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Abstract. A three-dimensional multi-domain anisotropic boundary element formulation is 
presented for the analysis of polycrystalline microstructures. The formulation is naturally 
expressed in terms of intergranular displacements and tractions that play an important role in 
polycrystalline micromechanics, micro-damage and micro-cracking. The artificial morphology is 
generated by Hardcore Voronoi tessellation, which embodies the main statistical features of 
polycrystalline microstructures. Each crystal is modeled as an anisotropic elastic region and the 
integrity of the aggregate is restored by enforcing interface continuity and equilibrium between 
contiguous grains. The developed technique has been applied to the numerical homogenization of 
SiC and the obtained results agree very well with available data. 

Introduction 

Macroscopic material properties depend on the material microstructure. Understanding the link 
between micro- and macro-properties is an important and technologically relevant task of modern 
Materials Science. The estimation of the effective material properties can be carried out at different 
levels [1]. A modern approach to material homogenization is the use of numerical models for the 
simulation of the material behavior at the microstructural scale [2]. 
Polycrystalline materials constitute an important class of heterogeneous materials [3]. Many 
engineering materials (metals, ceramics) present a polycrystalline microstructure. The internal 
structure of polycrystals is determined by the size and shape of the grains, by their crystallographic 
orientation and by different types of defects. A crucial role in the determination of the 
polycrystalline aggregate properties is played by the intergranular interfaces and their defects [4]. 
The polycrystalline microstructure can be investigated by using different experimental techniques 
[5,6]. These provide fundamental information but require sophisticated equipment, material 
manufacturing and preparation and complicated post-processing, resulting then generally 
expensive and time consuming. A viable alternative, or complement, to the experimental 
characterization is offered by Computational Micromechanics [2]. The dramatic increase in 
computational power and the formulation of reliable mathematical models allow to simulate the 
response of complex microstructures at little cost, thus complementing and accelerating the 
experimental campaigns when, for example, the design of a new material is pursued. 
In the present study, a three-dimensional boundary integral formulation for the analysis of 
polycrystalline microstructures is presented. The technique is alternative to the more used FEM 
and its typical features are: a) the simplification in the artificial microstructure generation and 
modelling, especially in relation to the meshing of the artificial microstructure, since only the 
discretization of the grains surface is required; b) the microstructural problem is formulated 



directly in terms of intergranular displacements and tractions, which play an important role in 
polycrystalline micromechanics, especially when damage and micro-cracking are involved [7]. 

Artificial microstructure 

The artificial microstructure must retain the main topological, morphological and crystallographic 
features of the aggregate. For polycrystalline materials, Voronoi tesselations are widely used for 
the generation of the microstructural models [4,8,9]. The Voronoi cells are convex polyhedra 
bounded by flat polygonal convex faces. Voroni tessellations have the advantage of being 
analytically defined, relatively simple to generate and possess some features that make them 
suitable for numerical treatment, (straight edges and flat faces). Here the Hardcore Voronoi 
tessellation is adopted for generating the microstructure: the additional hardcore constraint 
produces more regular grains and tessellations. 
The assignation of a specific orientation to each crystal of the aggregate completes the 
microstructure representation. In this work, each grain is assigned a random orientation from a 
uniform distribution in the group of rotations in the three-dimensional space. 

Microstructure boundary element model 

Material modelling. Each grain is modeled as a three-dimensional linear elastic orthotropic 
domain with arbitrary spatial orientation. This is not restrictive, as the majority of single metallic 
and ceramic crystals present general orthotropic behavior. 
Grain boundary element formulation. Each crystal is modeled by using the Boundary Element 
Method (BEM) for 3D anisotropic elasticity [10]. The polycrystalline aggregate is seen as a multi-
region problem, so that different elastic properties and spatial orientation can be assigned to each 
grain [11]. Given a volume bounded by an external surface and containing gN  grains, two kinds of 

grains can be distinguished: the boundary grains, intersecting the external boundary, and the 
internal grains, completely surrounded by other grains. Boundary conditions are prescribed on the 
surface of the boundary grains lying on the external boundary, while interface continuity and 
equilibrium conditions are forced on interfaces between adjacent grains, to restore the integrity of 
the aggregate. In general, the boundary integral equation for a generic grain kG  is written 
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where k
iu  and k

it  denote boundary displacements and tractions of the grain kG , and k
ijU  and k

ijT  

represent the components of the 3D anisotropic displacement and traction fundamental solutions. 
The integrals appearing in Eq. 1 are extended over the entire surface of the grain, given by the 
union of contact surfaces CB , in common with other grains, where interface conditions apply, and 

non-contact surfaces NCB , where boundary conditions apply. Eq. 1 is complemented by the 
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where the overbar denotes prescribed quantities, while the tilde represents quantities expressed in 
an interface local reference system, more suitable for the interface conditions. The interface 
conditions involve surface displacements and tractions from two different grains, kG  and jG . 

After discretization and integration of Eq. 1 for each grain, the final system of equations for the 
aggregate can be written 
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where the vectors kx  contain the unknown components of displacements and tractions, the matrix 

blocks kA  are the grain boundary element matrices, the matrix I  contain the coefficients of the 

interface conditions and the terms ky  stem from the boundary conditions. System 3 is highly 

sparse and the use of specialized sparse solvers is then desirable to speed up the numerical 
solution. 
Grain boundary element discretization. The presented formulation has the remarkable 
advantage that only meshing of the grains surfaces is required. The artificial microstructure is, in 
this context, a collection of flat convex polygonal faces. Plane triangular linear elements are used 
to discretize such faces. Constant or linear discontinuous triangular elements are implemented for 
representing the unknown boundary fields. The mesh generator Triangle (http://www.cs.cmu 
.edu/~quake/ triangle.html, [12]) is used for the creation of a two-dimensional high-quality mesh 
of each plane cell face. Since the Voronoi tessellations used for microstructure modelling have 
stochastic nature, care must be taken to ensure mesh consistency and homogeneity to the greatest 
extent. This is achieved by introducing a discretization parameter md  governing the mesh density, 

so to create meshes as homogeneous as possible: md  sets the number of segments in which the 

average length edge in the tessellation is subdivided into. Fig. 1 shows the mesh of a tessellation 
with 150 grains and the representative mesh of few single grains taken from the same tessellation. 

 
Figure 1: Mesh of a tessellation containing 150 grains and representative mesh of few grains. 

Numerical estimation of elastic properties of SiC 

Before proceeding with the determination of the effective properties of the considered polycrystals, 
the developed technique has been tuned in terms of mesh density and boundary element type. As 
already described, the mesh density is controlled by the parameter md . Moreover, in this work, two 

different types of elements have been implemented: constant elements and discontinuous linear 



elements. To tune the method, a copper polycrystal with 10gN   grains is first analyzed. The 

material properties for the copper crystals are given in [8]. The aggregate is subjected to two 
different sets of linear displacement boundary conditions, the first enforcing a macro elongation 

33  and the second enforcing a macro shear strain 13 . The convergence of the computed stress 

volume averages is checked, in order to set both mesh density md  and element type for the 

subsequent set of computations. Enforcing 33  by means of linear boundary displacements allows 

to compute the third column of the apparent stiffness matrix Ĉ  for the aggregate, and in particular 

13Ĉ , 23Ĉ  and 33Ĉ . In the same way, by enforcing 13 , the fifth column of the apparent stiffness 

matrix can be evaluated, and in particular 55Ĉ . The numerical convergence of such quantities is 

shown in Fig. 2. In the plot, the apparent quantities are normalized with respect to the homologous 
value obtained by using the most refined scheme, i.e. the finest mesh with linear discontinuous 

elements, so that the trend of the quantities ˆ ˆ/ ref
ij ijC C  is shown. The linear scheme does not show a 

remarkable dependence on the mesh refinement for any considered apparent quantities, and the 
computed values can be considered converged even for the coarser mesh. The same behavior is 
noticed if constant traction boundary conditions are enforced and the components of the 
compliance matrix are evaluated, instead of the stiffness matrix. As a consequence, linear 
discontinuous elements with 1md   will be used in the following computations. 

 

 
Figure 2: Convergence of apparent elastic properties with element type and mesh density. 

After numerical tuning, the macroscopic effective properties of silicon carbide (SiC) are estimated. 
The performed analysis takes into account the stochastic nature of the microstructure, in terms of 
grain size, morphology and orientation. Aggregates with 10gN  , 20, 50, 100 and 150 grains have 

been simulated and for each number of grains 100RN   realizations have been generated. Each 

realization differs from the others in terms of both geometry and crystallographic orientation. 
Given a polycrystalline realization, consisting of gN  grains and subjected to a given set of 

consistent boundary conditions, since the material is supposed to not develop microcracks, stress 
and strain volume averages can be used to extract the apparent elastic modula, see for example 
[1,2]. Kinematic uniform boundary conditions, i.e. linear displacement boundary conditions 



corresponding to prescribed macro-strains, have been enforced on each simulated realization. 
Table 1 lists the elastic constants for hexagonal single crystal SiC, as measured by Arlt and 
Schodder [14]: these constants define the material of the single grains, which are then given a 
random orientation in the three-dimensional space. Fig. 3 shows the mean values and the scatter of 
the apparent Young’s modulus and shear modulus over the considered number of realizations: 
since linear displacement BCs are applied, the apparent properties approach the effective ones 
from higher values; moreover, it is worth noting how the scatter decreases when an higher number 
of grains is considered. The values of the effective elastic modula E and G for polycrystalline SiC 
have been reported by various authors, see Lambrecht et al. [15] and references therein. In this 
study, the average values, calculated over 100RN   realizations of aggregates with 150gN   

grains, are E=456 GPa and G=193 GPa, which are in very good agreement with the values E=448 
GPa and G=192 GPa, reported by Carnahan [16], who used low porosity samples and extrapolated 
the values to zero porosity. The average computed value of the Poisson ratio was 0.181  , close 
to the value 0.168   yielded by Carnahan estimations. 
 
 

11C  12C 13C 33C 44C 66C  

502 95 96 565 169 203.5

Table 1: Elastic constants for hexagonal single-crystal SiC [Gpa]. 

 
Figure 3: Apparent properties of SiC against number of grains in the simulated aggregate.  

Summary 

A three-dimensional boundary element formulation for the analysis of polycrystalline 
microstructures has been developed. The technique allows a remarkable simplification in the 
generation of the artificial microstructure model and it is directly formulated in terms of 
intergranular displacements and tractions, which play an important role in polycrystalline 
micromechanics. The developed method has been applied to the determination of the effective 
properties of silicon carbide and the results have shown remarkable agreement with literature data 
in the framework of numerical homogenization. 
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