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Abstract. After sequencing the entire DNA for various organisms, the
challenge has become understanding the functional interrelatedness of
the genome. Only by understanding the pathways for various complex
diseases can we begin to make sense of any type of treatment. Unfortu-
nately, decyphering the genomic network structure is an enormous task.
Even with a small number of genes the number of possible networks is
very large. This problem becomes even more difficult, when we consider
dynamical networks. We consider the problem of estimating a sparse dy-
namic Gaussian graphical model with L1 penalized maximum likelihood
of structured precision matrix. The structure can consist of specific time
dynamics, known presence or absence of links in the graphical model
or equality constraints on the parameters. The model is defined on the
basis of partial correlations, which results in a specific class precision
matrices. A priori L1 penalized maximum likelihood estimation in this
class is extremely difficult, because of the above mentioned constraints,
the computational complexity of the L1 constraint on the side of the
usual positive-definite constraint. The implementation is non-trivial, but
we show that the computation can be done effectively by taking advan-
tage of an efficient maximum determinant algorithm developed in convex
optimization.

1 Introduction

Networks are important models to address specific questions in genomics. Dy-
namic gene-regulatory networks are complex objects since the number of poten-
tial components involved in the system is very large. For example, one impor-
tant direction in systems biology is to discover gene regulatory networks from
microarray data based on the observed mRNA levels of thousands of genes un-
der various conditions. We shall show that one solution to such problem is the
use of penalized Gaussian graphical models, which have been extensively used
to estimate sparse static graphs.

Proteins are essential parts of the cell that determine the cell’s structure and
execute nearly all its functions. The production of proteins is carried out by the
ribosomes, but the information needed for their production is encoded in genes



which are the segments of DNA. DNA contains valuable genetic information,
that must be preserved. Transient RNA is used to carry the message from DNA
to ribosomes. In all living cells, the flow of genetic information is thought to go
in this way

DNA→ RNA→ PROTEIN.

This fundamental principle in biology is called the central dogma of molecular
biology. The step from DNA to RNA consists of copying the information from
genes to RNA and it is called transcription. The step from RNA to protein
consists of decoding the information from RNA by ribosomes and it is called
translation. Together these two processes are known as gene expression.

The process of transcription is carried out by special enzymes called RNA
polymerases (RNAp). RNA polymerase binds to the promoter and then opens
up the double helix of the DNA sequence immediately in front of it and slides
down the gene producing the RNA molecule. The promoter is a region of DNA
that facilitates the transaction of a particular gene and contains a sequence
of nucleotides indicating the starting point for RNA synthesis. Chain elongation
continues until enzyme encounters a second signal in DNA, the terminator, where
RNAp halts and releases both the DNA chain and the newly made RNA chain.
RNA which encodes information for production of a certain protein is called
messenger RNA(mRNA).

However, to do all of this RNAp needs help from special proteins called
transcription factors. Transcription factors bind at the promoter and form a
transcription initiation complex. They position the RNAp correctly on the pro-
moter and aid in pulling apart the two strands of DNA to allow transcription
to begin and to allow RNAp to leave promoter as transcription begins. After
RNAp is released from the complex it starts making RNA. Once transcription
has begun, most of the transcription factors are released from the DNA so that
they are available to initiate another round of transcription with a new RNAp
molecule. The synthesis of the next RNA usually starts before the first RNA is
completed. There maybe several polymerases moving along a single stretch of
DNA and RNAs.

The main goal of gene transcription is to produce mRNA which will be
translated by ribosomes to make proteins. Each mRNA can be translated several
times by ribosome in order to make proteins. This is done until mRNA reaches
the end of its life-span. The network of gene regulation can be very complex,
where one regulatory protein controls genes that produce other regulators that
in turn control other genes. Gene regulatory network models can be represented
as directed or undirected graphs, where nodes are the elements, such as DNA,
RNA, proteins etc. The directed or undirected edges from one node to another
represent the corresponding interaction, for example, activation, repression or
translation. Being able to create gene regulatory networks from experimental
data and to use them to think about their dynamics is the aim of this paper.



2 Graphical models

An undirected graphical model is also called a Markov random field. It is defined
as a pair (G,P) that specifies a probability density function f for their joint
distribution P in the form

(F) f(y1, . . . , yp) =
1

z

∏
c∈C

ψc(yc), (1)

where C is a set of cliques, i.e. complete subsets of V that are maximal, in
G, ψc(yc) is a potential function, which is a positive function of the variables
{yi}i∈C , and

z =
∑
y

∏
c∈C

ψc(yc)

is a normalization factor. If the factorization (F) is possible, then it implies the
global Markov property. A probability distribution P is said to obey the global
Markov property, relative to G, if for any triple (A,B,S) of disjoint subsets of V
such that S separates A from B in G

(G) YA ⊥ YB |YS .

The global Markov property in turn implies the local and pairwise Markov prop-
erties. A probability distribution function is said to obey:

(L) the local Markov property, relative to G, if for any vertex i ∈ V

Yi ⊥ YV \{cl(i)}|Ybd(i),

(P) the pairwise Markov property, relative to G, if for any pair (i, j) of non-
adjacent vertices

Yi ⊥ Yj |YV \{i,j},

The boundary of i is the set of nodes such that bd(i) = pa(i) ∪ ne(i), and
the closure of i is the set of nodes such that cl(i) = i ∪ bd(i). The expression
V \{i, j} indicates the set of nodes V except nodes i and j. The expression Yi ⊥
Yj |YV \{i,j} means that the probability distribution function can be factorized
as follows:

fYi,Yj |YV \{i,j}(yi, yj |yV \{i,j}) = fYi|YV \{i,j}(yi|yV \{i,j})fYj |yV \{i,j}(yj |yV \{i,j}).

It can be shown that (F ) ⇒ (G) ⇒ (L) ⇒ (P ) (Lauritzen, 1996). Moreover,
Hammersley and Clifford’s theorem states that:

Theorem 1 (Hammersley and Clifford). A probability distribution P with
positive and continuous density f with respect to a product measure µ satisfies
the pairwise Markov property with respect to an undirected graph G if and only
if it factorizes according to G.



This theorem gives the necessary and sufficient condition for (P ) ⇔ (F ), and
under this condition we have that all Markov properties are equivalent:

(F )⇔ (G)⇔ (L)⇔ (P ).

Undirected graphical models are useful when random variables can be anal-
ysed symmetrically. Specific undirected graphical models are distinguished by
the choice of the undirected graph G and the potential functions ψc.

A multivariate Gaussian graphical model (GGM) for an undirected graph
G is defined in terms of its Markov properties. Variables, i.e. nodes in the
graph, are independent conditional on a separating set. In other words, let
X = (X1, X2, . . . , Xp)T be a multivariate Gaussian vector, then an undirected
edge is drawn between two nodes i and j, if and only if the corresponding vari-
ables Xi and Xj are conditionally dependent given the remaining variables. Let
G = (X,E) be an undirected graph with vertex set X = {X1, ..., Xp} and edge
set E = {eij}, where eij = 1 or 0 according to whether vertices i and j are
adjacent in G or not. The GGM model N(G) consists of all p-variate normal
distributions Np(µ,Σ), for arbitrary mean vectors µ and covariance matrices Σ,
assumed nonsingular, for which the concentration or precision matrix Θ = Σ−1

satisfies the linear restriction eij = 0⇔ θij = 0.
The modelN(G) has also been called a covariance selection model (Dempster,

1972) and a concentration graph model (Cox and Wermuth, 1996). The reader
is referred to Whittaker (1990, Chapter 6) for statistical properties of these
models, including methods for parameter estimation, model testing and model
selection. The model N(G) also can be defined in terms of pairwise conditional
independence. If X = (X1, . . . , Xp)T ∼ Np(µ,Σ), then

θij = 0⇔ Xj ⊥ Xi|X{−(i,j)} ⇔ ρij = 0

where ρij = −θij/
√
θijθij denotes the partial correlation between Xi and Xj ,

i.e. the correlation between Xi and Xj given X{−(i,j)}. This suggests that the
determination of the graph G, can be based on the set of sample partial cor-
relations ρ̂ij arising from independent and identically distributed observations
X ∼ Np(µ,Σ), where n >> p is assumed in order to guarantee positive definite-
ness of the sample covariance matrix. In other words, given a random sample
X we wish to estimate the concentration matrix Θ. Of particular interest is the
identification of zero entries in the concentration matrix Θ = {θij}, since a zero
entry θij = 0 indicates the conditional independence between the two variables
Xi and Xj given all other variables.

Graphical models are probability models for multivariate random variables
whose independence structure is characterized by a conditional independence
graph. The standard theory of estimating GGMs can be exploited only when the
number of measurements n is much higher than the number of variables p. This
ensures that the sample covariance matrix is positive definite with probability
one. Instead, in most application, such as microarray gene expression data sets,
we have to cope with the opposite situation (n� p). Thus, the growing interest
in “small n, large p” problems, requires an alternative approach. In problems



where the number of nodes is large, but the number of links are relatively few
per node, sparse inference of Θ in the framework of a GGM is useful.

Estimating the dimensionality of the GGM model is complicated issue. The
standard approach is greedy stepwise forward-selection or backward-deletion,
and parameter estimation is based on the selected model. In each step the edge
selection or deletion is typically done through hypothesis testing at some level α.
It has long been recognized that this procedure does not correctly take account
of the multiple comparisons involved (Edwards, 2000). Another drawback of the
common stepwise procedure is its computational complexity. To remedy these
problems, Drton and Perlman (2004) proposed a method that produces conser-
vative simultaneous 1−α confidence intervals, and use these confidence intervals
to do model selection in a single step. The method is based on asymptotic con-
siderations. Meinshausen and Buehlmann (2006) proposed a computationally
attractive method for covariance selection that can be used for very large Gaus-
sian graphs. They perform neighbourhood selection for each node in the graph
and combine the results to learn the structure of a Gaussian concentration graph
model. They showed that their method is consistent for sparse high-dimensional
graphs. However, in all of the above mentioned methods, model selection and
parameter estimation are done separately. The parameters in the concentration
matrix are typically estimated based on the model selected. As demonstrated by
Breiman (1996), the discrete nature of such procedures often leads to instability
of the estimator: small changes in the data may result in very different estimates.

Here, we propose a sparse dynamic Gaussian graphical model with L1 penalty
of structured correlation matrix that does model selection and parameter estima-
tion simultaneously in the Gaussian concentration graph model. We employ an
L1 penalty on the off-diagonal elements of the correlation matrix. This is similar
to the idea of the glasso (Friedman, 2007). The L1 penalty encourages sparsity
and at the same time gives shrinkage estimates. In addition, we can model arbi-
trary, locally additive models for the precision matrix, while explicitly ensuring
that the estimator of the concentration matrix is positive define.

3 Dynamic Gaussian graphical model for networks

The graph structure of the Gaussian graphical model describes the conditional
independence structure between the variables. The two main applications of this
conditional independence are either (i) modular dependency structures and (ii)
Markovian dependency structures. The former are used in expert systems or flow-
chart descriptions of causal structures, whereas the latter is typical for spatio-
temporal forms of (in)dependence. A dynamic gaussian graphical model for a
network contains both types of conditional dependence: a Markovian dependence
structure would capture that temporal relatedness of nearby observations, which
is broken by one (or more) conditioning, intervening observations. The network
itself has an internal relatedness due to the modular structure of the network:
the results of the observed outcomes at the nodes flow through the links to the
other nodes, thereby affecting neighbouring vertices. Due to its computational



tractibility is the multivariate normal distribution uniquely suited as an initial
model for a dynamic graphical model. If we measure a univariate outcome at
p nodes across T discrete time-points, then initially we describe the data X as
coming from a multivariate normal distribution:

X ∼ NpT (µ,Θ−1).

In many practical example, it may be the case that only a single replicate X
has been observed. Estimation will only be possible if we are willing to impose
restrictions on the parameters. There are two types of restrictions that we will
consider: sparsity restrictions and model definitions.

3.1 Sparsity restrictions of the precision matrix

The arrival of the high-throughput era in genomics has seen an explosion of
data gathering: for a fraction of the amount of time and money it used to cost to
monitor the level of a particular gene or protein, now thousands are monitored.
Nevertheless, the underlying physical reality will not have changed as a result
of our data-gathering. The particular protein that used to bind to the promotor
region of the particular gene will still do so: the fact that we monitor thousands
of genomic variables has not made the genomic reality itself any more difficult.
Obviously, this reality is certainly highly complex, but at the same time it is also
highly structured as DNA sequences are highly specific for binding to particular
proteins. Therefore, the genomic network can be thought to be highly sparse set
of relations between thousands of genomic players, such as DNA, mRNA and
proteins. Obviously, we don’t know exactly which links should be assumed to be
zero, but we want to create a model that encourages zeroes between the vertices.

Furthermore, the fact that we are considering dynamic models with observa-
tions of the genomic system spaced in time, it is probably sufficient to assume
– especially given the usual spacing of genomic observations – the existence of
first or at most second order Markov dependence. This means that large part of
the precision matrix can be filled with zeroes a priori.

3.2 Model restrictions of the precision matrix

Given the sparsity of the data, it is essential to define models that are finely
tuned to be able to estimate interesting quantities of interest. For example, we
have seen in the previous paragraph that Markov assumptions are sensible ways
to reduce the dimensionality of the estimation problem. Additionally, given that
the temporal correlation is probably not particularly important, it makes sense to
compromise a little on the amount of variables we use to model it. For example,
it makes sense to restrict the attention to models in which

∀i, t : cor(xi,t, xi,t−1|x−i) = ρ.

This reduces the number of parameters in Θ by pT − 1. Moreover, it may, in
certain circumstances, be sensible to assume that the genomic network at each
time-point is the same. This reduces the number of parameters by (T − 1)p2.



3.3 Maximum Likelihood

The most simple model is the unconstrained Θ with no penalty on the ele-
ments θij on the precision matrix Θ. The log-likelihood for µ and Θ = Σ−1

based on a random sample X = (X(1), . . . , X(n)) is l(µ,Σ;X) ∼= n
2 log |Θ| −

1
2

∑n
i=1(Xi − µ)TΘ(Xi − µ) up to a constant not depending on µ and Θ. Even

if S = 1
n

∑n
i=1(Xi − X̄)(Xi − X̄)T is of full rank (only if n > pT ), the matrix

S−1 will not be ’sparse’. To achieve ’sparse’ graph structure and to obtain a
better estimator of the concentration matrix, we introduce an L1 penalty on the
likelihood, i.e. we want a minimizer Θ of

− log |Θ|+ trace(ΣS) subject to
∑
i 6=j

|θij | ≤ t, (2)

over the set of positive definite matrices Θ. Here t ≥ 0 is a tuning parameter.

RB1

SIVA

LCK

ITGAM

SMN1

CASP8

PCNA

CCNC

PDE4B

APC

ID3

CDK4

TCF12

CDC2

CCNA2

PIG3

CASP4

TCF8

GATA3

CSF2RA

MPO

CYP19

CASP7

JUNB

NFKBIA

Fig. 1. The lag zero network selected in the case of the T-cell data. It shows two hubs
involving the JUNB and CCNC genes, which are well-known for being central regulator.
Blue and red links represent positive and negative partial correlations, respectively.



The constraint as formulated above does not penalize the diagonal of Θ.
We could also choose not to penalize links that we know are there or time-
dependencies which are so low-dimensional that it is not worth penalizing.

4 Max Determinant optimization problem

The non-linearity of the objective function, the positive definiteness constraint
and the structured correlation make the optimization problem non-trivial. We
take advantage of the connection of the penalized likelihood and the the the max-
determinant optimization problem (Vanderberghe et al., 1996). We make use of
the SDPT3 algorithm (Toh, 2006) to manage higher dimensional problems. We
consider the optimization problem:

min cTβ + log |Θ(β)| (3)

subject to Θ(β) ≥ 0, F (β) ≥ 0, Lβ = b;

where the optimization variable is the vector β ∈ Rm. The functions Θ : Rm →
Rl×l and F : Rm → Rn×n are affine:

Θ(β) = Θ0 + β1Θ1 + . . .+ βmΘm

F (β) = F0 + β1F1 + . . .+ βmFm,

where Θi = ΘT and Fi = FT
i . The inequality signs in (3) denote matrix inequal-

ities, i.e., Θ(β) > 0 means zTΘ(β)z ≥ 0 for all nonzero z and F (β) ≥ 0 means
zTF (β)z ≥ 0 for all z. We will refer to problem (3) as a maxdet problem.

The maxdet problem is a convex optimization problem, i.e. the objective
function cTβ + log |Θ(β)|, is convex (on {x : Θ(β) ≥ 0}, and the constraint set
is convex. The current version of SDPT3, version 4.0, is designed to solve conic
programming problems whose constraint cone is a product of semidefinite cones,
second-order cones, nonnegative orthants and Euclidean spaces; and whose ob-
jective function is the sum of linear functions and log-barrier terms associated
with the constraint cones.

5 Application to T-cell data

Tcell dataset is a large time-series experiment to characterize the response of
a human T-cell line (Jurkat) to PMA and ionomycin treatment. The data set
contains the temporal expression levels of 57 genes for 10 unequally spaced time
points. At each time point there are 44 separate measurements. See Rangel et
al. (2004) for more details.

We consider a particular structure to the graphical model. We define the
nodes of the graph to be the genes at a particular time point. This results
in a 570× 570 inverse covariance matrix Θ. This requires estimating more than
160,000 parameters with only 25,000 observations. However, there is good reason
to impose some constraints on Θ.
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Fig. 2. The lag one network for the T-cell data: the arrows are a semantic interpretation
of the graphical model. They are given their direction by pointing from the past to the
future, although in the structure of the graphical model they are in fact undirected.
Blue and red links represent positive and negative partial correlations, respectively.

1. Markov assumption: we assume that except for lag zero and lag one, there
are no higher order interactions between the genes, i.e.,

Cov(Xgt, Xg′t′) = 0 for |t− t′| > 1.

2. Interaction persistence: For the lag zero and lag one interactions, we
assume that the interactions are persistent across all ten time points, i.e.,

Lag 0: Ωgt,g′t = Ωgs,g′s,

Lag 1: Ωgt,g′t+1 = Ωgs,g′s+1.

This reduces the number of parameters from over 160,000 to a manageable num-
ber less than 5,000. Furthermore, the shrinkage induced by the L1 penalty further
stabilizes the estimates. The application of the above model to the T-cell data,
results in the lag zero graph shown in Figure 1 and the lag one graph shown



in Figure 2. Blue and red links represent positive and negative partial correla-
tions, respectively. We see a typicall feature that the majority of links are blue,
as it is impossible to have stable networks with a lot of negative interactions.
Furthermore, the networks we infer seem to have other typical characteristics of
genomic networks, such as modularity and small world properties.

6 Conclusions

As more and more large datasets become available, the need for efficient tools
to analyse such data has become imperative. In this paper, we have considered
sparse dynamic Gaussian graphical models with `1-norm penalty. This type of
modelling offers a straightforward interpretation: the edges of the graph define
the partial conditional correlations among the nodes. In particular, under the
sparsity assumption, a large part of the precision matrix can be filled with zeroes
a priori. Based on the consideration of dynamic and model-oriented definitions,
we are able to reduce the number of parameters to be estimated, which allows
for more relevant interpretations in real data analysis.
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