
International Environmental Modelling and Software Society (iEMSs) 
 7th Intl. Congress on Env. Modelling and Software, San Diego, CA, USA,  

Daniel P. Ames, Nigel W.T. Quinn and Andrea E. Rizzoli (Eds.) 
http://www.iemss.org/society/index.php/iemss-2014-proceedings 

 
 

Global sensitivity analysis in environmental water 
quality modelling: Where do we stand? 

 
Giorgio Manninaa, Alida Cosenzaa, Manandraitsiory Randrianantoandrod, François Anctild, 

Marc B. Neumannb,c and Peter A. Vanrolleghemd 

 
a Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali - Università di Palermo, 

Viale delle Scienze, 90128 Palermo, Italy (E-mail: giorgio.mannina@unipa.it, alida.cosenza@unipa.it) 
b Basque Centre for Climate Change, Alameda Urquijo, 4 - 4º, 48008, Bilbao, Spain (E-mail: 

marc.neumann@bc3research.org) 
c IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain 

d modelEAU, Département de génie civil et de génie des eaux, Université Laval, 1065 av. de la 
Médecine, Québec (QC) G1V 0A6, Canada (E-mail: Peter.Vanrolleghem@gci.ulaval.ca) 

 
 

Abstract: Global sensitivity analysis (GSA) is a valuable tool to support the use of mathematical 
models for environmental systems. During the last years the water quality modelling field has 
embraced the use of GSA. Environmental water quality modellers have tried to transfer the 
knowledge and experience acquired in other disciplines. The main objective of this paper is to provide 
an informed problem statement of the issues surrounding GSA applications in the environmental 
water quality modelling field. Specifically, this paper aims at identifying, for each GSA method, the 
potential use, the critical issues to be solved and the limits identified in a comprehensive literature 
review. The paper shows that the GSA methods are not mostly applied by using the numerical 
settings as suggested in the literature for other application fields. However, some authors have 
emphasized that the modeller must take care in employing such “default” numerical settings because, 
for complex water quality models, different GSA methods have been shown to provide different 
results depending on the settings. Quantitative convergence analysis has been identified as a key 
element for GSA quality control that merits further investigations for GSA application in the 
environmental water quality modelling field. 
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1. INTRODUCTION 

 
Over the past 15 years the engineering and scientific communities in the environmental water quality 
modelling field have improved knowledge on the use of sensitivity analysis (SA). SA has been 
identified as a crucial step in any environmental modelling exercise (Jakeman et al., 2006). SAs have 
been conducted for several reasons: i. to identify factors that mainly influence specific model outputs 
of interest (factor prioritization); ii. to select which factors interact with each other (interacting factors); 
iii. to identify non-influential factors (factor fixing). Other possible objectives of GSA include factors 
mapping (to search which factors are responsible for producing outputs in a certain region, e.g. above 
a threshold value) or variance cutting (identify a minimal subset of factors to fix to obtain a prescribed 
reduction of uncertainty in the output) that are not explored in this analysis (Saltelli et al., 2004). 
Despite the nomenclature related to the objectives of GSA has explicitly been defined, literature 
shows the absence of a standardized nomenclature in using the different GSA methods. 
By means of SA modellers are supported to identify critical regions in the factors’ space, to establish 
priorities for research and to simplify models (Saltelli et al., 2008). 
Several SA methods have been proposed in literature, divided into two main groups: local sensitivity 
analysis (LSA) methods and global sensitivity analysis (GSA) methods (Saltelli, 2000). The LSA 
methods provide a measure of the local effect of input variation on the model outputs by varying the 
model factors with respect to a “nominal point” in the hyperspace of the input factors (Saltelli and 
Annoni, 2010). GSA methods assess how the model outputs are influenced by the variation of the 
model factors over their entire variation range (Homma and Saltelli, 1996; Saltelli et al., 2004).  
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In the environmental modelling field the majority of SA applications are local and derivative-based due 
to the fact that these methods are computationally very efficient (Saltelli et al., 2008). However, LSA 
methods can be misleading in case of non linear models due to the fact that they provide information 
only at the “nominal point”. Further, LSA does not allow identifying interacting or non-influential 
factors. Literature has shown that the main limits of LSA can be overcome by applying GSA. Indeed in 
case that the model behaviour is unknown a priori the GSA should be the preferred method to apply 
(Saltelli and Annoni, 2010). Saltelli et al. (2008) have classified GSA methods into: (i) global 
screening methods e.g. Morris screening method (Morris, 1991; Campolongo et al., 2007); (ii) 
variance-based methods such as Extended Fourier Amplitude Sensitivity Testing (Extended-FAST) 
(Saltelli et al., 2008), and (iii) regression/correlation-based methods such as the standardised 
regression coefficients (SRCs) method (Saltelli et al., 2008). However, due to the high complexity of 
environmental models, the spread of the GSA applications has been limited due to their high 
computational costs (Campolongo et al., 2007; Yang et al., 2011). 
Despite such problems in applying GSA, recently modellers have spent considerable time in 
understanding the potential of each GSA method applied to complex models, especially in some 
areas such as hydrology (e.g., Massmann and Holzmann, 2012; Garambois et al., 2013; Herman et 
al., 2013; Zhan et al., 2013), urban drainage (Vezzaro and Mikkelesen, 2012; Donckels et al., 2013; 
Gamerith et al., 2013),wastewater treatment (Sin et al., 2011, Benedetti et al., 2011; Cosenza et al., 
2013; Ramin et al., 2014) and drinking water treatment modelling (Neumann, 2012). In hydrology 
GSA methods have often been applied for evaluating the temporal patterns of factors sensitivity 
(Massmann and Holzmann, 2012; Garambois et al., 2013). All these GSA applications have 
emphasized several advantages of GSA and peculiarities of each method when applied to different 
models in terms of structure and number of factors involved.  
In spite of the underlined advances of GSA, the applications found in literature have raised several 
critical issues, depending on the SA method applied and the peculiarities of the used mathematical 
model. However, it is important to underline that, as discussed below, the GSA applications found in 
literature show some disagreement especially in terms of required number of simulations (cost of 
analysis). Specifically different numerical settings are used applying the same method to different 
models.  
For example: How can the terminology be standardized? Do all model applications require the same 
numerical settings for GSA? How should modellers test if the SA has  converged? How to compare 
results when using multiple GSA methods? How can the computational cost be limited in the case of 
complex, over-parameterized non-linear and stiff models? These issues still need to be solved before 
reliable results can be guaranteed and these tools to enter mainstream use for the practitioner. The 
paper aims at providing the modeller the status about the application of GSA in the environmental 
water quality modelling field in order to summarize what he/she has to know before applying GSA. 
 
 
2. TERMINOLOGY AND DEFINITIONS 
 
Literature review on GSA shows that a generally accepted common GSA terminology permitting ease 
of comparison between the methods is still lacking (Mannina et al., 2012). Although Saltelli et al. 
(2004) provide a terminology in view of GSA objectives there is a missing terminology for comparing 
results in view of classification and cut-off levels for sensitivity indices obtained with different 
methods. Mannina et al. (2012) have recently provided the first attempt to standardize the GSA’s 
terminology for comparability of results by focusing the attention on three main methods: SRC, Morris 
screening and Extended-FAST.  
We suggest classifying factors on the basis of a cut-off threshold (CT) for the sensitivity indices. Thus, 
after establishing the CT for βi (CTSRC), μ*(CTMORRIS), Si (CTE-FAST1), and STi - Si (CTE-FAST2), the 
following classification has been provided for SRC, Morris screening and Extended-FAST methods: 

- important factors: if sensitivity > CTSRC 
- important factors: if mean sensitivity > CTMORRIS 
- interacting factors: if mean sensitivity > CTMORRIS and the standard deviation of the sensitivity is 

above a specified cone line 
- non-influential factors: if mean sensitivity < CTMORRIS 
- important factors: if sensitivity > CTE-FAST1 
- interacting factors: if interaction > CTE-FAST2 
- non-influential factors: if sensitivity < CTE-FAST1 and interaction < CTE-FAST2 
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3. GSA METHODS 
 
Table 1 summarizes the key features of the main GSA methods, that will be described in the sections 
below.  
In particular, Table 1 summarizes for each method the ability to cope with interaction among factors 
and with non-linearity, the computational cost required to employ the analysis, the ability to provide 
information in terms of factor fixing,  factor prioritisation and variance cutting. The symbols and the 
definitions in Table 1 are in accordance with Saltelli et al. (2008).  
 

Table 1. Main features of GSA methods 

Class Method
Coping with 
interaction

Coping with 
non linearity

Factor 
fixing

Factor 
prioritisation

Variance 
cutting

Cost of 
analysis Symbol Definition

Regression/correlation SRC no no no yes no 500-1000 β i

Standardised
Regression
Coefficient

μ Mean of  elementary 
effects

μ* Mean of absolute 
elementary effects

σ
Standard deviation of

elementary effects
Si First order effect 
STi Total effect

Si First order effect 
STi Total effect

Where: n = number of factors; r = number of repetitions or trajectors,  typically 4 ≤ r ≤ 10; N = number of repetitions,  typically 500 ≤ N ≤ 1000

yes N× n

Sobol' yes yes yes yes yes N×(n+2)

Variance based
Extended-FAST yes yes yes yes

Features Sensitivity measures

Global screening Morris screening yes yes yes no no r×(n+1)

 
 
 
3.1 Regression/correlation based methods 
 
The rationale of regression/correlation based methods is to perform Monte Carlo (MC) simulations of 
the model output by using a randomly sampled factor matrix. Multivariate linear regression is then 
used relating model outputs to the factors (Saltelli et al., 2008). For each factor the standardised 
regression coefficient (SRC = βi) of the multivariate linear model is calculated. βi is a valid measure of 
sensitivity if the coefficient of determination R2 is higher than 0.7 (Saltelli et al., 2008). In terms of 
computational demand regression/correlation methods are feasible to be used even for complex 
models with tens of factors. Indeed, the application of these methods requires a limited number of MC 
simulations, typical numbers found in literature are between 500 and 1000 (Neumann, 2012). 
However, the regression/correlation based methods explore only the 1st order effects and do not 
provide any information about the interaction among factors. Thus, these methods can be used only 
for factor prioritization in cases when the effects of non-linearity are not too strong (R2 > 0.7). 
 
 
3.2 Global screening methods 
 
The Morris screening method represents the most used method belonging to the class of global 
screening methods. It is based on a one-at-a-time (OAT) perturbation of the model factors under 
investigation (Morris, 1991). For each perturbation the elementary effect (EE) is quantified. The EE 
represents the relative difference of the model output with and without a perturbation Δ of the ith 
factor. The EE is repeatedly computed (r times) at different locations in factors’ space. For each of the 
n factors, the measure of sensitivity is summarized by the mean (μ) and the standard deviation (σ) of 
the cumulative distribution function of the EEs (generated by performing r replicates). μ represents a 
measure of the importance of the factor in determining model output whereas σ indicates whether the 
factor is responsible for introducing non-linearity or interactions (i.e. whether the sensitivity changes 
for different locations in factors space) (Table 1). In order to avoid the problem that EE’s of opposite 
sign cancel each other out, Campolongo et al. (2007) proposed to use the mean of the absolute EEs 
(μ*). The main objective of the Morris screening method is factor fixing: factors with low value of μ∗ or 
σ are considered non important and can be fixed anywhere in the factor space. As suggested by 
Campolongo et al. (2007) the required number of simulations for the Morris screening application is 
equal to r*(n+1). 
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3.3 Variance-based methods 
 
Variance-based methods are founded on the variance decomposition theorem that states that “the 
variance can be decomposed into conditional variances”. Saltelli et al. (2008) summarized the main 
interesting features of variance based methods: i. independence of the model structure; ii. capability 
to analyse the influence of each factor within its entire range; iii. capability to quantify the interaction 
among factors, and iv. groups of factors can be considered as single factors. However, the main 
disadvantage of these methods is their computational cost as require a large number of simulations 
per factor (500-1000 according to Saltelli et al., 2005). In the application of variance based methods, 
modellers are often interested in two sensitivity indices: the first order effect index (Si) and the total 
effect index (STi) (Table 1). Si measures how the ith factor contributes to the variance of the model 
output without taking into account the interactions among factors while STi also considers the 
interactions among factors. Thus, the difference between STi and Si quantifies the interaction among 
factors (SSi). Variance-based methods allow identifying important factors (high Si) (factors 
prioritization). Only if STi is small the factor be fixed anywhere within its range of uncertainty (factor 
fixing). Indeed, if the Si value is small, it does not necessarily mean that the factor may be fixed 
because a high STi value would indicate that the factor is involved in interactions. The most frequently 
used methods are: Extended-FAST and Sobol’ (Cukier et al., 1973; Schaibly and Shuler, 1973; 
Sobol’, 1993; Saltelli et al., 1999; Saltelli, 2002). 
 
 
4. RESEARCH ON GSA  
 
All the main relevant studies on GSA, found in literature, have been analysed. The studies are mainly 
referring to the fields of interest in this work: hydrology, water quality, wastewater and urban drainage.  
 
In the field of wastewater modelling Sin et al. (2011) applied the SRC method in view of uncertainty 
analysis of a conventional activated sludge system model, in which three different scenarios were 
analyzed by taking into account 26, 7 and 33 factors respectively. The study of Sin et al. (2011) was 
aimed at selecting the most significant factors that contribute to the uncertainty of performance criteria 
(e.g. effluent quality, sludge production and energy consumption). For each scenario, different model 
inputs (such as biokinetic model parameters, influent fractions, mass-transfer parameters and the 
like), were considered to be uncertain or known. They found a high ability of the SRC method in 
identifying the main sources of uncertainty and quantifying their impact on process performance 
criteria. Chen et al. (2012) and Cosenza et al. (2013) found that complex models of membrane bio-
reactors can be highly nonlinear by which the SRC method is jeopardized, and that variance based 
sensitivity analysis methods are required.  
In the field of urban drainage Vezzaro and Mikkelsen (2012) applied a variance decomposition 
method combined with the general likelihood uncertainty estimation GLUE in order to identify the 
major sources of uncertainty in a stormwater quality model. Similarly to the other variance based 
applications Vezzaro and Mikkelsen (2012) have emphasized both the potential of these methods 
(e.g. coping with interaction and non linearity) and the drawback related to the high computational 
demand.  
 
In order to select the appropriate method for the model under study several authors have tried to 
verify the potential of the different methods when applied to the same model. Indeed, some of the 
studies found in literature refer to the comparison of different GSA methods (Tang et al., 2007; Yang, 
2011; Randrianantoandro et al., 2012; Sun et al., 2012; Neumann, 2012; Cosenza et al., 2013; 
Gamerith et al., 2013; Wainwright et al., 2014; Vazquez-Cruz et al., 2014). The comparison studies 
show that no standardized criteria for comparing the results obtained between different methods in 
terms of factor fixing and factor prioritization have yet been established. Hence the findings deduced 
from one study are often affected by the subjective choice of the modeller during the analysis making 
it difficult to apply for other models. 
Most of the comparison studies show that similar results, mainly in terms of factor ranking, are 
obtained when different GSA methods are applied to a model with a low number of factors (Tang et 
al., 2007; Yang, 2011; Sun et al., 2012; Neumann, 2012; Gamerith et al., 2013; Wainwright et al., 
2014). On the other hand especially in case of complex models, characterised by tens of model 
factors, relevant differences were found among the results.  
Indeed, in the field of wastewater modelling, Cosenza et al. (2013) comparing SRC, Morris 
screening and Extended-FAST methods for a membrane bioreactor wastewater treatment model 
showed a poor similarity between Morris screening and Extended-FAST results in terms of both the 
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number and type of influential/non-influential factors. Cosenza et al. (2013) identified convergence 
problems for the Morris screening underlining the need to guarantee convergence when applying 
GSA methods, especially in case of complex models.  
In water quality modelling Neumann (2012) compared five SA methods (derivative-based local 
sensitivity analysis, Morris Screening, SRC, Extended-FAST and an entropy-based method) applied 
to a drinking water model. Author found the same parameter ranking results for the different methods. 
However, for chemicals leading to high non-linearity, the approximation of 1st order effect indices 
using the local methods or regression-based methods was poor and classification differed among 
methods.  
In hydrology Randrianantoandro et al. (2012) conducted an extensive comparison of different GSA 
methods (SRC, Morris and Extended-FAST) on a range of hydrological models applied to different 
reference catchments and found significant differences in the factors fixing results for some 
catchments whereas for others the results were equal. Randrianantoandro et al. 2012 showed 
contrasting results when the SRC, Morris screening and Extended- FAST methods (after testing 
convergence) were applied to the GR4J model (Perrin et al., 2003) and to the MORDOR 10 model 
(Paquet, 2004). As these latter models involved a low number of factors (4 and 10,  respectively) 
authors concluded that the GSA methods don’t always give the same grouping of factors.More 
recently, Gan et al. (2014) conducted a comprehensive analysis of the effectiveness of different 
sensitivity analysis methods for a very simple conceptual hydrologic model - Sacramento Soil 
Moisture Accounting (SAC-SMA) model (Burnash et al.,1973). Gan et al. (2014) found that the Morris 
screening method is not robust for various combinations of p and r values. Moreover, Massmann and 
Holzmann (2012) have applied three GSA methods (Sobol’s indices, the mutual entropy and regional 
sensitivity analysis) for different temporal scales of evaluation ranging from daily to a multiannual 
period. They found that all methods are suitable for identifying the most important model factors. 
However, increasing differences in the results were obtained when the factors become less important 
and also when shorter temporal scales are considered (Massmann and Holzmann, 2012).  
 
 
 
4.1 GSA applications dealing with convergence analysis 
 
From the literature review one can observe that only a few studies present an analysis of 
convergence of the GSA (Tang et al., 2007; Benedetti et al., 2011; Yang, 2011; Dotto et al., 2012; 
Wang et al., 2013; Wainwright et al., 2014; Vazquez-Cruz et al., 2014).  
In the field of hydrology Yang (2011) proposed a method to investigate the convergence of the 
results of different Monte Carlo based GSA methods by using two techniques: the Central Limit 
Theorem and the bootstrap technique. Yang (2011) found that for each GSA method applied the 
bootstrap technique leads to a lower number of simulations required than the Central Limit Theorem.  
In the field of wastewater modelling Benedetti et al. (2011) proposed a method to reduce the 
computational cost of Monte Carlo based GSA methods. The authors used two criteria (the model 
output variability and the stability of the composition of the important factor set as the number of 
iterations increases) to select the minimum number of simulations to be performed. They found that 
depending on the analysed variable the results of the convergence analysis vary, highlighting that the 
achievement of convergence is strongly dependent on the model output considered during GSA 
application. Ruano et al. (2012) investigated the convergence of Morris screening results for a 
wastewater treatment plant model. They proposed a criterion (the position factor) for establishing the 
achievement of convergence. By increasing the number of replicates (r) of the OAT sampling from 5 
to 70, Ruano et al. (2012) analysed the average variation of the sum of the rank of the model factors 
(position factor). Ruano et al. (2012) found that the optimal number of repetitions was 60-70, which is 
considerably higher than recommended by Saltelli et al. (2008) (namely 4-10 as reported in Table 1). 
The work of Ruano et al. (2012) confirmed that the modeller must take care in employing such 
“default” numerical settings proposed in literature especially in case of complex models.  
In other fields Wang et al. (2013) investigated the convergence of sensitivity measures for a crop 
growth model by applying the Extended-FAST method. The authors suggest using a small factor 
sample size in case the modeller is interested only in factor rankings. On the other hand Wang et al. 
(2013) corroborated the fact that the factor variation range strongly influences the sensitivity value of 
the most important factors. Recently, Loeppky et al. (2013) discussed the relationship between 
sensitivity analysis and the dimension of the factors space for the probabilistic sensitivity analysis 
method based on the Gaussian process model by using Latin Hypercube Sampling. Loeppky et al. 
(2013) found that in case of protein and ocean circulation models the number of simulations 
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required for having a desired level of accuracy of model predictions is ten times the number of factors 
evaluated. 
The literature review on convergence analysis shows that despite the fact that researchers having 
attempted in several ways to evaluate the convergence of GSA methods, it remains an open issue. 
As far as we know, no pragmatic rule has yet been defined to guarantee convergence of GSA 
outputs. 
 
 
4.2 Complementary use of multiple GSA methods 
 
The choice of the GSA method to apply is not always clear a priori due to unknown model behaviour. 
By applying different GSA methods modellers can obtain different types of information about the 
effects of each factor on the model output. Several authors have underlined that only by applying 
different methods simultaneously, a thorough analysis of the impact of model factors on the model 
outputs and the model’s degree of nonlinearity can be obtained (Schouten et al., 2014, Neumann 
2012). Further, in case of non-linear models, literature suggests the use of global screening or 
variance-based methods (Table 1). However, these methods require a large number of simulations 
thus increasing the computational time required for the analysis. The computational time becomes an 
even more limiting factor in case of dynamic, complex, large and stiff systems. Thus, according to 
Saltelli et al. (2008), in case of complex models, a complementary use of different GSA methods is 
suggested in order to reduce the number of factors to consider before applying high computational 
demanding methods as Extended-FAST. However, to ensure that this procedure works, one must 
ascertain that no factors are eliminated wrongly.  
With this regard Sun et al. (2012) suggested to use, in case of a model with a large number of factors, 
a two-step procedure including first a factors screening step (by using a local method) followed by a 
GSA step of the important factors identified during the first step. Moreau et al. (2013) have applied a 
two step GSA for a spatially-distributed agro-hydrological model (first Morris screening method and 
then ANOVA). Further, Vanuytrecht et al. (2014) used first Morris screening and then Extended-FAST 
method. Recently, Gan et al. (2014) have suggested in case of complex models to use first 
approximate methods (e.g. SRC or local methods) for a rough factor screening and then quantitative 
methods as Extended-FAST or Sobol’s methods. 
However, despite the advantage of the complementary use of different GSA methods several 
questions need to be addressed: Is this really an effective practice for overcoming computational 
burden?  
 
 
5. CONCLUSIONS AND ISSUES THAT NEED FURTHER INVESTIGATIONS  
 
This paper has outlined the issues surrounding the GSA in the environmental water quality modelling 
field. In particular, the literature review on GSA methods has provided several issues that need further 
investigation in order to improve the application in water quality modelling field: 

- standardized criteria and terminology to compare results of different GSA method should be 
established; the authors have made a first proposal. 

- Considerable variability was found in the numerical settings applied (number of simulations) 
between different GSA studies. Pragmatic rules or procedures are required to support the 
modeller in determining how many simulations need to be run to achieve convergence of the 
outcomes of the GSA analysis. 

- The results of the GSA analysis in terms of factors fixing and factors prioritisation are also 
found to depend on the GSA method applied, thus asking for a better understanding of how the 
methods need to be applied and how to interpret the results. 
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