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Abstract. Our aim was to evaluate nitric oxide metabolites (nitrite and nitrate), expressed as NOx, and erythrocyte deformability,7

expressed as elongation index, in a group of subjects with obstructive sleep apnea syndrome (OSAS). We enrolled 48 subjects8

(36 men and 12 women; mean age 50.3 ± 14.68 yrs) with OSAS diagnosed after a 1-night cardiorespiratory sleep study. OSAS9

severity was assessed evaluating the apnea/hypopnea index (AHI) and subjects were subdivided in two subgroups: Low (L = AHI10

<30) and High (H = AHI >30). NOx was examined converting nitrate into nitrite with a nitrate reductase and then assessing11

nitrite with spectrophotometry after the addition of Griess reagent. The elongation index was obtained using the diffractometer12

Rheodyn SSD of Myrenne at shear stresses of 30 and 60 Pa and it was expressed as elongation index (EI). We found no difference13

in NOx among the entire group of OSAS subjects and normal controls, while we observed a NOx decrease in the H subgroup in14

comparison with L subgroup, but not in comparison with normal controls. We noted a significant decrease in EI at each shear15

stress in the entire group and also in the two subgroups in comparison with controls. The decrease in NO bioavailability and in16

erythrocyte deformability might contribute to explain the increased cardiovascular risk in OSAS subjects.17

1. Introduction17

The obstructive sleep apnea syndrome (OSAS) is characterized by repeated obstructions of upper air-18

ways, partial or complete, during sleep, and consequent episodes of apnea or hypopnea, with intermittent19

arterial oxygen desaturation [4, 39]. The OSAS is diagnosed via polysomnography and its severity is20

expressed as apnea/hypopnea index (AHI). Continuous positive airway pressure (cPAP) therapy, with or21

without associated oxygen therapy, is the gold standard for its treatment [14]. The most important compli-22

cations are cardiovascular diseases, resulting in severe morbidity and mortality. OSAS is associated in fact23

with an higher risk of arterial hypertension, coronary artery disease, and cerebrovascular accidents [21,24

23], which often occur during morning hours [25, 32]. OSAS has been proposed as an independent risk25

factor for the development of essential hypertension and the isolated increase in diastolic pressure is often26

the earliest pressure modification in these subjects [24, 37]. Some author have described higher incidence27

of myocardial infarction in OSAS subjects during night-time (from 10 pm to 6 am) [46] suggesting that28

OSAS could precipitate myocardial ischemia during sleep in patients with coronary disease. Untreated29
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OSAS may also worsen the prognosis of subjects with coronary disease increasing cardiovascular death30

[24]. The strong relationship between OSAS and stroke is demonstrated by its prevalence in 44–72% of31

patients with stroke and by the evidence of a 4-fold increase in risk of cerebral accidents in OSAS with32

an AHI >20 [24].33

The pathogenesis of cardiovascular disease in subjects with OSAS probably depends on several factors34

[37]. In OSAS, an impaired autonomic nervous system activity has been demonstrated: during apneas and35

hypopneas an enhanced parasympathetic tone is evident, while sympathetic nervous system tone increases36

after the apneic events [20]. In addition, several papers have demonstrated an impaired hemorheological37

profile [12, 41, 42], an increased blood coagulation [43] and also an altered inflammatory [13, 19, 34] and38

oxidative status [2, 3, 7, 10, 26, 35, 40] in OSAS subjects. The frequent hypoxia-reoxygenation episodes39

are presumed to play a key role in the pathogenesis of endothelial dysfunction. The intermittent hypoxia40

may induce the production of ROS that contribute to the generation of adhesion molecules, leukocyte41

activation, and an enhanced systemic inflammation. In addition, untreated sleep apnea is associated42

with increased levels of endothelin, which may contribute to vasoconstriction, and with an increased43

endothelial cell apoptosis [37]. A significant negative correlation between brachial artery flow-mediated44

dilation and OSAS severity has been also demonstrated [37].45

Plasma nitric oxide (NO) metabolites, such as nitrites and nitrates, usually expressed as NOx, are46

significantly reduced in subjects with OSAS [1, 9, 27, 29, 31]: the hypoxia-reoxygenation phenomena47

influence NO production by NO synthase (NOS) because intermittent hypoxia induces a down-regulation48

of eNOs expression [44, 47], and consequently NO synthesis is inversely related to the severity of the49

disease [9, 27]. The cPAP therapy seems to improve the endothelial function as it increases NOx levels50

in the long-term [1, 22, 28, 29, 31, 33] and even after an overnight application [16].51

Few papers have taken into account the effect of OSAS on blood rheology and the methodological52

differences among these studies make difficult to compare their results. Chin et al. [8] showed increased53

levels of fibrinogen and hematocrit in the morning in a small group of OSAS subjects, suggesting an54

increment of blood viscosity. By other authors plasma fibrinogen was correlated with AHI value and55

with nocturnal minimal oxygen saturation (SO2) [38]. Tazbirek et al. found elevated blood viscosity56

and erythrocyte aggregation in obese men with OSAS in comparison with those without OSAS [42].57

However, other authors [12] observed an increase only in plasma viscosity, inversely correlated with58

mean nocturnal SO2, but no modification of erythrocyte deformability. In overweight OSAS subjects,59

Sinnapah et al. [36] found increased erythrocyte aggregation, positively correlated with AHI and BMI.60

This paper underlined that BMI is more predictive of erythrocyte aggregation than AHI, suggesting that61

overweight influences blood rheology more than OSAS severity. Treatment with cPAP reduces plasma62

fibrinogen [8], and blood and plasma viscosity [42] improving the blood rheological properties.63

Considering all these data, the purpose of our study was to evaluate nitric oxide metabolites (NOx)64

concentration and erythrocyte deformability in subjects with OSAS.65

2. Subjects66

We consecutively recruited 48 subjects (36 men and 12 women; mean age 50.3 ± 14.68 yrs) with67

obstructive sleep apnea syndrome from those with suspected OSAS referred to our center. Clinical history68

and physical examination were performed in all subjects and Epworth Sleepiness Scale (ESS) was also69

given. OSAS was diagnosed after a 1-night cardiorespiratory sleep study and its severity was assessed70

evaluating the apnea/hypopnea index (AHI). OSAS subjects were subdivided according to the AHI value71
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Table 1

Mean ± S.D. of age, anthropometric characteristics and OSAS parameters in the whole group of OSAS patients and in the two
subgroups with respectively AHI 5–30 and AHI ≥30

All OSAS patients AHI 5–30 AHI ≥30

Age (years) 50.3 ± 14.6 45.3 ± 14.4 52.8 ± 14.2
BMI (kg/m2) 35.4 ± 7.3 35.7 ± 8.5 35.1 ± 6.5
Waist circumference (cm) 118.8 ± 16.1 114.2 ± 14.5 122.5 ± 16.6
Neck circumference (cm) 44.4 ± 4.5 41.5 ± 3.2 46.6 ± 4.1***
AHI 38.5 ± 25.7 15.1 ± 8.1 56.6 ± 18.9***
mSO2 (%) 91.1 ± 3.7 93.4 ± 2.7 89.5 ± 3.4***
EPS 11.1 ± 5.1 9.2 ± 3.7 12.4 ± 5.6*
ODI 39.3 ± 29.0 14.3 ± 9.4 55.4 ± 25.7***

*p < 0.05, ***p < 0.001 vs. OSAS 5–30 (Student’s t test for unpaired data). BMI = Body Mass Index; AHI = Apnea-hypopnea
index; mSO2 = mean oxygen saturation; EPS = Epworth sleepiness scale; ODI = oxygen desaturation index.

in two subgroups: Low (L = 21 subjects with AHI <30) and High (H = 27 subjects with AHI >30), therefore72

the Low subgroup included subjects with mild to moderate OSAS, while the H subgroup included the73

subjects with severe OSAS. Means and S.D. of age, BMI, waist circumference, neck circumference,74

AHI, oxygen desaturation index (ODI), mean nocturnal SO2 and mean heart rate (HR) are reported in75

Table 1 (Table 1); 23 of the OSAS subjects had arterial hypertension, 10 subjects had diabetes mellitus76

and 6 had cardiovascular disease (history of myocardial infarction or stroke). Regarding the evaluation77

of NOx, the control group consisted of 31 subjects (14 women and 27 men, mean age 41.3 ± 7.4 years),78

while regarding the evaluation of erythrocyte deformability, the control group included 29 subjects (1379

women and 16 men, age range 35–52 years); both groups of subjects were free of medical diseases as80

assessed by clinical history, physical examination, electrocardiography, and routine hematological and81

urine analysis.82

All the subjects gave their informed consent before entering the study and the study was approved by83

the Ethical Committee.84

3. Methods85

Venous blood samples were collected in the morning by venous puncture from the antecubital vein86

of fasting subjects and immediately transferred to anticoagulated glass tubes for evaluation of NOx and87

erythrocyte deformability.88

3.1. NO metabolites (NOx)89

Considering that in vivo NO has a very short life (less than 0.1 sec) and it is converted into nitrite90

(NO2
−), which has a half-life of few minutes, and into the more stable nitrate (NO3

−), NOx represents91

almost only the nitrate concentration. In the laboratory method adopted by us at first nitrate was converted92

into nitrite by a nitrate reductase, and then nitrite was assessed by spectrophotometry after addition of93

Griess reagent.94
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3.2. Elongation index (E.I.)95

To evaluate erythrocyte deformability, we mixed 30 �l of anticoagulated blood with 2 ml of dextran96

solution at a viscosity of 24 mPa. The measurement was obtained by using the diffractometer Rheodyn97

SSD of Myrenne, which measures the diffraction pattern of a laser beam passing through erythrocytes98

suspended in a viscous medium and deformed by a force with defined shear stress. The shear stresses99

employed by us were 6, 12, 30 and 60 Pa. The erythrocyte deformation was expressed as elongation index100

(EI) = (l − w/l + w) × 100, were l = length and w = width of the erythrocytes.101

4. Statistical analysis102

Data were expressed as means ± S.D.; the difference between normal subjects and OSAS patients was103

evaluated according to the Student’s t test for unpaired data. The statistical difference between normal104

subjects and OSAS subjects subdivided according to the apnea/hypopnea index (AHI) was estimated105

using the 1-way analysis of variance (ANOVA) integrated with the Bonferroni test. The correlations were106

performed employing the linear regression test. The null hypothesis was rejected for p values <0.05.107

5. Results108

In the entire group of OSAS subjects no difference in NOx was found in comparison with normal109

controls, while a significant decrease in EI at each shear stress was observed (Table 2). Subdividing110

OSAS subjects according to the AHI value in the two subgroups, we noted a NOx decrease in the111

H subgroup (AHI >30) in comparison with L subgroup, but not in comparison with normal controls.112

However, the EI, at each shear stress, was significantly reduced in the two subgroups in comparison with113

normals (Table 3). In the entire group of OSAS subjects we observed a negative correlation between NOx114

and AHI (r = −0.61, p < 0.001), a positive correlation between NOx and mean nocturnal SO2 (r = 0.418,115

p < 0.01) and a negative correlation between AHI and mean nocturnal SO2 (r = −0.56, p < 0.001). We also116

noted a positive correlation between AHI and neck circumference (r = 0.60, p < 0.001), and a negative117

correlation between neck circumference and mean nocturnal SO2 (r = −0.47, p < 0.01). No significant118

correlation was found between EI, at each shear stress, and NOx nor between EI and AHI, mean nocturnal119

SO2, or neck circumference.120

Table 2

Mean ± S.D. of nitric oxide metabolites (NOx) and elongation index (EI) at two shear stresses, in control subjects and the
whole group of OSAS patients

Control subjects All OSAS patients

NOx (�mol/l) 28.07 ± 18.83 27.49 ± 10.25
EI 30 43.7 ± 6.1 39.2 ± 4.3***
EI 60 46.9 ± 5.4 43.2 ± 3.6**

**p < 0.01, ***p < 0.001 vs. Control subjects.
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Table 3

Mean ± S.D. of nitric oxide metabolites (NOx) and elongation index (EI) at two shear stresses, in control subjects and the two
subgroups of OSAS patients, with respectively AHI 5–30 and AHI ≥30

Control subjects FAHI 5–30 AHI ≥30 F

NOx (�mol/l) 28.07 ± 18.83 33.47 ± 10.05 22.84 ± 7.79* 3.246a

EI 30 43.7 ± 6.1 38.4 ± 5.2¶ 39.6 ± 3.7# 6.502b

EI 60 46.9 ± 5.4 42.5 ± 4.4# 43.5 ± 3.0# 6.044b

ap < 0.05, bp < 0.01 (ANOVA). *p < 0.05 vs. mild OSAS (Bonferroni’s post-test). #p < 0.05, ¶p < 0.01, §p < 0.001 vs. control
subjects (Bonferroni’s post-test).

6. Discussion121

The trend of NOx observed by us in OSAS subjects is confirmed by some authors [11], but conflicts122

with the results of others [1, 9, 22, 29, 31, 33]. The subdivision according to the AHI value showed a123

marked decrease in NOx only in the subgroup with AHI >30. Agreeing with other authors [15, 18], we124

found a negative correlation between NOx and AHI in the group of OSAS subjects, in which a correlation125

between NOx and mean nocturnal SO2 and between AHI and mean nocturnal SO2 was evident. Also126

the neck circumference seems to influence AHI and mean nocturnal SO2. These data suggest that the127

behavior of NOx in OSAS depends especially on its severity. As oxygen is a substrate of NOS, the128

frequent desaturation in OSAS subjects could reduce NOS activity; in addition, hypoxia is responsible129

for alterations in gene regulation, so it could suppress the transcription of endothelial NOS (eNOS) gene130

[9]. Some authors have examined the effect of intermittent hypoxia on cultured human umbilical vein131

endothelial cells and they have observed significantly lower levels of NO, NOS activity and NOS mRNA132

expression [47]. Jelic et al. [17], in freshly venous endothelial cells of newly diagnosed OSAS subjects,133

found a reduced expression of eNOS and reduced levels of phosphorylated eNOS (the activated form)134

associated with an increased expression of inducible NOS (iNOS). Treatment with cPAP for 4 weeks135

significantly increased eNOS and phosphorylated eNOS, and decreased iNOS expression, improving136

flow-mediated dilation [17]. Other authors, in animal models, have demonstrated that chronic intermittent137

hypoxia down-regulates the endothelial NOS expression inducing NF-kB activity and the consequent138

overproduction of inflammatory mediators, such as TNF-�, able to inhibit eNOS expression [44]. It has139

been also suggested that the increased production of ROS in OSAS might cause eNOS uncoupling with140

consequent decreased activity of this enzyme [45]. The reduced availability of NO may be involved in141

the pathogenesis of arterial hypertension and cardiovascular diseases, especially in severe OSAS.142

In the entire group and in the subgroups of OSAS subjects we found a significant decrease in EI at143

each shear stress. This datum is different from which of others [12, 42], who did not find any difference144

about erythrocyte deformability between OSAS subjects and normal controls. It must be mentioned145

that Dikmenoglu et al. [12] have examined this rheological determinant using a filtration thecnique,146

while Tazbirek et al. [42] employing a laser optical rotational cell analyzer. In this group of OSAS147

subjects, no correlation between NOx and EI has been observed although, theoretically, a link between148

these two parameters could subsist. In fact, in vitro NO donors increase the erythrocyte deformability149

[5], whereas the NOS inhibitors reduce this rheological determinant [5, 6]. In our study no correlation150

between EI and some parameters of OSAS severity (AHI, mean nocturnal SO2) was found while other151

authors noted a correlation between erythrocyte deformability and nocturnal minimal SO2 [42]. If we152
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consider that, up to now, in OSAS subjects neither an alteration of osmotic fragility of erythrocytes [30]153

nor abnormalities of red cell metabolism [12, 30] or erythrocyte membrane peroxidation [12, 30] have154

been demonstrated, we must suppose that the behavior of erythrocyte deformability is due to exogenous155

factors, such as hydrogen concentration, NO or intermittent oxygen desaturation, although we did not156

observe any statistical correlation between some of these factors and the EI. Considering the several157

cardiovascular complications accompanying OSAS, this haemorheological alteration, that influences the158

microcirculation, seems to assume a particular role. In the next future, it will be useful to evaluate if also159

erythrocyte deformability might be improved by cPAP treatment.160

This research complies with the requirement for ethical publication in Clinical Hemorheology and161

Microcirculation as published in Clin Hemorheol Microcirc. 2010;44(1):1-2.162
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