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SUMMARY.

The paper presents a recently developed [1] rational denvaf the strain gradient elasticity
model from the nonlocal (or integral) model. This kind of idations are generally recovered just
by an expansion into a Taylor series of the nonlocal straid fi to a certain order, and then
operating the integration (or averaging) over the spatigraction domain. The latter procedure
is fully consistent when the analysis is performed over amunded domain, but when a classical
bounded domain is analyzed it lacks in reproducing the Heechigher-order boundary conditions.
In the present contributions the complete derivation ideaeld employing an extended version of
the Principle of Virtual Power (PVP), written in a speciafrfoin order to comply with the non-
simple nature of the nonlocal material. Namely, extra teanesnvoked in both internal and external
virtual power. The body domain is then decomposed in twadisgd subdomains: a core domain
(V.) and a boundary layer doma{iiv,). The latter domain is a boundary layer with a fixed thickness
equal to the finite interaction distande, The passage from the nonlocal format to the gradient one
is achieved inserting the standard strains Taylor exparieithe core domain contribution, whereas
for the boundary layer domain, a unidirectional expansienies along the normal direction to the
external surfacé is adopted. By means of the above procedure, and with thegubat passage to
the limit for R — 0, itis observed that the PVP transforms itself into anoth&p Which describes a
strain gradient model. The inspection of the PVP deriveddead to the governing field equations
as well as the higher order boundary equation of a standegith gfradient model.

1 INTRODUCTION

The theoretical link between gradient (or weak nonlocaf) exegral type (or strong nonlocal)
models has been the subject of many contributions [2]. Thmluspproach followed to derive
gradient theory starts from from the nonlocal integral mMashel then expanding into a Taylor up to
the second order term the nonlocal field, a second orderegratfieory is recovered. Alternatively,
when the kernel functional of the integral operator is chdaesuch a way to result a Green function
of some partial differential equation then a mathematigaliealence is obtained between the two
approaches. In both cases the link is rather complete wreearthlysis regards unbounded bodies,
whereas when bounded bodies are considered the issue ef bigler boundary conditions remains
not fully understood.

This paper is devoted to consistently transform a givenaaailmechanical problem of elasticity
into a counterpart gradient elasticity problem, includihg proper derivation of the related higher
order boundary conditions. The fundamental theoreticalpgent require to assess this result is
the Principle of the Virtual Power (PVP), written in a specfirmat related to the non local nature
of the problem.



The procedure proposed starts dividing the bounded domaifthe nonlocal elastic body into
two subdomaind” = V, U V,,, whereV, is the core domain, ant, is a boundary layer domain of
thicknessk

Vo={x eV]|||x—ax]| =6 < R} Q)

wherex, is a generic point on the bounda$y= 0V of the body. The quantit® > 0 is the radius
of the nonlocal influence sphere, i.e. the sphere domain iohndhgeneric poink’ gives a nonlocall
constitutive contribution to the point (See Fig. 1)

Figure 1: Geometrical sketch showing the domain deconipasihto acore domain(V,) and a
boundary layer(V,, = V' \ V), and the influence regiafi(x) (red dotted area) in different typical
locations.

A second point of our procedure consists in the approximaitiside the spherical influence
regionS(x), Va € V. of the local strains by a Taylor series up to the second oeter.tWhereas
at the pointse € V;, the approximation is achieved by a Taylor series expans@rga direction on
the normaln to the surfaces. = 0V.. The procedure based on the transformation of the Principle
of Virtual Power follows three steps, namely:

a) written with reference to a nonlocal elastic problem;

b) the strain field are expanded into a Taylor series if thatdeiin V. or in a normal directional
expansion if the point is if;;

c) finally a limit for R — 0 is performed and we observe that the PVP originally writiemnaf
nonlocal problem is consistently transformed into a PVPafgradient material model.

2 NONLOCAL ELASTICITY MODEL
Let us consider an elastic body occupying a finite donidinf boundary surfaces = 9oV.
e = {e;;} is the small strain tensor related to the displacement vecte: {u;} by compatibility



relatione = V*u. The material is not simple, namely, the stress at a poiat V' is reactive not
only to the local strair(x), but also to a nonlocal one, sgyx), expressed as

n(x) = A(De, ) := /V a(|r)) [e(® +7) —e(x)]dV(r), )

De

wherer is the position vector of the integration point with respect to the field point, i.e. r =
' — x. Equation (2) defineg as the mean weighted value of the strain difference fieddr) :=
e(x + r) — e(x) at the pointe. The material is featured by a stress power as

W:i=0:£+s:7, 3)

wheree andr) are the intrinsic (constitutively independent) deformatmodes of the material amd
ands are (symmetric) stresses power-conjugaté ahdr), respectively. The scald is the power
for unit volume expended by the surrounding material thiotige actual deformation mechanism
over a material particle at the generic time The deformation of the body is constrained by the
boundary conditions

u=1u on Sy. (4)

The averaging operatod, of eq. (2), is self-adjoint, that is the following Greermpéyidentity
holds:
/ s: ADe)dV = / A(Ds) : edV 5)
\%4 |4

for any (tensor, or vector, or scalar) fieldss. Nonlocal theory features and specific properties of
the kernel functionx are available in [3, 4].

2.1 The principle of the virtual power (PVP) for a nonlocal eliaity model

Let us assume that the body is in an equilibrium state undeedmdy forced in V' and tractions
tonS. Also, lete andm, denote any virtual strain field descending from some (ooiatiis) virtual
displacement field:, such thatu = 0 on S,, C S. Then, the extended PVP for the considered
nonlocal material can be cast, recalling the stress powea$3

/V(a;é+s:ﬁ)dvz/vb-adv+/st-ada (6)

Lint Lext

under the kinematic conditions
n=AMDE) and €=V’u inV #=0. onS,. 7)

Ling, Lext denote the internal and external virtual powers. Extendeti$ of the PVP for nonlocal
models are not known from the wide literature, except onp@sed by the authorg]
By (7)1, the Green identity (5) can be used to rewrite (6) as follows

[/[(0‘+A(DS)} :édV:/Vb~iLdv+/St~iLda @)

T



where the stress tens®t= {T;;}, defined as
T :=0+ A(Ds), 9)

denotes the (nonlocaldptal stress power-conjugate of the local strain Equation (8) exhibits the
format of a standard PV, playing the role of Cauchy stress, so that, following stadg@ocedures
it is possible to derive the equilibrium equations relatiing nonlocal stres¥, and thus the stresses
(o, s), to the loadgb, t), namely

V.-T+b=0 inV
(10)
n-T=t on Sy :=5/8,

In agreement with the absence of extra tractions applied,ono extra boundary conditions
emerge with the present nonlocal model. This is in contrast gradient model, which instead
contemplates extra boundary conditions.

2.2 The constitutive equations of nonlocal elasticity

A general formulation of the constitutive equations of mmall elasticity can be achieved by
assuming the existence of a free energywas- (e, n), that is, a function of the constitutively
independent deformation modes by which the stress powes ¢@hstructed. Then, under isothermal
conditions, the Clausius-Duhem inequality reads, rawalihe mentioned stress power, as

o:é+s:n—1U(e,n) >0 (11)

whereg, ©7 denote strain rates occurring in a real deformation meshaof the material. Assuming
that the material can undergo independent deformation smedendn and following a classical
reasoning, inequality (11) gives the state equations:

o o
= = —. 12
=% T (12)
A simple expression fog may be [5]
1/):1€:C:€+1€:C:A(D€) (13)
2 2 _—
n
from which we obtain
a:C:s—i—%C:A(DE), s:%C:E. (14)
Then, substituting (14) into (9) gives the constitutive &tipn for the total stress, i.e.
T=C:(e+ ADe)). (15)

This expression is quite similar to the elasticity model ahgen [3]



3 DERIVATION OF THE PVP FOR GRADIENT ELASTICITY

In the previous section we have established the PVP for cahédasticity. In the present section
we want to find out a way to derive a gradient elasticity modeinf the above nonlocal model.
For this purpose, let the domalni occupied by the nonlocal material described in Section 2 be
decomposed in two subdomains, day= V. UV, (see Figure 1). The subdomaif) (here called
core domaif collects all pointz € V having a distancé = §(x) from the boundary surfacé
larger than the influence distangei.e. V. = {x € V : §(x) > R}. The subdomaif}, denotes the
boundary layerof constant thicknes®, which collects all points: having a distancé(x) from S
smaller thanR, i.e. V;, = {x € V : §(z) < R} and circumvents the core domdif. Obviously, at
all pointz € S, := 0V, itis 6(x) = R. A featuring difference betwedr. andV;, is that the sphere
V(x) of radiusR is entirely contained withif whenever it is centered at a pointe V., whereas
instead it exceeds the boundary surf&cehenever it is centered at a pomte V;, the more the
closerisx to S.

After [4] one can state that at any pointe V. the distanceé (x) from the boundary surfacg
can be considered sufficiently large to admit that the maltearticle atx is subjected to particle
interactions from the whole surrounding material up to aimakdistanceR, equally distributed in
all directions. Instead, for a particle located at a paint V, (whered < R), the particle interac-
tions originating from all points:’ out of S are missing, even ift’ — x| < R. The latter physical
circumstances are macroscopically accounted by the nalmioadel by means of the specifiter-
action region(= effective integration domainf3(x). In fact, at a pointc € V., B(x) turns out to
coincide with a spher®(x) of radiusR centered at, entirely contained withiV; whereas at a
pointx € V,, B(x) is a sphere like in the previous case, but has a spherical fcagight R — §
(protruding fromS) cut out, i.e.B(x) C V(x).

At this point, let us reconsider (2) and let us expand theuglrstrain fielde(x 4 r) by a Taylor
series up to, say, the second-order term, that is

Elx+r)—&(x)=r VE(x)+ %rr : VVE(x). (16)
We can therefore write, with the aid of a partial indicial aidn,
A(DE) = /V ria(lr]) du(r) &, +/V Srirsair]) du(r) &, (17)
W I

where the quantities

Wi(x) := /ria(|r|)dv(r) :/ rya(|r|) do(r)
\% B(x)
(18)
I(@) = / Lrgrja(r]) dor) = / Lrirja|r]) dor)
v B(x)
define, respectively, the first and the second-order weilghiements of the interaction regidi{x)
with respect to the planes througtparallel to the co-ordinate planes.

For everyx € V., whereB3(x) is a sphere (entirely contained withif), by the isotropy of the
kernel functiono and the radial symmetry @ it is

W; =0, I;; = R*1y6;;, Vi, j = (1,2,3) (19)



where R?I, = second order weighted moment of the sphere of radiugith respect to a plane
through the center.

Instead, for anyr within the boundary layel;, —in which the sphere of radiuB centered in
x exceeds the boundary surfae— assuming local Cartesian orthogonal axesewith z3 lying
upon the normah to S, we have

Wy =Wy = O7 Wg = RW,, (Wn < 0)
(20)

Iy = Iy = R?1,, I3 = R*I,, Lij=0Vi#j

which holds for anyr € V, whereadV,,, I; and[,, turns out to be functions @ Therefore we can
rewrite (17) as

A(DE) = /Va(|r|)[é(as+r)—é(a:)] dv(r):/g( alir (Wie + gl dr), @D

thatis , by (19) and (20),

R? Iy é” = R? IOAé Ve eV,
A(Dg) :== (22)

RW,0,& + R1,,02,& + R’I,Aré  Vxz €V}

where A = Laplacian,At := A — 9?2, tangential Laplacian over a surface having a constant
distance) from S.

At this step, it is possible to approximate the internaluattpowerL;,; of (6) making reference
to the domain decomposition of Figure 1 and writing

Ling :/V [a:é—|—s:A(Dé)]dv+/Vb [0:&+s: ADg)|dv

c

A

= / [0 : &+ (—R?I,Vs):VE]dv + / R?Iys : Opéda, +A (23)

V. —— Se

B

:/ [0:&+T:VE)dv+ A+ B

Ve

where we have introduced the double strestefined as
T:= —R*I)Vs. (24)

Then, let the virtual transformation within the boundarydaV;, be featured by a linearly varying
displacement along the normal fibers. Hence denotingthe local abscissa on the generic fiber



(0 <1< R), we can write:

u(x + In(x)) = u(x) + 10,u(x)

Oné(x + In(x)) ~ 0,&(x) Vi:0<I<R. (25)

02, &(x +In(z)) ~0

Aré(x + In(x)) =~ Até(x)

Next, taking into account (25), we can write the sdm- B of (23) as
R
A+ B= / / j{o: (E+10,8)+s: (RW,0,& + R*I;Ar&)} dida, + / R?Iys : 9,€ da,
S.J0 Se

‘ I 1
:/S R/ jRodl | : e+ E/ JR3I, s)dl | : Apé+
c 0 0

s(0) s(1)

1 R
+ (/ jR(lo + RW,s)dl + R2]03> : 6‘né}dac
0

R

s(2)

(26)

wherej is the Jacobian to pass from the geometry of the surfadecated at a constant distance
from S. (0 <1 < R) to the geometn.. We admit that forR — 0 there exist the finite limits

R
s = [ kol — o
0

R
s =y [ iR Ll — o) @7)
0

R
s = %/ jR(lo + RW,s)dl + R*Iys — o
0
and that as a consequence the quamtity B of (26) becomes, at the limit faR — 0, as follows:

A+ B = / (3(0) e+ s Arg4+ 5P Op€)da, —
s

c

— /(0'(0) ce4+ oW Apg 4+ 0@ :9,8)da. (28)
S
J
Next, using the notatiod := —Vrn (Weingartern tensor) anff := —Vt - n (twice the mean

surface curvature) and applying the surface divergenaeehewhere appropriate, we can write the



following equalities

/ o© . 2da — / o© : (nd,a + Vrit)da

. s (29)

_ / - 0® 0,0~ (Vo + Hn) -0 @) da,
S

/Sa'(l) : Apéda = f/s(vT + Hn)oW:Vréda = /SATU<1> : Vada
= /S AreV : (nd, o+ Vra)da (30)
- /S{n-ATa(U Ot — (Vr + Hn) - [ATU(U} ~ﬁ}da
where we have used the equaliyr + Hn) - (Vr + Hn) = A, and finally

/a<2> : 0,&da = /a<2> 20, Vada = /a<2> :(nd?, 4+Vro,u + K - Vya)da
S S S \\/0-/

= / [—(VT + Hn) - o . Optt + (K - 0-(2)) . VT'&]da (32)
S
= —/ (Vo +Hn) o -0,a+ (Vr+ Hn) - (K -0®)-ada
S
where the following equality has been used [6]:

0, Vi =nd? 4+ Vo, + K - Vri. (32)

nn

Then the integrall of (28), noting that: - K = 0, can be cast in the following form, i.e.
—J :/ {(VT +Hn) 0 4 (Vp + Hn) - [ATaU) +VT'K-0'(2)} } -ada
s
+ / {—n o©® _n. [AT oW 4+ (Vo + Hn) - 0'(2)} }  Opida (33)
s
:/(q~&+m~5‘n'&)da
s

Here, the symbolg andm denote some extra (ordinary and double) boundary tractansed

in by the approximation process, whereas corresponditgyight hand side of (33) represents a
concomitant extra virtual external power. At the limit fBr — 0, assuming that (24) continues to
hold, we can obtain from (23)

Liny — / (o : &+ TiVe)dv — / (g-u+m-9o,a)da. (34)
v s

This enables us to state that, as a consequence of the mappwoximation process within the
decomposed domaii = V. U V}, and the subsequent passage to the limitHor> 0, the PVP (6)



featuring the nonlocal elasticity model takes on a limitficas

/(0':é—!—TEVE:)dv:/b-ﬁdv+/(p~11+m-8nﬁ)da. (35)
% 4 S

Lint Lext

where we have set := t+ q. We note that the surface integral of (34) originates froraraibution

to the internal virtual power pertaining 16, but it is transformed into a contribution to the external
virtual power through the passage to the limit #®r— 0, as shown by (34). Equation (35) can be
recognized as the PVP for a first strain gradient elasticibgleh featured by body forcdswithin

V', as well as by ordinary tractions and by double tractions: overS. The exploitation of the
latter PVP, in which the sé€b, p, m) is taken as the primitive load parameters, leads to the fredd a
boundary equilibrium equations governing the derived gratdnodel, including the related higher
order boundary conditions. This task is achieved in nextiGec

4 THE CORRESPONDING GRADIENT ELASTICITY MODEL

Since the analytical procedure by which the field and bouneguilibrium equations can be de-
rived from (35) is well known from the literature [6, 7, 8], \8kip this procedure and limit ourselves
to report the final field and boundary equations. These read

V-T+b=0, T =0-V-1 inV (36)

p=n-T—(Vr+Hn) -(n-7)=0
on S;. 37)

m=nn:T

The total stres§" = {T;,} is the gradient counterpart of the analogous total stiégertaining
to the nonlocal model. The boundary equilibrium equatid@i® hold onsS;, whereas orf,, the
displacement: and its normal derivative,,u have to be specified, namely

u=u, Opt =g ons,. (38)

Equations (36) and (37) have been recently [9] interpretetha equilibrium equations of a
Cauchy continuum circumvented by a membrane-like bountiargr S under the surface stress
3 = n - 7 and obeying the principles of surface mechanics [10].

The constitutive equations of the derived gradient modellmobtained starting from the free
energy, which —in accord with the stress power of (35)— is makethe formy = (e, Ve).
Hence, by the Clausius-Duhem inequality, that is,

o:é4+T:VéE—1(e,Ve) >0 (39)
we easily obtain
7= %f’ T a(avws)’ (40)
and thus - -
T=% "V (a(w)> ' “h



A simple form fory) may be chosen as
1
) = %s :C:e+ 5%0 = [(Ve)' - (Ve)], (42)

whereC is the classical fourth-order moduli tensor of isotropigsticity and/ is an internal length
scale parameter. By (42), equations (40) and (41) take tihe fo

oc=C ¢, T =(*Vo, T=C:(e—’Ae), (43)

which conform to the well known Aifantis model of gradienasticity [11]. Equation (43)is the
gradient counterpart of (15).
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