≤ N (3.12)

2. Induction:

βt (j) = max
1≤i≤N

{βt−1 (i) aij} bj (xt) with2 ≤ t ≤ T

γt (j) = argmax
1≤i≤N

{βt−1 (i) aij}with1 ≤ j ≤ N
(3.13)

3. Termination:

P (Q|X,λ) = max
1≤i≤N

{βT (i)}

qT = argmax
1≤i≤N

{βT (i)} (3.14)

4. Backtracing:

qt = γt+1 (t+ 1) , t = T − 1, . . . , 1 (3.15)

This algorithm has a computational cost equivalent to O (N × T × δ) where

σ represents the maximum degree of the graph induced by the transition matrix

of λ. Again, as in the forward procedure, the number of possible paths grows

exponentially with the length of the sequence, making this method not always

feasible in the case of large amounts of data.
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3.4.6 Baum Welch algorithm

The calculation of the values of model parameters λ = (N,M,A,B, π) that maxi-

mize P (X|λ), is not an easy task. In fact, there isn’t any analytical method that

solves the problem by maximizing the probability of observing the sequence: given a

finite sequence as a training set, there isn’t a perfect way to estimate the parameters

of the model. However, it is possible to derive a model λ = (N,M,A,B, π) so that

P (X|λ) is locally maximized using an iterative procedure. The best-known iterative

procedure that solves this problem is the Baum Welch algorithm. To describe how

this algorithm works first define this function:

ξt (i, j) = P (qt = i, qt+1 = j|X,λ) (3.16)

i.e. the probability of being in state i at time t and in state j at time t + 1, given

the model and the sequence of observations X. The sequence of events leading to

the conditions required by this variable is shown in the figure 3.12.

Figure 3.12: Baum Welch algorithm

Obviously, it is clear that looking at the definition of the variables used in the

procedures of backward and forward, it is possible to rewrite:

ξt (i, j) =
αt(i)aijbj(xt+1)βt+1(j)

P (X|λ) =

=
αt(i)aijbj(xt+1)βt+1(j)

N∑

i=1

N∑

j=1

αt(i)aijbj(xt+1)βt+1(j)

(3.17)

Where the numerator is simply the probability P (qt = i, qt+1 = j,X|λ) . Previ-

ously αt (i) was defined as the probability of being in state i at time t, by observing

the partial sequence x1x2 . . . xt. Let’s see how αt (i) can be defined in terms of

ξt (i, j) :

αt (i) =

N∑

j=1

ξt (i, j) (3.18)

Summing over t the functions αt (i) and ξt (i, j) it is possible to obtain:
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T−1∑

t=1

αt (i, j) = number of expected transitions from state i (3.19)

T−1∑

t=1

ξt (i, j) = expected number of transitions between state i and state j (3.20)

Using the defined formulas will be shown now the method for estimating param-

eters for a HMM using the Baum Welch procedure.

Reasonable estimates for the parameters are:

πi = expected number of times to being in state i at time (t = 1) = α1 (i) (3.21)

aij =

T−1∑
t=1

ξt (i, j)

T−1∑
t=1

αt (i, j)

=
expected number of transitions from state i to state j

expected number of transition from state Si

(3.22)

bj (k) =

T−1∑

t=1∧xt=vk

αt(j)

T−1∑

t=1

αt(j)

=

=
expected number of times of being in the state j and observing the simbol vk

expected number of times of being in the state j

(3.23)

these equations can be used in order to develop an iterative process that, starting

from a model λ = (N,M,A,B, π), allows us to estimate at each step a new model

λ =
(
N,M,A,B, π

)
.

In addition it can be proven that:

• The model λ represents a critical point of the likelihood function in the case

λ = λ;

• The model λ is better than the model λ, which means that the probability of

observing X given the model λ is greater than the probability of observing X

given the model λ i.e P
(
X|λ

)
> P (X|λ) .

These two statements tell us that this procedure converges to a critical point.

This can be done using iteratively the model λ instead of λ and repeating the process

of parameters estimating, gradually increasing the likelihood of the observations

of the training sequence, until a critical point is reached. The end result of this

procedure is called the maximum likelihood estimate of a HMM. It is important to
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underline that this algorithm leads to a local maximum point, and in many real

application the surface to optimize is very complex and has many local maxima.

The formulas to estimate parameters can also be derived directly from the Blum’s

auxiliary function Q
(
λ, λ

)
in respect to λ; this function is defined as:

Q
(
λ, λ

)
=

∑

Q

P (Q|X,λ) log
[
P
(
X,Q|λ

)]
(3.24)

It can be proven also that the maximization of the function increases the likelihood:

max
λ

[
Q
(
λ, λ

)]
⇒ P

(
X|λ

)
≥ P (X|λ) (3.25)

3.4.7 The proposed HMM for nucleosome positioning

As mentioned earlier in [90] the problem of identifying the nucleosome using data

from a process of microarray hybridization and modeling observations with a par-

ticular HMM, was addressed. This is because a simple thresholding technique has

not sufficient accuracy because of noise and trend in the data. The proposed model

for the detection of nucleosomes in chromatin regions is shown in figure 3.13. In

this model, several different states for different types of nucleosomes with special

connections are considered; in particular the states model the sequences of chromo-

somes corresponding to a linker (state L), well-positioned nucleosomes (states N1,

N2, ..., N8) and delocalized nucleosomes (states DN1, DN2, ..., DN9). The val-

ues of the measures that can be observed by each state correspond to the physical

values that the system outputs, which in this case represent the logarithmic ratio

between the intensity of red and green for each spot of the microarray. The tran-

sition matrix that establishes which are the allowed transitions between states and

their probabilities, is estimated with the Baum Welch algorithm together with the

other parameters. In this model there is only one state that represent the class of

probes corresponding to linker regions, and this state has a loop in order to model

variable length linker regions. The number of states for the class of well-positioned

nucleosomes in this model is 8. This choice is justified considering the length of a

nucleosome in normal conditions (about 6-8 probe). In this way, the information

about the expected length of a nucleosome is encoded in the model. Similarly, it is

possible to note that the number of states for the class of delocalized nucleosomes

in this model is 9 and the last state has a loop (similar to the state linker) in order

to model the different lengths of nucleosomes regions that cover a number of probe

greater than 9. Finally, a well-positioned nucleosomes in this model have a length

between 6 and 8 probes, the delocalized nucleosomes have a number of probes equal

to or greater than 9, and linkers have a variable length greater or equal to one.

3.5 Second solution: MLA

In this section the application of MLA to face the problem of identifying and classi-

fying nucleosomes will be described. The following subsections will show the various
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Figure 3.13: HMM topology for nucleosome positiong

steps that allow the classification of the nucleosomes identified trough the MLA and

the construction of a model for well-positioned nucleosomes. Firstly, let’s recall that

the signal S is divided into segments in which probes can be not contiguous (due

to data referring to different regions of chromosomes, or missing data). In partic-

ular S is organized in T contiguous fragments S1, · · · , ST which represent DNA

sub-sequences.

3.5.1 Preprocessing

In the first stage of processing a convolution process is applied in order to reduce the

noise in the signal. The smoothing is done for each probe segment corresponding to

adjacent regions of the signal i.e each fragment St, 1 ≤ t ≤ T of the input signal, S,

is smoothed by a convolution operator that perform the weighted average of three
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consecutive signal values, where the weights are provided by the kernel window

w = [14 ,
1
2 ,

1
4 ] [52].

3.5.2 Creating the model

The construction of the model represents a phase of training, where it is possible

to learn the shape of the pattern corresponding to the nucleosome considering only

the regions that corresponds with high probability to well-positioned nucleosomes.

Since well-positioned nucleosomes are shown as peaks of a bell shaped curve, in

order to locate the position of a nucleosome, all local maxima of the input signal

are automatically extracted from the convolved signal X of S. Then a subset of

maxima are opportunely selected for the model definition. Each convolved fragment

Xt is processed in order to find L(Xt) local maxima M
(l)
t for l = 1, · · · , L(Xt).

The extraction of each sub-fragment for each M
(l)
t is performed by assigning all

values in a window of radius os centered in M
(l)
t to a vector, F l

t of size 2× os + 1:

F l
t (j) = Xt(M

(l)
t − os + j − 1), for j = 1, 2, ..., 2 × os + 1. The selection process

extracts the significant sub-fragments to be used in the model definition. This is

performed by satisfying the following rule:

{
F l
t (j + 1)− F l

t (j) > 0 j = 1, · · · , os
F l
t (j + 1)− F l

t (j) < 0 j = os+ 1, · · · , 2× os
(3.26)

This condition is equivalent to verify that the signal in that fragment is increasing

to the right of the maximum and descending to the left (condition of convexity). If

the pattern respects this condition, it will be used for the next phase of construction

of the model of the well-positioned nucleosome. The process continues in a similar

way for the other points of relative maximum (if present) in the segment considered

in descending order. After this selection process G(Xt) sub-fragments remain for

each Xt. The model of the interesting pattern is then defined by considering the

following average:

F (j) =
1

T

T∑

t=1

1

G(Xt)

G(Xt)∑

k=1

F k
t (j) j = 1, · · · , 2 × os+ 1 (3.27)

That is, for each j, the average value of all the sub-fragments satisfying Eq. 3.26.

The model then will represent the average pattern of a well-positioned nucleosome

through its expected shape. Applying this procedure a model shown in figure 3.15(a)

is carried out averaging the pattern in figure 3.14(b).

3.5.3 Interval identification

This step is the core of the method i.e. the interval identification obtained by the

Simply Equally spaced MLA presented in chapter 2. In particular by considering

K threshold levels tk (k = 1, ...,K) of the convolved signal X, for each tk a set

of intervals Rk =
{
I1k , I

2
k , · · · , Ink

k

}
is obtained, where, Iik = [bik, e

i
k] and X(bik) =
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Figure 3.14: Patterns that meet the condition of convexity

Figure 3.15: Model of well-positioned nucleosome

X(eik) = tk. This set of intervals as explained in chapter 2 constitutes the interval

representation Υ(X) of the input signal X. In Section 3.5.9 a calibration procedure
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to select the proper value of K is described.

3.5.4 Aggregation rule and Pattern Definition

This step is performed by taking into account that bell shaped pattern must be

extracted for the classification phase. Such kind of patterns are characterized by

sequences of intervals
{
I1j , I

2
j+1, · · · , Inj+l

}
such that Iij ⊇ Ii+1

j+1; more formally a

pattern Pi is defined using the following aggregation rule:

Pi = {Iijj , I
ij+1

j+1 , · · · , I
ij+l

j+l | ∀I
ik
k ∃!I ∈ Rk+1 : I = I

ik+1

k+1 ⊆ I
ik
k } (3.28)

where, j defines the threshold, tj , of the widest interval of the pattern. From the

previous definition it follows that Pi is build by adding an interval I
ik+1

k+1 only if it

is the unique in Rk+1 that is included in Iikk . Note that, this criterion is inspired

by the consideration that a nucleosome is identified by bell shaped fragment of the

signal, and the intersection of such fragment with horizontal threshold lines results

on a sequence of nested intervals. In figure 3.16 two examples of shapes with the

relative patterns are shown.

I
1

I
2

I
1

K

K+1 K+1

RK

RK+1

1

I

I
1

K

K+1
RK+1

KR

Figure 3.16: Two different shapes of the input signal: (on the left) Since at threshold

level K + 1 the interval Rk = {I1K} has two subset Rk+1 = {I1K+1, I
2
K+1}, it is

possible to set three pattern P1 = {I1K}, P2 = {I1K+1} and P3 = {I2K+1}. (on the

right) In this case, I1K+1 is the unique subset of I1K , thus it is possible to set an

unique pattern P1 = {I1K , I1K+1}

3.5.5 Pattern selection

In this step the interesting patterns P
(m) are selected following the criterium:

P
(m) = {Pi : |Pi| > m} (3.29)

i.e. patterns containing intervals that persists at least for m increasing thresholds.

This further selection criterion is related to the height of the shaped bell fragment,

in fact a small value of m could represents noise rather than nucleosomes. The value

m is said the minimum number of permanences ; in subsection 3.5.9 a calibration

procedure to estimate the best value of m is described.
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3.5.6 Feature extraction

Each pattern Pi ∈ P
(m) is identified by I

ij
j , I

ij+1

j+1 , · · · , I
ij+l

j+l , with l ≥ m. Straight-

forwardly, the feature vector of Pi is a 2 × l matrix where each column represents

the lower and upper limits of each interval from the lower threshold j to the upper

threshold j + l. The representation in this multi-dimensional feature space is used

to characterize different types of patterns.

3.5.7 Dissimilarity function

A dissimilarity function between patterns is defined in order to characterize their

shape:

δ(Pr , Ps) = (1− α)(Ar −As) + α
∑

i∈I
(arii − asii ) (3.30)

where, Ar and As are the surfaces of the two polygons bounded by the set of vertexes

V =
⋃

i∈I{(brii , erii ), (bsii , esii )}, arii = erii − bsii , asii = esii − bsii , and α is a user

parameter ranging in the interval [0, 1] to set the weight of the two dissimilarity

components.

The first component of this dissimilarity allow us to consider patterns of close

dimensions, while the second component has been introduced to include shape in-

formation since it can be considered a correlation measure of the two bounding

polygons. This dissimilarity can be used by a general classifier in order to distin-

guish the kind of pattern. An example of input signal and the extracted interesting

patterns is given in figure 3.17.

3.5.8 Nucleosome Classification

With the MLA, one is able to classify four “refined nucleosomal states”: linkers, well-

positioned, delocalized and fused nucleosomes. (see figure 3.18). In the following,

the classification rules which allow us to automatically discriminate such kind of

patterns are stated. The classification was conducted in two steps, in the first step

the linker patterns, the expected well-positioned patterns and expected delocalized

patterns are found. Afterwards, the ranges of the regions representing the expected

well-positioned and delocalized nucleosomal patterns are set, defining the expected

regions. Finally, the classification is performed by testing the intersection of such

regions (see figure 3.19).

First phase:

For each interesting pattern Pi, the dissimilarity δ(Pi, F ) is evaluated (δ is defined

in Eq. 3.30, F is the model), the rule to classify Pi is :

c1(Pi) =





L if δ(Pi, F ) ≤ φ1
EW if φ1 < δ(Pi, F ) ≤ φ2
ED otherwise

(3.31)
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where Lmeans linker pattern, EW or ED are nucleosomal pattern, and in particular

expected well-positioned patterns and expected delocalized patterns respectively.

Second phase: Afterwards, for each expected well-positioned nucleosomal pat-

tern Pi = {Iijj , I
ij+1

j+1 , · · · , I
ij+l

j+l } (e.g. c1(Pi) = EW ), the center of the nucleosomal

region Ci is calculated:

Ci =
1

l

j+l∑

k=j

eik + bik
2

(3.32)

which represents the mean of the first l intervals defining the pattern Pi. Con-

versely, for each expected delocalized nucleosomal pattern (e.g. c1(Pi) = ED), the

delocalized interval [Bi, Ei] is defined such that:

Bi =
1

l/2

j+(l/2)∑

k=j

bik and Ei =
1

l/2

j+(l/2)∑

k=j

eik (3.33)

Note that, Bi and Ei represent respectively the mean of the first l/2 beginning

and ending of each interval belonging to the pattern Pi. The expected regions is so

defined:

Ai =

{
[Ci(l)− 3, Ci(l) + 3] if c1(Pi) = EW

[Bi, Ei] otherwise
(3.34)

In particular, each expected region Ai is, in the case Pi is an expected well-positioned

pattern, an interval with beginning 3 probes before and ending 3 probes after the

center Ci, otherwise it is the interval [Bi, Ei]. Finally, the classification rule is:

c2(Pi) =





F if Ai ∩Aj 6= ∅ j 6= i otherwise[
W if c1(Pi) = EW

D if c1(Pi) = ED

(3.35)

where F , W and D stands for fused, well-positioned, delocalized nucleosomes respec-

tively (see figure 3.18). Informally, the classification rule in Equation 3.35 assign

the fused class if the expected nucleosomal regions overlap otherwise confirm the

classification of the first phase.

3.5.9 Parameter selection by calibration

In order to set the proper values of K (number of thresholds), and m (the minimum

number of permanences), a calibration procedure has been used. In particular,

such values has been estimated by studying the plots of particular functions able to

measure the goodness of several K and m.
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3.5.9.1 Estimation of m

The minimum number of permanences m has been estimated by using the synthetic

signal generator described above. This gives the opportunity to make a massive

experimental study on the relation between K and m. In particular, c = 10 copies

at different signal to noise ratios j = 1, 2, 4 has been generated, resulting in a total

of 3× 10 synthetic signals Vij . Once fixed a signal to noise ratio j, for each Vij the

value of m which maximizes the recognition performances for several thresholds for

k = 20, · · · , 50 has been found.

Figure 3.20 shows the results performed by considering c = 10 copies, three signal

to noise ratio values 1, 2, 4, and k = 20, · · · , 50 thresholds. In each plot, the x axis

represents the number of thresholds k (i.e. number of cuts), the column bar groups

the best recognition and the percentage of minimum number of permanences which

causes the best performances on all the 10 experiments. From this experimental

study, it emerges that the use of an high number of thresholds can compromise the

recognition process (due to the fact that an high value of K can capture also the

noise present in the signal), moreover, them value seems not dependent fromK, and

the one which causes the best recognition ranges in an interval of [0.15×K, 0.30×K].

3.5.9.2 Estimation of K

The proper value of K is estimated starting from the convolved input signal X.

Giving a convoluted signal fragment Xt it is resampled it in the y direction resulting

in several samples X
(k)
t for different threshold values k = 1, · · · ,Kmax. It is possible

to measure the goodness of k by the average normalized correlation ̺(k) and the

average missing probes MS(k) so defined:

̺(k) =
1

T

T∑

t=1

1 + ρ2(St, S
(k)
t )

2
(3.36)

MS(k) =
1

T

T∑

t=1

MS(k, t) (3.37)

In particular ̺(k) measures the average normalized correlation between each resam-

ple X
(K)
t and the generic fragment Xt (ρ is the correlation coefficient), while MS(k)

the average of the missing probe values MS(k, t) due to the resample of Xt by k

thresholds. Finally the value K is selected interactively by looking both at the plots

of ̺ and MS,searching for the best compromise of maximum ̺ and minimum MS

(see figure 3.21). In this way the signal obtained has an high correlation with the

original signal and a reasonable number of missing samples in order to not capture

the noise present in the signal.

3.5.10 Synthetic generation of biological signals

Before validating the MLA approach on biological data, a procedure to generate

synthetic signal has been developed in order to assess the feasibility of the method on
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controlled data. Generated signals emulate the one coming from a tiling microarray

where each spot represents a probe i of resolution r base pairs overlapping o base

pairs with probe i+1. In particular, the chromosome is spanned by moving a window

(probe) i of width r base pairs from left to right, measuring both the percentage

of mononucleosomal DNA Gi (green channel) and whole genomic DNA Ri (red

channel) within such window, respecting also that two consecutive windows (probes)

have an overlap of o base pairs. The resulting signal V (i) for each probe i is the

logarithmic ratio of the green channel Gi to red channel Ri. Intuitively, nucleosomes

presence is related to peaks of V which correspond to higher logarithmic ratio values,

while lower ratio values shows nucleosome free regions called linker regions. This

genomic tiling microarray approach takes inspiration from the work of Yuan et

al. [90] where the authors have used the same methodology on the Saccharomyces

cerevisiae DNA. Here it is defined a model able to generate such signals characterized

by the following parameters:

• nn: The number of nucleosomes to add to the synthetic signal.

• nl: The length of a nucleosome (in real case a nucleosome is 146 base pairs

long)

• λ: Mean of the Poisson distribution used to model the expected distances

between adjacent nucleosomes;

• r: The resolution of a single microarray probe.

• o: The length in base pairs of the overlapping zone between two consecutive

probes.

• nr: The number of spotted copies (replicates) of nucleosomal and genomic

DNA on each probe of the microarray;

• dp: The percentage of the delocalized nucleosomes over the total number of

nucleosomes;

• dr: The range which limits the delocalization of a nucleosome in each copy of

nr. It is defined in base pairs.

• nsv: The variance of the green channel in each probe, even in absence of

nucleosomes due to the cross hybridization. This variance follows a normal

distribution with mean 0.1.

• pur: The percentage of DNA purification, which is the probability that each

single DNA fragment of the nr copies appears in the microarray hybridization.

• ra: Relative abundance between nucleosomal and genomic DNA.

• SNR: The linear signal to noise ratio of the synthetic signal to generate. Note

that the noise is assumed to be gaussian.
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Initially, a binary mask signal M is generated by considering as 1’s all the base pairs

representing a nucleosome (the nucleosomal regions) and as 0’s the regions represent-

ing linkers (the linker regions). Note that, the beginning of each nucleosomal region

is established by the Poisson distribution with mean λ. The mask signal M will be

used in order to validate the classification results. The red channel of the microarray

(the genomic channel) results from the generation of nr replicates IR1 , · · · , IRnr each

one starting from an initial nucleosomal region of random size b ∼ U(0, r) (uni-

formly distributed in the range [0, r]), followed by continuous nucleosomic region of

r base pairs. Conversely, in order to simulate the green channel (the nucleosomic

channel) nr replicates , IG1 , · · · , IGnr are considered, each one initially equal to M

and subsequently modified by perturbing each starting points xiD of the nucleosome

to consider as delocalized such that xiD = xiD + µ with random µ ∼ U(dr). Note

that the percentage of nucleosomes to consider as delocalized is established by the

parameter dp. Afterwards, each nucleosomal region on the generic replicate IRi and

IGi can be switched off depending on the value of a random variable α ∼ U(0, 1).

Precisely, each nucleosomal region veryfing the test α < pur is considered and set

to 1, otherwise it is not considered and set to 0. This results in new replicates TR
i

and TG
i . Finally, the generated synthetic signal V for a probe i is so defined:

V (i) = {log2 (
∑nr

j=1

TG
j (k)∗ra
TR
j (k)

+ ε)|(r − o)i− r + o+ 1 ≤ k ≤ (r − o)i+ o}
(3.38)

where ε ∼ N(0.1, nsv). In figure 3.22 it is possible to see the steps of this process.

3.6 Results

The following experiments have been carried out by measuring the correspondence

between nucleosome and linker regions. In the case of the synthetic signal, the out-

put of the classifier has been compared with a mask M ′ derived from M while in

the case of the real data set it has been compared with the output of the HMM for

nucleosome positioning (see section 3.4) optimally converted into a binary string.

In all the experiments, the same value (φ1, φ2) = (mean(δ(F l
t , F )) −

3std(δ(F l
t , F )),mean(δ(F

l
t , F )) + 3std(δ(F l

t , F )) has been considered, where F l
t are

all the sub-fragments used on the construction of the model F . Moreover, by bio-

logical consideration, the radius os has been set to os = 4. The performances have

been evaluated in terms of Recognition Accuracy, RA. The RA uses a new mask M ′

obtained by converting M into probe coordinates such that a probe value is set to

1 (e.g. shows a nulceosome portion) if the corresponding base pairs in M include at

least a 1. The real nucleosomal (linker) regions RNR (RLR) are represented by M ′

as contiguous sequence of 1’s or 0’s respectively, here a nucleosomal (linker) region

CNR (CLR) has been classified correctly if there is a match of at least l = 0.7×L
contiguous 1’s (0’s) between CNR (CLR) and the corresponding RNR (RLR) in

M ′ where L is the length RNR (RLR). The value 0.7 has been chosen because it

represents a 70% of regions overlap very unlikely to be due to chance.
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3.6.1 MLA vs HMM on Synthetic Nucleosome Positioning data

For MLA, we have chosen by the calibration phase K = 20 and m = 5, the value

of α in Eq. 3.30 has been set to 0.5 to equally balance the two component of the

dissimilarity. In particular, 6 signals of length ranging from 2337 probes (70130

base pairs) to 2361 probes (70850 base pairs) have been generated for the signal to

noise ratio values 1, 2, 4, 6, 8, 10. In Fig.3.23 the results of the total RA for all the

experiments are reported. The confusion matrices of HMM and MLA for all the

experiments are reported in the tables 3.1 and 3.2. In Fig.3.23 the results of the

total RA for all the experiments are summarized. Fig.3.23 shows that the HMM

is slightly more accurate in finding the bounds of the nucleosome regions. The

synthetic results can be summarized in an overall RA of 0.96 for the MLA and 0.98

for HMM .

snr = 1 L N snr = 2 L N

L 0, 82 0, 18 L 0, 96 0, 04

N 0, 03 0, 97 N 0, 01 0, 99

snr = 4 L N snr = 6 L N

L 1 0 L 1 0

N 0 1 N 0 1

snr = 8 L N snr = 10 L N

L 0.99 0.01 L 1 0

N 0 1 N 0 1

Table 3.1: Confusion matrices of HMM on 6 different signal to noise ratios for

nucleosome (N) and linker (L) regions.

3.6.2 MLA vs HMM on real data

In this experiment, it has been compared the accordance of the two models on

the Saccharomyces cerevisiae real data. The input signal representing this data is

composed by 215 contiguous fragments for a total of 24167 base pairs. In such ex-

periment, K = 40, m = 6 were chosen by the calibration phase (m = 0.15 × 40)

and α = 0.5 was considered to equally balance the two components of the dissimi-

larity (see the definition in Eq. 3.30). The confusion matrices which show the RA

of HMM considering MLA as the truth classification and RA of MLA consider-

ing HMM as the truth classification are reported in table 3.3. The results can be

summarized in an overall RA of 0.83 for the HMM (MLA true) and 0.69 for MLA

(HMM true). In particular, from this studies it is possible to conclude that MLA

does not fully agree with HMM on the linkers patterns. Remarkably, comparing

MLA and HMM on the data coming from recently developed deep sequencing ap-
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snr = 1 L N snr = 2 L N

L 0, 81 0, 19 L 0, 88 0, 12

N 0, 04 0, 96 N 0 1

snr = 4 L N snr = 6 L N

L 0, 94 0, 06 L 0, 96 0, 04

N 0, 01 0, 99 N 0 1

snr = 8 L N snr = 10 L N

L 0, 96 0, 04 L 0, 97 0, 03

N 0 1 N 0 1

Table 3.2: Confusion matrices of MLA on 6 different signal to noise ratios for nu-

cleosome (N) and linker (L) regions.

proach (DS) [2] it is possible to see a better agreement with MLA (0.58) rather

than with HMM (0.44) (table 3.4 and figure 3.24). These analysis indicate that

the integration of the HMM and MLA could improve the overall classification.

M L M H M M

H L N M L N

M L 0.79 0.21 L L 0.52 0.47

M N 0.13 0.87 M N 0.12 0.87

Table 3.3: Agreement between the HMM and MLA (and viceversa) on the Saccha-

romyces cerevisiae data set for Nucleosomes (N) and Linker (L) regions. The table

on the left shows the RA results of HMM when considering MLA as the truth

classification, while the opposite is shown on the right table.

M L M H M M

L N L N

L 0.40 0.60 L 0.40 0.60

N 0.24 0.76 N 0.53 0.46

Table 3.4: Confusion matrices of MLA and HMM on deep sequencing approach

(DS) data by Pugh et Al. (2007).
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3.6.3 Scalability and computational time of MLA and HMM:

This point is fundamental because the size of a problem can vary significantly into

this application domain, and if our method is not able to scale well it could become

totally useless. The computation time of MLA and HMM have been compared on

10 experiments. In particular, 10 synthetic signals have been generated, each one

with a fixed number of well-positioned nucleosomes ranging from 10 to 100 by step of

10. In figure 3.25, the ratios between the execution time of MLA (Tm) and HMM

(Th) for each experiment is shown. From this study, it results that, on average,

Th = 1.7 × 104 × Tm.

3.7 One-Class Classifier and MLA

One of the key point of the MLA methodology applied on the case of nucleosome

positioning, is the classification phase that is applied after the discovery phase.

In this section a new classification schema that take advantage of MLA will be

presented. As explained in chapter 1 classification algorithms bases the construction

of their discriminating function on a training set that contains several examples

for each class (or in the particular case of binary classification this means that are

necessary both positive and negative examples). However, in many cases either only

examples of a single class are available or the classes are very much unbalanced. To

address this particular problem one-class classifiers have been introduced in order to

discriminate a target class from the rest of the feature space [80]. The approach is

based on finding the smallest volume hypersphere (in the feature space) that encloses

most of the training data. This approach is mandatory when only examples of the

target class are available or the cardinality of the target class is much greater than

the other one so that too few training examples of the smallest class are available in

order to properly train a classifier. It is important to pinpoint that the nucleosome

positioning data considered, involve necessary the use of a one-class scheme, since a

training set of only well-positioned nucleosome is available. This section present, a

one-class classifier schema, in particular a one-class KNN (OC −KNN) in order

to distinguish between nucleosome and linkers. The performance of the one-class

KNN embedded in the MLA analysis, has been tested on the same kind of data

previously described. Results have shown, in both cases, a good recognition rate.

3.7.1 One-Class classifiers

The first algorithms for one-class classification were based on neural networks, such

as those of Moya et al. [58, 57] and Japowicz et al. [38]. More recently, one-class

versions of the support vector machine have been proposed by Scholkopf et al. [68].

The aim is to find a binary function that takes the value +1 in a small region cap-

turing most of the data, and -1 elsewhere. Data transformations are applied such

that the origin represents outliers, then the maximum margin, separating hyper-

plane between the data and the origin, is searched.
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The application of machine learning to classification problems, that depends only

on positive examples, is gaining attention in the computational biology community.

This section lists some applications of one-class classifiers to biological and biomed-

ical data.

In [89] a study using one-class machine learning for microRNA (miRNA) discov-

ery is presented. Authors compare a One-class KNN to two-class approaches using

naive Bayes and Support Vector Machines. Using the EBV genome as an external

validation of the method they found one-class machine learning to work as well as

or better than a two-class approach in identifying true miRNAs as well as predicting

new miRNAs.

In [59] a general method for predicting protein-protein interactions is presented.

The search of feasible interactions is carried out by a learning system based on ex-

perimentally validated protein-protein interactions in the human gastric bacterium

Helicobacter pylori. The author shows that the linear combination of discriminant

classifier provides a low error rate.

In [62] a one-class classification problem is applied to the detection of diseased mu-

cosa in oral cavity. Authors either combine several measures of dissimilarity of an

element from a set of target examples in a single one-class classifier or combine sev-

eral one-class classifiers trained with a given measure of dissimilarity. Results show

that both approaches achieve a significant improvement in performance.

3.7.2 One-Class KNN

Here, the one-class classifier named One-class KNN will be described. A KNN

classifier for an M classes problem is based on a training set T for each class m,

1 ≤ m ≤M . The assignment rule for an unclassified element x ∈ X is:

j = argmax
1≤m≤M

| T (m)
K (x) | (3.39)

where, T
(m)
K (x) are the training elements of class m in the K nearest neighbors of

x.

One of the crucial points of the KNN is the choice of the best K, which is

usually obtained minimizing the misclassification rate in validation data.

In the case of a binary classification (M = 2), one-class training means that in

the decision rule can be used examples of only one-class. Here, a one-class training

KNN (OC−KNN) is proposed and which is a generalization of the classical KNN

classifier [37]. Let Tp be the training set for a generic pattern p representing a positive

instance, and δ a dissimilarity function between patterns. Then the membership for

an unknown pattern x is:

χφ,K(x) =

{
1 if |{y ∈ Tp such that δ(y, x) ≤ φ}| ≥ K
0 otherwise

(3.40)

Informally, the rule says that if there are at least K patterns in Tp dissimilar from
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x at most φ, then x is supposed to be a positive pattern, otherwise it is negative.

It can be simply proved that the OC −KNN has some interesting properties:

Proposition 3.7.1 Let D a dataset of patterns, Tp ⊆ D the training set for the

positives, Sφ,K = {x ∈ D|χφ,K(x) = 1} the set with membership χφ,K , then:

a) Sφ,K ′ ⊆ Sφ,K ∀K ′ ≥ K
b) Sφ,K ⊆ Sφ′,K ∀φ ≤ φ′

The one-class KNN performances depends on the threshold, φ, and the number

of neighbors, K, that are used in the classification phase. Both of them can be

determined by using a validation procedure applied on the training set of positives

Tp. In the following, it will be described the procedure used to estimate the best

pair (φ∗,K∗).
Let us define the performance function M :

M(φ,K) =
| Sφ,K |
| Tp |

(3.41)

Note that, in this validation procedure ∀x ∈ Tp assigned to Sφ,K use the mem-

bership χφ,K(x) defined on the training set Tp − {x}. By using M it is possible to

define the functions P and Q

P (φ) =
∑

k∈{Km,KM}
M(φ, k) and Q(k) =

∑

φ∈{φm,φM}
M(φ, k) (3.42)

where {φm, φM} and {Km,KM} are sets of increasing values of thresholds and num-

ber of neighbors respectively. By applying the proposition 3.7.1, it results that the

function M increases while the threshold φ increases, and decreases while the neigh-

bors K increases. In figure 3.26(a) a 3d plot of the function M relative to the clas-

sification of nucleosome and linker regions on the Saccharomyces cerevisiae data set

is shown. Assigning the values, φm = minx,y∈Tp δ(x, y) and φM = maxx,y∈Tpδ(x, y),

Km = 1, KM = |Tp|, the pair (φ∗,K∗) to choose is:

φ∗ = min{φ | P (φ) = max{P (φ)}} (3.43)

K∗ = max{K | Q(K) 6= 0} (3.44)

Informally, such estimation methodology selects the smallest threshold φ∗ which

causes the best performances on the validation data, most independently from the

values of K. Moreover, the value K∗ is chosen to be the largest one causing perfor-

mances different from zero. In this way it is possible to obtain a good compromise

between the generalization ability of the classifier and its precision, in fact the best

value of φ takes in account of several values of K and the value of K chosen should

guarantee a good generalization ability. In figure 3.26(b) an image representation of

M shows also the chosen (φ∗,K∗) concerning the classification of nulceosome and
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linker regions on the Saccharomyces cerevisiae data set. A fuzzy extension version of

the OC−KNN , has been recently tested on two public data-sets [22], studying also

the gain in classification performances when combining several one-class classifiers

defined by different dissimilarity functions.

3.7.3 Results on synthetic data

Also in this case, the performances have been evaluated in terms of Recognition

Accuracy, RA (see section 3.6 for details). The synthetic experiments allows to

test the robustness of the OC −KNN to signal noise. All parameters used in the

generation of synthetic data have been inspired by biological considerations and are

nn = 200, nl = 250, λ = 200, r = 50, o = 20, nr = 100, dp = 0, dr = 0, pur = 0.8,

nsv = 0.01, SNR = {1, 2, 4, 6, 8, 10} and ra = 4, resulting in 6 synthetic signals at

different SNR. The training set Tp is represented by all WPN ’s that fit better the

conditions in Eq. 3.26 with os = 4, because, by biological consideration, it is known

that a nucleosome is around 150 base pairs which corresponds to 8 probes. Thus,

the training set Tp and consequently its size TL, are automatically selected by the

MLA depending on the generated input signal, resulting that, for the specific exper-

iments reported here, TL = {63, 98, 127, 142, 145, 147} for SNR = {1, 2, 4, 6, 8, 10}
respectively. The optimal parameters for the MLA are derived by a calibration

phase described in [16] and have resulted H = 20 and m = 5. Here and in the

next section H represents the number of threshold operations of MLA analysis in

order to avoid ambiguities with the K of OC-KNN that represents the number of

neighbors. The performances have been evaluated measuring the correspondence

between the classified WPN or LN regions and the ones imposed in the generated

signal. The parameters (φ∗, K∗) of the OC−KNN has been chosen by the valida-

tion procedure described in section 3.7.2 for each SNR = {1, 2, 4, 6, 8, 10}. Figure

3.27 reports the best Accuracy and FPR values versus SNR, showing also, for each

SNR signal, the (φ∗, K∗) causing such values. From this study, it results that the

average accuracy and FPR over the 6 experiments is 94% and 9% respectively.

3.7.4 Results on real data:

In this experiment, it has been again compared the accordance of the Hidden Markov

model (HMM) for nucleosome positioning on the Saccharomyces cerevisiae real

data. The training set Tp has been decided in the same way as above. In such

experiment, H = 40, m = 6 were chosen by a calibration phase (m = 0.15 × 40)

that is fully described in [16]. The confusion matrices, which show the RA of HMM

considering MLA as the truth classification and RA of MLA considering HMM as

the truth classification, are reported in table 3.5. The results can be summarized

in an overall RA of (0.76) for the HMM (MLA true) and 0.65 for MLA (HMM

true).

In particular, from this studies it is possible to conclude that MLA does not fully

agree with HMM on the nucleosome patterns as in the previous case, in addition
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M L M H M M

H L N M L N

M L 0.66 0.33 L L 0.65 0.34

M N 0.14 0.85 M N 0.34 0.65

Table 3.5: Agreement between the HMM and MLA (and viceversa) on the Saccha-

romyces cerevisiae data set for Nucleosomes (N) and Linker (L) regions. The table

on the left shows the RA results of HMM when considering MLA as the truth

classification, while the opposite is shown on the right table

.

seems comparing the tables 3.5 and 3.3, that this classifier doesn’t introduce any

significant improvement than the one used in Section 3.5.8.
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115330−115379115010−115059114570−114619

Figure 3.17: (a) Input signal, smoothing, pattern identification and extraction: A

Saccharomyces cerevisiae microarray data portion. Each x value represents a spot

(probe) on the microarray and the corresponding y value is the logarithmic ratio of

its Green and Red values. Nucleosomes regions are around the peaks signal (one

is marked by black circle), while lower ratio values show linker regions (marked by

dashed circles). The dashed lines represents the threshold levels, in this example 6

patterns are retrieved, identified by rhombus, circle, square, triangle down, triangle

up, star. Each pattern identifier is replicated for each of its feature values and

pointed in each one of its middle point. (b) An example of classification: In this

portion 5 nucleosome regions are shown together with its range in base pairs. In

particular 1 out of the 5 regions is classified as delocalized while the remaining

well-positioned.
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D

F

W

Figure 3.18: Shapes of the patterns: The three classes of nucleosomes it is possible

to detect with the MLA very likely reflect different nucleosome mobility existing in

vivo at specific chromatin loci. Delocalized nucleosomes probably represent single

nucleosomes or arrays of nucleosomes with high mobility, while fused nucleosomes

may reflect a single nucleosome that occupies two distinct close positions in different

cells. On the left of the arrows, the particular nucleosome configuration which

generates the resulting shape of well-positioned (W), delocalized (D) and fused (F)

nucleosome classes are shown.



3.7. One-Class Classifier and MLA 69

Pi

L EW ED

F W D

Figure 3.19: Classification: The classification of a generic pattern Pi is performed

into two phases. In the first phase the linker (L), the expected well-positioned

(EW ) and the expected delocalized (ED) patterns are established by using the

classification rule defined by c1. In the second phase, the expected regions Ai are

defined by opportunely processing EW and ED patterns, and afterwards used by

the classification rule c2 in order to finally classify between well-positioned (W ),

delocalized (D) and fused (F ) nucleosomes.
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(a) (b)

Figure 3.20: Calibration phase for the choice of m: Recognition performance plots

(group a) and percentage of minimum number of permanences plots (group b) for 3

different signal to noise ratios, SNR = 1,2,4 (first, second, third column respectively).

The bar in each plot groups the results for 10 experiments occurring at several

threshold values (i.e number of cuts).
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Figure 3.21: Calibration phase for the choice of K : The value for K is selected

interactively by looking both at the plots of ̺ and MS
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Figure 3.22: An example of synthetic signal generation.
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Figure 3.23: Results on synthetic data: The Recognition Accuracy of MLA and

HMM on 6 synthetic signals generated at signal to noise ratios 1, 2, 4, 6, 8, 10.

Figure 3.24: A representative sample windows spanning 13 nuclesome where the

agreement (disagreement) of the three methods is shown. The red draw represents

the classification done by Pugh et Al. (2007) in [2]

.
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Figure 3.25: Computation time performances: The execution time ratio Th/Tm
of the MLA (Tm) and HMM (Th) for 10 synthetic signal generated with different

number of well-positioned nucleosomes. The dashed line shows the average execution

time.
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Figure 3.26: Two different representations of M , on the left (a) a 3d plot, on the

right (b) an image representation showing the values of M using grayscale (0 is

black, 1 is white). In this latter figure, there are also the chosen pair (φ∗,K∗)
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Figure 3.27: Best Accuracy and FPR values versus SNR. The couples (φ,K) causing

such results are also reported.



Chapter 4

Test of Randomness by MLA

This chapter presents a new nonparametric test of randomness of a set of one-

dimensional signals that take advantage of MLA preprocessing step. In particu-

lar, this procedure is based on the probability density function of the symmetrized

Kullback Leibler distance, estimated via a Monte Carlo simulation on the intervals

lengths obtained by MLA. The main advantage of this new approach is that it al-

lows to perform an exploratory analysis in order to verify directly the presence of

several structures in an input signal. In particular this test differs from the other

approaches because it exploits shape features that are rare in a random signal.

4.1 Test of Randomness

Given a signal or a sequence of symbols, it is first necessary to define the meaning

of “random”. In fact the term randomness has several meanings as used in several

different fields. A good literature survey about randomness tests can be found here

[67]. In the statistic literature, the concept of randomness is somewhat related to a

sequence of random variables. The non randomness could be suggested by any ten-

dency of the observation to exhibit regularities in the sequence of observations. For

example, if an observation in a sequence is influenced by the previous observations

or, more in general, if the observed value in a sequence is influenced by its position,

the process is not truly random. More formally, a generic sequence is said random

in statistical context if the process that has generated it, produces independent and

identically distributed observations or i.i.d.. In some context, it is typical that the

observations are not truly random in rigorous statistical sense i.e. i.i.d, but although

the sequence are not formally random, it could be of interest to measure, fixed a

certain degree of confidence, how close to random it is. The application of these

approaches are manifold: for example a test of randomness can be useful in the case

of exploratory analysis in order to verify the possible presence of structures in an

input signal; in the context of cryptography to assess the performance of a good

pseudo-random generator (because it is a fundamental building block in a lot of

algorithms) or can be used to test the strength of a password [35, 30].

4.1.1 State of the art

This section does not pretend to be a detailed revision of all the methodologies

known in literature; the main ideas and their references will be presented instead.

In particular in statistic literature, there are several approaches to test if a sequence

is random, exploiting the “non randomness” in different ways:
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• test based on runs

• test based on entropy estimator

• test based on ranking

• test based on goodness of fitting to a given distribution

It will be shown that the test of randomness that uses the MLA as preprocessing

step belongs to the last class.

4.1.2 Test based on runs

These tests are based all on the central concept of run given in the following defini-

tion:

Definition Given an ordered sequence of one or more symbols, a run is defined to

be a succession of one or more type of symbols which are followed and preceded by

different symbols or no symbol at all.

Once the runs in the signal are identified, the measure of randomness could de-

pend on their number, lengths or both. That’s why in a real random sequence is very

unusual to have too few or too many runs or runs of considerable length. So these

information can be used as statistical criteria to assess if a signal is truly random.

Common approaches to define runs starting from a signal are to dichotomize it (e.g.

considering its sign for each observation), comparing the amplitude of consecutive

points within respect to a focal point (e.g. its mean or its median) or looking for

trends. More information about these approaches can be found here [30].

4.1.3 Test based on entropy estimator

These tests are based on the entropy of a signal or related features. In general the

entropy is a measure of the uncertainty associated with a random variable [18]:

Definition Let X a discrete random variable with alphabet Σ and probability

mass function p(x) = Pr{X = x}, x ∈ Σ. The entropy H(X) of a discrete random

variable X is defined by:

H(X) ≡ H(p) = −
∑

x∈Σ
p(x)log2p(x) (4.1)

For example if we consider the sign test [30] (a particular run test) or a binary

vector, it should be expected that the sequence of signs (or bits) are i.i.d. and this

obviously follows from the fact that the positive and negative signs are equiprobable

i.e. P (s(i) ≥ 0) = P (s(i) < 0). If this assumption is not true, it is easy to prove

that the entropy will be strictly less than 1. In general these tests use this null

hypothesis:
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H0 : H(p) = 1 (4.2)

Usually, given a signal f these tests start approximating the probability distri-

bution for f and then calculating its entropy. Further details can be found in [28]

and [85] .

4.1.4 Test based on ranking: Wilcoxon rank sum test

These tests are based on the concept of ranking, where for ranking is meant a

sorting of the observation in non-crescent or non-descdendent order. A very popular

test that falls in this category and that can be used to evaluate the randomness

of a signal is the Wilcoxon rank sum test. Given two vectors of observations X

and Y also of different lengths, test the null hypothesis that data in the vectors

are independent samples from identical continuous distributions with equal medi-

ans, against the alternative that they do not have equal medians [35]. More formally:

Given N = m+ n observations X1, . . . ,Xm and Y1, . . . , Yn, the assumed model is:

Xi = ei i = 1, . . . ,m (4.3)

Yj = em+j +∆ j = 1, . . . , n (4.4)

where em+1, . . . , em+n are unobservable random variables, and ∆ is the shift between

the samples. Here we suppose that the N observations are mutually independent

and each e come from the same continuous population.

The test consist in evaluating the null hypothesis:

H0 : ∆ = 0 (4.5)

The first step is to sort the N observations in increasing order and let Rj denote the

rank of Yj in this ordering. Then the statistic W is calculated using this equation:

W =
n∑

j=1

Rj (4.6)

For a one side test of H0 versus the alternative H1 : ∆ > 0, at α level of significance:

reject H0 if W ≥ w(α,m, n)
accept H0 if W < w(α,m, n)

where the constant w(α,m, n) satisfies P0[W ≥ w(α,m, n)] = α

Let R(1) <, . . . , < R(n) the ordered Y ranks in the joint ranking of X and Y then

the null distribution for W =
∑n

j=1Rj =
∑n

j=1R
(j) can be obtained considering

that under the hypothesis H0 all possible
(N
n

)
assignments for [R(1), . . . , R(n)] have

probability 1/
(N
n

)
in this way it is possible to derive the null distribution without

specifying the underling distributions of the e′s.
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4.1.5 Test based on goodness of fit: Kolmogorov-Smirnov goodness

of fit Test

These tests start from a statistical model try to assess how well some observations

fit the model. A very popular test that falls in this category and that can be

used to evaluate if two samples are drawn from the same distribution is the

Kolmogorov-Smirnov goodness of fit Test [73]. This distribution free test is used

to check if one sample comes from a particular distribution or if two samples

come from the same distribution. This test is based on the comparison between

the empirical cumulative distribution function and the theoretical cumulative

distribution function. More formally:

Let X a random variable with cumulative function F (x), given another cumulative

function FN (x) this test check the hypothesis:

H0 : F (x) = FN (x),∀x (4.7)

Let D the max absolute value of the difference between the two cumulative distri-

bution, i.e.

D = sup
−∞<x<+∞

|FN (x)− F (x)| (4.8)

where F (x) is the theoretical cumulative function and FN (x) is the cumulative

distribution observed. Let x1, x2, ..., xN a random sample, FN (X) is obtained as:

FN (x) =





0 if x ≤ x1,
k
n if xk ≤ x ≤ xk+1

1 if x ≥ xN .

(4.9)

FN (x) is a good estimator of F (x), in fact it can be proven that FN (x)
n→∞

= F (x).

At this point considering the observed value of D, and considering the theoretical

distribution of D, once fixed a confidence level α it’s possible to calculate Dα, then

choose to reject or not the hypothesis H0 using the condition:

reject H0 if D ≥ Dα

accept H0 if D < Dα

4.2 MLA Test of Randomness

As it was shown in the previous Chapters, the MLA is strongly related to the class

of methods successfully used in the analysis of very noisy data which, by using sev-

eral views of the input data-set are especially able to recover statistical properties

of a signal. Here a test of randomness, based on the distance of the interval lengths

p.d.f’s detected by the Multi-Layer Analysis (MLA) will be presented. Such p.d.f’s
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are estimated for each cut-set and the hypothesis test is performed against ran-

dom signals generated via a Monte Carlo simulation. At this end the symmetrized

Kullback-Leibler measure has been used to estimate the distribution distances.

4.2.1 Monte Carlo simulation

The Monte Carlo methods [54] are a class of computational algorithms that perform

their computation using a random process to simulate or sample the possible space of

solutions. They are used in the case when a deterministic approach are inapplicable

for example due to the complexity of the problem. A typical scenario is the use of

these methods to randomly sample a large number of states of a complex system so

to use those states to model the behavior of the the whole system. The Montecarlo

Method is used in several different contexts, but shares the same general approach

depicted in Figure 4.1. In the MLA test of randomness, a Montecarlo Method is

used to model the random case in term of Kullback Leibler distance applied on the

interval representation obtained by MLA on random signals, and will be shown in

the following sections:

'

&

$

%

Monte Carlo Method(P )

begin

1. Define the space of inputs or solutions S

2. Random sampling from S using a particular probability distribution P

3. Use the sample of the previous step to perform a deterministic computation

4. Aggregate the results of the previous step to produce the final result R

end

return (R)

Figure 4.1: The general schema of Montecarlo Method.

4.2.2 Hypothesis test

In order to detect the presence of structures in the signal an hypothesis test based

on the expected probability distribution function (p.d.f.) of the segments length is

proposed. The null hypothesis (H0) represents a random signal and it is accepted if

the p.d.f. of the segment lengths, p1, is compatible with a random signal distribution,

p0; the hypothesis H1 represents a structured signal and it is accepted if the p.d.f.

of the segment lengths is not compatible with a random signal, p0. It follows that
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we need to measure the similarity (dissimilarity) of two p.d.f.’s and set a confidence

level α to perform the decision.

The symmetric Kullback-Leibler measure, SKL, has been considered to evaluate

the dissimilarity of the two distributions p0, and p1 [42]:

SKL(p0, p1) =
KL(p0, p1) +KL(p1, p0)

2

where, KL is the no-symmetric Kullback-Leibler measure. In the continuous case,

p.d.f.’s are defined in a dominion I ⊆ R and the KL measure is defined as:

KL(p, q) =

∫

I
p(x)log

p(x)

q(x)
dx

In the discrete case I ⊆ N and the KL become:

KL(p, q) =
∑

i∈I
pilog

pi
qi

In order to perform the hypothesis test it is necessary to know the p.d.f. of the

SKL in the case of a random signal. The derivation of analytical form of this p.d.f.

is usually an hard problem that has been solved by a Monte Carlo simulation. For

example in [36] a goodness-of-fit test for normality is introduced; it is based on

Kullback-Leibler information and a Monte Carlo simulation is performed to derive

and estimate the p.d.f.’s. In [73] an extension of the previous test is described for s-

normal, exponential, and uniform distributions and also in this work a Monte Carlo

simulation has been used to estimate the p.d.f. of the measure KL.

4.2.3 Probability density functions estimation

In this section, the simulation performed to estimate the p.d.f.’s of both the intervals

length, ILk (PILk), and the SKLk (PSKLk), at a given threshold tk will be

outlined. Here, SKLk is the distance between the p.d.f.’s of two interval length.

To estimate the p.d.f. of ILk, RSn, n = 1, ..., N signals of length l have been

generated, according to a normal distribution with µ̂ and σ̂ estimated from an input

signal S of length L. Each signal, RSn, is then used to evaluate experimentally

PIL
(n)
k (n = 1, 2, ..., N).

In the simulation, for each threshold, tk, it is then possible to derive the exper-

imental distributions of the ILk in Rk. Therefore k = 1, 2, ...,K normalized p.d.fs

are obtained . PIL
(n)
k with nb bins. Figures 4.2(a), 4.3(a), 4.4(a), show examples

of PILk for a simulation using l = 20000, L = 200000, N = 1000, K = 9, nb = 100.

The estimation of the p.d.f. of SKLk and PSKLk, is carried out by computing

the SKLk between the pairs
(
PIL

(m)
k , P IL

(n)
k

)
, with m 6= n. In this simulation it

was drawn the evaluation of PSKLk from a sample of N×(N−1)
2 elements by using

a density estimation with Gaussian kernel. Figures 4.2(b), 4.3(b), 4.4(b) shows

examples of PSKLk for a simulation using l = 20000, L = 200000, N = 1000,

K = 9, nb = 100.
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Figure 4.2: Examples of PILk (a), and PSKLk (b) for k = 4

4.3 Experimental Setup

Here, the evaluation of the test will be presented. In particular, the test has been

carried out on simulated and real data respecting a particular tiled microarray ap-

proach able to reveal nucleosome positioning information on DNA [90] and presented

in detail in chapter 3. Here unlike to the case study presented in chapter 3 (in which

the problem was to infer the nucleosome positions) the problem is to investigate if the

shapes correspondent to nucleosome binding sequences have some specific features.

Results indicate that such statistical test may indicate the presence of structures in

real and simulated biological signals, showing also its robustness to data noise and

its superiority to the Wilcoxon rank sum test. In Fig.s 4.5(a),4.5(b),4.5(c) three

examples of input signals with signal to noise ratio SNR = 1, 1.5, 10, are given.

This allows to control the accuracy of the proposed test of randomness and perform

the calibration of the methodology. The same test has been applied to the data



82 Chapter 4. Test of Randomness by MLA

0 20 40 60 80 100 120
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Interval lengths

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

Histogram of intervals lengths at level:5

(a)

−1 0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

Kullback distance

D
en

si
ty

Distribution of Kullback distances in noise at level:5

 

 
Density
CI 10%
CI 5%
CI 1%

(b)

Figure 4.3: Examples of PILk (a), and PSKLk (b) for k = 5

used in the simulation phase.

4.3.1 Assessment on synthetic data

The input signals used to evaluate the test, are synthetically generated following the

procedure described in [23] and in Chapter 3 and represent signals which emulate

the nucleosome positioning data.

In the following, an assessment of the proposed hypothesis test to guess the

presence of structures in an unknown input signal is performed. In this sense these

can be considered part of an exploratory data analysis procedure. This experiment

has been carried out generating 40 synthetic test signals of length L = 200000 (base

pairs), with signal to noise ratio ranging from SNR = 0 to SNR = 10 by steps of

0.25 and N random samples of length l = 20000 (base pairs). The simulation used

to estimate the p.d.f. of SKL, has been done using the synthetic signals of length L
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Figure 4.4: Examples of PILk (a), and PSKLk (b) for k = 6

(base pairs), N = 1000 random samples of length l (base pairs), K = 9 thresholds

and nb = 100 bins. The number of bins has been set as a good compromise among

different sample size at different thresholds. For each test signal S its SKLk from

a random sample drawn from the RSn samples is computed and used to verify the

test of hypothesis on the PSKLk. In particular for each test signal S recalling that

Rn, as defined above, is of the same length of S and generated according to a normal

distribution with µ̂ and σ̂ estimated from S. In figures 4.6, 4.7, 4.8 some results of the

test are provided for increasing SNR, for confidence level α = 99%, 95%, 90% and

at different thresholds. In the abscissa the SNR is represented, while in the ordinate

the probability that the symmetrized Kullback-Leibler distance falls in the interval

[0, SKLk]. If the ordinate value is greater than the confidence α the random test is

rejected. From previous results, it can be seen that the test is not reliable for lower

and the higher thresholds while it is quite sensitive for intermediated thresholds.

For example, for tk = 5, 6, 7, 8 and α ≥ 90% the random hypothesis is rejected for
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SNR ≥ 3.0, 1.5, 1.25, 1.5 respectively. Intuitively, this can be explained because

the number of intersections is low for higher and lower threshold values.

4.3.2 Assessment on real data

The test of randomness has been applied to real biological data derived from a

tiled microarray approach able to reveal nucleosome positioning information on the

Saccharomyces cerevisiae DNA [90]. The input microarray data, S, are organized

in T contiguous fragments S1, · · · , ST which represents DNA sub-sequences. This

dataset is explained in detail in Chapter 3.

In the experiment we set K = 10, nb = 100, for each signal fragment Si the

corresponding intervals INTik are extracted for each threshold tk.

Finally, the set of intervals INTk =
⋃T

i=1 INTik are used to compute the interval

distribution length PILk. Then, the SKLk from a random sample R drawn from the

RSn samples is computed and used to verify the test of hypothesis on the PSKLk.

Note that, in this experiment, the length of the real signal and of the random sample

is 20000 base pairs. Figures 4.9(a), 4.10(a), 4.11(a) show PILk for k = 4, 5, 6.

The experiment indicates that the hypothesis test is rejected at confidence level

95% for k = 5, while for k = 6, 7, 8, 9 is rejected at a confidence level ≥ 99%. In

figures 4.9(b), 4.10(b), 4.11(b) are shown the result of the test of randomness for

k = 4, 5, 6. Moreover, the test of randomness is quite unstable for k ≤ 4 and k = 10;

this property highlights that the central part of the signal contains the majority of

the useful information for the test of randomness (see Figure 4.12).

4.3.3 Comparison with Wilcoxon rank sum test

In this section a comparison of the results of MLA test with the Wilcoxon rank

sum test, both on synthetic and real data is presented. Both hypothesis tests, can

be applied when no assumption about sample distribution can be made, condition

which falls in this case.

Firstly, it was verified if each synthetically generated S (a total amount of 40

signal) and N = 100 random samples drawn from the RSn are significantly different

by using a Wilcoxon rank sum test. Figure 4.13(a) shows the results that can

be summarized affirming that S and a generic random signal R are at least 90%

significantly different starting from SNR = 1.25. This reveal that the Wilcoxon test

and our test have quite the same predictive power when considering intermediate

threshold levels of the MLA (k=6,7,8,9) .

In the case of a real signal S, the Wilcoxon rank sum test has rejected the

hypothesis of randomness on S only 3 times over N = 100 tests (see figure 4.13(b)).

This makes the Wilcoxon rank sum test not reliable for such kind of data, while

our test, as already shown in section 4.3.2, confirms his predictive power on

intermediate thresholds.
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In this chapter several tests have been introduced in order to check the ran-

domness of a set of one dimensional signals and a new test of randomness based

on the MLA preprocess has been also presented. It makes uses of the Symmetrized

Kullback-Leibler distance, and it has been shown to be useful in the case of ex-

ploratory analysis in order to verify the possible presence of structures in an input

signal. Finally, it is able to guess structures in the case of real and simulated data

for nucleosome portioning with low SNR (1.5), while a simple Wilcoxon rank sum

test has not shown enough reliability on the same kind of data.
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Figure 4.5: Examples of input signals: (a) input signal SNR = 1; (b) input signal

SNR = 1.5; (b) input signal SNR = 10.
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Figure 4.6: Examples of hypothesis test at different SNR and thresholds.
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Figure 4.7: Examples of hypothesis test at different SNR and thresholds.
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Figure 4.8: Examples of hypothesis test at different SNR and thresholds.
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Figure 4.9: PILk (a) and PSKLk and hypothesis test results (b) of the real signal

for k = 4.
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Figure 4.10: PILk (a) and PSKLk and hypothesis test results (b) of the real signal

for k = 5.
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Figure 4.11: PILk (a) and PSKLk and hypothesis test results (b) of the real signal

for k = 6.
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Figure 4.12: The gray strep indicates the useful part of the input signal in order to

perform the test of randomness.
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Figure 4.13: Mann-Whitney rank sum test results for different signal to noise ratio

(a) and for the real signal (b).



Chapter 5

MLA and Kernel methods

This chapter presents how the MLA can help on designing new kernel functions that

explicitly take into account the shapes information contained in a one-dimensional

signal. In the following, the main idea of Kernel Methods will be presented, giving

more details to a particular subclass of Kernel functions applicable to structured

data, and in particular trees. The MLA is used to define a mapping from the set

of one-dimensional signal to the set of trees. For this reason the main advantage of

defining a kernel function based on MLA is that it is possible to incorporate shape

information directly in a kernel function encoded as a tree.

5.1 Kernel methods

Kernel methods are a class of algorithms used in the context of pattern analysis.

Although initially they were developed in the context of classification, with the well

known Support Vector Machine (SVM) method first introduced by Vapnik [82], the

kernel approach has shown to be applicable to several key problems in data analysis

(Principal Component Analysis, Clustering, Regression, Ranking, Correlation). In

this sense, nowadays, it is usually referred to the kernel methods, as a general

framework applicable to all kinds of data [81]. In fact recently, kernel methods

were developed to deal with data without an explicit vector representation such as

complex objects or structured data (string, tree, graph, etc.).

5.1.1 Main ideas of Kernel Methods

The main advantage of kernel methods came from their modularity: all these meth-

ods consist of two parts: a kernel function, and an algorithm to analyze the data

after the kernel mapping, as shown in figure 5.4. In particular, the kernel embeds

the input space into a new vector space where the algorithm used to analyze the

data could have better performance than the same algorithm applied on the origi-

nal input space (see figure 5.2). The kernel functions represent the spatial relation

between pair of data elements, using an inner product in the new space without

explicitly map such data. In this way it is also possible to use infinite dimensional

space without encoding the data explicitly with new coordinate vectors. Moreover,

in many case the computation of the inner product could be more efficient than

explicitly map each point into the new vector space and computing for example the

pairwise distances. This imply that it is not necessary to know the exact coordinates

of the points in the vector space but only their pairwise inner product. In other
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words the dimensionality of the new vector space does not affect the computation

time. This propriety is usually called “kernel-trick”, and can be summarized saying

that, to perform data analysis with a kernel, it is not necessary to know explicitly

the vector space where the data will be projected in. An important point of the

kernel functions is that the mapping could catch non-linear relation present in the

data linear in the new space. This permits to take advantage of the large class of

well understood methodologies that search linear relation in the data. In this way

the choice of a particular kernel function is related to the vector space where the

data points will be implicity projected. A deeper coverage of the theory and appli-

cation of Kernel methods can be found in the book by Taylor and Cristianini [75].

Now, it will be given the formal definition of kernels and some of their properties

will be count.

Figure 5.1: General Schema of Kernel Methods

Figure 5.2: Kernel mapping

5.1.2 Formal definition and properties of kernels

Definition Kernel Function Given a set X 6= ∅, and a mapping function from X to

a features vector space F i.e. φ(x) : X → F a kernel is a function K : X ×X → R

that for all x, y ∈ X is:
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k(x, y) = 〈φ(x), φ(y)〉 (5.1)

where 〈,̇〉̇ denote the euclidean inner product on F

It is clear that the function K is symmetric i.e.:

k(x, y) = 〈φ(x), φ(y)〉 = 〈φ(y), φ(x)〉 = k(y, x) (5.2)

An important theorem that provide a characterization of the class of kernel

function is the here stated Mercer’s theorem[19]:

Theorem 5.1.1 (Mercer’s Theorem) Let X a compact subset of Rn. Suppose K is

a continue symmetric function such that the integral operator TK : L2(x)→ L2(x),

(TKf)(·) =
∫

X
K(·, x)f(x)dx (5.3)

is positive, that is:

∫

X×X
K(x, z)f(x)f(z)dxdz ≥ 0 (5.4)

for all f ∈ L2(x). Then it is possible to expand K(x, z) in a uniformly convergent

series (on X ×X) in terms of Tk’s eigen-function φj ∈ L2(X), normalized in such

a way that ‖φj‖L2
, and positive associated eigenvalues λj ≥ 0.

K(x, z) =
∞∑

j=1

λjφj(x)φj(z) (5.5)

A special case of this theorem is the following, that characterizes the Kernel

function on Finite spaces.

Theorem 5.1.2 Let X a finite input space with K(x, z) a symmetric function on

X. Then K(x, z) is a kernel function if and only if the matrix:

K = (K(xi, xj))
n
i,j=1 (5.6)

is positive semi-definite (has non negative eigenvalue) i.e:

n∑

i=1

n∑

j=1

cicjK(xi, xj) ≥ 0 (5.7)

with n > 0, x1, . . . , xn ∈ X and ci, cj ∈ R.

Proof Since the matrix (K(xi, xj))
n
i,j=1 is symmetric, there exists an orthogonal

matrix V such that: K = VΛV′ where Λ is the diagonal matrix containing the

eigenvalues λt of K, and the columns of V are the corresponding eigenvectors vt =

(vti)
n
i=1. By hypothesis, the eigenvalues of K are non-negative, so it is possible to

define the mapping φ:
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φ : xi 7→ (
√
λtvti)

n
i=1 (5.8)

And express the inner product as:

〈φ(xi), φ(xj)〉 =
n∑

i=1

λtvtivtj = (VΛV′)ij = K(x, y) (5.9)

And this proves that K is a kernel function that calculate the inner product

in the vector space given by the mapping function φ. Note that the condition of

positive semi-definiteness is necessary, since if it exists at least a negative eigenvalue

λs with corresponding eigenvector vs, the point:

z =

n∑

i=1

vsiφ(xi) =
√
ΛV′

vs (5.10)

would have a norm squared less than 0 in that space that is impossible:

‖ z ‖2= 〈z, z〉 = v
′
sV
√
Λ
√
ΛV′

vs = v
′
sVΛV′

vs = v
′
sKvs = λs < 0 (5.11)

5.1.3 Kernels and distances

A simple property of the inner product, is that it naturally induces a norm:

‖x‖2 =
√
〈x, x〉 (5.12)

and thus a metric or distance:

d(x, z) = ‖x− z‖2 (5.13)

It follows immediately, that a generic kernel function also induces a distance:

Definition Distance induced by a kernel function

Given a kernel function k, and consider the Gram’s matrix Gij = k(xi, xj) =

〈φ(xi), φ(xj)〉, it is possible to obtain a pairwise distance matrix Dij from G us-

ing the following relation:

Dij =
√
‖ φ(xi)− φ(xj) ‖2 =

√
k(xi, xi) + k(xj , xj)− 2k(xi, xj) (5.14)

As an example, let us consider the euclidean distance:

Definition Euclidean Distance

Given two signals ~x and ~y their Euclidean Distance is defined as:

dn(~x, ~y) =

√√√√
m∑

i=1

(xi − yi)2 (5.15)

where ~x = (x1, . . . , xm), ~y = (y1, . . . , ym).

It is straightforward that the euclidean distance is induced by the linear kernel

K(x, y) = xy′.
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5.2 Kernel methods for tree

All the classes of kernel function in this category are based on the concept of tree i.e.

the input data are represented in a tree structure. One assumes that the reader is

familiar with the general concepts of graph theory, in particular with the definition

of tree structure. For an appropriate background, the reader is referred to standard

literature [7]. As stressed in the introduction, it is possible to define kernel function

even when the input data doesn’t have an explicit vector representation. This is

the case of structured data and in particular in the case of tree structure. More in

general, there exists a class of kernel function called Convolution Kernel and firstly

introduced by Hausler [34] and later extended by Shin and Kuboyama [76] [77] that

decompose a data object into simpler parts and then define a kernel function in

terms of such parts.

5.2.1 Convolution kernel

This class of kernels are particular devoted for problem involving the processing of

structured data like string, trees, graph. In fact it provides a way to extract real-

valued features and thus to map these data into a vector space R (finite case) or in

the Hilbert space of all square summable sequences (infinite case). The main idea

of this approach is that in some case, it is easier to compare two objects in terms of

their simpler parts or features. As the other kernels, it is not necessary to explicit

map an input data in the feature space, the only requirement is the calculation of the

inner product between two input data in the feature space. The name convolution

came from the fact that the value of the kernel is obtained from a sum of products

of other kernels, similar to the idea of convolution between function.

Definition Convolution Kernel

Let x ∈ X a structured data, X1, . . . XD non-empty separable metric spaces and
−→x = (x1, . . . , xD) the subparts of x (for example in a string a subpart could be a

substring) with each xd ∈ Xd with 1 ≤ d ≤ D. Consider the relation R : X1 × . . .×
XD ×X where R(−→x , x) is true if and only if x1, . . . , xD are the subparts of x. Let

R−1(x) = {−→x : R(−→x , x)} and R is said finite if R−1(x) is finite for all x ∈ X. Given

two element x, y ∈ X their decomposition −→x = (x1, . . . , xD),
−→y = (y1, . . . , yD) in

X1, . . . XD, suppose that for each Xd with 1 ≤ d ≤ D exists a kernel Kd, then the

Convolution Kernel is defined as:

K(x, y) =
∑

−→x ∈R−1(x),−→y ∈R−1(y)

D∏

d=1

Kd(xd, yd) (5.16)

The proof that K is a valid kernel can be found in the original paper [34].

5.2.2 Tree kernels

In the last years a variety of convolution kernel has been proposed for different kind

of structured data, such as string, tree and graph [29], [31],[11]. Here, only the main



100 Chapter 5. MLA and Kernel methods

idea on kernels for trees will be presented, the interested reader can found a good

characterization of tree kernels in the phd thesis by Kuboyama [77]. Tree kernels

[14] can be applied to ordered trees and they compute the similarity between trees

considering their common subtrees. There are several kind of tree kernels but all of

them share the same idea of decomposing, in the convolution kernel framework, a

tree in different kind of subtree (for example simple subtree or co-rooted subtree).

As an example, let us consider a particular convolution kernel: let x ∈ X a rooted

and ordered tree and X1, . . . XD the set of all D-degree ordered and rooted trees. In

this case the relation R defined before is: R(−→x , x)⇔ x1, . . . , xD are the D subtrees

of the tree x. in the following, one tree kernel used in context of Natural Language

Parsing that exploit this idea and that has inspired several works on tree kernel

(and also the MLA tree kernel) will be defined.

Definition Collins and Duffy Tree Kernel [14]

Given a tree T , and considering the enumerable set of all possible trees T =

{T1, T2, . . . , Tn}, T can be represented by an n-dimensional vector where the i’th

component contains the number of occurrences of the i’th tree Ti of T in T .

This mapping is done considering the function hi(T ) that count the number of

occurrences of Ti in T . In this way it is possible to represent a tree T as

h(T ) = (h1(T ), h2(T ), . . . , hn(T )). Note that the number n could be huge because

the number of subtree of a given tree T is exponential on its size. The kernel is then

defined as:

K(T1, T2) = h(T1) · h(T2) =
∑

i

hi(T1)hi(T2) = (5.17)

=
∑

n1∈N1

∑

n2∈N2

∑

i

Ii(n1)Ii(n2) =
∑

n1∈N1

∑

n2∈N2

C(n1, n2) (5.18)

where N1 is the number of node in T1, N2 is the number of node in T2, Ii(n) is an

indicator function defined as:

Ii(n) =

{
1 if the subtree Ti is seen rooted at node n

0 otherwise
(5.19)

and C(n1, n2) =
∑

i Ii(n1)Ii(n2)

This kernel can computed in polynomial time, expressing C(n1, n2) with the

following recursive definition:

• if the productions at n1 and n2 are different: C(n1, n2) = 0

• if the productions at n1 and n2 are the same and n1 and n2 are pre-terminal

nodes: C(n1, n2) = 1

• else if the productions at n1 and n2 are the same and n1 and n2 are not

pre-terminal nodes:
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C(n1, n2) =

nc(n1)∏

j=1

(1 + C(ch(n1, j), ch(n2, j))) (5.20)

where nc(n1) is the number of children of n1 in the tree (note that nc(n1) =

nc(n2) because the productions are the same) and ch(nk, i) is the i’th son of

node nk in a tree.

In the original paper some variant of this kernel is proposed to take into account

some issues:

• The value of kernels K(T1, T2) depends strongly on the size of the trees T1
and T2. A possible solution is to use a new normalized kernel defined as:

K ′(T1, T2) =
K(T1, T2)√

K(T1, T1)K(T2, T2)
(5.21)

Note that K is still a kernel function because still satisfies the theorem 5.1.2.

• Since the number of subtree increases with size or depth, it is necessary to

scale the importance of each subtree taking in account their sizes:

C(n1, n2) = λ and C(n1, n2) = λ

nc(n1)∏

j=1

(1+C(ch(n1, j), ch(n2, j))) with 0 ≤ λ ≤ 1

(5.22)

This correspond to the kernel:

K(T1, T2) =
∑

i

λsizeihi(T1)hi(T2) (5.23)

In order to obtain this result the parameter 0 ≤ λ ≤ 1 was introduced. In this

way the kernel downweight the contributions of tree fragments exponentially

with their size.

5.3 MLA Kernels

5.3.1 MLA Tree Kernel

The MLA Tree Kernel is based on the MLA and in particular it is obtained using

(1) the MLA on an input signal, (2) a particular aggregation rule that produce a

tree from intervals and (3) a modified tree kernel adapted to the nature of the class

of trees produced by the first two steps. A schematic view of the MLA Tree Kernel

inserted on the whole process of Kernel Methods is depicted in 5.3 figure.
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Figure 5.3: General Schema of MLA Tree Kernel

5.3.1.1 From signal to tree

Definition MLA tree aggregation rule

Given a signal f defined in [a, b] and K threshold operations σk (k = 1, ...,K) after

the application of Equally spaced simple MLA where the condition on each sigma

is:

σ(x, φ) =

{
f(x) if f(x) ≤ φ
φ otherwise

it is possible to obtain the interval representation Υ(f) of f , recalling that Υ(f) =

{I1, I2, · · · , IK} with Ik =
{
i1k, i

2
k, · · · , i

nk

k

}
the set of intervals corresponding to σk.

To obtain a tree from the signal f it is necessary to use its interval representation

Υ(f) using a particular aggregation rule on intervals. It is necessary first to introduce

a relation R : Ik × Ik+1 with Ik and Ik+1 ∈ Υ(f). Given two intervals isk and itk+1

they are in relation and it will be indicated as R(isk, i
t
k+1) if and only if itk+1 ⊆ itk.

Now, let us define the undirected tree T = (V,E) such as:

V = I0 ∪
K⋃

i=1

Ii with I0 = {r = [a, b]} (5.24)

and

E = {(i1, i2) with i1, i2 ∈ V : R(i1, i2)}. (5.25)



5.3. MLA Kernels 103

In this way it is possible to define a labeled and rooted tree T with root r and in

which each node encode the correspondent interval. The depth of the tree is exactly

K + 1 as it is necessary to add the node r that represents the interval [a, b] where

f is defined. It is possible to see an illustrative picture of the process in figure 5.4

5.3.1.2 Proposed Tree Kernel

This kernel is defined starting from the tree T previously defined in 5.24. The

idea behind this kernel is similar to the tree kernel proposed by Collins and Duffy

introduced in section 5.2.2. In their original work they have used the tree kernel to

characterize parse trees, here it is shown how adapt their approach to the set of tree

obtained by MLA and representing the class of one-dimensional signals defined for

some interval [a, b]. The main idea of this kernel is to compare two signals using their

tree representation. In the original kernel of Collins and Duffy each node represent

a production rule or a terminal symbol for some formal languages, here the nodes

represent intervals.

Definition MLA Tree Kernel

Using the same convention of tree kernel presented in 5.2.2, the MLA tree kernel is

defined as:

K(T1, T2) = h(T1) · h(T2) =
∑

n1∈N1

∑

n2∈N2

C(n1, n2, δ) (5.26)

where n1 and n2 for simplicity of expression represent also the interval lengths

associated to the nodes n1 and n2, δ ∈ R with 0 < δ < (b − a), and C(n1, n2, δ)

recursively defined as:

• if n1 is a leaf and n2 is not a leaf or viceversa then C(n1, n2, δ) = 0

• if |n1−n2| > δ and the intervals are pre-terminals (both fathers of a leaf) then

C(n1, n2, δ) = 0 (n1 and n2 are considered different).

• if |n1 − n2| ≤ δ and the interval n1 and n2 are two leafs then C(n1, n2, δ) = 1

(n1 and n2 are considered equal).

• else if |n1 − n2| ≤ δ and the intervals n1 and n2 are not both fathers of a leaf

then:

C(n1, n2, δ) =

nc(n1)∏

j=1

(1 + C(ch(n1, j), ch(n2, j), δ)) (5.27)

Note that this kernel suffers of the same issues as the Collins and Duff tree

kernel, for this reason it could be useful to consider the variant proposed in 5.21,

5.22, 5.23.Note also that here the node n1 and n2
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Figure 5.4: General Schema of Kernel Methods
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5.3.2 MLA Convolution Kernel

This kernel is defined starting from the interval representation of a signal trough

the Equally Spaced MLA defined in Chapter 2. In particular given 2 signal x, y

and let Υ(x) = {Ix1, Ix2, · · · , IxK} and Υ(y) = {Iy1, Iy2, · · · , IyK} their intervals

representation with K threshold operations.

Definition MLA Convolution Kernel

Let I a generic set of intervals from some interval representation of a signal of length

L and let define BI a signal of length L with:

BI(j) =

{
1 if ∃ an interval [a, b] ∈ I such that j ∈ [a, b]

0 otherwise
(5.28)

with 1 ≤ j ≤ L. In this way to a generic interval representation it is possible to

associate a set of binary string.

Finally the kernel is defined as:

S(x, y) =

K−hnp+1∑

k=1+hnp

1

np






k+hnp−1∑

j=k−hnp+1

BIxj







k+hnp−1∑

j=k−hnp+1

BIyj




 (5.29)

where 0 ≤ γ ≤ 1 and np = |γ ∗K| and hnp = np
2 .

This kernel function can be seen as a local correlation between correspondent

internal portions of the signals and in which the size of the portion is controlled by

the parameter γ.

5.4 Support Vector Machines

Support Vector Machines (SVM) are learning systems that use an hypothesis space

of linear functions in an high dimensional space, trained with a learning algorithm

for optimization motivated from statistical learning theory [19]. SVM are binary

classifiers; in particular the discriminative function of the SVM represent a linear

decision boundary also called margin. More formally, a SVM constructs an hyper-

plane in a high (eventually infinite) dimensional space, using the implicit projection

of the kernel functions, in order to obtain a good separation between positive and

negative points. In particular SVM consider the hyperplane that has the largest dis-

tance to the nearest training data points of any class since in general the larger the

margin the lower the generalization error of the classifier. In figure 5.5 it is possible

to see the concept of margin and the hyperplane (a straight line in 2 dimensions).

The interested reader can found a good survey of SVM classifiers in [75].

5.5 Experimental Setup

In this section three experiments that use the MLA Tree kernel will be presented, in

particular the first two involve a classification, while the third is related to clustering.
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Figure 5.5: SVM margin and the separation hyperplane

5.5.1 Synthetic data: discrimination power of MLA Tree Kernel

on basic functions

To validate MLA Tree Kernel, three basic signals that can be characterized in term

of shape in time domain, has been considered (see figure 5.7):

• sinusoid signal

• rectangular pulse signal

• sawtooth signal

As training set S, N signals have been generated with an increasing linear SNR

noise value ranging from 0.1 to 1, for each of the three categories. In this way,

one dispose of a training set with 3 ×N elements and with 3 classes. Analogously

a Test Set T disjointed from S was taken into account, with the same cardinality

i.e. 3 ×N . To validate the performances, a Support Vector Machine with different

kernel functions has been considered: linear, polynomial, RBF, sigmoid and MLA

Tree. The results obtained with N = 50 and with different kernels are shown in

table 5.5.1. As it it is possible to see all the kernels obtain very good performances

although in the case of very noisy signal the MLA Tree Kernel can still recover the

shape information leading to a slightly better result. This makes the MLA tree

kernel more robust to noise than the other kernels.



5.5. Experimental Setup 107

Kernel Function Correctly Classified Accuracy

MLA Tree 150/150 100%

Linear 143/150 95%

Polinomial(2) 131/150 87%

RBF 130/150 87%

Sigmoid 141/150 94%

Table 5.1: Classification accuracy on basic functions dataset.
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Figure 5.6: Basic function

5.5.2 Synthetic data: MLA Tree Kernel on waveform dataset

In this experiment the dataset from [8] was considered. It contains 5000 instances

divided in 3 classes of waves of 21 attributes, all of which include gaussian noise with

mean 0 and variance 1. In particular, each class is generated from a combination

of 2 of 3 “base” waves. The best accuracy that has been obtained processing this

dataset has been reached by the Optimal Bayes classifier, with a value of 86%. Here

the dataset was split in two balanced parts (training and test sets) of 1500 elements

equally distributed into the tree classes for evaluating the performances of MLA Tree

kernel with a SVM classifier. In particular as in the previous experiment, linear,

polynomial, RBF, sigmoid and MLA Tree kernels functions have been used. In the

table 5.5.2 results are shown. As it it is possible to see all the kernels obtain very

good performances.
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Figure 5.7: Basic function plus noise

Kernel Function Correctly Classified Accuracy

MLA Tree 1364/1500 91%

Linear 1286/1500 86%

Polinomial(2) 1187/1500 80%

RBF 1286/1500 86%

Sigmoid 795/1500 53%

Table 5.2: Classification accuracy on waveforms dataset.

5.5.3 Assessment of induced distance of MLA Tree Kernel for clus-

tering of seismic signal

The dataset taken in exam for this experiment consists of n undersea explosion of

an array of bombs at different distanced from a ship. This dataset was builded in

order to have a well characterized set of signals to use as a benchmark for problems

involving geological signals. In particular, the ship record for each explosion at

time ti a signal si that express the variation on pressure level. The explosions

take place at regular intervals of 300 seconds and each signal is sampled at 100hz.

A particularity of this dataset, as it is possible to see in figure 5.8, is that close

temporal explosions occurs at similar distances from the ship. This means that

given a signal si, with high probability the most similar signal in term of shape

is the signal si+d with d close to 1 or −1 i.e. a signal recorded in proximity of

instant ti. This property allows to test in a natural way the performances of a

similarity or dissimilarity function comparing the "order" that it induces on the set
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Distance Distance Optimality

MLA Convolution 0.2369

Euclidean 0.3889

Pearson Correlation 0.2813

Table 5.3: Distance optimality on geological signals

of signals. In particular let s1, . . . , sn the set of signals recorded at starting time

t1, . . . , tn respectively, and the natural order of the signals can be represented by the

permutation P = (1, 2, . . . , n). Given a generic distance d, let D the n× n distance

matrix containing all the pairwise distances between the signals i.e. Di,j = d(si, sj)

with 1 ≤ i, j ≤ n. A measure of goodness of distance, can be defined by the distance

optimality function so defined:

Figure 5.8: Schema of the experiment

Definition Distance Optimality

Given a distance d and a dataset S of size N , and let D the pairwise distance matrix

with Di,j = d(si, sj), si, sj ∈ S and 1 ≤ i, j ≤ n, the distance optimality of d is

defined as:

do =
n∑

i=1

|i− j − 1|
n− 2

with j = argmin
1≤k≤n,k 6=i

Di,k (5.30)

What is expected, in the case of a good distance measure, is a do ≈ 0. It was

assessed the performances of the distance induced by MLA Tree Kernel (using the

equation 5.14 on its Gram’s matrix) and compared its results with two common

distances i.e. Euclidean distance and Spearman correlation distance by the distance

optimality function. Note that the used Spearman correlation distance is defined as

1 − r where r is the Spearman correlation index defined in 2 by equation 2.8. The

results of this analysis are shown on table 5.5.3. As it is possible to see, the induced

distance from MLA Convolution Kernel can exploit better the natural similarity

between signals than the other classic measures.

This chapter has shown how the data extracted by MLA can be optimally or-

ganized in a tree of intervals, encoding the shape properties of a signal, using a

particular aggregation rule. It was shown also an example of kernel trees properly

adapted to be used with this tree representation induced by MLA. In addition an-

other convolution kernel and based on local correlations was introduced. The first
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results are encouraging although it is necessary to do a more systematic study on

the class of kernel functions that can be induced by the proposed aggregation rule

on the interval representation and also on their properties and extensions. The ma-

jor suggestion of the study carried out in this chapter is the connection between

the class of algorithms on trees and graph and the class of digital signal processing

technique. In fact, the MLA transformation can be useful to search for relation

between operation on trees and graph and signal manipulation in time or frequency

domain.



Chapter 6

Conclusions and Future Directions

This thesis has introduced a new methodology called Multi Layer Analysis (MLA),

and its use on several contexts such as Pattern Discovery, Classification, Clustering

and also Test of Randomness. In chapter 3, 4, and 5 several application domains

related to these problems have been faced with the MLA approach. In some sense,

the use of MLA can be considered as a general boosting step to improve classic

algorithms in the fields of classification or clustering. The main idea behind MLA

is the transformation from the space of one-dimensional signals into a new space

called the space of intervals in which a more detailed analysis could be performed.

In particular, in chapter 3 it has been shown that, by using particular aggregation

rules on such space, it is possible to characterize different signal shapes; this al-

lows to approach some key problems in biology i.e. the nucleosome spacing problem.

Moreover, in chapter 5 it has been proposed another aggregation rule that is

capable to represent a one-dimensional signal in terms of a tree of intervals, and

thus permits to express or characterize any kind of shape. This point has strong

implications since it establishes a connection between the class of algorithms that

process one-dimensional signal such as digital signal processing techniques, and

algorithms on trees and graphs. This result is really important because it makes

possible the application of particular transformations on a one-dimensional signal,

modifying its tree representation and viceversa. In this sense further investigation

in this direction will be performed.

The final consideration is that MLA can be fruitfully applied on problems that

involve the processing of one-dimensional signals, such as Geology, Biomedicine,

Biology and other disciplines. In some cases MLA on such problems have compa-

rable or sometimes superior performances to other methodologies currently applied

for the same purposes. Further investigation on MLA properties and its extension

to multidimensional data will be investigated.
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