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SUMMARY.
The paper presents a recently developed [1] rational derivation of the strain gradient elasticity

model from the nonlocal (or integral) model. This kind of derivations are generally recovered just
by an expansion into a Taylor series of the nonlocal strain field up to a certain order, and then
operating the integration (or averaging) over the spatial interaction domain. The latter procedure
is fully consistent when the analysis is performed over an unbounded domain, but when a classical
bounded domain is analyzed it lacks in reproducing the so-called higher-order boundary conditions.
In the present contributions the complete derivation is achieved employing an extended version of
the Principle of Virtual Power (PVP), written in a special form in order to comply with the non-
simple nature of the nonlocal material. Namely, extra termsare invoked in both internal and external
virtual power. The body domain is then decomposed in two disjointed subdomains: a core domain
(Vc) and a boundary layer domain(Vb). The latter domain is a boundary layer with a fixed thickness
equal to the finite interaction distance,R. The passage from the nonlocal format to the gradient one
is achieved inserting the standard strains Taylor expansion for the core domain contribution, whereas
for the boundary layer domain, a unidirectional expansion series along the normal direction to the
external surfaceS is adopted. By means of the above procedure, and with the subsequent passage to
the limit forR→ 0, it is observed that the PVP transforms itself into another PVP which describes a
strain gradient model. The inspection of the PVP derived does lead to the governing field equations
as well as the higher order boundary equation of a standard strain gradient model.

1 INTRODUCTION
The theoretical link between gradient (or weak nonlocal) and integral type (or strong nonlocal)

models has been the subject of many contributions [2]. The usual approach followed to derive
gradient theory starts from from the nonlocal integral model and then expanding into a Taylor up to
the second order term the nonlocal field, a second order gradient theory is recovered. Alternatively,
when the kernel functional of the integral operator is chosen in such a way to result a Green function
of some partial differential equation then a mathematical equivalence is obtained between the two
approaches. In both cases the link is rather complete when the analysis regards unbounded bodies,
whereas when bounded bodies are considered the issue of higher order boundary conditions remains
not fully understood.

This paper is devoted to consistently transform a given nonlocal mechanical problem of elasticity
into a counterpart gradient elasticity problem, includingthe proper derivation of the related higher
order boundary conditions. The fundamental theoretical equipment require to assess this result is
the Principle of the Virtual Power (PVP), written in a specific format related to the non local nature
of the problem.
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The procedure proposed starts dividing the bounded domainV of the nonlocal elastic body into
two subdomainsV = Vc ∪ Vb, whereVc is the core domain, andVb is a boundary layer domain of
thicknessR

Vb = {x ∈ V | ‖x− xb‖ = δ ≤ R} (1)

wherexb is a generic point on the boundaryS = ∂V of the body. The quantityR ≥ 0 is the radius
of the nonlocal influence sphere, i.e. the sphere domain in which a generic pointx′ gives a nonlocal
constitutive contribution to the pointx (See Fig. 1)

Figure 1: Geometrical sketch showing the domain decomposition into acore domain(Vc) and a
boundary layer(Vb = V \ Vc), and the influence regionS(x) (red dotted area) in different typical
locations.

A second point of our procedure consists in the approximation inside the spherical influence
regionS(x), ∀x ∈ Vc of the local strains by a Taylor series up to the second order term. Whereas
at the pointsx ∈ Vb the approximation is achieved by a Taylor series expansion along a direction on
the normaln to the surfaceSc = ∂Vc. The procedure based on the transformation of the Principle
of Virtual Power follows three steps, namely:

a) written with reference to a nonlocal elastic problem;
b) the strain field are expanded into a Taylor series if the point is inVc or in a normal directional

expansion if the point is inVb;
c) finally a limit for R → 0 is performed and we observe that the PVP originally written for a

nonlocal problem is consistently transformed into a PVP fora gradient material model.

2 NONLOCAL ELASTICITY MODEL
Let us consider an elastic body occupying a finite domainV of boundary surfaceS = ∂V .

ε = {εij} is the small strain tensor related to the displacement vector u = {ui} by compatibility
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relationε = ∇su. The material is not simple, namely, the stress at a pointx ∈ V is reactive not
only to the local strainε(x), but also to a nonlocal one, sayη(x), expressed as

η(x) = A(Dε,x) :=

∫

V

α(|r|) [ε(x+ r)− ε(x)]
︸ ︷︷ ︸

Dε

dV (r), (2)

wherer is the position vector of the integration pointx′ with respect to the field pointx, i.e. r =
x′ − x. Equation (2) definesη as the mean weighted value of the strain difference fieldDε(r) :=
ε(x+ r)− ε(x) at the pointx. The material is featured by a stress power as

W := σ : ε̇+ s : η̇, (3)

whereε̇ andη̇ are the intrinsic (constitutively independent) deformation modes of the material andσ
ands are (symmetric) stresses power-conjugate ofε̇ andη̇, respectively. The scalarW is the power
for unit volume expended by the surrounding material through the actual deformation mechanism
over a material particle at the generic timet. The deformation of the body is constrained by the
boundary conditions

u = ū on Su. (4)

The averaging operatorA, of eq. (2), is self-adjoint, that is the following Green-type identity
holds: ∫

V

s : A(Dε) dV =

∫

V

A(Ds) : ε dV (5)

for any (tensor, or vector, or scalar) fieldss, ε. Nonlocal theory features and specific properties of
the kernel functionα are available in [3, 4].

2.1 The principle of the virtual power (PVP) for a nonlocal elasticity model
Let us assume that the body is in an equilibrium state under some body forcesb in V and tractions

t onS. Also, let ε̃ andη̃, denote any virtual strain field descending from some (continuous) virtual
displacement field̃u, such thatũ = 0 on Su ⊆ S. Then, the extended PVP for the considered
nonlocal material can be cast, recalling the stress power (3), as

∫

V

(

σ : ε̃+ s : η̃
)

dV

︸ ︷︷ ︸

Lint

=

∫

V

b · ũ dv +

∫

S

t · ũda

︸ ︷︷ ︸

Lext

(6)

under the kinematic conditions

η̃ = A(Dε̃) and ε̃ = ∇sũ in V ũ = 0. on Su. (7)

Lint, Lext denote the internal and external virtual powers. Extended forms of the PVP for nonlocal
models are not known from the wide literature, except one proposed by the authors [?].

By (7)1, the Green identity (5) can be used to rewrite (6) as follows
∫

V

[

(σ +A(Ds)
]

︸ ︷︷ ︸

T

: ε̃ dV =

∫

V

b · ũdv +

∫

S

t · ũ da (8)
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where the stress tensorT = {Tij}, defined as

T := σ +A(Ds), (9)

denotes the (nonlocal)total stress, power-conjugate of the local strainε. Equation (8) exhibits the
format of a standard PVP,T playing the role of Cauchy stress, so that, following standard procedures
it is possible to derive the equilibrium equations relatingthe nonlocal stressT , and thus the stresses
(σ, s), to the loads(b, t), namely

∇ · T + b = 0 in V

n · T = t on St := S/Su






(10)

In agreement with the absence of extra tractions applied onS, no extra boundary conditions
emerge with the present nonlocal model. This is in contrast to a gradient model, which instead
contemplates extra boundary conditions.

2.2 The constitutive equations of nonlocal elasticity
A general formulation of the constitutive equations of nonlocal elasticity can be achieved by

assuming the existence of a free energy asψ = ψ(ε,η), that is, a function of the constitutively
independent deformation modes by which the stress power (3)is constructed. Then, under isothermal
conditions, the Clausius-Duhem inequality reads, recalling the mentioned stress power, as

σ : ε̇+ s : η̇ − ψ̇(ε,η) ≥ 0 (11)

whereε̇, η̇ denote strain rates occurring in a real deformation mechanism of the material. Assuming
that the material can undergo independent deformation modes ε andη and following a classical
reasoning, inequality (11) gives the state equations:

σ =
∂ψ

∂ε
, s =

∂ψ

∂η
. (12)

A simple expression forψ may be [5]

ψ =
1

2
ε : C : ε+

1

2
ε : C : A(Dε)

︸ ︷︷ ︸

η

(13)

from which we obtain

σ = C : ε+
1

2
C : A(Dε), s =

1

2
C : ε. (14)

Then, substituting (14) into (9) gives the constitutive equation for the total stress, i.e.

T = C : (ε+A(Dε)) . (15)

This expression is quite similar to the elasticity model of Eringen [3]

4



3 DERIVATION OF THE PVP FOR GRADIENT ELASTICITY
In the previous section we have established the PVP for nonlocal elasticity. In the present section

we want to find out a way to derive a gradient elasticity model from the above nonlocal model.
For this purpose, let the domainV occupied by the nonlocal material described in Section 2 be
decomposed in two subdomains, sayV = Vc ∪ Vb (see Figure 1). The subdomainVc (here called
core domain) collects all pointx ∈ V having a distanceδ = δ(x) from the boundary surfaceS
larger than the influence distanceR, i.e.Vc = {x ∈ V : δ(x) > R}. The subdomainVb denotes the
boundary layerof constant thicknessR, which collects all pointsx having a distanceδ(x) from S
smaller thanR, i.e. Vb = {x ∈ V : δ(x) < R} and circumvents the core domainVc. Obviously, at
all pointx ∈ Sc := ∂Vc it is δ(x) = R. A featuring difference betweenVc andVb is that the sphere
V(x) of radiusR is entirely contained withinV whenever it is centered at a pointx ∈ Vc, whereas
instead it exceeds the boundary surfaceS whenever it is centered at a pointx ∈ Vb, the more the
closer isx to S.

After [4] one can state that at any pointx ∈ Vc the distanceδ(x) from the boundary surfaceS
can be considered sufficiently large to admit that the material particle atx is subjected to particle
interactions from the whole surrounding material up to a maximal distanceR, equally distributed in
all directions. Instead, for a particle located at a pointx ∈ Vb (whereδ < R), the particle interac-
tions originating from all pointsx′ out ofS are missing, even if|x′ − x| < R. The latter physical
circumstances are macroscopically accounted by the nonlocal model by means of the specificinter-
action region(= effective integration domain),B(x). In fact, at a pointx ∈ Vc, B(x) turns out to
coincide with a sphereV(x) of radiusR centered atx, entirely contained withinV ; whereas at a
point x ∈ Vb, B(x) is a sphere like in the previous case, but has a spherical cup of heightR − δ
(protruding fromS) cut out, i.e.B(x) ⊂ V(x).

At this point, let us reconsider (2) and let us expand the virtual strain field̃ε(x+ r) by a Taylor
series up to, say, the second-order term, that is

ε̃(x+ r)− ε̃(x) = r · ∇ε̃(x) +
1

2
r r : ∇∇ε̃(x). (16)

We can therefore write, with the aid of a partial indicial notation,

A(Dε̃) =

∫

V

riα(|r|) dv(r)

︸ ︷︷ ︸

Wi

ε̃,i +

∫

V

1

2
rirjα(|r|) dv(r)

︸ ︷︷ ︸

Iij

ε̃,ij (17)

where the quantities

Wi(x) :=

∫

V

riα(|r|) dv(r) =

∫

B(x)

riα(|r|) dv(r)

Iij(x) :=

∫

V

1
2rirjα(|r|) dv(r) =

∫

B(x)

1
2rirjα(|r|) dv(r)







(18)

define, respectively, the first and the second-order weighted moments of the interaction regionB(x)
with respect to the planes throughx parallel to the co-ordinate planes.

For everyx ∈ Vc, whereB(x) is a sphere (entirely contained withinV ), by the isotropy of the
kernel functionα and the radial symmetry ofB it is

Wi = 0, Iij = R2I0δij , ∀i, j = (1, 2, 3) (19)
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whereR2I0 = second order weighted moment of the sphere of radiusR with respect to a plane
through the center.

Instead, for anyx within the boundary layerVb —in which the sphere of radiusR centered in
x exceeds the boundary surfaceS— assuming local Cartesian orthogonal axesesx̄i with x̄3 lying
upon the normaln to S, we have

W1 =W2 = 0, W3 = RWn (Wn < 0)

I11 = I22 = R2It, I33 = R2In, Iij = 0 ∀i 6= j






(20)

which holds for anyx ∈ Vb whereasWn, It andIn turns out to be functions ofδ. Therefore we can
rewrite (17) as

A(Dε̃) :=

∫

V

α(|r|) [ε̃(x+ r)− ε̃(x)] dv(r) =

∫

B(x)

α(|r|) [Wiε̃,i + Iij ε̃,ij ] dv(r), (21)

that is , by (19) and (20),

A(Dε̃) :=







R2 I0 ε̃,ii = R2 I0∆ε̃ ∀x ∈ Vc

RWn∂nε̃+R2In∂
2
nnε̃+R2It∆Tε̃ ∀x ∈ Vb






(22)

where∆ = Laplacian,∆T := ∆ − ∂2nn tangential Laplacian over a surface having a constant
distanceδ from S.

At this step, it is possible to approximate the internal virtual powerLint of (6) making reference
to the domain decomposition of Figure 1 and writing

Lint =

∫

Vc

[σ : ε̃+ s : A(Dε̃)] dv +

∫

Vb

[σ : ε̃+ s : A(Dε̃)] dv

︸ ︷︷ ︸

A

=

∫

Vc

[σ : ε̃+ (−R2I0∇s)
︸ ︷︷ ︸

τ

...∇ε̃]dv +

∫

Sc

R2I0s : ∂nε̃dac

︸ ︷︷ ︸

B

+A

=

∫

Vc

[σ : ε̃+ τ
...∇ε̃)]dv +A+B

(23)

where we have introduced the double stressτ defined as

τ := −R2I0∇s. (24)

Then, let the virtual transformation within the boundary layer Vb be featured by a linearly varying
displacement along the normal fibers. Hence denoting byl the local abscissa on the generic fiber
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(0 ≤ l ≤ R), we can write:

ũ(x+ ln(x)) ≈ ũ(x) + l∂nũ(x)

ε̃(x+ ln(x)) ≈ ε̃(x) + l∂nε̃(x)

∂nε̃(x+ ln(x)) ≈ ∂nε̃(x)

∂2nnε̃(x+ ln(x)) ≈ 0

∆Tε̃(x+ ln(x)) ≈ ∆Tε̃(x)







∀l : 0 ≤ l ≤ R. (25)

Next, taking into account (25), we can write the sumA+B of (23) as

A+B =

∫

Sc

∫ R

0

j
{
σ : (ε̃+ l∂nε̃) + s : (RWn∂nε̃+R2It∆Tε̃)

}
dl dac +

∫

Sc

R2I0s : ∂nε̃ dac

=

∫

Sc

{(

1

R

∫ R

0

jRσdl

)

︸ ︷︷ ︸

s(0)

: ε̃+

(

1

R

∫ R

0

jR3It s)dl

)

︸ ︷︷ ︸

s(1)

: ∆Tε̃+

+

(

1

R

∫ R

0

jR(lσ +RWns)dl +R2I0s

)

︸ ︷︷ ︸

s(2)

: ∂nε̃

}

dac

(26)

wherej is the Jacobian to pass from the geometry of the surfaceSl located at a constant distancel
from Sc (0 ≤ l ≤ R) to the geometrySc. We admit that forR→ 0 there exist the finite limits

s(0) := 1
R

∫ R

0

jRσdl −→ σ(0)

s(1) := 1
R

∫ R

0

jR3Itsdl −→ σ(1)

s(2) := 1
R

∫ R

0

jR(lσ +RWns)dl +R2I0s −→ σ(2)







(27)

and that as a consequence the quantityA+B of (26) becomes, at the limit forR→ 0, as follows:

A+B =

∫

Sc

(s(0) : ε̃+ s(1) : ∆Tε̃+ s(2) : ∂nε̃)dac −→

−→

∫

S

(σ(0) : ε̃+ σ(1) : ∆Tε̃+ σ(2) : ∂nε̃)da.

︸ ︷︷ ︸

J

(28)

Next, using the notationK := −∇Tn (Weingartern tensor) andH := −∇T · n (twice the mean
surface curvature) and applying the surface divergence theorem where appropriate, we can write the
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following equalities
∫

S

σ(0) : ε̃da =

∫

S

σ(0) : (n∂nũ+∇Tũ)da

=

∫

S

[

n · σ(0) · ∂nũ− (∇T +Hn) · σ(0) · ũ
]

da,

(29)

∫

S

σ(1) : ∆Tε̃da = −

∫

S

(∇T +Hn)σ(1)
...∇Tε̃ da =

∫

S

∆Tσ
(1) : ∇ũ da

=

∫

S

∆Tσ
(1) : (n∂nũ+∇Tũ) da

=

∫

S

{

n ·∆Tσ
(1) · ∂nũ− (∇T +Hn) ·

[

∆Tσ
(1)
]

· ũ

}

da

(30)

where we have used the equality(∇T +Hn) · (∇T +Hn) = ∆T, and finally
∫

S

σ(2) : ∂nε̃ da =

∫

S

σ(2) : ∂n∇ũ da =

∫

S

σ(2) : (n ∂2nnũ
︸ ︷︷ ︸

≈0

+∇T∂nũ+K · ∇Tũ)da

=

∫

S

[
−(∇T +Hn) · σ(2) · ∂nũ+ (K · σ(2)) : ∇Tũ

]
da

= −

∫

S

[
(∇T +Hn) · σ(2) · ∂nũ+ (∇T +Hn) · (K · σ(2)) · ũ

]
da

(31)

where the following equality has been used [6]:

∂n ∇ũ = n∂2nnũ+∇T∂nũ+K · ∇Tũ. (32)

Then the integralJ of (28), noting thatn ·K = 0, can be cast in the following form, i.e.

−J =

∫

S

{

(∇T +Hn) · σ(0) + (∇T +Hn) ·
[

∆T σ(1) +∇T ·K · σ(2)
]}

· ũda

+

∫

S

{

−n · σ(0) − n ·
[

∆T σ(1) + (∇T +Hn) · σ(2)
]}

· ∂nũ da

=

∫

S

(q · ũ+m · ∂nũ)da

(33)

Here, the symbolsq andm denote some extra (ordinary and double) boundary tractionscarried
in by the approximation process, whereas correspondingly the right hand side of (33) represents a
concomitant extra virtual external power. At the limit forR → 0, assuming that (24) continues to
hold, we can obtain from (23)

Lint −→

∫

V

(σ : ε̃+ τ
...∇ε̃)dv −

∫

S

(q · ũ+m · ∂nũ)da. (34)

This enables us to state that, as a consequence of the previous approximation process within the
decomposed domainV = Vc ∪ Vb and the subsequent passage to the limit forR → 0, the PVP (6)
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featuring the nonlocal elasticity model takes on a limit form as

∫

V

(σ : ε̃+ τ
...∇ε̃)dv

︸ ︷︷ ︸

Lint

=

∫

V

b · ũdv +

∫

S

(p · ũ+m · ∂nũ)da.

︸ ︷︷ ︸

Lext

(35)

where we have setp := t+q. We note that the surface integral of (34) originates from a contribution
to the internal virtual power pertaining toVb, but it is transformed into a contribution to the external
virtual power through the passage to the limit forR → 0, as shown by (34). Equation (35) can be
recognized as the PVP for a first strain gradient elasticity model featured by body forcesb within
V , as well as by ordinary tractionsp and by double tractionsm overS. The exploitation of the
latter PVP, in which the set(b,p,m) is taken as the primitive load parameters, leads to the field and
boundary equilibrium equations governing the derived gradient model, including the related higher
order boundary conditions. This task is achieved in next Section.

4 THE CORRESPONDING GRADIENT ELASTICITY MODEL
Since the analytical procedure by which the field and boundary equilibrium equations can be de-

rived from (35) is well known from the literature [6, 7, 8], weskip this procedure and limit ourselves
to report the final field and boundary equations. These read

∇ · T + b = 0, T := σ −∇ · τ in V (36)

p = n · T −
(
∇T +Hn

)
· (n · τ ) = 0

m = nn : τ






on St. (37)

The total stressT = {Tij} is the gradient counterpart of the analogous total stressT pertaining
to the nonlocal model. The boundary equilibrium equations (37) hold onSt, whereas onSu the
displacementu and its normal derivative∂nu have to be specified, namely

u = ū, ∂nu = ḡ onSu. (38)

Equations (36) and (37) have been recently [9] interpreted as the equilibrium equations of a
Cauchy continuum circumvented by a membrane-like boundarylayer S under the surface stress
Σ = n · τ and obeying the principles of surface mechanics [10].

The constitutive equations of the derived gradient model can be obtained starting from the free
energy, which —in accord with the stress power of (35)— is taken in the formψ = ψ(ε,∇ε).
Hence, by the Clausius-Duhem inequality, that is,

σ : ε̇+ τ
...∇ε̇− ψ̇(ε,∇ε) ≥ 0 (39)

we easily obtain

σ =
∂ψ

∂ε
, τ =

∂ψ

∂(∇ε)
, (40)

and thus

T =
∂ψ

∂ε
−∇ ·

(
∂ψ

∂(∇ε)

)

. (41)

9



A simple form forψ may be chosen as

ψ =
1

2
ε : C : ε+

1

2
ℓ2C ::

[
(∇ε)T · (∇ε)

]
, (42)

whereC is the classical fourth-order moduli tensor of isotropic elasticity andℓ is an internal length
scale parameter. By (42), equations (40) and (41) take the form

σ = C : ε, τ = ℓ2∇σ, T = C :
(
ε− ℓ2∆ε

)
, (43)

which conform to the well known Aifantis model of gradient elasticity [11]. Equation (43)3 is the
gradient counterpart of (15).
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